
Elette Boyle
Mohammad Mahmoody (Eds.)

LN
CS

 1
53

64

22nd International Conference, TCC 2024
Milan, Italy, December 2–6, 2024
Proceedings, Part I

Theory
of Cryptography

Lecture Notes in Computer Science 15364
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Elette Boyle · Mohammad Mahmoody
Editors

Theory
of Cryptography
22nd International Conference, TCC 2024
Milan, Italy, December 2–6, 2024
Proceedings, Part I

Editors
Elette Boyle
NTT Research
Sunnyvale, CA, USA

Reichman University
Herzliya, Israel

Mohammad Mahmoody
University of Virginia
Charlottesville, VA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-78010-3 ISBN 978-3-031-78011-0 (eBook)
https://doi.org/10.1007/978-3-031-78011-0

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-78011-0

Preface

The 22nd Theory of Cryptography Conference (TCC 2024) was held during December
2–6, 2024, at Bocconi University in Milano, Italy. It was sponsored by the International
Association for Cryptologic Research (IACR). The general chair of the conference was
Emmanuela Orsini.

The conference received 172 submissions, of which the Program Committee (PC)
selected 68 for presentation, giving an acceptance rate of 39.5%. Each submission was
reviewed by at least three PC members in a single-blind process. The 50 PC members
(including PC chairs), all top researchers in our field, were helped by 185 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the tenth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2004: “Notions of Reducibility between
Cryptographic Primitives,” by Omer Reingold, Luca Trevisan, and Salil P. Vadhan. The
award committee recognized this paper “for providing a rigorous and systematic taxon-
omy of reductions in cryptography, and in particular coining fully black-box reductions
and motivating their use in barrier results.”

We are greatly indebted to the many people who were involved in making TCC 2024
a success. Thank you to all the authors who submitted papers to the conference and to the
PC members for their hard work, dedication, and diligence in reviewing and selecting
the papers.We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. Finally, thank you to the
general chair Emmanuela Orsini and her team at Bocconi University, as well as to the
TCC Steering Committee.

October 2024 Elette Boyle
Mohammad Mahmoody

Organization

General Chair

Emmanuela Orsini Bocconi University, Italy

Program Committee Chairs

Elette Boyle Reichman University, Israel & NTT Research,
USA

Mohammad Mahmoody University of Virginia, USA

Steering Committee

Yuval Ishai Technion, Israel
Huijia (Rachel) Lin University of Washington, USA
Tal Malkin Columbia University, USA
Jesper Buus Nielsen Aarhus University, Denmark
Krzysztof Pietrzak Institute of Science and Technology Austria,

Austria
Manoj M. Prabhakaran IIT Bombay, India
Salil Vadhan Harvard University, USA

Program Committee

Prabhanjan Ananth UC Santa Barbara, USA
Benny Applebaum Tel Aviv University, Israel
Amos Beimel Ben-Gurion University of the Negev, Israel
Chris Brzuska Aalto University, Finland
Yilei Chen Tsinghua University, China
Ran Cohen Reichman University, Israel
Geoffroy Couteau CNRS, IRIF, Université Paris Cité, France
Itai Dinur Ben-Gurion University of the Negev, Israel
Yevgeniy Dodis New York University, USA
Stefan Dziembowski University of Warsaw & IDEAS NCBR, Poland
Nils Fleischhacker Ruhr University Bochum, Germany

viii Organization

Chaya Ganesh Indian Institute of Science, Bangalore, India
Aarushi Goel NTT Research, USA
Siyao Guo NYU Shanghai, China
Mohammad Hajiabadi University of Waterloo, Canada
Carmit Hazay Bar-Ilan University, Israel
Justin Holmgren NTT Research, USA
Aayush Jain Carnegie Mellon University, USA
Zhengzhong Jin Northeastern University, USA
Dakshita Khurana University of Illinois at Urbana-Champaign, USA
Susumu Kiyoshima NTT Social Informatics Laboratories, Japan
Lisa Kohl CWI Amsterdam, Netherlands
Ilan Komargodski Hebrew University of Jerusalem, Israel & NTT

Research, USA
Eyal Kushilevitz Technion, Israel
Huijia (Rachel) Lin University of Washington, USA
Alex Lombardi Princeton University, USA
Fermi Ma Simons Institute and UC Berkeley, USA
Hemanta K. Maji Purdue University, USA
Giulio Malavolta Bocconi University, Italy & Max Planck Institute,

Germany
Noam Mazor Tel Aviv University, Israel
Pierre Meyer Aarhus University, Denmark
Ryo Nishimaki NTT Social Informatics Laboratories, Japan
Omer Paneth Tel Aviv University, Israel
Krzysztof Pietrzak Institute of Science and Technology Austria,

Austria
Manoj Prabhakaran IIT Bombay, India
Willy Quach Weizmann Institute of Science, Israel
Divya Ravi University of Amsterdam, Netherlands
Alon Rosen Bocconi University, Italy and Reichman

University, Israel
Lior Rotem Stanford University, USA
Peter Scholl Aarhus University, Denmark
Sruthi Sekar IIT Bombay, India
Luisa Siniscalchi Technical University of Denmark, Denmark
Eliad Tsfadia Georgetown University, USA
Prashant Nalini Vasudevan National University of Singapore, Singapore
Muthu Venkitasubramaniam Georgetown University, USA
Mingyuan Wang UC Berkeley, USA
Daniel Wichs Northeastern University & NTT Research, USA
Takashi Yamakawa NTT Social Informatics Laboratories, Japan

Organization ix

Additional Reviewers

Behzad Abdolmaleki
Anasuya Acharya
Amit Agarwal
Divesh Aggarwal
Andris Ambainis
Gilad Asharov
Thomas Attema
David Balbás
Laasya Bangalore
James Bartusek
Tyler Besselman
Rishabh Bhadauria
Kaartik Bhushan
Alexander Bienstock
Aniruddha Biswas
Alexander Block
Jeremiah Blocki
Katharina Boudgoust
Nicholas Brandt
Rares Buhai
Alper Cakan
Matteo Campanelli
Ran Canetti
Rutchathon Chairattana-Apirom
Benjamin Chan
Anirudh Chandramouli
Rohit Chatterjee
Megan Chen
Jessica Chen
Binyi Chen
Arka Rai Choudhuri
Sandro Coretti-Drayton
Quand Dao
Pratish Datta
Giovanni Deligios
Marian Dietz
Fangqi Dong
Nico Döttling
Ehsan Ebrahimi
Christoph Egger
Saroja Erabelli
Grzegorz Fabiański
Pooya Farshim

Giacomo Fenzi
Ben Fisch
Pouyan Forghani
Cody Freitag
Phillip Gajland
Karthik Gajulapalli
Rachit Garg
Sanjam Garg
Riddhi Ghosal
Satrajit Ghosh
Suparno Ghoshal
Niv Gilboa
Eli Goldin
Tian Gong
Junqing Gong
Jiaxin Guan
Aditya Gulati
Taiga Hiroka
Iftach Haitner
David Heath
Aditya Hegde
Hans Heum
Minki Hhan
Yao-ching Hsieh
Zihan Hu
Jihun Hwang
Yuval Ishai
Abhishek Jain
Daniel Jost
Eliran Kachlon
Fatih Kaleoglu
Chethan Kamath
Simon Kamp
Julia Kastner
Shuichi Katsumata
Hannah Keller
Hamidreza Amini Khorasgani
Taechan Kim
Elena Kirshanova
Ohad Klein
Karen Klein
Dimitris Kolonelos
Chelsea Komlo

x Organization

Manu Kondapaneni
Venkata Koppula
Alexis Korb
Nishat Koti
Roman Langrehr
Seunghoon Lee
Keewoo Lee
Zeyong Li
Yunqi Li
Hanjun Li
Xiao Liang
Fuchun Lin
Chuanwei Lin
Haoxing Lin
Yao-Ting Lin
Tianren Liu
Jiahui Liu
Chen-Da Liu-Zhang
Zhenjian Lu
Donghang Lu
Vadim Lyubashevsky
Ulysse Léchine
Nir Magrafta
Bernardo Magri
Nathan Manohar
Xinyu Mao
Marcin Mielniczuk
Ethan Mook
Tomoyuki Morimae
Changrui Mu
Saachi Mutreja
Anne Müller
Varun Narayanan
Barak Nehoran
Ky Nguyen
Hai Hoang Nguyen
Guilhem Niot
Oded Nir
Aysan Nishaburi
Mahak Pancholi
Aditi Partap
Anat Paskin-Cherniavsky
Rutvik Patel
Shravani Patil
Sikhar Patranabis

Alice Pellet-Mary
Paola de Perthuis
Naty Peter
Spencer Peters
Bertram Poettering
Guru Vamsi Policharla
Alexander Poremba
Luowen Qian
Rajeev Raghunath
Debasish Ray Chawdhuri
Hanlin Ren
Doreen Riepel
Ron D. Rothblum
Adeline Roux-Langlois
Lawrence Roy
Elahe Sadeghi
Pratik Sarkar
Rahul Satish
Benjamin Schlosser
Akash Shah
Jad Silbak
Mark Simkin
Fabrizio Sisinni
Tomer Solomon
Fang Song
Katerina Sotiraki
Noah Stephens-Davidowitz
Gilad Stern
Björn Tackmann
Kel Zin Tan
Er-cheng Tang
Athina Terzoglou
Jean-Pierre Tillich
Pratyush Ranjan Tiwari
Daniel Tschudi
Prashant Vasudevan
Ivan Visconti
Benedikt Wagner
William Wang
Benjamin Wesolowski
Jiawei Wu
David Wu
Yu Xia
Zhiye Xie
Jeff Xu

Organization xi

Anshu Yadav
Sophia Yakoubov
Chao Yan
Yibin Yang
Xiuyu Ye

Eylon Yogev
Albert Yu
Ilias Zadik
Runzhi Zeng

Contents – Part I

Proofs I

Instance-Hiding Interactive Proofs: (Extended Abstract) . 3
Changrui Mu and Prashant Nalini Vasudevan

The Power of NAPs:: Compressing OR-Proofs via Collision-Resistant
Hashing . 35

Katharina Boudgoust and Mark Simkin

zkSNARKs in the ROM with Unconditional UC-Security 67
Alessandro Chiesa and Giacomo Fenzi

The Brave New World of Global Generic Groups and UC-Secure
Zero-Overhead SNARKs . 90

Jan Bobolz, Pooya Farshim, Markulf Kohlweiss, and Akira Takahashi

Hamming Weight Proofs of Proximity with One-Sided Error 125
Gal Arnon, Shany Ben-David, and Eylon Yogev

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 158
Alessandro Chiesa, Marcel Dall’Agnol, Ziyi Guan, Nicholas Spooner,
and Eylon Yogev

Kolmogorov and One-Way Functions

Lower Bounds for Levin–Kolmogorov Complexity . 191
Nicholas Brandt

On One-Way Functions, the Worst-Case Hardness of Time-Bounded
Kolmogorov Complexity, and Computational Depth . 222

Yanyi Liu and Rafael Pass

One-Way Functions and pKt Complexity . 253
Shuichi Hirahara, Zhenjian Lu, and Igor C. Oliveira

On Bounded Storage Key Agreement and One-Way Functions 287
Chris Brzuska, Geoffroy Couteau, Christoph Egger, and Willy Quach

Rate-1 Zero-Knowledge Proofs from One-Way Functions 319
Noor Athamnah, Eden Florentz – Konopnicki, and Ron D. Rothblum

xiv Contents – Part I

Consensus and Messaging

Consensus in the Presence of Overlapping Faults and Total Omission 353
Julian Loss, Kecheng Shi, and Gilad Stern

On the (Im)possibility of Game-Theoretically Fair Leader Election
Protocols . 383

Ohad Klein, Ilan Komargodski, and Chenzhi Zhu

The Cost of Maintaining Keys in Dynamic Groups with Applications
to Multicast Encryption and Group Messaging . 413

Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig,
Miguel Cueto Noval, Matthew Kwan, Guillermo Pascual-Perez,
and Krzysztof Pietrzak

Compact Key Storage in the Standard Model . 444
Yevgeniy Dodis and Daniel Jost

Bruisable Onions: Anonymous Communication in the Asynchronous
Model . 476

Megumi Ando, Anna Lysyanskaya, and Eli Upfal

Author Index . 509

Proofs I

Instance-Hiding Interactive Proofs

(Extended Abstract)

Changrui Mu(B) and Prashant Nalini Vasudevan

National University of Singapore, Singapore, Singapore

changrui.mu@u.nus.edu, prashant@comp.nus.edu.sg

Abstract. In an Instance-Hiding Interactive Proof (IHIP) [BFS90], an
efficient verifier with a private input x interacts with an unbounded
prover to determine whether x is contained in a language L. In addition
to completeness and soundness, the instance-hiding property requires
that the prover should not learn anything about x in the course of the
interaction. Such proof systems capture natural privacy properties, and
may be seen as a generalization of the influential concept of Random-
ized Encodings [IK00,AIK04,AIKPC15], and as a counterpart to Zero-
Knowledge proofs [GMR89].

We investigate the properties and power of such instance-hiding
proofs, and show the following:
1. Any language with an IHIP is contained in NP/poly ∩ coNP/poly.
2. If an average-case hard language has an IHIP, then infinitely-often

One-Way Functions exist.
3. There is an oracle with respect to which there is a language that has

an IHIP but not an SZK proof.
4. IHIP’s are closed under composition with any efficiently computable

function.
We further study a stronger version of IHIP (that we call Simulatable
IHIP) where the view of the honest prover can be efficiently simu-
lated. For these, we obtain stronger versions of some of the above:

5. Any language with a Simulatable IHIP is contained in AM ∩ coAM.
6. If a worst-case hard language has a Simulatable IHIP, then One-Way

Functions exist.

1 Introduction

An Interactive Proof system (IP) [BM88,GMR89] for a language L is an inter-
active protocol between a polynomial-time verifier A and a computationally
unbounded prover P where both are given as input a string x, and the prover
tries to prove to the verifier that x ∈ L. Such proofs are required to be complete
– if x ∈ L, the verifier will accept at the end of the interaction – and sound – if
x /∈ L, no prover strategy P∗ can make the verifier accept with large probability.
Such proofs are very powerful and have been shown to exist for all languages
computable with polynomial space (PSPACE) [LFKN92,Sha92].

Often in applications of interactive proof systems, one or both of the parties
may hold some secret that they do not want the other to learn in the course
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 3–34, 2025.
https://doi.org/10.1007/978-3-031-78011-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_1&domain=pdf
http://orcid.org/0009-0008-4945-9353
http://orcid.org/0000-0001-6880-795X
https://doi.org/10.1007/978-3-031-78011-0_1

4 C. Mu and P. N. Vasudevan

of the interaction. For instance, the prover P may hold a secret key and wish
to prove to the verifier something about a ciphertext encrypted using that key,
without revealing the key itself. A powerful general formalization of a property
that enables this is Zero-Knowledge (ZK) [GMR89]. This requires that there be
a computationally efficient simulator that, for any x ∈ L, can simulate the entire
view of the verifier A interacting with P on input x. This ensures that the verifier
learns nothing from the interaction other than the membership of x in L.

This simulation may be perfect (PZK), statistically close to (SZK), or
computationally indistinguishable from (CZK) the actual view. In contrast
to general interactive proofs, it is known that languages that have PZK or
SZK proofs are contained in AM ∩ coAM [For87,AH91]. Using computational
assumptions, however, one can again construct CZK proofs for all languages in
PSPACE [GMW91,BGG+88]. ZK proofs have been and continue to be the sub-
ject of extensive research, have found numerous applications in practice, and we
understand them quite well (see, e.g., references in [Vad99,Tha22]).

Instance-Hiding Interactive Proofs. Whereas Zero-Knowledge provides
security for the prover, Instance-Hiding Interactive Proofs (IHIP) [BFS90] pro-
vide a similar security guarantee for the verifier. In an IHIP, the input x is given
only to the verifier A. Apart from completeness and soundness as in an IP, it
is required that the protocol be instance-hiding – for any prover strategy P∗,
there should exist a simulator (computationally unbounded) that, given just the
length of the input, can simulate the view of P∗ when interacting with A on any
input x. This ensures that the prover cannot learn anything about the input
except at most its length.

In other words, the prover proves to the verifier that x ∈ L without know-
ing anything at all about x. Seemingly paradoxical, such proof systems can, in
fact, be constructed for several strutured languages, such as those that have cer-
tain random self-reduction properties [AFK89,FO91]. Nevertheless, a theorem
of Abadi et al. [AFK89] implies that any language that has an IHIP in which the
simulation of the prover’s view is perfect is contained in NP/poly ∩ coNP/poly.
In particular, this implies that NP-hard languages do not have perfect IHIP
protocols unless the polynomial hierarchy collapses [Yap83].

Despite the fact that they capture this fundamental cryptographic property
of protocols, not much else is known about the complexity of IHIP’s today,
decades after they were first defined. Further, even the aforementioned results
do not hold if even a negligible amount of statistical error is allowed in the
hiding property – that is, when the prover’s view corresponding to any instance
can have non-zero but negligibly small statistical distance from the simulator’s
output. In this paper, we undertake a systematic study of the complexity of such
general imperfect IHIP’s, with the objective of understanding what properties
they have, how powerful they are, what kinds of structure they create, and how
they compare to other cryptographic protocols like ZK proofs.

Instance-Hiding Interactive Proofs 5

1.1 Our Results

In the rest of the paper, we simply use IHIP to denote instance-hiding IP’s
that have a negligible statistical hiding error as described above. We also study
a strengthening of these proofs where the simulator that simulates the honest
prover’s view is required to be efficient; we refer to these as Simulatable IHIP’s.
A number of natural constructions of IHIP’s do, in fact, have this stronger prop-
erty (see, e.g., full version [MV24, Appendix A]). We show a collection of results
about various aspects of these proof systems, some of which follow from tech-
niques common in the study of Secure Multi-Party Computation (MPC) and
SZK proofs, while others require the development of new methods. We define
these proof systems in Sect. 2, and in full version [MV24, Appendix A] we present
examples of non-trivial languages that have such proof systems, including one
that seems to require multiple rounds of interaction.

Power of Instance-Hiding Proofs. We start by asking which languages can
possibly have IHIP’s. The results of Abadi et al. [AFK89] imply that languages
that have perfect IHIP’s are contained in NP/poly ∩ coNP/poly. However, their
techniques stop working if there is even a small amount of error in the hiding
property. Using some carefully designed interactive proofs, we show that any
language that has an IHIP with small enough hiding error is still contained in
NP/poly ∩ coNP/poly. Further, if the IHIP has an efficient simulator for the
honest prover and the simulator and verifier are uniform, we can get rid of the
non-uniformity and show that the language lies in AM ∩ coAM.

Theorem 1.1 (Theorems 2 and 3). If a language L has an IHIP, then both L
and its complement L̄ have constant-round public-coin interactive proofs with
non-uniform verifiers. Further, if L has a simulatable IHIP, this conclusion holds
with uniform verifiers.

This too implies that NP-hard problems do not have such proofs unless the
polynomial hierarchy collapses [Yap83,FF91]. This upper bound on the power
of such proofs is complemented by the existence a number of interesting non-
trivial languages do have instance-hiding interactive proofs – see the examples in
[MV24, Appendix A] and the connections to Randomized Encodings in [MV24,
Appendix C].

Implications for One-Way Functions. Investigating further the implications
of non-trivial languages having instance-hiding proofs, we show that the exis-
tence of hard languages with such proofs implies the existence of One-Way Func-
tions (OWF’s).

Theorem 1.2 (Theorems 4 and 5). One-Way Functions are implied by the exis-
tence of either of the following:

– An average-case hard language that has an IHIP
– A worst-case hard language that has a simulatable IHIP

The proof of the first statement in the theorem above is non-constructive –
we prove that an OWF exists, but given an explicit average-case hard language
with an IHIP, our proof does not construct an explicit function that is one-way.

6 C. Mu and P. N. Vasudevan

Relationship with SZK. Both the above properties – membership in AM ∩
coAM [For87,AH91] and the implication of OWFs from average-case hard-
ness [Ost91] – are shared by the class SZK of languages that have Statistical
Zero Knowledge proofs. Intuitively, SZK proofs and IHIP’s seem to rely on dif-
ferent properties of the underlying language, and it seems unlikely that one is
contained in the other. We provide some evidence for this in the form of an
oracle separation between SZK and Simulatable-IHIP, the class of languages that
have simulatable IHIP’s.

Theorem 1.3 (Theorem 6). There exists an oracle O with respect to which
Simulatable-IHIPO �⊆ SZKO.

We essentially prove this statement in the Generic Group Model [Sho97] –
we show a group problem that cannot be decided by SZK protocols that treat
the group in a certain “generic” manner, but can be decided by a similarly
generic IHIP protocol. Showing an oracle separation in the other direction is an
interesting open problem here.

Closure Properties. Finally, we show that IHIP’s have rather strong closure
properties – that they are closed under composition with any efficiently com-
putable function. For any language L, and functions f : {0, 1}∗ → {0, 1} and
k : N → N, consider the “composed” language f ◦ L⊗k, in which an instance
consists of k = k(n) strings xi of length n, which is in the language if and only
if f(L(x1), . . . ,L(xk)) = 1. That is, given these k strings xi, first check whether
each of these is in L, and then compute the function f on the result of these
checks.

Theorem 1.4 (Theorem 1). Consider any language L that has an IHIP protocol,
and any efficiently computable function f : {0, 1}∗ → {0, 1}. For any polynomial
k : N → N, the composed language f ◦ L⊗k also has an IHIP protocol.

Similar properties for SZK are only known to hold for composition with
polynomial-sized formulas (or NC1) [SV97], whereas the above corresponds to
polynomial-sized circuits (or P). This is another indication that this class is
likely to be different from SZK.

The above theorem implies, in particular, that IHIP is closed under comple-
ment. While not directly implied by the theorem, our proof also shows that the
OR or AND of two languages that have IHIP’s also has an IHIP. This extends
to the statement that for any constant k and languages L1, . . . ,Lk that all have
IHIP’s, any language expressible as a function of membership in these languages
also has an IHIP.

Our proof of this theorem goes through Instance-Hiding Delegation [FO91],
which are an alternative formulation of instance-hiding protocols that are inter-
esting in their own right. See Sect. 3.5 for details.

Useful Tools. In the course of our constructions and proofs, we also show two
lemmas that are meaningful outside this context – a protocol for proving lower
bounds on a weighted sum of the sizes of sets (see full version [MV24, Section 3]),

Instance-Hiding Interactive Proofs 7

and an equivalence between randomized and deterministic advice for interactive
proofs ([MV24, Section 3]).

1.2 Technical Overview

We now present an overview of the proofs of Theorems 1.1 to 1.3. The proof of
Theorem 1.4 follows from a straightforward extension of existing work together
with some standard transformations, so we leave its details to the relevant
section.

Instance-Hiding to AM Proofs
Suppose a language L has an instance-hiding IP with prover P and verifier A –
denoted 〈P,A〉. We will use this to construct a constant-round interactive proof
〈M,A〉 with non-uniform verifier A for L. We will then show how to remove the
non-uniformity if there is an efficient simulator for the honest prover.

Denote by r ∈ RA the random string used by the verifier. For any input x,
denote by Sx the distribution over the transcript s = (u1, y1, . . . , uq, yq) gener-
ated by the execution of the protocol 〈P,A(x; r)〉, where ui and yi denote the
verifier’s and prover’s message in ith round respectively. For simplicity, assume
that P is deterministic1. Given input x, our approach is to have M prove to A
that the probability that 〈P,A(x; r)〉 accepts is large. Towards discussing this,
we define the following two sets for any x and transcript s:

βx
s = {r | s is the transcript of 〈P,A(x; r)〉}

αx
s = {r | r ∈ βx

s and 〈P,A(x; r)〉 accepts}
We start with the observation that the probability of acceptance may be
expressed as follows:

Pr
r

[〈P,A(x; r)〉 accepts] =
∑

s |αx
s |

|RA| =
∑

s

|βx
s |

|RA| · |αx
s |

|βx
s | = E

s←Sx

[|αx
s |

|βx
s |

]

(1)

So it is sufficient to construct a sound protocol where, for the given input x,
M proves to A that the above expectation is large. Notice that for any s, the
membership of a string r in the set αx

s can be efficiently verified. This means
that we can use the Goldwasser-Sipser set lower bound protocol [GS86] to prove
lower bounds on the size of αx

s . Now suppose the following three conditions were
satisfied:

1. A has the ability to sample transcripts s from the distribution Sx

2. For s sampled as above, A can find out the value of |βx
s |, and,

3. With high probability over s sampled from Sx, the value of |αx
s |

|βx
s | is close to its

expectation
1 In general interactive proofs, this assumption is without loss of generality. It is

not clear that this is the case with instance-hiding interactive proofs without some
worsening of parameters. In our actual proof, we do not need this assumption and
the randomness of the prover is easy to deal with.

8 C. Mu and P. N. Vasudevan

Then, we can construct the required protocol as follows:

– A samples an s ← Sx, and computes |βx
s |

– M and A run the GS protocol where M proves that |αx
s | � |βx

s | /2

If x ∈ L, then with high probability over s, the condition involved in the GS
protocol above is true, and A will accept with high probability. Similarly, if
x /∈ L, this condition is false and A will reject with high probability.

If the protocol 〈P,A〉 were perfectly instance-hiding, then the distribution Sx

is the same for any x of a given length, as is the size of the set βx
s for any s

– call this common distribution S and the common set size bs. Then, we can
handle the first two conditions above by providing to A a sample s from S and
the corresponding value bs as non-uniform advice2 (these are now independent
of x). One catch here is that the completeness and soundness would then only
hold for such randomly sampled advice. We show that an AM protocol with this
property can be derandomized to a standard AM protocol with deterministic
non-uniform advice ([GS86]).

However, our protocol is only statistically instance-hiding, and so there may
be no such common distribution. So we instead pick some canonical instance
x0, and use a sample s from the distribution Sx0 and the quantity |βx0

s | as
advice instead. Then we show that the instance-hiding property implies that the

quantities Es←Sx

[|αx
s |

|βx
s |

]
and Es←Sx0

[
|αx

s |
|βx0

s |
]

are close for any x. We use this to

then show that using x0 instead of x in the sampling of the advice will not affect
the protocol by much.

All that is left is to ensure that the third condition above holds – that with
high probablity |αx

s | / |βx
s | is close to its expectation. But it very well might not

be. We deal with this by using instead the sum of many independent copies of this
random variable:

∑
i∈[g](

∣
∣αx

si

∣
∣ /

∣
∣βx

si

∣
∣), where each si is sampled independently.

By the Hoeffding bound, this sum is indeed close to its expectation with high
probability. Now, instead of proving a lower bound on the size of a single set, M
needs to prove that the weighted sum of the sizes of a number of sets is large.
We design an AM protocol for this by extending the Goldwasser-Sipser protocol
([GS86]).
Overall, the final constant-round protocol with randomized advice is as follows
on input x:

– A receives as advice several samples s1, . . . , sg ← Sx0 , and the quantities
∣
∣βx0

s1

∣
∣ , . . . ,

∣
∣
∣βx0

sg

∣
∣
∣

– M and A run our weighted set-lower-bound protocol where M proves that:
∑

i

|αx
si

|
|βx0

si | � g
2

An AM protocol can be obtained from this constant-round IP following standard
transformations [GS86].

2 In fact, [FF91] show that AM/poly is equivalent to NP/poly.

Instance-Hiding Interactive Proofs 9

Uniform Verifier from Simulatable-IHIP. Midway through the argument
above, we observed that it is sufficient for the verifier to be able to obtain a
number of samples s from Sx, together with the values |βx

s |. Above, we resolved
this by providing approximations of these as non-uniform advice. If we have an
efficient simulator Sim (that only takes the size of the instance as input) for the
view of the honest prover, however, we can compute these in the protocol itself,
without needing such advice. The first part is clear – if we sample s from Sim(n),
its distribution is guaranteed to be close to Sx for any x, by the instance-hiding
property.

What remains is to arrange for the verifier to learn the (approximate) value
of |βx

s | for such s. We do this by taking advantage of the fact that for any x and
s, by the instance-hiding property, the probability that Sim(n) outputs s is a
reasonably good approximation of the probability that the protocol with verifier
input x results in the transcript s. To be more specific, define the following
quantity for any s:

ζs = {rSim | s is the transcript of Sim(n; rSim)}

Let the randomness space of the simulator be RSim. Then, we show that the
simulator’s output being negligibly close to the actual transcript implies the
following for any x, with high probability over s sampled from either Sx or
Sim(n):

1
2

· |ζs|
|RSim| ≤ |βx

s |
|RA| ≤ 2 · |ζs|

|RSim|
Thus, if M can prove good bounds on the size of ζs to A, these would also

imply good bounds on the size of βx
s , and we can the proceed with the protocol

as before. Notice that membership in ζs is again efficiently testable. So a lower-
bound on |ζs| can again be proven using the GS protocol.

To prove an upper bound, we use the set upper-bound protocol of Fort-
now [For87]. This protocol requires, in addition to membership in the set being
testable, that the verifier privately obtain a uniformly random element from
the set. This is easy for us to arrange – the verifier A simply samples a random
r ∈ RSim, runs Sim(n; r) to obtain s, sends s to the prover M and keeps r private.
Here, according to M, r is indeed a uniformly random element in ζs.

The entire protocol is now roughly as follows on input x:

– A samples {si ← SimP(n; ri)}i∈[g], and sends the si’s to M
– M and A run upper and lower bound protocols for A to obtain an approxi-

mation of each |ζsi
|

– A assumes that
∣
∣βx

si

∣
∣ = |ζsi

| · (|RA| / |RSim|), using the values obtained above
for the right-hand side

– M and A run our weighted set-lower-bound protocol where M proves that:
∑

i

|αx
si

|
|βx

si
| � g

2

10 C. Mu and P. N. Vasudevan

The actual protocol is slightly different because the set upper-bound protocol’s
guarantees are a bit weaker than ideal, but in essence it is as above. We refer
the reader to full version [MV24, Section 4] for details.

One-Way Functions from IHIP for Hard Problems
Recall that Theorem 1.2 shows that if a worst-case hard (resp. average-case hard)
problem has a Simulatable-IHIP (resp. IHIP), then there is explicit constructions
of one-way functions (resp. non-explicit construction). The proofs assume, for
the sake of contradiction, the non-existence of one-way function, and then use the
efficient inverter algorithm for efficient functions guaranteed by the assumption
to decide the problem.

Specifically, we assume the non-existence of distributional one-way function,
which is implied by the non-existence of one-way functions [IL89]. If an effi-
cient function f is not distributionally one-way, then there exists an efficient
inverter A, which takes a random image of f as input, and samples preimages
almost-uniformly. For the overview, we assume that the inverters work perfectly
and sample uniformly random preimages3, and also will focus on perfect-hiding
protocols, and later describe how to make everything work with errors.

Non-explicit OWFs from Average-Case Hard IHIP
Consider any language L that has a q-round IHIP with prover P and verifier
A, with a computationally unbounded simulator Sim for the honest prover’s
view. Further, there is an efficiently sampleable distribution X over which it is
hard. We will work with q = 2 for this overview, which is sufficient to demon-
strate the ideas behind the proof. Denote the algorithm of the verifier that
computes the next message at any point in the protocol using random string r
by A(x, u1, . . . , yi; r). As before, for any (possibly partial) transcript s, denote
by βx

s the set of random strings r consisted with s, and by αx
s the set of r that

lead to A accepting with transcript s.
We observe that if 〈P,A〉 is a one-round (two-message s = (u1, y1)) protocol,

then it is easy to show that F1(x, r1) = (x,A(x; r1)) must be an distributional
one-way function4. Suppose not, there must exist an efficient inverter A1, that on
a random image (x, u1) as input, samples r∗

1 uniformly over βx
u1

. Now consider
a non-uniform adversary Bs that has as advice a random transcript s = (u1, y1)
sampled according to the simulation Sim(n), and works as follows on input x:

– Bs(x) runs A1(x, u1) to obtain a random r∗
1 ∈ βx

u1
and accepts if and only if

A(x, u1, y1; r∗
1) accepts.

This last event above happens with probability |αx
s | / |βx

s |. So in expectation
over s, by (1), the probability that Bs accepts will be large if x is in L and
small otherwise. The fact that the advice s is random in this algorithm is not

3 This assumption clearly loses generality. If it were true, then one would obtain OWF’s
from worst-case hard problems in SZK and IHIP rather than needing average-case
hardness.

4 In case X is not uniform distribution, F should instead take the randomness used
by the sampler of X rather than x as input.

Instance-Hiding Interactive Proofs 11

a concern – by taking multiple s and repeating Bs several times, one can then
show that there is a single set of transcripts s that works well as advice for all
possible instances of size n. This gives us a non-uniform algorithm for L, which
is a contradiction, so F1 must be a distributional OWF.

In general, if we can set up an efficiently computable function such that
inverting it lets us sample a random element of βx

s given x and s, we can repeat
the above argument. When the protocol 〈P,A〉 is more than one round (even
just two rounds), however, this approach is not straightforward. This is because
the messages of the verifier starting from the second round are dependent on
prover’s messages and are in general not guaranteed to be efficiently sampleable
in the way the first message is. For instance, a natural candidate for such a
function might be defined as F

(u1,y1)
2 (x, r) = A(x, u1, y1; r). However, we are

only interested in inverses of this function where the r is consistent with the first
message u1, and this might not be efficiently sampleable.

Instead, we use an recursive argument that either finds a distributional one-
way function or obtain a “useful” efficient sampler for define F2. The argument
proceeds as follows:

First, if F1 is already a distributional OWF, we are done with our proof.
If not, consider a (perfect) inverter A1 for F1. Let C1(x, u1) be the algorithm
that computes (x, r1) ← A(x, u1), and just outputs r1. We define the function
F

(u1,y1)
2 for any (u1, y1) as follows:

F
(u1,y1)
2 (x, r2) = (x,A(x, u1, y1;C1(x, u1; r2)))

That is, F
(u1,y1)
2 (x, r2) first runs C1 with randomness r2 to sample an r1 that

is contained in βx
u1

, and then runs A on the partial transcript (u1, y1) with that
r1 to produce the next verifier message u2 in the protocol. If C1 is perfect, this
achieves what the earlier attempt at defining F2 did not – any output of C1(x, u1)
is a random element of βx

u1
, so we are never in a situation where we have in hand

a verifier random string r that is not consistent with the partial transcript so
far.

Let us look at the property of random inverses of F2 more closely. First, given
a random r2, C1(x, u1; r2) is a random element of βx

u1
, and so also of βx

(u1,y1)
.

So a random inverse of F
(u1,y1)
2 on output (x, u2) is a random (x, r2) such that

C1(x, u1; r2) is also further contained in βx
(u1,y1,u2)

. So given a random inverse

(x, r2) of F
(u1,y1)
2 on output (x, u2), the output of C1(x, u1; r2) is distributed

uniformly over βx
(u1,y1,u2)

, and thus also βx
s for s = (u1, y1, u2, y2) for any y2. So

given a random such s = (u1, y1, u2, y2) from the simulator Sim(n) along with
a perfect distributional inverter for F

(u1,y1)
2 , we can efficiently sample from βx

s ,
which is exactly what we needed! So unless F

(u1,y1)
2 is distributionally one-way

for such an s, we can decide L on infinitely often n.
There are two remaining issues here – one is that we do not actually have a

perfect distributional inverter, only a very good one; the other is the question
of where the distributional inverters come from for the eventual algorithm we

12 C. Mu and P. N. Vasudevan

construct for L. The solution to the latter is non-uniform advice. As before, we
can argue that there is a set of transcripts s that work for all instances, and then
if the F2’s defined with those transcripts are not distributionally one-way, their
inverters can be provided as non-uniform advice. The former issue can again be
dealt with using standard techniques to carefully account for the inversion (and
also hiding) errors and show that it remains small enough to not matter.

This process can then be inductively carried out for every round of the proto-
col if there are more rounds. Finally note that the reason this does not extend to
being able to use the worst-case hardness of L is that the functions F1, etc., that
we construct take x as an input. So inverting them on random outputs cannot
give guarantees for every possible x.

Explicit OWFs from Worst-Case Hard Simulatable-IHIP
Consider any language L that has a q-round Simulatable-IHIP with prover P,
verifier A and efficient honest-prover simulator Sim. Our approach is to use the
possibility of inverting any efficiently computable function to efficiently imple-
ment the “simulation-based prover” [AH91] for this interactive proof for any
instance. This proof is almost the same as the proof that average-case hardness
of SZK implies OWF’s [Ost91], though see below for further discussion.

The simulation-based prover PSim is defined to behave as follows on inter-
action with verifier A: at any point in the protocol, if the current transcript is
(u∗

1, . . . , y
∗
i−1, u

∗
i), it samples an s = (u1, . . . , ui, yi) from Sim(n) conditioned on

uj = u∗
j for j ≤ i and yj = y∗

j for j < i, and then responds to A with the
message yi. By the instance-hiding property, the view of the verifier generated
by A interacting with PSim is statistically close to that when interacting with the
honest verifier P. Thus, due to the completeness and soundness of the protocol, if
PSim can be implemented efficiently, the language can also be decided efficiently.

For each i ∈ [q], define the efficiently computable function Simi(n, r) that
runs Sim(n; r) (with randomness r), and outputs the first (2i − 1) messages
(u1, y1, . . . , ui). If each Simi had a perfect distributional inverter, then given
(u∗

1, . . . , u
∗
i), the inverter can be used to sample a uniformly random r that

when used by Sim(n; r) as randomness produces this partial transcript. Then
computing Sim(n; r) can be used to sample the yi that is exactly as required
by the simulation-based prover. So if every efficiently computable function can
be perfectly distributionally inverted, then the simulation-based prover can be
implemented efficiently, giving us the contradiction we want. If the distributional
inverter available is not perfect, there are some errors that come up throughout
this process, but they can be handled using standard techniques.

This proof is very similar to the proof that average-case hardness of SZK
implies OWF’s [Ost91]. In the SZK case, the simulator also takes as input the
instance x, and therefore being able to invert the simulator does not necessar-
ily imply that the language can be decided for all instances x, which is why
average-case hardness is needed. In this case, however, the simulator works for
all instances x, and so inverting it gives an algorithm for all instances x, and
worst-case hardness is sufficient.

Instance-Hiding Interactive Proofs 13

Oracle Separation from SZK
To demonstrate an oracle separation between IHIP and SZK, we construct an
oracle language for which these two protocols have different query complexi-
ties. This separation in query complexity can then be translated into an oracle
separation using standard diagonalization techniques.

Our language is defined using the Discrete Log problem with a generic group
oracle [Sho97]. For any n ∈ N, and a prime number N ≈ 2n, given any bijection
σ : ZN → [N], the generic group oracle Gσ encodes the group ZN using other-
wise meaningless labels from [N]. Given inputs g, h ∈ [N], Gσ(g, h) is equal to
σ(σ−1(g)+σ−1(h)). Consider in addition to this another oracle I : ZN → {0, 1}.
We define our language (technically, promise problem) as:

LI,σ = {(σ(1), σ(x)) | I(x) = 1}
This language has an IHIP for anyσ and I when the parties are given access to I

and Gσ as oracles. This is as follows: given input (σ(1), σ(x)), compute y = σ(x+r)
for a random r ∈ ZN , send y to the prover, who is supposed to return r′ ← σ−1(y).
Check that σ(r′) = y, and if so output I(r′ − r). The efficiency of the verifier here
relies on the fact that σ(r) for any r can be computed using poly(n) calls to Gσ using
repeated doubling. Completeness and soundness follow from the fact that (r, r′) is
an NP witness for the instance, and simulatable instance-hiding follows from the
fact that the prover only sees a uniformly random element of [N].

On the other hand, it is known from generic lower-bounds for the Discrete
Log problem [Sho97,CGK18] that no algorithm can compute x given (σ(1), σ(x))
and oracle access to Gσ for a random σ with substantially fewer than

√
N queries.

This implies that any candidate efficient SZK simulator would, with very high
probability, not query oracle I on x given input (σ(1), σ(x)) and oracle access
to Gσ. The simulation property then implies that if I(x) = 1, then the verifier
for the corresponding protocol, with high probability, would not query I on x
either. If this happens, then the outcome of the protocol would have been the
same irrespective of whether I(x) was 0 or 1. This shows that at least one of
zero-knowledge, completeness, or soundness breaks at such an input x. This
shows the required query complexity lower bound.

1.3 Related Work

The concept of instance-hiding proof systems was first introduced, albeit in the
multi-prover setting, by Beaver et al. [BFS90]. Their definition was based on
that of instance-hiding schemes as defined by Abadi et al. [AFK89], which may
be seen as honest-prover instance-hiding proofs without the soundness property.
The latter also showed that any language that has a perfect instance-hiding
scheme (which is implied by a proof) is contained in NP/poly ∩ coNP/poly. The
former showed that a language has a multi-prover instance-hiding proof iff it
is contained in NEXP ∩ coNEXP, and further that such a proof could be made
zero-knowledge.

Feigenbaum and Ostrovsky [FO91] and Beaver et al. [BFOS93] showed fur-
ther connections between (single-prover) instance-hiding schemes and proofs

14 C. Mu and P. N. Vasudevan

assuming the existence of one-way permutations. To be more accurate, most
of these papers consider instance-hiding proofs for certifying the evaluations
of functions and discuss the feasibility of such proofs based on the complexity
of these functions. Multi-prover instance-hiding schemes were also studied by
Beaver and Feigenbaum [BF90], who showed that they exist for all functions.
Randomized Encodings. Randomized Encodings are closely related to
instance-hiding proofs. The properties we show for simulatable IHIP – mem-
bership in AM ∩ coAM and the implication of OWFs from worst-case hard-
ness [AR16] – are also shared by the class of languages that have Statistical
Randomized Encodings (SRE) [IK00,AIK04,AIKPC15]. An SRE for a language
L is a randomized function whose output on an input x reveals whether x ∈ L
and nothing else about x, in a statistical sense. Randomized encodings with
very low complexity have been used extensively in construcing MPC proto-
cols [Yao86,Kil88,IK00,FKN03,AIK04, . . .]. Agrawal et al. [AIKPC15] showed
examples of languages that have SREs that, under reasonable computational
assumptions, are not efficiently computable.

It is known that languages that have an SRE also have SZK proofs [App14]
(and the above oracle separation also carries over). Techniques from the literature
also show that any language that has an SRE also has an IHIP (see e.g. [AIK10],
and references in Sect. 1.1 therein). For completeness, we include a self-contained
proof of this statement in full version [MV24, Appendix C]. These techniques
can further be extended to show that an interactive version of Randomized
Encodings (as defined by Applebaum et al. [AIK10]) is equivalent to IHIP.

1.4 Discussion and Open Problems

There are number of fundamental questions about the properties and power of
instance-hiding proofs that are yet to be answered. We list a few of these below.

1. Are there natural complete problems for the class of languages that have
instance-hiding proofs?

2. What is the relationship between this class and SZK? Both of them are con-
tained in NP/poly ∩ coNP/poly, but is one contained in the other? In this
work, we provide an oracle separation IHIPO �⊆ SZKO; can we show one in
the other direction?

3. Is Simulatable-IHIP closed under complement?
4. Are there other cryptographic consequences of the existence of hard problems

in this class, beyond one-way functions?
5. Can worst-case hard IHIP imply one-way function? This question is also open

for SZK.
6. Can the instance-hiding error be amplified? Note that this question is also

open for SRE.
7. Is there a separation between perfect and imperfect instance-hiding proofs?
8. What is the power of computational instance-hiding proofs? What assump-

tions are needed for these to be constructed for all of NP?

Instance-Hiding Interactive Proofs 15

9. Similarly, what is the power of instance-hiding argument systems, which have
efficient provers (given, say, an NP witness) and only computational sound-
ness? How do we even define these, given that the witness might already
reveal information about the witness?

There is also a looming non-technical question here that it would be use-
ful to know the answer to. Instance-hiding proofs and zero-knowledge proofs
were defined at around the same time. The initial results regarding these –
multi-prover constructions for large classes of languages, limitations of perfect
single-prover constructions, etc. – seem to have been similar. In strong contrast
to zero-knowledge proofs, however, research on instance-hiding proofs (at least
explicitly) has been very sparse after a brief period following their definition.
Why is this the case? Could it be because we succeeded in constructing com-
putational ZK proofs for all of NP shortly thereafter, whereas similar results
for instance-hiding proofs were lacking? Given the more advanced cryptographic
toolkit available to us today, can we construct computational instance-hiding
proofs for large classes of languages? Would they be as useful as ZK proofs?

2 Instance-Hiding Interactive Proofs

In this section, we define Instance-Hiding Interactive Proofs.

Definition 1 (Instance-Hiding Interactive Proof (IHIP) [BFS90]). Con-
sider a promise problem Π = (Yes,No), and functions δ, ε : N → [0, 1]. A
(δ, ε)-Instance-Hiding Interactive Proof (IHIP) for Π is a protocol 〈P,A〉 in
which a probabilistic polynomial-time verifier A interacts with a computation-
ally unbounded prover P. For some n ∈ N, the verifier gets a private input
x ∈ Yesn ∪Non, while the prover only gets the input length n. At the end of the
interaction, A outputs either 1 (Accept) or 0 (Reject). The protocol is required
to satisfy the following properties for all large enough n ∈ N:

– Completeness: For any input x ∈ Yesn:

Pr [〈P(n),A(x)〉 = 1] ≥ 1 − δ(n).

– Soundness: For any input x ∈ Non, and any prover P∗:

Pr [〈P∗(n),A(x)〉 = 1] ≤ δ(n).

– Hiding: For any prover P∗, there exists a computationally unbounded ran-
domized algorithm SimP∗ , called a simulator, such that for any input x ∈
{0, 1}n,

Δ
(
SimP∗(n),ViewP∗(P∗(n),A(x))

) ≤ ε(n).

If the simulator corresponding to the honest prover runs in polynomial time in
n, we say the protocol is Simulatable-Instance-Hiding (Simulatable-IHIP). The
protocol is perfectly-hiding IHIP if ε(n) = 0 for all n. If a simulator is only
guaranteed to exist only for the honest prover P, the protocol is honest-prover
IHIP.

16 C. Mu and P. N. Vasudevan

Definition 2 (Class IHIP, IHIP/poly). The class IHIP consists of all promise
problems that have a (δ, ε)-IHIP with uniform verifier protocol for some negli-
gible δ(n) and ε(n). For concrete functions (δ, ε), we denote by (δ, ε)-IHIP the
class of problems possessing (δ, ε)-IHIP. Similarly, IHIP/poly denotes the class
of promise problem that have a (δ, ε)-IHIP with non-uniform verifier protocol for
some negligible δ(n) and ε(n)

Remark 1. Prior work in this area, such as Beaver et al. [BFS90], defined
instance-hiding proof systems for function delegation rather than promise prob-
lem decision. For a function f , at the end of the protocol, completeness required
that the verifier learn f(x) when interacting with the honest prover; and sound-
ness required that no prover could convince the verifier of an incorrect value of
f(x). Definition 1 is weaker than just the restriction of this to Boolean func-
tions, in that we only require completeness guarantees to hold for YES instances
(Π(x) = 1), and soundness guarantees for NO instances (Π(x) = 0). This relaxed
definition is still meaningful, and lets us compare IHIPs directly to IPs, ZK
proofs, etc., that are also similarly defined. The relaxation also makes it harder
to prove our containment results and closure properties. Some of our results
also extend to the definition involving function delegation – see Sect. 3.5 for this
definition and further details.

Remark 2. Earlier definitions of instance-hiding proof systems only considered
perfect instance-hiding. In this case, every transcript with non-zero probability
mass is a valid transcript for all instances. This made showing containment of
problems with such proofs in NP and coNP considerably simpler than our proofs
showing containment of problems with imperfect instance-hiding proofs in AM
and coAM.

Remark 3. As we show in full version [MV24, Appendix C], instance-hiding IPs
are closely related to the notion of Randomized Encodings (RE) of promise
problems [AIK04] (see also [AIK05]). In fact, using the techniques in that section,
instance-hiding IPs (for non-negligible values of the hiding error) can be shown
to be equivalent to an interactive version of RE as defined by Applebaum et
al. [AIK10].

3 Properties

In this section, we present properties of instance-hiding interactive proofs. Due
to page constraints, we include only the formal statement of theorem. The full
proofs are deferred to the full version [MV24].

3.1 Closure Properties and Amplification

Since their inception, the composition properties of zero-knowledge proofs have
been extensively studied. It is established that Statistical Zero-Knowledge (SZK)
is preserved under sequential repetition, and that the existence of an SZK proof

Instance-Hiding Interactive Proofs 17

is preserved under composition with arbitrary polynomial-sized formulas [GK96,
Oka00,DSDCPY08,CD96,SV97]. However, similar properties for instance-hiding
have not received as much attention yet. In this subsection, we present positive
results regarding these properties of IHIP. We show that the existence of such
proofs is preserved under composition with any efficiently computable function,
and not just polynomial-sized formulas.

For any promise problem Π = (Yes,No), we also denote by Π : {0, 1}∗ →
{0, 1,⊥} its characteristic function, which outputs 1 on any input x ∈ Yes,
0 on any x ∈ No, and ⊥ on all other inputs. Similarly, given any function
f : {0, 1}∗ → {0, 1,⊥}, we define the corresponding promise problem Πf whose
characteristic function it is. Consider any function f : {0, 1,⊥}∗ → {0, 1,⊥}
satisfying the property that its output is ⊥ whenever any of its inputs is ⊥. For
any function k : N → N, we define the composed promise problem f ◦ Π⊗k as
follows:

Yesn(f ◦ Π⊗k) =
{
(x1, . . . , xk(n)) | ∀i : |xi| = n ∧ f(Π(x1), . . . , Π(xk(n))) = 1

}
.

Non(f ◦ Π⊗k) =
{
(x1, . . . , xk(n)) | ∀i : |xi| = n ∧ f(Π(x1), . . . , Π(xk(n))) = 0

}
.

Theorem 1 (Closure under Composition with Efficient Functions).
Consider any promise problems Π that has an IHIP protocol, and any efficiently
computable function f : {0, 1,⊥}∗ → {0, 1,⊥} whose output is ⊥ whenever any
of its inputs is ⊥. For any polynomial k : N → N, the composed promise problem
f ◦ Π⊗k also has an IHIP protocol.

An important special case of this theorem, which we use in its proof, is the
closure of IHIP under complementation. This is stated in the following lemma:

Lemma 1 (Closure under Complementation). Suppose, for some negli-
gible functions δ, ε, that a problem Π has a (δ, ε)-IHIP (possibly with a non-
uniform verifier). Then the complement of Π has a (δ′, ε′)-IHIP (resp. with a
non-uniform verifier if starting with a non-uniform verifier), where δ′, ε′ are also
negligible.

Corollary 1. IHIP/poly = coIHIP/poly and IHIP = coIHIP.

Another component of the proof of Theorem 1 is the following lemma regard-
ing the behavior of instance-hiding proofs under repetition in parallel that is sig-
nificant on its own. In contrast to zero-knowledge proofs, instance-hiding proofs
show robustness under parallel repetition.

Lemma 2 (Preservation of Instance-Hiding Under Parallel Repeti-
tion). For any functions k : N → N and ε : N → [0, 1], consider the protocol
〈P,A〉 where A takes as input k(n) instances/inputs x1, . . . , xk(n), each of size
n, and executes 〈P1(n),A1(x1)〉 , . . . , 〈Pk(n),Ak(xk)〉 independently in parallel,
where each 〈Pi,Ai〉 is ε-instance-hiding. Then 〈P,A〉 is (k · ε)-instance-hiding.

This gives us a round-efficient way to strongly amplify the completeness and
soundness in an instance-hiding proof at a small cost in the instance-hiding error.

18 C. Mu and P. N. Vasudevan

3.2 Upper Bounds

While the existence of IHIP is noteworthy, it is also important to explore the
limitations of such constructions. Abadi et al. [AFK89] established an upper-
bound for perfect instance-hiding proofs, showing that problems that have such
proofs are contained in NP/Poly ∩ coNP/Poly.

Our work in this section extends these results by showing that every promise
problem that has a (δ, ε)-IHIP, even with δ, ε as large as some small constant, is
still contained in NP/poly ∩ coNP/poly.

Theorem 2. Consider functions δ, ε : N → [0, 1] such that for all sufficient
large n, we have δ(n), ε(n) < 1

32 . If a promise problem Π possesses an honest-
prover (δ, ε)-IHIP, where the verifier can be non-uniform, then Π ∈ NP/poly ∩
coNP/poly.

Setup. The AM protocol is presented in Fig. 1 with the advice oracle is pre-
sented in Fig. 2. We set up some notation for IHIP and Simulatable-IHIP proofs.
Suppose 〈P,A〉 is a q-round (δ, ε)-IHIP (or (δ, ε)-Simulatable-IHIP) for a promise
problem Π, and for any prover P∗ denote by SimP∗ the corresponding simulator
of the prover’s view. The only difference between IHIP and simulatable IHIP is
the efficiency of SimP on simulating the view of honest prover. The 〈P,A〉 can be
viewed as two deterministic algorithms on the input, random seed, and public
view (transcript) of the protocol:

– A : X × RA × Σ∗ → U ∪ {0, 1},
– P : RP × Σ∗ → Y,

where X , RA (resp., RP) are the space of possible input instances and verifier’s
(resp., prover’s) random seed respectively, and Σ∗ is the space of the public view
of the protocol. U and Y are verifier’s and prover’s message space respectively.
The outputs {0, 1} represent the verifier accepting or rejecting at the end of the
interaction. Let ui ∈ U , yi ∈ Y be the messages of verifier and prover at round
i respectively, and denote by si = (u1, y1, . . . , ui, yi) the public view up to the
end of ith round (s0 = φ). We denote A

(
x, rA, (u1, y1, . . . , ui, yi)

)
= ui+1 that A

on input instance x, with random seed rA, and current public view si produces
the next message ui+1 ∈ U . Let rA ∈ RA, rP ∈ RP be the randomness of A/P
respectively. For i ∈ [q], we have:

– A(x, rA, si) = ui+1.
– P (rP, (si, ui+1)) = yi+1.

For conciseness, we denote by Sx(rA, rP) the public view in the protocol 〈P,A〉
when the instance is x and random seeds are rA, rP respectively. Abusing nota-
tion, Sx also represents the output distribution of Sx(URA

, URP
). Let S be the

union of supports of Sx for all x, and for any x and s ∈ S, define:

– βx
s = {rA ∈ RA | ∀i ∈ [q] : A(x, rA, si−1) = ui}.

– αx
s = {rA ∈ βx

s | A(x, rA, s) = 1}.

Instance-Hiding Interactive Proofs 19

– γs = {rP ∈ RP | ∀i ∈ [q] : P (rP, (si−1, ui)) = yi}.

Intuitively, βx
s (resp. γs) is the set of A’s (resp. P’s) randomnesses that, when

instance is x, makes A (resp. P) behave as in view s. αx
s is a subset of βx

s with
which A accepts in the end seeing the instance x, randomness rA and public view
s. We denote by RSimP

the simulator’s random space and let

– ζrP,s = {rSim | SimP(n; rSim) = (rP, s)}
This is the set of SimP’s randomness consistent with transcript s. On a random
drawn rSim ← RSim, let (rP, s) ← SimP(n; rSim) be the simulated view. The
following claims apply to any instance-hiding protocol 〈P,A〉.
Claim. For any s ∈ S and any x,

Pr
(rA,rP)←RA×RP

[Sx(rA, rP) = s] =
|βx

s |
|RA| · |γs |

|RP| .

Corollary 2. IHIP/poly ⊆ NP/poly ∩ coNP/poly.

Lemma 3 ([BT03, Lemma 4]). If coNP ⊆ AM/poly, then the polynomial hier-
archy collapses to the third level.

Combining with Lemma 3, the corollary follows:

Corollary 3. If NP ⊆ IHIP/poly, the polynomial hierarchy collapses to the third
level.

Further, we show that if the proof is simulatablely instance-hiding (that is,
with an efficient simulator for the honest prover), then the problem is contained
in AM ∩ coAM. Here we need the errors to be negligible, though.

Theorem 3. For any negligible functions δ, ε, if a promise problem Π has a
simulatable honest-prover (δ, ε)-IHIP, then both Π and its complement Π̄ have
constant-round public-coin interactive proofs with uniform verifiers (that is, an
AM proof system).

The transformation protocol for Theorem 3 is presented in Fig. 3, with the proof
deferred in [MV24, Section 4].

Corollary 4. Simulatable-IHIP ⊆ AM ∩ coAM.

Remark 4. Theorem 2 and 3 can in fact be extended to similar but stronger
statements with the hypothesis only requiring protocols that have ε-hiding, com-
pleteness, and soundness against the honest prover, because our proofs don’t
depend on the protocols’ behavior with malicious provers.

20 C. Mu and P. N. Vasudevan

Fig. 1. AM Protocol from (δ, ε)-IHIP

3.3 Implications for One-Way Functions

As suggested in [Imp95], it is unclear whether hardness of problems in NP implies
the existence of one-way function. This is important in the sense that if our
world is in “Pessiland” or “Heuristica”, where NP problems are hard either
on average or on worst case but one-way functions do not exist, a huge set of
cryptography primitives including pseudorandom generator [Yao82,BM82] and
digital signatures [GMR88] would be impossible in a strong sense.

In this section, we provide positive implications by assuming the hard prob-
lem also possessing an instance-hiding interactive proof. We show two separate
proofs – one for problems that only have an IHIP with average-case hardness,
and another for those that have a simulatable IHIP with only worst-case hard-

Instance-Hiding Interactive Proofs 21

Fig. 2. Advice Oracle Qw(P,A, n) for AM Protocol From IHIP

ness. The former proof is non-constructive – we can only prove that a one-way
function exists given an average-hard problem has IHIP. Moreover, this construc-
tion of one-way functions uses potential adversaries in a non-blackbox manner.
Similar techniques have found use in the context of collision-resistant hash func-
tions [KY18,RV22].

The latter proof is constructive – we show a construction of one-way function
from any worst-case hard problem that has a Simulatable-IHIP, where the simu-
lator is efficient. Implications similar to this are known for other classes such as
SRE [AR16] (and SZK [Ost91], though that needs average-case hardness), which
similarly rely on the efficiency of the simulator (or the encoding function in case
of SRE).

OWFs from Average-Case Hard IHIP

Definition 3 (Average-Case Hard Problems). Consider a promise prob-
lem Π = (Yes,No), and an ensemble of efficiently sampleable distributions
X = {Xn}n∈N

, where Xn is supported on (Yesn ∪ Non). Π is said to be hard
on average over X if for any (non-uniform, if specified) polynomial-time algo-
rithm A, there is a negligible function negl such that for all large enough n,

Pr
x←Xn

[A(x) = Π(x)] ≤ 1
2

+ negl(n).

Remark 5. In the above definition, we require that Xn be supported fully on
(Yesn ∪ Non), and also be efficiently sampleable. Often in natural hard prob-
lems, these may not be simultaneously perfectly satisfied – a natural efficiently

22 C. Mu and P. N. Vasudevan

Fig. 3. Constant-Round IP from simulatable (δ, ε)-IHIP

Instance-Hiding Interactive Proofs 23

sampleable hard distribution might have a small probability of not satisfying the
promise. While we do not explicitly state this in our theorems, our proofs are
robust to this and continue to hold as long as the probability of not satisfying
the promise is small enough, e.g. negligible.

Theorem 4. If any problem that is hard on average against non-uniform prob-
abilistic polynomial-time algorithms possesses a (δ, ε)-instance-hiding interactive
proof for some negligible functions δ and ε, then non-uniform infinitely-often
one-way functions exist.

One of the building blocks for our proof is the notion of distributional one-way
function defined in [IL89], which also proved that the existence of distribitionally
one-way functions imply existence of one-way functions.

Definition 4 ([IL89]). Consider a family of efficiently computable func-
tions F =

{
fn : {0, 1}n → {0, 1}m(n)

}
n∈N

. For any n ∈ N and algorithm A,
define the following two distributions: D0,n

(
x ← {0, 1}n, outputs

(
x, f(x)

))
and

DA
1,n

(
x ← {0, 1}n, outputs

(
A

(
f(x)

)
, f(x)

))
. F = {fn} is said to be distribu-

tionally one-way if, there is a constant c > 0 such that, for any efficient algorithm
A, for all large enough n,

Δ(D0,n,DA
1,n) > n−c.

Remark 6. While the above definition refers to the distribution of the input x
being uniform over some {0, 1}n, we will treat it as coming from some sampleable
distribution. That is, we will construct functions fn where the above lower bound
on statistical distance holds when x is sampled from some efficiently sampleable
distribution Xn rather than {0, 1}n. This is sufficient because this function fn

composed with the efficient sampling algorithm for Xn then satisfies Definition 4.

Lemma 4 ([IL89]). If there is a distributional one-way function then there is a
one-way function. Further, there is an explicit transformation from any distribu-
tional one-way function to a one-way function. This transformation also works
for non-uniform (distributional) one-way functions, and preserves uniformity.

The proof sketch using a distributional one-way function is outlined in the
technical overview, with the complete proof deferred to the full version [MV24,
Section 5].

Explicit OWFs from Worst-Case Hard Simulatable IHIP
In addition to the positive result regarding OWF, this section also providing
insights for comparing IHIP/Simulatable-IHIP with classes SZK and SRE by exam-
ining the consequences of the existence of hard problems within these classes.
For instance, Ostrovsky [Ost91] proves an implication of average-case hard SZK
of OWFs, while Applebaum and Raykov [AR16] demonstrate a similar impli-
cation of worst-case hard SRE. In this subsection, we present an implication of
worst-case hard Simulatable-IHIP on OWF.

24 C. Mu and P. N. Vasudevan

Definition 5 (Worst-Case Hard Problems). A promise problem Π =
(Yes,No) is said to be worst-case hard if for any (non-uniform, if specified)
polynomial-time algorithm A, there is a negligible function negl, such that for all
large enough n, there exists an instance x ∈ Yesn ∪ Non,

Pr
A

[A(x) = Π(x)] ≤ 1
2

+ negl(n).

Theorem 5. If any worst-case hard problem has a honest-prover simulatable
(δ, ε)-instance-hiding interactive proof for some negligible functions δ and ε, then
there is an explicit construction of one-way functions. This one-way function
is uniform if the simulator of the IHIP is uniform, and it is secure against
non-uniform adversaries if the problem is worst-case hard against non-uniform
algorithms.

Remark 7. Unlike the OWF in Theorem 4, which incorporates the verifier algo-
rithm A as part of the construction, the explicit construction of OWF from
Simulatable-IHIP uses solely the efficient simulator SimP, which does not take
the instance x as input. This is what allows the worst-case hardness of the
problem to be useful in proving one-wayness of the latter function. Notably,
the construction of OWF in [Ost91], based on SZK simulator, also takes the
instance as part of the input, thus requiring hardness also over some distribu-
tion of instances. It is of interest to find whether a worst-case hard with just
IHIP, which is not guaranteed an efficient similator for honest prover, implies
OWF.

3.4 Oracle Separation from SZK

Given that SZK and IHIP are both contained in NP/poly ∩ coNP/poly, it is
natural to ask whether one is contained in the other. While we don’t know how
to construct IHIP protocols for SZK problems such as Statistical Difference and
Graph Non-Isomorphism, it is also unclear whether IHIP is contained in SZK.
Towards understanding their relationship, we exhibit an oracle relative to which
IHIP �⊂ SZK. Before advancing, it is essential to define the associated complexity
classes.

Definition 6 (Class SZK). A promise problem Π = (Yes,No) is in SZK if
there exists a protocol 〈P,A〉, where the verifier runs in polynomial time, satis-
fying the following:

– 〈P,A〉 is an interactive proof for Π (where both P and A get the input instance)
with negligible completeness and soundness errors.

– There exists an efficient algorithm Sim such that for any efficient A∗ and any
x ∈ Yesn,

Δ
(
SimA∗(x),ViewA∗

(
P(x),A∗(x)

) ≤ negl(n).

Instance-Hiding Interactive Proofs 25

Definition 7. An oracle protocol is a protocol 〈P,A〉 in which both P and A are
allowed to make calls to an oracle. For any oracle O : {0, 1}∗ → {0, 1}∗, such
a protocol with oracle O is denoted by 〈P,A〉O. The view of each party in such
a protocol also includes the set of oracle queries it makes and the corresponding
responses. The conditions for 〈P,A〉O being a (Simulatable) instance-hiding proof
(resp. SZK) system for a promise problem are the same as those in Definition 1
(resp. Definition 6), except that the simulator is also allowed access to the same
oracle.

Definition 8. For any oracle O : {0, 1}∗ → {0, 1}∗, Simulatable-IHIPO (resp.
SZKO) is the class of promise problems that have a simulatable instance-hiding
proof (resp. SZK proof) system with oracle O. This includes promise problems
whose definitions involve properties of the oracle.

Theorem 6. There exists an oracle O such that Simulatable-IHIPO �⊆ SZKO.

Looking ahead, our oracle separation will use oracles based on the generic
group model [Sho97]. Rather than Shoup’s original formulation of this model,
we will use the following formulation as in Corrigan-Gibbs and Kogan [CGK18],
which will be more convenient to use.

Definition 9 (Generic Group Oracles). For any N ∈ N, and bijective
function σ : ZN → [N], the oracle Gσ : [N] × [N] → [N] is defined as:
Gσ(g, h) = σ(σ−1(g)+σ−1(h)). We refer to elements of [N] in this context as the
group elements, and the corresponding inverses of σ as their discrete logarithms.

Let N : N → N be the function that, on input any n ∈ N, outputs the
smallest prime number larger than 2n−1. For any family of bijective functions σ ={
σn : ZN (n) → [N (n)]

}
n∈N

and family of oracles I =
{In : ZN (n) → {0, 1}}

n∈N
,

we define the promise problem ΠI,σ = (Yes,No) as follows:

Yesn = {(n,N (n), σn(1), σn(x)) | In(x) = 1} .

Non = {(n,N (n), σn(1), σn(x)) | In(x) = 0} .

We extend the notation Gσ in the natural manner to denote the family of ora-
cles Gσn

for all n ∈ N. Similarly, note that to define Yesn(ΠI,σ) and Non(ΠI,σ),
only In and σn need to be specified; we denote the corresponding promise prob-
lem restricted to instances of size n by ΠIn,σn .

We show that there is an instance-hiding oracle protocol that, given oracle
access to I and Gσ, is a valid instance-hiding proof for ΠI,σ, whereas every oracle
protocol fails to be an SZK proof for this language for most such oracles. This
already gives a separation between “generic” instance-hiding and SZK protocols
that only use group elements in a generic manner. To show the oracle separation,
a careful diagonalization argument is needed. We first state the following two
lemmas alongside two additional imported lemmas that show the above state-
ments, and then set up and perform the required diagonalization, which proves
Theorem 6. The proof is deferred to the full version [MV24].

26 C. Mu and P. N. Vasudevan

Lemma 5. There is an oracle protocol 〈P,A〉 such that, for any I and σ as
above, 〈P,A〉I,Gσ is a simulatable instance-hiding proof system for ΠI,σ.

Lemma 6. For any oracle protocol 〈P,A〉 and polynomial-time oracle algorithm
Sim, there is an n0 ∈ N such that for all n ≥ n0, there exists some In and σn as
above such there is either an input in Non(ΠIn,σn) on which 〈P,A〉In,Gσn has
soundness error Ω(1/n), or an input in Yesn(ΠIn,σn) on which it has either
completeness error Ω(1/n), or honest-verifier statistical zero-knowledge error
Ω(1/n) with SimIn,Gσn as the simulator.

Our proof of Lemma 6 relies on the hardness of the discrete logarithm prob-
lem for generic algorithms, which require at least N1/2 time on groups of order
N , as shown by Shoup [Sho97]. Our modelling of such algorithms is more gen-
eral than Shoup’s, so we instead use the following corollary of a theorem of
Corrigan-Gibbs and Kogan [CGK18, Theorem 2].

Lemma 7. For any prime N ∈ N and oracle algorithm A that receives at most√
N -bit non-uniform advice and runs in time T ,

Pr
σ,x

[AGσ (σ(1), σ(x)) = x] ≤ T 2.01

√
N

.

where σ is a uniformly random bijective function from ZN to [N], and x is
uniformly random over ZN .

Then, we use Lemma 6 to construct functions I and σ such that with respect
the oracles (I,Gσ), the problem ΠI,σ does not have an SZK protocol. The stan-
dard approach to doing so is diagonalization: to enumerate all possible oracle
protocols and simulators, and for each pick an input size n and corresponding In

and σn on which it fails (as promised by Lemma 6), and include that in I and σ.
However, we cannot do this directly, as the set of all protocols is not countable.
Instead, we will do this for a countable set of protocols and show that for any
potential SZK protocol, there is a protocol in this set that computes the same
problem. This countable set will be the set of protocols with simulation-based
provers [For87].

Definition 10 (Simulation-based Protocols). Given (oracle) algorithms A
and Sim, the simulation-based protocol defined by these is the protocol 〈PSim,A〉,
where PSim is the simulation-based prover that behaves as follows: to compute
the prover’s message at any point in the protocol, sample from the distribution
of this message in the output of Sim, conditioned on this output matching the
protocol transcript so far (if this conditional distribution is not defined, set the
message to be ⊥).

The following lemma follows immediately from the statistical zero-knowledge
property. (Roughly this statement is also proven as part of the proof of Theo-
rem 5.)

Instance-Hiding Interactive Proofs 27

Lemma 8. Suppose 〈P,A〉 is an honest-verifier SZK proof system for a promise
problem Π with simulator Sim, all with respect to some oracle O. Then the
simulation-based protocol 〈PSim,A〉 is also an honest-verifier SZK proof for Π
with simulator Sim, with respect to oracle O.

Given this lemma, we only need to enumerate over pairs of polynomial-time
algorithms (A,Sim) in our diagonalization argument, and this is indeed a count-
able set. Together, Lemma 8, 9 and 5 prove Theorem 6.

Lemma 9. There exist I = {In} and σ = {σn} such that no simulation-based
protocol is a valid SZK proof system for ΠI,σ with respect to oracles (I,Gσ).

3.5 Instance-Hiding Delegation Schemes

In this section, we extend the study to a setting in which a machine A, given
an private input x, delegates the computational task of computing a function
f(x) to a computationally stronger machine P. We seek solutions in which the
prover P does this without learning x, but without asking for any guarantees in
case P does not follow the protocol. We further generalize the definition to allow
the prover to learn leakage �(x) of instance x defined by some PSPACE function
�. We note that because some results (e.g. Theorem 2, Theorem 3, Theorem 4,
Theorem 5) about IHIP in previous sections rely solely on its correctness of
honest prover and hiding properties (and do not need the soundness property),
these can be generalized to this setting. We further show strong connections
between the existence of such delegation schemes and of IHIP’s, and then use
these connections together with closure properties of these schemes to show the
closure properties of IHIP’s stated in Sect. 3.1. Below, as before, for any set S, Sn

denotes its intersection with {0, 1}n. For any promise problem Π = (Yes,No),
we define its characteristic function to be the partial function that maps inputs
in Yes to 1, inputs in No to 0, and is undefined on other inputs.

Definition 11 (Instance-Hiding Delegation Scheme (IHD) [FO91]).
Consider a function f : X → Y, and functions δ, ε : N → [0, 1] and � : X →
{0, 1}∗. A (δ, ε, �)-Instance-Hiding Delegation Scheme (IHD) for f is a protocol
〈P,A〉 in which a probabilistic polynomial-time verifier A interacts with a compu-
tationally unbounded prover P. For some n ∈ N, A gets a private input x ∈ Xn,
while P gets the input n. At the end of the interaction, A outputs y ∈ Y ∪ {⊥}.
The protocol is required to satisfy the following properties for all large enough
n ∈ N:

– Correctness: For any input x ∈ Xn:

Pr [〈P(n),A(x)〉 = f(x)] ≥ 1 − δ(n).

– Hiding Against Honest Prover (with leakage): There exists a com-
putationally unbounded randomized algorithm SimP such that for any input
x ∈ Xn:

Δ
(
SimP

(
n, �(x)

)
,ViewP (P(n),A(x))

)
≤ ε(n).

28 C. Mu and P. N. Vasudevan

If the simulator SimP is efficient, we call the protocol Simulatable-Instance-
Hiding Delegation (Simulatable-IHD). The protocol is perfectly-hiding if ε(n) =
0. If left unspecified, we assume � is the constant function that always outputs
⊥, corresponding to the absence of leakage.

The following proposition directly follows the completeness and soundness
for the honest prover in IHIP, and ε-hiding.

Proposition 1. Consider a promise problem Π with characteristic functions
f = {fn : {0, 1}n → {0, 1} ∪ {⊥}}n∈N, and let 〈P,A〉 be a (δ, ε)-IHIP (resp.
simulatable IHIP) for Π, then 〈P,A〉 is a (ε, δ)-IHD (resp. simulatable IHD) for
f .

Next, we define a version of instance-hiding delegation schemes that has an
additional verifiability property that protects against provers that may deviate
from the protocol.

Definition 12 (Verifiable Instance-Hiding Delegation Scheme [FO91]).
Consider any function f : X → Y, and functions δ, ε : N → [0, 1], and � : X →
Z. A (δ, ε, �)-Verifiable Instance-Hiding Delegation Scheme (VIHD) for f is a
IHD protocol that additionally achieves verifiability and hiding against malicious
provers:

– Correctness: For any input x ∈ Xn:

Pr [〈P(n),A(x)〉 = f(x)] ≥ 1 − δ(n).

– Verifiability: For any prover P∗, for any input x ∈ Xn:

Pr [〈P∗(n),A(x)〉 ∈ {f(x),⊥}] ≥ 1 − δ(n).

– Hiding against malicious prover (with leakage): For any prover P∗,
there exists a computationally unbounded randomized algorithm SimP∗ such
that for any input x ∈ Xn,

Δ
(
SimP∗

(
n, �(x)

)
,ViewP∗(P∗,A(x))

) ≤ ε(n).

The VIHD is simulatable if the simulator for honest prover SimP is efficient.
If left unspecified, we assume � is the constant function that always outputs ⊥,
corresponding to the absence of leakage.

We then have the following proposition, which states that VIHD protocols
are essentially stronger than IHIP protocols.

Proposition 2. Let f be the characteristic function for a promise problem Π.
If 〈P,A〉 is a (δ, ε)-verifiable instance-hiding delegation (resp. simulatable (δ, ε)-
verifiable instance-hiding delegation) for f , then there exists a (δ, ε)-instance-
hiding proof (resp. simulatable (δ, ε)-instance-hiding interactive proof) 〈P′,A′〉
for Π.

Instance-Hiding Interactive Proofs 29

Proof (Proof Sketch). We define P′ = P and let A′ run A as a black box on the
same input, and output 1 (Accept) if and only if A outputs 1. The δ-completeness
and ε-hiding follow the correctness and ε-hiding of 〈P,A〉 respectively. The sound-
ness of 〈P′,A′〉 follows from the correctness and verifiability of 〈P,A〉.

Verifiable IHD from IHD
It is immediate that any VIHD is also a IHD. If restricting � to be constant func-
tion, [FO91] demonstrates that if any function f ∈ PSPACE has perfect-hiding
zero-leakage (δ, 0,⊥)-IHD, then f also has a perfect-hiding (δ′, 0,⊥)-VIHD. We
extend their theorem to ε-hiding schemes with a richer class of leakage function
�. The protocol and proof essentially closely follow that of [FO91, Lemma 3.1],
with the only difference being in the hiding statements that the prover proves to
the verifier in each round. In our case, the prover proves ε-hiding with respect to
any PSPACE leakage function, whereas in [FO91] the focus is on perfect hiding
and only the constant function as leakage. This generalization will also be useful
in other context, such as showing interactive randomized encodings defined in
[AIK10] is closed under complementation (see [MV24, Appendix C] for details).

Theorem 7. Suppose that a function f is computable in polynomial space and
has a (δ, ε, �)-IHD 〈P,A〉 for some negligible δ, ε and � ∈ PSPACE , then there
exists negligible δ′, ε′ and 〈P′,A′〉 such that 〈P′,A′〉 is a (δ′, ε′, �)-VIHD for f .

Corollary 5. Suppose that a function f is computable in polynomial space and
has a (δ, ε)-IHD for some negligible δ, ε. If f is the characteristic function for a
promise problem Π, then Π has a (δ′, ε′)-IHIP for some negligible δ′, ε′.

The above corollary follows from Theorem 7 and Proposition 2, and carries over
our results from other sections about the implications of IHIP protocols to IHD
schemes. Because the protocol format of an IHD is related to IHIP, just with a
possibly different output space at the end, we adopt the notations of elements
in Sect. 3.2.

Proof (Proof Sketch). Inspired by the proof for perfect-hiding in [FO91], we rely
on the fact that both the correctness and the hiding aspects of an execution are
statements in PSPACE, and thus can be proven with an appropriate interactive
proof protocol following the celebrated IP = PSPACE theorem [LFKN92] [Sha92].
Intuitively, consider a q-round IHD 〈P,A〉 for a function f , we construct a new
protocol 〈P′,A′〉 that ensures verifiability and hiding against a malicious prover.
〈P′,A′〉 runs 〈P,A〉 in a round-by-round manner. Before A sends a message in
each round, P′ proves to A′ that for any input x, the distribution of A’s next
message in this round will not reveal much additional information about x. This
ensures that hiding against malicious prover. After the execution of 〈P,A〉, A′ has
the view of A: (x, rA, s), which is supposed to achieve correctness if A interacts
with honest prover. To enforce verifiability, P′ proves to the verifier that for any
input x ∈ Xn, the public view s achieves correctness with high probability. The
protocol is presented in Fig. 4, and full proof is deferred to full version [MV24,
Section 7].

30 C. Mu and P. N. Vasudevan

Fig. 4. Transformation from IHD to VIHD

Instance-Hiding Interactive Proofs 31

Closure Properties
In this section, we use some obvious closure properties of instance-hiding dele-
gation schemes, together with the connections to IHIP proven so far, to show
similar closure properties for IHIP’s. Consider any functions f : X → Y and
p : Y∗ → Z. For any function k : N → N, we define the composed function
p ◦ f⊗k : X ∗ → Z as the following partial function for each n ∈ N:

(p ◦ f⊗k)(x1, . . . , xk(n)) = p
(
f(x1), . . . , f(xk(n))

)
.

where each xi is of size n.

Proposition 3 (Closure of VIHD under Composition with Efficient
Functions). Consider any function f that has a (δ, ε)-VIHD for some negligible
functions δ and ε, and any efficiently computable function p. For any polyno-
mial k : N → N, the composed function p◦f⊗k also has a (δ′, ε′)-VIHD for some
negligible functions δ′ and ε′.

Combining Propositions 1 to 3 and Theorem 7, we get the following as corollaries.

Theorem 1 (Closure under Composition with Efficient Functions).
Consider any promise problems Π that has an IHIP protocol, and any efficiently
computable function f : {0, 1,⊥}∗ → {0, 1,⊥} whose output is ⊥ whenever any
of its inputs is ⊥. For any polynomial k : N → N, the composed promise problem
f ◦ Π⊗k also has an IHIP protocol.

Lemma 1 (Closure under Complementation). Suppose, for some negligible
functions δ, ε, that a problem Π has a (δ, ε)-IHIP (possibly with a non-uniform
verifier). Then the complement of Π has a (δ′, ε′)-IHIP (resp. with a non-uniform
verifier if starting with a non-uniform verifier), where δ′, ε′ are also negligible.

Finally, we prove the following propositions regarding closure properties of
VIHD schemes in the presence of leakage that will be useful in building the
connection with Statistical Randomized Encoding [MV24, Appendix C].

Proposition 4. Consider two functions �, �′ ∈ PSPACE defined over domain
X such that for any two inputs x, x′ ∈ X , �(x) = �(x′) if and only if �′(x) =
�′(x′). For functions δ, ε and any function f : X → Y, if 〈P,A〉 is a (δ, ε, �)-IHD
(resp. (δ, ε, �)-VIHD) for f , then 〈P,A〉 is a (δ, ε, �′)-IHD (resp. (δ, ε, �′)-VIHD)
for f . Furthermore, if there is an efficient bijective map between � and �′, the
transformation holds for simulatable IHD (resp. simulatable VIHD).

Proof (Proof Sketch). � and �′ are renaming of each other and thus a simulator
with respect to �′ can be made given a simulator with respect to �.

Acknowledgements. We thank anonymous reviewers of this paper for their useful
comments and references. Both authors are supported by the National Research Foun-
dation, Singapore, under its NRF Fellowship programme, award no. NRF-NRFF14-
2022-0010.

32 C. Mu and P. N. Vasudevan

References

AFK89. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an
oracle. J. Comput. Syst. Sci. 39(1), 21–50 (1989)

AH91. Aiello, W., H̊astad, J.: Statistical zero-knowledge languages can be rec-
ognized in two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

AIK04. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC/sup 0/.
In: 45th Annual IEEE Symposium on Foundations of Computer Science,
pp. 166–175 (2004)

AIK05. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private
randomizing polynomials and their applications (extended abstract).
In: 20th Annual IEEE Conference on Computational Complexity
(CCC’05), pp. 260–274 (2005)

AIK10. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness:
efficient verification via secure computation. In: International Collo-
quium on Automata, Languages and Programming (2010)

AIKPC15. Agrawal, S., Ishai, Y., Khurana, D., Paskin-Cherniavsky, A.: Statistical
randomized encodings: a complexity theoretic view. In: Halldórsson,
M.M., Iwama, K., Kobayashi, N., Speckmann, B., editors, Automata,
Languages, and Programming, pp. 1–13. Springer, Berlin, Heidelberg
(2015)

App14. Applebaum, B.: Cryptography in Constant Parallel Time. Informa-
tion Security and Cryptography. Springer, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-17367-7

AR16. Applebaum, B., Raykov, P.: On the relationship between statistical
zero-knowledge and statistical randomized encodings. In: Advances in
Cryptology – EUROCRYPT 2016, pp. 449–477. Springer-Verlag, Berlin,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 16

BF90. Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In:
Choffrut, C., Lengauer, T., editors, STACS 90, pp. 37–48. Springer,
Berlin, Heidelberg (1990). https://doi.org/10.1007/3-540-52282-4 30

BFOS93. Beaver, D., Feigenbaum, J., Ostrovsky, R., Shoup, V.: Instance-hiding
proof systems. Work done at Harvard University, supported in part by
NSF grant CCR-870-4513 (1993)

BFS90. Beaver, D., Feigenbaum, J., Shoup, V.: Hiding instances in zero-
knowledge proof systems. In: Menezes, A.J., Vanstone, S.A. (eds.)
Advances in Cryptology-CRYPT0’ 90, pp. 326–338. Springer, Berlin,
Heidelberg (2001). https://doi.org/10.1007/3-540-38424-3 24

BGG+88. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge.
In: Goldwasser, S. (ed.) Advances in Cryptology — CRYPTO’ 88: Pro-
ceedings, pp. 37–56. Springer, New York, NY (1990). https://doi.org/
10.1007/0-387-34799-2 4

BM82. Blum, M., Micali, S.: How to generate cryptographically strong
sequences of pseudo random bits. In: 23rd Annual Symposium on Foun-
dations of Computer Science (SFCS 1982), pp. 112–117 (1982)

BM88. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–
276 (1988)

BT03. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions
for np problems. In: 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings, pp. 308–317 (2003)

https://doi.org/10.1007/978-3-642-17367-7
https://doi.org/10.1007/978-3-662-53015-3_16
https://doi.org/10.1007/3-540-52282-4_30
https://doi.org/10.1007/3-540-38424-3_24
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4

Instance-Hiding Interactive Proofs 33

CD96. Cramer, R., Damg̊ard, I.: On monotone function closure of statistical
zero-knowledge. IACR Cryptol. ePrint Arch., p. 3 (1996)

CGK18. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with
preprocessing. In: Nielsen, J.B., Rijmen, V., editors, Advances in Cryp-
tology – EUROCRYPT 2018, pp. 415–447. Springer International Pub-
lishing, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 14

DSDCPY08. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On mono-
tone formula composition of perfect zero-knowledge languages. SIAM
J. Comput. 38, 1300–1329 (2008)

FF91. Feigenbaum, J., Fortnow, L.: On the random-self-reducibility of com-
plete sets. In: [1991] Proceedings of the Sixth Annual Structure in Com-
plexity Theory Conference, pp. 124–132 (1991)

FKN03. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation.
In: Conference Proceedings of the Annual ACM Symposium on Theory
of Computing (2003)

FO91. Feigenbaum, J., Ostrovsky, R.: A note on one-prover, instance-hiding
zero-knowledge proof systems. In: Imai, H., Rivest, R.L., Matsumoto,
T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 352–359. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 30

For87. Fortnow, L.: The complexity of perfect zero-knowledge. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pp. 204–209, New York, NY, USA (1987). Association for
Computing Machinery

GK96. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge
proof systems. SIAM J. Comput. 25(1), 169–192 (1996)

GMR88. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput.
17(2), 281–308 (1988)

GMR89. Goldwasser, L., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof-systems. In: Symposium on the Theory of Computing
(1989)

GMW91. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems.
J. ACM 38(3), 691–729 (1991)

GS86. Goldwasser, S., Sipser, M.: Private coins versus public coins in inter-
active proof systems. In: Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, STOC ’86, pp. 59–68, New York,
NY, USA (1986). Association for Computing Machinery

IK00. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representa-
tion with applications to round-efficient secure computation. In: Pro-
ceedings 41st Annual Symposium on Foundations of Computer Science,
pp. 294–304 (2000)

IL89. Impagliazzo, R., Luby, M.: One-way functions are essential for complex-
ity based cryptography. In: 30th Annual Symposium on Foundations of
Computer Science, pp. 230–235 (1989)

Imp95. Impagliazzo, R.: A personal view of average-case complexity. In: Pro-
ceedings of Structure in Complexity Theory. Tenth Annual IEEE Con-
ference, pp. 134–147 (1995)

https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/3-540-57332-1_30

34 C. Mu and P. N. Vasudevan

Kil88. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pp. 20–31, New York, NY, USA (1988). Association for Com-
puting Machinery

KY18. Komargodski, I., Yogev, E.: On distributional collision resistant hash-
ing. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology
– CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II,
pp. 303–327. Springer International Publishing, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 11

LFKN92. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for
interactive proof systems. J. ACM 39(4), 859–868 (1992)

MV24. Mu, C., Vasudevan, P.N.: Instance-hiding interactive proofs. ECCC,
TR24-100 (2024)

Oka00. Okamoto, T.: On relationships between statistical zero-knowledge
proofs. J. Comput. Syst. Sci. 60(1), 47–108 (2000)

Ost91. Ostrovsky, R.: One-way functions, hard on average problems, and statis-
tical zero-knowledge proofs. In: [1991] Proceedings of the Sixth Annual
Structure in Complexity Theory Conference, pp. 133–138 (1991)

RV22. Rothblum, R.D., Vasudevan, P.N.: Collision-resistance from multi-
collision-resistance. Cryptology ePrint Archive, Paper 2022/173 (2022).
https://eprint.iacr.org/2022/173

Sha92. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
Sho97. Shoup, V.: Lower bounds for discrete logarithms and related problems.

In: Fumy, W. (ed.) Advances in Cryptology — EUROCRYPT ’97, pp.
256–266. Springer, Berlin, Heidelberg (1997). https://doi.org/10.1007/
3-540-69053-0 18

SV97. Sahai, A., Vadhan, S.P.: A complete promise problem for statistical
zero-knowledge. In: Proceedings 38th Annual Symposium on Founda-
tions of Computer Science, pp. 448–457 (1997)

Tha22. Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends Priv.
Secur. 4(2–4), 117–660 (2022)

Vad99. Vadhan, S.P.: A study of statistical zero-knowledge proofs. PhD thesis,
Harvard University, USA, (1999). AAI0801528

Yao82. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd
Annual Symposium on Foundations of Computer Science (SFCS 1982),
pp. 80–91 (1982)

Yao86. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual
Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–
167 (1986)

Yap83. Yap, C.K.: Some consequences of non-uniform conditions on uniform
classes. Theor. Comput. Sci. 26(3), 287–300 (1983)

https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/978-3-319-96881-0_11
https://eprint.iacr.org/2022/173
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18

The Power of NAPs:

Compressing OR-Proofs via Collision-Resistant Hashing

Katharina Boudgoust1(B) and Mark Simkin2

1 CNRS, Univ Montpellier, LIRMM, Montpellier, France
katharina.boudgoust@lirmm.fr

2 Aarhus, Denmark
mark@univariate.org

Abstract. Proofs of partial knowledge, first considered by Cramer,
Damg̊ard and Schoenmakers (CRYPTO’94) and De Santis et al.
(FOCS’94), allow for proving the validity of k out of n different state-
ments without revealing which ones those are. In this work, we present
a new approach for transforming certain proofs system into new ones
that allows for proving partial knowledge. The communication complex-
ity of the resulting proof system only depends logarithmically on the
total number of statements n and its security only relies on the existence
of collision-resistant hash functions. As an example, we show that our
transformation is applicable to the proof systems of Goldreich, Micali,
and Wigderson (FOCS’86) for the graph isomorphism and the graph 3-
coloring problem.

Our main technical tool, which we believe to be of independent
interest, is a new cryptographic primitive called non-adaptively pro-
grammable functions (NAPs). Those functions can be seen as pseu-
dorandom functions which allow for re-programming the output at an
input point, which must be fixed during key generation. Even when
given the re-programmed key, it remains infeasible to find out where
re-programming happened. Finally, as an additional technical tool, we
also build explainable samplers for any distribution that can be sampled
efficiently via rejection sampling and use them to construct NAPs for
various output distributions.

1 Introduction

Proofs of partial knowledge, independently first considered by Cramer, Damg̊ard
and Schoenmakers [CDS94] and De Santis et al. [DDP+94], allow a prover to
convince a verifier that k out of a list of n statements are true, without revealing
which ones those are. Such proofs have received significant interest over the years,
as they turn out to be simple enough to be constructed efficiently, while at the
same time being expressive enough to be applicable to a wide variety of problems.
Both the work of Cramer, Damg̊ard and Schoenmakers and that of De Santis
et al. [DDP+94] show that one can generically and information-theoretically

M. Simkin—Independent Researcher.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 35–66, 2025.
https://doi.org/10.1007/978-3-031-78011-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_2&domain=pdf
http://orcid.org/0000-0002-3971-9368
https://doi.org/10.1007/978-3-031-78011-0_2

36 K. Boudgoust and M. Simkin

transform certain separate proof systems for languages L1, . . . ,Ln respectively,
into a single new proof system that allows for proving partial knowledge, i.e. for
proving that in a given vector of statements (x1, . . . , xn), there is a subset of
indices I of size k, such that xi ∈ Li for all i ∈ I. The resulting proof systems
are conceptually simple and can allow for concretely efficient instantiations, but
require the prover and verifier to communicate at least Ω(n) bits.

Subsequent works [GK15,AC20,ACF21,ACK21,GGHA+22] have shown
how to construct proofs of partial knowledge (and more) with communication
complexities that have sublinear, even logarithmic, dependencies on n, but rely
on number-theoretic hardness assumptions, such as the discrete logarithm prob-
lem. To the best of our knowledge, despite 30 years of research, there are still no
direct analogues of the transformations by Cramer, Damg̊ard and Schoenmakers
or De Santis et al., which have both an o(n) communication complexity and
do not require number-theoretic hardness assumptions. It seems natural to ask,
whether such a transformation exists.

1.1 Our Contribution

In this work, we make progress towards addressing the above question. We
present a new approach for transforming a large class of proof systems for lan-
guage L into one for the language Ln

OR := {(x1, . . . , xn) | ∃i ∈ {1, . . . , n} : xi ∈
L}.1 Our transformation produces a proof system, whose communication com-
plexity only depends logarithmically on n and that only relies on the existence of
collision-resistant hash functions. As an example, we compile the famous proof
system of Goldreich, Micali, and Wigderson [GMW86] for graph 3-coloring (and
thus for all of NP) into a new one for showing the validity of one out of n NP
statements, while only incurring asymptotically small overheads on the commu-
nication complexity and only relying on unstructured hardness assumptions.

A key technical tool of our work, which we believe to be of independent inter-
est, is what we call non-adaptively programmable functions (NAPs). These can
be seen as pseudorandom functions, which allow for dynamically re-programming
the output at an input point, which must already be fixed during key genera-
tion. Even when given the re-programmed secret key, it should not be feasible
to determine where re-programming happened. We formally define this primi-
tive and show how to construct it from one-way functions (which are implied by
collision-resistant hashing).

Another technical tool of our work that may also be of independent interest,
is the construction of explainable samplers for distribution that can be sampled
efficiently via rejection sampling. An explainable sampler takes random coins r as
input and produces a sample x from a target distribution D. They are equipped

1 Throughout this work, we restrict our attention to one language and showing the
validity of one out of the n statements. We note, however, that this is done merely
for the sake of simplicity and clarity and that our approach can easily be generalized
to multiple languages and showing the validity of k ≥ 1 statements, as we discuss
in Sect. 4.2.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 37

with an explanation algorithm that, given a sample x from D, can compute the
matching random coins r. Given (x, r) it should not be possible to see, whether
x was sampled and r was computed from it or vice versa.

1.2 Related Works

A plethora of existing works have studied proof systems from various perspec-
tives. We are far from the first ones to look at minimizing the communication
complexity or the required hardness assumptions. In the following, let us high-
light in what ways our approach differs from prior ones.

From Number-Theoretic Assumptions. A series of works [BCC+16,BBB+18,
AC20,ACK21] considers the task of designing communication-efficient proof sys-
tems from number-theoretic hardness assumptions. These approaches express the
given statements as arithmetic circuit satisfiability instances and then show how
any such instance can be proven with a communication complexity that is log-
arithmic in the circuit size. These works differ from ours in two aspects. They
all rely on hardness assumptions that imply public-key cryptography, whereas
our focus is on solely relying on collision-resistant hashing. Furthermore, these
approaches focus on building proof systems from scratch, which can be used to
generically transform an instance of Ln

OR into an arithmetic circuit. While this
is in principle possible, it would result in large circuits and also not make any
use of a potentially given proof system for language L. In our work, we focus on
a more direct approach that transforms a given proof system for L into one for
Ln

OR efficiently.
Another line of recent works [GK15,ACF21,GGHA+22,WW22] specifically

focuses on languages of the same form as Ln
OR. These works either aim for build-

ing proof systems for it from scratch or transforming proof systems for L into
ones for Ln

OR like we do. All of these approaches crucially rely on structured
hardness assumptions and it is not clear how one could modify these results to
obtain something from collision-resistant hashing alone.

From One-Way or Collision-Resistant Hash Functions. Several known
approaches would allow for constructing proof systems from the sole existence
of one-way functions. Goldreich, Micali, and Wigderson [GMW86] show how a
prover can convince a verifier that a given graph is 3-colorable. Their construc-
tion relies on the existence of commitments, which can be constructed from one-
way functions [Nao90,HIL+99]. Alternatively, it is also possible to use MPC-in-
the-head paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKO+09], which
allows for proving satisfiability of arbitrary statements, expressed as boolean or
arithmetic circuits, while only relying on one-way functions. These approaches
would result in communication complexities that are at least Ω(

√
n), whereas we

aim for a logarithmic dependency on n. Finally, using probabilistically checkable
proofs [AS92,Kil92] or interactive oracle proofs [BCS16,RRR16,BBH+18], it is
possible to construct proof systems from collision-resistant hashing, which have
communication complexities that are poly-logarithmic in the statement size.

38 K. Boudgoust and M. Simkin

These approaches work yet again by generically transforming an arbitrary state-
ment into a computation expressed in their respective computational model,
which depending on the type of statement can result in concretely very large
communication complexities and computational overheads. Furthermore, these
approaches are conceptually rather involved and complex. Contrary to them,
we aim for directly transforming proof systems for L into ones for Ln

OR via an
efficient and conceptually much simpler transformation.

1.3 Technical Overview

The starting point of our work, is that of Cramer, Damg̊ard and Schoenmak-
ers [CDS94], which transforms proof systems known as Σ-protocols for language
L into ones for Ln

OR. Before presenting our approach, let us recall what Σ-
protocols are and how the aforementioned transformation works.

Languages and Relations. Throughout this work, we consider a prover that aims
to convince a verifier that some statement x is in the language L. The prover
holds a witness w, which attests of x being in L. More formally, we assume there
exists an efficiently checkable relation RL, such that x ∈ L, if and only if there
exists a witness w, such that (x,w) ∈ RL.

Σ-Protocols. A three-move public-coin interactive proof system that satisfies
completeness, special soundness, and honest verifier zero-knowledge is known as
a Σ-protocol. Here, three-move public-coin refers to the fixed communication
pattern that these protocols have: the prover sends a message a to the verifier,
receives a random challenge e from the verifier back, and sends a response z to
the verifier, who then either accepts or rejects the proof transcript (a, e, z). Com-
pleteness dictates that an honest interaction between the prover and verifier for
a statement x ∈ L, results in the verifier accepting the proof. Special soundness
requires that there exists an efficient extractor Ext, which can extract w with
(x,w) ∈ RL from two accepting transcripts (a, e, z) and (a, e′, z′), where e �= e′.
Honest verifier zero-knowledge requires that there exists a simulator Sim, which
is given a uniformly random challenge e and outputs a, z, such that (a, e, z) is
indistinguishable from a real interaction for x ∈ L.

The Approach of Cramer, Damg̊ard and Schoenmakers. Now assume we are
given a Σ-protocol for language L that we would like to transform into one
for language Ln

OR. The prover and verifier are given a vector of statements
(x1, . . . , xn) and additionally the prover holds a witness w, such that (xi, w) ∈
RL for some i ∈ {1, . . . , n}. Their approach proceeds as follows: The prover picks
challenges ej uniformly at random and uses the simulator Sim to compute the
corresponding messages (aj , zj) for all j �= i. The prover honestly compute ai

and sends the vector (a1, . . . , an) to the verifier, who responds with a uniformly
random challenge e. The prover computes ei, such that

∑n
j=1 ej = e, honestly

computes the message zi corresponding to the partial transcript (ai, ei), and
sends both (e1, . . . , en) and (z1, . . . , zn) to the verifier, who checks that all chal-
lenges sum to the right value and that all n received transcripts are accepting.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 39

This approach does not reveal which witness the prover was holding, because
all challenges are uniformly random, conditioned on summing to e, and because
honest verifier zero-knowledge guarantees that the transcripts produced by Sim
are indistinguishable from real ones.

Our High-Level Idea. Conceptually, our work closely follows the blueprint of
Cramer, Damg̊ard and Schoenmakers, but modifies it in a way that allows us to
compress all three vectors (a1, . . . , an), (e1, . . . , en), and (z1, . . . , zn), which are
sent between the prover and the verifier. For this, let us make two additional
assumptions. First, let us assume that the given Σ-protocol is not only hon-
est verifier zero-knowledge, but strongly honest verifier zero-knowledge, which
means that the simulator Sim is given a uniformly random challenge e as well as
an independently chosen, uniformly random response z and is asked to compute
the corresponding first message a deterministically, such that (a, e, z) is indis-
tinguishable from a real transcript. Secondly, let us assume that we are given a
privately programmable pseudorandom function F : K × {1, . . . , n} → {0, 1}∗,
which takes a secret key msk and point x as input and returns a random looking
outputs y. We require F to be programmable in the sense that a key msk should
allow for obtaining a key psk that produces the same evaluations on all inputs,
apart from some chosen point i ∈ {1, . . . , n}, where it returns a re-programmed
value y∗. It should be privately programmable in the sense that psk should not
reveal any information about where the key was re-programmed.

Equipped with these tools, our approach works as follows: The prover picks
uniformly random keys mske and mskz, computes ej := F (mske, j) and zj :=
F (mskz, j), and uses simulator Sim to compute the corresponding messages aj

deterministically for all j �= i. The prover then picks the first message ai honestly
and sends a = H(a1, . . . , an) to the verifier, where H is a collision-resistant hash
function. The verifier sends a challenge e to the prover, who computes ei, such
that

∑n
j=1 ej = e, then computes zi honestly. Now the prover computes keys

pske and pskz by re-programming keys mske and mskz, such that they return
ei and zi on input i respectively. Finally, the prover sends back pske and pskz

to the verifier, who expands them to the corresponding vectors (e1, . . . , en) and
(z1, . . . , zn) and then computes (a1, . . . , an) using the deterministic simulator
Sim. The verifier checks that all challenges sum to e, that the hash value a
matches the hash of the computed vector (a1, . . . , an) and that all transcripts
are accepting.

Why should this be a sensible protocol on an intuitively level? The pri-
vate programmability of F ensures that the verifier cannot see which location
i was re-programmed. The collision-resistant hash ensures that without explic-
itly sending the vector (a1, . . . , an), the prover is committing themselves to a
fixed first message before seeing the challenge. The simulator Sim computing
the first messages deterministically and the fact that simulated and real tran-
scripts are indistinguishable, ensures that the verifier computes the correct values
a1, . . . , an, without the prover ever having sent them explicitly.

40 K. Boudgoust and M. Simkin

The communication between prover and verifier is comprised of sending one
hash value, one challenge, and two programmed keys. If the key sizes are logarith-
mic in n, then so is the communication complexity of the resulting Σ-protocol.

The Difficulty with Privately Programmable Pseudorandom Functions. To real-
ize the above idea, we need to construct the privately programmable functions
we need. Since our goal is a Σ-protocol from collision-resistant hashing, the pri-
vately programmable functions also better be based on a similar assumption.
Unfortunately, such constructions currently seem to be out of reach. The only
known constructions either rely on indistinguishability obfuscation [BLW17] or
lattice-based cryptography [PS18,PS20]. Luckily, we observe that we do not
actually need the full power of these programmable functions. In our case, we
already know during key generation at which point we would like to program
the keys later on, namely at the index for which we have the witness. As it turns
out, this makes constructing such functions much simpler, in fact so simple that
we can construct them from just one-way functions. We call these functions non-
adaptively (privately) programmable functions or NAPs and we believe that they
may be of independent interest.

Constructing NAPs. To construct our new primitive, we make use of distributed
point functions, originally introduced by Gilboa and Ishai [GI14]. A point func-
tion fx∗ : X → {0, 1} evaluates to zero on all points from domain X , apart from
a single point x∗ ∈ X , where it evaluates to one. A distributed point function
is a pair of functions f0, f1 that satisfies correctness and privacy. Correctness
requires that for any x ∈ X , it holds that f(x) = f0(x)⊕ f1(x). Privacy requires
that f0 and f1 constitute an additive secret sharing of f , i.e. that neither share in
isolation provides any information about which point function was secret shared.
It was shown by Boyle, Gilboa, and Ishai [BGI15] that distributed point func-
tions, where each share is of size O(λ · log |X |), can be constructed from one-way
functions, where λ is the computational security parameter.

Towards constructing NAPs, we make a simple, but important observation.
For any x �= x∗, we have that f0(x) ⊕ f1(x) = 0 and thus f0(x) = f1(x). For x∗

on the other hand, we have that f0(x∗)⊕ f1(x∗) = 1 and thus (f0(x∗), f1(x∗)) ∈
{(0, 1), (1, 0)}. Now we can simply view f0 as the key of our NAP (with one bit
outputs) and evaluating it at point j can be done by returning f0(j). Further-
more, programming a key at x∗ to value y∗ ∈ {0, 1}, can be done by returning fb

with fb(x∗) = y∗ as the programmed key. Note that seeing the programmed key,
is the same as seeing a single share of a 2-out-of-2 secret sharing of f and thus
it does not reveal anything about the point x∗. Also, note that this approach
crucially relies on the fact that the point at which programming will happen is
known during key generation, as it defines the point function that will be shared.
To obtain a NAP with t bits of output, we can simply append t many NAPs
with single bit outputs. The resulting key size is O(t · λ · log |X |).

We note that the same insights we use here to construct NAPs from dis-
tributed point functions, have previously been used Hemenway et al. [HJO+16]
to construct a notion they call somewhere equivocal encryption. There, the

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 41

authors use their notion of an encryption scheme to allow programming the
plaintext within the security proof. In our work on the other hand, we use NAPs
and the ability to program them as part of the proof systems we construct.

Constructing NAPs for the Correct Distributions. In the discussion above, we
have made an implicit assumption that is not actually valid. The NAPs we have
so far constructed, return bit strings, but the second and third round messages
of a given Σ-protocol may be completely different objects. As an example, in
the proof system of Goldreich, Micali, and Wigderson [GMW86] for the graph
isomorphism problem, the challenge e is a bit, but the prover’s response z is a
permutation. More generally, it may not even be the case that the response is a
uniformly random element from the set of all responses.

To overcome this issue, we make use of explainable samplers, which were
formally defined by Lu and Waters [LW22]. Such samplers take random coins
r as input and produce outputs x that are sampled accordingly to some target
distribution D. The samplers have an associated explanation algorithm that first
takes sample x from the target distribution and then finds appropriate random
coins r for the sampling algorithm, i.e. coins that would produce that sample.
Explainable sampler guarantee that, given (x, r), one cannot distinguish whether
r was sampled and x was computed or vice versa. Given an explainable sampler
for a desired target distribution, we can combine it with our NAP that produces
uniformly random looking bits, to obtain a NAP that produces pseudorandom
samples from the desired target distribution.

What remains to show is that we can construct efficient explainable samplers
for the distributions we care about. Lu and Waters construct explainable sam-
plers for several classes of distribution. We extend their results and show that
anything that can be sampled efficiently via a method known as rejection sam-
pling, can also be explained. Using this result, we construct NAPs that output
third round messages of well-known Σ-protocols, such as the graph 3-coloring
or the graph isomorphism protocols of Goldreich, Micali, and Wigderson.

On the Strong Honest Verifier Zero-Knowledge Requirement. We note that our
construction starts with a Σ-protocol that satisfies strong honest verifier zero-
knowledge. Many of the existing Σ-protocols either already satisfy this property
or can be made to have it via minimal changes. More generally, it was shown
by Goel, Green, Hall-Andersen, and Kaptchuk [GGHA+22] that any Σ-protocol
with honest verifier zero-knowledge can be transformed into one that satisfies
the strong version of this property.2 Thus our approach is in principle appli-
cable to any Σ-protocol for which we can construct NAPs for the appropriate
distributions of the second and third round messages.

2 In the work of Goel, Green, Hall-Andersen, and Kaptchuk [GGHA+22], the termi-
nology challenge-independent extended honest verifier zero-knowledge was used, but
their notion is identical to the notion of strong honest verifier zero-knowledge of
Bellare and Ristov [BR08].

42 K. Boudgoust and M. Simkin

Proofs vs. Arguments. Throughout the introduction and throughout the rest of
this paper, we are not making an explicit distinction between proofs and argu-
ments. Commonly, proofs provide soundness against an unbounded adversary,
whereas arguments only provide soundness against a computationally bounded
adversary. We note that the soundness of the Σ-protocols we construct in this
work, relies on collision-resistant hash functions and thus these are arguments,
not proofs. For the remainder of the paper, we use these terms interchangeably.

2 Preliminaries

Notation. We write y ← A(x) to denote the output y of algorithm A, when
run on input x. If A is randomized, we assume that uniformly random coins are
chosen implicitly, unless stated otherwise. If we want to make random coins r
explicit, we write A(x; r).

For a distribution D, we write x ← D to denote sampling a value from D and
assigning the value to x. We implicitly assume that all distribution of interest
in this work are efficiently samplable. We write Supp(D) to denote the set of
elements that are sampled with a non-zero probability. For a, b ∈ R with a ≤ b,
we write U [a, b] to denote the continuous uniform distribution over the range
[a, b]. For a set S = {s1, . . . , sn}, we write U{s1, . . . , sn} or US to denote the
discrete uniform distribution over the set S. For a set S, we write x ← S to
denote sampling from the uniform distribution over S. By (Sn, ◦) we denote the
group of permutations π : [n] → [n] with ◦ the composition of permutations as
group operation. We use λ to denote the security parameter. For a language
L ⊆ {0, 1}∗ we let RL be the corresponding relation. That is, x ∈ L if and only
if there exists a witness w such that (x,w) ∈ RL.

We call two distributions P and Q statistically close, if for any adversary A,
it holds that |Pr [1 ← A(x) : x ← P] − [1 ← A(x) : x ← Q]| ≤ negl(λ), and com-
putationally close if the same holds for any PPT adversary A.

2.1 Σ-Protocols

We recall the definition of Σ-protocols and some of their properties.

Definition 1 (Σ-Protocols). A Σ-protocol is a three-move protocol with chal-
lenge space E and response distribution Z for a language L, given by a tuple of
PPT algorithms (P1,P2,V), which are defined as follows:

(a, aux) ← P1(x,w): The commitment algorithm takes statement x ∈ L and a
witness w as input and produces message a and auxiliary output aux.

z ← P2(aux, e): The response algorithm takes challenge e ∈ E and auxiliary input
aux as input and returns response z ∈ Supp(Z).

b ← V(x, a, e, z): The verification algorithm takes statement x and transcript
(a, e, z) as input and outputs bit b.

Correctness states that during an honest execution, the verifier all but a
negligible fraction of times.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 43

Definition 2 (Correctness). We say Σ-protocol (P1,P2,V) with challenge
space E and response distribution Z for language L is correct, if for any λ ∈ N,
and any (x,w) with RL(x,w) = 1, it holds that

Pr

⎡

⎢
⎣V(x, a, e, z) = 1:

(a, aux) ← P1(x,w)
e ← E

z ← P2(aux, e)

⎤

⎥
⎦ ≥ 1 − negl(λ),

where the probability is taken over the random coins of the algorithms.

Special soundness guarantees for statements outside the language, no two
valid transcripts with the same first message but different challenges exist.

Definition 3 (Special Soundness). We say Σ-protocol (P1,P2,V) with chal-
lenge space E and response distribution Z for language L is special sound, if
there exists a PPT extractor Ext, such that for any x ∈ {0, 1}∗, any two tran-
scripts (a, e, z) and (a, e′, z′) with V(x, a, e, z) = 1 and V(x, a, e′, z′) = 1 and with
e �= e′, it holds that

Pr [RL(x,w) = 1: w ← Ext(x, a, e, z, e′, z′)] = 1,

where the probability is taken over the random coins of the extractor.

Computational special soundness allows such pairs of transcripts to exist,
but requires them to be computationally hard to find.

Definition 4 (Computational Special Soundness). We say Σ-protocol
(P1,P2,V) with challenge space E and response distribution Z for language L
is computationally special sound, if for any λ ∈ N and any PPT adversary A,
it holds that

Pr[Exptsound
A,L (1λ) = 1] := Pr

⎡

⎢
⎣

e �= e′ ∧ x �∈ L
V(x, a, e′, z′) = 1

V(x, a, e, z) = 1

: (x, a, e, z, e′, z′) ← A(1λ)

⎤

⎥
⎦ ≤ negl(λ),

where the probability is taken over the random coins of the experiment.

Honest verifier zero-knowledge guarantees a simulator which, on input a ran-
dom challenge, can simulate valid transcripts.

Definition 5 (Honest Verifier Zero-Knowledge). We say Σ-protocol
(P1,P2,V) with challenge space E and response distribution Z for language L
is honest verifier zero-knowledge, if there exists a PPT simulator Sim, such
that for all λ ∈ N, all PPT adversaries A, all x ∈ L and all witnesses w with
RL(x,w) = 1, it holds that

∣
∣
∣Pr

[
ExptRealΣ

A (1λ, x, w) = 1
]

− Pr
[
ExptSimΣ

A,Sim(1λ, x) = 1
]∣
∣
∣ ≤ negl(λ),

where the probability is taken over the random coins of the adversary and the
experiments defined in Fig. 1.

44 K. Boudgoust and M. Simkin

Remark 1. We remark that our definition of honest verifier zero-knowledge is
sometimes also called special honest verifier zero-knowledge.

The property below strengthens honest verifier zero-knowledge in the sense
that the simulator now gets as input a random challenge and a random response
and is required to be deterministic.

Definition 6 (Strong Honest Verifier Zero-Knowledge [BR08]). We say
Σ-protocol (P1,P2,V) with challenge space E and response distribution Z for
language L is strong honest verifier zero-knowledge, if there exists a determinis-
tic polynomial time simulator Sim, such that for all λ ∈ N, all PPT adversaries
A, all x ∈ L and all witnesses w with RL(x,w) = 1, it holds that

∣
∣
∣Pr

[
ExptstRealΣ

A (1λ, x, w) = 1
]

− Pr
[
ExptstSimΣ

A,Sim (1λ, x) = 1
]∣
∣
∣ ≤ negl(λ),

where the probability is taken over the random coins of the adversary and the
experiments defined in Fig. 2.

Fig. 1. Honest verifier zero-knowledge. Fig. 2. Strong honest verifier zero-
knowledge.

Remark 2. In some cases, we will assume that our Σ-protocols run in the
presence of a honestly sampled common reference string. This string will, for
instance, contain the description of a hash function or a commitment scheme. If
a Σ-protocol requires such a string, then throughout the paper, we will assume
that this string is sampled honestly at the start of any experiment and all prob-
abilities are taken over the random coins that were used to sampled this string
as well.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 45

2.2 Distributed Point Functions [GI14]

We recall the definition of (distributed) point functions.

Definition 7 (Point Functions). For x ∈ X and y ∈ Y, a point function fx,y

with domain X and range Y is defined as

fx,y(z) =

{
y if z = x

0 else
.

Let F(X ,Y) be the set of point functions with domain X and range Y.

Definition 8 (Distributed Point Functions). A distributed point function
for domain X and range Y is a pair of PPT algorithms DPF = (Share,Eval) that
are defined as follows:

(f0, f1) ← Share(1λ, f): The share generation algorithm takes the security param-
eter λ and point function f ∈ F(X ,Y) as input and returns function shares
f0 and f1.

y ← Eval(fb, x): The evaluation algorithm takes function share fb for b ∈ {0, 1}
and x ∈ X as input and returns evaluation y ∈ Y.

Correctness states that combining the evaluations of both shares gives the
original value.

Definition 9 (Correctness). We say a DPF = (Share,Eval) for domain X and
range Y, where Y is an abelian group with addition, is correct, if for any λ ∈ N,
any function f ∈ F(X ,Y) and any z ∈ X , it holds that

Pr
[
Eval(f0, z) + Eval(f1, z) = f(z) : (f0, f1) ← Gen(1λ, f)

]
= 1.

Privacy guarantees that shares do not leak any information about the func-
tion they are derived from.

Definition 10 (Privacy). We say a DPF = (Share,Eval) for domain X and
range Y, is private, if for any λ ∈ N, any PPT adversary A, it holds that

Advpriv(A) :=
∣
∣
∣
∣Pr

[
ExptprivA (1λ) = 1

]
− 1

2

∣
∣
∣
∣ ≤ negl(λ),

where ExptprivA is the experiment in Fig. 3.

We use the following result which shows that one can obtain DPFs from
pseudorandom generators, which can themselves be obtained from one-way func-
tions [HIL+99].

Theorem 1 ([BGI15]). Let λ, � ∈ N. Assuming the existence of a pseudorandom
generators, there exists a correct and private DPF for domain X = {0, 1}� and
range Y = {0, 1} with shares of bit size O(λ log |X |).

46 K. Boudgoust and M. Simkin

2.3 Explainable Samplers [LW22]

Our definition of explainable samplers slightly differs from that of Lu and
Waters [LW22]. Their definition assumes that the random coins provided to
the sampling algorithm come from a uniformly random distribution. In our defi-
nition, we allow the coins to come from other distributions. In their definition, a
separate precision parameter specifies how “well” the explain algorithm works.
In our definition, we will not have a separate precision parameter, but instead
assume that the advantage of the adversary in each security experiment will be
negligible in the same security parameter λ.

Fig. 3. The privacy experiment for
DPFs.

Fig. 4. The explainability experiments
for samplers.

Definition 11 (Samplers). Let λ ∈ N. A sampler for distribution D = D(λ)
with randomness distribution R = R(λ) is a pair of PPT algorithms ES =
(Sample,Explain) that are defined as follows:

x ← Sample(1λ): The sampling algorithm takes the security parameter λ as input
and returns a sample x.

r ← Explain(1λ, x): The explaining algorithm takes security parameter λ and
sample x ∈ Supp(D) as input and returns random coins r.

An explainable sampler should be correct in the sense that the samples
returned by Sample should be statistically close to samples from the real dis-
tribution.

Definition 12 (Correctness). Let λ ∈ N. A sampler for distribution D =
D(λ) with randomness distribution R = R(λ) is correct, if for any λ and any
adversary A, it holds that
∣
∣Pr

[A(x) = 1 : x ← Sample(1λ; r); r ← R] − Pr [A(x) = 1 : x ← D]
∣
∣ ≤ negl(λ),

where the probability is taken over the random coins of all algorithms.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 47

An explainable sampler should be explainable in the sense that first sampling
an element x ∈ Supp(D) and then finding random coins r ∈ Supp(R), such that
Sample(1λ; r) = x, should be statistically indistinguishable from first sampling
r ← R and then computing x ← Sample(1λ; r).

Definition 13 (Explainability). Let λ ∈ N. A sampler for distribution D =
D(λ) with randomness distribution R = R(λ) is explainable, if for any λ and
adversary A, it holds that

∣
∣
∣Pr

[
ExptRealS

A (1λ) = 1
]

− Pr
[
ExptExplainS

A (1λ) = 1
]∣
∣
∣ ≤ negl(λ),

where ExptRealS
A and ExptExplainS

A are the experiments defined in Fig. 4 and the
probability is taken over the random coins of all algorithms.

3 Non-Adaptively Privately Programmable Functions
(NAPs)

This section introduces our new cryptographic primitive, which we call non-
adaptive programmable functions (NAPs). These NAPs will be the main tool
that allows us to construct our compressed OR-proofs in the next section.

3.1 Definitions

We start by introducing the syntax of NAPs. On a high level, they can be seen
as keyed pseudorandom functions, which allow for programming the secret key.

Definition 14 (Non-Adaptively Programmable Functions). A non-
adaptively programmable function with domain X and range Y with output
distribution DY is a tuple of PPT algorithms NAP = (Gen,Eval,Prog,PEval)
that are defined as follows:

msk ← Gen(1λ, x∗): They key generation algorithm takes the security parameter
1λ and evaluation point x∗ ∈ X as input and returns a master secret key msk.

y ← Eval(msk, x): The evaluation algorithm takes the master secret key msk and
an evaluation point x ∈ X and returns an evaluation y ∈ Y.

psk ← Prog(msk, y∗): The programming algorithm takes as input the master
secret key msk and an evaluation y∗ ∈ Y, and returns a programmed secret
key psk.

y ← PEval(psk, x): The evaluation algorithm for programmed keys takes the pro-
grammed secret key psk and an evaluation point x ∈ X as input and returns
the evaluation y ∈ Y.

We now define two properties that we would like our NAPs to satisfy. The
first one is correctness, which requires that programming works as one would
expect. At the programmed location, the programmed key should return the
programmed output value and on all other inputs, it should return the same
values as the original master secret key.

48 K. Boudgoust and M. Simkin

Definition 15 (Correctness). We say NAP for domain X and output distri-
bution DY is correct, if for all λ ∈ N, all x∗ ∈ X we have

Pr

⎡

⎢
⎣

PEval(psk, x∗) = y∗

∧ ∀x ∈ X \ {x∗}
PEval(psk, x) = Eval(msk, x)

:
msk ← Gen(1λ, x∗)

y∗ ← DY
psk ← Prog(msk, y∗)

⎤

⎥
⎦ ≥ 1 − negl(λ),

where the probability is taken over the random coins of all algorithms and the
choice of y∗.

The second property is private programmability, which requires the pro-
grammed key to hide the location at which it was programmed. This should
hold in a strong sense, where the adversary is allowed to choose location x∗, is
then either given a key programmed at that location or a simulated key, and
should not be able to tell in which of those two cases they are.

Definition 16 (Private Programmability). We say NAP for domain X and
output distribution DY is privately programmable, if there is a PPT simula-
tor Sim such that for all λ ∈ N and every PPT adversary A, it holds that

∣
∣
∣Pr

[
ExptRealPP

A (1λ) = 1
]

− Pr
[
ExptIdealPP

A (1λ) = 1
]∣
∣
∣ ≤ negl(λ),

where RealPP and IdealPP are the experiments defined in Fig. 5.

Fig. 5. The private programmability experiment for NAPs.

3.2 Constructions

We start with building our first NAP whose output are uniformly random bits,
from distributed point functions.

Theorem 2. Let DPF = (Share,Eval) be a correct and private distributed point
function for domain X and range Y := {0, 1}. Then the construction NAP =
(Gen,Prog,Eval,PEval) in Fig. 6 is a correct and privately programmable NAP
for domain X and output distribution UY .

Proof. To prove the theorem statement, let us consider each property of a NAP
separately:

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 49

Correctness. Note that Y with the xor-operation ⊕ defines an abelian group. We
observe that for any u, v ∈ {0, 1} the two simple implications hold. If u ⊕ v =
0, then u = v and if u ⊕ v = 1, then u �= v and thus in this case (u, v) ∈
{(1, 0), (0, 1)}. Now for any x∗ ∈ X , let

f(x) :=

{
1 if x = x∗

0 else

and let (f0, f1) ← DPF.Share(1λ, f). Correctness of the distributed point
function tells us that for any x ∈ X with x �= x∗, it holds that DPF.
Eval(f0, x) ⊕ DPF.Eval(f1, x) = 0 and thus DPF.Eval(f0, x) = DPF.Eval(f1, x),
whereas for x∗ we have that DPF.Eval(f0, x

∗) ⊕ DPF.Eval(f1, x
∗) = 1 and thus

(DPF.Eval(f0, x
∗),DPF.Eval(f1, x

∗)) ∈ {(0, 1), (1, 0)}. Since for any y∗ ∈ {0, 1},
there exists a b ∈ {0, 1} with DPF.Eval(fb, x

∗) = y∗, the correctness of our NAP
construction follows.

Private Programmability. Fix an arbitrary x̃ ∈ X and let f be the point function
that evaluates to one at x̃. We define Sim(1λ) to be the algorithm that generates
(f0, f1) ← Share(1λ, f) and then returns fb′ for a uniformly random b′. Note that
returning a uniformly random share is the same as programming the output at
x̃ to a uniformly random value. Let A be an arbitrary PPT adversary with

ε :=
∣
∣
∣Pr

[
ExptIdealPP

A (1λ) = 1
]

− Pr
[
ExptRealPP

A (1λ) = 1
]∣
∣
∣ .

We construct a PPT adversary B against the privacy property of the distributed
point function, i.e., an adversary that has advantage ε/2 in the experiment
ExptprivB (1λ). The reduction B works as follows: They initialize A with fresh ran-
dom coins, provide them with the security parameter and obtain x∗. They then
define

f0(x) :=

{
1 if x = x∗

0 else
and f1(x) :=

{
1 if x = x̃

0 else

and provide f0 and f1 to their challenger, who returns f b
0 . Adversary B forwards

f b
0 to A and then returns whatever bit A returns.

We now observe that when b = 0 in the privacy experiment of the distributed
point function, then B perfectly simulates ExptRealPP

A (1λ) towards A, as they are
receiving f0

b̃
for a uniformly random b̃ ∈ {0, 1} as expected. When b = 1, then

B perfectly simulates ExptIdealPP
A (1λ) towards A, they obtain the expected f1

b̃

for uniformly random b̃. Let Exptpriv,b
A (1λ) be the privacy experiment for the

distributed point function, where the challenger chooses bit b. From the above
observations, we can conclude that

50 K. Boudgoust and M. Simkin

2 · Advpriv(B) =
∣
∣
∣
∣Pr

[
ExptprivB (1λ) = 1

]
− 1

2

∣
∣
∣
∣ · 2

=
∣
∣
∣
∣
1
2

· Pr
[
Exptpriv,0

B (1λ) = 1
]

+
1
2

· Pr
[
Exptpriv,1

B (1λ) = 1
]

− 1
2

∣
∣
∣
∣ · 2

=
∣
∣
∣Pr

[
Exptpriv,1

B (1λ) = 1
]

− Pr
[
Exptpriv,0B (1λ) = 0

]∣
∣
∣

=
∣
∣
∣Pr

[
ExptIdealPP

A (1λ) = 1
]

− Pr
[
ExptRealPP

A (1λ) = 1
]∣
∣
∣ = ε.

Since the distributed point function is private, it means that 2 · Advpriv(B) is
negligible in λ and thus so is ε. ��

Concatenating the outputs of several NAPs with one bit outputs, we can
obtain a NAP with multiple output bits. This is captured formally in the next
theorem statement, whose proof uses a standard hybrid argument and we thus
defer to the full version of this paper.

Theorem 3. Let λ, t ∈ N with t ∈ poly(λ). Let NAP′ be a correct and pri-
vately programmable NAP for domain X and output distribution U{0, 1}. Then
there exists a correct and privately programmable NAP for domain X and output
distribution U{0, 1}t.

Fig. 6. NAP for uniform single bit
outputs.

Fig. 7. NAP for explainable out-
put distributions.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 51

Next, we show that a NAP for one output distribution can be transformed
into a NAP for a different distribution by using an appropriate explainable sam-
pler. A bit more concretely, given a NAP with output distribution R and an
explainable sampler with randomness distribution R and output distribution X ,
we obtain a NAP with output distribution X . Towards this goal, we use the
NAP’s output be the input random coins of the sampling algorithm and the
output of the sampling algorithm is then defined to be the output of our newly
constructed NAP. Programmability of the new NAP will follow from the pro-
grammability of the underlying NAP and the explainability of the used sampler.
We defer the proof of the following theorem to the full version of this paper.

Theorem 4. Let λ ∈ N. Let NAP′ be a correct and privately programmable
NAP for domain X and output distribution R. Let ES = (Sample,Explain) be
a correct and explainable sampler with randomness distribution R and output
distribution D. Then the construction NAP = (Gen,Eval,Prog,PEval) in Fig. 7
is a correct and privately programmable NAP for domain X and output distri-
bution D.

3.3 The Sizes of NAP Keys

At this point, let us take a moment to reflect on the sizes of our NAP keys. In the
construction from Theorem 2, both master secret and programmed keys are com-
posed of distributed point function shares. Using the construction from Theorem
1, this would result in a NAP key size of O(λ log |X |). Plugging this construction
into the multiple bit construction from Theorem 3, we get a NAP for uniformly
random t-bit outputs and a key size of O(tλ log |X |). Alternatively, using this
construction in combination with Theorem 4 and an explainable sampler with a
randomness distribution that is the uniform distribution over t-bit strings and
output distribution D, we get a NAP with key size O(tλ log |X |) and output
distribution D.

4 Compressing OR-Proofs from NAPs

We now present our main contribution: compressed OR-proofs for Σ-protocols
using NAPs. We start by recalling the definition of OR languages, then present
our construction with security proofs in Sect. 4.1, sketch how to extend the OR-
proof to the more general k-out-of-n setting in Sect. 4.2 and conclude with pro-
viding two concrete instantiations in Sect. 4.3.

Definition 17 (OR Languages LOR). Let n ∈ N and let L be a language. We
define

Ln
OR := {(x1, . . . , xn) ⊂ {0, 1}∗ | ∃i ∈ [n] : xi ∈ L}

to be the vector of statements of length n, where at least one entry is in the
language L.

52 K. Boudgoust and M. Simkin

4.1 Construction

Theorem 5. Let λ, n ∈ N. Let H = H(λ) be a family of collision-resistant
hash functions, mapping from {0, 1}∗ to {0, 1}Θ(λ). Let Σ-protocol (P′

1,P
′
2,V

′)
with challenge space E, which is an abelian group equipped with addition, and
response distribution Z for language L be correct, special sound, and strong hon-
est verifier zero-knowledge. Let Sim′ be the corresponding strong honest verifier
zero-knowledge simulator. Let NAPE be a correct and privately programmable
NAP for domain [n] and output distribution UE . Let NAPZ be a correct and pri-
vately programmable NAP for domain [n] and output distribution Z. Then the
construction from Fig. 8 is a correct, computationally special sound, honest veri-
fier zero-knowledge sigma protocol for the language Ln

OR in the common reference
string model.

Fig. 8. OR-proof from NAPs.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 53

Proof. To prove the theorem statement, we need to show correctness, compu-
tational special-soundness, and honest verifier zero-knowledge. In the following,
let us look at each of these separately.

Correctness. The fact that our protocol is correct (with overwhelming probabil-
ity), follows by inspection.

Computational Special Soundness. Let A be a PPT adversary, such that

Pr[Exptsound
A,Ln

OR
(1λ) = 1] = ε.

Recall that the winning condition of the experiment requires A to return a vector
(x, a, e, z, e′, z′), such that both V(x, a, e, z) = 1 and V(x, a, e′, z′) = 1, while at
the same time e �= e′ and x �∈ Ln

OR.
During the verification of (x, a, e, z) and (x, a, e′, z′), at step 2 of V in Fig. 8,

for each j ∈ [n], the verifier computes transcripts (aj , ej , zj) and (a′
j , e

′
j , z

′
j)

respectively. Let COLL be the event that H(a1, . . . , an) = H(a′
1, . . . , a

′
n), but

(a1, . . . , an) �= (a′
1, . . . , a

′
n). We observe that

Pr[Exptsound
A,Ln

OR
(1λ) = 1]

=Pr[Exptsound
A,Ln

OR
(1λ) = 1 | COLL] · Pr[COLL] + Pr[Exptsound

A,Ln
OR

(1λ) = 1 | ¬COLL] · Pr[¬COLL]

≤Pr[COLL] + Pr[Exptsound
A,Ln

OR
(1λ) = 1 | ¬COLL].

From the collision-resistance of H, it follows that Pr[COLL] ≤ negl(λ). More
precisely, let B be an adversary against the collision-resistance of H. Given H,
the adversary B sets crs := H and honestly simulates the computational special
soundness experiment towards A. When A outputs (x, a, e, z, e′, z′), we let B
compute the corresponding vectors (a1, . . . , an) and (a′

1, . . . , a
′
n) and return them

in their experiment. It is easy to see that B wins, whenever COLL happens and
thus Pr[COLL] ≤ negl(λ).

Now let us assume that COLL did not happen. Then, since the verifier checks
a = H(a1, . . . , an) and a = H(a′

1, . . . , a
′
n) respectively in step 6 of V, and since

both verifications are successful, it follows that (a1, . . . , an) = (a′
1, . . . , a

′
n). How-

ever, note that e �= e′ and that the verifier also checks that
∑n

j=1 ej = e and
∑n

j=1 e′
j = e′ respectively. It must therefore exist an index j∗ ∈ [n], such that

ej∗ �= e′
j∗ . Since all transcripts are accepting in step 8 of V, it follows that

there exists an xj∗ and two accepting transcripts (aj∗ , ej∗ , zj∗) and (aj∗ , e′
j∗ , z′

j∗),
which agree in their first messages, but have different second messages. By
assumption, the Σ-protocol (P′

1,P
′
2,V

′) is special sound and thus it must either
hold that xj∗ ∈ L (as the extractor from special soundness successfully extracts
a witness for xj∗) and thus x ∈ Ln

OR or

Pr[Exptsound
A,Ln

OR
(1λ) = 1 | ¬COLL] = 0.

We can conclude that the adversary’s success probability ε is negligible in λ.

54 K. Boudgoust and M. Simkin

Honest Verifier Zero-Knowledge. To show honest verifier zero-knowledge, we
need to provide a simulator Sim, such that for all λ ∈ N, all PPT adversaries A,
all x ∈ Ln

OR and its witnesses w, it holds that
∣
∣
∣Pr

[
ExptRealΣ

A (1λ, x, w) = 1
]

− Pr
[
ExptSimΣ

A,Sim(1λ, x) = 1
]∣
∣
∣ ≤ negl(λ).

Our simulator is depicted in Fig. 9.

Fig. 9. Honest verifier zero-knowledge simulator for the OR-proof.

What remains to do is to argue that our constructed simulator produces
transcripts that are indistinguishable from real ones. Since both NAPE and NAPZ
are privately programmable, there exist simulators SimE and SimZ respectively.
Since honest verifier zero-knowledge only has to hold for x ∈ Ln

OR, there exists
an index i ∈ [n] with xi ∈ L. We consider the following sequence of hybrids.

Let Hybrid0 be the experiment ExptSimΣ
A,Sim(1λ, x). Let Hybrid1 be identical to

Hybrid0, apart from how the challenge e is chosen. Instead of letting the chal-
lenger pick e and provide it to the simulator, we now let the simulator pick e1

uniformly at random and define e =
∑n

j=1 ej . Since the challenge space E is an
abelian group, it follows that it makes no difference, whether we first pick e1 or
e and thus the two hybrids are perfectly indistinguishable from the adversary’s
perspective.

Let Hybrid2 be identical to Hybrid1, apart from how mske is chosen. Instead
of computing it honestly, we directly compute pske ← SimE(1λ) and define e1 :=

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 55

NAPE .PEval(pske, 1). Indistinguishability of the two hybrids follows from the
private programmability of NAPE . More concretely, we use A to construct an
adversary B against the private programmability of NAPE as follows: Initially,
B outputs x∗ = 1 and receives psk from the challenger. For j ∈ [n], adversary
B defines ej ← NAPE .PEval(psk, j). Next, B computes the values pskz, z1, e, a
the same way as Hybrid1 would and defines z := (psk, pskz). Finally, B calls
A on input (a, e, z). When A returns bit b, we let B output the same bit. If
B was in ExptIdealPP

A (1λ), then the view of A is identical to Hybrid2. If B was
in ExptRealPP

A (1λ), then the view of A is identical to Hybrid1. Thus by private
programmability, indistinguishability of the two hybrids follows.

Let Hybrid3 be identical to Hybrid2, apart from how mskz is chosen. Instead
of computing it honestly, we directly compute pskz ← SimZ(1λ) and define
z1 := NAPZ .PEval(pskz, 1). Indistinguishability of Hybrid2 and Hybrid3 follows
from the private programmability of NAPZ , similarly to the argument made for
the previous pair of hybrids.

Let Hybrid4 be identical to Hybrid3, apart from now choosing mskz ←
NAPZ .Gen(1λ, i), sampling zi ← Z, and computing pskz ← NAPZ .
Prog(mskz, zi). Here, i ∈ [n] is the index such that xi ∈ L. Indistinguishabil-
ity of Hybrid3 and Hybrid4 follows from the private programmability of NAPZ .

Let Hybrid5 be identical to Hybrid4, apart from now choosing mske ←
NAPE .Gen(1λ, i), sampling ei ← E , and computing pske ← NAPE .Prog(mske, ei).
Indistinguishability of Hybrid4 and Hybrid5 follows from the private programma-
bility of NAPE .

Let Hybrid6 be identical to Hybrid5, apart from now choosing e ← E and
defining ei ← ∑

j �=i ej . Indistinguishability of Hybrid5 and Hybrid6 follows from
the fact that E is an abelian group. At this point, we arrived at a hybrid that is
identical to the original simulator, but using index i, instead of index 1.

Let Hybrid7 now be a real execution of the prover using witness (i, w), where
(xi, w) ∈ RL. Indistinguishability of Hybrid6 and Hybrid7 follows from the strong
honest verifier zero-knowledge property of Σ. More concretely, we use A to con-
struct an adversary B against the strong honest verifier zero-knowledge prop-
erty of Σ as follows: Initially, B receives (a′, e′, z′) from the challenger. They
set ai = a′, ei = e′ and zi = z′. Then they compute mske, mskz as well as
(aj , ej , zj) for j �= i as specified by Hybrid6 (which is the same in Hybrid7).
They set a = H(a1, . . . , an), program both NAPs at the corresponding entries
of ei and zi to derive programmed keys pske and pskz, defining z = (pske, pskz).
Again, this process is the same in both hybrids. Finally, B sets e =

∑n
j=1 ej and

forwards (a, e, z) to A. On output bit b by A, we let B forward the bit as their
output. Note that E is an abelian group, so e again has the correct distribution.
If B was in ExptstSimΣ

B,Sim′ (1λ, xi), then the view of A is identical to Hybrid6. If B
was in ExptstRealΣ

B,Sim (1λ, xi, w), then the view of A is identical to Hybrid7 (which is
identical to the real experiment of strong honest verifier zero-knowledge). Thus
by strong honest verifier zero-knowledge, the two hybrids are indistinguishable.

Having shown correctness, computational special soundness, and honest ver-
ifier zero-knowledge, concludes the proof. ��

56 K. Boudgoust and M. Simkin

4.2 Extensions

Theorem 5 allows for showing that one out of n statements is in the language L.
More generally, it may be desirable to show that there exists a subset I of size
k, such that xi ∈ Li for all i ∈ I. That is, we would like to show that multiple
statements are valid in the a setting where we deal with multiple languages. Let
us shortly outline, how our approach can easily be extended to this setting.

Showing the Validity of k Out of n Statements for One Language L. To con-
struct such proofs of partial knowledge, we can again directly follow the blueprint
of Cramer, Damg̊ard and Schoenmakers [CDS94]. If the prover has witnesses for
k statements, then they still need to simulate n − k many Σ-protocol execu-
tions. Rather than requiring that all challenges sum to e, we will now require
that they all lie on the same polynomial of degree n − k. The polynomial will
be uniquely defined by the n − k simulated and the received additional chal-
lenge. The challenges for the honest executions will be interpolated from this
polynomial.

This approach requires us to program our NAPs at multiple points, but
luckily such NAPs can easily be constructed from distributed point functions.
Rather than viewing the NAP outputs as the evaluation of one function share,
we can view them as the xor of the evaluation of multiple shares (for different
point functions). The resulting key sizes would all increase by a multiplicative
factor of k.

Dealing with Multiple Languages. When dealing with multiple languages, we may
have to handle multiple response distributions, but we assume that all challenge
sets are the same. Assume we have explainable samplers for all of these response
distributions and assume that all of these samplers have the same randomness
distribution R. Then we can use a NAP with output distribution R to construct
a NAP, where the output for each j ∈ [n] comes from a different distribution.

4.3 Examples

Having established our generic transformation in the previous section, let us
now look at two prominent examples of Σ-protocols that can be compiled with
it. Without loss of generality, we assume throughout this section that n and m
are powers of two and hence their corresponding logarithm is a positive integer.
Moreover, we use every explainable rejection sampler with precision λ, as detailed
in Corollary 10.

Graph Isomorphism. One of the arguably most well-known Σ-protocols is
that of Goldreich, Micali, and Wigderson [GMW86], which allows for show-
ing that two graphs are isomorphic without revealing the secret isomorphism
between them. More precisely, the statement is x = (G0, G1), where G0 and G1

are two graphs each of which having m nodes, and the witness w is a permutation
π : [m] → [m] which defines the isomorphism. We say x ∈ LGI, if π(G0) = G1,

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 57

Fig. 10. Σ-Protocol for the graph isomorphism problem by Goldreich, Micali, and
Wigderson [GMW86].

where applying a permutation to a graph is interpreted as relabeling node i into
node π(i). We recall the protocol of Goldreich, Micali, and Wigderson in Fig. 10.

Besides being correct and special sound, we note that their protocol is also
strong honest verifier zero-knowledge. To see this, we observe that the simula-
tor, receiving a uniformly random challenge e and a uniformly random permu-
tation z : [m] → [m], can deterministically compute a = z(Ge). Furthermore,
we observe that the challenge space is E = {0, 1} and the response distribution
is the uniform distribution over the group of permutations Sm. Using Theorem
5 in combination with our NAPs from Theorem 4, instantiated with the dis-
tributed point functions from Theorem 1, and using the explainable sampler
from Corollary 12, we get the following theorem.

Theorem 6. Let λ, n,m ∈ N. Assuming the existence of collision-resistant hash
functions, there exists a correct, computationally special sound, and honest veri-
fier zero-knowledge Σ-protocol for the language LGI,n

OR . The communication com-
plexity of the protocol is O(mλ3 log n), where m denotes the number of nodes of
the graphs in the statement.

Let us explain how we arrive at the stated communication complexity. The tran-
script (a, e, z) of the constructed Σ-protocol is comprised of a hash a ∈ {0, 1}Θ(λ),
a challenge e ∈ E = {0, 1}, and a response z = (pske, pskz), which is a pair of
programmed NAP keys for input domain X = [n]. To bound the bit length of the
NAP keys, we use the bounds from Sect. 3.3. The bit length of pske for the output
distribution U{0, 1} is in O(λ log n). The bit length of pskz is O(tλ log n), where t
is the number of randomness bits needed for the explainable sampler. To sample
a uniformly random permutation from Sm, we use the procedure described in
Corollary 12 which requires rejection sampling of the uniform distribution over
[i] for i ∈ {2, . . . , m}. We upper bound this by sampling m times over [m]. With
λ bits of precision and constant M , we need at most λM(log m + λ) ∈ O(λ2)
many randomness bits for sampling over [m]. Here, we used that the number
of nodes m is polynomial in λ. Hence, t ∈ O(mλ2) and therefore the total bit
length of pskz is in O(mλ3 log n), which dominates the overall communication
complexity.

Our theorem statement shows that one can prove the validity of one out
of n instances of the graph isomorphism problem with a protocol that has a

58 K. Boudgoust and M. Simkin

communication complexity that only depends logarithmically on n and that
only relies on the existence of collision-resistant hashing.

Fig. 11. A variant of the Σ-Protocol for graph 3-coloring by Goldreich, Micali, and
Wigderson [GMW86].

Graph 3-Coloring. Another well-known Σ-protocol that was also presented
by Goldreich, Micali, and Wigderson [GMW86] allows for showing that a given
graph G is 3-colorable, i.e. that there exists a function φ, which assigns one
of three colors to each node in a way that no two neighbours share a color.
Here, x = G is the statement and w = φ is the witness. More formally, let
G be a graph with m nodes and E its set of edges. A 3-coloring of G is a
function φ : [m] → {0, 1, 2} such that for every edge (i, j) ∈ E with i, j ∈ [m],
it yields φ(i) �= φ(j). We say x ∈ LG3C, if there exists a 3-coloring φ of G.
A slightly modified version of the original protocol is recalled in Fig. 11. In
the original protocol, the response z only contains the commitment openings
of the two nodes specified by the challenge. The modification appends to the
response z the commitments from the other edges (which can be recomputed with
the help of the auxiliary information). This change is important to guarantee
strong honest verifier zero-knowledge. The protocol involves a hiding and binding
commitment scheme Commit : {0, 1, 2} × {0, 1}λ → {0, 1}Θ(λ). In the following,
we assume that the produced commitments of Commit are pseudorandom bit

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 59

strings, i.e. computationally indistinguishable from uniformly random bit strings.
Such commitment schemes can be build from one-way functions, as shown by
Naor [Nao90].3

In this setting, the protocol is not only correct and special sound, but also
strong honest verifier zero-knowledge. To see the latter, we observe that the
simulator, on input a uniformly random challenge e and a uniformly random
response z, can deterministically compute the commitments for the i-th and j-
th node (using the provided color and randomness in z) and output the full list
of commitments (using the other commitments provided in z). The produced
transcript is indistinguishable from a real one and due to the pseudorandomness
of the commitment scheme, we can simulate those commitments by just pick-
ing uniformly random bit strings. The challenge space is given as E = E. The
response distribution is a product distribution of twice the uniform distribution
over {0, 1}λ (for the two commitment randomnesses), the uniform distribution
over [6] (for the two non-equal colors) and n−2 many uniform distributions over
{0, 1}Θ(λ) (for the commitments). Overall, we obtain the following result.

Theorem 7. Let λ, n,m ∈ N. Assuming the existence of collision-resistant hash
functions, there exists a correct, computationally special sound, and honest veri-
fier zero-knowledge Σ-protocol for the language LG3C,n

OR . The communication com-
plexity of the protocol is O(mλ3 log n), where m denotes the number of nodes of
the graphs in the statement.

Let us again look at how we arrive at the stated communication complexity.
Let (a, e, z) again be a transcript of the protocol. As before, the bit length of the
hash a is O(λ), the bit length of e is log |E| ≤ 2 log m. Regarding the bit length
of z, we observe that we need t1 = 2λ + (m − 2)O(λ) ∈ O(mλ) many uniform
output bits (covering the commitment randomness and the other commitments)
and t2 = Mλ(3 + λ) many bits for the explainable sampler with constant M
and λ bits of precision (for sampling over [6]). Thus, the total bit size of z is
O(mλ3 · log n), dominating the overall communication complexity.

5 Explainable Rejection Sampling

Previous works, such as that of Agrawal, Wichs, and Yamada [AWY20], showed
that sampling (truncated) discrete gaussians via rejection sampling, as speci-
fied by Gentry, Peikert, and Vaikuntanathan [GPV08], is explainable4. Lu and
Waters [LW22] formalized the concept of explainable samplers and show that
large classes of distributions can be sampled in an explainable way. Here, we
extend upon their result and show that anything that can be sampled efficiently

3 The interactive commitment scheme originally presented in [Nao90] can be made
non-interactive in the common reference string model by interpreting the verifier’s
(reusable) first message, which is a random bit string, as a crs.

4 In the work of Agrawal, Wichs, and Yamada [AWY20], the terminology reversible
sampling was used.

60 K. Boudgoust and M. Simkin

via rejection sampling, can also be explained. Throughout this section, we assume
that all involved distributions have efficiently computable probability density
functions, i.e. that for any distribution D and any element x in Supp(D), we can
compute the probability of x being sampled.

5.1 Textbook Rejection Sampling

Before presenting our new results, let us first recall textbook rejection sampling,
depicted in Fig. 12, along with the corresponding theorem statement in Theorem
8. For the sake of completeness, we provide a proof of this theorem in the full
version of this paper. We note that this proof is not new to our work.

Fig. 12. Textbook rejection sampling.

Theorem 8 (Rejection Sampling). Let P,Q be two discrete probability dis-
tributions such that Supp(P) ⊆ Supp(Q), where Q is the starting and P
the target distribution. Further, let M ∈ N such that P(x)/Q(x) ≤ M for
all x ∈ Supp(P). Then, the output of RejSample(P,Q,M) as defined in Fig. 12
is distributed as P. In expectation, the algorithm terminates after M trails.

5.2 From Rejection Sampling to Explainable Samplers

Let us now see how rejection sampling can be used to construct explainable
samplers. Recall, that rejection sampling repeatedly picks pairs (x, ρ), where
x ← Q and ρ ← U [0, 1], and then accepts x, if ρ is in some appropriate interval
of [0, 1]. As we have shown in the proof of Theorem 8, during each of these
iterations, the algorithm will be terminating with probability 1/M . Thus, the
probability of not having terminated after λ · M iterations is bounded by

(

1 − 1
M

)λ·M
=

((

1 − 1
M

)M
)λ

≤ e−λ, (1)

which is a negligible function in λ.

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 61

The explainable sampler we construct, outputs samples from some target
distribution P and has randomness distribution R := (Q × U [0, 1])λ·M for some
starting distribution Q. In other words, our sampler takes κ := λ · M pairs as
input, which are sufficient for simulating a real rejection sampling execution with
overwhelming probability.

Fig. 13. Explainable sampler via rejection sampling.

Theorem 9. Let λ ∈ N. Let P = P(λ) and Q = Q(λ) be two discrete prob-
ability distributions for which Supp(P) ⊆ Supp(Q) and for which there exists
an M = M(λ) ∈ poly(λ), such that P(x)/Q(x) ≤ M for all x ∈ Supp(P).
Then, the construction in Fig. 13 defines a correct and explainable sampler for
distribution P with randomness distribution R, where R := (Q × U [0, 1])λ·M .

Proof. Let κ := λ · M . Since both M and κ are polynomially bounded in λ, it
directly follows that both RejSample and RejExplain are efficiently computable.
Let us proceed to showing that our sampler is correct and explainable separately.

Correctness. To show correctness, we observe that for all λ ∈ N and all adver-
saries A, it holds that

∣
∣Pr

[A(x) = 1 : r ← R, x ← RejSample(1λ; r)
] − Pr [A(x) = 1 : x ← P]

∣
∣

≤Pr
[
x = ⊥ : r ← R, x ← RejSample(1λ; r)

]

+
∣
∣Pr

[A(x) = 1 : r ← R, x ← RejSample(1λ; r) | x �= ⊥] − Pr [A(x) = 1 : x ← P]
∣
∣

= negl(λ) +
∣
∣Pr

[A(x) = 1 : r ← R, x ← RejSample(1λ; r) | x �= ⊥] − Pr [A(x) = 1 : x ← P]
∣
∣ ,

since RejSample returns ⊥ with negligible probability (cf. Equation 1). By The-
orem 8, it holds that RejSample perfectly simulates sampling from P, whenever
it does not output ⊥. Thus, it holds that
∣
∣
∣Pr

[
A(x) = 1 : r ← R, x ← RejSample(1λ; r) | x �= ⊥

]
− Pr [A(x) = 1 : x ← P]

∣
∣
∣ = 0.

Therefore, the sampler is correct.

62 K. Boudgoust and M. Simkin

Explainability. Let R ⊂ Supp(R) be the set of random tapes on which
RejSample successfully produces an output. That is, for all r ∈ R, it holds that
RejSample(1λ; r) �= ⊥. Since, RejSample outputs ⊥ with negligible probability, it
follows that |R| ≥ (1−negl(λ)) · |Supp(P)|, meaning that sampled random tapes
from distribution R will be in R with overwhelming probability. Thus,

∣
∣
∣
∣
∣
∣
∣
∣

Pr

[

A(x, r) :
r ← R

x ← RejSample(1λ
; r)

]

− Pr

⎡

⎢
⎢
⎣

A(x, r) :

r
′ ← R

x ← RejSample(1λ
; r

′
)

r ← RejExplain(1λ
, x)

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣
∣

Pr

[

A(x, r) :
r ← R

x ← RejSample(1λ
; r)

∣
∣
∣
∣
∣

r ∈ R

]

− Pr

⎡

⎢
⎢
⎣

A(x, r) :

r
′ ← R

x ← RejSample(1λ
; r

′
)

r ← RejExplain(1λ
, x)

∣
∣
∣
∣
∣
∣
∣
∣

r
′ ∈ R

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

+negl(λ)

≤
∣
∣
∣
∣
∣
Pr

[

A(x, r) :
r ← R

x ← RejSample(1λ
; r)

∣
∣
∣
∣
∣

r ∈ R

]

− Pr

[

A(x, r) :
x ← P

r ← RejExplain(1λ
, x)

]∣
∣
∣
∣
∣

+negl(λ),

where the last inequality follows from the correctness of our sampler.
For r ∈ Supp(R), let Indx(r) ∈ [κ] ∪ {⊥} be the function that either outputs

the first index j ∈ [κ] that is accepted, i.e. such that ρj ≤ P(xj)/(M ·Q(xj)), or,
if no index is accepted, outputs ⊥. By the definition of RejExplain, we observe
that

Pr

[
A(x, r) :

x ← P

r ← RejExplain(1λ
, x)

]

=Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(x, r) :

r
′
:= ((x1, ρ1), . . . , (xκ, ρκ)) ← R

j = Indx(r′
)

x ← P
ρ ← U[0, P(xj)/(M · Q(xj))]

r :=
(
(x1, ρ1), . . . , (xj−1, ρj−1), (x, ρ), (xj+1, ρj+1), . . . , (xκ, ρκ)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
j �= ⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

± negl(λ).

Looking at the experiment in the last equation, we note that R is a product
distribution and from the guarantees of rejection sampling it follows that xj with
j = Indx(r′) is a sample from P. The corresponding ρj is uniform conditioned
on ρj ≤ P(xj)/(M · Q(xj)). Now, picking a fresh element x ← P along with
ρ ← U [P(x∗)/(M · Q(x∗))] is just the process of sampling a new pair from the
same distribution as that of (xj , ρj). Replacing one pair by the other does not
affect the output distribution and therefore

∣
∣
∣
∣
∣
∣
∣
∣

Pr

[

A(x, r) :
r ← R

x ← RejSample(1λ; r)

]

− Pr

⎡

⎢
⎢
⎣

A(x, r) :

r′ ← R
x ← RejSample(1λ; r′)

r ← RejExplain(1λ, x)

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ),

which shows explainability. ��

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 63

5.3 Handling Finite Precision

In the above, we assumed that we can sample from the continuous distribution
U [0, 1], but in reality5 we can clearly only sample from a discrete distribution.
Let us note that sampling uniform p-bit integers allows for simulating rejection
sampling and our explainable sampler with an additive error of O(2−p). We
will not provide a formal proof here, but still provide an intuition of how the
statement can be proven easily.

To see that the above claim is true, note that sampling ρ from U [0, 1] and
checking ρ ≤ t for threshold t ∈ [0, 1], where 1/t divides 2p, can be perfectly
simulated by sampling ρ′ from {0, . . . , 2p − 1} and checking whether ρ′ ≤ t · 2p.
Furthermore, note that any arbitrary threshold t ∈ [0, 1] is at most an additive
factor away from a threshold t′ that divides 2p. The outcome between using the
two thresholds only differs for ρ ∈ [t, t′], which happens with probability O(2−p).

Corollary 10. Let λ, p ∈ N with p = Ω(λ). Let P = P(λ) and Q = Q(λ) be two
discrete probability distributions for which Supp(P) ⊆ Supp(Q) and for which
there exists an M = M(λ) ∈ poly(λ), such that P(x)/Q(x) ≤ M for all x ∈
Supp(P). Then, there exists a correct and explainable sampler for distribution P
with randomness distribution R, where R := (Q × U{0, . . . , 2p − 1})λ·M .

5.4 Explainable Samplers for Product Distributions
and Permutations

Given explainable samplers for distributions P1, . . . ,Pm for m ∈ poly(λ) with
randomness distributions R1, . . . ,Rm respectively, one can easily construct an
explainable sampler for the product distribution P1 ×· · ·×Pm with randomness
domain R1 × · · · × Rm by simply running all individual explainable samplers
in parallel. Correctness and explainability of this sampler follows via a standard
hybrid argument.

Corollary 11. Let λ,m ∈ N with m = poly(λ). For i ∈ [m], let ESi be a correct
and explainable sampler for distribution Pi = Pi(λ) with randomness distribution
Ri = Ri(λ). Then there exists a correct and explainable sampler for distribution
P1 × · · · × Pm with randomness distribution R1 × · · · × Rm.

This corollary is particularly useful, as it allows us to construct an explainable
sampler for the uniform distribution over Sm, i.e., uniformly random permuta-
tions over [m]. To see how, let us first recall the Fisher-Yates shuffle, which takes
a list of input values (a1, . . . , am) as input and returns a uniformly random per-
mutation (b1, . . . , bm) thereof. The shuffle initializes a set A = {a1, . . . , am} and
a counter c = 1. It then repeatedly picks a uniformly random element a ∈ A,
assigns bc := a, removes a from A, and increments c by one until A = ∅. In other
words, in the first step, it selects a uniformly random index i ∈ [m] and assigns

5 In particular, this is the case in our NAP constructions from Sect. 3.

64 K. Boudgoust and M. Simkin

b1 := ai, then it selects a uniformly random index j in [m − 1] and assigns b2 to
be the j-th elements among the remaining ones and so on.

From the above, we can see that any permutation over [m], corresponds to
exactly one element from the set [m] × · · · × [2]. Thus, the task of sampling a
uniformly random permutation is identical to the task of sampling a uniformly
random element in [m]×· · ·×[2]. We show in the full version how to use rejection
sampling to obtain an explainable sampler for the uniform distributions over [i],
where i ∈ [m] is not a power of two. Using Corollary 11, we can then obtain
an explainable sampler for permutations from explainable samplers for uniform
distributions over the sets [i] for i ∈ [m].

Corollary 12. Let λ,m ∈ N with m = poly(λ). For i ∈ [m] \ {1}, let ESi

be a correct and explainable sampler for the uniform distribution over [i] with
randomness distribution Ri = Ri(λ). Then there exists a correct and explainable
sampler for the uniform distribution over the set Sm of all permutations π :
[m] → [m] with randomness distribution R2 × · · · × Rm.

Acknowledgement. We thank Rafail Ostrovsky for pointing us to the works of De
Santis et al. [DDP+94] and Hemenway et al. [HJO+16], which we had missed.

References

[AC20] Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical
application to plug & play secure algorithmics. In: Micciancio, D., Ris-
tenpart, T. (eds) Advances in Cryptology – CRYPTO 2020, Part III, vol.
12172. LNCS, pp. 513–543. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-030-56877-1 18

[ACF21] Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n par-
tial knowledge. In: Malkin, T., Peikert, C. (eds) Advances in Cryptol-
ogy – CRYPTO 2021, Part IV, vol. 12828. LNCS. Virtual Event, pp.
65–91. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-
84259-8 3

[ACK21] Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for
lattices. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology –
CRYPTO 2021, Part II, vol. 12826. LNCS. Virtual Event, pp. 549–579.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-84245-
1 19

[AS92] Arora, S., Safra, S.: Probabilistic Checking of Proofs; a new character-
ization of NP. In: 33rd FOCS. IEEE Computer Society Press, pp. 2–13
(1992). https://doi.org/10.1109/SFCS.1992.267824

[AWY20] Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from
LWE and pairings in the standard model. In: Pass, R., Pietrzak, K.
(eds) Theory of Cryptography. TCC 2020, Part I, vol. 12550. LNCS,
pp. 149–178. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-64375-1 6

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In:
2018 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, pp. 315–334 (2018). https://doi.org/10.1109/SP.2018.00020

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1109/SP.2018.00020

The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing 65

[BBH+18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, JS. (eds) Advances in Cryptology – EUROCRYPT
2016, Part II, vol. 9666. LNCS, pp. 327–357. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 12

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In:
Hirt, M., Smith, A. (eds.) Theory of Cryptography: 14th International
Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016,
Proceedings, Part II, pp. 31–60. Springer, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 2

[BGI15] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015:
34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part II, pp. 337–367. Springer, Berlin, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 12

[BLW17] Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions
privately. In: Fehr, S. (eds) Public-Key Cryptography – PKC 2017. PKC
2017. Lecture Notes in Computer Science(), Part II, vol. 10175. LNCS,
pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 17

[BR08] Bellare, M., Ristov, T.: Hash functions from sigma protocols and improve-
ments to VSH. In: Pieprzyk, J. (eds) Advances in Cryptology - ASI-
ACRYPT 2008, vol. 5350. LNCS, pp. 125–142. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89255-7 9

[CDS94] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (eds)
Advances in Cryptology — CRYPTO’94, vol. 839. LNCS, pp. 174–187.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 19

[DDP+94] De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone
formula closure of SZK. In: 35th FOCS. IEEE Computer Society Press,
pp. 454–465 (1994). https://doi.org/10.1109/SFCS.1994.365745

[GGHA+22] Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking Sig-
mas: a framework to compose Σ-protocols for disjunctions. In: Dunkel-
man, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT
2022, Part II, vol. 13276. LNCS, pp. 458–487. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-07085-3 16

[GI14] Gilboa, N., Ishai, Y.: Distributed point functions and their applica-
tions. In: Nguyen, P.Q., Oswald, E. (eds) Advances in Cryptology –
EUROCRYPT 2014. EUROCRYPT 2014, vol. 8441. LNCS, pp. 640–658.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 35

[GK15] Groth, J., Kohlweiss, M.: One-Out-of-Many Proofs: or how to leak a
secret and spend a coin. In: Oswald, E., Fischlin, M. (eds) Advances
in Cryptology - EUROCRYPT 2015. EUROCRYPT 2015, Part II, vol.
9057. LNCS, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46803-6 9

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1109/SFCS.1994.365745
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9

66 K. Boudgoust and M. Simkin

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design
(Extended Abstract). In: 27th FOCS. IEEE Computer Society Press, pp.
174–187 (1986). https://doi.org/10.1109/SFCS.1986.47

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds)
40th ACM STOC. ACM Press, pp. 197–206 (2008). https://doi.org/10.
1145/1374376.1374407

[HIL+99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom
generator from any one-way function. SIAM J. Comput. 28(4), 1364–
1396 (1999)

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.:
Adaptively secure garbled circuits from one-way functions. In: Robshaw,
M., Katz, J. (eds) Advances in Cryptology – CRYPTO 2016, Part III,
vol. 9816. LNCS, pp. 149–178. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53015-3 6

[IKO+09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(Extended Abstract). In: 24th ACM STOC. ACM Press, pp. 723–732
(1992). https://doi.org/10.1145/129712.129782

[LW22] Lu, G., Waters, B.: How to Sample a Discrete Gaussian (and more) from
a random oracle. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryp-
tography. TCC 2022, Part II. LNCS, pp. 653–682. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-22365-5 23

[Nao90] Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G.
(ed) CRYPTO’89, vol. 435. LNCS, pp. 128–136. Springer, Heidelberg
(1990). https://doi.org/10.1007/0-387-34805-0 13

[PS18] Peikert, C., Shiehian, S.: privately constraining and programming PRFs,
the LWE way. In: Abdalla, M., Dahab, R., (eds) PKC 2018, Part II, vol.
10770. LNCS, pp. 675–701. Springer, Heidelberg (2018). https://doi.org/
10.1007/978-3-319-76581-5 23.

[PS20] Peikert, C., Shiehian, S.: Constraining and watermarking PRFs from
milder assumptions. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds) PKC 2020, Part I, vol. 12110. LNCS, pp. 431–461. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-45374-9 15

[RRR16] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constantround inter-
active proofs for delegating computation. In: Wichs, D., Mansour, Y.
(ed.) 48th ACM STOC. ACM Press, pp. 49–62 (2016). https://doi.org/
10.1145/2897518.2897652

[WW22] Waters, B., Wu, D.J.: Batch arguments for NP and more from stan-
dard bilinear group assumptions. In: Dodis, Y., Shrimpton, T. (eds)
Advances in Cryptology – CRYPTO 2022. CRYPTO 2022, Part II.
LNCS, pp. 433–463. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-15979-4 15

https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-031-22365-5_23
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/978-3-319-76581-5_23.
https://doi.org/10.1007/978-3-319-76581-5_23.
https://doi.org/10.1007/978-3-030-45374-9_15
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15

zkSNARKs in the ROM with Unconditional
UC-Security

Alessandro Chiesa and Giacomo Fenzi(B)

EPFL, Lausanne, Switzerland
{alessandro.chiesa,giacomo.fenzi}@epfl.ch

Abstract. The universal composability (UC) framework is a “gold standard” for
security in cryptography. UC-secure protocols achieve strong security guarantees
against powerful adaptive adversaries, and retain these guarantees when used as
part of larger protocols. Zero knowledge succinct non-interactive arguments of
knowledge (zkSNARKs) are a popular cryptographic primitive that are often used
within larger protocols deployed in dynamic environments, and so UC-security is
a highly desirable, if not necessary, goal.

In this paper we prove that there exist zkSNARKs in the random oracle model
(ROM) that unconditionally achieve UC-security. Here, “unconditionally” means
that security holds against adversaries that make a bounded number of queries to
the random oracle, but are otherwise computationally unbounded.

Prior work studying UC-security for zkSNARKs obtains transformations that
rely on computational assumptions and, in many cases, lose most of the succinct-
ness property of the zkSNARK. Moreover, these transformations make the result-
ing zkSNARK more expensive and complicated.

In contrast, we prove that widely used zkSNARKs in the ROM are UC-secure
without modifications. We prove that the Micali construction, which is the canon-
ical construction of a zkSNARK, is UC-secure. Moreover, we prove that the BCS
construction, which many zkSNARKs deployed in practice are based on, is UC-
secure. Our results confirm the intuition that these natural zkSNARKs do not
need to be augmented to achieve UC-security, and give confidence that their use
in larger real-world systems is secure.

Keywords: succinct arguments · random oracle model · universal
composability

1 Introduction

The universal composability (UC) framework [Can01] is a “gold standard” for security
in cryptography. UC-secure protocols achieve strong security guarantees in the presence
of powerful adaptive adversaries, and retain their security when used as part of larger
protocols, thereby enabling a modular analysis of these larger protocols. Informally,
security in the UC framework is shown by arguing that an adversary (the environment)
cannot distinguish between a real execution of the protocol and an “ideal” execution,

For the full version of this extended abstract, see [CF24].

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 67–89, 2025.
https://doi.org/10.1007/978-3-031-78011-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_3&domain=pdf
http://orcid.org/0000-0003-3702-1780
https://doi.org/10.1007/978-3-031-78011-0_3

68 A. Chiesa and G. Fenzi

where the protocol is replaced by an ideal functionality. In a larger protocol then one
can argue, via a result known as the composition theorem, that instances of the former
protocol can be replaced by this ideal functionality.

Zero knowledge succinct non-interactive arguments of knowledge (zkSNARKs) are
a powerful cryptographic primitive that has seen widespread adoption. zkSNARKs
are often used within larger protocols deployed in dynamic environments, and so UC-
security is a highly desirable (if not necessary) goal.

Achieving UC-security for a zkSNARK is challenging. Security of a zkSNARK is
often established via techniques that are problematic, and at times impossible, to use in
the UC framework. These techniques include non-black-box extraction and black-box
rewinding extraction. In contrast, UC-security prescribes a black-box security proof
in a game consisting of polynomially-many interactions with the adversary, and such
security proofs are almost exclusively achieved through the use of straightline (non-
rewinding) extractors.

UC-security has been studied in the zkSNARK literature, via transformations
that “lift” a given zkSNARK into a UC-secure non-interactive argument. In most
cases the transformation increases the argument size to linear in the witness (of the
proved nondeterministic computation) [KZM+15,ARS20,BS21,AGRS24]; the result
is a non-interactive argument that is not succinct in the usual desirable sense (the
argument size is succinct in the circuit size but not the witness size). One excep-
tion is [GKO+23], which achieves UC-secure zkSNARKs by combining a simulation-
extractable zkSNARK and a straightline-extractable polynomial commitment scheme.
A downside is that this transformation incurs computational overheads, and the result-
ing zkSNARKs do not reflect ones used in practice. We elaborate further on prior work
in Sect. 1.2. Overall, the takeaway is that the desirable goal of UC-secure zkSNARKs
has been notably elusive and the known results come with considerable limitations or
caveats.

UC-Security with Random Oracles. The focus of this paper is zkSNARKs constructed
in the “pure” random oracle model (ROM), where (honest and malicious) parties have
query access to a random function and where security holds unconditionally against
adversaries that query the random function a bounded number of times.

The ROM is notable for multiple reasons. The elegant Micali construction [Mic00],
the “canonical” construction of a zkSNARK, is realized in the ROM. Moreover, many
zkSNARKs used in practice follow the BCS construction [BCS16], which is also real-
ized in the ROM.1 Both constructions are secure in the quantum ROM [CMS19]; in
fact, the ROM supports the most efficient post-quantum zkSNARKs to date. Yet, the
UC-security of these seminal zkSNARK constructions has, surprisingly, not been inves-
tigated so far.

In the context of UC-security, several basic questions arise.

Do zkSNARKs that are (unconditionally) UC-secure in the ROM exist?
Is the Micali construction UC-secure? What about the BCS construction?

1 In practice the random oracle is heuristically instantiated via a suitable cryptographic hash
function. This leads to zkSNARKs that are lightweight (no public-key cryptography is used)
and easy to deploy (users only need to agree on which hash function to use).

zkSNARKs in the ROM with Unconditional UC-Security 69

More generally, when does a given zkSNARK in the ROM achieve UC-security?

In this paper we investigate these questions. This requires specifying what is meant
by “UC-secure in the ROM”. Briefly, this involves specifying an ideal functionality
GRO that models a global random oracle model (GROM). There are several flavors of
GROM [CDG+18]; the most relevant to our setting is the GROM that is observable and
(restricted) programmable. Establishing UC-security then demands arguing, in a hybrid
model in which every party has access to GRO, that an adversary cannot distinguish
between two cases:(i) a real execution of the given zkSNARK protocol; and (ii) an ideal
functionality FARG for zero knowledge non-interactive arguments of knowledge (which
equals the ideal functionality in [LR22b], therein called NIZKPoK ideal functionality).
Using techniques from UC with Global Subroutines (UCGS) [BCH+20] we then lift
the hybrid-model analysis to achieve security in the plain UC framework.

1.1 Our Results

We prove that there exist zkSNARKs that unconditionally achieve UC-security in
the GROM, positively answering a basic question about the feasibility of UC-secure
zkSNARKs in the information-theoretic setting of random oracles. In fact, we prove
something stronger (and far more useful), namely, we prove that two seminal construc-
tions of zkSNARKs with random oracles are UC-secure: the Micali construction and
the BCS construction. (In particular, we do not construct new zkSNARKs or modify
existing ones). This provides formal evidence that supports the intuition that these sem-
inal constructions of zkSNARKs satisfy far stronger security properties than previously
shown, and are suitable for secure use within larger protocols.

Definition 1 (informal). Let FARG be the non-interactive argument ideal functional-
ity in [LR22b] (therein called NIZKPoK ideal functionality), and let GRO be the ideal
functionality for the (observable and restricted programmable) GROM in [CDG+18]. A
zkSNARK unconditionally achieves UC-security in the GROM if the zkSNARK uncon-
ditionally UC-realizes FARG in the GRO-hybrid model. (“Unconditionally” means that
security holds against adversaries that are computationally unbounded and that make
a bounded number of queries to the ideal functionality GRO).

Theorem 1 (informal). There exists a zkSNARK that unconditionally achieves UC-
security in the GROM.

The above result follows from the following theorem. Recall that the Micali con-
struction compiles a given PCP (probabilistically checkable proof) with suitable prop-
erties into a zkSNARK, and the BCS construction compiles a given public-coin IOP
(interactive oracle proof) with suitable properties into a zkSNARK.

Theorem 2 (informal)

– The Micali construction unconditionally achieves UC-security in the GROM, pro-
vided that the underlying PCP is honest-verifier zero knowledge and knowledge
sound.

70 A. Chiesa and G. Fenzi

– The BCS construction unconditionally achieves UC-security in the GROM, provided
that the underlying IOP is honest-verifier zero knowledge and (state-restoration)
knowledge sound with a straightline extractor.

The properties required of the underlying PCP and IOP for UC-security in Theorem
2 are essentially the same as those typically used in the Micali and BCS constructions.2

We only additionally require the extractor of the IOP to be straightline, a property satis-
fied by most IOPs in the literature.

As we elaborate further in Sect. 2, our results are achieved by showing that the given
non-interactive argument satisfies certain “UC-friendly” notions of completeness, zero
knowledge, and knowledge soundness in the ROM, which in turn we show imply UC-
security in the GROM.

Achieving UC-security is a notoriously challenging goal, even for simple crypto-
graphic protocols. As we outline in Sect. 2, establishing UC-security of the Micali con-
struction is distinctly more involved compared to merely establishing its standalone
knowledge soundness or zero knowledge (as done in prior work). Even more involved
is establishing the UC-security of the BCS construction, which is used in practice.

Adaptive Security. Our results also cover the adaptive flavor of UC-security, where
the adversary can corrupt parties in the protocol at any time (rather than only at the
start of the protocol). This stronger, and more realistic, flavor of UC-security demands
additional work both in terms of definitions and analyses.

Concrete Security Bounds. Throughout our work we provide concrete security bounds,
parametrized on security parameters and the capabilities of the adversary (e.g., queries
to the global random oracle). This ultimately leads to explicit expressions for the UC-
security error of the zkSNARKs that we study. Similarly to the ROM, the GROM
can be (heuristically) instantiated via a suitable cryptographic hash function, and these
expressions enable practitioners to set parameters for the desired security level for UC-
security.

1.2 Related Work

We provide references for the model of global random oracle that we use. Then we
summarize prior work studying UC-security for non-interactive arguments that are not
succinct and for those that are succinct.

Global Random Oracle. The random oracle model is widely used to analyze the secu-
rity of cryptographic protocols. The generalized UC (GUC) framework in [CDPW07]
extends the basic UC framework in [Can01] to allow for globally shared ideal func-
tionalities, such as a global random oracle. Subsequently, [BCH+20] identifies a subtle
inconsistency in the GUC formulation, and shows a mechanism to model and prove the
security of protocols interacting with shared functionalities in the plain UC model; this

2 State-restoration knowledge soundness is a natural strengthening of knowledge soundness that
is required for the security of the BCS transformation. See [BCS16,CY24] for more details.

zkSNARKs in the ROM with Unconditional UC-Security 71

is the framework of UC with Global Subroutines (UCGS) that we use to accommodate
for a random oracle functionality. There are multiple flavors of a global random oracle
model (GROM) in the UC framework: [CJS14] propose a GROM where queries can be
observed, but not programmed, by the adversary; and [CDG+18] introduce a GROM
where queries can be observed as well as programmed by the adversary (with some
restrictions). We use the latter flavor in this paper (see [CF24, Sect. 3.3] in the full ver-
sion of this paper), since it is usually appropriate for constructions in the “pure” ROM
(with no cryptography). For example, the simple commitment scheme f((m, r)), where
m is a message and r a random salt, can be shown to be UC-secure in the latter GROM
flavor, but not in the former.

Non-succinct zkNARKs. Several works study UC-security for zero knowledge non-
interactive arguments of knowledge (zkNARKs) that are not succinct (the size of the
argument string is at least the size of the witness for the proved nondeterministic com-
putation).

– From game-based simulation-secure knowledge soundness. [Gro06] achieves UC-
secure zero-knowledge proofs in the CRS model (assuming cryptographic hardness
assumptions), using the observation that straightline knowledge extraction that is
secure in the presence of a simulation oracle is crucial for UC-security. The proof
size in [Gro06] is linear in the circuit size. In this work we also rely on game-based
notions of simulation-secure straightline knowledge soundness (in the ROM setting).

– Encrypt the witness. A standard approach to achieve UC-security is to have the argu-
ment string include an encryption of the witness and a zero knowledge proof that the
encrypted message is a valid witness [DDO+01]. This approach is adopted in vari-
ous works studying UC-security in the zkSNARK community, including the C∅C∅
framework [KZM+15], LAMASSU [ARS20], TIRAMISU [BS21], and [AGRS24].
All non-interactive arguments following this approach are not succinct since the
argument string contains the encryption of a witness. (The argument size can be
smaller than the proved circuit but not the witness).

– Compile a Σ-protocol. Other works study UC-security for non-interactive argu-
ments obtained from Σ-protocols: [LR22b] shows that a randomized variant of the
Fischlin construction [Fis05,Ks22] applied to a Σ-protocol yields a zkNARK that
achieves UC-security in the observable programmable GROM, and with a global ref-
erence string the construction can be modified to rely only on an observable GROM;
then [LR22a] shows how to extend these results to achieve security against adaptive
corruptions, assuming a minor property of the Σ-protocol.

While the constructions studied in [LR22b,LR22a] and in this paper are different (non-
interactive arguments obtained from Σ-protocols versus from probabilistic proofs), our
work is inspired by the ideas in [LR22b,LR22a]. Specifically, we use “UC-friendly”
definitions of completeness, zero knowledge, and knowledge soundness in the ROM
that suffice (and are necessary) for UC-security in the GROM, which reduces the goal of
UC-security to proving that the relevant zkSNARK constructions satisfy these simpler
properties. The definitions that we use (which can be found in [CF24, Sect. 5] of the
full version of this paper) are variants of those in [LR22b,LR22a], adapted to our pure
ROM setting and to facilitate concrete security bounds.

72 A. Chiesa and G. Fenzi

Succinct zkNARKs. [GKO+23] construct zkSNARKs that are computationally UC-
secure in a model that provides a global reference string and a global random oracle
(that is observable but not programmable). Their approach is a compiler that combines
any simulation-extractable zkSNARK and a polynomial commitment scheme with cer-
tain properties (each comes with its own reference string), leveraging the random oracle
to achieve straightline extraction via proof-of-work ideas inspired by [Fis05].3 Our work
is complementary in that we study a setting without any computational assumptions:
we achieve unconditional UC-security for well-known zkSNARKs (without modifica-
tions) via a global random oracle (that is observable and programmable). Moreover,
the zkSNARKs that we consider are not susceptible to quantum attacks whereas the
compiler in [GKO+23] uses a polynomial commitment scheme that is insecure against
quantum attacks (and whether there is a suitable post-quantum replacement is an open
question).

2 Techniques

We outline the main ideas behind our results.

– In Sect. 2.1 we describe how to adapt the UC-security framework to our setting of
unconditional security in the ROM (and with the additional goal of achieving con-
crete security bounds).

– In Sect. 2.2 we describe how we reduce UC-security in the GROM to three simpler
properties in the ROM: UC-friendly completeness; UC-friendly zero knowledge; and
UC-friendly knowledge soundness.

– In Sect. 2.3 we discuss the Merkle commitment scheme in the ROM (a component of
the zkSNARKs that we study), for which we prove several “UC-friendly” properties
that we introduce and rely on.

– In Sect. 2.4 we discuss UC-security of the Micali construction, and then in Sect. 2.5
we discuss UC-security of the BCS construction. In both cases we do so by showing
the above UC-friendly properties.

– In Sect. 2.6 we discuss how we achieve UC-security against adaptive corruptions.

2.1 Unconditional UC-Security

We consider UC-security for protocols in the “pure” ROM, where parties have query
access to a random function and where security holds unconditionally against adver-
saries that query the random function a bounded number of times. This setting is not
considered in prior work studying UC-security for zkSNARKs and, more generally,

3 Informally, the argument prover, instead of providing an encryption of the witness as in
[DDO+01] (which makes argument strings non-succinct), uses a polynomial commitment
scheme to commit to a polynomial whose coefficients are the witness; to achieve straight-
line extraction, the argument prover also provides a Fischlin-style proof-of-work that requires
querying the random oracle on many evaluations of the committed polynomial. The extractor
can then use polynomial interpolation to reconstruct the witness from the query-answer trace
of a malicious argument prover.

zkSNARKs in the ROM with Unconditional UC-Security 73

there is no off-the-shelf model of UC-security for this setting. Below we explain how
we adapt the UC framework [Can01,Can20] to our needs, and how our goals can be
expressed in this adaptation.

UC-Security Against Unbounded Adversaries. We consider adversaries that are com-
putationally unbounded, and are limited only in their access to certain resources, such
as queries to a random oracle, queries to a prover oracle, and others. As discussed in
detail in [CF24, Sect. 3.2] of the full version of this work, we model this setting by
modifying the mechanism of import and time budget described in [Can20, Sect. 3.2] to
work with a generalized notion of budget. We endow the environment (and the protocol)
with a budget represented as a numeric vector. Each message sent specifies how much
budget is deducted from the sender budget and added to the receiver budget, and the
budget can be spent on a certain set of actions. With this, we can define the notion of
budget-emulation.

Definition 2 (informal). Let B be a tuple of non-negative integers. An environment is B-
budget if its starting budget is B. A protocol π B-emulates a protocol ϕ with simulation
error σ if π UC-emulates ϕ with simulation error σ in the presence of any environment
that is B-budget.

GROM and Shared Functionalities. The analogue of the ROM in our setting is a
shared global subroutine: the observable and (restricted) programmable GROM intro-
duced in [CDG+18]. The GROM interface allows four types of queries:(i) random ora-
cle; (ii) programming; (iii) observation; (iv) and is-programmed. The random oracle
query interface is familiar: each query is consistently answered with a random answer.
The programming interface enables setting the answer to arbitrary queries, while the
is-programmed interface enables parties in the session to detect whether a point has
been programmed.4 Finally, the observation interface allows queriers to receive a list
of illegitimate queries made to the oracle thus far (queries with prefix sid made by the
adversary or parties outside the session sid). The programming interface is used to argue
zero knowledge, while the observable and is-programmed interfaces are used to argue
knowledge soundness.

We use the approach of UC with Global Subroutines [BCH+20] to argue that UC-
security in the presence of a global shared functionality implies standard UC-security.
Informally, if the shared functionality and the protocols satisfy some mild require-
ments, then showing UC-emulation in the hybrid model suffices to show (standard)
UC-security. See [CF24, Sect 3.2] for more details.

The ARG Functionality. We study UC-security for (succinct) non-interactive arguments.
The ideal functionality that we use is the ARG ideal functionality FARG from [LR22b]
(therein called NIZKPoK ideal functionality), given in [CF24, Sect. 4.1] in the full

4 Here “in the session” refers to the fact that the environment cannot directly ask is-programmed
queries to the GROM, but only through the adversary or a corrupted party. This enables the
UC simulator to intercept these queries and choose their answers.

74 A. Chiesa and G. Fenzi

version of this paper.5 Briefly, FARG has a proving interface that produces simulated
proofs (to capture zero knowledge) and a verification interface that extracts a witness
(to capture knowledge soundness).

Any non-interactive argument ARG in the ROM directly induces a corresponding
protocol Π[ARG] in the GROM that matches the proving and verification interface of
FARG. The protocol Π[ARG], which is described in [CF24, Sect. 4.2] of the full version
of this paper, consists of two parties, a prover party MP and a verifier party MV .

– The prover party MP , on input an instance-witness pair, runs Π[ARG]’s proving
interface, which runs ARG’s prover using the GROM, and outputs the resulting argu-
ment string.

– The verifier party MV , on input an instance-proof pair, runs Π[ARG]’s verification
interface, which runs ARG’s verifier using the GROM and checks that none of the
verifier queries involves programmed points, and outputs the resulting decision bit
(or simply rejects if one of the verifier queries was programmed).6

We use the generalized budget mechanism to keep track of the resources used by
the environment. Since we consider non-interactive arguments in the ROM, security
will depend on the number of queries that the environment makes to the GROM; in our
setting, these queries include both random oracle queries and programming queries.7

Moreover, the environment may query the proving and verification interfaces, which
can aid an attack; hence we keep track of such queries as well. Overall, a (tq, tp, �p, �v)-
budget environment is an environment that can make: (1) tq random oracle queries to
the GROM; (2) tp programming queries to the GROM; (3) �p prover queries; and (4) �v

verifier queries.
The above enables us to state our first result in slightly more detail.

Theorem 3 (restatement of Theorem 1). There exists a non-interactive argument
ARG in the ROM for which the protocol Π[ARG] (tq, tp, �p, �v)-emulates the ideal func-
tionality FARG with simulation error

σ(λ, tq, tp, �p, �v) =
poly(tq, tp, �p, �v)

2λ
.

5 One could extend the ideal functionality FARG to one that models preprocessing non-
interactive arguments. Our belief is that all results in this paper straightforwardly extend to this
case (we believe that the preprocessing variants of the Micali construction and BCS construc-
tion, when based on suitable holographic probabilistic proofs, are unconditionally UC-secure
in the GROM).

6 An honest party does not program the GROM. In contrast, an adversary might instead attempt
to produce an argument string accepted by the verification interface by running the zero knowl-
edge simulator of the non-interactive argument (and programming the GROM accordingly).
Rejecting argument strings whose verification involves programmed points disallows this.

7 Observation and is-programmed queries do not affect security bounds. The environment knows
its own queries to the random oracle and the points that it has programmed, so it does not need
to obtain this information from the GROM. Moreover, observation and is-programmed queries
do not change the state of the GROM, and thus do not affect other parties in the execution.

zkSNARKs in the ROM with Unconditional UC-Security 75

We show that natural constructions of zkSNARKs in the ROM suffice for the above
theorem: ARG can be the Micali construction or the BCS construction (instantiated over
appropriate probabilistic proofs). Moreover, for these constructions we derive explicit
expressions for the simulation error σ(λ, tq, tp, �p, �v), which in particular enables setting
parameters to achieve concrete UC-security bounds.

Next we describe how we prove such results.

2.2 UC-Friendly Properties

We informally describe three properties about a non-interactive argument ARG that are
sufficient and necessary for (unconditional) UC-security in the GROM:

– UC-friendly completeness (sketched in Sect. 2.2);
– UC-friendly zero knowledge (sketched in Sect. 2.2); and
– UC-friendly knowledge soundness (sketched in Sect. 2.2).

These properties are described in detail in the full version of this paper [CF24, Sect.
5]. Intuitively, each property protects against a natural class of attacks against the UC-
security of the protocol Π[ARG], which we outline in the corresponding section.

This approach is analogous to the approach taken in [LR22b,LR22a], where the
authors rely on somewhat dissimilar security definitions that are sufficient and necessary
for UC-security in their setting (NIZKPoKs obtained from Σ-protocols).8 In particular,
the above properties can be viewed as adaptations of their three properties: overwhelm-
ing completeness; non-interactive multiple special honest-verifier zero knowledge; and
non-interactive special simulation soundness.

The main differences in our definitions include: (a) we target unconditional secu-
rity, while the previous definitions target computational security; and (b) we allow the
adversary to additionally program the random oracle (which is necessary in our “pure”
ROM setting). The second difference has important ramifications that we discuss further
below.

UC-Friendly Completeness. The ideal functionality FARG that we consider has a ver-
ification interface that, to model completeness, accepts any proof that was generated by
its proving interface. This might not be the case for the protocol Π[ARG]: one attack
against UC-security is, for the environment, to invoke the proving interface on inputs
that maximize the probability that the resulting proofs are not accepted by the verifica-
tion interface, which would distinguish the real-world and the ideal-world. UC-friendly
completeness bounds the success probability of such an attack.

Definition 3 (informal). ARG has UC-friendly completeness with error εARG if every
adversary that

– queries the random oracle tq times,

8 More precisely, [LR22b,LR22a] discuss properties of a compiler for Σ-protocols, but those
properties can be straightforwardly defined for the non-interactive argument output by the
compiler.

76 A. Chiesa and G. Fenzi

– programs the random oracle tp times,
– requests �p proofs for instances of length at most n, and
– requests �v verifications for instance-proof pairs with instances of length at most n

causes the verification interface to reject a instance-proof pair generated by the honest
prover with probability at most εARG(λ, n, tq, tp, �p, �v).

One may guess that perfect completeness of the given non-interactive argument
ARG implies UC-friendly completeness with zero error. However this is not the case
because the verification interface rejects proofs whose verification causes the argument
verifier to query points programmed by the adversary. Hence if there are queries by
the argument verifier that the adversary can predict (and program in advance) then the
adversary can induce a rejection despite the perfect completeness of ARG.

Nevertheless we show that the two natural notions below suffice, together with per-
fect completeness of the non-interactive argument, to achieve UC-friendly complete-
ness with small error.

Definition 4 (informal). ARG has:

– monotone proofs if the argument verifier, on input an honestly produced proof,
queries the random oracle only at points that have been queried by the honest argu-
ment prover that produced that proof; and

– unpredictable queries with error εP if every adversary that queries the random
oracle tq times and programs the random oracle tp times cannot produce an instance-
witness pair (with instance length at most n) that causes the honest argument prover
to query one of the points previously programmed by the adversary with probability
more than εP(λ, n, tq, tp).

Lemma 1 (informal). A non-interactive argument with perfect completeness, mono-
tone proofs, and unpredictable queries with error εP has UC-friendly completeness
with error (roughly) εARG = �p · εP.

UC-Friendly Zero Knowledge

Definition 5 (informal). ARG has UC-friendly zero knowledge with error ζARG if
every adversary that

– queries the random oracle tq times,
– programs the random oracle tp times, and
– requests �p proofs for instances of length at most n
– requests �v verifications for instance-proof pairs with instances of length at most n

cannot distinguish between the game in which the returned proofs are generated by the
honest argument prover and the game in which they are generated by the zero knowl-
edge simulator (which can also program the random oracle) with an advantage better
than ζARG(λ, n, tq, tp, �p, �v).

zkSNARKs in the ROM with Unconditional UC-Security 77

Informally, UC-friendly zero knowledge is a version of adaptive multi-instance
zero knowledge wherein the adversary can adaptively program the random oracle.9

Indeed, every party can program the GROM, so we need a zero knowledge property
that accounts for this capability. In the real-world the protocol generates proofs using
the honest argument prover and in the ideal-world the ideal functionality generates
proofs using a simulator, so UC-friendly zero knowledge bounds the probability that
an adversary distinguishes between these two worlds based on this difference.

First, since the adversary can query the random oracle, we show that queries to the
verifier do not help the adversary, and thus show that UC-friendly zero knowledge is
implied by a simplified notion where this oracle is not present. Next, since the adver-
sary can generate simulated proofs (and thus simulate the proof oracle), we can use a
hybrid argument to reduce the case of multiple simulated proofs to the case of a sin-
gle simulated proof. We rely on these simplifications to more conveniently establish
UC-friendly zero knowledge for the Micali construction and the BCS construction.

Lemma 2 (informal). If ARG has UC-friendly zero knowledge with error ζARG against
adversaries that request a single proof and no verifications, then ARG has UC-friendly
zero knowledge with error (roughly) �p · ζARG against adversaries that request �p proofs
and make �v verifier queries.

UC-Friendly Knowledge Soundness

Definition 6 (informal). ARG has UC-friendly knowledge soundness with error
κARG if there exists a deterministic polynomial-time straightline extractor such that
every adversary that

– queries the random oracle tq times,
– programs the random oracle tp times,
– requests �p simulated proofs for instances of length at most n, and
– outputs �v instance-proofs pairs with instances of length at most n

wins with probability at most κARG(λ, n, tq, tp, �p, �v). Here “winning” means that one
of the instance-proof pairs that the adversary output (a) was for an instance not queried
to the simulation oracle, (b) convinces the argument verifier (without querying pro-
grammed points), and (c) causes the extractor to fail to extract a valid witness for the
instance.

UC-friendly knowledge soundness can be viewed as a variant of simulation
extractability wherein the adversary can adaptively program the random oracle, as
allowed by the GROM. Since the difference between the ideal-world verification inter-
face and the real-world counterpart is the additional attempt at extraction on proofs
that successfully verify, UC-friendly knowledge soundness upper bounds the proba-
bility that an adversary is able to distinguish between the two worlds by outputting
proofs on which extraction fails. The protocol (and ideal functionality) rejects proofs

9 As shown in the full version of this paper [CF24, Sect. 5.2], UC-friendly zero knowledge
is strictly stronger: there are non-interactive arguments that are adaptive multi-instance zero
knowledge but not UC-friendly zero knowledge.

78 A. Chiesa and G. Fenzi

whose verification involves points programmed by the environment. This is to disallow
the environment from submitting proofs generated using the zero knowledge simulator
(and programming accordingly), from which it would be (likely) impossible to extract.

Moreover, while not shown in the above informal definition, UC-friendly knowl-
edge soundness mandates that the extractor be straightline: the extractor receives as
input the instance, argument string, query-answer trace of the adversary with the ora-
cle (as well as the query-answer trace of the simulator with the oracle),10 but not the
adversary itself; in particular, the extractor cannot rewind the adversary. Straightline
extraction is required by the UC-security experiment (in which the ideal functionality
also performs straightline extraction).

Similarly to the case of UC-friendly zero knowledge, we generically reduce UC-
friendly knowledge soundness to a simpler property, in which the adversary outputs
only a single instance-proof pair.

UC-Secure ZkSNARKs from UC-Friendly Properties

Lemma 3 (informal). If a non-interactive argument ARG satisfies

– UC-friendly completeness with error εARG,
– UC-friendly zero knowledge with error ζARG, and
– UC-friendly knowledge soundness with error κARG

then the protocol Π[ARG] (tq, tp, �p, �v)-emulates the ideal functionality FARG with sim-
ulation error (roughly)

εARG + ζARG + κARG .

The proof of Lemma 3 is given in the full version of this paper [CF24, Sect. 6], and
follows a game-hopping approach in a GRO-hybrid model. We rely on an observation
of [CDG+18] that, in the setting of the restricted programmable GROM, the simulator
can program points undetectably. We can then perform three game hops, one for each
of our UC-friendly notions. Finally, we lift the result in the GRO-hybrid model to full
UC-security by using the UC with Global Subroutines theorem [BCH+20].

UC-Friendliness is Necessary. We show that the UC-friendly properties that we
describe are necessary for a non-interactive argument ARG in the ROM to uncondition-
ally achieve UC-security. This gives confidence that the UC-friendly properties that we
describe are the “right ones” for UC-security in our setting. Moreover, we learn that the
upper bound in Lemma 3 is almost tight. Specifically, while the upper bound can plausi-
bly be improved in certain cases (e.g., in the Micali and BCS constructions, establishing
UC-friendly completeness and UC-friendly zero knowledge involves separately upper
bounding overlapping “bad events”), the improvement is limited. Indeed, the necessity
of the UC-friendly properties implies that the simulation error of a non-interactive argu-
ment ARG is at least max{εARG, ζARG, κARG} ≥ 1

3 · (εARG + ζARG + κARG), at most a
factor of 3 (i.e., less than 2 bits of security) away from the upper bound in Lemma 3.

10 More accurately, matching the ideal functionality, the extractor receives a query-answer trace
that includes queries performed by the adversary and the simulator but not including queries
whose answer was previously programmed by the adversary.

zkSNARKs in the ROM with Unconditional UC-Security 79

On Tightness. We make an effort, throughout this paper, to obtain concrete security
bounds that are relatively tight (e.g., as noted for Lemma 3 in the paragraph above).
Nevertheless, modest improvements are possible. For example, Lemma 2 reduces UC-
friendly zero knowledge to a simpler property (where the adversary requests a single
proof and no verifications) at a minor but noticeable cost; this cost can be reduced by
directly establishing UC-friendly zero knowledge for the Micali and BCS constructions,
avoiding the use of Lemma 2. Similarly for UC-friendly knowledge soundness. These
choices reflect striking a balance between aiming for good concrete security bounds,
and a modular presentation.

2.3 The Merkle Commitment Scheme is UC-Friendly

The Merkle commitment scheme is a key ingredient in the Micali and BCS construc-
tions (the zkSNARKs that we study), where it acts as unconditionally secure vector com-
mitment scheme. In order to show that said constructions satisfy the UC-friendly secu-
rity notions sketched in Sect. 2.2, we establish corresponding properties for Merkle com-
mitments. Below we denote by MT := MT[λ, l, rMT] the Merkle commitment scheme
for messages of length l (a power of 2) with salt size rMT, for a random oracle with
output size λ.

Completeness. We formulate notions of monotone proofs and unpredictable queries
for vector commitments schemes (in analogy to the notions in Definition 4 for ARG),
and show that the Merkle commitment scheme satisfies them. This facilitates proving
that the Micali and BCS constructions satisfy UC-friendly completeness.

Lemma 4. MT has monotone proofs, and unpredictable queries with error εMT = tp ·
l · (

1
2rMT

+ 1
2λ

)
.

Hiding. We formulate a notion of UC-friendly hiding for vector commitment schemes,
and show that the Merkle commitment scheme satisfies this property. This contributes
towards proving UC-friendly zero knowledge for the Micali and BCS constructions.

Definition 7 (informal).MT has UC-friendly hiding with error ζMT if every adversary
that

– queries the random oracle tq times,
– programs the random oracle tp times, and
– requests �p commitments for messages of size at most l and corresponding openings

for sets of size at most q

cannot distinguish between the game in which the returned commitments and openings
are real and the game in which they are generated by a simulator (that can also program
the random oracle) with an advantage better than ζMT(λ, l, q, tq, tp, �p).

Lemma 5 (informal). MT has UC-friendly hiding with error (roughly) ζMT = �p · q ·
l · tq+tp

2rMT
.

The proof of Lemma 5 is similar to the hiding proof for the Merkle commitment
scheme in the ROM, but adapted to reflect the additional programming capabilities of
the adversary.

80 A. Chiesa and G. Fenzi

Extraction. The Merkle commitment scheme in the ROM is known to satisfy strong
notions of extraction [BCS16,CY24]. Any adversary that outputs a Merkle commit-
ment and subsequently outputs a valid opening proof must have “known” the opening
at commitment time; moreover, this holds even when the adversary outputs multiple
commitments and openings at different times. In the definition below we extend extrac-
tion to be UC-friendly, considering adversaries that can program the random oracle. We
prove that the Merkle commitment scheme satisfies this stronger property.

Definition 8 (informal). MT has UC-friendly extraction with error κMT if every adver-
sary that

– queries the random oracle tq times,
– programs the random oracle tp times,
– requests �p simulated commitments for messages of size at most l and corresponding

simulated openings for sets of size at most q,
– submits n commitments, and
– finally outputs k opening proofs for submitted commitments.

wins with probability at most κMT(λ, l, q, tq, tp, �p, n, k). Here “winning” means to: (i)
submit a list of commitments such that the extractor outputs different messages for dupli-
cate elements in the list; or (ii) output opening proofs that verify successfully on whose
commitment the extractor outputs inconsistent messages.

Lemma 6. MT has UC-friendly extraction with error (roughly) κMT = 3
2 · (tq+2�pl)

2

2λ +
2k(d+1)·(tq+2�pl)

2λ .

We do not prove Lemma 6; it straightforwardly follows from the extraction property
shown in [CY24]. Instead, we prove that the Merkle commitment scheme satisfies an
even stronger extraction property (i.e., which implies Lemma 6) that we use to achieve
adaptive security and we discuss later in Sect. 2.6.

Definition 8 already incorporates some notions on non-malleability that will be cru-
cial for establishing UC-friendly knowledge soundness of the Micali and BCS construc-
tions. UC-friendly extraction allows the adversary to submit simulated commitments (as
those obtained from the simulation oracle), and guarantees that the Merkle commitment
scheme extractor outputs consistent messages on those simulated commitments.

2.4 The Micali Construction is UC-Secure

We show that the Micali construction unconditionally achieves UC-security in the
GROM, when instantiated with suitable ingredients. By Lemma 3, it suffices to show
that the Micali construction satisfies UC-friendly completeness, zero knowledge, and
knowledge soundness, which we now discuss in turn. After that, we explain how this
leads to a proof of Theorem 1.

zkSNARKs in the ROM with Unconditional UC-Security 81

Review of the Micali Construction. A probabilistically checkable proof (PCP) is a proof
system in which the prover sends a (long) proof string, which the verifier checks by
probabilistically reading a few locations of it. The Micali construction compiles a (suit-
able) PCP into a zkSNARK, by using the Merkle commitment scheme in the ROM
and the Fiat–Shamir transformation with salt size r. We denote this construction as
Micali[PCP, r], and sketch it next.

– The argument prover runs the PCP prover, and commits to the resulting PCP string
using the Merkle commitment scheme. Then the argument prover queries the ran-
dom oracle with the instance, the Merkle commitment, and a random r-bit salt, to
obtain PCP randomness. Finally, the argument prover emulates the PCP verifier on
the obtained PCP randomness, which induces queries to the PCP string. The argu-
ment string output by the argument prover consists of the Merkle commitment, the
salt, the queries, their answers, and an opening proof for the queries and answers.

– The argument verifier checks the opening proof, derives PCP randomness like the
argument prover did, and checks that the PCP verifier accepts when run with that
randomness on the given queries and answers.

UC-Friendly Completeness. We use Lemma 4 to show that the Micali construction
has monotone proofs and unpredictable queries. Then by Lemma 1 we deduce that the
Micali construction satisfies UC-friendly completeness.

Lemma 7 (informal). Micali[PCP, r] has monotone proofs and unpredictable queries
with error εMT+

tp
2r (εMT is from Lemma 4). By Lemma 1, Micali[PCP, r] has UC-friendly

completeness with error (roughly) εARG = �p · (εMT +
tp
2r).

UC-Friendly Zero Knowledge. We show that the Micali construction satisfies UC-
friendly zero knowledge.

Lemma 8 (informal). Let PCP be an honest-verifier zero knowledge PCP with error
ζPCP. Let ζMT be the UC-friendly hiding error in Lemma 5. Then Micali[PCP, r] has
UC-friendly zero knowledge with error (roughly) ζARG = �p · (tq+tp

2r + ζPCP + ζMT).

The proof of this statement uses Lemma 2 to reduce UC-friendly zero knowledge
to a game in which the adversary makes only a single query to the prover oracle. Then
we use a sequence of game hops, relying among other things on the UC-friendly hiding
property of the Merkle commitment scheme (Lemma 5).

UC-Friendly Knowledge Soundness. We show that the Micali construction satisfies
UC-friendly knowledge soundness.

Lemma 9 (informal). Let PCP be a knowledge sound PCP with error κPCP. Let κMT

be the UC-friendly extraction error in Lemma 6. Then Micali[PCP, r] has UC-friendly
knowledge soundness with error (roughly) κARG = �v · ((tq + 1) · κPCP + κMT).

82 A. Chiesa and G. Fenzi

Note that Lemma 9 imposes no additional requirements on the PCP compared to
what is usually required for regular knowledge soundness of Micali[PCP, r]. Yet we
achieve the UC-friendly strengthening.

The proof of Lemma 9 informally works as follows. We reduce to the state-
restoration knowledge soundness of the PCP (a notion implied by the PCP’s knowl-
edge soundness) and to the UC-friendly extraction property of the Merkle commitment
scheme. This is similar to prior work [BCS16,CY24] except that in our setting the adver-
sary has access to a simulation oracle, so part of the work in our analysis is showing
that simulated proofs do not help the adversary.

In the reduction to the PCP’s state-restoration knowledge soundness, the adversary’s
queries to the Fiat–Shamir oracle are translated to moves in the state-restoration game.
The simulator has an advantage over the adversary in its ability to undetectably program
the Fiat–Shamir query (the point used to derive the PCP randomness used for PCP veri-
fication). In order for the reduction to succeed, we must argue that this additional capa-
bility does not help the adversary. This is because points programmed by the simulator
are domain-separated by instance, and the adversary wins the UC-friendly knowledge
soundness game only by outputting “fresh” instance-proof pairs (the instance was not
previously submitted to the simulator oracle). Thus, the instance-proof pair that the
adversary outputs must not have been produced by the simulator oracle.

Having made this observation, the state-restoration knowledge soundness adversary
runs the UC-friendly knowledge soundness adversary, simulating the simulator oracle
and extracting (in a straightline fashion) PCP strings from instance-root-salt triples sub-
mitted to the Fiat–Shamir oracle using the Merkle commitment extractor guaranteed
by UC-friendly extraction (Definition 8). The analysis of the reduction follows then
similarly to that of state-restoration knowledge soundness in the ROM.

Conclusion. Lemma 7, Lemma 8, and Lemma 9 together show that the Micali construc-
tion satisfies UC-friendly completeness, UC-friendly zero knowledge, and UC-friendly
knowledge soundness, provided that the underlying PCP is honest-verifier zero knowl-
edge and knowledge sound. In turn, Lemma 3 implies that, under these conditions, the
Micali construction is unconditionally UC-secure. Both steps provide concrete security
bounds, leading to an overall concrete security bound for the UC-security of the Micali
construction.

2.5 The BCS Construction is UC-Secure

We follow a similar approach to show that the BCS construction is unconditionally UC-
secure: we prove that the BCS construction satisfies UC-friendly completeness, zero
knowledge, and knowledge soundness. Recall that the BCS construction underlies many
zkSNARKs that are concretely efficient (and widely deployed). We achieve concrete
UC-security bounds for this notable class of zkSNARKs.

Review of the BCS Construction. The BCS construction extends the Micali construction
to work with interactive oracle proofs (IOPs), a multi-round generalization of PCPs. It
compiles a (suitable) public-coin IOP into a zkSNARK, by using Merkle commitment

zkSNARKs in the ROM with Unconditional UC-Security 83

schemes in the ROM, and the (multi-round) Fiat–Shamir transformation with salt size
r. We denote this construction as BCS[IOP, r], and sketch it next.

– The argument prover runs the IOP prover, using the random oracle to simulate
an interaction with the (public-coin) IOP verifier. For each round, the argument
prover computes the round’s IOP string, commits to it using the Merkle commit-
ment scheme, and derives the next IOP verifier message using the random oracle
(in a certain way that depends on the Merkle commitment and a salt, and either the
instance or the previous Merkle commitment). Once the interaction is complete, the
argument prover deduces the queries to the IOP strings and corresponding answers,
and outputs an argument string containing the Merkle commitments, the salts, the
query-answer pairs, and opening proofs of the commitments for those queries.

– The argument verifier checks the opening proofs, re-derives the IOP verifier random-
ness, and checks that the IOP verifier accepts when run with that randomness on the
given queries and answers.

Remark 1 (BCS variant). We consider a minor simplification of the BCS construction
where the IOP verifier messages are derived by querying the random oracle at a point
consisting of the instance and all Merkle commitment and salts so far. This simplifies
the knowledge soundness analysis compared to the more common approach of querying
at a point consisting of the last computed IOP verifier message, and the current Merkle
commitment and salt. All results that we present directly extend to this more common
approach.

UC-Friendly Completeness. We show that the BCS construction has monotone proofs
and unpredictable queries, by building on Lemma 4 (which states that the Merkle com-
mitment scheme has monotone proofs and unpredictable queries). Then by Lemma 1
we conclude that the BCS construction satisfies UC-friendly completeness.

Lemma 10 (informal). BCS[IOP, r] has monotone proofs and unpredictable queries
with error k · (εMT + tp

2r) (εMT is from Lemma 4). By Lemma 1, BCS[IOP, r] has UC-

friendly completeness with error (roughly) εARG = �p · k · (εMT +
tp
2r).

UC-Friendly Zero Knowledge. We prove that the BCS construction satisfies UC-
friendly zero knowledge, using a strategy similar to the case of the Micali construction
(which is captured in Lemma 8). The proof of the lemma is similar, with the main dif-
ference being that we need the UC-friendly hiding property of the Merkle commitment
scheme to hold for k commitment-openings pairs rather than a single one.

Lemma 11 (informal). Let IOP be a k-round public-coin IOP that has honest-verifier
zero knowledge with error ζIOP. Let ζMT be the UC-friendly hiding error in Lemma
5. Then BCS[IOP, r] has UC-friendly zero knowledge with error (roughly) ζARG :=
�p · (tq+tp

2r + ζIOP + ζMT).

84 A. Chiesa and G. Fenzi

UC-Friendly Knowledge Soundness. The BCS construction, when instantiated with
an IOP that is state-restoration knowledge sound (with a straightline extractor), satis-
fies straightline knowledge soundness in the ROM [BCS16,CY24]. We prove a much
stronger statement: the BCS construction satisfies UC-friendly knowledge soundness.

Lemma 12 (informal). Let IOP be an IOP with straightline state-restoration knowl-
edge soundness with error κsr. Let κMT be the UC-friendly extraction error in Lemma 6.
Then BCS[IOP, r] has UC-friendly knowledge soundness with error (roughly) κARG =
�v · (κsr + κMT).

We prove Lemma 12 similarly to Lemma 9, making use of the fact that in that anal-
ysis we can reduce to the state-restoration knowledge soundness of the underlying PCP.
In the case of the BCS construction, we reduce to the IOP version of state-restoration
knowledge soundness. We again have to ensure that the adversary cannot use the simu-
lation oracle in order to obtain an advantage, and an argument similar to that in Lemma
9 readily establishes that.

Conclusion. Lemma 10, Lemma 11, and Lemma 12 together show that the BCS con-
struction satisfies UC-friendly completeness, UC-friendly zero knowledge, and UC-
friendly knowledge soundness, provided that the underlying IOP is honest-verifier zero
knowledge and (straightline) state-restoration knowledge sound. In turn, Lemma 3
implies that, under these conditions, the BCS construction is unconditionally UC-secure.
Both steps provide concrete security bounds, leading to an overall concrete security
bound for the UC-security of the BCS construction. This directly shows that existing
zkSNARKs constructed from (state-restoration) knowledge sound and honest-verifier
zero knowledge IOPs (e.g. [BCR+19,BBHR19] and similar constructions) are uncondi-
tionally UC-secure.

2.6 Adaptive Corruptions and Strong UC-Friendly Properties

The previous sections consider UC-security against non-adaptive corruptions. Here we
outline how we additionally achieve UC-security against adaptive corruptions.

In the setting of UC-security against adaptive corruptions, the environment (through
the adversary) may corrupt parties at any time during the protocol execution. When a
party becomes corrupted, it reveals to the environment its private randomness (i.e., its
private state). In the real-world the corrupted party directly reveals its own private ran-
domness, while in the ideal-world the UC simulator must somehow sample randomness
that “explains” a posteriori the past behavior of the party (possibly up to some error).
Specifically, the challenge is that this randomness must be consistent with the input-
output behavior of the party until this point of the execution. (The environment can
send inputs to any party and receive corresponding outputs).

Depending on the role of the corrupted party, simulating such randomness presents
different challenges. If the corrupted party is the verifier, simulating its private random-
ness is easy, since it is the same in both the real-world and ideal-world. In contrast, if
the corrupted party is the prover party then simulating its private randomness is more
challenging. Indeed, the prover party invokes the proving interface, which is different

zkSNARKs in the ROM with Unconditional UC-Security 85

in the two worlds: (i) in the real-world the proving interface runs the honest argument
prover; and (ii) in the ideal-world the proving interface forwards its input to the ideal
functionality, which in turn runs the zero knowledge simulator. In the ideal-world then,
if the prover party is corrupted, the UC simulator must be able to produce, a posteri-
ori, argument prover randomness that is consistent with all argument strings produced
by the proving interface so far. More explicitly, the UC simulator must output random-
ness that the honest argument prover would have used to produce the argument strings
that were output by the prover party thus far, despite those argument strings being sam-
pled by the zero knowledge simulator. These additional capabilities must be explicitly
accounted for in the UC-friendly properties.

Therefore, inspired by [LR22a], we consider “strong” variants of the UC-friendly
properties in Sect. 2.2, which we obtain by adding a corruption oracle that returns the
(possibly reconstructed) prover randomness used by the proving oracle of the game.
Once the corruption oracle has been queried, we forbid further queries to the corrup-
tion oracle (and to the proving oracle), modeling how in the UC-security experiment
control of a newly corrupted party (in this case the prover party) is relinquished to the
environment.

By using these strong properties, Lemma 3 can be extended to provide emulation in
the setting of adaptive corruptions.

Lemma 13 (informal). If the non-interactive argument ARG in Lemma 3 satisfies
strong UC-friendly completeness, strong UC-friendly zero knowledge, and strong UC-
friendly knowledge soundness, the conclusion of Lemma 3 holds even in the setting of
adaptive corruptions (with the same error bound).

The challenge is to show that the additional capability conferred to the adversary (by
the new corruption oracles) in these strong UC-friendly experiments is not a problem.
We focus on the steps required to satisfy these properties for the Micali construction;
the strategy for the BCS construction is similar.

Strong UC-Friendly Completeness. Strong UC-friendly completeness is, conve-
niently, already implied by the three properties of perfect completeness, monotone
proofs, and unpredictable queries, with the same error bounds. In other words, the
Micali construction has strong UC-friendly completeness for free.

Lemma 14 (informal). Micali[PCP, r] has strong UC-friendly completeness with the
same error as in Lemma 7.

Strong UC-Friendly Zero Knowledge. Establishing strong UC-friendly zero knowl-
edge for the Micali construction is more involved. We show that if the PCP underlying
the Micali construction satisfies a natural notion that we call strong honest-verifier zero
knowledge, the Micali construction satisfies strong UC-friendly zero knowledge.

Lemma 15 (informal). Let PCP be a strong honest-verifier zero knowledge PCP with
error ζPCP. Then Micali[PCP, r] has strong UC-friendly zero knowledge with the same
error as in Lemma 8.

86 A. Chiesa and G. Fenzi

The strong UC-friendly zero knowledge simulator is required to sample randomness
that “explains” a simulated Micali argument string. This randomness has three compo-
nents: (i) the PCP prover randomness; (ii) the Merkle commitment randomness; and
(iii) the Fiat–Shamir randomness.

The strong honest-verifier zero knowledge property of the PCP is used to reconstruct
the first piece of randomness. Roughly, strong honest-verifier zero knowledge PCPs are
honest-verifier zero knowledge PCPs where the simulator additionally can, a posteriori,
sample randomness that “explains” the sampled PCP local view. (Later, in Sect. 2.6, we
show PCPs that satisfy this notion). In order to reconstruct the Merkle commitment
randomness, we show that Merkle commitment schemes satisfy a notion of strong UC-
friendly hiding (briefly, this property extends Definition 7 with a corruption oracle).
Finally, the Fiat–Shamir randomness is included in the Micali argument string, and thus
the simulator has no need to reconstruct it. The combination of these three observations
yields Lemma 15.

Strong UC-Friendly Knowledge Soundness. Showing strong UC-friendly knowl-
edge soundness for the Micali construction also requires some additional work. We
strengthen the UC-friendly extraction property for the Merkle commitment scheme by
adding a corruption oracle, and prove that the Merkle commitment scheme satisfies this
stronger property.

Lemma 16. MT has strong UC-friendly extraction with error (roughly) κMT = 3
2 ·

(tq+2�pl)
2

2λ + 2k(d+1)·(tq+2�pl)
2λ .

Lemma 16 directly implies Lemma 6. Our proof of Lemma 16 closely follows the
proof of multi-extraction for the Merkle commitment scheme in [CY24], adapted to
reflect the additional programming capabilities of the adversary and the presence of
simulation and corruption oracles.

We adapt the proof of Lemma 9 to rely on strong UC-friendly extraction, and
directly show that the Micali construction satisfies strong UC-friendly knowledge
soundness. (Without any additional requirements on the underlying PCP).

Lemma 17 (informal). Let PCP be a knowledge sound PCP with error κPCP. Then
Micali[PCP, r] has strong UC-friendly knowledge sound with the same error as in
Lemma 9.

Conclusion
UC-Secure zkSNARKs from PCPs. The properties required of the underlying PCP are
the ones that one would naturally expect to need for the adaptive UC-security of the
Micali construction. Yet to our knowledge the PCP literature does not explicitly provide
an off-the-shelf PCP with these properties.

We address this gap, by revisiting a transformation in [IW14] that combines a PCP
and a zero knowledge PCP of proximity (PCPP) to obtain a zero knowledge PCP. We
show that: (a) if the given PCP is knowledge sound then the resulting PCP is also
knowledge sound; and (b) if the PCPP is strong honest-verifier zero knowledge then the

zkSNARKs in the ROM with Unconditional UC-Security 87

resulting PCP is also strong honest-verifier zero knowledge. Then we construct a strong
honest-verifier zero knowledge PCPP, and apply the transformation to any knowledge
sound PCP (e.g., [BFLS91]) and this PCPP, concluding the proof of Theorem 1.

UC-Secure zkSNARKs from IOPs. As mentioned before, we can prove analogues of
Lemmas 15 and 17 for the BCS construction.

Lemma 18 (informal). Let IOP be an IOP.

– If IOP is strong honest-verifier zero knowledge IOP with error ζIOP, then
BCS[IOP, r] is strong UC-friendly zero knowledge with the same error as in Lemma
11.

– If IOP is a state-restoration knowledge sound IOP with error κIOP, then BCS[IOP, r]
is strong UC-friendly knowledge sound with the same error as in Lemma 12.

By inspection, we see that many IOPs used in practice satisfy these properties, and
thus lead to UC-secure zkSNARKs. We sketch how the masked univariate sumcheck
protocol [BCR+19,BCF+17], a core building block of many honest-verifier zero knowl-
edge IOPs is strong honest-verifier zero knowledge. Let p̂ be a polynomial, which the
verifier has oracle access to, and H ⊆ F be a domain. The unmasked univariate sum-
check protocol allows the verifier to check that

∑
h∈H p̂(h) = β for some claimed

value β. In the masked version, to achieve zero knowledge, the prover sends (as an
oracle) a masking polynomial q̂ and the value β′ =

∑
h∈H q̂(h), the verifier samples

a challenge c and then both parties run a unmasked univariate sumcheck to check the
claim

∑
h∈H(c · p̂+ q̂)(h) = c · β + β′, which ultimately requires the verifier to query

p̂, q̂ at a single location. The strong honest verifier zero knowledge simulator can recon-
struct the prover randomness by sampling q̂ uniformly at random, conditioned on the
sum equaling β′ and on the value of the query to q̂ as determined during the honest ver-
ifier zero knowledge simulation phase. (The conditioning consists of linear constraints
on the coefficients, so this sampling can be done efficiently).

Acknowledgments. We thank Ran Canetti, Megan Chen, Anna Lysyanskaya and Leah Namisa
Rosenbloom for insightful discussions on the UCGS framework, the ARG (i.e., NIZKPoK) ideal
functionality, and global random oracles. We also thank Francesco Intoci, Giorgio Seguini, Kien
Tuong Truong, Eylon Yogev for valuable feedback and suggestions on earlier drafts of this paper.
The authors are partially supported by the Ethereum Foundation.

References

[AGRS24] Abdolmaleki, B., Glaeser, N., Ramacher, S., Slamanig, D.: Circuit-succinct univer-
sally composable NIZKs with updatable CRS. In: Proceedings of the 37th IEEE
Computer Security Foundations Symposium, CSF 2024 (2024)

[ARS20] Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-Shift: obtaining simulation
extractable subversion and updatable SNARKs generically. In: Proceedings of the
27th ACM Conference on Computer and Communications Security, CCS 2020, pp.
1987–2005 (2020)

88 A. Chiesa and G. Fenzi

[BBHR19] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 23

[BCF+17] Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.:
Zero knowledge protocols from succinct constraint detection. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70503-3 6

[BCH+20] Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal compo-
sition with global subroutines: capturing global setup within plain UC. In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 1–30. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2 1

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora:
transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 4

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 2

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylog-
arithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC 1991, pp. 21–32 (1991)

[BS21] Baghery, K., Sedaghat, M.: TIRAMISU: black-box simulation extractable NIZKs
in the updatable CRS model. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS
2021. LNCS, vol. 13099, pp. 531–551. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92548-2 28

[Can01] Canetti, R.: Universally composable security: a new paradigm for cryptographic pro-
tocols. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2001, pp. 136–145 (2001)

[Can20] Canetti, R.: Universally composable security. J. ACM 67, 1–94 (2020)
[CDG+18] Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful

world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78381-9 11

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

[CF24] Chiesa, A., Fenzi, G.: zkSNARKs in the ROM with unconditional UC-security. Cryp-
tology ePrint Archive, Paper 2023/724 (2024). https://eprint.iacr.org/2024/724

[CJS14] Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a Global Random Oracle.
In: Proceedings of the 21st ACM Conference on Computer and Communications
Security, CCS 2014, pp. 597–608 (2014)

[CMS19] Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp.
1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 1

[CY24] Chiesa, A., Yogev, E.: Building Cryptographic Proofs from Hash Functions (2024).
https://github.com/hash-based-snargs-book

[DDO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-030-64381-2_1
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-540-70936-7_4
https://eprint.iacr.org/2024/724
https://doi.org/10.1007/978-3-030-36033-7_1
https://github.com/hash-based-snargs-book
https://doi.org/10.1007/3-540-44647-8_33

zkSNARKs in the ROM with Unconditional UC-Security 89

[Fis05] Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

[GKO+23] Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.:
Witness-succinct universally-composable SNARKs. In: Hazay, C., Stam, M. (eds.)
Proceedings of the 42nd Annual International Conference on Theory and Application
of Cryptographic Techniques. EUROCRYPT 2023, pp. 315–346. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30617-4 11

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Proceedings of the 12th International Conference on Theory and
Application of Cryptology and Information Security, ASIACRYPT 2006, pp. 444–
459 (2006). http://www0.cs.ucl.ac.uk/staff/J.Groth/NIZKGroupSignFull.pdf

[IW14] Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-
knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 6

[Ks22] Kondi, Y., Shelat, A.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. In: Agrawal, S., Lin, D. (eds.) Advances
in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. LNCS, vol. 13792, pp. 279–
309. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22966-4 10

[KZM+15] Kosba, A., et al.: C∅C∅: a framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Paper 2015/1093 (2015)

[LR22a] Lysyanskaya, A., Rosenbloom, L.N.: Efficient and universally composable non-
interactive zero-knowledge proofs of knowledge with security against adaptive cor-
ruptions. Cryptology ePrint Archive, Paper 2022/1484 (2022)

[LR22b] Lysyanskaya, A., Rosenbloom, L.N.: Universally composable Σ-protocols in the
“Global Random-Oracle Model”. In: Proceedings of the 20th Theory of Cryptogra-
phy Conference, TCC’2022, pp. 203–233 (2022)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-031-30617-4_11
http://www0.cs.ucl.ac.uk/staff/J.Groth/NIZKGroupSignFull.pdf
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-031-22966-4_10

The Brave New World of Global Generic
Groups and UC-Secure Zero-Overhead

SNARKs

Jan Bobolz1 , Pooya Farshim2,3 , Markulf Kohlweiss1,4 ,
and Akira Takahashi5(B)

1 University of Edinburgh, Edinburgh, UK
2 IOG, Zurich, Switzerland

3 Durham University, Durham, UK
4 IOG, Edinburgh, UK

5 JPMorgan AI Research and AlgoCRYPT CoE, New York, USA
takahashi.akira.58s@gmail.com

Abstract. The universal composability (UC) model provides strong
security guarantees for protocols used in arbitrary contexts. While these
guarantees are highly desirable, in practice, schemes with a standalone
proof of security, such as the Groth16 proof system, are preferred. This
is because UC security typically comes with undesirable overhead, some-
times making UC-secure schemes significantly less efficient than their
standalone counterparts.

We establish the UC security of Groth16 without any significant over-
head. In the spirit of global random oracles, we design a global (restricted)
observable generic group functionality that models a natural notion of
observability: computations that trace back to group elements derived
from generators of other sessions are observable. This notion turns out
to be surprisingly subtle to formalize. We provide a general framework
for proving protocols secure in the presence of global generic groups,
which we then apply to Groth16.

1 Introduction

Composable treatments of cryptosystems measure the security of the system
under arbitrary attacks relative to those on an ideal version of the system. Vari-
ous composition theorems then show that if these systems are sufficiently close,
the ideal system can be safely replaced by the real system in a wide variety of
contexts. A notable framework that formalizes this approach is that of Univer-
sal Composability (UC) [17,18], which has been widely used in the literature,
although other approaches also exist [13,42,50,54].

Unfortunately, to date such composable treatments of security due to their
complexity often result in complex and less efficient protocols. This is some-
what dissatisfying as it is exactly simple and efficient cryptosystems (proven
in stand-alone models of security) that are widely deployed and thus in need

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 90–124, 2025.
https://doi.org/10.1007/978-3-031-78011-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_4&domain=pdf
http://orcid.org/0000-0001-9704-2124
http://orcid.org/0000-0003-2746-3585
http://orcid.org/0000-0002-8660-9663
http://orcid.org/0000-0001-8556-3053
https://doi.org/10.1007/978-3-031-78011-0_4

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 91

of composable security guarantees. This state of affairs necessitates composable
treatment of practical cryptosystems with minimal, preferably no, overhead.

A notable example is that of succinct non-interactive arguments of knowledge
(SNARKs), which exactly fall into this gap between composition and usage in
complex environments: practical SNARKs are either analyzed under property-
based definitions, or else need to be modified or compiled, which increase over-
heads both in terms of proof sizes and prover/verifier time. Such overheads
potentially prevent adoption in practice.

Practical SNARKs are typically proven secure in idealized models of compu-
tation, such as the random-oracle model or the generic-group model.1

While simple and elegant, these proof techniques do not necessarily lend
themselves to composable treatments. The central conflict is that both sys-
tems’ security proofs require exclusive access to the same idealized resource.
For instance, it may be that the extractors for two SNARK systems may want
to program H(0) to different conflicting values, or that the knowledge extractor
for one system needs to observe all random oracle queries, while that for another
needs to keep its oracle queries/programming secret for an indistinguishable sim-
ulation [26,53]. In such scenarios, we cannot say anything meaningful about the
security of either SNARK when composed with the other.

The examples above demonstrate the need for appropriate formalization
of idealized models that are compatible with composability. Here we adopt
Canetti’s UC framework [17,18]. For random oracles, this question has been
largely solved in the form of the restricted observable global random oracle func-
tionality [15,21], as well as its programmable version G-rpoRO [15]. The function-
ality G-roRO works like a globally accessible random oracle and is not exclusively
controlled by any UC simulator (as would be the case for a local version). Instead,
G-roRO implements an interface through which UC simulators can partially con-
trol the functionality in the form of observability: the simulator for the protocol
running in session sid is able to observe all random oracle queries H(sid , ·) pre-
fixed with sid that are made in protocol sessions sid ′ �= sid . (G-rpoRO comes
with an analogous programming interface.)

With this mechanism, the single random-oracle resource can be shared among
multiple protocols in a way that still gives appropriate control over the resource
to the UC simulator (observations, or, in the case of G-rpoRO, programming) to
enable UC simulation, and in turn composition with other protocols.

In this case, every protocol session sid gets its own hash prefix sid , and while
every protocol session is using the same resource G-roRO, they can do so with
sufficient domain separation so as to not interfere with each other. As a result,
we can prove many proof systems and SNARK constructions UC-secure in the
presence of G-roRO [26,38,52,53].

In contrast to RO-based proof systems, the state of affairs for systems whose
proofs of knowledge extraction rely on idealized groups is much less clear. For
example, the popular Groth16 SNARK [40], has a security proof that is “close” to

1 Alternatively, they are proven using knowledge assumptions or in the algebraic-group
model (AGM).

92 J. Bobolz et al.

UC in the sense it has the prerequisite simulation-extractability and straight-line
extraction properties. Despite this, its extraction strategy is not easily compat-
ible with composable frameworks such as the UC framework.

This has led to the strategy of applying some transformation or compila-
tion to SNARKs in order to render their extraction strategy UC-compatible.
The cost, however, is increased overhead: one has to accept a noticeable loss in
computational efficiency [38], or sometimes even forgo succinctness [48].

Our goal is to avoid such overheads and prove practical SNARKs such as
Groth16 secure in a composable framework as-is, while using their native extrac-
tion strategies. For Groth16-style SNARKs specifically, we have standalone (non-
composable) analyses in the GGM [40], in the AGM [5,36], and under knowledge
assumptions [8,41]. However, it is unclear how these analyses apply to a compos-
able setting. Even worse, in contrast to the random-oracle model, it is not even
a settled question how to model composable versions of group-related idealized
resources. One may consider the following existing approaches:
1. Prove Groth16 secure in the F-GG-hybrid model, where F-GG (e.g., [30]) is

simply an ideal functionality implementing a (local) generic group.

2. Prove Groth16 secure in the UC-AGM [1] framework, which is a composable
version of the algebraic-group model. UC-AGM is implemented as a modifi-
cation of the UC framework whereby adversaries are required to output the
discrete-logarithm representations of the group elements that they output in
terms of input elements they have received so far.

3. Prove Groth16 secure through [46], which is a composable version of knowl-
edge assumptions. It is implemented as a variant of the Constructive Cryp-
tography [54] framework, where all parties are forced to register the discrete-
logarithm representations in terms of their input elements with a global reg-
istry whenever they output a group element.
The first option is certainly feasible and a Groth16 proof in the F-GG-hybrid

model would be considered a folklore adaptation of the standalone Groth16
generic-group security proof [40]. However, the interpretation of F-GG in prac-
tice is that every instance of Groth16 (and any other protocol) needs its own
independent (generic) group. Of course, this is far from practice, where a few
standard groups (such as BLS12-381) are shared among all sessions for many pro-
tocols. It is also not desirable from a design standpoint, as the building blocks
of complex protocols usually share the same group for compatibility reasons.

The second option, using the UC-AGM [1], is more reasonable: multiple UC-
AGM protocols can share the same group. One of the central conflicts that arise
when composing multiple protocols over the same group occurs when group
elements output by one protocol or session are used as input to another protocol
or session. The outputting protocol is interested in hiding the element’s discrete-
logarithm representation from the environment (e.g., as part of a simulation
strategy), while the receiving protocol is interested in learning the element’s
discrete-logarithm representation (e.g., for proof of knowledge extraction).

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 93

This conflict manifests in two different ways in the UC-AGM. First, the
environment in the UC-AGM is not required to output a discrete-logarithm
representation when it provides input to honest parties, say an honest Groth16
verifier. For our interests, this means that the environment can submit a Groth16
proof to the ideal functionality F-NIZK for verification without having to pro-
vide a representation. The lack of a representation makes it impossible for the
UC simulator to extract a witness, even if the proof was computed honestly by
the environment. As a consequence, the UC-AGM is too lenient on the environ-
ment, making it unsuitable for non-interactive proof systems. In particular, it
is unclear how to use it to prove Groth16 UC-secure. Second, the adversary in
the UC-AGM is required to output representations whenever it provides input
to any functionality (e.g., sending a network message). This leads to situations
where the framework is too strict : the adversary may want to use a group element
output by one protocol to attack another protocol, but because the adversary
(usually) does not know an appropriate discrete-logarithm representation, it is
prohibited from using the group element. This means that the framework effec-
tively forbids adversaries from mounting cross-session attacks, meaning taking a
group element from one session/protocol to mount an attack against another ses-
sion/protocol. As a consequence, the UC-AGM is not able to adequately model
arbitrary environment/attacker behavior, which is a major downside. The origi-
nal UC-AGM paper discusses and explores the shortcomings of the AGM when
it comes to composability [1, Section 1.1], noting that cross-session attacks seem
to be an inherent limitation of the AGM rather than a modeling artifact of the
UC-AGM.

The third option [46] is similar to the UC-AGM in spirit in that it models
algebraic behavior. While [46] is highly configurable and supports a range of dif-
ferent settings, the authors identify inherent conflicts when it comes to compos-
ing multiple knowledge assumptions, which roughly correspond to cross-session
attacks mentioned above. They conclude that group reuse between multiple pro-
tocols remains an open challenge.

This leaves open the question of formulating an adequate framework for
composable treatment of security which (1) permits modeling multiple pro-
tocols using the same group, (2) does not unnaturally restrict the environ-
ment’s/adversary’s ability to take elements output by one protocol, optionally
operate on them, and use the result to attack another protocol, and (3) is suit-
able to prove modern SNARKs in idealized models for groups, such as Groth16,
secure.

1.1 Our Contributions

Driven by the fact that the UC-AGM framework (as well as the work of [46] which
follows a similar approach to the AGM) have inherent composability shortcom-
ings, we turn our attention to the generic-group model. We propose a new ideal
functionality G-oGG (Sect. 3), in the standard UC framework without modifica-
tions, that formalizes access to a restricted observable global generic (bilinear)
group resource. Similar to its random-oracle counterpart [15,21], G-oGG works

94 J. Bobolz et al.

like a globally accessible generic group, but additionally offers an observability
interface, which allows simulators, based on domain separation, to observe cer-
tain group operations. G-oGG allows for group reuse among multiple protocols,
and it does not restrict the environment from using group elements output by
one protocol as input to another. Additionally, G-oGG naturally features oblivious
sampling of group elements with unknown discrete logarithms. As observed in
the literature [8,51], this is an important feature of real-world groups, realized,
e.g., via hashing into a group [11], and needs to be appropriately reflected in
idealized models, particularly in the context of knowledge extraction.

For protocol designers relying on G-oGG, we provide a series of lemmas
(Sect. 4) that simplify the process of writing proofs by enabling a transition to
a symbolic functionality. Symbolic treatment of group exponents is a technique
that is at the core of many GGM proofs.

Using our security proof framework, we prove (Sect. 5) that Groth16 UC-
realizes the weak ideal functionality F-wNIZK in the presence of G-oGG.2 We
stress that Groth16 is proven secure as-is.

In particular, we achieve UC security without the overhead associated with
UC SNARK compilers (e.g., [2,3,6,23,38,48,53]). To the best of our knowledge,
(simulation) extractability of Groth16 has been concretely analyzed only in the
AGM [5,36], but not in the GGM. Along the way, our analysis (Theorem 1)
explicitly provides a concrete upper-bound on the distinguishing advantage of
any environment, depending on its query complexity, the size of the group, and
the size of the circuit, as well as the simulator query complexity.

Finally, we propose a way (Sect. 6) to deal with composition of protocols
sharing a generic group in cases where some protocols cannot tolerate their
group operations being observed.

1.2 Overview of Our Techniques

The Restricted Observable Global Generic Group Functionality.
Observability of generic group operations should be sufficiently broad to allow a
UC simulator to extract useful information from the adversary and environment,
but it should not allow the environment to learn secret-dependent operations per-
formed by honest parties. This tension goes to the core of compositional proofs:
we need to strike a balance between information available to the security proof
(UC simulator) for one protocol in a way that does not reveal too much about
other protocols (UC environment) that would impact their security proofs. For
random oracles G-roRO, where observability is also used, this balance is easy to
achieve via domain separation3: hashes of (sid , x) belong to session sid , and they
become observable if computed in some session sid ′ �= sid .
2 Here weak refers to the fact that proofs may be re-randomizable, but are otherwise

non-malleable. As observed by Kosba et al. [48,49] this weak version suffices in typical
applications. As an analogy, many use cases of signatures only require existential
unforgeability rather than full-fledged strong unforgeability.

3 For the reader unfamiliar with domain separation approaches for global UC func-
tionalities, our full version [10] offers an explanation.

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 95

While domain separation for random oracles is easily modeled, designing the
right domain separation mechanism for generic groups is far less obvious. A
natural idea is to implement domain separation for groups via session-specific
group generators, by assigning session sid a random generator gsid . Intuitively,
all operations done on gsid or group elements derived from it belong to session
sid . Operating on elements from a foreign session is deemed “illegal” and such
operations are observable. However, compared to random oracles, there are addi-
tional difficulties: one can take two group elements gsid and gsid′ in two different
sessions and meaningfully operate on them. This raises the question of whether
cross-session operations such as gsid + gsid′ are observable, which session the
resulting group element belongs to, and how we keep track of the sessions each
group element belongs to.

Roughly speaking, in our approach, G-oGG keeps track of the components of
a group element in a symbolic way. Every generator gsid corresponds to a formal
(polynomial) variable Xsid . A group element such as gsid + gsid′ is associated
with the polynomial Xsid + Xsid ′ . A group operation in protocol session sid is
illegal (and hence observable) if the polynomial associated to the operation’s
result contains any foreign-session variables Xsid′ (or a constant term). In other
words, operations that involve other sessions’ generators (as kept track of via
polynomials) are observable. The formalization with polynomials avoids subtle
issues with simpler approaches, where an element computed as gsid +gsid′ −gsid′

is incorrectly associated with both sessions sid and sid ′, which causes issues with
either too much or too little observability.

In the explanation above, every session sid only has a single generator gsid .
In our final formulation of G-oGG (Sect. 3), a protocol can simply also call a
Touch interface on any group element not already belonging to other sessions to
declare it as an additional generator for its session. Hence every session can have
multiple generators gsid,1, gsid,2, . . . and the observability mechanism general-
izes naturally (the explanation above applies verbatim to the multiple-generator
setting).

Cross-Session Element Reuse. Note that in the G-oGG model, the environ-
ment/adversary is not restricted in the way it can use group elements. In contrast
to the UC-AGM, we allow the environment/adversary to take a group element
output by some protocol, and use it to attack another protocol without any
restriction. The crucial difference is how the knowledge of discrete logarithms is
managed in UC-AGM vs. G-oGG. In the UC-AGM, providing knowledge of dis-
crete logarithms is the task of the environment/adversary. This is unfortunate
because we also need to hide certain discrete-logarithm representations from the
environment/adversary, e.g., as part of a simulation strategy. Additionally, dif-
ferent protocols have different AGM representation bases, and the environment
is typically not able to convert a representation from one basis to another. In the
UC-AGM, this leads to the adversary being effectively forbidden to use foreign
group elements to attack another protocol.

96 J. Bobolz et al.

With G-oGG, there is no burden on the environment/adversary to keep
track of representations. The knowledge of discrete-logarithm representations
is effectively maintained by G-oGG through observations: certain group opera-
tions are observable, and from those observations, anyone can compute (partial4)
discrete-logarithm representations. As a consequence, the environment/adver-
sary is allowed to take group elements from one session and use them to attack
another session. The only “restriction” here is that group operations on foreign
group elements are observable. That “restriction” makes it so protocols have to
contend with observability, which makes it harder to prove constructions secure.
It does not unnaturally impact the ability of the adversary to execute a wide
range of real-world attacks.

Hashing and Oblivious Sampling. The encodings of group elements in our
G-oGG functionality belong to fixed sets that are of the same size as the group
order. This is a closer modeling of how groups are used in practice (compared to,
say, random encoding sets, where one does not even know in advance which of
the encodings actually correspond to group elements). Crucially, this choice also
allows adversaries and protocols to sample group elements in arbitrary ways,
and thus allows us to avoid explicit modeling of oblivious sampling or hashing.
(Such modeling is introduced for AGM in [8,51], though to the best of our
knowledge not yet ported to UC-AGM.) Fixing the sets of valid group encodings
also allows hashing into groups via an independent (possibly global) random
oracle functionality in parallel to a group functionality. (And whether or not
this hashing is extractable or programmable is left to that functionality [15].)
Conveniently, this means that we do not have to explicitly model a “hash-into-
group” interface for generic groups: this functionality can be emulated using an
external random oracle hashing into the set of valid group encodings.

Embedding Generic Groups into UC. Technically speaking, our G-oGG is
simply a standard UC functionality. It is global, meaning that instead of being
a subroutine to a single protocol session, it accepts queries from all protocols as
well as the environment in arbitrary sessions. For the notion of composability in
the presence of global functionalities such as G-oGG, we refer to the UCGS (UC
with global subroutines) framework of [4], whose composition theorem shows
how to use the original UC composition theorem in the presence of global func-
tionalities. (This work also points out certain gaps and shortcomings with the
traditional GUC framework [20].) One of the advantages of modeling generic
groups as a standard UC global functionality G-oGG is that we do not require
any modifications to the UC framework (we simply refer to the UCGS compo-
sition theorem for composition in the presence of G-oGG). This is in contrast to
other modeling approaches, such as the UC-AGM.

4 “Partial” in the sense that observations are sufficient for the simulator of session sid
to learn the parts of the representation that pertain to the generators of sid ; see
Sect. 4.3 for the details.

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 97

UC-SNARKs Without Overhead. Observable global generic groups are a
practical means to study the UC security of efficient constructions. As a concrete
application of relevance, we show that the Groth16 SNARK, without any modi-
fications, UC-realizes the weak NIZK functionality F-wNIZK in the F-CRS-hybrid
model and in the presence of G-oGG (Theorem 1). To the best of our knowledge,
this is the first result to establish the UC security of Groth16 with zero overhead.

Following [48,49], our goal is to UC-realize a slightly relaxed NIZK function-
ality which allows an adversary to maul an existing proof string π into a new one
π∗ but for the same statement x. This relaxation is necessary for Groth16 as its
proof string can be re-randomized to obtain another valid proof [41]. Crucially,
it still remains hard to obtain forged proof π∗ for a new statement x∗ �= x.
We analyze Groth16 as a canonical example due to its popularity in a num-
ber of deployed systems, and we believe our analysis should extend to its non-
rerandomizable variants such as Groth–Maller [41] and Bowe–Gabizon [12] to
show they UC-realize the strong NIZK functionality.

As part of our analysis, we introduce a set of technical lemmas, which provide
a reusable template for formal analyses in the presence of global groups. These
lemmas essentially allow one to operate with respect to a cleaner global func-
tionality G-oSG that is purely symbolic. In effect, they allow using the Schwartz–
Zippel lemma (and in particular extraction of representations of group elements)
in the UC setting. In more detail, we introduce a “fully symbolic” counterpart
of the aforementioned G-oGG, where every encoded group element maps to a for-
mal polynomial instead of a Zp element. In this way, one can guarantee perfect
domain separation by ruling out exceptional events in which two group opera-
tions occurring in different sessions accidentally output the same group element.
Our general lemma shows that one can switch to a hybrid UC experiment in the
presence of the symbolic generic group functionality G-oSG accepting a negligible
loss in security.

Moreover, we provide a lemma that introduces a routine which makes a given
simulator fully symbolic as well. Typically, a simulator for UC-NIZK uses secret
random exponents (known as simulation trapdoor) to simulate the CRS and
proof strings. After invoking this lemma, one can treat these random exponents
as formal variables. We then apply these lemmas to analyze UC security of
Groth16. The combination of our technical lemmas allows for clean and modular
analysis of Groth16 in the UC setting. In particular, once we view all the random
exponents in the current session as formal variables, we can reuse the existing
weak simulation-extractability analysis of Groth16 [5] almost as is.

Composition when Unobservability is Required. The issue with using
group elements from one protocol to attack another (as described above) in
the UC-AGM is not unnatural, but rather points to an inherent conflict for
composability in algebraic/generic group settings. G-oGG tackles this issue not
by restricting the environment (and hence the space of allowed attacks), but
by making security proofs harder, essentially erring on the safe side. It does
not, on its own, solve the inherent conflict. The observation rules of G-oGG are

98 J. Bobolz et al.

well-suited for applications that can largely follow domain separation, such as
SNARKs, where the prover only operates on CRS elements. However, in other
protocols, when a party applies a secret to group elements not necessarily in its
session, those operations are observable and the secret is effectively leaked. For
example, a party in the ElGamal encryption scheme5 would receive a ciphertext
(c1, c2) from the environment and compute the plaintext c2 − sk · c1. If the
environment supplies c1 that does not belong to the ElGamal protocol’s session
(e.g., a Groth16 CRS element), then the operation sk · c1 becomes observable,
leaking the secret key to everyone. This is an inherent conflict with composition.
The ElGamal protocol is interested in having unobservable operations on foreign
elements. Conflicting with this, Groth16 requires that operations on its CRS by
ElGamal are observable. Concretely, if decryption were afforded unobservability,
then the decryption operation can effectively be used to compute a part of a valid
Groth16 proof that the Groth16 UC simulator cannot trace, making extraction
impossible.

We suggest a way to resolve this conflict by adapting a slight tweak to UC
composition proofs. On a high level, when proving the composition of ElGamal
and Groth16, one would first replace F-wNIZK by the concrete Groth16 proto-
col. After that, observability is not needed anymore (as it is only used by the
Groth16 simulator in the ideal world, not by the real-world protocol itself) and
can be removed (conceptually). Then, one would replace F-Enc by ElGamal.
This replacement now happens in a setting where observation does not exist
anymore. We sketch this approach in Sect. 6, but leave details for future work.

Painting the big picture, attacks involving cross-session use of group elements
in the UC-AGM are partially disallowed, making it easy to prove a wide range
of applications secure but restricting the class of covered attacks. Cross-session
attacks are fully allowed with G-oGG, meaning that we allow for all possible
attacks, but such cross-session use results in observable operations, which rules
out certain applications. However, this issue is mitigated with the approach
described in Sect. 6. So overall, we get the best of both worlds: We can prove
composition for a wide range of applications, in a model that does not restrict
the environment.

Paper Organization. The rest of the paper is organized as follows. Section 2
summarizes technical preliminaries. In Sect. 3, we formally introduce the
restricted observable global generic group functionality G-oGG. Section 4 states
useful technical lemmas which provide a reusable template for formal analyses
in the presence of global groups. In Sect. 5, we formally analyze UC security of
the Groth16 SNARK in the presence of G-oGG. Section 6 provides a tweak to
UC composition proofs when unobservability is required. We conclude the paper
with future work suggestions in Sect. 7.

5 ElGamal is not a UC-secure encryption scheme. We are using it here for the sake
of simplicity of illustration. The same principle applies to CCA2 secure variants of
ElGamal, such as Cramer-Shoup [29].

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 99

1.3 Related Work

Criticism and Alternatives to the Generic-Group Model. The generic-
group model (GGM) is not without criticism. First, similar to random oracles,
one can prove (artificial) schemes secure in the GGM that become provably inse-
cure when instantiated with any concrete group [32]. Furthermore, applying the
GGM in certain (non-generic) scenarios can lead to spurious security proofs [62].

In addition, the GGM only provides security guarantees against generic
adversaries. However, we know that the fastest attacks on the discrete-logarithm
problem in elliptic curve pairing groups make use of the specific structure of Gt

via index calculus methods. As a result, the guarantees provided by the GGM
are somewhat less meaningful. The semi-generic group model [43] addresses this
weakness by modeling Gt as non-generic (while G1, G2 are still generic groups).
In practice, even with index-calculus methods, breaking the discrete-logarithm
assumption (or any reasonable related assumption) is infeasible. So while there
is some speed-up between the generic and non-generic attackers, the speed-up is
not meaningful for suitably chosen pairing groups.

Finally, obliviously sampling a group element (or hashing into the group)
is a widely used feature, which is often not supported by the GGM, causing
issues [8,51]. The generic-group modeling in our paper enables oblivious sampling
as discussed above.

Overall, while there is criticism of the generic-group model, it is still widely
used as a useful tool to establish security guarantees in the absence of stronger
formal evidence.

The algebraic-group model (AGM) [36] was born out of criticism of the GGM.
Security in the AGM is established with respect to a restricted class of algebraic
adversaries, which are required to always supply the (discrete-log) representa-
tions of their output group elements in terms of the input elements that they
have seen so far. This means that intuitively, because an AGM adversary gets
to see proper group element encodings rather than random ones, the AGM is a
weaker (less severely restricting) model than the GGM (though depending on
the exact AGM/GGM formalization, this intuition is not necessarily formally
true [64]). The AGM does not support oblivious hashing, but can be extended
to do so [51].

The UC-AGM [1] excludes cross-session group element attacks, as explained
above. For this reason, despite the AGM usually being the better model than
the GGM, the same does not seem to hold true when it comes to questions of
composability.

UC-Secure Proof Systems. Although a number of papers study generic trans-
formations that lift NIZK proof systems in the stand-alone setting into a UC-
secure one [2,3,6,23,38,48,53], they end up with proof sizes that are linear in
the witness size, sacrificing succinctness, or else introduce significant overheads
in the proving time. To realize the ideal functionality, these UC-lifting com-
pilers typically output a proof system satisfying the simulation-extractability
property [31,35,39,59]. While Groth16 and its variants already have proof of

100 J. Bobolz et al.

simulation-extractability in the GGM/AGM [5,12,41], their implications to com-
posable security have been unclear prior to our work. So far, there is little work on
SNARKs being UC-secure as is, i.e., without having to apply a transformation,
which is the state of the art. The exception to this is a recent concurrent work [26]
that proves Micali’s SNARK [56] and certain IOP-based SNARKs obtained via
the BCS transform [9] proven UC-secure in the presence of G-rpoRO, i.e., in the
random-oracle setting.

2 Preliminaries

2.1 Notation

Functions and Pseudocode. For a (partial) function τ : A → B, define the
image im(τ) = {y | ∃x : τ(x) = y} ⊆ B and the domain dom(τ) = {x | τ(x) �=
⊥} ⊆ A. We write “assert φ” as a shorthand for “if ¬φ, then return ⊥”. List
concatenation is denoted by colon (A : B).

Sets and Polynomials. For subsets A,B ⊆ R of a ring R, r ∈ R, define
A+B := {a+ b | a ∈ A, b ∈ B}, r · A := {r · a | a ∈ A}, and A · B := {a · b | a ∈
A, b ∈ B}. Still, An = A × A × · · · × A denotes the n-fold Cartesian product.

We denote scalars by lower-case letters (e.g., a ∈ Zp), and formal vari-
ables/polynomials in sans-serif font (e.g., A ∈ Zp[X]). We also consider poly-
nomials and variable with negative degree, e.g. 2X+ 3X−1 ∈ Zp[X,X−1]. Sets or
maps involving scalars are generally written as S, if they involve polynomials,
they are written as S. For a Var a set of variables, we let Var±1 := Var ∪ Var−1,
where Var−1 is a set containing the inversion of variables in Var.

Let R be a ring of polynomials, A,B ∈ R, and L ⊆ R be a finite list of ring
elements. Then 〈L〉R =

∑
x∈L x · R ⊆ R is the ideal generated by L.

Lemma 1 (Schwartz–Zippel). Let F be a finite field, let Var = (X1, . . . ,Xn)
be a list of formal variables. Let f ∈ F[Var], f �= 0. Then

Pr[f(x1, . . . , xn) = 0] ≤ deg(f)/p ,

where the probability is over x1, . . . , xn
$← F.

Lemma 2 (Schwartz–Zippel for Laurent polynomials). Let F be a finite
field of order p > 1, let Var = (Y1, . . . ,Yn) be a list of formal variables. Let
f ∈ F[Var±1] be a Laurent polynomial, f �= 0. Then

Pr[f(y1, . . . , yn) = 0] ≤ 2 deg(f)/(p − 1) ,

where the degree of a Laurent polynomial is defined as the maximal absolute
value of the exponent of any term, and the probability is over y1, . . . , yn

$← F
∗.

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 101

2.2 Generic Bilinear Groups

Philosophically, the generic group model represents an idealization of a bilinear
group, where protocols and attackers can only (meaningfully) interact with the
group by executing group operations. They cannot exploit any additional struc-
ture of the group. The generic group model has been formulated in two majors
forms: One due to Shoup and Nachaev [57,60] that idealizes element encodings
as random strings, and the other due to Maurer [55] that treat group elements as
abstract handles. (See also [63] for a more modern perspective and comparisons.)
In this work we focus on Shoup’s model adopted to the case of bilinear groups.

The bilinear generic-group model is parameterized by (p, S1, S2, St), consist-
ing of two (carrier) sets of size p corresponding to source groups S1 and S2, and
another, also of size p, corresponding to the target group St. All parties, honest
or otherwise, are given oracle access to three random injections τi

$← Inj(Zp, Si)
for i = 1, 2, t as well as (τ1(1), τ2(1), τt(1)).

In this model, parties also get oracle access to three compatibly defined group
operation oracles which invert a given element via τ−1

i , perform addition over Zp,
and re-encode via τi. Finally, a pairing operation allows “multiplying” two ele-
ments, one in S1 and the other in S2, via inversions under τ1 and τ2 respectively,
multiplication over Zp, and encoding via τt.

There are three prominent types of bilinear groups that are commonly used
in practice, corresponding to whether the groups are different or if there is an
isomorphism between the groups. From a generic-group perspective, in type-I
groups S1 = S2 and their corresponding injections τ1 and τ2 are also identified.
In type-II and type-III groups the injections remain independent, though for
type-II groups one also provides oracle access to an isomorphism from the second
source group to the first, implemented via inversion under τ−1

2 and re-encoding
under τ1. Here we focus on type-III bilinear groups (with no isomorphism in
either direction) as these are most commonly used in practice. Throughout, we
use additive notations for operations performed in all three groups.

A final distinction made in use of generic groups is whether (honest) group
operations are performed with respect to the given set of “canonical” generators
(τ1(1), τ2(1), τt(1)) or whether random generators are used. This choice has secu-
rity implications as shown in [7]. As we shall see, for our UC security proofs, it
is critical that protocols use random generators.

2.3 The UC Framework and Its Execution Model

We rely on the Universal Composability (UC) framework [17]. However, our
results could also be expressed using the concepts of other comparable frame-
works [13,42,50,54]. Historically, the treatment of global resources required
a more general and complex compositional framework [20,22]. Badertscher et
al. [4] show how to view global functionalities as global subroutines, a concept
that can be made precise within the latest installment of the plain UC frame-
work [19]. Here, we provide a summary of [19] and refer interested readers to the
original works for further details.

102 J. Bobolz et al.

Formalism. In the UC framework, protocols are modeled as a system of Inter-
active Turing Machines (ITM). While ITM itself is just a static piece of code,
for each session identifier sid ∈ N, we consider a collection of ITM instances
(ITI) sharing the same sid . Each ITI is an instance of some ITM for a specific
session and together they form the runtime notion of a protocol session. Each
ITI in a given protocol session is also called a party.

The execution of a protocol Π involves a set of parties P, the environment
Z (which essentially behaves like an interactive distinguisher), and the adver-
sary A. The environment controls the flow of execution by interacting with the
adversary A and choosing inputs to the parties involved in Π and receiving their
outputs. An identity bound ξ places restrictions on whom Z can provide input
to (e.g., to ensure the environment cannot make calls to subroutines of Π on
behalf of Π). The execution terminates when the environment finally terminates
with an output 0 or 1.

During an execution of Π, the adversary A may corrupt a subset of parties
as defined by the security model in order to learn their internal states and gain
control over these parties. In this paper, we focus on static corruption meaning
that A chooses which party to be corrupted in the beginning of the execution.

We denote by EXECΠ,A,Z(λ, z) the distribution of a binary output by Z after
an execution of Π in the presence of A, where λ ∈ N is a security parameter,
z ∈ {0, 1}∗ is an auxiliary input to Z, and the randomness for all ITMs are
assumed to be sampled uniformly at random. We define the family (or ensemble)
of random variables {EXECΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Recall that two binary distribution families X,Y indexed by λ ∈ N, and
z ∈ {0, 1}∗ are called indistinguishable (denoted X ≈ Y) if for all c, d ∈ N, there
exists a λ0 ∈ N such that for all λ > λ0 and all z ∈ ∪κ≤λd{0, 1}κ, |Pr[X(λ, z) =
1 − Pr[Y (λ, z) = 1]| < λ−c.

UC Security. Intuitively, we consider that a protocol Π in the presence of an
adversary A successfully UC-emulates another (typically more idealized) proto-
col Φ if there exists another adversary (aka. simulator) S such that no environ-
ment Z can distinguish the execution of Φ with S from that of Π with A.

Definition 1 (UC emulation). A protocol Π is said to UC-emulate Φ if for
any PPT adversary A there exists a PPT adversary S such that for all PPT
environment Z

{EXECΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ ≈ {EXECΦ,S,Z(λ, z)}λ∈N,z∈{0,1}∗ .

To define the security of protocol Π in the UC framework, one describes an
ideal functionality F which captures the desired functionality of the task in hand
in the form of an ITM. One then defines Π UC-secure if Π UC-emulates the
ideal protocol Φ = IDEALF . The ideal protocol IDEALF models an idealized run
of protocol execution: the simulator S only interacts with Z and influences the
execution through the prescribed interfaces of F , and the parties P are replaced
with the so-called dummy parties P̃ which merely forward the inputs from Z to
F and the responses back from F to Z.

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 103

Syntax for Ideal Functionalities and Protocols. In this paper, we use the
following syntax to enable more precise (code-based) specifications of ideal func-
tionalities. We describe F as a collection of internal states and interfaces. As
usual, upon the first invocation of F within session sid its instance gets created
with initial internal states. We model this routine by introducing F .Initsid(),
which can be called only once. Once an instance of F is created within sid , the
subsequent calls to Initsid() are ignored. If F comes with interface Interface,
the (co-)routine “F .Interfacesid(in)” defines the behavior of the interface for
session sid on input in, and returns the resulting output, potentially after inter-
acting with the simulator. Every invocation of Interfacesid may update the
internal state of an instance of F .

UC with Global Functionalities. [4] model global functionalities within the
basic UC framework described above. Unlike a (local) functionality F , a single
instance of a global functionality G may take input from and provide outputs to
multiple instances of protocols and local functionalities. Moreover, the environ-
ment Z can directly interact with G without going through spawned instances
of the adversary. The definition of security can be naturally extended in the
presence of a global functionality as we define next.

Definition 2 (UC emulation with global setup). Let G be a global func-
tionality. A protocol Π is said to UC-emulate Φ in the presence of G, if for
any PPT adversary A, there exists a PPT simulator S such that for all PPT
environment Z,

{EXECΠ,G,A,Z(λ, z)}λ∈N,z∈{0,1}∗ ≈ {EXECΦ,G,S,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Here, EXECΠ,G,A,Z(λ, z) is defined in terms of EXECμ[Π,G],A,Z(λ, z), where the
so-called management protocol μ allows Π to interact with G but additionally
grants access to G to Z.

In [4], the authors present a composition theorem (UCGS theorem), which
states the following: if a protocol Π UC-realizes F in the presence of G, then
the protocol ρΠ,G that is identical to ρF,G except that all instances of the ideal
functionality F are replaced by instances of the real protocol Π, UC-emulates
ρF,G in the presence of G.

2.4 Weak NIZK Functionality

In Functionality 1 we formalize F-wNIZK, the weak NIZK ideal functionality that
we will be realizing. F-wNIZK is parameterized by polynomial-time relation R,
and runs with parties P and an ideal process adversary S. It stores a proof table
T which is initially empty. “Weak” refers to the fact that proofs may be malleable.
Our formalization slightly differs from [48, Figure 3] in that mauling of proofs is
performed by the simulator and not via an explicit maul interface. We note that
with Line 9 removed, we obtain an ideal functionality for a standard (“strong”)
NIZK.

104 J. Bobolz et al.

Functionality 1: F-wNIZK

Initsid()

1: T ← []

Provesid(x ,w)

2: if (x ,w) /∈ R then return
⊥

3: π ← S.Simulatesid(x)
4: T ← T ∪ (x , π)
5: return π

Verifysid(x , π)

6: if (x , π) ∈ T then return 1

7: w ← S.Extractsid(x , π)
8: if (x ,w) ∈ R then T ← T ∪ (x , π)

9: if (w = maul∧(x , ∗) ∈ T) then T ← T ∪(x , π)

10: if (x , π) ∈ T then
11: return 1
12: else
13: return 0

Functionality 2: G-GG

Init()
1: for i ∈ {1, 2, t} do
2: τi

$← Inj(Zp, Si)

Opsid(i, g1, g2, a1, a2)

3: assert (g1, g2, a1, a2) ∈ S2
i × Z

2
p

4: h ← τi(a1τ
−1
i (g1) + a2τ

−1
i (g2))

5: return h

CanonicalGensid(i)

6: return τi(1)

Pairsid(g1, g2)

7: assert (g1, g2) ∈ S1 × S2

8: h ← τt(τ
−1
1 (g1) · τ−1

2 (g2))
9: return h

Here we consider the case of static corruption. This is sufficiently strong
to also give adaptive corruption for F-wNIZK (where the all queried (x ,w) are
returned upon corruption) assuming secure erasure (of randomness). In order
to have a simpler functionality, we do not model that a previously invalid proof
must not subsequently become valid. Note, however, that Groth16 enjoys full
consistency.

3 The Global Observable Generic Group Functionality

In this section, we first go over the (strict) global generic group model as a warm-
up, and then introduce the restricted observable global generic group model,
which is what we are going to use to prove UC security of Groth16.

3.1 Warm-Up: The (strict) Global Generic Group Functionality

We focus on type-3 bilinear groups and Shoup’s style of generic groups with ran-
dom encodings (cf. Sect. 2.2). We can easily model such (unobservable) generic
bilinear groups as a (global) UC functionality G-GG as in Functionality 2 (similar
to, for example, [30]). As in standard generic type-III bilinear groups, G-GG is
parameterized by a prime p and three sets Si for i ∈ {1, 2, t} each of size p. G-GG

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 105

starts by initializing three random injections τi : Zp → Si for i ∈ {1, 2, t}. (This
choice can be made efficient in the standard way, via lazy sampling.)

The functionality G-GG offers three interfaces to protocols. They can use G-GG
to access the “canonical” generators τi(1) via CanonicalGen. As with standard
generic groups, G-GG also offers an Op and a Pair interface. We slightly extend
Op to compute an arbitrary linear operation a1 · g1 + a2 · g2 (rather than just
g1 + g2). This is without loss of generality and is used to spare algorithms from
implementing double and add.

Because the sets Si are public and of size p, protocols (and adversaries)
can (obliviously) sample group elements of their choice. This could be via an
arbitrary algorithm that has an unspecified output distribution. (Some formal-
izations allow Si to be a much larger set than Zp, which prevents these powers.)
Moreover this choice better conforms to practical groups (where the carrier sets
of a bilinear group are fixed and publicly known).

This feature, when combined with an external random oracle functionality,
also enables hashing into the group via random oracle. For this reason, and in
contrast to, say, [30], we do not explicitly model a “hash-into-group” interface

As such, G-GG can be seen as the generic-group equivalent of the “strict” global
random-oracle functionality [15]. It can be used, for example, to analyze the UC
security algebraic schemes like ElGamal when they share a generic group.

3.2 The (Restricted) Observable Global Generic Group
Functionality

The ability to observe generic-group (and random-oracle) queries forms the basis
of many proofs in cryptography. Functionally, G-GG as defined has limited appli-
cability, because it does not offer the UC simulator any “cheating power”. This
is in contrast to a local group [30] where the simulator takes over the group.

To enable applications where simulators need to observe queries made to the
group, we augment G-GG with observation capabilities. As seen in the analogous
restricted observable global random oracle (e.g., [15]), these observation capa-
bilities need to be appropriately restricted so as to not render all applications
insecure.

Our global restricted observable generic group functionality G-oGG is defined
in Functionality 3. It contains all interfaces of G-GG, together with two additional
ones, Observe and Touch. If Observe and Touch are never called, then
G-oGG behaves identically to G-GG. In particular, G-oGG.Opsid(i, g1, g2, a1, a2)
still effectively returns h = τi(a1τ

−1
i (g1)+a2τ

−1
i (g2)), and the only difference to

its counterpart in G-GG is that the operation additionally keeps track of the way
group elements are computed, which we discuss below. Similarly, G-oGG.Pair
differs from G-GG.Pair only in maintaining some additional bookkeeping.

Our strategy to restrict observability is similar to (restricted) observable ran-
dom oracles [15] in that we deploy a form of “domain separation”.6 G-oGG intro-
duces a notion of group elements belonging to certain sessions, which informs the
6 In our full version [10] we give an overview of domain-separation approaches in global

observable functionalities.

106 J. Bobolz et al.

Functionality 3: G-oGG

G-oGG is (implicitly) parameterized with
– A prime number p

– Sets S1, S2, St ⊆ {0, 1}∗ with |Si| = p for all i ∈ {1, 2, t}.
G-oGG maintains the following state:

– τi : Zp → Si three random encoding functions, mapping discrete logs x ∈ Zp to their
randomly encoded group elements h ∈ Si.

– Vari,sid initially empty lists of formal variables. // Keeps track of the group i formal
variables belonging to session sid .

– Ri[h] for i ∈ {1, 2, t}, h ∈ Si initially empty sets of polynomials // Keep track of
polynomial representations corresponding to h ∈ Si.

– Ob initially empty list of observable actions.
Furthermore, we use the following terms derived from the current state

– We write Varsid = Var1,sid : Var2,sid : Vart,sid to refer to all variables of session sid
(irrespective of which group).

– We write Var to refer to the concatenation of all Varsid (i.e. over all sid).

– Legalsid = 〈Varsid〉Zp[Varsid] =
∑

X∈Varsid
X·Zp[Varsid]. //Legalsid is the set of polynomials

that contain only this session’s variables X ∈ Varsid , and whose constant term is 0.
For example, 15Xsid +7Ysid ∈ Legalsid and 3XsidYsid ∈ Legalsid , but Xsid +3 /∈ Legalsid
and Xsid + Xsid′ /∈ Legalsid .

Init() // Invoked only upon creation
1: for i ∈ {1, 2, t} do
2: τi

$← Inj(Zp, Si)
3: Ri[τi(1)] ← {1}

CanonicalGensid(i)

4: return τi(1)

Observesid()

5: return Ob

Opsid(i, g1, g2, a1, a2)

6: assert (g1, g2, a1, a2) ∈ S2
i × Z

2
p

7: for j ∈ {1, 2} do
8: Touchsid(i, gj)

9: h ← τi(a1τ
−1
i (g1) + a2τ

−1
i (g2))

10: Ri[h] ← Ri[h] ∪ (a1Ri[g1] + a2Ri[g2])
11: if ∃f ∈ Ri[h] : f /∈ Legalsid then
12: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]

13: return h

Touchsid(i, g)

14: if Ri[g] = ∅ then
15: Initialize fresh variable X
16: Vari,sid ← Vari,sid : [X]
17: Ri[g] ← {X}

Pairsid(g1, g2)

18: assert (g1, g2) ∈ S1 × S2

19: for i ∈ {1, 2} do
20: Touchsid(i, gi)

21: h ← τt(τ
−1
1 (g1) · τ−1

2 (g2))
22: Rt[h] ← Rt[h] ∪ (R1[g1] · R2[g2])
23: if ∃f ∈ Rt[h] : f /∈ Legalsid then
24: Ob ← Ob :

[(Pair, t, g1, g2, h)]

25: return h

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 107

observation rules. This notion, however, is somewhat nontrivial—after all, the
entire group is shared equally among all sessions, with no algebraic differentia-
tion between any two group elements. To associate group elements with sessions,
we keep track of polynomial representations of group elements with respect to
certain generators.

Generators. To start, protocols can claim (random) generators g ∈ Si for each
group in their session by simply calling the Touchsid(i, g) procedure. Reminis-
cent of the Unix touch command, if g is already in use, nothing happens. Oth-
erwise, g becomes a generator of the caller’s session sid . (Protocols can choose g
randomly to ensure that g is unused with overwhelming probability.) A formal
variable X is associated with every touched generator g. The functionality keeps
track of each session’s generators in terms of their formal variables using lists
Vari,sid (to which X is appended). The canonical generators τi(1) do not belong
to any particular session. Looking slightly ahead, every group element h ∈ Si

will be associated with a (set of) polynomials Ri[h] that explain how the group
element has been computed. For a touched generator g with associated formal
variable X, the polynomial representation is simply Ri[h] = {X}. The canonical
generators are represented with constant polynomials, Ri[τi(1)] = {1}.

Group Operations. When executing group operations, G-oGG keeps track of
the polynomial representations corresponding to the resulting group element.
Whenever two group elements are added, their polynomial representations are
summed up to form the corresponding polynomial representation (Line 10 of
Functionality 3). Whenever the pairing operation is applied, polynomial rep-
resentations are multiplied (Line 22). For example, let g1, g2 be generators
associated with formal variables Ri[g1] = {X1},Ri[g2] = {X2}. If we compute
“h = 1 · g1 + 3 · g2”, then the corresponding polynomial is Ri[h] = {X1 + 3X2}. If
we further compute “h′ = 2 · h+ 50 · g1”, then Ri[h′] = {52X1 + 6X2}. Note that
by design, polynomials in R1 and R2 are of degree 1 or 0, and polynomials in Rt

for the target group are of degree at most 2.
It may happen that there are two polynomial representations f �= f′ for the

same group element h. For this reason, Ri[h] is formally modeled as a set con-
taining all known representations. However, by Schwartz–Zippel (Lemma 1), for
sufficiently large groups, Ri[h] will be a singleton set with overwhelming proba-
bility (we formally establish this in the UC setting in the proof of Lemma 3).

Observation Rules. With the above bookkeeping mechanisms, we have poly-
nomials f ∈ Ri[h] associated to each group element h, and sessions to each poly-
nomial variable X ∈ Varsid . This now allows us to establish the observation rules.
For this, we say that a group element h is legal in session sid if its associated
polynomial(s) f ∈ Ri[h] do not contain variables Xsid′ ∈ Varsid′ of foreign sessions
sid ′ �= sid (and no constant terms, which correspond to the canonical genera-
tors). This the set Legalsid in Functionality 3 formally defines the set of legal

108 J. Bobolz et al.

polynomials for session sid . A group operation or pairing operation is observable
if its result is not legal in the caller’s session. If an operation is observable, then
the input to the operation is added to a global list Ob in Line 12 and 24. Ob
can be read by anyone (environment, simulator, adversary, even, theoretically,
protocol entities) by calling Observe.

Intuitively, in order to not be observed, the protocol in session sid must only
operate with group elements that were derived from its session’s generators, with
no involvement of generators from other sessions sid ′. To comply with domain
separation, protocols in session sid must only operate with group elements that
were derived from their session’s generators, with no involvement of genera-
tors from other sessions sid ′. For example, if Ri[h] = {4Xsid + 3X′

sid}, where
Xsid ,X′

sid ∈ Vari,sid are associated with session sid , then clearly, h belongs to
session sid . An Opsid operation called by a party in session sid , resulting in h is
an example of an unobservable operation. However, if Ri[h] = {4Xsid + 3Ysid′},
where Ysid ′ ∈ Vari,sid′ belongs to session sid ′ �= sid , then h does not belong to
either session. An Opsid operation called by a party in session sid (or indeed any
other session), resulting in h is an example of an observable operation. For a pair-
ing operation Pairsid(h1, h2) = h, we naturally get that if, say, R1[h1] = {Xsid}
and R2[h2] = {3Zsid}, then for the result h, we get Rt[h] = {3XsidZsid}, which
indicates that h is legal (unobservable). If, however, instead R2[h2] = {3Zsid′}
with Zsid′ ∈ Legal2,sid ′ , then the result is illegal (hence observable), since
Rt[h] = {3XsidZsid′} �⊆ Legalsid .

Using G-oGG in Protocols. A protocol can set up its set of generators by sam-
pling random group elements g1

$← S1, g2
$← S2, and Touching them to make

them part of the protocol’s session. The protocol can then proceed naturally,
performing group and pairing operations as usual. For example, Groth16 can
choose a common reference string (CRS) based on g1, g2 (see Functionality 6).

With the observation rules in place, the simulator for session sid can be sure
that it gets observation information pertaining to all group elements h whose
polynomial f ∈ Ri[h] involves any variable X ∈ Varsid .

If the protocol stays within elements derived from its generators g1, g2 (e.g.,
the CRS and Groth16 proofs computed from it), those operations will, with over-
whelming probability, not be observable. See Sect. 4 for a discussion on unlikely
error events. A protocol may sometimes violate domain separation. For example,
this is necessary in Groth16 when verifying a proof π received from the envi-
ronment, which can potentially contain adversarially generated group elements
belonging to other sessions. In this case, operations are observable, hence care
must be taken that they do not leak any important information (which is not
an issue for Groth16, as the verifier does not hold any secret information). We
discuss handling protocols where this is an issue in Sect. 6.

Protocols can hash into the group (similarly to what we described in Sect. 3)
by hashing into Si (e.g., with a random oracle) and then Touching the hash
output. If there is sufficient entropy in the hashed element, it is likely that the
hash output will belong to the hasher’s session, making it safe to perform secret
operations on it.

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 109

Canonical Generators. The canonical generators g1, g2, gt, available via inter-
face CanonicalGen correspond to discrete logarithms τ−1

i (gi) = 1 and the
constant polynomials Ri[g] = {1}. In principle, they can be used by any proto-
col (session). However, operations involving the canonical generator will all be
observable (any polynomial with a non-zero constant term is observable). This is
a somewhat arbitrary choice, but makes for nicer algebraic properties of observ-
ability (e.g., the set Legalsid = 〈Varsid〉Zp[Varsid] corresponding to unobservable
polynomials can be written as an ideal).

Efficiency. Similar to G-GG, the observable G-oGG is also not efficient. In addition
to sampling the random encoding functions τi at the start, the sets Ri[g] in G-oGG
can also blow up to superpoly sizes in the worst case. However, as we argue in
Lemma 3, with overwhelming probability, Ri[g] will be a singleton. To make
G-oGG efficient, one can sample τi values lazily, and if any set Ri[g] ever gets
larger than a single element (which happens only with negligible probability),
one can switch to an arbitrary error mode (e.g., stop maintaining R and instead
make everything observable).

4 Switching to Symbolic Groups

The restricted global observable generic group functionality G-oGG faithfully
models a generic group (as in G-GG) with tacked-on observation capabilities.
However, an issue of G-oGG when doing security proofs is that the session sep-
aration in G-oGG is imperfect. It can happen that some group element belongs
to two sessions in G-oGG, and both sessions will be able to observe operations
involving it. This is not desirable and will be an error event for most appli-
cations. In this section, we present the symbolic (restricted observable) generic
group model G-oSG, where session separation is perfect by definition and this
error event cannot happen. Lemma 3 shows that G-oGG can be securely replaced
by G-oSG.

In addition to that, G-oSG will also support typical security proof techniques.
Many typical (game-based) generic group model security proofs follow roughly
(at least in spirit) this template:
1. Run the generic adversary, while the reduction answers its generic group

oracle queries.

2. Argue that instead of sampling random discrete logarithm secrets α, β
$←

Z
∗
p, the reduction can play the role of the generic group oracle using formal

variables Xα,Xβ . Applying Schwartz–Zippel shows that this is undetectable
to the generic adversary.

3. Argue that the adversary only makes linear (or pairing) operations, so when-
ever the adversary outputs a group element h∗ corresponding to a ·Xα + bXβ ,
the reduction algorithm can extract the discrete logarithm representation
(a, b) ∈ Z

2
p of that group element by looking at the generic group oracle

queries the adversary made.

110 J. Bobolz et al.

4. Argue that the group elements output by the adversary do not threaten secu-
rity because they are only linear combinations of the (polynomials correspond-
ing to the) elements the reduction has provided (e.g., the adversary cannot
output X if we only give it X+ Y, but not Y).

The last step is highly dependent on the concrete scheme to be proven secure.
For example, it can take the form of “We only give A the public key [Xx,Xy]2 and
signatures σi = [Xri

,Xri
(Xx +miXy)]1, so when the adversary outputs a forgery

(in the first group), it must be of the form [
∑

ai ·Xri
+

∑
bi ·Xri

(Xx +miXy)]1,
and hence cannot be forgery” [58]. These arguments are inherently symbolic, i.e.
in the last step, Xx,Xy,Xri

are formal variables, and the verification equation
is an equation over polynomials in those variables. There are no concrete values
anymore, and hence we are discussing the values and equations symbolically. In
particular, this guarantees that there cannot be any accidental guesses of secret
keys or randomness, meaning that proofs at this stage are usually perfect.

In this section, we extend G-oSG in Functionality 5 to enable the proof strat-
egy above as follows (the steps here correspond to the steps above).
1. Run the UC environment/adversary with G-oGG replaced by G-oSG.

2. Instead of choosing random secrets α, β
$← Z

∗
p, then have the UC simula-

tor ask (the extended) G-oSG for corresponding formal variables Xα,Xβ ←
GetRnd(), and use ComputeSymbolicsid to output group elements rela-
tive to the secrets. Lemma 4 shows that this switch is undetectable.

3. Have the UC simulator use the algorithm FindRep to extract the discrete
logarithm representation (a, b) from element h∗. In contrast to the typical
generic group proofs, the UC simulator does not see all generic group opera-
tions, but Lemma 5 shows that the restricted observations are enough to get
meaningful guarantees.

4. Argue that the group elements output by the adversary do not threaten secu-
rity. This part is essentially the same as in standard generic group proofs. It
is supported by G-oSG (+ extensions), which automatically keeps track of the
polynomial τ−1

i (h) corresponding to each group element h.
The symbolic G-oSG with extensions (Functionality 5) will allow most security
proofs to conveniently hop to a setting where secrets are formal variables, group
elements correspond one-to-one to polynomials (enabling symbolic analysis of
group elements/operations), and the simulator can extract discrete logarithm
representations. Most proofs can simply invoke our Lemmas 3 to 5 without
ever applying Schwartz–Zippel themselves. We use this framework when proving
Groth16 secure in Sect. 5.

4.1 The Restricted Observable Global Symbolic Group Model
with Perfect Session Separation

We introduce the restricted observable global symbolic group model G-oSG in
Functionality 4, which, in contrast to G-oGG, has perfect separation of sessions.
This separation is modeled similarly to G-oGG, with polynomials. In contrast to

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 111

G-oGG, the polynomials will not only be some bookkeeping artifacts R alongside
the actual G-GG functionality, but rather the main driver behind group opera-
tions. More concretely, the random encoding function τ i : Zp[Var,SimVar±1] →
Si

7 now injectively maps polynomials f to random encodings h, rather than
concrete discrete logarithms. In particular, this means that any group element
(encoding) h ∈ Si has a unique polynomial τ−1

i (h) associated with it, which
also directly determines its behavior w.r.t. Op,Pair. In this sense, the polyno-
mial mapping τ i serves two purposes now: It manages the algebraic properties
of group elements (managed by τi over Zp in G-oGG) and it is used to decide
observability (used to be managed by R in G-oGG).

A consequence of having τ i map polynomials to Si is that there exist no
injective τ i : Zp[Var,SimVar±1] → Si. We cannot choose τ i randomly at the
beginning, anymore. For this reason, images of τ i are lazily sampled via Tau.
Because the adversary is computationally bounded, we will not run out of fresh
unused images in Si \ im(τ i) to use in Line 23.

The following lemma establishes that we can replace the procedures of G-oGG
with their idealized versions from G-oSG (ignoring the “extra” procedures that
G-oSG carries).

Lemma 3. Let Oreal = G-oGG.[CanonicalGen,Observe,Touch,Op,Pair].
Let Osymb = G-oSG.[CanonicalGen,Observe,Touch,Op,Pair].

For all algorithms B that make at most q oracle queries, it holds that

∣
∣Pr

[BOreal = 1
] − Pr

[BOsymb = 1
]∣
∣ ≤

(
3q + 1

2

)

· 2/p ≤ (9q2 + 3q)/p

When treating interfaces Interface as oracles, this means that the caller speci-
fies session sid and input x, then gets the result of Interfacesid(x). The oracles
share state. The proof can be found in the full version of this paper [10].

Overall, as the first step in any G-oGG proof, we expect G-oGG to be replaced
by G-oSG, which is more convenient to handle in security proofs, and will enable
powerful symbolic analysis using its extensions.

4.2 Extending G-oSG with Support for Symbolic Analysis

As sketched at the beginning of Sect. 4, our goal is to support typical GGM proof
techniques in the G-oSG UC setting. For this, we extend G-oSG with additional
interfaces in Functionality 5.

We direct our attention at Functionality 5’s GetRnd, ComputeConcrete,
ComputeAtomic, and ComputeSymbolic. They model interaction of an algo-
rithm B (usually the UC simulator) with hidden variables. They will allow us to
make statements about changes in B’s behavior as long as B does not use those
hidden variables other than for group operations. The interfaces are to be used
as follows: Whenever B generates a secret α ← Z

∗
p, this can be modeled as a

7 For now, ignore the list SimVar of formal variables. It is empty and will only be used
in the G-oSG extensions (Functionality 5).

112 J. Bobolz et al.

Functionality 4: G-oSG

Differences with G-oGG are highlighted in purple. Values relevant only in the G-oSG exten-
sions (Functionality 5) are highlighted in yellow (can be ignored on first read).

– τ i now maps polynomials (Zp[Var, SimVar±1] instead of Zp) to random encodings Si

– Vari,sid initially empty lists of polynomial variables

– SimVarsid empty lists of polynomial variables Xrnd. Only used in Functionality 5

– SimVal sid empty lists of random scalars xrnd ∈ Zp corresponding to SimVarsid

– Ob initially empty list of (globally) observable actions

– Obsid initially empty lists of all actions observable in specific session sid , including
actions of parties in session sid (only read in the G-oSG extensions)

– Ci initially empty sets Ci ⊆ Si of group elements that can be the basis for extraction
(only read in the G-oSG extensions)

Furthermore, we use the following terms derived from the current state
– We write Varsid ,Var as before. Similarly, SimVar is the concatenation of all SimVarsid .

Var–sid is the concatenation of all Varsid′ , where sid ′ = sid .

– Legalsid = 〈Varsid〉
Zp[Varsid ,SimVar±1

sid
]
=

∑
X∈Varsid

X ·Zp[Varsid , SimVar±1
sid]. //Legalsid is the

set of (Laurent) polynomials that contain only variables from Varsid and SimVarsid
(with potentially negative exponents), where every nonzero term has some factor
X ∈ Varsid .

Init() // Invoked only upon creation
1: for i ∈ {1, 2, t} do
2: τ i ← {}
3: Tau(i, 1)
4: Ci ← Ci ∪ {1}

CanonicalGensid(i)

5: return Tau(i, 1)

Observesid()

6: return Ob

Opsid(i, g1, g2, a1, a2)

7: assert (g1, g2, a1, a2) ∈ S2
i × Z

2
p

8: for j ∈ {1, 2} do
9: Touchsid(i, gj)

10: f ← a1τ
−1
i (g1) + a2τ

−1
i (g2)

11: h ← Tau(i, f)
12: if f /∈ Legalsid then
13: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]

14: Obsid′ ← Obsid′ :
[(Op, i, g1, g2, a1, a2, h)] for all sid ′

(incl. sid)
15: Obsid ← Obsid :

[(Op, i, g1, g2, a1, a2, h)]
16: return h

Touchsid(i, g)

17: if g /∈ im(τ i) then
18: Initialize a fresh variable X
19: Vari,sid ← Vari,sid : [X]
20: τ i(X) ← g
21: Ci ← Ci ∪ {g}

Tau(i, f) // internal
22: if τ i(f) = ⊥ then
23: τ i(f)

$← Si \ im(τ i)

24: return τ i(f)

Pairsid(g1, g2)

25: assert (g1, g2) ∈ S1 × S2

26: for i ∈ {1, 2} do
27: Touchsid(i, gi)

28: f ← τ−1
1 (g1) · τ−1

2 (g2)
29: h ← Tau(t, f)
30: if f /∈ Legalsid then
31: Ob ← Ob :

[(Pair, t, g1, g2, h)]
32: Obsid′ ← Obsid′ :

[(Pair, t, g1, g2, h)] for all sid ′

(incl. sid)
33: Obsid ← Obsid :

[(Pair, t, g1, g2, h)]
34: return h

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 113

Functionality 5: G-oSG extensions

This box contains interfaces in addition to the ones shown in Functionality 4. These inter-
faces are artifacts for security proofs rather than publicly available interfaces. They model
interaction with unknown random values/variables and the discrete logarithm represen-
tation extraction process via FindRep. See Lemmas 3 to 5 for how these interfaces are
used.

GetRndsid()

35: Initialize a new variable X
36: SimVarsid ← SimVarsid : [X]
37: x

$← Z
∗
p

38: SimVal sid ← SimVal sid : [x]
39: return X

ComputeSymbolicsid(i, (hj , fj)
n
j=1)

40: assert τ−1
i (hj) ∈ Legalsid // hj

belongs to session sid and fj ∈
Zp[SimVar±1

sid] for all j ∈ [n].
41: f ← ∑

j τ−1
i (hj) · fj // ∈

Zp[Varsid , SimVar±1
sid]

42: h ← Tau(i, f)
43: Ci ← Ci ∪ {h}
44: return h

ComputeAtomicsid(i, (hj , fj)
n
j=1)

45: assert τ−1
i (hj) ∈ Legalsid // hj

belongs to session sid and fj ∈
Zp[SimVar±1

sid] for all j ∈ [n].
46: f ← ∑

j τ−1
i (hj) · fj(SimVal sid) // ∈

Zp[Varsid]
47: h ← Tau(i, f)
48: return h

ComputeConcretesid(i, (hj , fj)
n
j=1)

49: assert τ−1
i (hj) ∈ Legalsid // hj

belongs to session sid and fj ∈
Zp[SimVar±1

sid] for all j ∈ [n].
50: h ← Tau(i, 0) // h = 0 neutral ele-

ment
51: for j ∈ [n] do
52: aj ← fj(SimVal sid) // ∈ Zp.

Compute exponent aj from secrets
SimVal sid

53: h ← Opsid(i, h, hj , 1, aj) // h ←
h + aj · hj

54: return h

GetRepsid(i, h
∗,B)

55: assert i ∈ {1, 2}, h∗ ∈ im(τ i),B ∈
(Ci)

n with Bj = B� for j = �.
56: (aj)

n
j=1 ← FindRep(i, h∗,Obsid ,B)

57: V =
∑n

j=1 aj · τ−1
i (Bj) // Result as

polynomial V ∈ Zp[Var, SimVar±1]
58: assert ∃bj , cj ∈ Zp[SimVar±1] :

V = τ−1
i (h∗) + foreign + missing,

where foreign =
∑

Xj∈Var–sid
bjXj and

missing =
∑

j:Ci[j]/∈B cj · τ−1
i (Ci[j]),

where Ci[j] is the jth element of the
set Ci with some canonical ordering.

59: return a1, . . . , an

call to GetRnd, which samples α for B, and returns a handle (in the form of
a formal variable) Xα. G-oSG keeps a list of these variables Xα in SimVar and
the corresponding values (hidden from B) in SimVal . In the following, B will use
the handle Xα to describe computations involving α using Laurent polynomials
fj ∈ Zp[SimVar±1]. Whenever B would use α to compute some group element g,
we can model this as a call to ComputeConcrete. It passes the description of
the sum it wants to compute in the form of pairs (hj , fj) ∈ Si × Zp[SimVar±1]
as input to ComputeConcrete, which then uses its knowledge of the concrete
values SimVal to compute “h =

∑
hj · fj(Val)” using the Op oracle.

ComputeConcrete is indistinguishable from ComputeSymbolic. In the
latter, the computation is done both atomically in a single step, and, more
importantly, symbolically, meaning that ComputeSymbolic does not access

114 J. Bobolz et al.

the concrete values SimVal at all. Instead, it simply computes the result f in
terms of polynomials, and then returns Tau(i, f). This functionality heavily uses
the fact that the encoding functions τ i already work over polynomials. In the
original G-oSG, this capability is only used for the sake of domain separation
(with the Var variables), but in the presence of ComputeSymbolic, it is also
used to make computations directly over formal variables Xα corresponding to
secrets of B. For example, if g is a generator corresponding to Xg ∈ Var, and
the computation is “h ← α−2 · g”, then the result h will be internally associated
with the polynomial f = X−2

α · Xg = τ−1
i (h) ∈ Zp[Var,SimVar±1], and it will

algebraically behave like f.
As an intermediate step between the interfaces ComputeConcrete and

ComputeSymbolic, the interface ComputeAtomic does the computation in
ComputeConcrete, but using only a single query to Tau.

Overall, this enables the security proof to talk about group elements h by
their polynomial representation τ−1

i (h), which is a powerful analysis tool. The
following lemma establishes indistinguishability between the three computation
methods.

Lemma 4. Define O = G-oSG.[CanonicalGen,Observe,Touch,Op,Pair,
GetRnd].
Let BO,ComputeX be an algorithm that makes at most q oracle queries. For oracle
queries

ComputeX(i, (h�,j , f�,j)n�
j=1),

let q′ ≥ ∑q
�=1 n� be (an upper bound for) the number of supplied polynomials

to the last oracle. Let d ≥ maxi,h(deg(τ−1
i (h))) be (an upper bound for) the

maximum degree of (Laurent) polynomials in the execution of BO,ComputeSymbolic

If 3q + q′ + 1 ≤ p, then
∣
∣
∣
∣

Pr
[BO,ComputeConcrete = 1

]

− Pr
[BO,ComputeAtomic = 1

]

∣
∣
∣
∣ ≤ (2q + q′) · q′/(p − q)

∣
∣
∣
∣

Pr
[BO,ComputeAtomic = 1

]

− Pr
[BO,ComputeSymbolic = 1

]

∣
∣
∣
∣ ≤

(
3q + 1

2

)

· 2d/(p − 1)

As a consequence of the lemma, we get this bound for applicable B:
∣
∣
∣
∣

Pr
[BO,ComputeConcrete = 1

]

− Pr
[BO,ComputeSymbolic = 1

]

∣
∣
∣
∣ ≤ (2q + q′) · 3q

′

2p
+ (9q2 + 3q)d/(p − 1).

The proof of Lemma 4 can be found in the full version of this paper [10].

4.3 Extracting Discrete Logarithm Representations

Finally, in generic group model proofs, one usually wants to extract the discrete
logarithm representations of certain group elements. In the UC setting with a
global generic group, this is complicated by the fact that the UC simulator for
session sid does not have access to all GGM queries, but only to “illegal” queries

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 115

Function 1: FindRep

FindRep(i, h∗,Obsid ,B)

1: //Finds representation of h∗ ∈ Si w.r.t. basis B ∈ Sn
i . Requires observations Obsid

of globally observable operations and the simulator’s operations (see Functional-
ity 5)

2: // Returns a (partial) representation Rep[h∗] ∈ Z
n
p in the form of coefficients for

basis elements
3: assert i ∈ {1, 2} //FindRep for target group in [10]
4: Parse B = (B1, . . . , Bn) ∈ Sn

i //Basis elements for the representation
5: Rep[h] ← 0n ∈ Z

n
p initially for all h

6: for j ∈ [n] do Rep[Bj] ← (Kronecker�,j)
n
�=1 // ∈ Z

n
p

7: for ob = (Op, i, g1, g2, a1, a2, h) ∈ Obsid do // Observed operations in order of
Obsid (filtered by Op, i)

8: Rep[h] ← a1 · Rep[g1] + a2 · Rep[g2] // Update representation of h w.r.t. to
operation result “h = a1g1 + a2g2”
return Rep[h∗] //Return representation for the h∗ we were interested in

made in foreign sessions sid ′ �= sid (Line 12 and 24 in Functionality 3), and
to queries made by the adversary in session sid (by design of UC / the default
identity bound ξ). The list of observations available to the simulator is modeled
in Line 15, 14 and Line 33 and 32 of Functionality 4. Some operations are, by
design, unobservable. For example, if a protocol (embodied by the environment)
in session sid ′ computes an element f = 3X ∈ Legalsid′ , then the simulator
in session sid does not get any information about that computation, and will
consequently not be able to extract the coefficient 3.

The GetRep interface (Functionality 5), defines in Line 58 what we can
expect from the algorithm FindRep given the limited observation information:
When extracting a representation for h∗, the algorithm FindRep outputs coeffi-
cients that (together with the basis) almost sum up to the polynomial τ−1

i (h∗).
What is missing from that sum can only be (1) foreign terms, that contain for-
eign variables Xj from another session (because those terms may be subject to
unobservable computations), and (2) missing terms, which contain a variable X
not supplied to FindRep as a basis (because FindRep has no starting point
to find coefficients for X from). When doing security proofs, one would usually
argue that those terms are not required for the simulator to successfully do its
job. For example, the Groth16 simulator, when extracting a Groth16 proof, is
only interested in (1) elements on the correct basis (proofs containing another
basis are rejected by the verification equation), and (2) coefficients of one specific
term of the proof’s polynomial representation, which correspond to the witness.

The FindRep algorithm (Functionality 1) itself is quite simple: it linearly
scans the list of observations and keeps track of their representations Rep in
terms of the basis B supplied.

The following lemma states that FindRep works correctly. This is defined in
terms of the symbolic computation setting and the interface GetRep, which runs

116 J. Bobolz et al.

FindRep with the expected input (in particular with the correct observation list
Obsid) and then checks the output.

Lemma 5. Define O = G-oSG.[CanonicalGen,Observe,Touch,Op,Pair,
GetRnd,ComputeSymbolic,GetRep]. Let B be an algorithm that makes at
most p queries. Then

Pr
[BO has assertion in Line 58 of Functionality 5 fail

]
= 0

The proof can be found in the full version [10].

5 UC Security of Groth16

In Protocol 1, we present the Groth16 protocol Π-G16 in the presence of our
global observable generic group functionality G-oGG. The protocol is described
in the F-CRS-hybrid model (Functionality 6). The crucial operation is for-loop
starting at Line 1, in which F-CRS registers uniformly random session-specific
generators gsid,i. In this way, all of the group operations performed by honest
provers are confined to the domain of the current session and thus unobservable
by the environment (except if F-CRS or prover accidentally operates on group
elements that are already reserved for another session, which occurs with neg-
ligible probability). We defer detailed hybrids for Theorem 1 to the full version
[10].

Theorem 1. Π-G16 UC-realizes F-wNIZK in the F-CRS-hybrid model in the
presence of G-oGG. Concretely, for any PPT adversary A, there exists a PPT
simulator SG16 such that for every Z that makes at most qZ queries to G-oGG,
qP queries to the Prove interface, and qV queries to the Verify interface,

|Pr[EXECF-wNIZK,Z,SG16,G-oGG(λ, z) = 1] − Pr[EXECΠ-G16,Z,A,G-oGG(λ, z) = 1]|
≤ 72 · d · (m + d + qZ + (m + d)qP + �qV + 1)2/(p − 1)

and SG16 performs in total the following operations:
– at most 3qP + 9qV + 2qZ + 3d + m + 8 queries to G-oGG
– at most (2 + 8)qP + (3qZ + 2 + 2)qV + (d + 1)(3m + 11) field operations

where d,m, depend on the circuit size (see Functionality 6).

6 Composition When Unobservability Is Required

The observable G-GGM is well suited for proving succinct arguments such as
Groth16. In such schemes honest parties do not execute secret-dependent com-
putations on adversarial group elements. As honest provers only compute on
group elements originating from their own session, observability does not pose
any privacy challenges, e.g. for the proof of the zero-knowledge property.

This situation is significantly different for other cryptographic schemes. For
instance for the PAKE proof of [30] the authors assume that no information

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 117

Functionality 6: F-CRS

F-CRS has access to G-oGG.
F-CRS is parameterized by an NP-relation determined by QAP (ui, vi, wi)

m
i=0 ∈ F

d−1
p [X]

and t ∈ F
d
p[X], where d is the number of multiplication gates and a0 = 1:

RQAP =
{
({ai}�

i=1, {ai}m
i=�+1) : (

∑m
i=0 aiui)(

∑m
i=0 aivi) ≡ (

∑m
i=0 aiwi) mod t

}

To simplify notation we denote qi(α, β, x) := βui(x) + αvi(x) + wi(x).
F-CRS stores state:

– σ, labels for common reference string
We use the following compact notation for a vector of encoded group elements with known
discrete logs:

– [x, y, . . .]sid,i := (G-oGG.Opsid(i, gsid,i, gsid,i, x, 0), G-oGG.Opsid(i, gsid,i, gsid,i, y, 0), . . .)

Initsid() // Invoked only upon creation
1: for i = 1, 2 do
2: gsid,i

$← Si

3: G-oGG.Touchsid(i, gsid,i)

4: x, α, β, γ, δ
$← Zp

5: σ1 ← [α, β, δ, {xi}d−1
i=0 , {qi(α, β, x)γ−1}�

i=0, {qi(α, β, x)δ−1}m
i=�+1, {xit(x)δ−1}d−2

i=0]sid,1

6: σ2 ← [β, γ, δ, {xi}d−1
i=0]sid,2

7: σ ← (σ1, σ2)

GetCRSsid()

8: return σ

Protocol 1: Π-G16

The protocol has access to F-CRS and G-oGG.
Provesid(x = {ai}�

i=1,w = {ai}m
i=�+1)

1: if (x ,w) /∈ RQAP then return ⊥
2: σ ← F-CRS[G-oGG, RQAP].GetCRSsid()
3: r, s

$← Zp

4: Compute h ∈ F
d−2[X] such that ht = (

∑m
i=0 aiui)(

∑m
i=0 aivi) − (

∑m
i=0 aiwi)

5: A := [a]sid,1 ← [∑m
i=0 aiui(x) + α + rδ

]
sid,1

// Computed by calling G-oGG.Opsid

on [xi]sid,1, [α]sid,1, [δ]sid,1

6: B := [b]sid,2 ← [∑m
i=0 aivi(x) + β + sδ

]
sid,2

// Computed by calling G-oGG.Opsid

on [xi]sid,2, [β]sid,2, [δ]sid,2

7: C := [c]sid,1 ← [∑m
i=�+1 aiqi(α, β, x)δ−1 + h(x)t(x)δ−1 + sa + rb − rsδ

]

sid,1

// Computed by calling G-oGG.Opsid on [qi(α, β, x)δ−1]sid,1, [x
it(x)δ−1]sid,1,

[a]sid,1, [β]sid,1, [δ]sid,1

8: return (A, B, C)

Verifysid(x = {ai}�
i=1, π = (A, B, C))

9: σ ← F-CRS[G-oGG, RQAP].GetCRSsid()

10: Cpub ←
[∑�

i=0 aiqi(α, β, x)γ−1
]

sid,1
// Computed by calling G-oGG.Opsid on

[qi(α, β, x)γ−1]sid,1

11: return A · B = Cpub · [γ]sid,2 +C · [δ]sid,2 + [α]sid,1 · [β]sid,2 //Computed by calling
G-oGG.Opsid and G-oGG.Pairsid

118 J. Bobolz et al.

about oracle usage is disclosed between parties. Similar issues arise for public-
key encryption and oblivious PRFs [44] when modeled with G-oGG. The security
proofs of such schemes fail when using G-oGG, because the environment can send
group elements—ciphertexts or blinded evaluation points—that originate from
a foreign session. As an honest party applies their secret key to them, this leaks
the key.

Note that this is inherent for any observable model of generic groups, as long
as sessions are treated “symmetrically”. That is, the Observesid oracle can either
be called by the simulator to prove session sid secure, or by the environment to
model another protocol in session sid ′ composed in parallel, and prove overall
security when reusing the same group.

Consider two cryptographic schemes: G16 in session sid and in session sid ′

a CCA2-secure variant of ElGamal, which we refer to as EG2, e.g. ECIES [61]
or Cramer-Shoup [29]. The distinguishing environment against G16 can make
calls to Opsid′ . The Observesid oracle must include Opsid′ operations on group
elements that originated in session sid , such as those used to generate a reference
string for G16. Otherwise the extractor for G16 would fail to extract the witness.
However, a distinguishing environment against EG2 (which can call Observesid)
must not observe Opsid′ operations on group elements that originated in session
sid . Otherwise it would obtain leaked information about the EG2 secret key.

The crucial step to escape this conundrum is to observe that Observesid is
only called by the Groth16 simulator in the ideal world. Thus conceptually, we
can work with a non-observable generic group (and apply the standard UCGS
composition theorem to protocols like Π-EG2 in that setting). Only when we
want to switch from the concrete protocol Π-G16 to the ideal F-wNIZK, we
switch to observable groups (as required by the Groth16 ideal world simulator).
We develop details in the full version of this paper [10].

7 Conclusion and Future Work

In this paper, we have established the restricted observable global generic group
functionality G-oGG and, as an important application to a widespread SNARK,
we have proven Groth16 UC-secure in the F-CRS hybrid model in the presence
of G-oGG. We expect the functionality G-oGG to find additional applications, in
particular for proving other SNARKs UC-secure, especially ones based on poly-
nomial interactive oracle proofs (PIOPs) [14,16,27], such as PLONK [37]. In fact,
recent works show that SNARKs obtained from PIOP and the KZG polynomial
commitment [45] are already simulation-extractable without modification in the
AGM and (programmable) ROM [33,34,47]. Thus, a natural follow-up question
is whether these SNARKs are UC-secure in the presence of G-oGG and (restricted
programmable) global random oracle functionalities.

Another exciting research opportunity is to establish a “UC lifting theorem”
that allows practitioners to analyze the security of their constructions in the
(simpler) game-based generic-group model, and then automatically obtain UC
security via lifting. Section 4 already establishes that in spirit, standard GGM

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 119

proof techniques carry over to the UC setting. Our proof of Groth16 security is
a good indicator that the protocol-specific part of the proof mostly boils down
to symbolic analysis of polynomials, which is already available from the original
paper, or from proofs in the AGM. Establishing formal requirements for a game-
based proof to carry over to UC, would be a powerful bridge between game-based
“standalone” proofs and UC proofs.

While our paper addresses reuse of the group (multiple protocols using the
same group), we leave open the question of a reusable CRS for Groth16, or more
generally, the question of reusing (parts of the) CRS across multiple sessions
for NIZK in UC. Our Groth16 works in the F-CRS-hybrid model, which means
that every session of Groth16 needs its own CRS (which can be “reused” only
insofar that parties in the same session can compute multiple proofs from it).
The same limitation applies to essentially all existing results on CRS-based NIZK
in UC [2,3,6,23,24,28,38,39,48,53], which also rely on non-reusable, local CRS
functionalities.

We have focused on the strict and observable versions of the global generic
group functionalities. Similarly to random oracles [15], one could envision various
levels of programmability for generic groups. While programmability of generic
groups is seldomly exploited in game-based proofs (and, to our knowledge, has
not been used for NIZK constructions), it is a possibility (e.g., [25]) and deserves
formal UC treatment.

While the generic group model seems to have inherent advantages when it
comes to compositional proofs, as discussed in the introduction, the algebraic
group model (with oblivious sampling [51]) is the more conservative model (in
the sense of restricting the adversary and protocols) in general. An interesting
question is whether there is a composable model in the spirit of the AGM that
does not restrict the environment from using group elements across sessions.

Finally, we have provided a concrete security analysis of Groth16, giving
concrete bounds in Theorem 1. It can be interesting to revisit the tightness
of this analysis, especially compared to the game-based setting. However, we
are not aware of any GGM-based concrete parameter treatment of Groth16 in
the literature, even in the game-based setting. Another interesting direction is
to explore what this concrete guarantee means for compositions using Groth16
since concrete security of simulation-based security and of the UC theorem is
not well-studied in the literature.

Acknowledgments. We thank Sabine Oechsner for insightful discussions on the con-
nection between this work and State Separating Proofs.

Pooya Farshim was supported in part by EPSRC grant EP/V034065/1. This work
was supported by Input Output (iohk.io) through their funding of the Edinburgh ZK-
Lab.

This paper was prepared in part for information purposes by the Artificial Intelli-
gence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and
is not a product of the Research Department of JP Morgan. JP Morgan makes no
representation and warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein. This document is not

https://iohk.io

120 J. Bobolz et al.

intended as investment research or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial instrument, financial prod-
uct or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any
person, if such solicitation under such jurisdiction or to such person would be unlawful.

References

1. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Xu, J.: Algebraic adversaries
in the universal composability framework. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13092, pp. 311–341. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92078-4_11

2. Abdolmaleki, B., Glaeser, N., Ramacher, S., Slamanig, D.: Universally composable
NIZKs: Circuit-succinct, non-malleable and CRS-updatable. Cryptology ePrint
Archive, Report 2023/097 (2023). https://eprint.iacr.org/2023/097

3. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable SNARKs generically. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1987–2005. ACM Press (2020).
https://doi.org/10.1145/3372297.3417228

4. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal compo-
sition with global subroutines: capturing global setup within plain UC. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 1–30. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64381-2_1

5. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction
and randomization of Groth’s zk-SNARK. In: Borisov, N., Diaz, C. (eds.) FC 2021.
LNCS, vol. 12674, pp. 457–475. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-662-64322-8_22

6. Baghery, K., Sedaghat, M.: Tiramisu: black-box simulation extractable NIZKs
in the updatable CRS model. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS
2021. LNCS, vol. 13099, pp. 531–551. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92548-2_28

7. Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random
generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7_27

8. Bauer, B., Farshim, P., Harasser, P., Kohlweiss, M.: The uber-knowledge assump-
tion: a bridge to the agm. Cryptology ePrint Archive, Paper 2023/1601 (2023).
https://eprint.iacr.org/2023/1601

9. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5_2

10. Bobolz, J., Farshim, P., Kohlweiss, M., Takahashi, A.: The brave new world of
global generic groups and UC-secure zero-overhead SNARKs. Cryptology ePrint
Archive, Paper 2024/818 (2024). https://eprint.iacr.org/2024/818

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_30

12. Bowe, S., Gabizon, A.: Making groth’s zk-SNARK simulation extractable in the
random oracle model. Cryptology ePrint Archive, Report 2018/187 (2018). https://
eprint.iacr.org/2018/187

https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://eprint.iacr.org/2023/097
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1007/978-3-030-64381-2_1
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/978-3-030-26951-7_27
https://eprint.iacr.org/2023/1601
https://doi.org/10.1007/978-3-662-53644-5_2
https://eprint.iacr.org/2024/818
https://doi.org/10.1007/3-540-45682-1_30
https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/187

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 121

13. Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.: State
separation for code-based game-playing proofs. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11274, pp. 222–249. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3_9

14. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

15. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9_11

16. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-
prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13092, pp. 3–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92078-4_1

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

18. Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020).
https://doi.org/10.1145/3402457

19. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Paper 2000/067 (2020). https://eprint.iacr.
org/2000/067, https://eprint.iacr.org/2000/067

20. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

21. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press (2014). https://doi.org/10.1145/2660267.2660374

22. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_16

23. Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. In: Agrawal, S., Lin,
D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 466–495. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_16

24. Chase, M., Lysyanskaya, A.: On Signatures of Knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175_5

25. Chen, B., et al.: Rotatable zero knowledge sets - post compromise secure auditable
dictionaries with application to key transparency. In: Agrawal, S., Lin, D. (eds.)
ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp. 547–580. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-22969-5_19

26. Chiesa, A., Fenzi, G.: zksnarks in the rom with unconditional uc-security. Cryp-
tology ePrint Archive, Paper 2024/724 (2024). https://eprint.iacr.org/2024/724

27. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1_26

https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3402457
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-031-22966-4_16
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-031-22969-5_19
https://eprint.iacr.org/2024/724
https://doi.org/10.1007/978-3-030-45721-1_26

122 J. Bobolz et al.

28. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear communi-
cation complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7_2

29. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

30. Cremers, C., Naor, M., Paz, S., Ronen, E.: CHIP and CRISP: Protecting all parties
against compromise through identity-binding PAKEs. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 668–698. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-15979-4_23

31. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

32. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_6

33. Faonio, A., Fiore, D., Kohlweiss, M., Russo, L., Zajac, M.: From polynomial IOP
and commitments to non-malleable zkSNARKs. In: Rothblum, G.N., Wee, H. (eds.)
TCC 2023, Part III. LNCS, vol. 14371, pp. 455–485. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-48621-0_16

34. Faonio, A., Fiore, D., Russo, L.: Real-world universal zksnarks are non-malleable.
Cryptology ePrint Archive, Paper 2024/721 (2024). https://eprint.iacr.org/2024/
721

35. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7_5

36. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

37. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

38. Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.:
Witness-succinct universally-composable SNARKs. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 315–346. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-30617-4_11

39. Groth, J.: Simulation-Sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

40. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

41. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_20

42. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015). https://doi.org/10.1007/s00145-013-9160-y

https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/978-3-031-15979-4_23
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/978-3-031-48621-0_16
https://eprint.iacr.org/2024/721
https://eprint.iacr.org/2024/721
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-031-30617-4_11
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/s00145-013-9160-y

Global Generic Groups and UC-Secure Zero-Overhead SNARKs 123

43. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-
based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
539–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8_31

44. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8_13

45. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

46. Kerber, T., Kiayias, A., Kohlweiss, M.: Composition with knowledge assumptions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 364–393.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_13

47. Kohlweiss, M., Pancholi, M., Takahashi, A.: How to compile polynomial IOP into
simulation-extractable SNARKs: a modular approach. In: Rothblum, G.N., Wee,
H. (eds.) TCC 2023, Part III. LNCS, vol. 14371, pp. 486–512. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-48621-0_17

48. Kosba, A., et al.: C∅c∅: a framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015). https://eprint.iacr.
org/2015/1093

49. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press
(2016). https://doi.org/10.1109/SP.2016.55

50. Küsters, R.: Simulation-based security with inexhaustible interactive Turing
machines. Cryptology ePrint Archive, Report 2006/151 (2006). https://eprint.iacr.
org/2006/151

51. Lipmaa, H., Parisella, R., Siim, J.: Algebraic group model with oblivious sampling.
In: Rothblum, G.N., Wee, H. (eds.) Theory of Cryptography - 21st International
Conference, TCC 2023, Taipei, Taiwan, 29 November–2 December 2023, Proceed-
ings, Part IV. LNCS, vol. 14372, pp. 363–392. Springer, Heidelbegr (2023). https://
doi.org/10.1007/978-3-031-48624-1_14

52. Lysyanskaya, A., Rosenbloom, L.N.: Efficient and universally composable non-
interactive zero-knowledge proofs of knowledge with security against adaptive cor-
ruptions. Cryptology ePrint Archive, Report 2022/1484 (2022). https://eprint.iacr.
org/2022/1484

53. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable Σ-protocols in the
global random-oracle model. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022,
Part I. LNCS, vol. 13747, pp. 203–233. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-031-22318-1_8

54. Maurer, U.: Constructive Cryptography – A Primer. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, p. 1. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14577-3_1

55. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

56. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). https://doi.org/10.1137/S0097539795284959

https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-031-48621-0_17
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://doi.org/10.1109/SP.2016.55
https://eprint.iacr.org/2006/151
https://eprint.iacr.org/2006/151
https://doi.org/10.1007/978-3-031-48624-1_14
https://doi.org/10.1007/978-3-031-48624-1_14
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/1484
https://doi.org/10.1007/978-3-031-22318-1_8
https://doi.org/10.1007/978-3-031-22318-1_8
https://doi.org/10.1007/978-3-642-14577-3_1
https://doi.org/10.1007/978-3-642-14577-3_1
https://doi.org/10.1137/S0097539795284959

124 J. Bobolz et al.

57. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994)

58. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-
RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-319-29485-8_7

59. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press
(1999). https://doi.org/10.1109/SFFCS.1999.814628

60. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_18

61. Smart, N.P.: The exact security of ECIES in the generic group model. In: Honary,
B. (ed.) 8th IMA International Conference on Cryptography and Coding. LNCS,
vol. 2260, pp. 73–84. Springer, Heidelberg (2001)

62. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9_7

63. Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 66–96. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-15982-4_3

64. Zhang, C., Zhou, H.S., Katz, J.: An analysis of the algebraic group model. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp.
310–322. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22972-
5_11

https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-22972-5_11
https://doi.org/10.1007/978-3-031-22972-5_11

Hamming Weight Proofs of Proximity
with One-Sided Error

Gal Arnon1 , Shany Ben-David2(B) , and Eylon Yogev2

1 Weizmann Institute, Rehovot, Israel
gal.arnon@weizmann.ac.il

2 Bar-Ilan University, Ramat Gan, Israel
{shany.ben-david,eylon.yogev}@biu.ac.il

Abstract. We provide a wide systematic study of proximity proofs with
one-sided error for the Hamming weight problem Hamα (the language
of bit vectors with Hamming weight at least α), surpassing previously
known results for this problem. We demonstrate the usefulness of the
one-sided error property in applications: no malicious party can frame
an honest prover as cheating by presenting verifier randomness that leads
to a rejection.

We show proofs of proximity for Hamα with one-sided error and sub-
linear proof length in three models (MA, PCP, IOP), where stronger
models allow for smaller query complexity. For n-bit input vectors, high-
lighting input query complexity, our MA has O(logn) query complexity,
the PCP makes O(loglogn) queries, and the IOP makes a single input
query. The prover in all of our applications runs in expected quasi-linear
time. Additionally, we show that any perfectly complete IP of proximity
for Hamα with input query complexity n1−ε has proof length Ω(logn).

Furthermore, we study PCPs of proximity where the verifier is
restricted to making a single input query (SIQ). We show that any SIQ-
PCP for Hamα must have a linear proof length, and complement this by
presenting a SIQ-PCP with proof length n + o(n).

As an application, we provide new methods that transform PCPs
(and IOPs) for arbitrary languages with nonzero completeness error into
PCPs (and IOPs) that exhibit perfect completeness. These transforma-
tions achieve parameters previously unattained.

Keywords: Hamming weight problem · interactive proofs of
proximity · interactive oracle proofs

1 Introduction

A Motivating Example. On April 14, 2022, businessman Elon Musk made an
unsolicited and non-binding offer to purchase the social media company “Twit-
ter, Inc.” for $43 billion and take it private, which the board reluctantly accepted.
In July, Musk announced his intention to terminate the agreement in the wake
of reports that, despite the board’s assurance, 5% of Twitter’s daily active users
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 125–157, 2025.
https://doi.org/10.1007/978-3-031-78011-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_5&domain=pdf
http://orcid.org/0000-0001-7594-3896
http://orcid.org/0000-0003-0479-9035
http://orcid.org/0000-0001-8599-2472
https://doi.org/10.1007/978-3-031-78011-0_5

126 G. Arnon et al.

were spambot accounts. In order to collect data, Musk posted a Twitter poll ask-
ing followers about the amount of spambots. In response, Twitter pursued legal
action against Musk, which eventually led to the completion of the acquisition
on October 27, 2022.

The acquisition was messy, involved extensive litigation, dropped the share
price, affected many individuals, and was expensive and time-consuming. The
process could have been more straightforward had the parties had the tools to
build mutual trust. Specifically, they lacked a method for Twitter to efficiently
prove to Musk, beyond a reasonable doubt, that the number of spambots is
indeed lower than 5%. Musk could have hired experts to examine whether a
handful of specific users are spambots, but exploring all of the ∼350 million
users is impractical. The appropriate tool to remedy the situation is a proof of
proximity.

Proofs of Proximity. Proofs of proximity are probabilistic proofs with a
sublinear time verifier. Since the verifier runs in sublinear time, it cannot even
read the entire input. Following work on sublinear time algorithms and property
testing [RS96,GGR98], the verifier is given query access to the input: the input
x is treated as an oracle and, on query i, the verifier receives x[i]. The goal is to
construct probabilistic proofs with sublinear query complexity while minimizing
parameters such as verifier running time and communication complexity. Proofs
of proximity were first introduced by Ergun, Kumar, and Rubinfeld [EKR04]
and further studied by Rothblum, Vadhan, and Wigderson [RVW13] and Gur
and Rothblum [GR18], motivated by applications to delegation of computation.
Since then, there has been considerable research on proofs of proximity across
various models.

The Hamming Weight Problem. This work focuses on probabilistic proofs of
proximity for the Hamming weight problem. Here, the task is to decide whether
a given string x ∈ {0, 1}n has Hamming weight at least α(n) or is far from it: it
has Hamming weight less than α(n) − δ(n), for a proximity parameter δ.

A proof of proximity for this problem would have been useful in the context
of the Twitter acquisition. Twitter’s network can be represented as a binary
vector x whose length corresponds to the number of Twitter accounts with a
value of 1 indicating the non-spambot users. Twitter would submit a proof of
the vector’s Hamming weight, and Musk, or any other interested party, could
efficiently verify the proof while performing only a few queries. A query to the
input vector is translated to the expensive task of determining whether a given
user is a spambot, which fuels the desire for small query complexity.

Beyond our motivating example, proofs of proximity for the Hamming weight
problem have many applications, as the primary tool in other proximity tests.
For example, testing whether an n-vertex graph contains many k-cliques can be
directly reduced to the Hamming weight of a corresponding vector of size nk

(where 1 indicates a k-clique). Furthermore, proofs of proximity for Hamming
weight (with one-sided error) can be used to transform standard proof systems
for arbitrary languages to achieve perfect completeness (we demonstrate this in
Sect. 1.2).

Hamming Weight Proofs of Proximity with One-Sided Error 127

Framing-Free Security. There is a subtle but crucial property we need from
our probabilistic proof in the form of one-sided error. To motivate this property,
we return to the Twitter saga. Suppose that the proof of proximity has two-sided
error. This means that even if Twitter generates a proof honestly, a malicious
party could find a choice of randomness that makes the verifier reject this proof.
Musk could leverage this by presenting such choice of randomness to a (resource-
limited) judge, claiming that Twitter is lying, which might lead to the revocation
of the acquisition. In order for Twitter to be willing to post a proof of their
claims, we must ensure the system is “framing-free”, which is obtained when the
proximity proof has a one-sided error (perfect completeness). In other words:
One-sided error guarantees framing-free security, where honest parties cannot be
accused of wrongdoing.

On top of the above, there are also concrete benefits in the parameters of
protocols with one-sided error. These protocols can be more efficiently amplified
compared to their two-sided error counterparts. Repeating a protocol k times
maintains the one-sided error property of a protocol and reduces the soundness
error from ε to εk. For protocols with two-sided error, the soundness error only
reduces to εΩ(k), which means that to get the same soundness error, one needs
more repetitions (and thus higher query complexity).

A Brief History of Hamming Weight Proximity Testing. There are
several different proofs of proximity of the Hamming weight problem1 in various
models. Without the aid of a prover (i.e., property testing), known sampling
lower bounds (see, e.g., [Gol11, Theorem 2.1], or [BKS01, Theorem 15]) tell
us that the query complexity of any property tester for the Hamming weight
problem is Ω(min{n, δ−2}), where n is the vector length and δ is the proximity
parameter (with constant soundness error). A simple test achieves this bound
but does not have perfect completeness (i.e., it has two-sided error).

In striking contrast to the above bounds, we observe that the query complex-
ity of any property tester with perfect completeness (and without a prover) is
significantly higher; specifically, it must be Ω(n), effectively rendering the test
trivial.2

In [RVW13], an IP of proximity was given (without perfect completeness),
with query and communication complexities O(δ−1 · polylog(n)), and O(log n)
many rounds. Alternatively, they construct a 2-message version of their protocol

1 The Hamming weight problem in previous work usually refers to the problem of
exact Hamming weight α, whereas we define the constraint to be at least weight α.
However, the two problems have (almost) tight reductions between each other. We
show this reduction in the full version of this paper.

2 Consider α = 2/3, and suppose towards contradiction that the query complexity is
q = o(n). By soundness with respect to the all-zeroes vector, we know that there
exists verifier randomness ρ for which the verifier rejects upon querying only zeros.
Construct a vector with all ones except for these q places; then the verifier rejects it
with nonzero probability. On the other hand, the vector has weight 1 − q/n which
is more than α since q = o(n), so by perfect completeness the verifier accepts the
vector with probability 1.

128 G. Arnon et al.

but with a much higher query and communication complexity of O(n1/3 · δ−2/3 ·
polylog(n)). In [GGR18,RR20b], an IP of proximity for a larger complexity
classes was given (which include the Hamming problem) with similar round and
communication complexity, with constant query complexity.

A non-interactive proof of proximity (MAPs) for the Hamming weight prob-
lem was given in [GR18]. They showed that for every constant α ∈ (0, 1) there is
a MAP (with two-sided error) for Hamming weight with proof length ˜O(nα), and
query complexity ˜O(

√
n1−α · δ−1). For example, for α = 2/3, the proof length

is ˜O(n2/3) and the query complexity is ˜O(n1/6 · δ−1). They also showed that
their results can be transformed to have perfect completeness while incurring a
poly-logarithmic overhead to the query and proof complexities [GR18, Lemma
4.5]. Applying this transformation to the simple tester (without a prover) yields
a one-sided error MAP with proof length O(δ−4 · log2 n · log(δ−1 · log n)) and
query complexity O(δ−4 · log n · log(δ−1 · log n)).

The work of [AGRR23] studied distribution-free proofs of proximity for the
Hamming weight problem, where the verifier receives input samples from an
unknown distribution. They showed a distribution-free protocol with perfect
completeness, O(δ−1 · log n) rounds, O(δ−1 · log2 n) communication complex-
ity and δ−1 samples. [KSY20] studied the Hamming weight of social graphs,
where instance samples are given via random walks in the graph. Finally,
departing from information-theoretic security, [KR15] introduced the notion of
interactive arguments of proximity. Roughly, they showed that all P has a 2-
message argument with communication and query complexity o(n) (assuming
sub-exponentially secure FHE).

PCPs and IOPs of Proximity. PCPs of proximity (PCPPs) were studied in
[BGH+06,DR04]. They are non-interactive proof of proximity systems where the
verifier has oracle access to both the input and the given proof. In contrast to
MAPs (where the verifier reads the entire proof), the proof string in PCPPs is
typically of super-linear length (but the verifier reads only a few bits from it).
Quoting [GR18], PCPPs may be thought of as the PCP analog of property testing,
whereas MAPs are the NP analog of property testing. We are unaware of explicit
works of PCPPs for the Hamming weight problem (beyond general PCPPs that
are applicable for all languages in P). Applying a general purpose theorem for
PCPPs (e.g., [Mie09]), one can obtain a PCPP for the Hamming weight problem
with constant query complexity (for constant distance δ) but with a super-linear
proof length and a relatively slow prover (however, still polynomial time).

IOPs of proximity (IOPP) are a combination of IPs and PCPs of proxim-
ity [BCS16,RRR16]. Here, the prover and verifier interact in multiple rounds,
but the verifier has only oracle access to the prover’s messages in addition to
its oracle access to the input. IOPs leverage interaction to overcome barriers
that arise with PCPs. For instance, known IOPs achieve linear proof length
as well as other desirable properties such as fast provers, zero knowledge,
and concrete efficiency [BCGV16,BBC+17,BCG+17a,BBHR18,BCG+17b,
XZZ+19,BCG20,BCL22,RR20a,ACY22b,ACY23,ACFY24,BN22,RR22]. We
are unaware of explicit IOPPs for the Hamming weight language.

Hamming Weight Proofs of Proximity with One-Sided Error 129

One additional advantage of constructing PCPPs and IOPPs is that they
serve as the underlying building block for an interactive arguments with small
communication complexity. For example, one can use the Kilian construction
[Kil92] while relying on collision-resistant hash functions to commit to the prover
message and only reveal the locations queries by the verifier. This is how hash-
based arguments and SNARKs are constructed (see also [Mic00,BCS16,CY20,
CY21a,CY21b]).

1.1 Main Results

We provide a systematic study of the Hamming weight problem, presenting new
protocols in various models (MAP, PCPP, IOPP) with sublinear communication,
surpassing all known results for testing proximity to the Hamming weight. We
also present new lower bounds, pointing to the limits of this problem. Let Hamα

be the language of all binary vectors of Hamming weight at least α. Recall that
without a prover, Ω(n) queries are required for one-sided error.

In all our results, we distinguish between the proof query complexity (queries
performed to the prover messages) and the input query complexity (queries
performed to the input). The reason is that, depending on the application, each
query might incur different costs. This is exemplified in the Twitter example
where a proof query is relatively cheap (a query to a position in some file sitting
on a server), while a query to the input is rather expensive (verifying that a
specific user is not a spambot). Thus, it is typically most desirable to minimize
the input query complexity.

Sublinear Proofs of Proximity. For each model (MAP, PCPP, IOPP), we give
a protocol with one-sided error, sublinear communication, while also providing
small query complexity. Focusing on the input query complexity, our MAP has
O(log n) query complexity, the PCPP makes O(loglog n) queries, and the IOPP
makes a single input query (where n is the vector length). The following theo-
rem is an informal summary of these results presented for constant α, constant
distance δ, and constant soundness error. For simplicity, in the theorem we hide
dependencies on α and δ.

Theorem 1 (Informal). For every constant α ∈ (0, 1] there are MAP, PCPP,
and IOPP protocols for Hamα with perfect completeness and parameters sum-
marized below:

Model Queries to input Queries to proof Proof length Rounds

MAP O(log n) - O(log2 n) -
PCPP O(loglog n) O(log n · loglog n) O(n/ log2 n) -
IOPP 1 O(log n) O(log2 n) 2

130 G. Arnon et al.

The precise theorem statement and dependencies on all parameters can be found
in Theorem 6 for the MAP protocol, in Theorem 8 for the PCPP protocol, and
in the full version for the IOPP protocol.

The MAP described in Theorem 1 improves upon the one described in [GR18]
by removing a loglog n factor; the input complexity is O(log n) and the proof
length is O(log2 n), compared to O(log n·loglog n) and O(log2 n·loglog n) respec-
tively. Our PCPP improves on this by reducing the input query complexity
dramatically to O(loglog n), while also allowing the verifier to read fewer bits
from the prover message. We are unaware of any other PCPP for the Hamming
problem beyond the one described in Theorem 1. The IOPP, when compared to
the IPP derived from [GGR18] yields an improvement in the number of rounds,
which is reduced from O(log n) to 2, and the verifier only needs to query O(log n)
bits from the prover messages, rather than reading the entire messages of size
polylog n.3

Lower Bound. We continue our systematic study with a lower bound for the
Hamming weight problem. [GR18] shows a lower bound for MAPs for the
Hamming weight problem: roughly speaking, a protocol with proof complexity
l = Ω(log n) and query complexity q must satisfy l · q = Ω(min{n, δ−2}).

We give lower bounds for perfectly complete IPPs and IOPPs for the Ham-
ming weight problem regardless of the number of rounds. Our IOPP lower bound
applies to protocols in which the verifier is semi-adaptive, meaning that the ver-
ifier decides which queries to perform to the i-th prover message based on the
first i prover/verifier messages (i.e., including the randomness sampled right after
the i-th message). Note that PCPPs and IPPs are special cases of semi-adaptive
IOPPs.

Theorem 2 (informal). For every constant α ∈ (0, 1) the following hold:

1. Any perfectly complete IPP for Hamα with total proof length l and input query
complexity qx has l = Ω(log(n/qx)).

2. Any semi-adaptive perfectly complete IOPP for Hamα with total length l,
input query complexity qx and proof query complexity qπ has qπ · log l =
Ω(log(n/qx)).

The above theorem has the following consequence: IPPs (regardless of the num-
ber of rounds) with query complexity qx = n1−ε for any constant ε > 0,
must have at least a logarithmic proof length. This lower bound implies that
our MAP construction in Theorem 1 has proof length that is optimal up to a
O(log n) factor. For (semi-adaptive) IOPPs, it shows that any IOPP with length
polylog(n) and constant input query complexity must have proof query com-
plexity Ω(log(n)/ loglog n). The challenge of proving a lower bound for (fully)
adaptive IOPPs remains as an open problem.

3 The protocol from [GGR18] is described with constant query complexity but can be
naturally modified to have a single input query [Rot24].

Hamming Weight Proofs of Proximity with One-Sided Error 131

Single Input Query (SIQ). Our IOPP, as described in Theorem 1, has the
remarkable property that, in addition to having a one-sided error, the verifier
performs only a single query to the input. We denote such protocols as SIQ
protocols (single input query). However, the cost of our SIQ-IOPP relative to
its PCP counterpart is having additional rounds. Thus, we ask: can we achieve
SIQ-PCPPs with sublinear proof length?

We give a negative answer to this question and show that no perfectly com-
plete proof of proximity (for the Hamming weight problem) can simultaneously
have a single input query, sublinear length, and be non-interactive.

Theorem 3. For any α ∈ (0.5, 0.77), any perfectly complete PCP (or MA) of
proximity for Hamα with input query complexity 1 has proof length Ω(n).

On the positive side, we show that with proof length n + o(n), we can construct
perfectly complete SIQ-PCPPs with small proof query complexity.

Theorem 4 (Informal). For every constant α ∈ (0, 1], there exists a perfectly
complete SIQ-PCPP of proximity for Hamα with proof length n + O(log2 n) and
proof query complexity O(log2 n).

Prover Running Time. We further strengthen the protocols described in The-
orems 1 and 4 by showing efficient algorithms for the honest prover strategies,
making our protocols doubly-efficient. In particular, the honest prover in both
theorems runs in expected time O(n log n), where perfect completeness always
holds when the prover outputs a message. This holds also for the first message of
the IOPP in Theorem 1, and its second message can be computed in determin-
istic time polylog(n). We further remark that, given a Nisan–Wigderson type
PRG [NW94], the prover in all of the protocols can be made to run in determin-
istic time poly(n). All prior works on proofs of proximity for Hamming weight
did not explicitly analyze the honest prover running time.

1.2 Application: Perfect Completeness for PCPs and IOPs

The problem of transforming proof systems with imperfect completeness to ones
with perfect completeness was first studied in the context of interactive proofs
by [FGM+89] and is considered a cornerstone of research into IPs. Perfect com-
pleteness for PCPs and IOPs began to be explored only recently, with the goals
of improving hardness of approximation results [BV19,ACY22a,ACY22b], and
as a tool for proving barriers for proof systems [ABCY22].

We observe that proofs of proximity for Hamming weight can be utilized
in this application. Using the techniques developed in the previous sections, we
show new ways to transform PCPs and IOPs with nonzero completeness error
into ones with perfect completeness. The following theorem is an informal sum-
mary of our results, presented for constant completeness and soundness errors,
both for the original proof system, and for the resultant perfectly complete proof
system.

132 G. Arnon et al.

Theorem 5 (informal). Every language L that has a PCP (resp. IOP) with con-
stant completeness error has a perfectly complete PCP (resp. IOP) with param-
eters given in Table 1.

Table 1. A comparison of our PCP to perfectly complete PCP and IOP to perfectly
complete IOP transformations with prior work. Above, q, l, r, and k denote the query
complexity, proof length, randomness complexity, and number of rounds of the original
PCP/IOP being transformed, and n is the instance size. Each of our results is derived
by taking one of our upper bounds an using it to transform a PCP/IOP with imperfect
completeness into one with perfect completeness.

ModelQueries Proof length Rounds

[BV19] PCP q + O(r) l + O(2r) -
[This work] PCP O(q · r + r2) l + O(r2) -
[This work] PCP O((q + r) · log r) l + O(2r/r2) -
[This work] PCP q + O(r2) l + 2r + O(r2) -
[ACY22a,ACY22b] IOP O(max{1, k/ log n}) poly(n, l, r) k

[ABCY22] IOP O(q · log r + r · log r)O(l · r · log r) k + 1
[This work] IOP q + O(r) O(l · r) k + 1

2 Techniques

In this section, we give an overview of our techniques. Throughout, we denote
weight(x) := 1

n

∑

i∈[n] x[i] to be the Hamming weight of x ∈ {0, 1}n and use
the shorthand x[i + j] to mean x[i + j mod n]. For simplicity, unless stated
otherwise we consider all parameters (e.g., α, etc.) apart from n to be constant.

2.1 PCPP for Hamming Weight with Sublinear Proof Length

In this section, we sketch the proof of the PCPP of Theorem 1 in which our focus
is on minimizing query complexity while maintaining sublinear proof length.
We construct a PCPP for Hamming weight α that for vectors of length n has:
(1) length o(n) (2) input query complexity O(loglog n), and (3) proof query
complexity O(log n · loglog n). Moreover, the honest prover runs in (expected)
time O(n log n).

Our construction relies on the concept of “good shifts” and is achieved by
combining an “outer protocol” and an “inner protocol”. We start by defining
good shifts, which will be the cornerstone of the honest prover strategies through-
out this paper. This technique is inspired by the beautiful “reverse randomiza-
tion” method, which can be traced back to Lautemann’s proof that BPP is in
the polynomial hierarchy [Lau83], and has been useful for other applications as
well (e.g., [FGM+89,Nao89,DNR04,HNY17,BV22]).

Hamming Weight Proofs of Proximity with One-Sided Error 133

Good Shifts. We say that the “shifts” z1, . . . , zt ∈ [n] are “good” for a vector
x ∈ {0, 1}n if for every ρ ∈ [n] it holds that the induced vector xρ := (x[ρ +
z1], . . . ,x[ρ + zt]) ∈ {0, 1}t has Hamming weight at least 0.95 · α. We show that
for t := Θ(1

α · log n) the following hold:

1. Large Hamming weight. For every x with weight(x) ≥ α, there exist shifts
z1, . . . , zt that are good for x, i.e., where for every ρ, it holds that weight(xρ) ≥
0.95 · α. Moreover, these shifts can be found in expected time O(n · log n).

2. Small Hamming weight. For every x with weight(x) = α− δ where δ ∈ (0, α),
and any choice of z1, . . . , zt:
(a) Prρ[weight(xρ) ≥ 0.95 · α] ≤ 1.1 · α−δ

α , and
(b) Eρ[weight(xρ)] = α − δ.

Discussion. Following the definition of good shifts, a natural strategy emerges
for verifying the Hamming weight of a vector x: the prover sends good shifts
z1, . . . , zt, and the verifier needs to check that the shifts are indeed good (with
perfect completeness). Recall that in the honest case, the induced vector xρ has
large Hamming weight for every ρ, whereas if x has small Hamming weight,
then xρ has small Hamming weight for most choices of ρ. Thus it is natural to
sample ρ ← [n] and check that the vector xρ := (x[ρ + z1], . . . ,x[ρ + zt]) has
high Hamming weight by querying x at all t locations. While perfectly complete
and sound, this PCPP has bad parameters: it results in the verifier reading
O(t · log n) = O(log2 n) queries from the proof and making O(t) = O(log n)
queries to the input.

In order to lower the query complexities, we would like to apply a PCPP
for the claim that all of the vectors in (xρ)ρ∈[n] ⊆ {0, 1}t have large Hamming
weight. Naively, we could solve this by having the prover supply a separate proof
showing that xρ has large Hamming weight for each ρ ∈ [n]. Alas, we cannot
afford this since there would be O(n) such proofs; even if each proof was one bit in
length, we would miss our target of sublinear length. To overcome this challenge
the prover will provide a proof that applies multiple choices of ρ simultaneously.

The Protocol. For a = O(log3 n),4 let (Xs)s∈[n/a] be a partition of the induced
vectors (xρ)ρ∈[n] into n/a sets of size a. Our protocol, given x ∈ {0, 1}n, is as
follows:

1. Prover: Send shifts z1, . . . , zt which are good for x. Then, for every s ∈ [n/a]
write an inner proof πs claiming that all vectors in Xs have high Hamming
weight (i.e., Hamming weight at least 0.95 · α).

2. Verifier: Choose s ← [n/a] uniformly at random. Run the inner proof verifier
for the claim that all vectors in Xs have high Hamming weight, and accept
if the inner proof verifier accepts.

We analyze the PCPP we constructed and derive properties which, if they are
held by the inner protocol, are sufficient for our needs:
4 This value for a is chosen for convenience. In the full protocol, it is left as a parameter

which allows for tuning properties of the proof.

134 G. Arnon et al.

1. Perfect completeness: Following Item 1, it holds that if x has high Hamming
weight, then, for every s, all vectors in Xs have high Hamming weight. Con-
sequently, if the inner protocol has perfect completeness then this holds also
for the final PCPP.

2. Soundness: Fix x ∈ {0, 1}n with Hamming weight α − δ, where δ ∈ (0, α),
and a prover message z1, . . . , zt, (πs)s∈[n/a]. Let βs := 1

a

∑a
i=1 weight(Xs[i])

be the average weight in Xs. By construction:

Pr[V accepts] = Pr
s

[Vin accepts Xs given πs]

=
∑

β

Pr
s

[βs = β] · Pr
s

[Vin accepts Xs given πs | βs = β] .

In order to bound the error, it suffices that Pr
s

[

Vin accepts Xs given

πs | βs = β
] ≤ β · ε for ε that does not depend on s and β (and this is

what we will later achieve):

Pr[V accepts] ≤
∑

β

Pr
s

[βs = β] · β · ε = E[βs] · ε = (α − δ) · ε .

The final equality follows from Item 2b, which posits that E [βs] =
1
a

∑a
i=1 Eρ[weight(xρ)] = α − δ. In our construction of the inner protocol,

ε ≈ 1
α , so that the soundness error is approximately (α − δ)/α.

3. Complexity parameters: Let lin, qin
x , and qin

π denote the proof length, input
query complexity, and proof query complexity of the inner proof, respectively.
Then the PCPP has proof length t · log n + n

a · lin, and so to achieve sublinear
proof length we require lin = o(a) = o(log3 n). The input query complexity is
qin
x and the proof query complexity is qin

π + O(qin
x · log n): each query to Xs

induces a query to xρ[i] = x[ρ + zi] for some i and ρ which, in turn, induces
an input query, and the reading of zi (which has length O(log n)). Finally,
the verifier must read qin

π bits from πs. Thus, to achieve the parameters of
the PCPP described in Theorem 1, we require qin

x = O(loglog n) and qin
π =

O(log n · loglog n).

The Inner Protocol. The inner protocol works on similar ideas to the outer
protocol: the prover sends good shifts, and the verifier needs to check that these
shifts are, indeed, good. This requires us to change the definition of good shifts
to apply also to sets of vectors Xs = (x1, . . . ,xa) ⊆ {0, 1}t. Indeed, we show
that, provided that t′ := Θ(1

α · log(a · t)) = Θ(loglog n), the following hold:

1. Large Hamming weight. For every x1, . . . ,xa such that weight(xi) ≥ α for
every i ∈ [t], there exist shifts z1, . . . , zt′ ∈ [t] that are good for all the vectors
in the set simultaneously. Moreover, these shifts can be found in expected
time O(t · a · log(t · a)) = polylog(n).

2. Small average Hamming weight. For every x1, . . . ,xa with
1
a

∑

i∈[a] weight(xi) = α−δ where δ ∈ (0, α), and any choice of z1, . . . , zt′ ∈ [t]:
Pri,ρ[weight(xi,ρ) ≥ 0.95 · α] ≤ 1.1 · α−δ

α , where xi,ρ := (xi[ρ + z1], . . . ,xi[ρ +
zt′]).

Hamming Weight Proofs of Proximity with One-Sided Error 135

This extended definition allows us to construct our inner protocol. The protocol
proceeds as follows on input Xs = (x1, . . . ,xa) ⊆ {0, 1}t:

1. Prover: Send shifts z1, . . . , zt′ ∈ [t] which are good for Xs.
2. Verifier: Read all of z1, . . . , zt′ , choose i ← [a] and ρ ← [t] uniformly at

random, and check that weight(xi[ρ+z1], . . . ,xi[ρ+zt′]) ≥ 0.95·α by querying
xi at the appropriate locations.

The length of the proof is lin = t′ · log n = O(log n · loglog n) = o(a). The verifier
reads this proof in its entirety, so qin

π = lin = O(log n · loglog n) bits. The input
query complexity is qin

x = t′ = O(loglog n).
Completeness follows from Item 1 of the adapted definition of good shifts.

For soundness, recall that we wanted:

Pr

⎡

⎣ Vin accepts | 1
a

∑

i∈[a]

weight(xi) = β

⎤

⎦ ≤ β · ε ,

for ε that does not depend on β. The verifier accepts only if weight(xi[ρ +
z1], . . . ,xi[ρ + zt′]) ≥ 0.95 · α. It follows from Item 2 of the adapted definition
of good shifts that the probability of this occurring when the average Hamming
weight of the vectors in Xs is β is 1.1 · β

α , which concludes the proof of soundness
(here, ε = 1.1

α).
Finally, we observe that the inner protocol is useful in its own right. In fact,

by choosing a = 1 (and replacing t with n) we get the MAP for Hamming weight
described in Theorem 1.

2.2 SIQ-PCPP for Hamming Weight

In this section, we focus on perfectly complete PCPPs for the Hamming weight
problem, where the verifier makes a single input query (SIQ). In Sect. 2.2, we
sketch the proof of Theorem 3, showing a lower bound on the proof length for
SIQ MAPs (which induces a bound also for PCPPs). In Sect. 2.2, we give a
construction of a SIQ PCPP with linear proof size (Theorem 4).

Lower Bound. In this section, we sketch the proof of Theorem 3, showing that
any perfectly complete MAP for Hamming weight with a single input query must
have a large proof length. Let α = 2/3 and δ = 1/3.

Consider a MAP with message length l, and input query complexity 1, where
for inputs of distance δ from Hamming weight has nontrivial soundness error.
Let Exact-Hamα,n ⊆ Hamα be the set of all vectors of size n that have Hamming
weight exactly α. For a prover message π, let Sπ be the set of all vectors in
Exact-Hamα,n for which π is the honest prover message. By an averaging argu-
ment, since there are at most 2l different prover messages, there must exist some
proof π with |Sπ| ≥ |Exact-Hamα,n|/2l. Since each vector in Exact-Hamα,n has
exactly (1 − α) · n zeros, |Exact-Hamα,n| =

(

n
(1−α)·n

)

. However, the number of

136 G. Arnon et al.

vectors that the honest prover can prove with the same proof is small: Claim 1
shows that |Sπ| ≤ (

(1−α+δ)·n
(1−α)·n

)

. By rearranging the terms and taking a logarithm,

we get that l ≥ log
(

n
(1−α)·n

) − log
(

(1−α+δ)·n
(1−α)·n

)

= Ω(n) (the final equality follows
since α = 2/3 and δ = 1/3).

Claim 1. |Sπ| ≤ (

(1−α+δ)·n
(1−α)·n

)

.

Proof Sketch. Let x be the bitwise AND of all the vectors in Sπ and let I0 be
the indices where x is zero. By the definition of x, for every v ∈ Sπ and j ∈ [n]
where v[j] = 0, it must hold that j ∈ I0 (i.e., x[j] = 0). Thus, we can bound
the size Sπ by the number of vectors that have zeroes only within I0. Since
Sπ ⊆ Exact-Hamα,n, every v ∈ Sπ has exactly (1 − α) · n zeroes. The maximal
number of vectors with exactly (1−α)·n zeroes that have zeroes only within I0 is
(|I0|
(1−α)·n

)

. It follows that |Sπ| ≤ (|I0|
(1−α)·n

)

. We now show that |I0| < (1−α+δ) ·n,
which completes the proof.

Assume towards contradiction that |I0| ≥ (1 − α + δ) · n, meaning that x
is δ far from Hamα. By the soundness property of the protocol, there exists
some randomness ρ for which the verifier rejects. Let j ∈ [n] be the index of
the single bit of x queried by the verifier given access to π and randomness
ρ. Since x is the bitwise AND of the vectors in Sπ, there exists some vector
v ∈ Sπ with v[j] = x[j]. Fix such vector v. Since j is the only index queried
by the verifier when given the proof π and the randomness ρ, the verifier will
reject v. This contradicts the perfect completeness of the protocol as v ∈ Sπ ⊆
Exact-Hamα,n ⊆ Hamα, and since π is the honest prover’s message for v (by
definition of Sπ).
�

Upper Bound. In this section, we describe our construction of a PCPP for
Hamming weight where the verifier makes a single input query, and the proof
length is n + O(log2 n), as described in Theorem 4.

The Protocol. The basic idea underlying how our protocol achieves single input
query complexity is that the prover copies the vector x into the proof and writes
a proof that this copy has large Hamming weight. The verifier then checks that
the copy has large Hamming weight and that the copy is consistent with x. On
input x ∈ {0, 1}n, the protocol proceeds as follows:

1. Prover: Send x′ := x and additionally send shifts z1, . . . , zt ∈ [n] which are
good for x.

2. Verifier: Read all of z1, . . . , zt and accept if the following checks pass:
(a) Choose ρ1, . . . , ρm ← [n] for m = O(log n) and check that for every �, the

induced vector xρ�
:= (x′[ρi + z1], . . . ,x′[ρi + zt]) has Hamming weight

≥ 0.95 · α by querying x′ at the appropriate locations.
(b) Choose r1, . . . , rq ← [n] for q = O(log n) and query x′[ri]. If x′[ri] = 0 for

every i, then we consider the check to have passed. Otherwise, let � be
the minimal index so that x′[r] = 1. Check that x[r] = 1 by querying
x.

Hamming Weight Proofs of Proximity with One-Sided Error 137

Analysis. We begin by assessing the complexity parameters. The proof length
is n + t · log n = n + O(log2 n), and the verifier makes at most one query to
x, and O(log2 n) queries to the proof string. Perfect completeness follows from
Item 1 of the definition of good shifts and from the fact that the honest vector
sets x′ = x. All that remains is to show soundness.

Fix x ∈ {0, 1}n that is δ-far from Hamα and a prover message π =
(x′, z1, . . . , zt). Intuitively, if the Hamming weight of the copied vector is close
to the Hamming weight of the input vector, then the verifier’s check in Item 2a
will fail with high probability. On the other hand, if the Hamming weight of the
copied vector is much larger than the Hamming weight of the input vector, then
there is a large disparity between x and x′ so the verifier’s check in Item 2b will
fail with high probability. We now formalize this intuition.

For every ρ ∈ [n], let x′
ρ := (x′[ρi + z1], . . . ,x′[ρi + zt]), and let H :=

{ρ | weight(x′
ρ) ≥ 0.95 · α} be the set of all ρ such that the vector x′

ρ has
Hamming weight ≥ 0.95 ·α. We split the analysis into two cases: |H| < n/2, and
|H| ≥ n/2. If |H| < n/2 then by the definition of H, the verifier’s check in Item
2a will pass with probability at most (1/2)m = (1/n)O(1). If |H| ≥ n/2 then
the verifier accepts with probability at most 1.1 · α−δ

α + 1
nO(1) , as exemplified

in Lemma 1. Overall, we conclude that the verifier accepts with probability at
most 1.1 · α−δ

α + 1
nO(1) as described in Theorem 4.

Lemma 1. If |H| ≥ n/2 then the verifier accepts with probability at most 1.1 ·
α−δ

α + 1
nO(1) .

Proof Sketch. Let β′ := weight(x′) be the Hamming weight of x′. To begin with,
we show that β′ ≥ 0.95 · α/2 by observing that, by the definition of good shifts
(specifically Item 2b), weight(x′) = Eρ[x′

ρ]. Since |H| ≥ n/2, at least half of the
vectors x′

ρ have weight at least 0.95 · α, and so Eρ[x′
ρ] ≥ 0.95 · α/2.

Define the following events: Eweight is the event that the verifier’s check in
Item 2a passes, E0 is the event that the verifier’s check in Item 2b passes because
the verifier read only zeros from x′, and E1 is the event that the verifier’s check
in Item 2b passes and the verifier has read a nonzero entry of x′. Using this
notation,

Pr[Verifier accepts] = Pr[Eweight ∧ (E0 ∨ E1)]

Since the two checks of the verifier are independent, and by using the union-
bound:

Pr[Eweight∧(E0∨E1)] = Pr[Eweight] ·Pr[E0∨E1] ≤ Pr[Eweight] ·(Pr[E0]+Pr[E1]) .

We bound the probabilities that E0 and E1 occur:

– Pr[E0]: Since β′ ≥ 0.95 · α/2, the probability that all of the samples ri are to
locations where x′ contains 0 is at most: (1 − 0.95 · α/2)q = 1/nO(1).

– Pr[E1]: Conditioned on sampling a nonzero index in x′, the smallest such
index is distributed uniformly over the nonzero entries of x′. The fraction
of ones in x′ is β′ and the fraction of ones in x is α − δ, and so sampling a
random nonzero entry in x′ is nonzero in x with probability at most (α−δ)/β′.
Consequently: Pr[E1] ≤ Pr[E1 | sampled nonzero location] ≤ (α − δ)/β′.

138 G. Arnon et al.

Therefore, Pr[Verifier accepts] ≤ Pr[Eweight] · (Pr[E0] + Pr[E1]) ≤ Pr[Eweight] ·
(α−δ

β′ + 1
nO(1)). We now split the argument into two cases. In both cases, we show

that the verifier accepts with probability at most 1.1 · (α−δ)/α+1/nO(1), which
concludes this proof sketch.

1. If α < 1.1 · β′: then Pr[Verifier accepts] ≤ α−δ
β′ + 1

nO(1) < 1.1 · α−δ
α + 1

nO(1) .

2. If α ≥ 1.1 · β′: then Prρ[weight(x′
ρ) ≥ 0.95 · α] ≤ 1.1 · β′

α by Item 2a in the
properties of good shifts. Therefore, the probability that the verifier’s check
in Item 2a passes is

(

1.1 · β′

α

)m

. Thus, the verifier accepts with probability
at most:

Pr[Verifier accepts] ≤
(

1.1 · β′

α

)m

·
(

α − δ

β′ +
1

nO(1)

)

≤ 1.1 · α − δ

α
+

1
nO(1)

.

�

2.3 A SIQ-IOPP for Hamming Weight with Sublinear Proof Length

In this section, we show that by utilizing interaction, perfect completeness, sub-
linear proof length, and input query complexity 1 are all simultaneously achiev-
able. This is in stark contrast to the non-interactive (i.e., PCPP) case where, as
shown in Sect. 2.2, achieving all three properties together is impossible.

Recall that an IOP is a generalization of PCPs, where the prover and verifier
interact over multiple rounds. Similarly to a PCP, the verifier is given oracle
access to the messages supplied by the prover. We sketch the construction of
the IOPP in Theorem 1, showing an IOPP for the Hamming weight problem
with perfect completeness, input query complexity 1, four messages, proof length
polylog(n) and proof query complexity O(log n).

Discussion. The IOPP utilizes the ideas developed in Sect. 2.1. Specifically, recall
the initial construction proposed: The prover generates good shifts z1, . . . , zt for
t = polylog(n), the verifier chooses ρ, and needs to verify that xρ := (x[ρ +
z1], . . . ,x[ρ + zt]) has at least a 0.95 · α fraction of ones. In the non-interactive
case, we ran into the problem that we could not write a proof of this fact for every
possible xρ, i.e., for every choice of ρ. Our observation is that if the protocol is
allowed to be interactive, it suffices for the prover to give an “inner proof” that
xρ has high Hamming weight only for the single ρ chosen by the verifier.

Since this inner statement itself has size polylog(n), which is the communica-
tion complexity that we are already willing to afford, a simple proof will suffice:
the prover will send xρ to the verifier, who will check that it has high Hamming
weight. It then checks that xρ matches the restriction of the real vector x. While
we could do this by simply comparing the two on a random location, since we
are only really interested in the restriction of x having many nonzero entries, we
get better soundness error by choosing a random nonzero location j of xρ and
checking that x[ρ + zj] = 1.

Hamming Weight Proofs of Proximity with One-Sided Error 139

The Protocol. Given x ∈ {0, 1}n, the protocol proceeds as follows:

1. Prover: Send good shifts z1, . . . , zt ∈ [n].
2. Verifier: Choose ρ ← [n] uniformly at random.
3. Prover: Send xρ ∈ {0, 1}t, where in the honest case xρ := (x[ρ+z1], . . . ,x[ρ+

zt]).
4. Verifier: Read xρ in its entirety, and (a) check that weight(xρ) ≥ 0.95 ·α, and

(b) choose a random j from the indices where xρ is nonzero, and check that
x[ρ + zj] = 1.

Completeness and soundness follow straightforwardly from the analysis done in
Sect. 2.1 regarding good shifts, and a simple probabilistic argument showing that
if the prover did not send the correct xρ, then it will be caught by the verifier
with high probability.

2.4 A Lower Bound for IPPs and Semi-adaptive IOPPs

In this section, we discuss the proof of Theorem 2, showing a trade-off between
the length, input query complexity and proof query complexity of IPPs and
semi-adaptive IOPPs. IPPs are a special case of semi-adaptive IOPPs, and so in
this overview we consider semi-adaptive IOPPs unless stated otherwise. In the
full proof a minor optimization is utilized to give better bounds for IPPs.

We prove our lower-bound in two steps: (1) in Sect. 2.4 we introduce a com-
munication complexity problem which we call HitOne, and prove a lower bound
for it, and (2) in Sect. 2.4 we show that any semi-adaptive IOPP for Hamming
weight with one-sided error can be used as a strategy to solve the HitOne prob-
lem. Together, these introduce bounds on the parameters of the IOPP.

Semi-adaptive IOPPs. A k-round IOPP is semi-adaptive if the locations of the
verifier’s queries made to the prover’s i-th message πi (also known as the verifier’s
view of this oracle) depend only on ρ1, . . . , ρi and the verifier’s view of the
prover’s messages π1 through πi.5 See the full version of this paper for a formal
definition.

The HitOne Problem. In the HitOne problem, Alice, given a binary vector
x ∈ {0, 1}n with at least α(n) fraction of ones, must communicate to Bob the
location of a single 1 (for this sketch we consider constant α). In more detail,
Alice is given x and outputs a message m. Bob then reads this message and
makes q queries to x. The goal is for Bob to query a nonzero location of x (with
probability 1) while minimizing the size of the message m and the number of
queries made to x (indeed, the task is trivial if |m| = log n or q > (1 − α) · n).

We show that |m| = Ω(log(n/q)). To see why, suppose towards contradiction
that m = o(log(n/q)). We construct a vector of length n with Hamming weight
α for which Bob queries only zeroes, which contradicts the correctness of the

5 Adaptivity with respect to πi is allowed: the verifier’s j-th query πi can depend on
the previous j − 1 queries to made to πi.

140 G. Arnon et al.

protocol. For every one of the 2m = o(n/q) possible verifier messages, set the q
locations queried by Bob to be 0. Set the rest of the vector to be all ones. The
vector contains at most 2m · q = o(n) zeroes, and so has an α-fraction of ones
(recall that in this sketch, we are assuming that α is constant). On the other
hand, by how we defined the vector, no matter what message Alice sends, Bob
will always query the vector at locations that all contain zeroes.

IOPP to HitOne. We show how to transform any semi-adaptive IOPP (P,V)
for Hamming weight α with perfect completeness into a strategy for HitOne (as
in the rest of this technical overview, we consider constant α). Specifically, we
show that given an IOPP for Hamming weight with perfect completeness, it can
be converted into a strategy for HitOne where Alice sends a message of length
O(qπ · log l) and Bob makes qx queries, where qπ, l and qx are the proof query
complexity, length and input query complexity of the IOPP respectively. When
put together with the lower-bound for HitOne described in Sect. 2.4, we conclude
that O(qπ · log l) > log(n/qx). For constant qx and polylogarithmic proof length,
we conclude that qπ = Ω(log n/ loglog n).

In this section, fix x ∈ {0, 1}n to be a vector with at least α · n ones for
the HitOne problem. We describe the transformation for 4-message IOPPs for
Hamming weight of α · n. This can be readily generalized for any number of
messages.

Warm Up. We start with a transformation where Alice’s message length is linear
in the verifier’s randomness complexity. We define notions of useful random
strings: (a) (ρ1, ρ2) are useful if for π1 := P(x) and π2 := P(x, ρ1) it is the case
that the IOPP verifier rejects the all zeroes vector, i.e., V
0,π1,π2(ρ1, ρ2) = 0, and
(b) ρ1 is useful if there exists ρ2 such that (ρ1, ρ2) are useful. The definition of
useful strings is exemplified by the following claim:

Claim 2. If V
0,π1,π2(ρ1, ρ2) = 0 where π1 := P(x) and π2 := P(x, ρ1), then
Vx,π1,π2(ρ1, ρ2) queries x at a nonzero location.

Proof Sketch. By the perfect completeness of the IOPP, we have that
Vx,π1,π2(ρ1, ρ2) = 1 since π1 and π2 were generated honestly with respect to
x. On the other hand by the claim statement, it holds that V
0,π1,π2(ρ1, ρ2) = 0.
The only difference between the executions is the existence of ones in the vector
x, and these are only accessed via verifier queries. Therefore, V must query x
at a nonzero location.
�

Claim 2 yields a natural strategy for HitOne: Alice computes π1 := P(x),
finds the (lexicographically) smallest ρ1 that is useful, computes π2 := P(x, ρ1),
and chooses the smallest ρ2 so that (ρ1, ρ2) are useful (such a choice exists since
ρ1 is useful). Finally she outputs as her message m = (π1, ρ1, π2, ρ2). Bob runs
Vx,π1,π2(ρ1, ρ2) making the same queries to x as made by V.

Alice’s message has length O(r + l) and Bob makes qx queries, where r, l
and qx are the randomness, length, and input query complexity of the IOPP
respectively. As mentioned in Sect. 2.4, the HitOne problem is trivial if Alice’s

Hamming Weight Proofs of Proximity with One-Sided Error 141

message is allowed to have length log n. Both r and l are commonly at least
logarithmic in n, and so we need to reduce the dependency on r and l. We lower
the dependency on l by observing that V reads π1 and π2 only at a few locations.
It therefore suffices for Alice to send Bob the views w1 and w2 of π1 and π2

respectively their stead (where each view contains both the query locations and
the values read from its respective proof), getting us to length O(r + qπ · log l)
where qπ is the proof query complexity of the IOPP.

We are left with the goal of reducing the dependency on r. In fact, we will
completely eliminate it by removing ρ1 and ρ2 from Alice’s message, and having
Bob infer them given only w1 and w2.

Second Attempt. We would like for Bob to mimic the way that Alice chooses
ρ1 and ρ2. In order to do so, naively Bob would have to compute π1 and π2,
which requires knowledge of x that Bob does not have. While Bob does not
have access to π1 and π2, he knows that the randomness chosen by Alice is
consistent with w1 and w2, i.e., ρ1 and ρ2 never cause V to query outside of
w1 and w2. Thus we have the following strategy for Bob: choose the smallest ρ1
that is consistent with w1 and w2 where there exists a consistent ρ2 such that
V
0,w1,w2(ρ1, ρ2) = 0, where, by oracle access to w1 and w2 we mean that Bob
emulates the verifier’s access to π1 and π2 using the information in w1 and w2.
Since ρ1 and ρ2 are consistent with w1,w2 the verifier only queries inside the
views, and so this operation is well-defined. This choice of ρ1 immediately also
gives Bob a choice of a consistent ρ2.

Alas, this does guarantee that (ρ1, ρ2) are useful due to a circular dependency:
Bob’s choice of ρ1 depends on w2, whereas the honestly generated w2 depends
on ρ1 (since π2 := P(x, ρ1)). In order to exemplify this we give a (contrived)
example of this issue. Consider an IOPP where the honest proof π2 := P(x, ρ1)
contains at its first index the first bit of ρ1. Following the interaction, the verifier
queries π2[1] and checks that ρ1[1] = π2[1]. If this does not hold, the verifier
immediately rejects without querying x.

Alice chooses ρA

1 and ρA

2 as above and uses them to generate (w1,w2).
For any ρB

1 and ρB

2 that Bob may choose where ρB

1[1] �= ρA

1[1], it holds that
V
0,w1,w2(ρB

1, ρ
B

2) = 0. Since ρB

1 is inconsistent with w2, the verifier does not query
x and, consequently, Bob will also not query x (let alone at a nonzero location).

To resolve this issue, we need to remove this circular dependency.

The Transformation. To resolve the circular dependency, we choose ρ1 using a
property that is stronger than being useful: we choose ρ1 if, given π1 := P(x),
for every π2 there exists some ρ2 so that V
0,π1,π2(ρ1, ρ2) = 0. We show that this
definition suffices, beginning with the protocol:

– Alice, given x:
1. Compute π1 := P(x).
2. Let ρ1 be the (lexicographically) smallest string so that for every π′

2 there
exists ρ′

2 such that V
0,π1,π′
2(ρ1, ρ′

2) = 0.

142 G. Arnon et al.

3. Compute π2 := P(x, ρ1).
4. Let ρ2 be the smallest string so that V
0,π1,π2(ρ1, ρ2) = 0.
5. Send (w1,w2), which are V’s views of π1 and π2 (respectively) in the

execution Vx,π1,π2(ρ1, ρ2).
– Bob, given (w1,w2) and oracle access to x:

1. Let ρ1 be the smallest string that is consistent with w1 and for every π′
2

there exists ρ′
2 such that V
0,w1,π′

2(ρ1, ρ′
2) = 0.

2. Let ρ2 be the smallest string that is consistent with w2 so that
V
0,w1,w2(ρ1, ρ2) = 0.

3. Run Vx,w1,w2(ρ1, ρ2) making the same queries that it makes to x.

Alice sends O(qπ · log l) bits to Bob, who makes qx queries. Theorem 2 follows by
applying this transformation to the bound derived in Sect. 2.4. If the IOPP is an
IPP (i.e., qπ = l), then the verifier’s view contains the entire proof, so Alice does
not need to send indices in the proof and her message length can be decreased to
l. This optimization yields the improved bound for IPPs described in Theorem
2. We sketch the proof showing that Bob must query a nonzero index of x.

Lemma 2. Bob queries a nonzero index of x.

Proof Sketch. We show that Alice is able to find (ρ1, ρ2), and that Bob
derives the same (ρ1, ρ2). Since these strings are such that V
0,π1,π2(ρ1, ρ2) =
V
0,w1,w2(ρ1, ρ2) = 0, it follows by Claim 2 that Bob queries x at a nonzero
location.

– Alice finds some (ρ1, ρ2). We first show that Alice will have a choice of ρ1:
indeed, suppose towards contradiction that for every ρ1 there exists π′

2 such
that for every ρ′

2 it holds that V
0,π1,π′
2(ρ1, ρ′

2) = 1. If this is the case, then
a malicious Prover could convince the verifier to accept the all-zeroes vector
with probability 1 by sending π1, getting challenge ρ1, and then following the
strategy to get a π′

2 that is accepted by the verifier for every ρ′
2. This contra-

dicts the soundness of the IOPP. Once ρ1 has been chosen, π2 := P(x, ρ1) is
defined. Then, since ρ1 was chosen, it must be the case that there exists ρ2
for Alice to choose where V
0,π1,π2(ρ1, ρ2) = 0.

– Bob chooses the same (ρ1, ρ2). We show that Alice and Bob agree on ρ1.
Agreement on ρ2 follows by a similar argument. Bob goes over ρ∗

1 in lexico-
graphic order. We show that Bob does not choose ρ∗

1 < ρ1 (this is where we
will use the fact that the IOPP is semi-adaptive) and that when it reaches
ρ∗
1 = ρ1 it chooses this string.
• ρ∗

1 < ρ1: Suppose towards contradiction that Bob chooses ρ∗
1 < ρ1. Since

Alice did not choose ρ∗
1, it holds that there exists π′

2 such that for every
ρ2, Vπ1,π′

2(ρ∗
1, ρ2) = 1. Furthermore, since Bob chose ρ∗

1, it holds that ρ∗
1

is consistent with w1. Since the IOPP is semi-adaptive, the view of the
verifier of π1 depends only on its first randomness ρ∗

1. Thus, ρ1 and ρ∗
1

induce the same view w1 from π1, and they do so regardless of π′
2 and

ρ′
2. We conclude that there exists π′

2 such that for every ρ′
2 it holds that

Hamming Weight Proofs of Proximity with One-Sided Error 143

Vw1,π′
2(ρ∗

1, ρ
′
2) = Vπ1,π′

2(ρ∗
1, ρ

′
2) = 1. This is a contradiction to the fact

that, since Bob has chosen ρ∗
1, it holds that for every π′

2 there exists ρ′
2

so that Vw1,π′
2(ρ∗

1, ρ
′
2) = 0.

• ρ∗
1 = ρ1: Since Alice chose ρ1, it holds that for every π′

2 there exists a ρ′
2

so that Vπ1,π′
2(ρ1, ρ′

2) = 1. Moreover, by definition ρ1 is consistent with
w1. It follows that for every π′

2 there exists ρ′
2 so that Vw1,π′

2(ρ1, ρ′
2) = 0.

Therefore Bob will choose ρ∗
1 = ρ1 when it is reached.
�

2.5 Application: Perfect Completeness for PCPs and IOPs

In this section, we show, as an application of our main results, how to transform
PCPs and IOPs for arbitrary languages with two-sided error into ones with
perfect completeness.

Perfect Completeness for PCPs. Consider a PCP system for a language L with
completeness error c and soundness error s where the verifier uses r bits of
randomness. We reduce the completeness error to 0 using any of the PCPPs (or
the MAP) for the Hamming weight problem described in previous sections.

Given an instance x and the honest prover’s proof π, we can define a binary
vector x of length 2r where at index ρ ∈ {0, 1}r the vector x is equal to 1 if and
only if the PCP verifier accepts given x, randomness ρ and oracle access to π. If
x ∈ L then x has at least (1 − c) · 2r ones, and if x /∈ L then x has at most s · 2r
ones. Given a perfectly complete PCPP (or MAP) for asserting that x has at
least a 1−c fraction of ones, we produce a PCP for L with perfect completeness:
The new PCP contains the original PCP proof and the PCPP proof that x has
many ones. The new PCP verifier runs the PCPP verifier, where in order to
query x at ρ, the verifier runs the original PCP verifier on randomness ρ, and
outputs the PCP verifier decision as the value in x[ρ]. Perfect completeness and
soundness follow from the completeness and soundness of the PCPP.

Perfect Completeness for IOPs. One would hope that the above approach for
PCPs would also work to eliminate completeness error in IOPs. Unfortunately,
this does not seem to be the case: defining a static x relying on verifier random-
ness in all rounds combined seems incompatible with the reliance of IOPs on
interaction to achieve soundness. Due to this difficulty, we do not give a generic
transformation for achieving perfect completeness in IOPs given an IOPP for
the Hamming weight problem. Nonetheless, we show that the IOPP described
in Sect. 2.3 can be adapted to transform any IOP with two-side error into one
with perfect completeness.

3 Preliminaries

For a vector x ∈ {0, 1}n and an index i ∈ N, we let x[i] := x[i mod n]. For inter-
active (oracle) algorithms A and B, we denote by 〈A(a),B(b)〉(c) the random
variable describing the output of B following the interaction between A and B,

144 G. Arnon et al.

where A is given private input a, B is given private input b and both parties
are given joint input c. We define a function f : N → (0, 1] to be computable
in linear time if the time to compute f(x) is linear in the size of the binary
representation of x. Moreover, for any two functions f, f ′ : N → (0, 1], we say
that f < f ′ if for any x ∈ N, f(x) < f ′(x).

3.1 Hamming Weight Problem and Hamming Distance

In this paper, we consider the relative hamming weight of bit vectors:

Definition 1 ((Relative) Hamming weight). The relative Hamming weight
of a bit vector x ∈ {0, 1}n, denoted weight(x), is the fraction of ones in x:

weight(x) =
1
n

· |{i ∈ [n] | x[i] = 1}| .

The main language that we consider in this paper is α-Hamming-weight, which
consists of all bit vectors of weight at least α:

Definition 2 (α-Hamming-weight language). For α : N → (0, 1], the α-
Hamming-weight language, Hamα, is the set of all bit vectors with Hamming
weight at least α(·), where α is a function on the size of the vector:

Hamα :=
⋃

n∈N

{x | x ∈ {0, 1}n ∧ weight(x) ≥ α(n)} .

We define a language that k-Hamα contains all lists of k vectors that all have
Hamming weight α. The language is defined so that 1-Hamα ≡ Hamα.

Definition 3 ((k, α)-list-Hamming-weight language). For k ∈ N and α ∈
(0, 1], the (k, α)-list-Hamming-weight language, k-Hamα, is the language of all
lists of k vectors of identical length, each of which has Hamming weight at least
α:

k-Hamα :=
⋃

n∈N

{x1, . . . ,xk ∈ {0, 1}n | ∀i ∈ [k], weight(xi) ≥ α(n)} .

We use Hamming distance as our measure of distance from the α-Hamming-
weight language:

Definition 4 (Hamming distance). Let n, k be parameters in N. For any two
bit vectors x,x′ ∈ {0, 1}n, denote Δ(x,x′) as the Hamming distance between x
and x′. Formally,

Δ(x,x′) :=
1
n

·
∑

i∈[n]

|x[i] − x′[i]| .

Moreover, for any x ∈ {0, 1}n and a language L ⊆ {0, 1}n, denote Δ(x, L) as
the Hamming distance between x and L. Formally,

Δ(x, L) := min
x′∈L∩{0,1}n

Δ(x,x′) .

Hamming Weight Proofs of Proximity with One-Sided Error 145

3.2 Probabilistic Proof Systems

In this paper we consider a number of models of proof systems, such as IOPs,
PCPs, MA proofs, their “proximity” variants, and variants where the error func-
tion may depend arbitrarily on the inputs. We choose to define them through
the lens of a general object which we call “generalized IOPs”, which includes
explicit and implicit inputs, a witness, and arbitrary errors.

A generalized k-round (public-coin) IOP [BCS16,RRR16], works as follows.
The verifier is given explicit input y and oracle access to implicit input x. The
(honest) prover is additionally given a witness w. In every round i ∈ [k], the
verifier sends a uniformly random message ρi to the prover; then the prover
sends a proof string πi to the verifier. After k rounds of interaction, the verifier
reads explicit input y, makes some queries to the implicit input x and to the
proof strings π1, . . . , πk sent by the prover and then decides if to accept or to
reject. The following definition discusses the error parameters of a generalized
IOP:

Definition 5 (Generalized IOPP). Let (P,V) be a tuple where P is an inter-
active algorithm, and V is an interactive oracle algorithm. We say that (P,V) is
a public-coin generalized IOP for a relation R := {((x,y),w)} with k rounds,
completeness error c, and soundness error s if the following holds.

– Completeness. For every ((x,y),w) ∈ R,

Pr
ρ1,...,ρk

⎡
⎢⎢⎣ Vx ,π1,...,πk (|x|,y, ρ1, . . . , ρk) = 1

π1 ← P(x,y,w)
.
.
.

πk ← P(x,y,w, ρ1, . . . , ρk)

⎤
⎥⎥⎦ ≥ 1 − c(x,y) .

If c(x,y) = 0 for every (x,y) ∈ L(R), we say that the IOPP has perfect
completeness.

– Soundness. For every (x,y) /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ1,...,ρk

⎡

⎢

⎣
Vx,π1,...,πk(|x|,y, ρ1, . . . , ρk) = 1

π1 ← P̃
...

πk ← P̃(ρ1, . . . , ρk)

⎤

⎥

⎦
≤ s(x,y) .

Above, L(R) := {(x,y) | ∃w, ((x,y),w) ∈ R}.
In the rest of this paper, we sometimes omit explicitly writing the verifier’s input
|x|, but this is always assumed to be given to the verifier.

Efficiency Measures. We study several efficiency measures. All of these com-
plexity measures are implicitly functions of the instance (x,y).

– Rounds k: The IOP has k rounds of interaction.
– Proof length l: the combined number of bits in the proofs πi.
– Queries to (implicit) input qx: the number of bits read by the verifier from x.
– Queries to proof qπ: the number of bits read by the verifier from π1, . . . , πk.

146 G. Arnon et al.

– Randomness r: the combined number of bits in the verifier messages ρi.
– Verifier time vt: V runs in time vt.
– Prover time pt: The prover runs in time pt. In some cases we will have expected

prover running time, in which case this will be stated explicitly.

We use generalized versions of PCPs and MA proofs:

Definition 6 (Generalized PCP and generalized MA). A generalized
probabilistically checkable proof (generalized PCP) is a generalized IOP with
no interaction rounds (only a single prover message, after which the verifier may
choose random coins). A generalized MA proof is a generalized PCP in which
the verifier queries the entire (single) prover message.

An IOP of proximity is a generalized IOP where the completeness error
depends only on the length of the inputs, and the soundness error can be
described as a function of the distance of the implicit instance x from an implicit
input in the language. Formally:

Definition 7 (Proofs of proximity). An IOP of proximity (IOPP) with
respect to distance function Δ is a generalized IOP where there exist functions
c′ and s′ such that c(x,y) = c′(|x|,y) and s(x,y) = s′(|x|,y, δ) where δ :=
Δ(x, Ly(R) ∩ {0, 1}|x|) for Ly(R) := {x′ ∈ {0, 1}∗ | ∃w, ((x′,y),w) ∈ R}.

PCPs of proximity (PCPPs) and MA proofs of proximity (MAPs) are simi-
larly defined as variants of generalized PCPs and generalized MA proofs respec-
tively.

Whenever the distance function Δ is not explicitly specified, we implicitly
refer to Hamming distance. It is common for proofs of proximity to be defined
for relations with no explicit input y or witness w. Indeed, this is the case for
the Hamming relation Hamα which is the focus of this work. In this case we will
omit y and w from all notation.

Finally, we define standard IOPs, PCPs and MA proofs:

Definition 8 (Standard IOP/PCP/MA proofs). A (standard) IOP
(respectively standard PCP or standard MA proof) is an IOPP (respectively
PCPP or MAP proof) for a relation R := {((⊥,y),w)} (i.e., there is no x in
the relation).

For the standard variants of probabilistic proof systems, we will omit x from
notation, as it is always set to ⊥. Moreover, we will sometimes denote the input
by x and witness by w (instead of y and w) as is standard for IOPs.

Remark 1 (Computability of error functions). In this work we assume unless
stated otherwise that c and s are computable in polynomial time given the
implicit input, x, explicit input y, and the proximity δ (as defined in Defini-
tion 7).

Hamming Weight Proofs of Proximity with One-Sided Error 147

3.3 Probabilistic Inequalities

We use the multiplicative Chernoff bound.

Theorem 1 (Multiplicative Chernoff Bound). Let X =
∑

i∈[n] Xi, where
X1, . . . , Xn are independent random variables in {0, 1}, with E[X] = μ. Then
for any ε ≥ 0,

Pr[X ≤ (1 − ε)μ] ≤ e−(ε2μ/2),

Pr[X ≥ (1 + ε)μ] ≤ e−(ε2μ/3) .

4 Finding Good Shifts

In this section, we define the concept of “good” shifts and prove that such shifts
can be found efficiently in expected probabilistic time. These good shifts will be
helpful for us throughout the paper, generally for showing perfect completeness
of protocols and for bounding the (expected) running time of the honest prover.

We define good shifts for a set of vectors:

Definition 9 (Good shifts). For every n, k, t ∈ N, ε ∈ (0, 1], and for every
list of bit vectors x1, . . . ,xk ∈ {0, 1}n we define the set Goodt,ε(x1, . . . ,xk) to be
the set of shifts (z1, . . . , zt) ∈ {0, 1}t·n such that

∀ i ∈ [k], ρ ∈ [n]
∑

j∈[t]

xi[ρ + zj] ≥ ε · t .

We give a probabilistic algorithm that, given a list of vectors, outputs a set of
good shifts in small (expected) time:

Construction 2 (Shift finding algorithm). The algorithm A is given as input
α, η, and (x1, . . . ,xk). It proceeds as follows:

– Repeat the following until shifts are output:
1. Sample z1, . . . , zt ← [n] uniformly at random.
2. For every i ∈ [k]:

(a) Set counteri := 0 and let bucketi be the all zeros array of size n.
(b) For every ρ ∈ [n]: if counteri < α · n and xi[ρ] = 1 then update:

counteri := counteri+1 and, for every j ∈ [t], update bucketi[ρ−zj] :=
bucketi[ρ − zj] + 1.

(c) Check that bucketi[ρ] ≥ (α − η) · t for every ρ ∈ [n].
3. Output z1, . . . , zt if the previous checks passed for every i ∈ [k].

The following lemma shows that A finds good shifts and gives a bound on its
running:

Lemma 1. Fix parameters n ∈ N, α ∈ (0, 1] and η ∈ (0, α), and let t :=
2 · log(k · n)/η2. For every set of bit vectors x1, . . . ,xk ∈ Hamα ∩ {0, 1}n, there
exist (z1, . . . , zt) ∈ Goodt,α−η(x1, . . . ,xk) and the algorithm A(α, η,x1, . . . ,xk),
described in Construction 2, outputs a set of such shifts in expected time:
O

(

α
α−η · n · k · log(n · k)

)

.

148 G. Arnon et al.

Proof. Fix bit vectors x1, . . . ,xk ∈ Hamα, and for each i let x′
i be xi where

all but the first α · n ones are flipped to 0 (note that weight(x′
i) = α · n ≤

weight(xi)). In Claim 2 we show that A outputs shifts if and only if they are
good for (x′

1, . . . ,x
′
k). Then, in Claim 3, we show that the probability that a

randomly sampled set of shifts is good for (x′
1, . . . ,x

′
k) is at least 0.2. Observe

that Goodt,α−η(x′
1, . . . ,x

′
t) ⊆ Goodt,α−η(x1, . . . ,xt) since for every i and ρ:
∑

j∈[t]

x[ρ + zj] ≥
∑

j∈[t]

x′[ρ + zj] .

Therefore, the expected number of times that z1, . . . , zt are sampled until A
outputs (z1, . . . , zt) ∈ Goodt,α−η(x1, . . . ,xt) is 5.

Each sample takes time O(t). The algorithm then iterates over all of the
vectors and their values and, for each vector xi, updates bucketi for every j for
at most α · n times due to the counter counteri. Each update takes time O(t).
Thus, the computation for each vectors takes time O(n + α · n · t).

Overall, the expected running time of A is

O(t + k · (n + α · n · t)) = O

(

k · (n + α · n · log(n · k)
α − η

)
)

= O

(

α

α − η
· n · k · log(n · k)

)

,

where the second equality holds since α/(α − η) ≥ O(1).
We now prove our first claim, showing that A outputs z1, . . . , zt if and only

if they are good.

Claim 2. A outputs the sampled shifts z1, . . . , zt if and only if (z1, . . . , zt) ∈
Goodt,α−η(x′

1, . . . ,x
′
k).

Proof. Consider a set of shifts z1, . . . , zt. For a set index i ∈ [k], counteri begins
at 0 and, for every ρ with xi[ρ] = 1, counteri is increased by 1. Once counteri =
(α − η) · n (i.e., once the first (α − η) · n ones of xi are seen), counteri and
bucketi do not change. Therefore, the algorithm acts identically for x1, . . . ,xk

and x′
1, . . . ,x

′
k.

Now note that for every ρ with x′
i[ρ] = 1, we add 1 to bucketi[ρ − zj] for

every j ∈ [t]. Thus

bucketi[ρ] = |{j ∈ [t] : x′
i[ρ + zj] = 1}| =

∑

j

x′
i[ρ + zj] .

Thus, by the end of the iteration, bucketi[ρ] =
∑

j x
′
i[ρ + zj]. The algorithm

outputs z1, . . . , zt if and only if for every i ∈ [k], and every ρ ∈ [n]:
∑

j

x′
i[ρ + zj] ≥ bucketi[ρ] ≥ (α − η) · k ,

which precisely means that z1, . . . , zt is output if and only if (z1, . . . , zt) ∈
Goodt,α−η(x′

1, . . . ,x
′
k).
�

Hamming Weight Proofs of Proximity with One-Sided Error 149

We now show that by uniformly sampling shifts, one hits a good set with
constant probability:

Claim 3. Prz1,...,zt
[(z1, . . . , zt) ∈ Goodt,α−η(x′

1, . . . ,x
′
k)] > 0.2 .

Proof. Recall that

Pr
z1,...,zt

[(z1, . . . , zt) ∈ Goodt,α−η(x′
1, . . . ,x

′
k)]

= Pr
z1,...,zt

⎡

⎣ ∀ i ∈ [k], ρ ∈ [n]
∑

j∈[t]

x′
i[ρ + zj] ≥ (α − η) · t

⎤

⎦ .

Notice that for every i and ρ:

Pr
zj←[n]

[x′
i[ρ + zj] = 1] = Pr

zj←[n]
[x′

i[zj] = 1] .

Thus, by applying the union bound, we have that:

Pr
z1,...,zt

⎡

⎣ ∃ ρ ∈ [n].
∑

j∈[t]

x′
i[ρ + zj] < (α − η) · t

⎤

⎦

≤
∑

ρ∈[n]

⎛

⎝ Pr
z1,...,zt

⎡

⎣

∑

j∈[t]

x′
i[ρ + zj] < (α − η) · t

⎤

⎦

⎞

⎠

= n · Pr
z1,...,zt

⎡

⎣

∑

j∈[t]

x′
i[zj] < (α − η) · t

⎤

⎦ .

Notice that for every j:

Ezj
[x′

i[zj]] = Pr
zj

[x′
i[zj] = 1] = (α − η) · t .

Thus, by applying the Chernoff bound with ε := α − η, we have that

Pr
z1,...,zt

⎡

⎣

∑

j∈[t]

x′
i[zj] < (α − η) · t

⎤

⎦ ≤ e− η2

2α ·t ,

Therefore,

Pr
z1,...,zt

⎡

⎣ ∃ ρ ∈ [n]
∑

j∈[t]

x′
i[ρ + zj] < (α − η) · t

⎤

⎦ ≤ n · e− η2

2α ·t .

150 G. Arnon et al.

By applying the union bound, we have that:

Pr
z1,...,zt

⎡

⎣ ∃ i ∈ [k], ρ ∈ [n]
∑

j∈[t]

x′
i[ρ + zj] < (α − η) · t

⎤

⎦ ≤ k · n · e− η2

2α ·t

= 2log(k·n) · e− log(k·n)
α

≤ (2/e)log(k·n)

< 0.8 ,

where the equality follows from the definition of t := 2 · log(k · n)/η2. Therefore,

Pr
z1,...,zt

⎡

⎣ ∀ i ∈ [k], ρ ∈ [n]
∑

j∈[t]

x′
i[ρ + zj] ≥ (α − η) · t

⎤

⎦ > 0.2 .

�

5 Non-interactive Proofs for Hamming Weight
with Sublinear Communication

In this section, we develop an MA proof and a PCPP with sublinear communi-
cation complexity for the Hamming weight problem. We begin by describing the
MAP:

Theorem 3. For every α, η : N → (0, 1] such that 0 < η < α (that are com-
putable in linear time), there exists a perfectly complete MAP for Hamα with the
following parameters,

MAP for Hamα

Soundness error s(δ) = α−δ
α−η

Communication length 2 · log2 n/η2

Queries to input 2 · log n/η2

Randomness log n

Verifier running time O(log n/η2)
Prover expected running time O (α/(α − η) · n · log n)

where n ∈ N is the input size, α := α(n), and η := η(n).

The PCPP is as follows:

Theorem 4. For every α, η : N → (0, 1] such that 0 < η < 2
3 · α (that are

computable in linear time), there exists a perfectly complete PCPP for Hamα

with the following parameters,
where n ∈ N is the input size, α := α(n), and η := η(n).

Hamming Weight Proofs of Proximity with One-Sided Error 151

PCPP for Hamα

Soundness error s(δ) = α−δ
α−1.5η

Proof length O
(

n
log2 n

· (− log2 η)/η2
)

Queries to input O
(

(loglog n − log η)/η2
)

Queries to proof O
(

log n · (loglog n − log2 η)/η2
)

Randomness log n + loglog n − 2 log η + 1
Verifier running time O

(

log n · (loglog n − log2 η)/η2
)

Prover expected running time O
(

α
α−1.5η · n · log n · (loglog n − log η) /η2

)

This section is organized as follows:

– In Sect. 5.1 we construct a generalized MA for list-Hamming. Theorem 3
follows as a corollary from this construction.

– In Sect. 5.2 we introduce a transformation from generalized PCP for list-
Hamming with specific error structure (which the generalized MA constructed
in the previous section has) to a PCPP for Hamming.

– In Sect. 5.3 we construct a PCPP for Hamming by plugging in the result
from Sect. 5.1, which provides a generalized MA for list-Hamming, into the
transformation described in Sect. 5.2. Note that MAs can be used in this
transformation since MAs are a specific case of PCPs. This step directly
implies Theorem 4.

5.1 MA Proof of Proximity

We construct a generalized MA proof for k-Hamα with sublinear communication
complexity. The resultant generalized MA proof will directly imply an MAP for
Hamα.

Theorem 5. For every k ∈ N, α, η : N → (0, 1] such that 0 < η < α (that are
computable in linear time), Construction 7 yields a perfectly complete generalized
MA proof for k-Hamα with the following parameters:

Generalized MA for k-Hamα

Soundness error 1
k·(α−η) · ∑k

i=1 weight(xi)

Proof length 2 · log n · log(k · n)/η2

Queries to input 2 · log(k · n)/η2

Randomness log(k · n)
Verifier running time O(log(k · n)/η2)
Prover expected running time O (α/(α − η) · n · k · log(n · k))

where (x1, . . . ,xk) ∈ ({0, 1}n)k is the input, α := α(n), and η := η(n).

152 G. Arnon et al.

Note that for k = 1, we have that 1-Hamα ≡ Hamα. Moreover, the soundness
error of the protocol is a function of the distance from the language: 1

α−η ·
weight(x) = 1

α−η · (α − Δ(x,Hamα)). Therefore, Theorem 5, when fixing k = 1,
directly implies the following theorem.

Theorem 6. For every α, η : N → (0, 1] such that 0 < η < α (that are com-
putable in linear time), Construction 7 yields a perfectly complete oracle MAP
for k-Hamα with the following parameters:

MAP for Hamα

Soundness error s(δ) = α−δ
α−η

Proof length 2 · log2 n/η2

Queries to input 2 · log n/η2

Randomness log n

Verifier running time O(log n/η2)
Prover expected running time O (α/(α − η) · n · log n)

where n ∈ N is the input size, α := α(n), and η := η(n).

Theorem 5 follows from the construction below:

Construction 7. Let t := 2 · log(k · n)/η2. The prover P receives as input bit
vector x1, . . . ,xk ∈ {0, 1}n, while the verifier V has oracle access to the vector
x1, . . . ,xk. They interact as follows.

– P(x1, . . . ,xk): The prover sends z1, . . . , zt ∈ [n].
– Vx1,...,xk(n′, z1, . . . , zt):

1. Set n := n′/k.
2. Choose i ← [k], ρ ← [n] uniformly.
3. Query xi[ρ + z1], . . . ,xi[ρ + zt].
4. Accept if weight(xi[ρ + z1], . . . ,xi[ρ + zt]) ≥ (α − η) and reject otherwise.

The full proof for the above construction is in the full version of this paper.

5.2 PCP for List-Hamming to PCPP for Hamming

We construct a PCPP for Hamming from a (generalized) PCP for list-Hamming.

Theorem 8. Suppose that for every α′, η′ : N → (0, 1] such that 0 < η′ <
α′ (that are computable in linear time), there is perfectly complete generalized
PCP (PPCP,VPCP) for k′-Hamα′ such that for input (x1, . . . ,xk′) ∈ ({0, 1}n′

)k′

has soundness error of the form ε(α′, η′) · 1
k′ · ∑k′

i=1 weight(xi). Then for every
a ∈ N, α, η : N → (0, 1] such that 0 < η′ < α′ (that are computable in linear

Hamming Weight Proofs of Proximity with One-Sided Error 153

time), Construction 9 yields a PCPP (PPCPP,V′
PCPP) for Hamα with the following

parameters:

Generalized PCP (P,V) for k′-Hamα′

Soundness error ε(α, η) · 1
k′ · ∑k′

i=1 weight(xi)
Proof length lP := lP(n′, k′, η′)
Queries to input qx := qx(n′, k′, η′)
Queries to proof qπ := qπ(n′, k′, η′)
Randomness r := r(n′, k′, η′)
Verifier running time vt := vt(n′, k′, η′)
Prover expected running time pt := pt(n′, k′, α′, η′)

−→

PCPP (P′,V′) for Hamα

Soundness error s(δ, α, η) = ε(α′, η′) · (α − δ)
Proof length n′ · log n + n

a · lP
Queries to input qx
Queries to proof log n · qx + qπ

Randomness log(n/a) + r
Verifier running time vt + O(qx)
Prover expected running time O

((

1
η2 + α

α− η
2

)

· n · log n + n
a · pt

)

where n′ = 2 · log n/η2(n), k′ = a, η′ = η(n)/2, α′ = α(n) − η(n)/2.

Construction 9. Let t := 8 · log n/η2, and for every s ∈ [n/a] let Is :=
((s − 1) · a + 1, . . . , s · a) be a list of a indices. Let (PPCP,VPCP) be a perfectly
complete PCP for k′-Hamα′ with vectors of size n′ := t, and η′ := η/2. The
prover PPCPP receives as input the bit vector x, while the verifier VPCPP has oracle
access to the bit vector x. They interact as follows.

– PPCPP(x):
1. Set bit vectors z1, . . . , zt ∈ [n].
2. For every ρ ∈ [n], set xρ := (x[ρ + z1], . . . ,x[ρ + zt]).
3. For every s ∈ [n/a], set Xs := (xρ)ρ∈Is

, and compute πs := PPCP(Xs).
4. Output

(

(z1, . . . , zt), (π1, . . . , πn/a)
)

.
– Vx,π

PCPP(n):
0. Notation:

(a) For every ρ ∈ [n], let xρ := (x[ρ + z1], . . . ,x[ρ + zt]).
(b) For every s ∈ [n/a], let Xs := (xρ)ρ∈Is

.
(Note that the verifier does not compute the above.)

1. Parse π := ((z1, . . . , zt), (π̃1, . . . , π̃n/a)).
2. Choose s ← [n/a] uniformly.
3. Emulate VXs,π̃s

PCP (a · t), where for every input query xj [i], query zi,
x [Is[j] + zi], and answer accordingly.

4. Accept if and only if VXs,π̃s(a · t) accepts.

The full proof for the above construction can be found in the full version of
this paper.

154 G. Arnon et al.

5.3 PCP of Proximity

The following theorem follows by plugging in Theorem 5 into Theorem 8.

Theorem 10. For every α, η : N → (0, 1] such that η ∈ (0, α) (that are com-
putable in linear time), there exists a perfectly complete PCPP (P,V) for Hamα

with the following parameters:

PCPP (P,V)

Completeness error 0
Soundness error s(δ, α, η) = α−δ

α−η

Proof length O
(

n
η2·log2 n

· (− log2 η)
)

Queries to input O
(

(loglog n − log η)/η2
)

Queries to proof O
(

log n · (loglog n − log2 η)/η2
)

Randomness log n + loglog n − 2 log η + 1
Verifier running time O

(

log n · (loglog n − log2 η)/η2
)

Prover expected running time O
(

α
α−η · n · log n · (loglog n − log η) /η2

)

where n ∈ N is the input size, α := α(n), and η := η(n).

The proof of this theorem appears in the full version of the paper.

Acknowledgments. We are grateful to Ron Rothblum for valuable discussions and
for directing us to related work.

Gal Arnon is supported in part by a grant from the Israel Science Foundation (no.
2686/20) and by the Simons Foundation Collaboration on the Theory of Algorithmic
Fairness. Shany Ben-David is supported by the Israel Science Foundation (Grant no.
2302/22), and by the Clore Israel Foundation. Eylon Yogev is supported by the Israel
Science Foundation (Grant No. 2302/22), European Research Union (ERC, CRYPTO-
PROOF, 101164375), and by an Alon Young Faculty Fellowship. Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of
the European Union or the European Research Council. Neither the European Union
nor the granting authority can be held responsible for them.

References

[ABCY22] Arnon, G., Bhangale, A., Chiesa, A., Yogev, E.: A toolbox for barriers
on interactive oracle proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC
2022. LNCS, vol. 13747, pp. 447–466. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-22318-1 16

[ACFY24] Arnon, G., Chiesa, A., Fenzi, G., Yogev, E.: STIR: ReedSolomon proxim-
ity testing with fewer queries. Cryptology ePrint Archive, Paper 2024/390
(2024)

https://doi.org/10.1007/978-3-031-22318-1_16
https://doi.org/10.1007/978-3-031-22318-1_16

Hamming Weight Proofs of Proximity with One-Sided Error 155

[ACY22a] Arnon, G., Chiesa, A., Yogev, E.: A PCP theorem for interactive proofs.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol.
13276, pp. 64–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-07085-3 3

[ACY22b] Arnon, G., Chiesa, A., Yogev, E.: Hardness of approximation for stochastic
problems via interactive oracle proofs. In: CCC 2022 (2022)

[ACY23] Arnon, G., Chiesa, A., Yogev, E.: IOPs with inverse polynomial soundness
error. IEEE (2023)

[AGRR23] Aaronson, H., Gur, T., Rajgopal, N., Rothblum, R.: Distribution-free proofs
of proximity. In: Electronic Colloquium on Computational Complexity
(2023)

[BBC+17] Ben-Sasson, E.: Computational integrity with a public random string from
quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B., et al. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 19

[BBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed–solomon
interactive oracle proofs of proximity. In: ICALP 2018 (2018)

[BCG+17a] Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Inter-
active oracle proofs with constant rate and query complexity. In: ICALP
2017 (2017)

[BCG+17b] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In: ASIACRYPT 2017 (2017)

[BCG20] Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear
verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64378-2 2

[BCGV16] Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero
knowledge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 2

[BCL22] Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear- time
prover and polylogarithmic-time verifier. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 275–304. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-07085-3 10

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[BGH+06] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM J.
Comput. (2006)

[BKS01] Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Sampling algorithms: lower
bounds and applications. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M.
(eds.) ACM (2001)

[BN22] Bordage, S., Nardi, J.: Interactive oracle proofs of proximity to algebraic
geometry codes. In: CCC 2022 (2022)

[BV19] Bafna, M., Vyas, N.: Imperfect gaps in gap-ETH and PCPs. In: Shpilka,
A. (eds.) LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, vol.
137 (2019)

[BV22] Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by deran-
domization. J. Cryptol. (2022)

https://doi.org/10.1007/978-3-031-07085-3_3
https://doi.org/10.1007/978-3-031-07085-3_3
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-031-07085-3_10
https://doi.org/10.1007/978-3-662-53644-5_2

156 G. Arnon et al.

[CY20] Chiesa, A., Yogev, E.: Barriers for succinct arguments in the random oracle
model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp.
47–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-
2 3

[CY21a] Chiesa, A., Yogev, E.: Subquadratic SNARGs in the random oracle model.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825,
pp. 711–741. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0 25

[CY21b] Chiesa, A., Yogev, E.: Tight security bounds for Micali’s SNARGs. In:
Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 401–434.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3 14

[DNR04] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from
decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 21

[DR04] Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial proof
of the PCP theorem. In: FOCS 2004 (2004)

[EKR04] Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilistically
checkable proofs. In: Information and Computation (2004)

[FGM+89] Fürer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On complete-
ness and soundness in interactive proof systems. In: Advances in Computing
Research (1989)

[GGR18] Goldreich, O., Gur, T., Rothblum, R.D.: Proofs of proximity for context-
free languages and read-once branching programs. Inf. Comput. (2018)

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection
to learning and approximation. J. ACM (1998)

[Gol11] Goldreich, O.: A sample of samplers: a computational perspective on sam-
pling. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Mis-
cellanea on the Interplay between Randomness and Computation. LNCS,
vol. 6650, pp. 302–332. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22670-0 24

[GR18] Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. Comput.
Complex. (2018)

[HNY17] Hubácek, P., Naor, M., Yogev, E.: The journey from NP to TFNP hardness.
In: Papadimitriou, vol. 67. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
STOC 1992 (1992)

[KR15] Kalai, Y.T., Rothblum, R.D.: Arguments of proximity. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 422–442.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 21

[KSY20] Katzir, L., Shikhelman, C., Yogev, E.: Interactive proofs for social graphs.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172,
pp. 574–601. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 20

[Lau83] Lautemann, C.: BPP and the polynomial hierarchy. Inf. Process. Lett.
(1983)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. (2000). Pre-
liminary version appeared in FOCS 1994

https://doi.org/10.1007/978-3-030-64378-2_3
https://doi.org/10.1007/978-3-030-64378-2_3
https://doi.org/10.1007/978-3-030-84242-0_25
https://doi.org/10.1007/978-3-030-84242-0_25
https://doi.org/10.1007/978-3-030-90459-3_14
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1007/978-3-662-48000-7_21
https://doi.org/10.1007/978-3-662-48000-7_21
https://doi.org/10.1007/978-3-030-56877-1_20
https://doi.org/10.1007/978-3-030-56877-1_20

Hamming Weight Proofs of Proximity with One-Sided Error 157

[Mie09] Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries.
Ann. Math. Artif. Intell. (2009)

[Nao89] Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 13

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci.
(1994)

[Rot24] Rothblum, R.: Private communication
[RR20a] Ron-Zewi, N., Rothblum, R.: Local proofs approaching the witness length.

In: FOCS 2020 (2020)
[RR20b] Rothblum, G.N., Rothblum, R.D.: Batch verification and proofs of prox-

imity with polylog overhead. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12551, pp. 108–138. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64378-2 5

[RR22] Ron-Zewi, N., Rothblum, R.D.: Proving as fast as computing: succinct argu-
ments with constant prover overhead. In: STOC 2022 (2022)

[RRR16] Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive
proofs for delegating computation. In: STOC 2016 (2016)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput. (1996)

[RVW13] Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of prox-
imity: delegating computation in sublinear time. In: STOC 2013 (2013)

[XZZ+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/978-3-030-64378-2_5
https://doi.org/10.1007/978-3-030-64378-2_5
https://doi.org/10.1007/978-3-030-26954-8_24

Untangling the Security of Kilian’s Protocol:
Upper and Lower Bounds

Alessandro Chiesa1, Marcel Dall’Agnol2, Ziyi Guan1(B), Nicholas Spooner3,4,
and Eylon Yogev5

1 EPFL, Lausanne, Switzerland
{alessandro.chiesa,ziyi.guan}@epfl.ch

2 Princeton University, Princeton, USA
dallagnol@princeton.edu

3 University of Warwick, Coventry, UK
nicholas.spooner@warwick.ac.uk

4 NYU, New York, USA
5 Bar-Ilan University, Ramat Gan, Israel

eylon.yogev@biu.ac.il

Abstract. Sigma protocols are elegant cryptographic proofs that have become a
cornerstone of modern cryptography. A notable example is Schnorr’s protocol,
a zero-knowledge proof-of-knowledge of a discrete logarithm. Despite extensive
research, the security of Schnorr’s protocol in the standard model is not fully
understood.

In this paper we study Kilian’s protocol, an influential public-coin interactive
protocol that, while not a sigma protocol, shares striking similarities with sigma
protocols. The first example of a succinct argument, Kilian’s protocol is proved
secure via rewinding, the same idea used to prove sigma protocols secure. In this
paper we show how, similar to Schnorr’s protocol, a precise understanding of
the security of Kilian’s protocol remains elusive. We contribute new insights via
upper bounds and lower bounds.
– Upper bounds. We establish the tightest known bounds on the security of

Kilian’s protocol in the standard model, via strict-time reductions and via
expected-time reductions. Prior analyses are strict-time reductions that incur
large overheads or assume restrictive properties of the PCP underlying Kil-
ian’s protocol.

– Lower bounds. We prove that significantly improving on the bounds that we
establish for Kilian’s protocol would imply improving the security analysis
of Schnorr’s protocol beyond the current state-of-the-art (an open problem).
This partly explains the difficulties in obtaining tight bounds for Kilian’s
protocol.

Keywords: succinct interactive arguments · vector commitment schemes

1 Introduction

Sigma protocols are a fundamental class of cryptographic proofs with notable applica-
tions in cryptography (see [25] and references therein). A sigma protocol is a public-
coin interactive protocol that satisfies strong zero knowledge and soundness proper-
ties, and enjoys a simple structure. The prover sends a commitment, then the verifier
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 158–188, 2025.
https://doi.org/10.1007/978-3-031-78011-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-78011-0_6

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 159

responds with a random challenge, and finally, the prover sends an opening; the verifier
computes a decision bit based on the instance and the interaction transcript. Perhaps
the most prominent example of a sigma protocol is Schnorr’s protocol [33,34], which
proves, in zero knowledge, the knowledge of the discrete logarithm of a given group
element (for a given cyclic group and base group element). Numerous works study in
detail Schnorr’s protocol (and its derivates), establishing upper and lower bounds on
its security in different settings [5,6,20,29,30,35,36]. Remarkably, gaps remain in our
understanding of the security of Schnorr’s protocol, and closing these gaps remains a
challenging open problem.

In this paper we study Kilian’s protocol [23], a public-coin interactive protocol
that, while not a sigma protocol, shares striking similarities with sigma protocols.
This protocol is historically significant as the first example of a succinct argument, a
computationally-sound interactive proof for nondeterministic relations where the com-
munication complexity is much smaller than the size of the relation’s witness. Kilian’s
protocol is also the simplest example of a succinct interactive argument obtained via the
VC-based approach, a fundamental paradigm for constructing succinct arguments from
a probabilistic proof and a vector commitment (VC) scheme.

The shared structure with a sigma protocol is evident. The argument prover com-
mits to a probabilistically checkable proof (PCP) string via a VC scheme (Kilian’s pre-
sentation uses a Merkle commitment scheme, a VC scheme obtained from collision-
resistant hash functions), and sends the resulting commitment to the argument verifier;
the argument verifier sends PCP verifier randomness to the argument prover; and finally
the argument prover reveals the values of the queried locations of the PCP string and
accompanies these values with opening information. The argument verifier accepts if
the opening information is valid and the PCP verifier accepts.

Succinct arguments are a rare example of an “advanced” cryptographic primitive
that can be achieved from simple cryptography. Indeed, it is remarkable that, based
solely on the existence of a collision resistant hash function (even given as a black
box), one can achieve cryptographic proof systems with such remarkable efficiency.
On the other hand, the security reduction of a succinct argument is tasked with a chal-
lenging goal: find a “long” witness when given a malicious argument prover that only
outputs “short” messages in any given interaction. This naturally leads to rewinding, a
fundamental method of analysis in cryptography.

While Kilian [23] gives only an informal analysis, the security of Kilian’s protocol
via rewinding is studied in later works. Barak and Goldreich [4] give a detailed analysis,
but with limitations: their analysis incurs overheads and applies only to PCPs that satisfy
restrictive properties. Other works [15,21,26,27] provide brief analyses in the setting
of negligible errors, without quantifying security bounds in terms of the underlying
ingredients. We further elaborate on prior work in Sect. 1.3.

Motivated by the surge of interest in succinct arguments (e.g., in the context of
blockchains [31,32]), we revisit the security of Kilian’s protocol. As we discuss shortly,
we expose a fine structure and open problems, much alike to the state of affairs for
arguably simpler protocols such as Schnorr’s protocol. This challenges the commonly-
held belief that Kilian’s protocol is “understood”. We now turn to discuss our results.

160 A. Chiesa et al.

1.1 Our Results

Kilian’s protocol [23] combines a PCP system PCP and a vector commitment scheme
VC to obtain a succinct (public-coin) interactive argument. Throughout this section, we
fix these ingredients (unless otherwise specified).

– PCP is a PCP system for a relation R with proof length �, query complexity q, and
soundness error εPCP. (These may depend on the given instance x.)

– VC is a vector commitment scheme VC and we denote by εVC its position binding
error, which bounds the probability that an adversary outputs valid openings for the
same commitment that disagree in at least one position. In general, εVC is a function
of the security parameter λ, length � of the committed vector, number s of opened
entries of the vector, and bound tVC on the adversary running time.

Soundness. We provide the tightest known bounds for the soundness error of Kil-
ian’s protocol.

Theorem 1 (Informal). The soundness error εARG of Kilian[PCP,VC] satisfies the fol-
lowing for every security parameter λ, instance x /∈ L(R), adversary time bound tARG,
and error tolerance ε > 0:

εARG(λ,x, tARG) ≤ εPCP(x) + εVC

(
λ, �, q, tVC

)
+ ε, where tVC = O

(
�

ε
· tARG

)
.

The above bound for Kilian’s protocol has an intuitive explanation. An adversary that
commits to the PCP string Π̃ with maximal acceptance probability (and opens accord-
ingly) convinces the argument verifier with probability at least εPCP. Moreover, an adver-
sary that then tries to find a collision when Π̃ is rejected achieves (under some mild con-
ditions) a convincing probability of εPCP + (1 − εPCP) · εVC. The �

ε multiplicative loss in
tVC compared to tARG expresses the price of rewinding: to reconstruct an almost full PCP
string from small fragments revealed in each (valid) opening, we rewind the malicious
argument prover sufficiently many times. Improving this multiplicative factor remains
an open problem. Nevertheless, we show an exponential improvement whenVC satisfies
expected-time position binding, via an expected-time reduction that we discuss next.

Expected-Time Adversaries. We use ε�
VC to denote the expected-time position binding

error of VC, in which case we use t�VC to denote a bound on the expected running time
of the adversary. Namely, ε�

VC is the error probability given an adversary that runs in
expected-time t�VC.

We provide the first soundness analysis of Kilian’s protocol against adversaries with
bounded expected running time. Since the (strict-time) soundness error of Kilian’s pro-
tocol is upper-bounded by its expected-time soundness error, the following theorem
gives an alternative upper bound on the (strict-time) soundness error in terms of the
expected-time position binding error ε�

VC of VC.

Theorem 2 (Informal). If PCP has a non-adaptive verifier with running time tV, the
expected-time soundness error ε�

ARG of Kilian[PCP,VC] satisfies the following for every
security parameter λ, instance x /∈ L(R), adversary expected time bound t�ARG, and
error tolerance ε > 0:

ε�
ARG(λ,x, t�

ARG)≤ εPCP(x)+ q · ε�
VC

(
λ, �, q, t�

VC

)
+ ε, where t�

VC =O
(
log

q

ε
· (t�

ARG + � · tV)
)

.

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 161

This is an exponential improvement in the dependency of ε compared to the strict-
time setting (Theorem 1). Note that Theorem 2 assumes that the PCP underlying Kil-
ian’s protocol has a non-adaptive verifier (its queries are determined by the instance x
and the PCP verifier randomness). For PCPs with an adaptive verifier, we prove an alter-
native statement that achieves the same bound except with t�VC = O

(
log q

ε · � · t�ARG
)
.

Lower Bounds on Soundness. Kilian’s protocol shares certain structural resemblances
to a sigma protocol: both start with a prover’s commitment, followed by a verifier’s
challenge, and end with an opening to the commitment. However, sigma protocols are
special sound while Kilian’s protocol is not (see Sect. 1.3). Hence, it is unclear whether
there is any formal connection between Kilian’s protocol and sigma protocols.

We obtain the first lower bound on the soundness error of Kilian’s protocol by show-
ing that bounding the soundness of Kilian’s protocol is as hard as that of the Schnorr
identification scheme, a sigma protocol obtained from Schorr’s protocol whose security,
despite significant research efforts, remains only partially understood.

Theorem 3 (Informal). There exists PCP for a relation R and VC such that, for every
security parameter λ, instance x /∈ L(R), Schnorr adversary time bound tID ∈ N, and
Schnorr adversary expected time bound t�ID ∈ N,

εSchnorr(λ, tID) ≤ εARG(λ,x, tARG) , and

ε�
Schnorr(λ, t�ID) ≤ ε�

ARG(λ,x, t�ARG) .

Above, εARG and ε�
ARG are the soundness error and the expected-time soundness error

of ARG := Kilian[PCP,VC], respectively; εSchnorr and ε�
Schnorr are the security against

passive impersonation attacks of the Schnorr identification scheme and its expected-
time analogue, respectively. Moreover, tARG = O(tID), and t�ARG = O(t�ID).

In Sect. 1.2 we discuss how Theorem 3 tells us that in the strict-time setting there
is a polynomial gap between upper and lower bounds, whereas in the expected-time
setting there is essentially no gap.

Knowledge Soundness. The above discussion focuses only on the soundness error of
Kilian’s protocol. Recall that the soundness error is an upper bound on the probability
that a time-bounded adversary convinces the argument verifier to accept an instance
not in the language. Another important security notion is the knowledge soundness
error, which bounds the probability that a time-bounded adversary convinces the veri-
fier but a corresponding extractor, given that adversary, fails to find a valid witness for
the instance. The knowledge soundness error is an upper bound on the soundness error
because any extractor cannot find a valid witness for an instance not in the language
(there are no valid witnesses).

We construct an extractor for Kilian’s protocol that runs in time O
(

�
ε · tARG

)
, and

similarly to Theorem 1, prove that its knowledge soundness error satisfies

κARG(λ,x, tARG) ≤ κPCP(x) + εVC

(
λ, �, q, tVC

)
+ ε, where tVC = O

(
�

ε
· tARG

)
.

We prove this bound by making explicit, in the proof of Theorem 1, a subroutine with
running time O

(
�
ε · tARG

)
that outputs a “good” PCP (after which we rely on the PCP

knowledge extractor to obtain a witness).

162 A. Chiesa et al.

What can we say about the setting of expected-time adversaries?
A similar bound as the above can straightforwardly be proved, but this would not take
advantage of an expected-time reduction to achieve a smaller upper bound. Ideally,
we would convert the bound on soundness error in Theorem 2 into a similar bound
on knowledge soundness error; however, this does not work. Indeed, while the proofs
behind Theorems 1 and 2 both use rewinding arguments, they are qualitatively dif-
ferent (more details in Sects. 2.2 and 2.3). Obtaining a knowledge soundness bound
from the proof of Theorem 1 is straightforward because the extractor for the PCP and
the collision finder for the VC are similar algorithms. However, the proof of Theorem
2 leverages extra efficiency by breaking this symmetry: only the VC collision finder
is efficient, while the extractor that constructs a PCP is not. Hence, obtaining better
bounds for the expected-time knowledge soundness of Kilian’s protocol remains open.

We conclude by noting that similar considerations apply for proving the security
of Kilian’s protocol when based on a probabilistically checkable argument (PCA) [7,
12,22] rather than a probabilistically checkable proof. Since a PCA is computationally
sound, the running time to generate the PCA string is essential. Hence, our work yields
a strict-time reduction that is compatible with PCAs, while our expected-time reduction
is not compatible with PCAs.

Remark 1 (Adaptive Choice of x). The results of Theorems 1 to 3 are stated, for sim-
plicity, in the plain model (no trusted setups), where the argument verifier is responsible
for sampling and sending public parameters pp for VC to the argument prover. How-
ever, we actually prove these results in the (adaptive) common reference string model,
wherein public parameters pp for VC are sampled by a trusted party and a malicious
argument prover may adaptively choose the instance x after learning pp. Since in these
stronger theorems there is no pre-set instance x, the analogous statements (for corre-
sponding security properties) in the common reference model replace x with a size
bound n (and hold for all instances such that |x| ≤ n). The plain model variants are
straightforwardly implied (see Sect. 2.6 and Remark 7).

1.2 Discussion

How Tight are the Soundness Bounds? We discuss the tightness of the soundness
upper bounds in Theorems 1 and 2. The takeaway is that, for the setting in Theorem
3: (i) there is a polynomial gap between Theorem 1 and the best strict-time analysis
of the security of the Schnorr identification scheme; and (ii) there is essentially no gap
between Theorem 2 and the best expected-time analysis of the security of the Schnorr
identification scheme. This mirrors the state of the affairs for the Schnorr identification
scheme, as we now elaborate.

The security of the Schnorr identification scheme relies on the hardness of the dis-
crete logarithm problem. In the strict-time setting, the best analysis shows (roughly) a
square-root loss in the error:

εSchnorr(λ, tID) ≤
√

εDLOG(λ,O(tID)) ,

On the other hand, in the expected-time setting, it is straightforward to show that there
is essentially no loss:

ε�
Schnorr(λ, t�ID) ≤ ε�

DLOG(λ,O(t�ID)) .

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 163

Above εDLOG = εDLOG(λ, tDLOG) and ε�
DLOG = ε�

DLOG(λ, t�DLOG) are the discrete logarithm error
and the expected-time discrete logarithm error, respectively for a given group. That is,
for every tDLOG ∈ N and tDLOG-time adversary, given random y, the probability of finding
x such that y = gx is bounded by εDLOG(λ, tDLOG). Similarly, the success probability of
any adversary that has expected running time t�DLOG is bounded by ε�

DLOG(λ, t�DLOG).
Below we only state the bounds, the detailed calculation can be found in [14, Sects.

8.3 and 8.4].

– Tightness of Theorem 1: Consider the PCP and VC from Theorem 3. Let ARG :=
Kilian[PCP,VC]. Theorem 1 implies that

εARG(λ,x, tARG) ≤ 2−λ + εDLOG

(
λ,

�

ε
· tARG

)
+ ε .

For a natural setting of parameters, we can instantiate the bounds of εSchnorr and εARG

as follows:

εSchnorr(λ, tID) ≤ O

(√
t2ID
2λ

)

, and

εARG(λ,x, tARG) ≤ 2−λ + �2/3 · Θ

(
3

√
t2ARG
2λ

)

.

This shows a polynomial gap between the best analysis of the Schnorr identification
scheme and our analysis of Kilian’s protocol. Closing this gap remains an open
problem.

– Tightness of Theorem 2: From Theorem 2, ARG := Kilian[PCP,VC] has expected-
time soundness error ε�

ARG where

ε�
ARG(λ,x, t�ARG) ≤ 2−λ + ε�

DLOG

(
λ,O

(
log

q

ε
· t�ARG

))
+ ε .

This upper bound almost matches with the best known expected-time upper bound
for the security of the Schnorr identification scheme, except for a polylogarithmic
loss in the adversary running time.

Why Not Use a Random Oracle? One method of analyzing Kilian’s protocol is relying
on idealized models such as the random oracle model. Here, the need to rewind the
adversary is obviated as the PCP can be extracted directly by observing the queries
performed by the adversary to the random oracle. This approach yields an analysis with
tight bounds (see e.g., [19]) but is not applicable in the standard model.

In applications, practitioners replace the random oracle with a specific hash func-
tion, choosing parameters based on the idealized model’s analysis. However, this limits
the choice of hash functions to those presumed to sufficiently mimic a random oracle,
excluding hash functions that offer notable benefits but cannot replace a random oracle.
This includes, for example, hash functions with an algebraic structure (e.g., Pedersen
hash), which can be fast to compute or friendly for recursive composition. Understand-
ing the trade-offs in security bounds when using a rewinding-based analysis instead of
the random oracle model is meaningful and valuable.

164 A. Chiesa et al.

On the Price of Rewinding. We compare the soundness of Kilian’s protocol when
analyzed via: (i) a rewinding extractor when VC is based on a collision resistant hash
function; or (ii) a straightline extractor when VC is based on an ideal hash function (a
random oracle). This highlights the “price of rewinding”: the cost of a more expensive
security reduction that works under weaker assumptions on the underlying cryptogra-
phy.

(i) Rewinding extractor. Suppose that the vector commitment scheme VC is a Merkle
commitment scheme obtained from a collision-resistant hash function with security
εCRH(λ, tCRH). By Remark 2,

εVC(λ, �, s, tVC) ≤ εCRH

(
λ, tCRH = tVC + O(thλ

· q · log �)
)

.

Suppose that εCRH(λ, tCRH) ≤ t2CRH/2
λ, which is what would be achieved by an ideal

hash function. In this case, Theorem 1 gives the following upper bound on the sound-
ness error for Kilian[PCP,VC]:

εARG(λ,x, tARG) ≤ εPCP(x) + O

(
1
2λ

·
(

�

ε
· tARG + thλ

· q · log �

)2
)

+ ε .

Setting ε = Θ((�·tARG)2/3 ·2−λ/3)minimizes the right-hand side at εPCP(x)+Θ(�2/3 ·
(t2ARG · 2−λ)1/3).1

(ii) Straightline extractor. Suppose that we model the collision-resistant hash function
as an ideal hash function, and analyze Kilian[PCP,VC] in the random oracle model.
Then [19] shows that:

εARG(λ,x, tARG) ≤ εPCP(x) + Θ(t2ARG · 2−λ) .

This smaller upper bound is achieved thanks to a straightline (i.e., non-rewinding)
extractor for the vector commitment scheme, which is a Merkle commitment scheme
in the random oracle model.

Remark 2 (security of underlying components). We derive security bounds for argu-
ment systems as a function of the security bounds of the underlying components. In
short, we take εVC, εPCP, κPCP as given. While statistical soundness bounds on PCPs can
be calculated (they are information-theoretic components), the position binding errors
for VC must be derived from some (concrete) computational assumption.

For example, if VC is a Merkle commitment scheme obtained from a collision-
resistant hash function hλ : {0, 1}2λ → {0, 1}λ computable in time thλ

whose collision
probability against tCRH-size adversaries is bounded by εCRH(λ, tCRH) then VC has binding
error εVC(λ, �, s, tVC) ≤ εCRH(λ, tCRH)where tCRH = tVC+O(thλ

·q·log �) for a small hidden
constant that can be derived from the security reduction. (The reduction transforms a
tVC-size adversaryAVC against theMerkle commitment scheme into a tCRH-size adversary
ACRH against the collision-resistant hash function. Briefly, ACRH runs AVC and then looks
for a collision among the authentication paths output by AVC, resulting in the additive
increase of O(thλ

· q · log �) in size.)
1 Ignoring the lower-order term thλ · q · log �.

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 165

1.3 Related Work

The literature on succinct arguments presents a vast landscape of constructions exhibit-
ing complex tradeoffs between efficiency, expressiveness, and security. The goal of this
work is to study the security of Kilian’s protocol, which is a succinct interactive argu-
ment. Below we summarize only the most relevant prior work.

Succinct Arguments from Collision-Resistant Functions. The first construction of
a succinct argument is due to Kilian [23], and follows the VC-based approach (the
underlying vector commitment is a Merkle commitment scheme based on a collision-
resistant hash function). The security reduction in [23] is informal, and does not provide
any asymptotic (nor explicit) security bounds.

Barak and Goldreich [4] provide a formal analysis of a variant of Kilian’s con-
struction, towards their goal of constructing zero-knowledge arguments with a non-
black-box simulator. Due to their setting, they restrict their result to the case where the
PCP is non-adaptive and reverse-samplable. While the former restriction is mild (many
known PCP constructions are non-adaptive, with few exceptions such as [24]), the latter
restriction is a non-standard strong property of the PCP query algorithm, which has not
been shown to hold for a number of PCP constructions of interest (e.g., the short PCPs
in [9,10]). Under these conditions, they establish that Kilian’s protocol achieves non-
adaptive knowledge soundness, with a constant multiplicative factor loss in soundness
versus the PCP soundness. In contrast, our work applies to all PCPs (including adaptive
PCPs) and establishes the tightest known bound for adaptive knowledge soundness.2

Ishai, Mahmoody, Sahai, and Xiao [21] provide a soundness analysis for Kilian’s
protocol instantiated with a PCP with negligible soundness error and a Merkle commit-
ment scheme with negligible position binding error; they do not quantify the security of
the succinct argument in terms of the security of the underlying cryptography. Lai and
Malavolta [26, Appendix C] prove secure a variant of Kilian’s protocol, realized with
any linear PCP and linear map commitment; this generality can lead to shorter proofs.

Chiesa, Ma, Spooner, and Zhandry [15] prove post-quantum security of Kilian’s
protocol. As part of their analysis, they give a proof of security for Kilian that also
applies to the classical setting. Their analysis differs significantly from ours due to
challenges unique to the quantum setting, and incurs a multiplicative soundness loss. In
this work we consider soundness against classical adversaries only.

Succinct Arguments from Ideal Hash Functions. A line of work studies security
reductions for succinct non-interactive arguments in the random oracle model (ROM)
[8,11,16–19,28,37]. They take advantage of the ROM in two key ways. First, they use
the observability of oracle queries to construct a vector commitment scheme with a
straightline (i.e., non-rewinding) extractor: a Merkle commitment scheme in the ROM.
As noted in Sect. 1.2, this leads to tighter security bounds. In fact, since these construc-
tions are unconditionally secure in the ROM, it is often possible to compute their exact
soundness. Second, these constructions use the Fiat–Shamir transformation to convert

2 Formally, our result is incomparable with the one of Barak and Goldreich. In more detail, they
use the reverse samplability property of the PCP to obtain a collision-finder whose running
time does not depend on the PCP length. This is necessary in their setting, as there the size
of an extracted PCP is not a priori bounded by any polynomial. It is open whether such a
reduction is possible for (even polynomial-size) PCPs that are not reverse samplable.

166 A. Chiesa et al.

an underlying interactive argument into a non-interactive one; the general security of
this transformation has been shown only in the ROM.

Special-Sound Protocols. Interactive protocols with special soundness are an
important and well-studied family of public-coin protocols. In the sigma protocol set-
ting (three-message public-coin protocols), k-special soundness means that a witness
can be efficiently extracted from any k accepting protocol transcripts with distinct ver-
ifier challenges. A line of works extends this notion to multiple rounds [1–3]. The con-
crete security of general special sound protocols is relatively well-understood.

As noted in [15], for reasonable choices of PCP, Kilian’s protocol is not k-special
sound for any polynomial k (for example, one can find a set of transcripts that includes
only queries to a small fraction of the PCP).3 We are therefore not able to apply results
about special soundness directly.

2 Techniques

We overview the main ideas underlying our results. In Sect. 2.1 we review Kilian’s
protocol. In Sect. 2.2 we sketch our proof of Theorem 1. In Sect. 2.3 we sketch our
proof of Theorem 2. In Section 2.4 we sketch our proof of Theorem 3. In Section 2.5
we explain how to show the strict-time knowledge soundness of Kilian’s protocol. In
Section 2.6 we discuss adaptive security.

Vector Commitment Schemes. We fix a vector commitment scheme VC throughout
this technical overview, whose interface and properties are sketched below; see Sect. 3.2
for formal definitions. Here we omit the algorithm that samples public parameters (and
suppress these parameters in the interfaces of VC).4

– VC.Commit: On input a message m, VC.Commit outputs a commitment cm and
auxiliary state aux.

– VC.Open: On input the auxiliary state aux and a query set Q, VC.Open outputs an
opening proof pf.

– VC.Check: On input a commitment cm, query setQ, answers ans, and opening proof
pf, VC.Check determines if pf is valid for ans being the restriction to Q of the
message committed in cm.

The property of perfect completeness ensures that VC.Check always accepts if pf is out-
put by VC.Open given the auxiliary information produced by VC.Commit. The secu-
rity property of VC is position binding: VC has position binding error εVC(λ, �, s, tVC)
if, when VC is instantiated with security parameter λ for messages of length �, every
tVC-time adversary that outputs (cm, ans, ans′,Q,Q′, pf, pf ′) with |Q| = |Q′| = s sat-
isfies the following predicate with probability at most εVC(λ, �, s, tVC) (over VC’s public
parameters):

3 Towards a tighter security proof for Kilian in the post-quantum setting, Lombardi, Ma, and
Spooner [27] introduce the notion of probabilistic special soundness (PSS), a relaxation of
special soundness, and show that Kilian’s protocol is PSS. We do not follow this approach, as
we do not expect it to yield tight security bounds in the classical setting.

4 For example, if VC is based on a Merkle commitment scheme, the public parameters are the
(randomly sampled) collision-resistant function to be used for hashing the given message down
to the Merkle root.

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 167

∃ i ∈ Q ∩ Q′ : ans[i] �= ans′[i]
∧ VC.Check(cm,Q, ans, pf) = 1
∧ VC.Check(cm,Q′, ans′, pf ′) = 1

.

In other words, position binding makes it hard to produce two incompatible openings
to the same commitment. Moreover, we also consider expected-time position binding:
the expected-time position binding error ε�

VC = ε�
VC(λ, �, s, t�VC) is the position binding

property against adversaries whose expected running time is at most t�VC.

Stateful Algorithms. Throughout this section, the interactive algorithms that partici-
pate in protocols are stateful. When it is important to distinguish different computation
phases of a stateful algorithm, we make explicit the state passed from one phase to the
next.

2.1 Kilian’s Protocol

We review Kilian’s protocol that compiles a PCP and a VC scheme to a succinct inter-
active argument.

Kilian’s protocol [23] obtains a succinct interactive argument by combining two
ingredients: a probabilistically checkable proof (PCP) and a vector commitment scheme
VC (fixed above). Let PCP = (P,V) be a PCP system for a relation R with alpha-
bet Σ, proof length �, query complexity q, and verifier randomness complexity r.
Kilian[PCP,VC] is an interactive argument ARG = (P,V) in which the argument
prover P receives an instance x and a witness w, and the argument verifier V receives
the instance x. Then P and V interact, exchanging 3 messages, as follows.

1. P computes the PCP string Π ← P(x,w), computes the commitment (cm, aux) ←
VC.Commit(Π), and sends cm to V .

2. V samples PCP verifier randomness ρ ← {0, 1}r and sends it to P .
3. P deduces the set Q of queries that V(x; ρ) makes to Π , sets the query answers

ans := Π[Q], generates an opening proof pf ← VC.Open(aux,Q), and sends the
tuple (Q, ans, pf) to V .

4. V performs the following checks.
(a) VC.Check(pp, cm,Q, ans, pf) = 1 (i.e., ans are valid answers for positions Q

relative to cm);
(b) V[Q,ans](x; ρ) = 1 (i.e., the PCP verifier V(x; ρ) accepts the answers ans on

Q).

Above, the notation V[Q,ans](x; ρ) refers to the decision bit of the PCP verifier V,
given instance x and PCP randomness ρ, when each query j ∈ Q is answered with
ans[j] ∈ Σ. (IfV queries outside the set Q then V[Q,ans](x; ρ) = 0.)

2.2 Soundness Analysis of Kilian’s Protocol

We discuss the proof idea for Theorem 1.

168 A. Chiesa et al.

Security Reduction. Intuitively, the soundness error of Kilian[PCP,VC] should be at
most the (statistical) soundness error of PCP plus the position binding error of VC. The
key lemma below formalizes this intuition.

Consider a malicious argument prover P̃ whose first message is the commitment
cm. Intuitively, by the position binding property of VC, P̃ is “bound” to open locations
of at most a single underlying PCP string Π̃ . By rewinding P̃ sufficiently many times
to recover the underlying PCP string Π̃ , we can relate the probability of P̃ convincing
the argument verifier V to the probability of Π̃ convincing the PCP verifier V.

Lemma 1 (Informal). There exists a probabilistic algorithm R (the reductor) that, for
every instance x, error parameter ε > 0, adversary time bound tARG ∈ N, and tARG-size
adversary P̃ , satisfies

Pr

⎡

⎢
⎢
⎣

V[˜Q, ˜Π](x; ρ) �= 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∣
∣
∣
∣
∣
∣
∣
∣

cm ← P̃
(Q̃, Π̃) ← R ˜P(cm, ε)
ρ ← {0, 1}r
(Q, ans, pf) ← P̃(ρ)

⎤

⎥
⎥
⎦≤εVC(λ, �, q, tVC)+ε ,

where tVC = O
(

�
ε · tARG

)
.

The reductorR handles the aforementioned rewinding process:R constructs a proof
string Π̃ ∈ Σ� whose convincing probability is approximately the same as that of the
argument prover P̃ (up to the position binding error of VC and an arbitrary error term
ε). Note that R requires only black-box access to P̃ .

In the lemma above, the PCP verifier and the argument verifier are “coupled” in
that they receive the same randomness ρ. The lemma states that it is unlikely, for a
randomly-chosen ρ, that the argument verifier V accepts the answers provided by P̃ but
the PCP verifier V rejects Π̃ under the same randomness. Intuitively, this allows us to
approximately equate the probability that P̃ convinces the argument verifier V to the
probability that Π̃ convinces the PCP verifier V.

First we discuss how to use Lemma 1 to establish soundness error of Kilian[PCP,
VC] in Sect. 2.2. Then in Sect. 2.2 we sketch the proof of Lemma 1. For simplicity, all
probability statements in this section are with respect to the experiment in Lemma 1
unless otherwise specified.

Soundness Analysis. We wish to upper bound the soundness error of Kilian[PCP,VC].
As claimed in Theorem 1, we argue that for every instance x /∈ L(R), time bound
tARG ∈ N, and tARG-size adversary P̃ ,

Pr
[〈P̃,V(x)〉 = 1

]
≤ εPCP(x) + εVC(λ, �, q, tVC) + ε .

The above probability can be bounded with the following by the law of total probability:

Pr

⎡

⎣
V[˜Q, ˜Π](x; ρ) = 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

⎤

⎦ + Pr

⎡

⎣
V[˜Q, ˜Π](x; ρ) �= 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

⎤

⎦ .

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 169

The term on the right is bounded from above by εVC(λ, �, q, tVC)+ε, due to Lemma 1.
The term on the left is bounded by εPCP(x) (the soundness error of PCP). Indeed,

we can view the first message of P̃ (cm in the experiment above) and the reductor R
as a malicious PCP prover P̃ that outputs a PCP string Π̃ . Since x /∈ L(R), by the
definition of soundness error of PCP,

Pr

⎡

⎣
V[˜Q, ˜Π](x; ρ) = 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

⎤

⎦ ≤ Pr
[
V ˜Π(x) = 1

]
≤ εPCP(x) .

Proof Sketch of Lemma 1. We are left to sketch the proof of Lemma 1. To do so, we
present a reductor algorithm R.

The goal of R is to piece together a PCP string Π̃ obtained from the argument
prover P̃ . Intuitively, Π̃ is “fixed” after P̃ outputs a commitment cm, and R attempts
to obtain information about Π̃ by rewinding the second phase of P̃ , when given freshly
sampled choices of PCP randomness ρ. Each such execution (if it outputs a valid open-
ing) reveals a fragment of Π̃ . By repeating this process sufficiently many times, R
obtains enough locations of the string Π̃ . Below we denote by N = N(ε) the number of
samples (set later).

R ˜P(aux,·)(cm, ε):
1. Initialize a proof string: Π̃ := (σ)�, where σ is an arbitrary element in Σ.
2. Initialize an empty set Q̃ to track which locations of Π̃ are filled in.
3. Repeat the following N times:

(a) Sample PCP verifier randomness ρ ← {0, 1}r.
(b) Ask P̃ for answers to this randomness: (Q, ans, pf) ← P̃(aux, ρ).
(c) If VC.Check(pp, cm,Q, ans, pf) = 1, set Π̃[Q] := ans and update Q̃ :=

Q̃ ∪ Q.
4. Output (Q̃, Π̃).

We make explicit the two computation phases of the (stateful) malicious argument
prover P̃:

(cm, aux) ← P̃ and (Q, ans, pf) ← P̃(aux, ρ) ,

where aux is the auxiliary state passed across the two computation phases of P̃ . The
reductor R needs to rerun only the second phase of P̃ , so the oracle for R is P̃(aux, ·).

As stated in Lemma 1, with the above notation we wish to bound the following
probability:

Pr

⎡

⎣
V[˜Q, ˜Π](x; ρ) �= 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

⎤

⎦ .

If VC.Check(cm,Q, ans, pf) = 1 then V ˜Π(x; ρ) �= 1 ∧ V[Q,ans](x; ρ) = 1 implies
either: (i) Π̃ and ans disagree at a position q ∈ Q ∩ Q̃; or (ii) there is query q in Q but
not in Q̃. We analyze the two events separately, which bounds the probability above by
a union bound. We suppress the probability experiment in the derivations below.

170 A. Chiesa et al.

(i) Valid openings with disagreeing answers We informally argue that

Pr
[∃ q ∈ Q ∩ Q̃ : ans[q] �= Π̃[q]

∧VC.Check(cm,Q, ans, pf) = 1

]
≤ εVC(λ, �, q, tVC) .

The reductorR checks the validity of the opening for each position it fills into Π̃ . Hence
the event above implies that there are valid openings to two different values at the same
query position; equivalently, one can construct an adversary AVC that runs the reductor
R and executes 〈P̃,V(x, ρ)〉 for some verifier randomness ρ that breaks VC’s position
binding. Since AVC has running time tVC = O(N · tARG) (its running time is dominated by
the running time of R), the target probability is at most εVC(λ, �, q, tVC) by the position
binding property of the VC.

(ii) Missing position in Π̃ We show that

Pr
[Q \ Q̃ �= ∅

∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ �

N
.

To upper bound the probability of a query q ∈ Q not having been filled in by R,
we use the probability that a given position q ∈ [�] is queried. The weight δ(q) of a
query q ∈ [�] is the probability that it is queried by the argument verifier with uniformly
sampled randomness. We can write:

Pr
[
Q \ Q̃ �= ∅

]
= Pr

[
∃ q ∈ [�] : q ∈ Q ∧ q /∈ Q̃

]
≤

∑

q∈[�]

δ(q) · (1 − δ(q))N ,

where the inequality follows from the fact that Q and all query sets used to generate
Q̃ correspond to independently sampled verifier randomness. Note that, for every δ ∈
[0, 1], δ · (1 − δ)N ≤ 1/N.5 Hence, the target probability is upper bounded by �

N .
In fact, the proof for this case is more delicate than sketched above. If a position

q ∈ [�] has weight δ(q), we cannot conclude that q /∈ Q̃ with probability at most
(1 − δ(q))N, because P̃ may often output invalid openings for q while R only includes
valid openings. To fix this issue, we use a refined notion: δ(q) is the probability that
during the execution of the interactive argument, the verifier V samples randomness that
corresponds to a query set containing q and the prover P outputs a valid VC opening
for the query set.

Setting Parameters. By an union bound, the desired probability can be upper bounded
by εVC(λ, �, q, tVC) + �

N . Setting N := �
ε , we get tVC = O(N · tARG) = O

(
�
ε · tARG

)
and

�
N = ε, yielding the bound stated in Lemma 1.

Remark 3. Superficially one might hope for an improved analysis showing that one
only needs �

q·ε rewindings rather than
�
ε . Indeed, each rewinding that leads to an accept-

ing transcript yields a freshly sampled fragment of the PCP containing q locations.
However such a bound is unrealistic because, in general, a PCP may have dummy
queries. For example, consider a PCP where only O(1) of the q queries are “real”,

5 A simple derivation of the inequality is the following: with f(x) = x · (1 − x)N, we have
d

dx
f(δ) = 0 ⇐⇒ δ = 1

N+1
. As f(0) = f(1) = 0 and δ is the only critical point in [0, 1], it

achieves the maximum: maxx∈[0,1] {f(x)} = f(δ) ≤ 1/N.

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 171

while all others are dummy queries to fixed locations of the PCP string. That said, there
may be other metrics through which the factor �

ε can be improved, for example, our
Theorem 2 considers VC schemes with expected-time position binding and avoids this
multiplicative factor.

2.3 Expected-Time Soundness Analysis of Kilian’s Protocol

We provide an alternative analysis for the expected-time soundness of Kilian’s protocol
(Theorem 2) to avoid the blowup of �

ε in the VC adversary running time.
Recall that in the previous analysis, we “coupled” the reductor R and the VC adver-

sary AVC: they are essentially the same algorithm. However, notice the running time of
AVC affects the soundness error, while the running time of R does not. This leads us to
the following new security reduction lemma, which “decouples” the two algorithms:

Lemma 2 (Informal). There exists a probabilistic algorithm R (the reductor) and
algorithms A

(i)
VC (the VC adversaries) for each i ∈ [q] that, for every instance x, error

tolerance ε > 0, adversary time bound tARG ∈ N, and tARG-time adversary P̃ , satisfies

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V
˜Π�

(x; ρ) �= 1

∧V[Q,ans](x; ρ) = 1

∧VC.Check(cm, Q, ans, pf) = 1

∧ ∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cm ← ˜P
˜Π� ← R ˜P(cm, ε)

ρ ← {0, 1}r

(Q, ans, pf) ← ˜P(ρ)

For i ∈ [q] :

(cm, Q, ans, pf, Q(i), ans(i), pf(i)) ← A
(i)
VC (ρ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ε ,

where the expected running time of A
(i)
VC is t�VC = O

(
log q

ε · (tARG + � · tV)
)

for every
i ∈ [q].

For simplicity, all probability statements in the rest of this section are with respect
to the experiment in Lemma 2 unless otherwise specified.

Construction of the Reductor. Similar to the reductor in Sect. 2.2, our new reductor
R rewinds to extract the PCP string committed by the adversary P̃ . In fact, R rewinds
over all possible verifier randomness to extract the “best” PCP string.

R ˜P(cm):
1. Initialize a proof string: Π̃� := (⊥)�.
2. For every PCP verifier randomness ρ ∈ {0, 1}r:

(a) Run (Q, ans, pf) ← P̃(ρ).
(b) If VC.Check(cm,Q, ans, pf) = 0, skip to next iteration.
(c) Record the answer for each location for later.

3. For every location i ∈ [�], set Π̃�[i] to be the most frequently appeared answer
in the loop (break ties with the lexicographic order).

4. Output Π̃�.

Constructions of the VC Adversaries. Let C be some constant to be specified later.
For every q ∈ [�], we define Sq to be the following set:

Sq := {ρ ∈ {0, 1}r : q ∈ Q where Q is the set of queries make by V(x; ρ)} .

172 A. Chiesa et al.

We first introduce a subroutine of the VC adversaries, the reverse sampler Samp. On
input a query q ∈ [�], Samp outputs a randomness ρ sampled uniformly from Sq . We
can implement Samp as follows.

Samp(q):
1. Repeat the following:

(a) Sample ρ ← {0, 1}r.
(b) Compute the query set Q corresponding to ρ by running the PCP verifier

V(x; ρ).
(c) If q ∈ Q, output ρ.

For every i ∈ [q], we construct the VC adversary A
(i)
VC . In particular, given a randomness

ρ with corresponding query set is Q, A(i)
VC tries to find inconsistent answers for the i-th

query in Q.

A
(i)
VC (ρ):
1. Run cm ← P̃(x) and (Q, ans, pf) ← P̃(ρ).
2. Check that VC.Check(cm,Q, ans, pf) = 1. If not, output (cm, ans, ans,Q,

Q, pf, pf).
3. Define q := Q(i) and set j := 0.
4. Repeat the following:

(a) Run ρ′ ← Samp(q).
(b) Run (Q′, ans′, pf ′) ← P̃(ρ′).
(c) If VC.Check(cm,Q′, ans′, pf ′) = 1:

i. If ans[q] �= ans′[q], output (cm,Q, ans, pf,Q′, ans′, pf ′).
ii. If ans[q] = ans′[q], set j := j + 1. Further, if j = C, output

(cm, ans, ans,Q,Q, pf, pf).

We compute the expected running time of A
(i)
VC . For every q ∈ [�], let pi,q be the proba-

bility that the i-th query is q for a uniformly sampled randomness:

pi,q := Pr

⎡

⎣Q(i) = q

∣
∣
∣
∣
∣
∣

cm ← P̃
ρ ← {0, 1}r
(Q, ans, pf) ← P̃(ρ)

⎤

⎦ .

Let X be the running time of the reverse sampler Samp. Then,

E [X] ≤
∑

q∈[�]

pi,q · 1
pi,q

· tV = � · tV .

For every q ∈ [�], let ξq be the probability that P̃ gives a valid opening to a query set
given that the i-th query is q:

ξq := Pr

⎡

⎣
VC.Check(cm,Q, ans, pf) = 1
conditioned on
Q(i) = q

∣
∣
∣
∣
∣
∣

cm ← P̃
ρ ← {0, 1}r
(Q, ans, pf) ← P̃(ρ)

⎤

⎦ .

Let I be the random variable that equals to 1 if the check in Step 2 passes and equals to
0 otherwise. Let Y be the random variable for the running time of Step 4. The expected

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 173

running time of A
(i)
VC can be computed as follows:

t�VC = t�ARG + E [Y]
= t�ARG + 0 · E [Y | I = 0] · Pr [I = 0] + E [Y | I = 1] · Pr [I = 1]

≤ t�ARG + C · E [X] +
∑

q∈[�]

C · pi,q · 1
ξq

· t�ARG · ξq

= t�ARG + C · (t�ARG + � · tV) .

Proof Sketch of Security Reduction Lemma. We wish to bound the following proba-
bility:

Pr

⎡

⎢
⎢
⎣

V ˜Π�

(x; ρ) �= 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1
∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

⎤

⎥
⎥
⎦ .

Similar to Sect. 2.2, if VC.Check(cm,Q, ans, pf) = 1, then V ˜Π�

(x; ρ) �= 1 and
V[Q,ans](x; ρ) = 1 implies that Π̃� and ans disagree at a position q ∈ Q. Unlike
before, here there is no case of missing queries, because the reductor R, by construc-
tion, exhausts all verifier randomness. On the other hand, we have a new condition,
∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]], which means that none of the VC adversaries suc-
cessfully find inconsistent openings to the same location. Hence, we focus on the fol-
lowing event:

∃i ∈ [q], ans[Q[i]] = ans(i)[Q[i]] �= Π̃�[Q[i]] .

For every q ∈ [�], Π̃�[q] consists of the symbol that P̃ opens to with highest probability.
In other words, let p(q, σ) be defined as follows:

p(q, σ) := Pr

⎡

⎣
q ∈ Q
∧ ans[q] = σ
∧VC.Check(cm,Q, ans, pf) = 1

∣
∣
∣
∣
∣
∣

cm ← P̃
ρ ← {0, 1}r
(Q, ans, pf) ← P̃(ρ)

⎤

⎦ .

Then, by construction of R,

Π̃�[q] = argmax
σ∈Σ

{p(q, σ)} ,

with ties broken lexicographically.
Therefore, let q ∈ Q be the location such that Π̃�[q] �= ans[q], and p(q, ans[q]) ≤

1
2 , as otherwise, p(q, Π̃�[q]) ≥ p(q, ans[q]) > 1

2 , which implies that p(q, Π̃�[q]) +
p(q, ans[q]) > 1, a contradiction.

Since A
(i)
VC samples C randomness ρ′ such that for (Q′, ans′, pf ′) ← P̃(ρ′) (i)

Q[i] ∈ Q′, (ii) ans[Q[i]] = ans′[Q[i]], and (iii) VC.Check(cm,Q′, ans′, pf ′) = 1 ,
we can conclude that for every i ∈ [q],

Pr
[
ans[Q[i]] = ans(i)[Q[i]] �= Π̃�[Q[i]]

]
≤ 2−C .

174 A. Chiesa et al.

Hence,

Pr
[
∃i ∈ [q], ans[Q[i]] = ans(i)[Q[i]] �= Π̃�[Q[i]]

]
≤ q · 2−C .

Setting C = log q
ε gives us the desired bound.

Soundness Analysis From Lemma 2. Similar to Sect. 2.2, we wish to upper bound the
soundness error of Kilian[PCP,VC]. As claimed in Theorem 2, we argue that for every
instance x /∈ L(R), time bound tARG ∈ N, and tARG-size adversary P̃ ,

Pr
[〈P̃,V(x)〉 = 1

]
≤ εPCP(x) + ε�

VC(λ, �, q, t�VC) + ε .

Using the law of total probability, the above probability can be bounded by

Pr

⎡

⎣
V ˜Π�

(x; ρ) = 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

⎤

⎦ + Pr

⎡

⎣
V ˜Π�

(x; ρ) �= 1
∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

⎤

⎦ .

The term on the left is bounded by εPCP(x) (the soundness error of PCP) using
similar reasoning as in Sect. 2.2.

The term on the right can be bounded by Lemma 2 and the expected-time position
binding error of the VC. Another application of the law of total probability gives

Pr

⎡

⎣
V

˜Π�

(x; ρ) �= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm, Q, ans, pf) = 1

⎤

⎦

= Pr

⎡

⎢
⎢
⎣

V
˜Π�

(x; ρ) �= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm, Q, ans, pf) = 1

∧ ∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

⎤

⎥
⎥
⎦ + Pr

⎡

⎢
⎢
⎣

V
˜Π�

(x; ρ) �= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm, Q, ans, pf) = 1

∧ ∃ i ∈ [q], ans[Q[i]] �= ans(i)[Q[i]]

⎤

⎥
⎥
⎦

≤ ε +
∑

i∈[q]

Pr
[
ans[Q[i]] �= ans(i)[Q[i]]

]
.

The term on the right can be bounded by q · ε�
VC(λ, �, q, t�VC = O(log q

ε · (t�ARG + � · tV)))
from the expected-time position binding property of the VC.

Extension to PCPs with Adaptive Verifiers. The above A
(i)
VC construction only works

for PCPs with non-adaptive verifiers because we cannot compute the query set as in
Item 4a for adaptive PCP verifiers. However, we can adapt the construction of A

(i)
VC to

work for adaptive PCP verifiers as follows.

A
(i)
VC (ρ):
1. Run cm ← P̃(x) and (Q, ans, pf) ← P̃(ρ).
2. Check that VC.Check(cm,Q, ans, pf) = 1. If not, output (cm, ans, ans,Q,Q,

pf, pf).
3. Define q := Q(i) and set j := 0.
4. Repeat the following:

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 175

(a) Repeatedly sample ρ′ ← {0, 1}r and run (Q′, ans′, pf ′) ← P̃(ρ′) until the
following holds:
i. q ∈ Q′, and
ii. VC.Check(cm,Q′, ans′, pf ′) = 1.

(b) Run (Q′, ans′, pf ′) ← P̃(ρ′).
(c) If ans[q] �= ans′[q], output (cm,Q, ans, pf,Q′, ans′, pf ′).
(d) If ans[q] = ans′[q], set j := j + 1. Further, if j = C, output

(cm, ans, ans,Q,Q, pf, pf).

By a similar analysis (details in Section [14, Sect. 6.1]), we can conclude that, for the
above A

(i)
VC ,

t�VC = C · � · t�ARG .

The rest of the analysis can be directly applied to the new construction of A
(i)
VC .

Remark 4. When the underlying PCP has an adaptive verifier, the expected running
time of A

(i)
VC cannot be better than C · � · t�ARG. Consider a PCP with proof length � and

query complexity q. Assume that the PCP verifier is adaptive and the query distribution
is almost uniform. Then, in order to sample a randomness that queries a fix location q
as in Item 4a, the expected number of iterations is roughly �. Since each iteration runs
the argument adversary P̃ , A(i)

VC has expected running time C · � · t�ARG for this PCP.

Remark 5 (Comparison with [4]). [4] gives a formal analysis of a variant of Kilian’s
protocol based on a non-adaptive and reverse-samplable PCP and a collision-resistance
hash function. Their analysis shares similarities with our analysis in this section; both
analyses construct the adversaries to the vector commitment scheme and to the PCP sep-
arately, contrary to the approach in Sect. 2.2. Nevertheless, our analysis in this section
deviates from the analysis in [4] (and other previous analyses) due to the differences
below.

– Our analysis considers VC adversaries that run in expected running time while [4]
considers strict running time. As a result, [4] crucially relies on the PCP’s non-
adaptivity and reverse sampler, as they cannot construct an efficient strict-time col-
lision finder without these. Instead, our analysis works for all PCPs.

– The rewinding algorithm in [4] uses the PCP reverse sampler. For every location
q ∈ [�], they reverse sample several PCP randomness strings that query q and record
an answer only if P̃ opens to it sufficiently often. This construction has a tradeoff
between the running time and error probability similar to our reductor in Sect. 2.2
(the 1

ε blowup in the VC adversary time versus the additive error ε). In contrast,
our reductor in this section searches over all PCP randomness strings to find the
“best” PCP string according to P̃’s answers. This difference allows us to signifi-
cantly mediate this tradeoff: to achieve an additive error of ε, the expected running
time of our VC adversary only has a blowup of log 1

ε . Unfortunately, while [4]’s
analysis gives knowledge soundness guarantee, ours in this section does not. We
discuss in Sect. 2.5 how to extend our strict-time soundness analysis in Sect. 2.2 to
prove knowledge soundness.

2.4 Lower Bounds from the Schnorr Identification Scheme

We discuss how to prove Theorem 3, and the connection to Schnorr’s protocol

176 A. Chiesa et al.

Review: The Schnorr Identification Scheme. Let GroupGen be a group generation
algorithm that, given a security parameter λ, samples a tuple (G, p, g) where G is a
group of prime order p ≥ 2λ and g is a generator of the group. The Schnorr identifica-
tion scheme [33,34] is of a tuple of algorithms IDSchnorr = (P,V) where, for a randomw
in Zp, the prover P receives the instance x = ((G, p, g), h = gw ∈ G) and witness w,
and the verifier V receives the instance x. Then P and V interact as follows.

1. P samples a random element r ← Zp, computes its first message α := gr ∈ G, and
sends α to V.

2. V samples a random challenge β ← Zp and sends it to P.
3. P computes its second message γ := w · β + r mod p and sends it to V.
4. V checks that gγ = α · hβ .

We say that IDSchnorr has error εSchnorr if for every time bound tID ∈ N and tID-time adversary
P̃,

Pr

⎡

⎢
⎢
⎣〈P̃(x),V(x)〉 = 1

∣
∣
∣
∣
∣
∣
∣
∣

(G, p, g) ← GroupGen(1λ)
w ← Zp

h := gw

x := ((G, p, g), h)

⎤

⎥
⎥
⎦ ≤ εSchnorr(λ, tID) .

The security of the Schnorr identification scheme is based on the hardness of the
discrete logarithm problem (it is hard for any time-bounded adversary, given a random
y ∈ G, to find x ∈ Zp such that y = gx). The protocol has special soundness meaning
that one can efficiently compute the discrete logarithm when given two valid interac-
tion transcripts. Thus, given a transcript of the protocol, the security reduction rewinds
the adversary in order to obtain an additional accepting transcript and then extracts a
witness. The analysis uses the forking lemma [29] to bound the success probability of
the second invocation of the adversary (conditioned on a successful first invocation).

VC Scheme From the Schnorr Identification Scheme. While Kilian’s protocol
shares a similar structure with sigma protocols like the Schnorr identification scheme
(prover’s commitment, verifier’s challenge, and prover’s opening), Kilian’s protocol is
not a sigma protocol. Nevertheless, we show how to construct a VC scheme whose
security is based on that of the Schnorr identification scheme, and later we will see how
to connect this to the security of Kilian’s protocol.

Recall that the position binding property ensures that the probability for any time-
bounded adversary to find two inconsistent openings for the same location is bounded.
On the other hand, the security of the Schnorr identification scheme relies on the fact
that the it is hard for any time-bounded adversary to find two accepting transcripts of
the protocol.

Therefore, the VC scheme we construct reduces finding inconsistent answers to
finding accepting Schnorr transcripts, which ensures position binding from the hardness
of discrete logarithm.

We construct VC = (VC.Commit,VC.Open,VC.Check) as follows. (Our VC only
supports messages of length 1.) Recall that in this section, we omit the algorithm for
VC that samples the public parameters. For this construction, the public parameter

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 177

consists of a description (G, p, g) of a group generated by GroupGen given the security
parameter λ, and a random group element h ∈ G.

– VC.Commit(m):
1. Sample r ← Zp.
2. Set cm := gr.
3. Set aux := (r,m).
4. Output (cm, aux).

– VC.Open(aux = (r,m), {1}): Output pf := r + m.
– VC.Check(cm, {1}, ans, pf): Check that gpf = cm · hans.

Consider a VC adversary AVC that outputs (cm,Q = {1},Q′ = {1}, ans, ans′, pf, pf ′)
such that

– ans �= ans′,
– gpf = cm · hans, and
– gpf

′
= cm · hans′ .

Then, one can recover x ∈ Zp such that h = gx:

x := (pf ′ − pf) · (ans′ − ans)−1 .

We can conclude that VC has position binding error εVC such that

εVC(λ, 1, 1, tVC) ≤ εDLOG(λ,O(tVC)) .

Security Reduction from Kilian to Schnorr. We explain how to connect the security
of Kilian’s protocol to the security of the Schnorr identification scheme. The VC scheme
that we consider is described above. We are left to fix a PCP.

Since the VC scheme works for messages of length 1, the PCP we consider has
proof length 1. Moreover, we ensure that the PCP has very small soundness error, so
that the dominant term will come from the VC scheme. In more detail, we consider
a PCP system PCP for the empty relation R = ∅ with alphabet Σ = {0, 1}λ, proof
length � = 1, query complexity q = 1, and verifier randomness complexity r = λ. For
every instance x, given a PCP proof Π̃ ∈ Σ, the PCP verifier V works as follows:

V ˜Π(x):
1. Sample randomness ρ ← {0, 1}λ.
2. Check that Π̃ = ρ.

The soundness error of PCP is εPCP = 2−λ.
Let ARG := Kilian[PCP,VC]. Consider the optimal adversary P̃ for the Schnorr

identification scheme. We construct an argument adversary P̃ against the argument ver-
ifier for Kilian’s protocol. Note that the argument adversary P̃ has access to the pub-
lic parameter for the VC scheme in Sect. 2.4, which consists of ((G, p, g), h) where
(G, p, g) is sampled by GroupGen and h ∈ G is a random group element.

178 A. Chiesa et al.

P̃:
1. P̃’s commitment:

(a) Set the instance xSchnorr := ((G, p, g), h) (using the public parameter of VC).
(b) Run (α,aux) ← P̃(xSchnorr).
(c) Output (cm, aux) := (α,aux).

2. P̃’s opening given verifier challenge ρ:
(a) Run γ ← P̃(aux, ρ).
(b) Output (Q := {1}, ans := ρ, pf = γ).

The running time of P̃ is O(tID), where tID is the running time of P̃. Moreover,
〈P̃,V(x)〉 = 1 if and only if 〈P̃(xSchnorr),V(xSchnorr)〉 = 1. Hence, we conclude that
for every instance x /∈ L(R) the following holds:

εSchnorr(λ, tID) ≤ εARG(λ,x, O(tID)) .

Similarly, in the expected-time setting, we can show that

ε�
Schnorr(λ, t�ID) ≤ ε�

ARG(λ,x, O(t�ID)) .

2.5 Knowledge Soundness Analysis of Kilian’s Protocol

Wewish to upper bound the knowledge soundness error ofKilian[PCP,VC]. As claimed
in Sect. 1.1, we argue that, for every ε > 0, there exists a probabilistic extractor E that
runs in time O

(
�
ε · tARG

)
such that, for every instance x, time bound tARG ∈ N, and

tARG-size adversary P̃ ,

Pr

[
b = 1
∧ (x,w) /∈ R

∣
∣
∣
∣
∣

b ← 〈P̃,V(x)〉

w ← E ˜P(x)

]

≤ κPCP(x) + εVC(λ, �, q, tVC) + ε .

By construction of the argument verifier V , the above probability is equivalent to the
following:

Pr

⎡

⎢
⎢
⎣

V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

∣
∣
∣
∣
∣
∣
∣
∣

cm ← P̃
ρ ← {0, 1}r
(Q, ans, pf) ← P̃(ρ)
w ← E ˜P(x)

⎤

⎥
⎥
⎦ .

We construct E using the PCP prover P̃ described in Sect. 2.2 and the PCP extractor
E (which is given by the underlying PCP system):

E ˜P(x):
1. Run Π̃ ← P̃.
2. Output w ← E(x, Π̃).

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 179

Using the law of total probability,

Pr

⎡

⎢

⎢

⎢

⎣

V[Q,ans](x; ρ) = 1

∧VC.Check(pp, cm, Q, ans, pf) = 1

∧ (x,w) /∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

cm ← ˜P
ρ ← {0, 1}r

(Q, ans, pf) ← ˜P(ρ)

w ← E ˜P(x)

⎤

⎥

⎥

⎥

⎦

= Pr

⎡

⎢

⎢

⎢

⎣

V[˜Q,˜Π](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1

∧VC.Check(pp, cm, Q, ans, pf) = 1

∧ (x,w) /∈ R

⎤

⎥

⎥

⎥

⎦

+ Pr

⎡

⎢

⎢

⎢

⎣

V[˜Q,˜Π](x; ρ) �= 1

∧V[Q,ans](x; ρ) = 1

∧VC.Check(pp, cm, Q, ans, pf) = 1

∧ (x,w) /∈ R

⎤

⎥

⎥

⎥

⎦

,

where the last two probabilities are with respect to the experiment
⎡

⎢⎢
⎢
⎢
⎢
⎣

cm ← P̃
ρ ← {0, 1}r

(Q, ans, pf) ← P̃(ρ)

Π̃ ← P̃

w ← E(x, Π̃)

⎤

⎥⎥
⎥
⎥
⎥
⎦

.

The term on the right is bounded by εVC(λ, �, q, tVC) + ε due to Lemma 1.
The term on the left is bounded by κPCP(x) (the knowledge soundness error of PCP)

as shown below:

Pr

⎡

⎢

⎢

⎢

⎣

V[˜Q,˜Π](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1

∧VC.Check(pp, cm, Q, ans, pf) = 1

∧ (x,w) /∈ R

⎤

⎥

⎥

⎥

⎦

≤Pr

⎡

⎢

⎣

V
˜Π(x; ρ) = 1

∧ (x,w) /∈ R

∣

∣

∣

∣

∣

∣

∣

ρ ← {0, 1}r

˜Π ← ˜P

w ← E(x, ˜Π)

⎤

⎥

⎦
≤κPCP(x).

2.6 Succinct Interactive Arguments with Adaptive Security

For simplicity, we described our security analyses in the plain model, where there are no
public parameters available to all parties; in particular, the argument verifier is responsi-
ble for sampling and sending VC’s public parameters to the argument prover. However,
in the technical sections [14, Sects. 5 to 7] we prove stronger versions of Theorems 1
and 2 that hold with adaptive security in the common reference string (CRS) model.

An interactive argument in the CRS model includes an additional algorithm: a
trusted generator algorithm that samples public parameters pp for the argument prover
and argument verifier (which can be used any number of times across different interac-
tions). After that, based on pp, a malicious argument prover can choose the instance on
which to interact with the argument verifier. This setting necessitates appropriate defi-
nitions of adaptive soundness and knowledge soundness (see Sect. 3.1), which require
error bounds to hold for any instance x chosen by the malicious argument prover up
to an instance size bound n.6 In particular, the (soundness and knowledge soundness)
error bounds depend on n rather than x.

6 For convenience, we use soundness and knowledge notions for the PCPs in which the mali-
cious prover chooses the instance (see Sect. 3.3). In to the information-theoretic setting, these
definitions are equivalent to the standard ones with fixed instances.

180 A. Chiesa et al.

We achieve adaptive security in the CRS model by following the structure sketched
in the sections above, with only syntactic modifications due to the different target defi-
nitions. (E.g., modifying experiments to replace a fixed instance x with an instance size
bound n, and letting the malicious argument prover choose the instance.)

Overall, the (formal) statements provided in the technical sections [14, Sects. 5 to
7] are stronger than the (informal) statements in Theorems 1 and 2 because we achieve
adaptive security in the CRS model.7

For consistency, the formal statement of Theorem 3 (our lower bounds for Kilian’s
protocol) in the technical section [14, Sect. 8] is also proved in the setting of adaptive
security in the CRS model. Nevertheless, as noted in [14, Remark 8.12], the results hold
even for non-adaptive security, which is an even stronger statement.

3 Preliminaries

Definition 1. A relation R is a set of pairs (x,w) where x is an instance and w a
witness. The corresponding language L(R) is the set of instances x for which there
exists a witness w such that (x,w) ∈ R.

3.1 Interactive Arguments

An interactive argument (in the common reference string model) for a relation R is
a tuple of polynomial-time algorithms ARG = (G,P,V) that satisfies the following
properties.

Definition 2 (Perfect Completeness). ARG = (G,P,V) for a relation R has perfect
completeness if for every security parameter λ ∈ N, instance size bound n ∈ N, public
parameter pp ∈ G(1λ, n), and instance-witness pair (x,w) ∈ R with |x| ≤ n,

Pr
[〈P(pp,x,w),V(pp,x)〉 = 1

]
= 1 .

Definition 3 (Adaptive Soundness). ARG = (G,P,V) for a relation R has (adaptive
strict-time) soundness error εARG if for every security parameter λ ∈ N, instance size
bound n ∈ N, auxiliary input distribution D, adversary time bound tARG ∈ N, and
tARG-time algorithm P̃ ,

Pr

⎡

⎢
⎢
⎣

|x| ≤ n
∧x /∈ L(R)
∧ b = 1

∣
∣
∣
∣
∣
∣
∣
∣

pp ← G(1λ, n)
η ← D
(x, aux) ← P̃(pp, η)
b ← 〈P̃(aux),V(pp,x)〉

⎤

⎥
⎥
⎦ ≤ εARG(λ, n, tARG) .

7 Adaptive security in the CRS model directly implies security in the plain model. Since no
CRS is allowed, the argument verifier can begin the interaction by running itself the generator
algorithm and sending the public parameters for the argument system to the argument prover.
See Remark 7.

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 181

Definition 4 (Adaptive Expected-Time Soundness). ARG = (G,P,V) for a relation
R has (adaptive) expected-time soundness error εARG if for every security parameter
λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D, adversary time
bound tARG ∈ N, and algorithm P̃ with expected running time t�ARG,

Pr

⎡

⎢
⎢
⎣

|x| ≤ n
∧x /∈ L(R)
∧ b = 1

∣
∣
∣
∣
∣
∣
∣
∣

pp ← G(1λ, n)
η ← D
(x, aux) ← P̃(pp, η)
b ← 〈P̃(aux),V(pp,x)〉

⎤

⎥
⎥
⎦ ≤ ε�

ARG(λ, n, t�ARG) .

Definition 5 (Adaptive Knowledge Soundness). ARG = (G,P,V) for a relation R
has (adaptive) knowledge soundness error κARG with extraction time tE if there exists
a probabilistic algorithm E such that for every security parameter λ ∈ N, instance
size bound n ∈ N, auxiliary input distribution D, adversary time bound tARG ∈ N, and
tARG-time algorithm P̃ ,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

|x| ≤ n
∧ (x,w) �∈ R
∧ b = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

pp ← G(1λ, n)
η ← D
(x, aux) ← P̃(pp, η)
b

tr←− 〈P̃(aux),V(pp,x)〉

w ← E ˜P(aux)(pp,x, tr)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ κARG(λ, n, tARG) ;

moreover, E runs in time tE(λ, n, tARG).

Above, b
tr←− 〈P̃(aux),V(pp,x)〉 denotes the fact that tr is the transcript of the inter-

action (i.e., public parameters and messages exchanged between P̃ and V). Moreover,
E ˜P means that E has black-box access to (each next-message function of) P̃; in partic-
ular E can send verifier messages to P̃ in order to obtain the next message of P̃ (for a
partial interaction where V sent those messages).

Moreover, we can assume, without loss of generality, that P̃ is deterministic relative
to auxiliary input η (as the internal coin flips of a probabilistic P̃ can be incorporated
into the auxiliary input distribution D).

Remark 6. The argument generator G receives two inputs: the security parameter λ and
an instance size bound n. This means that the public parameter sampled by G may work
only for instances of size at most n. However, one could consider the stronger notion
where the sampled public parameter works for all instance sizes; in this case G receives
only λ as input. Our analysis works for both cases; see Remark 9.

Remark 7 (plain model variant). The above definitions consider interactive arguments
in the common reference string model, where a generator samples a public parameter
used by the argument prover and the argument verifier. One could also consider inter-
active arguments in the plain model, where there is no generator. This latter notion is
implied, at the cost of an additional verifier message, as we now explain.

Suppose that (G,P,V) is an interactive argument in the common reference string
model. We describe an interactive argument (P ′,V ′) in the plain model with an

182 A. Chiesa et al.

additional verifier message. The argument prover P ′ receives as input an instance x
and witness w, and the argument verifier V ′ receives as input the instance x; both also
receive as input the security parameter λ (in unary). They interact as follows:

– V ′ samples a public parameter pp ← G(1λ, |x|) and sends pp to P ′;
– P ′ and V ′ simulate an interaction of P(pp,x,w) and V(pp,x).
It is straightforward to see that (P ′,V ′) satisfies the standard definitions of com-
pleteness, soundness, and knowledge soundness for interactive arguments in the plain
model.8 In fact, it would suffice for (G,P,V) to satisfy the non-adaptive relaxations of
soundness and knowledge soundness.

3.2 Vector Commitments

A (static) vector commitment scheme [13] over alphabet Σ is a tuple of algorithms

VC = (Gen,Commit,Open,Check)

with the following syntax.

– VC.Gen(1λ, �) → pp: On input a security parameter λ ∈ N and message size bound
� ∈ N, VC.Gen samples public parameter pp.

– VC.Commit(pp,m) → (cm, aux): On input a public parameter pp and a message
m ∈ Σ�, VC.Commit produces a commitment cm and the corresponding auxiliary
state aux.

– VC.Open(pp, aux,Q) → pf: On input a public parameter pp, an auxiliary state aux,
and a query set Q ⊆ [�], VC.Open outputs an opening proof string pf attesting that
m[Q] is a restriction of m to Q.

– VC.Check(pp, cm,Q, ans, pf) → {0, 1}: On input a public parameter pp, a com-
mitment cm, a query set Q ⊆ [�], an answer string ans ∈ ΣQ, and an opening
proof string pf, VC.Check determines if pf is a valid proof for ans ∈ ΣQ being a
restriction of the message committed in cm to Q.

The vector commitment scheme VC must satisfy perfect completeness and position
binding.

Definition 6 (Completeness). VC = (Gen,Commit,Open,Check) has perfect com-
pleteness if for every security parameter λ ∈ N, message length � ∈ N, message
m ∈ Σ�, and query set Q ⊆ [�],

Pr

⎡

⎣VC.Check(pp, cm,Q,m[Q], pf) = 1

∣
∣
∣
∣
∣
∣

pp ← VC.Gen(1λ, �)
(cm, aux) ← VC.Commit(pp,m)
pf ← VC.Open(pp, aux,Q)

⎤

⎦ = 1 .

Definition 7 (Position Binding). VC = (Gen,Commit,Open,Check) has (strict-
time) position binding error εVC if for every security parameter λ ∈ N, message length

8 These standard definitions can be derived from Definitions 2, 3 and 5 by setting pp to be empty.

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 183

� ∈ N, query set size s ∈ N with s ≤ �, auxiliary input distribution D, adversary time
bound tVC ∈ N, and tVC-time algorithm AVC,

Pr

⎡

⎢

⎢

⎣

|Q| = |Q′| = s

∧ ∃ i ∈ Q ∩ Q′ : ans[i] �= ans′[i]
∧ VC.Check(pp, cm, Q, ans, pf) = 1

∧ VC.Check(pp, cm, Q′, ans′, pf′) = 1

∣

∣

∣

∣

∣

∣

∣

∣

pp ← VC.Gen(1λ, �)

η ← D
(

cm, ans, ans′,
Q, Q′, pf, pf′

)

← AVC(pp, η)

⎤

⎥

⎥

⎦

≤ εVC(λ, �, s, tVC).

Definition 8 (Expected-Time Position Binding). VC = (Gen,Commit,Open,
Check) has expected-time position binding error ε�

VC if for every security parameter
λ ∈ N, message length � ∈ N, query set size s ∈ N with s ≤ �, auxiliary input distri-
bution D, adversary time bound t�VC ∈ N, and an algorithm AVC with expected running
time t�VC,

Pr

⎡

⎢

⎢

⎣

|Q| = |Q′| = s

∧ ∃ i ∈ Q ∩ Q′ : ans[i] �= ans′[i]
∧ VC.Check(pp, cm, Q, ans, pf) = 1

∧ VC.Check(pp, cm, Q′, ans′, pf′) = 1

∣

∣

∣

∣

∣

∣

∣

∣

pp ← VC.Gen(1λ, �)

η ← D
(

cm, ans, ans′,
Q, Q′, pf, pf′

)

← AVC(pp, η)

⎤

⎥

⎥

⎦

≤ ε
�
VC(λ, �, s, t

�
VC) .

Remark 8 (Monotonicity of εVC). We assume hereafter that the position binding error
εVC is monotone in each coordinate in the natural direction:

– εVC(·, �, s, tVC) is non-increasing (larger security parameters decrease an adversary’s
success);

– εVC(λ, ·, s, tVC) is non-decreasing (opening some set in a string is easier than opening
in a substring);

– εVC(λ, �, ·, tVC) is non-decreasing (finding a collision in a set is easier than finding
one in a subset); and

– εVC(λ, �, s, ·) is non-decreasing (the success of an adversary increases with its com-
putational power).

The last condition is trivially satisfied, while the first should also hold in any reasonable
commitment scheme. The remaining two are natural (and satisfied in the case of Merkle
commitment schemes); in any case, otherwise one may replace, in our computations,
expressions of the type εVC(λ, �max, smax, tVC), when �max = maxi {�i} and smax =
maxj {sj}, with

max
i,j

{εVC(λ, �i, sj , tVC)} .

Analogously, we assume the expected-time position binding error ε�
VC has mono-

tonicity as well.

3.3 Probabilistically Checkable Proofs

A probabilistically checkable proof (PCP) is an information-theoretic proof system
where a probabilistic verifier has oracle access to a proof string.

Definition 9 (Completeness). PCP = (P,V) for a relation R has perfect complete-
ness if, for every instance-witness pair (x,w) ∈ R,

Pr
[
VΠ(x; ρ) = 1

∣
∣
∣
∣

Π ← P(x,w)
ρ ← {0, 1}r

]
= 1 .

184 A. Chiesa et al.

Definition 10 (Soundness). PCP = (P,V) for a relation R has soundness error εPCP

if, for every (unbounded) circuit P̃ and auxiliary input distribution D,

Pr

⎡

⎣
|x| ≤ n
∧x �∈ L(R)
∧V ˜Π(x; ρ) = 1

∣
∣
∣
∣
∣
∣

ai ← D
(x, Π̃) ← P̃(ai)
ρ ← {0, 1}r

⎤

⎦ ≤ εPCP(n) .

Definition 11 (Knowledge Soundness). PCP = (P,V) for a relation R has knowl-
edge soundness error κPCP with extraction time tE if there exists a probabilistic algo-
rithm E such that, for every adversary P̃ and auxiliary input distribution D,

Pr

⎡

⎢
⎢
⎣

|x| ≤ n
∧ (x,w) �∈ R

∧V ˜Π(x; ρ) = 1

∣
∣
∣
∣
∣
∣
∣
∣

ai ← D
(x, Π̃) ← P̃(ai)
ρ ← {0, 1}r
w ← E(x, Π̃)

⎤

⎥
⎥
⎦ ≤ κPCP(n) ;

moreover, E runs in time tE(n).

We consider several efficiency measures for a PCP:

– the proof alphabet Σ is the alphabet over which a PCP string is written;
– the proof length � is the number of alphabet symbols in the PCP string;
– the query complexity q ∈ [�] is the number of queries that the PCP verifier makes to

the PCP string (each query is an index in [�] and is answered by the corresponding
symbol in Σ in the PCP string);

– the randomness complexity r is the number of random bits used by the PCP verifier.

An efficiency measure may be a function of the instance x (e.g., of its size |x|).

4 Kilian’s Protocol

The construction of (G,P,V) := Kilian[PCP,VC] is specified below.

Construction 4 The argument generator G receives as input a security parameter λ ∈
N and an instance size bound n ∈ N, and works as follows.

G(λ, n):
1. Sample public parameter for the VC scheme: ppVC ← VC.Gen(1λ, �(n)).
2. Set public parameter for the interactive argument: pp := ppVC.
3. Output pp.

The argument prover P receives as input the public parameter pp, an instance x and a
witness w, and the argument verifier V receives as input the public parameter pp and
the instance x. Then P and V interact as follows.

1. P’s commitment.
(a) Compute a PCP string: Π ← P(x,w).

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 185

(b) Compute a vector commitment to the PCP string: (cm, aux) ←
VC.Commit(pp,Π).

(c) Send cm to V .
2. V’s challenge.

(a) Sample PCP verifier randomness: ρ ← {0, 1}r.
(b) Send ρ to P .

3. P’s response.
(a) Run the PCP verifier VΠ(x; ρ) to deduce its query set Q ⊆ [�].
(b) Compute a VC opening proof: pf ← VC.Open(pp, aux,Q).
(c) Set ans := Π[Q].
(d) Send (Q, ans, pf) to V .

4. V’s decision: check that V[Q,ans](x; ρ) = 1 and VC.Check(pp, cm,Q, ans, pf) = 1.

The interactive argument consists of three messages: a prover message; a verifier
message; and a prover message. The interactive argument is public-coin since the veri-
fier’s (only) message is a uniform random string. The efficiency measures of interactive
arguments are as follows:

– the generator outputs public parameter of size |ppVC| bits;
– the prover-to-verifier communication consists of |cm| + q · (log � + log|Σ|) + |pf|
bits;

– the verifier-to-prover communication consists of r bits;
– the time complexity of the argument generator is tVC.Gen.
– the time complexity of the argument prover is tP + tVC.Commit + tV + tVC.Open;
– the time complexity of the argument verifier is tV + tVC.Check.

Remark 9. There are vector commitments for which VC.Gen needs only the security
parameter λ as input (i.e., VC.Gen works for every message size); for example, Merkle
commitment schemes are vector commitment schemes with this property, because the
public parameter consists of (the description of) a hash function, which suffices for
every message size. In this case, the argument generator G in Theorem 4 requires only
λ as input and works for every instance size. This leads the notion of an interactive
argument discussed in Remark 6.

Remark 10. In the plain-model variant of Theorem 4 (see Remark 7), the public param-
eters pp := ppVC are sampled and sent by the argument verifier (resulting in a four-
message protocol). Hence the plain-model variant is public-coin if (and only if) VC.Gen
is a public-coin algorithm (its output includes all of its randomness).

Acknowledgments. Alessandro Chiesa and Ziyi Guan are partially supported by the Ethereum
Foundation. We thank Fermi Ma and Julius Vering for valuable discussions and participating in
early stages of this work.We thank Zijing Di for valuable feedback and comments on earlier drafts
of this paper. Eylon Yogev is supported by the Israel Science Foundation (Grant No. 2302/22),
European Research Union (ERC, CRYPTOPROOF, 101164375), and by an Alon Young Faculty
Fellowship. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

186 A. Chiesa et al.

References

1. Attema, T., Cramer, R.: Compressed σ-protocol theory and practical application to plug &
play secure algorithmics. In: Proceedings of the 40th Annual International Cryptology Con-
ference, pp. 513–543. CRYPTO 2020 (2020)

2. Attema, T., Cramer, R., Kohl, L.: A compressed σ-protocol theory for lattices. In: Proceed-
ings of the 41st Annual International Cryptology Conference, pp. 549–579. CRYPTO 2021
(2022)

3. Attema, T., Fehr, S.: Parallel repetition of (k1, . . . , kμ)-special-sound multi-round interactive
proofs. In: Proceedings of the 42nd Annual International Cryptology Conference, pp. 415–
443. CRYPTO 2022 (2022)

4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput.
38(5), 1661–1694 (2008). preliminary version appeared in CCC 2002

5. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions and non-
rewinding proofs for Schnorr identification and signatures. In: Progress in Cryptology –
INDOCRYPT 2020. pp. 529–552 (2020)

6. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In: Yung, M. (ed.) Advances in Cryptol-
ogy - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, 18-22 August 2002, Proceedings. Lecture Notes in Computer Science,
vol. 2442, pp. 162–177. Springer (2002). https://doi.org/10.1007/3-540-45708-9_11

7. Ben-David, S.: Probabilistically checkable arguments for all NP. In: Joye, M., Leander, G.
(eds.) Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, 26-30
May 2024, Proceedings, Part III. Lecture Notes in Computer Science, vol. 14653, pp. 345–
374. Springer (2024). https://doi.org/10.1007/978-3-031-58734-4_12

8. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Proceedings of the
14th Theory of Cryptography Conference, pp. 31–60. TCC 2016-B (2016)

9. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate PCPs for
Circuit-SAT with sublinear query complexity. In: Proceedings of the 54th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 320–329. FOCS 2013 (2013)

10. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes. Random
Struct. Algorithms 28(4), 387–402 (2006)

11. Block, A.R., Garreta, A., Tiwari, P.R., Zajac, M.: On soundness notions for interactive oracle
proofs, p. 1256 (2023)

12. Bronfman, L., Rothblum, R.D.: PCPS and instance compression from a cryptographic lens.
In: Braverman, M. (ed.) 13th Innovations in Theoretical Computer Science Conference,
ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA. LIPIcs, vol. 215, pp. 30:1–
30:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

13. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Proceedings of the
16th International Conference on Practice and Theory in Public Key Cryptography, pp. 55–
72. PKC 2013 (2013)

14. Chiesa, A., Dall’Agnol, M., Guan, Z., Spooner, N., Yogev, E.: Untangling the security of
Kilian’s protocol: upper and lower bounds. IACR Cryptol. ePrint Arch., 1434 (2024). https://
eprint.iacr.org/2024/1434

15. Chiesa, A., Ma, F., Spooner, N., Zhandry, M.: Post-quantum succinct arguments: breaking
the quantum rewinding barrier. In: Proceedings of the 62nd Annual IEEE Symposium on
Foundations of Computer Science, pp. 49–58. FOCS 2021 (2021)

16. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle
model. In: Proceedings of the 17th Theory of Cryptography Conference, pp. 1–29. TCC 2019
(2019), available as Cryptology ePrint Archive, Report 2019/834

https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/978-3-031-58734-4_12
https://eprint.iacr.org/2024/1434
https://eprint.iacr.org/2024/1434

Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds 187

17. Chiesa, A., Yogev, E.: In: Proceedings of the 41st Annual International Cryptology Confer-
ence, pp. 711–741. CRYPTO 2021 (2021)

18. Chiesa, A., Yogev, E.: Tight security bounds for micali’s SNARGs. In: Proceedings of the
19th Theory of Cryptography Conference, pp. 401–434. TCC 2021 (2021)

19. Chiesa, A., Yogev, E.: Building cryptographic proofs from hash functions (2024). https://
github.com/hash-based-snargs-book

20. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed ElGamal
encryption in the algebraic group model. In: Advances in Cryptology – EUROCRYPT 2020,
pp. 63–95 (2020)

21. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: limitations, sim-
plifications, and applications (2015). http://www.cs.virginia.edu/~mohammad/files/papers/
ZKPCPs-Full.pdf

22. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Proceedings of the 29th
Annual International Cryptology Conference, pp. 143–159. CRYPTO 2009 (2009)

23. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the
24th Annual ACM Symposium on Theory of Computing, pp. 723–732. STOC 1992 (1992)

24. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero knowledge.
In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp. 496–
505. STOC 1997 (1997)

25. Krenn, S., Orrù, M.: Proposal: σ-protocols (2021). https://docs.zkproof.org/pages/standards/
accepted-workshop4/proposal-sigma.pdf

26. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments.
In: Proceedings of the 39th Annual International Cryptology Conference, pp. 530–560.
CRYPTO 2019 (2019)

27. Lombardi, A., Ma, F., Spooner, N.: Post-quantum zero knowledge, revisited or: how to do
quantum rewinding undetectably. In: Proceedings of the 63rd Annual IEEE Symposium on
Foundations of Computer Science, pp. 851–859. FOCS 2022 (2022)

28. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000. pre-
liminary version appeared in FOCS 1994

29. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J.
Cryptol. 13, 361–396 (2000)

30. Rotem, L., Segev, G.: Tighter security for schnorr identification and signatures: a high-
moment forking lemma for σ-protocols. In: Proceedings of the 41st Annual International
Cryptology Conference, pp. 222–250. CRYPTO 2021 (2021)

31. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable proofs from blockchains. In:
Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 374–401. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4_13

32. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable zero knowledge from (collaps-
ing) blockchains. In: Garay, J.A. (ed.) Public-Key Cryptography - PKC 2021 - 24th IACR
International Conference on Practice and Theory of Public Key Cryptography, Virtual Event,
10-13 May 2021, Proceedings, Part II. LNCS, vol. 12711, pp. 469–498. Springer (2021).
https://doi.org/10.1007/978-3-030-75248-4_17

33. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Proceedings of the
9th Annual International Cryptology Conference, pp. 239–252. CRYPTO ’89 (1989)

34. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)
35. Segev, G., Sharabi, A., Yogev, E.: Rogue-instance security for batch knowledge proofs. In:

Proceedings of the 23th Theory of Cryptography Conference, pp. 121–157. TCC 2023 (2023)

https://github.com/hash-based-snargs-book
https://github.com/hash-based-snargs-book
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-sigma.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-sigma.pdf
https://doi.org/10.1007/978-3-030-17253-4_13
https://doi.org/10.1007/978-3-030-75248-4_17

188 A. Chiesa et al.

36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Proceedings of the
16th International Conference on the Theory and Application of Cryptographic Techniques,
pp. 256–266. EUROCRYPT 1997 (1997)

37. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In: Proceedings of the 5th Theory of Cryptography Conference, pp. 1–18.
TCC 2008 (2008)

Kolmogorov and One-Way Functions

Lower Bounds for Levin–Kolmogorov
Complexity

Nicholas Brandt(B)

Department of Computer Science, ETH Zurich, Zurich, Switzerland

nicholas.brandt@inf.ethz.ch

Abstract. The hardness of Kolmogorov complexity is intricately con-
nected to the existence of one-way functions and derandomization. An
important and elegant notion is Levin’s version of Kolmogorov complex-
ity, Kt, and its decisional variant, MKtP. The question whether MKtP
can be computed in polynomial time is particularly interesting because
it is not subject to known technical barriers such as algebrization or nat-
ural proofs that would explain the lack of a proof for MKtP �∈ P.

We take a major step towards proving MKtP �∈ P by developing a
novel yet simple diagonalization technique to show unconditionally that
MKtP �∈ DTIME [O (n)], i.e., no deterministic linear-time algorithm can
solve MKtP on every instance. This allows us to affirm a conjecture
by Ren and Santhanam [64] about a non-halting variant of Kt com-
plexity.

Additionally, we give conditional lower bounds for MKtP that tol-
erate either more runtime or one-sided error. If the underlying com-
putational model has a linear-time universal simulation, e.g. random-
access machines, then we obtain a quadratic lower bound, i.e., MKtP �∈
DTIME

[O (
n2

)]
.

1 Introduction

The formal concept of “complexity” was spearheaded in the 1960’s by Solomonoff
[68–70], Kolmogorov [42,43], and Chaitin [16,17]. Ideas and techniques from
meta-complexity—the computational hardness of complexity—have diffused into
adjacent subfields like learning theory, derandomization and cryptography (see
Sect. 2 for related work). We refer to Trakhtenbrot [71] for a historical survey of
complexity and to the more recent survey by Allender [2].

In this work we focus on Levin’s notion of Kolmogorov complexity Kt [44],
which elegantly incorporates a time bound and thus evades the undecidabil-
ity of the original Kolmogorov complexity. The Levin–Kolmogorov complex-
ity of a given string x is the minimum over all programs that produce x
of the sum of the program’s length plus the logarithm of its runtime, i.e.,
Kt (x) = minΠ �→x (|Π| + �log2 (t)�) where Π computes the string x in time t. Its
decisional problem is defined as MKtP := {(x, k) | Kt (x) ≤ k}. For an in-depth
introduction to meta-complexity problems we refer the reader to [46].

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 191–221, 2025.
https://doi.org/10.1007/978-3-031-78011-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_7&domain=pdf
http://orcid.org/0000-0002-5120-6346
https://doi.org/10.1007/978-3-031-78011-0_7

192 N. Brandt

In fascinating works Liu and Pass [49,52] uncover a surprising connec-
tion between derandomization and the existence of one-way functions (OWF)
through Kt complexity. On the one hand, they show that (weak) derandom-
ization BPP �= EXP is equivalent to the zero-sided average-case hardness of
MKtP, and on the other that the existence of OWFs is equivalent to the two-
sided average-case hardness of MKtP. One-way functions are central to modern
cryptography: they characterize symmetric cryptography, dubbed “Minicrypt”
by Impagliazzo [38]. They are necessary and sufficient for: digital signatures [66],
(cryptographic) pseudorandom generators [13,25], pseudorandom functions [21],
private-key encryption [22], commitment schemes [60] and much more. More-
over, the existence of OWFs is itself equivalent to the hardness of many other
meta-complexity problems (see at the end of Sect. 2).

These cross connections add to the importance of understanding the hardness
of Kolmogorov complexity. While most variants of complexity have (reasonable)
unconditional lower bounds (again see Sect. 2 for related work) and despite the
plausible conjecture MKtP �∈ NP, only a comparatively weak unconditional lower
bound for Kt complexity is known. Namely, Hirahara [32] shows that the Kt-
random strings RKt := {x | Kt (x) ≥ |x|} are immune1 to the circuit class P-
uniform ACC0 (constant depth circuits with constant-modulo gates). Now, one
might ask:

Why are there no stronger lower bounds for Kt complexity?

The reason that Hirahara’s approach fails for stronger classes is that it requires
a satisfiability (SAT) solver of the given class. In fact, Hirahara shows that
immunity of RKt for class C result is indeed equivalent to a SAT solver for
C—which explains the lack of a stronger immunity lower bound. However, even
considering a weaker (compared to immunity) worst-case lower bound, the EXP-
completeness of MKtP under BPP reductions [52] explains why there is no
worst-case lower bound against probabilistic polynomial-time algorithms (BPP);
because it would imply BPP �= EXP which itself is subject to the relativiza-
tion barrier [11]. In the face of this barrier we might ask about an even weaker
worst-case lower bound against a deterministic polynomial-time algorithms (P).
Even proving the comparatively weaker statement MKtP �∈ P (mentioned e.g.
in [32,61]) is a longstanding open problem at least since Allender et al. [7] posed
it explicitly in 2002. This is particularly interesting because MKtP �∈ P is not2

subject to technical barriers like algebrization [1,10,39] or natural proofs [63].
Given the lack of barriers it is not clear whether relativizing techniques suffice
to prove MKtP �∈ P. That our lower bounds relativize can be taken as a hint
that relativizing techniques might in fact be strong enough to prove MKtP �∈ P.

1 No infinite subset of RKt is in P-uniform ACC0.
2 Ren and Santhanam [64] show that the relativization barrier applies to the problem

of approximating MKtP.

Lower Bounds for Levin-Kolmogorov Complexity 193

2 Contributions and Related Work

Our main contribution is a new diagonalization technique tailored to Kt com-
plexity. Using our technique we give the first unconditional lower bound of
Kt complexity against a uniform time class. This constitutes a significant step
towards proving MKtP �∈ P.

While our diagonalization strategy is fairly simple, its analysis is somewhat
involved and simplifying it would be interesting on its own. We stress that our
approach differs strongly from all previous approaches like the one of Hirahara
[32] or for randomized complexity notions [31,61]. A major technical difficulty
for Kt lower bounds based on diagonalization is that the diagonalization algo-
rithm for Kt needs to be deterministic, and thus no probabilistic tools from
complexity theory are available. In Sect. 3 we explain why this leads to a black-
box barrier for diagonalization-based proofs and how our technique overcomes it.
Also, note that derandomization is not useful here because a) we are interested
in an unconditional bound, and b) Liu and Pass [52] already show that (weak)
derandomization implies a stronger zero-sided lower bound. Our main result is
summarized as follows:

Theorem 1. The Levin–Kolmogorov complexity cannot be decided in determin-
istic linear time in the worst-case, i.e., MKtP �∈ DTIME [O (n)].

On the ˜Kt notion of Ren and Santhanam. Because our lower bound relativizes
we can partially affirm a conjecture (Open Problem 4.7.) by Ren and San-
thanam [64]. They introduce a “non-halting” variant ˜Kt of Levin–Kolmogorov
complexity whose definition3 is almost identical to the standard Kt complexity
except that the witness program producing a given string need not halt after
writing the string on its tape. Ren and Santhanam conjecture that—despite
their close definitions—the two notions behave quite differently in that infinitely
many strings x have ˜Kt (x) � Kt (x). By analyzing the proof of Theorem 1
we can give a concrete example affirming their conjecture. Concretely, infinitely
many prefixes of Chaitin’s constant Ω have ˜Kt (Ω1||...||Ω�) <io K (Ω1||...||Ω�) ≤
Kt (Ω1||...||Ω�). To see this assume the opposite (all-but-finitely many pre-
fixes have ˜Kt (Ω1||...||Ω�) ≥abf Kt (Ω1||...||Ω�)), then our proof of Theorem
1 allows us to prove the linear-time hardness of ˜Kt relative to any oracle.
However, Ren and Santhanam [64] already give an oracle relative to which
˜Kt is computable in linear time. Pushing the limits of our technique we find
˜Kt (Ω1||...||Ω�) ≤io Kt (Ω1||...||Ω�) − Θ (ln ln (�)) falling short of the stronger
conjecture ˜Kt (Ω1||...||Ω�) ≤io Kt (Ω1||...||Ω�) /Θ (1) as required by Ren and
Santhanam.

In particular, relative to their oracle Kt can be approximated in linear time
to within a multiplicative factor of 2 + ε for any ε > 0. Our relativizing result

3 Formally, Ren and Santhanam [64] define their K̃t notion not relative to any UTM

but more informally “over all machines”. We thus consider a K̃t notion that is
defined formally analogously to our notion Definition 2.

194 N. Brandt

is compatible with [64] because Ren and Santhanam only show that proving
hardness of Kt for small thresholds � n/ (2 + ε) requires a non-relativizing proof
but we show hardness of Kt for a large threshold � n. Consequently, showing
(worst-case) hardness of Kt for small thresholds seems qualitatively harder than
for large thresholds. This should be contrasted with recent developments [48,51]
where the worst-case hardness (of a conditioned version) of Kt for different
thresholds between nδ and n − 2 is equivalent (Thm 1.1. in [51]).

Comparison to Hirahara’s Lower Bound. Hirahara [32] shows an incompara-
ble unconditional lower bound for Kt complexity, namely, that the Kt-random
strings RKt are immune to P-uniform ACC0 (see [2] for a nice description of Hira-
hara’s approach). Compared to Hirahara’s immunity lower bound (no infinite
subset can be decided), our result is weaker in that it only provides worst-case
hardness (no algorithm can decide correctly for every string). On the other hand,
our lower bound holds against deterministic linear time DTIME [O (n)] which—
we argue—is closer to P than the rather weak circuit class P-uniform ACC0 for
which Hirahara’s lower bound holds. The only case in which our result would be
subsumed by [32] is the implausible case that P = P-uniform ACC0 which would
already imply MKtP �∈ P and in fact a nontrivial SAT solver for P.

We emphasize that our proof strategy differs conceptually from the one
in [32]. The approach of Hirahara is based on the “algorithmic method”
of Williams [72,73] where a nontrivial satisfiability algorithm for a circuit class
yields a lower bound against that class. Obtaining a stronger immunity of RKt

using the Hirahara–Williams approach is equivalent to satisfiability algorithms
for stronger circuit classes which may be subject to known barriers such as alge-
brization [1,10,39] or natural proofs [63]. In comparison, our approach opens new
avenues for improved lower bounds that possibly evade these barriers. See Sect. 3
for a discussion of the limitations of our technique and possible ways to overcome
them.

Stronger Conditional Bounds. By analyzing our approach for the proof of The-
orem 1 we are able to give conditional lower bounds which either tolerate larger
runtime or one-sided error.

Theorem 2. For each time bound t (n) ≥ n at least one of the following is true:

1. MKtP �∈ DTIME [t],
2. MKtP �∈ Heurγfp,γfn

DTIME [O (n)] with no false positive error γfp (n) := 0 and
false negative error γfn (n) := 1/2nt(2n) − 2/2n,

More Related Work. In recent years there has been a flurry of meta-complexity
results—too many to discuss here ([4,12,23,28–30,32–34,36,37,47,50,53–56,58,
59,61,65] to name only a few). Here, we restrict ourselves to some Kt-related
notions and their resp. lower bounds to contextualize our lower bound for MKtP.

The canonical time-bounded variant MKtP [24,41,42,67] of Kolmogorov com-
plexity is parameterized over some time bound t and limits the witness program
of a given string x to run in time at most t (|x|). Limiting the witness program’s

Lower Bounds for Levin-Kolmogorov Complexity 195

runtime makes this notion computable, opposed to standard Kolmogorov com-
plexity. For exponential time bounds t Hirahara [32] shows that MKtP is EXP-
complete under ZPP reductions and even that the set of Kt-random strings is
immune to P (no infinitely large subset of Kt-random strings is in P).

Allender et al. [8] show that the Levin–Kolmogorov complexity MKtP is EXP-
complete under P/poly or NP reductions, i.e., MKtP ∈ P/poly ⇐⇒ EXP ⊆
P/poly. Liu and Pass [52] improve this to BPP reductions, i.e., MKtP ∈ BPP ⇐⇒
EXP = BPP. Thus, any nontrivial derandomization BPP �= EXP is equivalent to a
lower bound MKtP �∈ BPP against bounded-error probabilistic TMs. In turn, this
means that any barrier preventing us from proving BPP �= EXP also prevents us
from proving the randomized lower bound MKtP �∈ BPP. In contrast, our lower
bound MKtP �∈ DTIME [O (n)] is much weaker both in the quantitative runtime
(linear vs. polynomial) as well as the computational model (deterministic vs.
probabilistic)—and thus evades known barriers.

Oliveira [61] introduces rKt—a randomized version of Levin–Kolmogorov
complexity—where the witness program of a given string x must produce
that string x on at least a 2/3-fraction of randomnesses. This randomized
complexity is BPE-complete (Lemma 12 in [61]) and Oliveira shows hard-
ness of his notion against quasipolynomial time bounded-error TMs, i.e.,
MrKtP �∈ BPTIME

[

nlog(n)Θ(1)
]

. Later Later Hirahara [31] improves that bound
to GapMrKtP �∈ io-BPTIME [2εn] for any ε � 0. Oliveira [61] also gives a potential
avenue toward proving MKtP �∈ P via the implication MrKtP ∈ Promise-EXP =⇒
MKtP �∈ P.

For a nondeterministic NEXP-complete complexity notion KNt Allender et
al. [9] show unconditionally that the set of KNt-random strings is not in NP ∩
co-NP.

The canonical problem for circuit complexity is nowadays called the minimum
circuit size problem (MCSP) [40]. It has been previously considered by Trakht-
enbrot [71] (Task 4), and Levin reportedly delayed the publication of his work on
NP-completeness to include MCSP. Since MCSP ∈ NP an unconditional lower
bound seems unlikely; the question is rather whether MCSP is NP-complete
which is related to major open questions in theoretical computer science. We
refer the interested reader to [2,5] and references therein for more details about
the NP-completeness of MCSP.

Oliveira, Pich, and Santhanam [62] give “hardness magnification” results for
gap versions of MKtP and MCSP. They establish that slightly improved lower
bounds for these problems can be “magnified” to strong lower bounds. The
reason why we cannot use their result to magnify our linear-time lower bound is
a difference in the parameter regime (similar to [64]). They consider the hardness
of distinguishing strings of low complexity from string of even lower complexity
(e.g. nε + Θ (log n) vs. nε). On the other hand, we crucially use the fact (as our
counter assumption) that we are able to exactly compute the complexity of a
given string x ∈ {0, 1}n even when Kt (x) ≈ n.

196 N. Brandt

Huang, Ilango, and Ren [35] show unconditional hardness of an oracle variant
of the minimum circuit size problem (MOCSP) using a cryptographic tool called
witness encryption [19].

Connection to One-Way Functions. In recent years there has emerged a research
effort to characterize one-way functions (OWF) by the hardness of meta-
complexity problems. As an incomplete list: OWFs are equivalent to the mild
two-sided hardness of MKtP [49], the two-sided hardness of MKtP [52], the two-
sided hardness4 of an (NP-complete) conditional variant McKTP [6] of Allen-
der’s KT complexity [3], the mild two-sided hardness of (parameterized versions
of) MKtP against sublinear time over a smooth range of parameters [48], the
mild average-case hardness of the probabilistic MpKtP (introduced in [20]) for
polynomial t [53], the worst-case hardness of a promise version of MKtP (with
small computational depth) [51], the hardness of a distributional variant of Kol-
mogorov complexity under the assumption NP � io-P/poly [27].

3 Technical Overview

To simplify this overview, we assume that the UTM U simulates any given
program Π without any overhead. In the formal proof we will account for the
logarithmic overhead of the UTM.

A natural approach to proving lower bounds for a given meta-complexity
problem is to assume that the problem is easy and then leverage an efficient
solver for that problem to quickly construct a highly complex string (w.r.t. to
the given complexity measure). The historical proof of the undecidability of
standard Kolmogorov complexity as well as Hirahara’s much more sophisticated
lower bound for Kt complexity [32] are instantiations of this approach.

To directly apply this approach to Kt complexity it is useful to define what
we call the “critical threshold” θΠ,t := |Π| + �log2 (t)� of a given TM Π after
t steps of its execution. We will assume that the decision problem MKtP can
be worst-case decided by a TM ΠKt in linear time. Then we construct a TM
Π� (using ΠKt as a subroutine) that quickly outputs a Kt-random string z
(i.e., Kt (z) ≥ |z|). To reach a formal contradiction, our TM Π� must in t steps
produce a Kt-random string z that is strictly longer than the critical threshold
θΠ�,t, i.e., θΠ�,t ≥ Kt (z) ≥ |z| � θΠ�,t where the first inequality is by the
definition of Kt complexity and the fact that Π outputs z in t steps, the second
inequality is the Kt-randomness of z, and the last inequality is by assumption.
(In this overview, we gloss over some minor definitional details that are rigorously
taken care of in the formal proof.)

Black-Box Barrier. A conceptual problem to the algorithmic approach for a
lower bound for MKtP is that we know little about the structure of the Kt-
random strings RKt := {x | Kt (x) ≥ |x|}. We say a TM ΠBB yields a contra-
diction in a black-box way, if given access to any set of potentially Kt-random
4 Here, the error probabilities are not equal for both directions.

Lower Bounds for Levin-Kolmogorov Complexity 197

strings R �= {0, 1}∗ it produces a string z �∈ R in t steps such that θΠBB,t � |z|.
Intuitively, a potential TM ΠBB ignores the structure of the set R since it works
for any arbitrary R. Such a ΠBB cannot exist because we can define RΠBB

:=
{0, 1}∗\{z | ΠBB queries z to its oracle or outputs z in t steps and θΠBB,t � |z|}
that breaks ΠBB. This black-box barrier explains why a lower bound for deter-
ministic Kt is so hard to obtain (as opposed to randomized rKt5). So, for our
algorithmic approach to succeed we need to exploit some property exhibited by
the actual set of Kt-random strings RKt but not by any set RΠBB

. Before we
explain how, let us first present our rather simple strategy for a TM Π�.

Our Search Strategy. As a first step we use the length-monotonic depth-first-
search described in Fig. 1. The high-level idea is to traverse the binary tree
of finite strings starting with the string 0.6 Whenever the i-th string zi is
visited our search algorithm TRAVERSE queries zi to its oracle RKt and if
zi ∈ RKt descends to the next length with zi+1 := zi||0 (the left child of zi),
otherwise it continues with the lexicographically next string of the same length
zi+1 := next (zi) (the right neighbor of zi). See Fig. 2 for an exemplary run
of TRAVERSE. Crucially, the length of the visited strings is non-decreasing.
We note that our TRAVERSE algorithm doesn’t terminate and hence does not
suffice for a proper contradiction (even if it visits a Kt-random string quickly
enough). To actually reach a contradiction we have to a) construct a TM ΠTRA

implementing TRAVERSE that at some point visits a string ž within t̂ steps
s.t. θΠTRA,t̂ � |ž|, and b) implement a mechanism s.t. ΠTRA also recognizes this
fact—so that it can terminate and output ž.

As a stepping stone it will be useful to see that TRAVERSE visits infinitely
many different strings (zi)i∈N

. This follows from the existence of at least one
Kt-random string of each length on which TRAVERSE descends to the next
length. Moreover, we observe that TRAVERSE never “wraps around”. That is
TRAVERSE never reaches an all 1s string at the right border of the binary
tree. Assuming an infinite (1-random) string s whose every prefix is Kt-random,
this is also easy to see. Whenever TRAVERSE visits a prefix zi = s1||...||s� it
descends to the next string zi+1 := s1||...||s�||0—thus always staying “to the
left” of the infinite string s in the binary tree. Glossing over a minor technical
issue, we can take Chaitin’s constant Ω (encoded in binary) to be such an infinite
1-random string. In fact, the 1-randomness of Ω is the crucial information about
the actual set of Kt-random strings RKt that allows our TRAVERSE algorithm
to sidestep the aforementioned black-box barrier.

Analysis. Next, we analyze the behavior of TRAVERSE to prove that after
some t̂ steps TRAVERSE visits some Kt-random string zι̂ s.t. θΠTRA,t̂ � |zι̂|.
Let Z := {zi | i ∈ N} be the set of visited strings. Let i� :=

∣

∣

∣Z ∩ {0, 1}≤�
∣

∣

∣ be

the number of strings visited of length at most �. Let Z� := Z ∩ {0, 1}� =

5 It is not even clear how RΠBB would be defined for probabilistic ΠBB.
6 We choose to start with 0 instead of ε because it simplifies some edge cases.

198 N. Brandt

TRAVERSE

1 : z1 := 0 ∈ {0, 1}∗

2 : for i ∈ N≥1

3 : if Kt (zi) ≥ |zi| then zi+1 := zi||0
4 : else zi+1 := next (zi)

Fig. 1. Our (simplified) traversal algorithm.

ε

0

00

000

0000 0001

001

0010 0011

01

010

0100 0101

011

0110 0111

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

Fig. 2. Exemplary run of TRAVERSE: white strings are Kt-random.

{

zi�−1 ||0, ..., zi�

}

be the set of visited strings of length exactly �. Let S� :=
{

z ∈ {0, 1}�
∣

∣

∣ int (z) � int (zi�
)
}

⊂ {0, 1}� be the lexicographical successors of
Z� (the right neighbors of Z�). Now, note that because TRAVERSE doesn’t
wrap around, it holds that Z�+1 ·∪ S�+1 = ({zi�

} ·∪ S�) || {0, 1} and thus |Z�+1| +
|S�+1| = 2 |S�| + 2. Let γ� := |Z�|/|Z� ·∪S�| be the fraction of strings of length �
that TRAVERSE actually visits to the strings that it could potentially visit. By
recursion the number of visited strings of length � can be expressed as |Z�| =
γ�

∑�
κ=1 2κ

∏�
i=�−κ+1 (1 − γi). For our approach we’d like i� and thus |Z�| to

be asymptotically small. An informal argument for this is that the formula for
|Z�| expresses a “self-limiting” behavior that emerges from our TRAVERSE
algorithm. Namely, the faster γi goes to 0 the smaller |Z�| because |Z�| depends
linearly on γ�. On the other hand, |Z�| depends on the product

∏κ
i=j−κ+1 (1 − γi)

which is closer to 1 the faster γi goes to 0. These antagonistic influences suggest
there is some asymptotic rate of γi that leads to an asymptotically maximal |Z�|.
This behavior of |Z�| can also be captured informally from the algorithmic view
of TRAVERSE. Whenever |Z�−1| is large this means that TRAVERSE moves
far to the right, forcing the next |Z�| to be small because only few strings remain

Lower Bounds for Levin-Kolmogorov Complexity 199

to the right. In this manner, there cannot be many successive |Zj | that are large.
Turning back to the more formal analysis, we can bound the number of visited
strings of length at most � by

i� :=
�
∑

j=1

|Zj | =
�
∑

j=1

γj

j
∑

κ=1

2κ

j
∏

i=j−κ+1

(1 − γi) ≤
�
∑

j=1

γj

j
∑

κ=1

2κeσj−κ−σj (1)

where σj :=
∑j

i=1 γi. Using the following technical lemma we can bound this
quantity.

Lemma 1 (Infinitely-often bound). For any sequence (γj)j∈N
with γj ∈

[0, 1] and σ� :=
∑�

i=1 γi it holds that infinitely often
∑�

j=1 γj

∑j
κ=1

2κeσj−κ−σj ≤io
2�
/� ln(�).

The rigorous proof of Lemma 1 is contained in the full version [14]. This means
that for infinitely many “critical” lengths �̂ when TRAVERSE visits the last
string zi�̂

∈ {0, 1}�̂ ∩ RKt it took at most O
(

i�̂ · �̂
)

steps to do so—assuming
MKtP ∈ DTIME [O (n)]. Recall that for any length � it holds that zi�

∈ RKt

because zi�
is the last string of length � that TRAVERSE visits from which it

descends to the next length. Now, if TRAVERSE were to output any such zi�̂
,

then we would reach the contradiction

�̂ ≤ Kt
(

zi�̂

) ≤ |ΠTRA| +
⌈

log2
(

O
(

i�̂ · �̂
))⌉

≤ �̂ − ln ln
(

�̂
)

+ O (1) . (2)

The missing piece is hence to construct a TM Π ′
TRA that implements TRAVERSE

such that it is aware of its own critical threshold—so it knows when to out-
put a string zi�̂

. A generic approach is to simply simulate TRAVERSE with a
O (n ln (n)) slowdown. However, this would result in

�̂ ≤ Kt
(

zi�̂

) ≤ |ΠTRA| +
⌈

log2
(

O
(

i�̂ · �̂ · ln
(

i�̂ · �̂
)))⌉

(3)

≤ �̂ + ln
(

�̂
)

− ln ln
(

�̂
)

+ O (1) (4)

which does not suffice for a contradiction. Hence, we let Π ′
TRA count the size |Z�|

not one-by-one but only once it reaches a Kt-random string (the last string of
each length). This way, each length � incurs an additive runtime overhead of O (�)
instead of Ω (|Z�| � ln (�)). Due to space restrictions and because the details of
the step-counting don’t provide much conceptual insight, we defer these details
to the formal proof of Theorem 1.

On Lemma 1. In the previous paragraph we have bounded the runtime of our
contradicting TM Π ′

TRA in terms of the number of visited strings i� which in
turn can be bounded by the term in Lemma 1. As alluded to earlier the specific
term in Lemma 1 arises from the “self-limiting” behavior of our TRAVERSE
algorithm. Recall that on the binary tree TRAVERSE only moves to the right
neighbor or the left child of the current string. Fix some length �̂. If for many

200 N. Brandt

of the previous lengths � � �̂ the TM TRAVERSE visited few strings, then the
number i�̂ of visited strings at length �̂ will be small by definition. On the other
hand, if TRAVERSE visits many strings of length �, then TRAVERSE moves
farther to the right, leaving fewer strings of subsequent lengths to be potentially
visited. With this intuition in mind, it remains to prove Lemma 1 formally,
though we defer the rigorous proof of Lemma 1 to the full version [14]. Instead,
here we give a superficial sketch of our proof.

The basic idea is to prove Lemma 1 by contradiction, hence we may assume

�
∑

j=1

γj

j
∑

κ=1

2κ−�eσj−κ−σj ≥ 1/� ln(�) (5)

for all � ∈ N. We sum this inequality and bound the inner sum on the left-hand
side of Eq. (5) by 2j−�+1 (using the trivial inequality σj − σj−κ ≥ 0) to obtain
a first lower bound for σ�̂, i.e.,

2σ�̂ ≥
�̂
∑

�=1

�
∑

j=1

γj2j−�+1 ≥ 2
�̂
∑

�=1

1
� ln (�)

≈
∫

1

�̂ ln
(

�̂
)d�̂ ∈ Ω

(

ln ln
(

�̂
))

. (6)

Here, we use the crucial property that the antiderivative of 1/x ln(x) is supercon-
stant.

In the next steps we reuse the same strategy. Instead of bounding the inner
sum on the left-hand side of Eq. (5) trivially by 2j−�+1 we use the stronger

bound from Eq. (6) to obtain an even stronger bound σ�̂ ∈ Ω(ln(�̂)
1/17

).
Reapplying the same strategy a third time finally yields the lower bound
σ�̂ ∈ Ω(ln(�̂)

3
) which is strong enough to yield a contradiction to Eq. (5).

In this brief sketch we glossed over many details and refer the interested
reader to the formal proof in Sect. 6. However, a quick sanity check may be
in order at this point. If γj ≤ 1/j ln(j), then Lemma 1 holds trivially. Consider-
ing slightly larger γj := ε/j for any constant ε > 0 (thus σj ≈ ε ln (j)) yields
O(
∑�

j=1 γj

∑j
κ=1 2κeσj−κ−σj) = O(

∑�
j=1

1
j

∑j
κ=1 2κ (1 − κ/j)ε) = O(2�/�1+ε)

which is also consistent with Lemma 1.

Robustness. While (unbounded) Kolmogorov complexity is quite robust against
definitional changes (by invariance theorems), resource-bounded notions of com-
plexity are more sensitive. There are many ways of defining Kt complexity for-
mally: representative variations include [32,52,64]. Our Definition 2 essentially
corresponds to the one in [32]. In general, the notion of Kt complexity depends—
aside from the underlying computational model—on whether

• the runtime is measure in terms of the number of steps of the simulated
program Π (direct time) or the simulating universal machine U (universal
time),

• the witness program Π produces the entire string x (global compression) on
the empty input or outputs the i-th bit on input bin (i) (local compression),

Lower Bounds for Levin-Kolmogorov Complexity 201

Lower bound Global compression Local compression

Direct time DTIME
[O (

n2
)]

DTIME [O (n)]

Universal time + const. overhead DTIME
[O (

n2
)]

DTIME [O (n)]

Universal time + log. overhead DTIME [O (n)] (∗) –

Fig. 3. Our lower bounds for several definitional variantions of Kt complexity. As a
rule of thumb going from global to local, or from constant to logarithmic simulation
overhead decreases the lower bound by a linear factor. Our results are formally stated
for the setting (∗).

• the universal machine is “prefix-free” (Kt) or “plain” (Ct).

First, we state that currently our technique only works for prefix-free complexity
because it requires an (infinite) strings whose prefixes are Kt-random, and we
only know such a string for prefix-free complexity (there is no plain 1-random
string; Sect. 6.1 in [18]). Though, conceivably one might find another way of
arguing the “no-wrap-around” property of our search algorithm, to extend our
result to plain Ct complexity.

Second, we remark that resource-bounded universal time complexity is a
somewhat fragile notion that does not enjoy an invariance theorem. The reason
is that one can always modify a universal machine to artificially run an arbitrary
amount of time to increase the �log2 (tU (Π))� term arbitrarily, yet the machine
remains universal. So, to remain a meaningful notion we only consider universal
machines with at most logarithmic overhead.

All of our formal results are stated for the setting of global compression, uni-
versal time measurement and logarithmic simulation overhead. Each result can
be adapted to other settings as follows: When considering direct time measure-
ment or models with constant simulation overhead7, we can actually strenghen
our lower bound to DTIME

[O (n2
)]

because (to reach a contradiction) our search
algorithm saves a factor of roughly � on level � in runtime—which can be spend on
an (assumed) more expensive DTIME

[O (�2)] solver for MKtP. Independently,
if we consider local compression, we have to reduce the lower bound for global
compression by a linear factor. The reason is that witness programs for global
compression are required to run for at least |x| steps but witness programs for
local compression are only required to run for O (log2 |x|) steps. We summarize
the instantiations of our main result in different settings in Fig. 3.

Limitations and Stronger Conditional Lower Bounds. As presented, our strategy
using Π ′

TRA cannot (unconditionally) tolerate any errors because

• if Π ′
TRA obtains a false negative query response (false high complexity), then

it outputs a string that is not actually Kt-random which does not violate the
definition of Kt-randomness, and

7 E.g. random-access machines and Kolmogorov–Uspensky machines.

202 N. Brandt

• if Π ′
TRA obtains a false positive query response (false low complexity), then it

may skip (from left to right) the separating line defined by Chaitin’s 1-random
constant, thus potentially increasing the runtime prohibitively.

However, we can conditionally tolerate some (false negative) one-sided errors.
For example, suppose MKtP ∈ DTIME

[O (n2
)]

can be worst-case decided in
quadratic time by a TM ΠKt,n2 , and MKtP ∈ Heur0,γfn

DTIME [O (n)] can be
decided in linear time with false negative probability γfn (n) ∈ o

(

1/n2
)

(and no
false positives) by a TM ˜ΠKt,n. Then we can construct a modified TM Π ′′

TRA

which for each visited string zi first queries zi to the quicker linear-time heuristic
˜ΠKt,n. If ˜ΠKt,n outputs ˜b = 0 (high complexity), Π ′′

TRA queries zi to the slower
ΠKt,n2 to obtain the definitive answer b = 0 ⇐⇒ zi ∈ RKt. If ˜b = 0 ∧ b = 0,
then Π ′′

TRA descends to zi+1 := zi||0, otherwise zi+1 := next (zi). First, note that
Π ′′

TRA visits exactly the same set of strings (in the same order) as TRAVERSE. In
contrast to the unconditional case, however, we find that whenever Π ′′

TRA visits
a string zi�̂

of critical length �̂ it took at most

O
⎛

⎝

�̂
∑

�=1

|Z�| · � + 2�γfn (�) · �2

⎞

⎠ = O
(

i�̂ · �̂ + 2�̂γfn

(

�̂
)

· �̂2
)

⊆ o
(

2�̂
)

(7)

steps because at length � there are at most 2�γfn (�) strings on which ˜ΠKt,n gives
a false negative answer.8 Consequently, when Π ′′

TRA visits and outputs such a
string zi�̂

it yields the contradiction

�̂ ≤ Kt
(

zi�̂

) ≤ |ΠTRA| +
⌈

log2
(

o
(

2�̂
))⌉

≤ �̂ − ω (1) + O (1) . (8)

On Overcoming the Limitations. First, we want to point out a curious effect rem-
iniscent of Williams’s algorithmic method where a computational upper bound
implies another lower bound. Namely, any nontrivial worst-case upper bound
for MKtP (Item 1 in Theorem 2 is false) implies an improved linear-time lower
bound for MKtP with one-sided error (Item 2 in Theorem 2 is true).

Above we state that—at first glance—our approach cannot tolerate any
errors unconditionally. In truth, our approach actually tolerates some false pos-
itive error, e.g. γfp (n) ≤ 1/4n ln(n+1)2. Recall that the reason given above for
not tolerating false positive errors is because then our algorithm might “skip”
Chaitin’s 1-random constant and thus the recursion formula Z�+1 ·∪ S�+1 =
({zi�

} ·∪ S�) || {0, 1} no longer holds. In turns out9that there are many Kt-random
strings of each length, in fact, they have an arbitrary (constant) density. Thus,
it is fine for our algorithm to skip some prefixes of 1-random strings in each
length, because as long as we only skip a few, there will always be sufficiently
many remaining “‘to the right” of our algorithm’s current position.

8 Here, we naturally assume that 2�γfn (�) is non-decreasing.
9 See the full version [14].

Lower Bounds for Levin-Kolmogorov Complexity 203

Corollary 1. Let γfp be a false positive error rate s.t.
∑∞

�=1 γfp (�) � 1,10 and let
γfn (n) := 0 be no false negative error. The Levin–Kolmogorov complexity cannot
be decided in deterministic linear time even with some false positive error, i.e.,
MKtP �∈ Heurγfp,γfn

DTIME [O (n)].

The requirement
∑∞

�=1 γfp (�) � 1 is sufficient because in length � we skip up
to 2�γfp (�) strings. This means that at length �̂ we might have skipped up to
∑�̂

�=1 2�̂−� · 2�γfp (�) strings (all strings of length �̂ that have a skipped string as
a prefix) whereas we have at least 2�̂ (1 − ε̂) many (prefixes of) 1-random strings
in length �̂ (for any ε̂ ∈ R�0). Thus,

∑∞
�=1 γfp (�) � 1 ensures that in each length

there are always more prefixes of 1-random strings than are potentially skipped
for ε̂ := (1 −∑∞

�=1 γfp (�)) /2.
Another obvious question is whether our technique is capable of prov-

ing a worst-case bound beyond linear time. By an improved analysis of the
proof of Lemma 1 we can push our bound to slightly superlinear time (resp.
superquadratic for the corresponding settings in Fig. 3).

Corollary 2. The Levin–Kolmogorov complexity cannot be decided in deter-
ministic slightly superlinear time in the worst-case, i.e., MKtP �∈
⋃

k∈N
DTIME

[

∏k
i=0 ln(i) (n)

]

where ln(i) is the i times iterated logarithm (with

ln(0) (n) := n).

Corollaries 1 and 2 can be combined. The reason for this somewhat peculiar
time bound t (n) :=

∏k
i=0 ln(i) (n) is that the antiderivative (of its reciprocal)

∫

1/t(x)dx = ln(k+1) (x) ∈ ω (1) is superconstant which is the property that we
need to get our proof of Lemma 1 going.

In contrast, going to some polynomial lower bound, i.e., MKtP �∈
DTIME

[

n1+ε
]

for some ε > 0 seems challenging. With our current proof
strategy this would require a stronger version of Lemma 1 in the form of
∑�

j=1 γj

∑j
κ=1 2κ/eσj−σj−κ ≤ 2�/�1+ε for some ε > 0. However, this cannot

hold for arbitrary γj because of the following counter example: γj := ε/j implies
∑�

j=1 γj

∑j
κ=1 2κ/eσj−σj−κ ∈ Θ

(

2�/�1+ε
)

.
Nonetheless, there is a possibility to achieve such a stronger bound by lever-

aging more structure of RKt to restrict the space of possible γj (as we did by
integrating Chaitin’s constant in our analysis). We hope that our new technique
inspires further research into even better diagonalization approaches. For exam-
ple, it could be that adding multiple 0’s to a high-complexity string or moving
more steps to the right on a low-complexity string might yield a better lower
bound with an adapted analysis.

4 Preliminaries

Notation. Real functions are usually denoted by Greek letters γ, θ, ε, etc., while
natural/bit functions by Fraktur script t, f, etc. Languages are denoted by the
10 That is, there exists some constant c such that

∑∞
�=1 γfp (�) ≤ c � 1.

204 N. Brandt

uppercase letter L. The empty string is denoted by ε. Integers related to sizes
are denoted by lowercase Latin letters n, m, c, while indices are denoted by i, j,
k, κ. Strings are denoted by lowercase Latin letters x, y, z, etc. Turing machines
(TM) are denoted by caligraphic letters U , M as well as Π for the code of a
TM. Complexity classes are denoted in sans-serif letters P, NP, EXP, etc.

For convenience we add framed boxes with explanations of relevant
(in-)equalities.

Notation 1 (Functional inequalities). Let f, g : N → R be two functions.
We write

f ≤ g ⇐⇒ ∀n ∈ N : f (n) ≤ g (n) (9)
f ≤abf g ⇐⇒ ∃n0 ∈ N ∀n ≥ n0 : f (n) ≤ g (n) (10)
f ≤io g ⇐⇒ ∀n0 ∈ N ∃n ≥ n0 : f (n) ≤ g (n) (11)

when f is less or equal to g on all inputs, on all but finitely many inputs, or on
infinitely many inputs. Note that

f ≤ g =⇒ f ≤abf g ⇐⇒ f >io g =⇒ f ≤io g . (12)

It may be that g ≤io f while simultaneously g ≥io f. Sometimes we abuse notation
and write f (n) ≤abf g (n) to mean (n �→ f (n)) ≤abf (n �→ g (n)).

Notation 2 (Languages). Let L ⊆ {0, 1}∗, then for any x ∈ {0, 1}∗ we use
the abbreviated notation L (x) = 1 ⇐⇒ x ∈ L and L (x) = 0 ⇐⇒ x �∈ L.

Notation 3 (Integers and strings). Let int : {0, 1}∗ → N : x �→
2|x|+1 +

∑|x|
i=1 2i−1xi be the canonical lexicographical bijection between strings

and integers. Let bin := int−1 be its inverse operation. Let next (x) :=
bin
(

(int (x) + 1) mod 2|x| + 2|x|) be the function that returns the lexicographi-
cally next string of the same length.

Computational Model. We present our result for Turing machines but they carry
over to over computational models. We discuss this in more detail in Sect. 3.

We generally assume a Turing machine (TM) has fixed number of tapes, one
of which is a read-only the input tape, one a write-only output tape, and the
rest are read-write work tapes. This naturally extends to oracle machine with a
dedicated oracle tape, although we will not need it in this work.

Let M be a deterministic Turing machine (TM). For any x ∈ {0, 1}∗ denote
by M (x) ∈ {0, 1}∗ ∪ {⊥} the content of the output tape after M has entered
a terminal state, or ⊥ if M does not terminate on input x. In particular, if M
halts with a string y ∈ {0, 1}n then it must have run for at least n steps.

Throughout the paper let U denote a prefix-free universal Turing machine
(UTM). For any string Π ∈ {0, 1}∗ let tU (Π) be the (minimum) number of steps
after which U halts on input Π. We assume that U simulates any given TM with
(multiplicative) logarithmic overhead [26]. That is, there exists some universal
constant cU ∈ N such that if the TM encoded by Π halts in t steps on input ε,

Lower Bounds for Levin-Kolmogorov Complexity 205

then U halts on input Π in tU (Π) ≤ cU t log2 (t) steps. Let t : N → N be a time
bound. Let DTM [t] be the set of deterministic TMs that halt within t (n) steps
on inputs of length n ∈ N. For any TM M let LM :=

{

x ∈ {0, 1}∗ ∣
∣M (x) = 1

}

be its (characteristic) language. Throughout, we require a time bound t to be
time-constructible, i.e., there exists a TM Mt ∈ DTM [O (t)] that computes t.
Let

DTIME [t] :=
{

L ⊆ {0, 1}∗ ∣
∣ ∃M ∈ DTM [t] : L = LM

}

(13)

be the class of languages decided by some DTM in time t. Let DTIME [O (t)] :=
⋃

d∈N
DTIME [d · t] be the class of languages decided by some DTM in time O (t).

In the following let C be some class of languages that is closed under intersection.
Let

Heurγfp,γfn
C :=

⎧

⎨

⎩

L ⊆ {0, 1}∗

∣

∣

∣

∣

∣

∣

∃L′ ∈ C :

∣

∣

∣(L \ L′) ∩ {0, 1}λ
∣

∣

∣ ≤abf γfp (λ) 2λ

∣

∣

∣(L′ \ L) ∩ {0, 1}λ
∣

∣

∣ ≤abf γfn (λ) 2λ

⎫

⎬

⎭

(14)

be the class of languages with a C-heuristic with false-positive error at most γfp
and false-negative error at most γfn.

Complexity Measures. The most basic notion of Kolmogorov complexity is the
length of the smallest program (witness program) that produces a given string
w.r.t. some UTM.

Definition 1 (Solomonoff–Kolmogorov–Chaitin complexity [17,42,72]).
Let U be a (prefix-free) UTM. For any string x ∈ {0, 1}∗ we say

KU (x) := min
{|Π| ∣∣ Π ∈ {0, 1}∗ : U (Π) = x

}

(15)

is the (prefix-free) Kolmogorov complexity11.

While a powerful notion, it is not computable, hence Levin [44] came up with
an alternative definition which charges an additional logarithmic term for the
runtime of the witness program that produces the given string.

Definition 2 (Levin–Kolmogorov complexity [44,71]). Let U be a (prefix-
free) UTM. For any string x ∈ {0, 1}∗ we say

KtU (x) := min
{|Π| + �log2 (t)� ∣∣ Π ∈ {0, 1}∗

, t ∈ N : U (Π) = x ∧ tU (Π) ≤ t
}

(16)

is the (prefix-free global) Levin–Kolmogorov complexity. Let

MKtPU := {(y, k) ∈ {0, 1}m × [m] | m ∈ N : Kt (y) ≤ k} (17)

11 For brevity and in accord with the literature [46] we simply use the term “Kol-
mogorov complexity”.

206 N. Brandt

be the decisional minimum Kt-problem. This version is called “global compres-
sion” because the witness program outputs the entire string y.

For reference, we also define the “local compression” version where the
witness program outputs each bit of the string y separately. For any string
x ∈ {0, 1}∗ we say

K̈tU (x) := min
{

|Π| + �log2 (t)�
∣

∣

∣

∣

Π ∈ {0, 1}∗
, t ∈ N : ∀i ∈ {1, ..., |x|} :

U (Π, i) = xi ∧ tU (Π, i) ≤ t

}

(18)

is the (prefix-free local) Levin–Kolmogorov complexity.

We mainly focus on the global version and discuss various definitional subtleties
in Sect. 3.

Fact 1 (Relation between K and Kt). For any string x ∈ {0, 1}∗ it holds that
Kt (x) ≥ K (x) + �log2 (|x|)�.
Proof This is because even the shortest (global witness) program for x must run
for at least |x| steps.12 ��
Definition 3 (1-/ Martin-Löf-randomness ([18] referring to [15,45,57])).
Let U be a (prefix-free) UTM. An infinite sequence of bits w = (wi)i∈N

is called
1-random, iff there exists some constant ĉU,w ∈ N such that for each n ∈ N it
holds that K (w1||...||wn) ≥ n − ĉU,w.

Analogously, an infinite sequence of bits w = (wi)i∈N
is called 1-Kt-random,

iff there exists some constant ĉU,w ∈ N such that for each n ∈ N it holds that
Kt (w1||...||wn) ≥ n + �log2 (n)� − ĉU,w.

Going forward we fix some arbitrary UTM U but omit it in our notation and sim-
ply write K, Kt, MKtP, etc. By Fact 1 K-randomness implies Kt-randomness.

Fact 2 (Chaitin’s Ω constant is 1-random [15]). Let Ωi be the i-th bit of
Chaitin’s constant [15] in binary representation. Then the sequence Ω = (Ωi)i∈N

is 1-random and thus 1-Kt-random with constant ĉΩ.

5 Formal Results

Lemma 2. The algorithm TRAVERSEĉΩ ,cKt
in Fig. 4 visits infinitely many dif-

ferent strings (zi)i∈N
.

Proof. First note that the lengths of zi are non-decreasing, i.e., |zi+1| ≥ |zi|.
Suppose for contradiction that there exists some maximal length �̂ ∈ N such
that all strings |zi| ≤ �̂ for all i ∈ N. By inspection it is apparent that from some
point onward TRAVERSEĉΩ ,cKt

cycles through all strings of length �̂.

12 Here, we presume the global compression version of Kt, and add �log2 (|x|)�.

Lower Bounds for Levin-Kolmogorov Complexity 207

Because the prefixes of Chaitin’s constant Ω = (Ωi)i∈N
are a 1-Kt-random

sequence, for each length � ∈ N the string Ω1||...||Ω� ∈ {0, 1}� has com-
plexity Kt (Ω1||...||Ω�) ≥ K (Ω1||...||Ω�) ≥ � + �log2 (�)� − ĉΩ . Thus, once
TRAVERSEĉΩ ,cKt

visits the string zi = Ω1||...||Ω�̂ the next string is zi+1 =
Ω1||...||Ω�̂||0 due to line 3. This contradicts �̂ + 1 = |zi| + 1 ≤ �̂. ��

Now, we prove our main result.

Theorem 1. The Levin–Kolmogorov complexity cannot be decided in deter-
ministic linear time in the worst-case, i.e., MKtP �∈ DTIME [O (n)].

Proof. The intuition of this proof is already outlined in Sect. 3. The high-level
idea is to assume that Kt can be computed quickly, and then construct a suffi-
ciently fast TM that produces a highly complex string. This then contradicts the
definition of a complex string needing a large or slow program to compute. Key
properties of our constructed TM is that it finds a complex string sufficiently
fast and that the TM is aware of its own runtime. For the latter property we
use a counter variable in our TM to upper bound its runtime by counting the
number of visited strings of a given length. This counter needs to be larger than
the actual runtime of the TM (Claim 1) so it is guaranteed to output a string
larger than its own critical threshold. On the other hand, the counter must not
be too large (Claim 3), for otherwise it would not output critical strings that
would actually suffice for a contradiction.

Suppose for contradiction MKtP ∈ DTIME [O (n)], then there exists some
cKt ∈ N such that MKtP ∈ DTIME [2cKtn], i.e., there exists some TM ΠKt that
decides Kt (z) ≤ k in time at most t (n + �log2 (n)�) ≤ t (2n) := 2cKt+1n on any
instance (z, k) ∈ {0, 1}n × [n]. Later, we will choose a sufficiently large cKt.

Fix the constant ĉΩ from Fact 2. For any cKt let MĉΩ ,cKt
be the smallest

TM implementing the TRAVERSEĉΩ ,cKt
algorithm from Fig. 4. There exists

some universal13 constant cfix ∈ N such that for any integer cKt ∈ N the TM
MĉΩ ,cKt

has size |MĉΩ ,cKt
| ≤ cfix + 2 �log2 (cKt) + 1� by storing cKt prefix-

free. In particular, for any cKt ≥ 2 (cfix + cU) + 8 the TM’s size is bounded by
|MĉΩ ,cKt

| ≤ cKt − cU (recall that cU is the universal simulation constant). We
derive a contradiction through a series of claims about the TM MĉΩ ,cKt

.
The TM MĉΩ ,cKt

visits the sequence (zi)i∈N
of strings. Let Z := {zi | i ∈ N}.

For each length � ∈ N let vZ� := Z ∩ {0, 1}� = {ẑ�, ..., ž�}] where ẑ� and ž�

are the lexicographically first resp. last string in Z�. Our first claim establishes
that—whenever MĉΩ ,cKt

checks whether to output a visited string in line 10—
its variable t� is larger than the number of steps that MĉΩ ,cKt

took so far. This
means that MĉΩ ,cKt

can use the variable t� to effectively bound its own critical
threshold.

Claim 1 (Time counter lower bound). For any length � let ˜t� be the number of
steps that MĉΩ ,cKt

takes to reach line 10 with length �. It holds that t� ≥ ˜t�.
13 Independent of cKt.

208 N. Brandt

TRAVERSEĉΩ ,cKt

1 : z1 := 0 ∈ {0, 1}∗

2 : t0 := 0 ∈ N

3 : � := 1 ∈ N

4 : ẑ1 := 1 ∈ {0, 1}∗

5 : for i ∈ N≥1

6 : if Kt (zi) � � + �log2 (�)� − ĉΩ // in 2
cKt+1

� steps

7 : zi+1 := zi||0 ∈ {0, 1}�+1 // in 4� steps

8 : ẑ�+1 := zi+1 ∈ {0, 1}�+1 // store the starting node of length � + 1

9 : t� := t�−1 + (int (zi) − int (ẑ�) + 1) 2cKt+2� + 22cKt+�−�log2(�)�+1

10 : if Kt (zi) � cKt + �log2 (t� log2 (t�))�
11 : return zi

12 : endif

13 : � := � + 1 // in 4� steps

14 : else

15 : zi+1 := next (zi) ∈ {0, 1}� // in 4� steps

16 : endif

17 : endfor

Fig. 4. Our search algorithm with runtime bounds under the assumption MKtP ∈
DTIME [2cKtn]. The parameters ĉΩ , cKt ∈ N are hardcoded. It might not be obvious
why line 9 can be executed in c3Kt�

2 steps, the reason is fleshed out in the proof of
Claim 1.

Proof. First, under the assumption MKtP ∈ DTIME [2cKtn] we argue that
MĉΩ ,cKt

takes at most c3Kt�
2 steps to execute line 9. Our first goal is to bound

the time needed to execute line 9.
First, we recursively bound the variable t� by

t� := t�−1 + (int (zi) − int (ẑ�) + 2) 2cKt+1� + 22cKt+�−�log2(�)�+1 (19)

= t�−1 + 2cKt+2 |Z�| � + 22cKt+�−�log2(�)�+1 (20)

≤ t�−1 + 24�+4cKt (21)

for sufficiently large cKt. Resolving this recursive upper bound for sufficiently
large cKt it follows that t� ≤ 24�+4cKt + t0 where t0 := 0.

Now, the value t� can be computed by simple arithmetic (addition, multipli-
cation) and bit shifting operations taking at most quadratic time in the maximal
bit length O (�) of the operands �, t� int (ẑ�), int (zi) = int (ž�) and cKt. That
means there is some c′ ∈ N (independent of cKt) such that t� can be computed
in time c′ log2 (t�)

2 ≤ c′ (4� + 4cKt)
2 ≤ c3Kt�

2 for sufficiently large cKt.

Lower Bounds for Levin-Kolmogorov Complexity 209

Taking a step back we observe that the TM MĉΩ ,cKt
takes at most ˜Δ� :=

˜t�−˜t�−1 actual steps to iterate over the strings Z� of length � (lines 6 through 13).
We see through

˜Δ� := ˜t� − ˜t�−1 (22)

≤ |Z�|
(

2cKt+1� + 4�
)

︸ ︷︷ ︸

steps for Z�\{ž�} in lines 6 and 15

+ 2cKt+1� + 4� + c3Kt�
2 + 2cKt+1� + cKt� + 4�

︸ ︷︷ ︸

steps for ž� in lines 6–13
(23)

≤ (2cKt+1 + 4
) |Z�| � +

(

2cKt+2 + 8 + c3Kt + cKt

)

�2 (24)

≤ 2cKt+2 |Z�| � + 22cKt+�−�log2(�)�+1 (25)
= Δ� (26)

that the variable t� grows more quickly than ˜t� and since t0 = 0 = ˜t0, it follows
that t� ≥ ˜t� for any � ∈ N. �

Claim 2 (Non-termination). The TM MĉΩ ,cKt
never halts, thus

TRAVERSEĉΩ ,cKt
never halts.

Proof. If MĉΩ ,cKt
halted and produced a string ẑ ∈ {0, 1}�̂ within ˜t�̂ steps, then

by definition of the (prefix-free global) Levin–Kolmogorov complexity

Kt (ẑ) ≤ |MĉΩ ,cKt
| + �log2 (tU (MĉΩ ,cKt

))� (27)

≤ |MĉΩ ,cKt
| +
⌈

log2
(

cU˜t�̂ log2
(

˜t�̂
))⌉

(28)

≤ cKt − cU +
⌈

log2
(

cU˜t�̂ log2
(

˜t�̂
))⌉

(29)

≤ cKt +
⌈

log2
(

˜t�̂ log2
(

˜t�̂
))⌉

(30)

≤ cKt +
⌈

log2
(

t�̂ log2
(

t�̂
))⌉

(31)

by the fact that |MĉΩ ,cKt
| ≤ cKt − cU and Claim 1. However, the only way

MĉΩ ,cKt
returns a string is in line 11, thus the condition in line 10 must be

fulfilled, namely Kt (ẑ) � cKt +
⌈

log2
(

t�̂ log2
(

t�̂
))⌉

. This contradicts Eq. (27).
Consequently, under the hypothesis MKtP ∈ DTIME [2cKtn] the TM MĉΩ ,cKt

never halts. ��
Because of Claim 2 the TM MĉΩ ,cKt

visits the same sequence of strings
(zi)i∈N

as TRAVERSEĉΩ ,cKt
. For any length � let i� :=

∑�
j=1 |Zj | be number of

visited string of length at most �.

Claim 3 (Time counter upper bound). For any length � it holds that t� ≤
22cKt+4

(

i�� + 2�/�
)

.

210 N. Brandt

Proof. Using Eqs. (19) and (26) we can bound the telescope sum

t� = t0 +
�
∑

j=1

Δj (32)

=
�
∑

j=1

(

2cKt+2 |Zj | j + 22cKt+j−�log2(j)�+1
)

(33)

≤ 2cKt+2�

⎛

⎝

�
∑

j=1

|Zj |
⎞

⎠+ 22cKt+3+�/� (34)

= 2cKt+2i�� + 22cKt+3+�/� (35)

≤ 22cKt+4
(

i�� + 2�/�
)

. (36)

�

Now we have upper bounded the counter variable t� in terms of the number i�
of visited strings of length at most �. It remains to argue that for infinitely many
� the value i� is sufficiently small, to reach a contradiction. To this end, we will
reexpress i� in a different form. Let S� ⊂ {0, 1}� be the lexicographical successors
of Z� (the right neighbors of Z�). Now, note that because TRAVERSEĉΩ ,cKt

doesn’t wrap around (staying to the left of Chaitin’s constant), it holds that
Z�+1 ·∪S�+1 = ({zi�

} ·∪ S�) || {0, 1} and thus |Z�+1|+ |S�+1| = 2 |S�|+2. Let γ� :=
|Z�|/|Z� ·∪S�| be the fraction of strings of length � that TRAVERSEĉΩ ,cKt

actually
visits to the strings that it could potentially visit. Using this expression for γ�

we can rewrite the previous equality as a recursive formula for |S�| (depending
on γ�), i.e.,

2 |S�| + 2 = |Z�+1| + |S�+1| (37)
= (|Z�+1| + |S�+1|) γ�+1 + |S�+1| (38)
= 2 (|S�| + 1) γ�+1 + |S�+1| (39)

=⇒ |S�+1| = 2 (|S�| + 1) (1 − γ�+1) (40)

By solving this recursion with |S1| := 1 we can express the number of successor
strings as

|S�| =
�
∑

κ=1

2κ
�
∏

i=�−κ+1

(1 − γi) . (41)

In turn, we can use the definition of γ� to express the number of visited strings
of length exactly � as

|Z�| = 2 (|S�−1| + 1) γ� = γ�

�
∑

κ=1

2κ
�−1
∏

i=�−κ+1

(1 − γi) . (42)

Lower Bounds for Levin-Kolmogorov Complexity 211

Lastly, we can sum over all lengths to obtain

i� :=
�
∑

j=1

|Zj | (43)

=
�
∑

j=1

γj

j
∑

κ=1

2κ

j
∏

i=j−κ+1

(1 − γi) (44)

=
�
∑

j=1

γj

j
∑

κ=1

2κe
∑j

i=j−κ+1 ln(1−γi) (45)

≤
�
∑

j=1

γj

j
∑

κ=1

2κe− ∑j
i=j−κ+1 γi (46)

=
�
∑

j=1

γj

j
∑

κ=1

2κeσj−κ−σj (47)

where σ� :=
∑�

i=1 γi. This expression is bounded by Lemma 1.

Conclusion. Using Lemma 1 let �̂ ≥ e2
3cKt+ĉΩ+6

be an arbitrarily large inte-
ger such that i�̂ ≤ 2�̂

/�̂ ln(�̂). Let zi�̂
∈ {0, 1}�̂ be the last string of length �̂

visited by TRAVERSEĉΩ ,cKt
. Because zi�̂

is the last string of length �̂ the con-

dition Kt
(

zi�̂

)

�
∣

∣zi�̂

∣

∣ +
⌈

log2
(∣

∣zi�̂

∣

∣

)⌉ − ĉΩ = �̂ +
⌈

log2
(

�̂
)⌉

− ĉΩ in line 6
in TRAVERSEĉΩ ,cKt

must be fulfilled. Moreover, because TRAVERSEĉΩ ,cKt

never halts—according to Claim 2—the violated return condition in line 10 in
TRAVERSEĉΩ ,cKt

dictates Kt
(

zi�̂

) ≤ cKt +
⌈

log2
(

t�̂ log2
(

t�̂
))⌉

. Thus we arrive
at the contradiction

�̂ +
⌈

log2
(

�̂
)⌉

− ĉΩ � Kt
(

zi�̂

)

(48)

≤ cKt +
⌈

log2
(

t�̂ log2
(

t�̂
))⌉

(49)

≤ cKt +
⌈

log2
(

t�̂
)⌉

+ log2
(

�̂
)

(50)

≤ cKt +
⌈

(2cKt + 4) + log2
(

i�̂�̂ + 2�̂/�̂
)⌉

+ log2
(

�̂
)

(51)

≤ cKt +
⌈

(2cKt + 4) + log2
(

2�̂/ ln
(

�̂
)

+ 2�̂/�̂
)⌉

+ log2
(

�̂
)

(52)

≤ cKt + 2cKt + 6 + log2
(

2�̂/ ln
(

�̂
))

+ log2
(

�̂
)

(53)

= cKt + 2cKt + 6 + �̂ − log2 ln
(

�̂
)

+ log2
(

�̂
)

(54)

≤ cKt + 2cKt + 6 + �̂ − (3cKt + ĉΩ + 6) + log2
(

�̂
)

(55)

= �̂ + log2
(

�̂
)

− ĉΩ . (56)

212 N. Brandt

��
The proof of Theorem 1 relativizes. By adapting it we can show analogous

results for various definitions of Kt complexity.

Corollary 3. Assume a computational model with constant universal simula-
tion overhead, e.g. random-access machines. The (global compression) Levin–
Kolmogorov complexity cannot be decided in deterministic quadratic time in
the worst-case, i.e., MKtP �∈ DTIME

[O (n2
)]

. The (local compression) Levin–
Kolmogorov complexity cannot be decided in deterministic linear time in the
worst-case, i.e., MK̈tP �∈ DTIME [O (n)].

Next, we prove our conditional lower bounds.

Theorem 2. For each time bound t (n) ≥ n at least one of the following is true:

1. MKtP �∈ DTIME [t],
2. MKtP �∈ Heurγfp,γfn

DTIME [O (n)] with no false positive error γfp (n) := 0 and
false negative error γfn (n) := 1/2nt(2n) − 2/2n,

Proof. This proof is a slight modification of the proof of Theorem 1, thus we
only include the relevant changes. For contradiction assume MKtP ∈ DTIME [t]
(by a TM ΠKt) and MKtP ∈ Heur0,γfn

DTIME [O (n)] with false negative error
probability γfn (n) := 1/2nt(2n) − 2/2n (by a TM ˜ΠKt). See Fig. 5 for the modi-
fied traversal algorithm TRAVERSE′

ĉΩ ,cKt,Πt,ΠKt,Π̃Kt
. Let M′

ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

be a TM implementing the modified TRAVERSE′
ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

. Clearly, if
the analog of Claim 1 holds, then M′

ĉΩ ,cKt,Πt,ΠKt,Π̃Kt
does not terminate for

the same reason as in Claim 2 (note there that the check in line 14 is an
errorless check). Because the definition of the counter variable t� is identical
to TRAVERSEĉΩ ,cKt,Πt,ΠKt,Π̃Kt

the analog of Claim 3 also holds.
It remains to argue the analog of Claim 1. As before we observe that the TM

M′
ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

takes at most ˜Δ� := ˜t� −˜t�−1 actual steps to iterate over the
strings Z� of length � (lines 6 through 17). Though, note here that we incur an
additional cost for the exact check using time t (2�) on at most 2�γfn (�) strings
of length �, plus one exact check at in line 14. Thus, we see through

Δ̃� := t̃� − t̃�−1 (57)
≤ |Z�|

(
2

cKt+1
� + 4�

)
+ 2

�
γfn (�) t (2�)

︸ ︷︷ ︸
steps for Z�\{ž�} in lines 6,8,9

(58)

2
cKt+1

� + t (2�) + 4� + c
3
Kt�

2
+ cKt� + t (2�) + 4�

︸ ︷︷ ︸
steps for ž� in lines 6–17

(59)

≤
(
2

cKt+1
+ 4

)
|Z�| � +

(
2

�
γfn (�) + 2

)
t (2�) +

(
2

cKt+1
+ 8 + c

3
Kt + cKt

)
�
2 (60)

≤ 2
cKt+2 |Z�| � +

(
2

�
γfn (�) + 2

)
t (2�) + 2

2cKt+�−�log2(�)� (61)

≤ 2
cKt+2 |Z�| � + 2

2cKt+�−�log2(�)�+1 (62)
= t� − t�−1 (63)
=: Δ� (64)

�	

Lower Bounds for Levin-Kolmogorov Complexity 213

TRAVERSE′
ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

1 : z1 := 0 ∈ {0, 1}∗

2 : t0 := 0 ∈ N

3 : � := 1 ∈ N

4 : ẑ1 := 1 ∈ {0, 1}∗

5 : for i ∈ N≥1

6 : b := Π̃Kt (zi, � + �log2 (�)� − ĉΩ) // in 2
c′+1

� steps / quick error-prone check

7 : if b = 1

8 : b := ΠKt (zi, � + �log2 (�)� − ĉΩ) // in t (2�) steps / slower exact check

9 : fi

10 : if b = 0 // assert Kt (zi) � � + �log2 (�)� − ĉΩ

11 : zi+1 := zi||0 ∈ {0, 1}�+1 // in 4� steps

12 : ẑ�+1 := zi+1 ∈ {0, 1}�+1 // store the starting node of length � + 1

13 : t′
� := t�−1 + (int (zi) − int (ẑ�) + 2) 2cKt+1� + 22cKt+�−�log2(�)�+1

14 : if ΠKt (zi, cKt + �log2 (t� log2 (t�))�) = 0

15 : return zi

16 : endif

17 : � := � + 1 // in 4� steps

18 : else

19 : zi+1 := next (zi) ∈ {0, 1}� // in 4�

20 : endif

21 : endfor

Fig. 5. Our search algorithm with runtime bounds under the assumption MKtP �∈
DTIME [t] and MKtP �∈ Heurγfp,0DTIME [O (n)] where t is assumed to be time-
constructible. The parameters ĉΩ , cKt ∈ N, the TM Πt computing t, the t-time TM
ΠKt and the linear-time TM Π̃Kt are hardcoded. Changes to Fig. 4 are marked in gray.

that the variable t� grows more quickly than ˜t� and since t0 = 0 = ˜t0, it follows
that t� ≥ ˜t� for any � ∈ N which establishes Claim 3. The concluding part of the
proof works exactly as in the proof of Theorem 1.

The reason why our proof can tolerate the additional runtime cost caused by
the exact Kt solver ΠKt is because the safety margin that we add to the counter
in line 13 is more than we actually need for Theorem 1.

214 N. Brandt

6 Proof of Lemma 1

Due to space restrictions we only include an abbreviated proof of Lemma 1 in
the main body of this work. We refere the interested reader to the full proof in
the full version [14].

Lemma 1 (Infinitely-often bound). For any sequence (γj)j∈N
with γj ∈ [0, 1]

and σ� :=
∑�

i=1 γi it holds that infinitely often
∑�

j=1 γj

∑j
κ=1 2κeσj−κ−σj ≤io

2�
/� ln(�).

Proof. Our proof of this claim is quite technical and somewhat tedious although
it fundamentally only requires analytic Riemann integration bounds . A high-
level intuition for our bound may best be explained by looking at the double
sum

s (�) :=
�
∑

j=1

γj

j
∑

κ=1

2κ

eσj−σj−κ
(65)

where σ� :=
∑�

i=1 γi. We don’t know the exact values of γj ∈ [0, 1] but we see
that the summands of the outer sum depend on γj in two ways. The faster γj

grows the faster the outer summands grow because the j-th summand depends
linearly on γj . On the other hand, the faster γj grows the faster σj grows
and thus the slower the inner summands grow because of the eσj term in the
denominator of the κ-th inner summand. So, there is a “sweet spot” for the
asymptotic growth rate of γj that maximizes the growth rate of s. The max-

imal growth rate is close to Θ
(

∑�
j=1

1
j

∑j
κ=1 2κ

(

1 − κ
j

)ε)

= Θ
(

2�/�1+ε
)

for
small ε > 0 and γj = ε/j, thus σj ≈ ε ln (j). Thus we cannot hope to prove
s (�) ∈ O (2�/�1+ε

)

without further restrictions on γj . However, we can prove a
weaker bound s (�) ≤io O (2�

/� ln(�)
)

. The way we prove this bound is by estab-
lishing increasingly stronger lower bounds for the sum σ�. The first bound will
be of the rough form σ� ∈ Ω (ln ln (�)), the second one σ� ∈ Ω

(

ln (�)1/17
)

and

the third one σ� ∈ Ω
(

ln (�)3
)

. The last bound then yields a contradiction to the

counter assumption 2�
/� ln(�) ≤abf s (�).

Let us proceed with the formal proof. We use the convention that for any
b < a the sum

∑b
i=a f (i) := 0. Suppose for contradiction

2�

� ln (�)
≤abf s (�) :=

�
∑

j=1

γj

j
∑

κ=1

2κ

eσj−σj−κ
, (66)

then there exists some �1 ∈ N such that for all � ≥ �1

Lower Bounds for Levin-Kolmogorov Complexity 215

1
� ln (�)

≤
�
∑

j=1

γj

j
∑

κ=1

2κ−�

eσj−σj−κ
(67)

≤
�
∑

j=1

γj

j
∑

κ=1

2κ−� (68)

≤
�
∑

j=1

2j+1−�γj (69)

where Eq. (68) trivially uses σj ≥ σj−k and Eq. (69) uses
∑j

κ=1 2κ = 2j+1−2. For
convenience, we define a helper variable δ� := max (0, �ln ln (� + 1) /8 − ln ln (�1) /4�) ≤
�. Note that δ� ≥ log2 ln (�) /16 for � ≥ �1 if �1 is sufficiently large (which is
without loss of generality). Using a Riemann bound on the sum of Eq. (67) from
�1 to � yields

1
4

ln ln (� + 1) − 1
4

ln ln (�1) ≤ σ� − σδ�
+ δ� . (70)

Reordering the terms yields

σ� − σδ�
≥ ln ln (� + 1) /8 ≥ ln ln (�) /16 (71)

for all � ≥ �1. To get this bound we started Eq. (67) off with the trivial bound
σj ≥ σj−κ. Now, we can use our new nontrivial bound for σj repeat the previous
procedure and obtain an even better bound.

Plugging Eq. (71) back into a weighted sum of Eq. (67) gives the better
bound on σ� for � ≥ �1, i.e.,

ln (� + 1) − ln (�1) ≤ 2�1+1 + 16σ� ln (�)15/16
. (72)

Let δ′
� :=

⌈

log2 (e) ln (�)1/17
⌉

. Thus there exists some sufficiently large �2 ∈ N

s.t. for all � ≥ �2 it holds that

σ� − σδ′
�

≥ σ� − δ′
� (73)

≥ (ln (� + 1) − ln (�1) − 2�1+1
)

/
(

16 ln (�)15/16
)

− log2 (e) ln (�)1/17 − 1

(74)

≥ ln (�)1/17
. (75)

Now, we repeat the previous strategy for a third time to reach the final sufficient
bound σ� ∈ Ω

(

ln (�)3
)

. Plugging Eq. (73) back into a weighted sum of Eq. (67)
gives the better bound on σ� for � ≥ �2

2 (� + 1)1/2 − 2�
1/2
2 ≤ 2�2+1 + 16σ�

�1/2 ln (�)
eln(�)

1/17 . (76)

216 N. Brandt

Let δ′′
� :=

⌈

log2 (e) ln (�)3
⌉

. Thus there exists some sufficiently large �3 ∈ N s.t.
for all � ≥ �3 it holds that

σ� − σδ′′
�

≥ σ� − δ′′
� (77)

≥
(

(� + 1)1/2 − (�2)
1/2 − 2�2+1

) eln(�)
1/17

16�1/2 ln (�)
− log2 (e) ln (�)3 − 1

(78)

≥ ln (�)3 . (79)

Finally, we can use our last bound to obtain a contradiction. Plugging Eq. (77)
into Eq. (67) yields

1
� ln (�)

≤ 2�3+1−� +
2�2

eln(�)
3 (80)

or equivalently the contradiction

1 ≤ � ln (�)
2�−�3−1

+
2�3 ln (�)
eln(�)

3 → 0 (81)

for � → ∞. ��
To the valiant reader that has retraced the full proof of Lemma 1 we want to

put the proposition that the proof can be carried out so long as the right-hand
side of the lemma has the form 2�

/
∏k

i=0 ln(i)(�) for some fixed k ∈ N where ln(i) is
the i-th times iterated logarithm. Towards this, we assume a slight simplification
of the form

∑�
j=1 γj

∑j
κ=1 2κ/eσj−σj−κ ≈ ∑�

j=1 2jγj/eσj ≤io
2�
/
∏k

i=0 ln(i)(�). We

sketch a proof by induction where we go from a bound σ� ∈ Ω
(

ln(k+1) (�)
)

to

σ� ∈ Ω
(

ln(k) (�)
)

.

Starting out with the counter assumption
∑�

j=1 2jγj/eσj ≥abf
2�
/
∏k

i=0 ln(i)(�)

we find that the first repetition of Eq. (70) is of the form Θ
(

ln(k+1) (�)
)

=

Θ
(∫

1/
∏k

i=0 ln(i)(�)d�
) ≤ Θ (σ�). Inserting this bound into the counter assumption

gives

�
∑

j=1

2jγj/eln
(k+1)(j)·Θ(1) =

�
∑

j=1

2jγj/ ln(k) (j)Θ(1) ≥ 2�
/
∏k

i=0 ln(i)(�) (82)

=⇒ σ� ≥ ln(k)(j)Θ(1)
/
∏k

i=0 ln(i)(�) (83)

Lower Bounds for Levin-Kolmogorov Complexity 217

The second repetition of Eq. (70) takes the form

Θ
(

ln(k) (�)
)

= Θ

(

∫

ln(k) (�)
∏k

i=0 ln(i) (�)
d�

)

(84)

≤ Θ

⎛

⎝

�
∑

�′=1

ln(k) (�′)
�′
∑

j=1

2j−�γj/ ln(k) (j)Θ(1)

⎞

⎠ (85)

≤ Θ
(

ln(k) (�)1−Θ(1)
σ�

)

(86)

=⇒ σ� ∈ Ω
(

ln(k) (�)Θ(1)
)

(87)

which is already a better bound than from the first repetition, although not
quite Θ (σ�) ≥ Θ

(

ln(k) (�)
)

. The third repetition of Eq. (70) takes the form

Θ
(

ln(k) (�)
)

= Θ

(

∫

ln(k) (�)
∏k

i=0 ln(i) (�)
d�

)

(88)

≤ Θ

⎛

⎝

�
∑

�′=1

ln(k) (�′)
�′
∑

j=1

2j−�γj/eln
(k)(j)Θ(1)

⎞

⎠ (89)

≤ Θ
(

ln(k) (�) /eln
(k)(j)Θ(1) · σ�

)

(90)

=⇒ σ� ∈ Ω
(

eln
(k)(�)Θ(1)

)

≥ Θ
(

ln(k) (�)
)

(91)

which concludes the induction step.

Acknowledgments. The author would like to thank the anonymous reviewers for
their helpful comments. Moreover, the author expresses his gratitude to Rafael Pass
for suggesting the problem of an unconditional lower bound for Kt, Yanyi Liu for
many helpful discussions about meta-complexity, Akın Ünal for checking the proof of
a previous version of Lemma 1, and Chris Brzuska for a helpful discussion about the
density of 1-random prefixes.

References

1. Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 731–740. ACM Press
(2008)

2. Allender, E., Vaughan, J.: Kolmogorov complexity, and the new complexity land-
scape around circuit minimization. New Zealand J. Math. 52, 585–604 (2021)

3. Allender, E.: When worlds collide: derandomization, lower bounds, and kolmogorov
complexity. In: Hariharan, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS,
vol. 2245, pp. 1–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45294-X 1

https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/3-540-45294-X_1

218 N. Brandt

4. Allender, E., Hirahara, S., Tirumala, H.: Kolmogorov complexity characterizes
statistical zero knowledge. In: Kalai, Y.T. (ed.) ITCS 2023. LIPIcs, vol. 251, pp.
3:1-3:19 (2023)

5. Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size.
Theory Comput. Syst. 65, 559–578 (2021)

6. Allender, E., et al.: One-way functions and a conditional variant of MKTP. In:
Bojańczy, M., Chekuri, C. (eds.) 41st IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 213, pp. 7:1–7:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021)

7. Allender, E., et al.: Power from random strings. In: 43rd FOCS, pp. 669–678. IEEE
Computer Society Press (2002)

8. Allender, E., et al.: Power from random strings. SIAM J. Comput. 35(6), 1467–
1493 (2006). https://doi.org/10.1137/050628994

9. Allender, E., et al.: The pervasive reach of resource-bounded Kolmogorov com-
plexity in computational complexity theory. J. Comput. Syst. Sci. 77(1), 14–40
(2011)

10. Aydinlioğlu, B., Bach, E.: Affine relativization: unifying the algebrization and rel-
ativization barriers. ACM Trans. Comput. Theory 10(1), 1–67 (2018)

11. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =?NP Question. SIAM J.
Comput. 4(4), 431–442 (1975). https://doi.org/10.1137/0204037

12. Ball, M., et al.: Kolmogorov comes to cryptomania: on interactive kolmogorov com-
plexity and key-agreement. In: 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 458–483 (2023)

13. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: 23rd FOCS, pp. 112–117. IEEE Computer Society Press (1982)

14. Brandt, N.: Lower bounds for levin-kolmogorov complexity. Cryptology ePrint
Archive, Report 2024/687 (2024)

15. Chaitin, G.J.: A theory of program size formally identical to information theory.
J. ACM 22(3), 329–340 (1975)

16. Chaitin, G.J.: On the length of programs for computing finite binary sequences. J.
ACM 13(4), 547–569 (1966)

17. Chaitin, G.J.: On the simplicity and speed of programs for computing infinite sets
of natural numbers. J. ACM 16(3), 407–422 (1969)

18. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity (2010)
19. Garg, S., et al.: Witness encryption and its applications. In: Boneh, D., Roughgar-

den, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press (2013)
20. Goldberg, H., et al.: Probabilistic kolmogorov complexity with applications to

average-case complexity. In: Lovett, S. (ed.) 37th Computational Complexity Con-
ference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol.
234, pp. 16:1–16:60. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl
(2022)

21. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of ran-
dom functions (extended abstract). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-39568-7 22

22. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

23. Golovnev, A., et al.: AC0[p] lower bounds against MCSP via the coin problem.
In: Baier, C., et al. (eds.) ICALP 2019. LIPIcs, vol. 132, pp. 66:1–66:15. Schloss
Dagstuhl (2019)

https://doi.org/10.1137/050628994
https://doi.org/10.1137/0204037
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22

Lower Bounds for Levin-Kolmogorov Complexity 219

24. Hartmanis, J.: Generalized kolmogorov complexity and the structure of feasible
computations (preliminary report). In: 24th FOCS, pp. 439–445. IEEE Computer
Society Press (1983)

25. H̊astad, J., et al.: A pseudorandom generator from any one-way function. SIAM J.
Comput. 28(4), 1364–1396 (1999)

26. Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape turing machines. J.
ACM 13(4), 533–546 (1966)

27. Hirahara, S.: Capturing one-way functions via NP-hardness of meta-complexity. In:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing. STOC
2023, pp. 1027–1038. Association for Computing Machinery, New York (2023)

28. Hirahara, S.: Characterizing average-case complexity of PH by worst-case meta-
complexity. In: 61st FOCS, pp. 50–60. IEEE Computer Society Press (2020)

29. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In:
Thorup, M. (ed.) 59th FOCS, pp. 247–258. IEEE Computer Society Press (2018)

30. Hirahara, S.: NP-hardness of learning programs and partial MCSP. In: 63rd FOCS,
pp. 968–979. IEEE Computer Society Press (2022)

31. Hirahara, S.: Symmetry of information from meta-complexity. In: Lovett, S. (ed.)
37th Computational Complexity Conference (CCC 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 234, pp. 26:1–26:41. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Dagstuhl (2022)

32. Hirahara, S.: Unexpected hardness results for Kolmogorov complexity under uni-
form reductions. In: Makarychev, K., et al. (ed.) 52nd ACM STOC, pp. 1038–1050.
ACM Press (2020)

33. Hirahara, S.: Unexpected power of random strings. In: Vidick, T. (ed.) ITCS 2020.
LIPIcs, vol. 151, pp. 41:1–41:13 (2020)

34. Hirahara, S., Nanashima, M.: On worst-case learning in relativized heuristica. In:
62nd FOCS, pp. 751–758. IEEE Computer Society Press (2022)

35. Huang, Y., Ilango, R., Ren, H.: NP-hardness of approximating meta-complexity:
a cryptographic approach. In: Proceedings of the 55th Annual ACM Symposium
on Theory of Computing. STOC 2023, pp. 1067–1075. Association for Computing
Machinery, New York (2023)

36. Ilango, R.: Approaching MCSP from above and below: hardness for a conditional
variant and AC0[p]. In: Vidick, T. (ed.) ITCS 2020. LIPIcs, vol. 151, pp. 34:1–34:26
(2020)

37. Ilango, R.: Constant depth formula and partial function versions of MCSP are
hard. In: 61st FOCS, pp. 424–433. IEEE Computer Society Press (2020)

38. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
Structure in Complexity Theory. Tenth Annual IEEE Conference, pp. 134–147
(1995)

39. Impagliazzo, R., Kabanets, V., Kolokolova, A.: An axiomatic approach to alge-
brization. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 695–704. ACM Press
(2009)

40. Kabanets, V., Cai, J.: Circuit minimization problem. In: 32nd ACM STOC, pp.
73–79. ACM Press (2000)

41. Ko, K.-I.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48, 9–33 (1986)

42. Kolmogorov, A.N.: On tables of random numbers. Sankhyā: Indian J. Stat. Ser. A
(1961–2002) 25(4), 369–376 (1963)

43. Kolmogorov, A.: Three approaches to the quantitative definition of information.
Problemy Peredachi Informatsii 1, 3–11 (1965)

220 N. Brandt

44. Levin, L.A.: Randomness conservation inequalities; information and independence
in mathematical theories. Inf. Control 61(1), 15–37 (1984)

45. Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foun-
dation of probability theory. Problemy Peredachi Informatsii 10(3), 30–35 (1974)

46. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer, New York (2008). https://doi.org/10.1007/978-3-030-11298-1

47. Liu, Y., Pass, R.: A direct PRF construction from kolmogorov complexity. In:
Joye, M., Leander, G. EUROCRYPT 2024, Part IV. LNCS, vol. 14654, pp. 375–
406. Springer, Cham (2024). DOI: https://doi.org/10.1007/978-3-031-58737-5 14

48. Liu, Y., Pass, R.: Cryptography from sublinear-time average-case hardness of time-
bounded Kolmogorov complexity. In: Khuller, S., Williams, V.V. (eds.) 53rd ACM
STOC, pp. 722–735. ACM Press (2021)

49. Liu, Y., Pass, R.: On one-way functions and kolmogorov complexity. In: 61st FOCS,
pp. 1243–1254. IEEE Computer Society Press (2020)

50. Liu, Y., Pass, R.: On one-way functions and sparse languages. In: Rothblum, G.N.,
Wee, H. (eds.) TCC 2023, Part I. LNCS, vol. 14369, pp. 219–237. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-48615-9 8

51. Liu, Y., Pass, R.: On one-way functions and the worst-case hardness of time-
bounded kolmogorov complexity. Cryptology ePrint Archive, Paper 2023/1086
(2023). https://eprint.iacr.org/2023/1086

52. Liu, Y., Pass, R.: On the possibility of basing cryptography on EXP �= BPP. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 11–40.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 2

53. Liu, Y., Pass, R.: One-way functions and the hardness of (probabilistic) time-
bounded kolmogorov complexity w.r.t. samplable distributions. In: Handschuh, H.,
Lysyanskaya, A. (eds.) CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 645–673.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2 21

54. Lu, Z., Oliveira, I.C.: Theory and Applications of Probabilistic Kolmogorov Com-
plexity (2022). arXiv: 2205.14718 [cs.CC]

55. Lu, Z., Oliveira, I.C., Santhanam, R.: Pseudodeterministic algorithms and the
structure of probabilistic time. In: Khuller, S., Williams, V.V. (eds.) 53rd ACM
STOC, pp. 303–316. ACM Press (2021)

56. Lu, Z., Oliveira, I.C., Zimand, M.: Optimal coding theorems in time- bounded kol-
mogorov complexity. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) ICALP
2022. LIPIcs, vol. 229, pp. 92:1– 92:14. Schloss Dagstuhl (2022)

57. Martin-Löf, P.: The definition of random sequences. Inf. Control 9(6), 602–619
(1966)

58. Mazor, N., Pass, R.: Gap MCSP is not (levin) NP-complete in obfustopia. In:
Santhanam, R. (ed.) 39th Computational Complexity Conference (CCC 2024).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 300, pp. 36:1-36:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2024)

59. Mazor, N., Pass, R.: The non-uniform perebor conjecture for time-bounded kol-
mogorov complexity is false. In: Guruswami, V. (ed.) 15th Innovations in Theo-
retical Computer Science Conference (ITCS 2024), vol. 287, pp. 80:1–80:20. Leib-
niz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Dagstuhl (2024)

60. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

61. Oliveira, I.C.: Randomness and intractability in kolmogorov complexity. In: Baier,
C., et al. (eds.) ICALP 2019. LIPIcs, vol. 132, pp. , 32:1–32:14. Schloss Dagstuhl
(2019)

https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-031-58737-5_14
https://doi.org/10.1007/978-3-031-48615-9_8
https://eprint.iacr.org/2023/1086
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-031-38545-2_21
http://arxiv.org/abs/2205.14718

Lower Bounds for Levin-Kolmogorov Complexity 221

62. Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state- of-the-
art lower bounds. In: Shpilka, A. (ed.) 34th Computational Complexity Confer-
ence (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol.
137, pp. 27:1–27:29. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl
(2019)

63. Razborov, A.A., Rudich, S.: Natural Proofs. J. Comput. Syst. Sci. 55(1), 24–35
(1997)

64. Ren, H., Santhanam, R.: A relativization perspective on meta-complexity. In:
Berenbrink, P., Monmege, B. (eds.) 39th International Symposium on Theoretical
Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 219, pp. 54:1–54:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Dagstuhl (2022)

65. Ren, H., Santhanam, R.: Hardness of KT characterizes parallel cryptography. In:
Proceedings of the 36th Computational Complexity Conference. CCC 2021. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2021)

66. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press (1990)

67. Sipser, M.: A complexity theoretic approach to randomness. In: 15th ACM STOC,
pp. 330–335. ACM Press (1983)

68. Solomonoff, R.: A formal theory of inductive inference. Part I. Inf. Control 7(1),
1-22 (1964)

69. Solomonoff, R.: A formal theory of inductive inference. Part II. Inf. Control 7(2),
224–254 (1964)

70. Solomonoff, R.: A Preliminary Report on a General Theory of Inductive Inference.
AFOSR TN-60-1459. United States Air Force, Office of Scientific Research (1960)

71. Trakhtenbrot, B.: A survey of Russian approaches to perebor (brute-force searches)
algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

72. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds.
SIAM J. Comput. 42(3), 1218–1244 (2013). https://doi.org/10.1137/10080703X

73. Williams, R.: Nonuniform ACC circuit lower bounds. J. ACM 61(1) (2014)

https://doi.org/10.1137/10080703X

On One-Way Functions, the Worst-Case
Hardness of Time-Bounded Kolmogorov
Complexity, and Computational Depth

Yanyi Liu1(B) and Rafael Pass2

1 Cornell Tech, New York, USA
yl2866@cornell.edu

2 Cornell Tech, Technion, TAU, New York, USA

rafael@cs.cornell.edu

Abstract. Whether one-way functions (OWF) exist is arguably the most
important problem in Cryptography, and beyond. While lots of candidate
constructions of one-way functions are known, and recently also problems
whose average-case hardness characterize the existence of OWFs have
been demonstrated, the question of whether there exists some worst-case
hard problem that characterizes the existence of one-way functions has
remained open since their introduction in 1976.

In this work, we present the first “OWF-complete” promise problem—
a promise problem whose worst-case hardness w.r.t. BPP (resp. P/poly)
is equivalent to the existence of OWFs secure against PPT (resp. nuPPT)
algorithms. The problem is a variant of the Minimum Time-bounded Kol-
mogorov Complexity problem (MKtP[s] with a threshold s), where we con-
dition on instances having small “computational depth”.

We furthermore show that depending on the choice of the threshold s,
this problem characterizes either “standard” (polynomially-hard) OWFs,
or quasi polynomially- or subexponentially-hard OWFs. Additionally,
when the threshold is sufficiently small (e.g., 2O(

√
log n) or poly logn) then

sublinear hardness of this problem suffices to characterize quasi-poly-
nomial/sub-exponential OWFs.

While our constructions are black-box, our analysis is non-black box ; we
additionally demonstrate that fully black-box constructions of OWF from
the worst-case hardness of this problem are impossible. We finally show
that, under Rudich’s conjecture, and standard derandomization assump-
tions, our problem is not inside coAM; as such, it yields the first candidate
problem believed to be outside of AM∩ coAM, or even SZK, whose worst
case hardness implies the existence of OWFs.

Y. Liu—Supported by a JP Morgan Fellowship. Part of work done while visiting the
Simons Institute.
R. Pass—Part of work done while visiting the Simons Institute. Supported in part
by NSF Award CNS 2149305, NSF Award CNS-2128519, NSF Award RI-1703846,
AFOSR Award FA9550-18-1-0267, FA9550-23-1-0312, AFOSR Award FA9550-23-1-
0387, a JP Morgan Faculty Award, the Algorand Centres of Excellence programme
managed by Algorand Foundation, and DARPA under Agreement No. HR00110C0086.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States
Government, DARPA or the Algorand Foundation.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 222–252, 2025.
https://doi.org/10.1007/978-3-031-78011-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-78011-0_8

On One-Way Functions, the Worst-Case Hardness 223

1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently com-
puted (in polynomial time), yet no probabilistic polynomial-time (PPT) algo-
rithm can invert f with inverse polynomial probability for infinitely many input
lengths n. Whether one-way functions exist is unequivocally the most impor-
tant open problem in Cryptography (and arguably the most important open
problem in the theory of computation, see e.g., [Lev03]): OWFs are both neces-
sary [IL89] and sufficient for many of the most central cryptographic primitives
and protocols (e.g., pseudorandom generators [BM84,HILL99], pseudorandom
functions [GGM84], private-key encryption [GM84], digital signatures [Rom90],
commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to
as private-key primitives, or “Minicrypt” primitives [Imp95] as they exclude the
notable task of public-key encryption [DH76,RSA83]. Additionally, as observed
by Impagliazzo [Gur89,Imp95], the existence of a OWF is equivalent to the exis-
tence of polynomial-time method for sampling hard solved instances for an NP
language (i.e., hard instances together with their witnesses).

Cryptography from Worst-case Hardness and the “coAM Barrier”: A
long standing question, dating back to the original work by Diffie and Hellman
[DH76], is whether OWFs can be based on the worst-case hardness of some NP
problem; ideally, this problem should be NP-complete which would yield the
existence of OWFs based on the assumption that NP �⊆ BPP (which trivially is
implied by the existence of OWFs). This question is usually referred to as the
“holy grail” of Cryptography, and is still wide open.

Following the breakthrough result of Ajtai in 1996 [Ajt96], there has been
an explosion of cryptography based on the worst-case hardness of lattice prob-
lems (see e.g., [AD97,Reg04]); these problems, however, are all in AM ∩ coAM
[GG00] and are thus unlikely to be NP-complete. Indeed, starting in the early
1980’s, works by Brassard [Bra83], Bogdanov and Trevisan [BT03] and Akavia,
Goldreich, Goldwasser and Moshkovitz [AGGM06] show that such containment
in AM∩coAM may be necessary—at least w.r.t. black-box reductions1. The work
by Akavia et al., however, explicitly mention the possibility that non-black box
techniques, although “uncommon” in complexity theory, may be useful in over-
coming these barriers:

Can OWFs be based on the worst-case hardness of some promise problem
Π �⊆ coAM?

OWF-Complete Problems. More generally, we may ask whether some NP
problem can be used to characterize the existence of OWFs—namely, do “OWF-
complete” problems exist?

1 We highlight that these results actually do not manage to fully rule out all black-box
reductions; they either apply to so-called non-adaptive black-box reductions, or only
to restricted types of one-way functions.

224 Y. Liu and R. Pass

As we will explain in more detail shortly, the above coAM black-box barriers
also extend to OWF-completeness, and as such, we will here focus on defining a
notion of OWF-completeness w.r.t. non black-box reductions—in fact, for gener-
ality, we will allow even non explicit reductions (although the actual reduction
presented in this paper will be explicit).

Define the class OWF of promise problems Π having the property that there
exists some polynomial-time computable function f such that if there exists some
“efficient attacker” that can invert f with probability (say 1/2) for infinitely
many n, then Π can be decided on infinitely many input lengths by some “effi-
cient attacker”. Additionally, we refer to a problem Π as being OWF-hard if
it holds that if Π can be decided (in the worst-case) for infinitely many input
lengths by “efficient attackers”, then all poly-time functions can be inverted with
probability 1/2 by “efficient attackers”. Finally, Π is OWF-complete if Π ∈ OWF
and Π is OWF-hard.

To prevent artificial complete problems (e.g., L = SAT if polynomially-secure
OWF exists and empty otherwise2), and to capture intuitions similar to those
of black-box reductions (which also prevent artificial complete problems), we
require the above to simultaneously hold for any “natural” class C of “efficient
adversaries”.3 For simplicity of notation, we here focus on C = {PPT, nuPPT},
but our result directly extends also to any uniform (resp. non-uniform) class of
adversaries whose running time is closed under polynomial composition (e.g.,
poly-time, quasi-polynomial-time or subexponential-time). With the above con-
crete choice of “efficient attacker” (i.e., the above class C), we have that a promise
problem Π is OWF-complete if it holds that Π /∈ ioBPP (resp. Π /∈ ioP/poly)
if and only if OWFs secure against PPT (resp. secure against non-uniform
polynomial-time algorithms) exist.

Given this notion of completeness, an natural question is whether there is
some promise problem that characterizes the existence of OWFs:

Does there exist some promise problem in NP that is OWF complete? That
is, Π /∈ ioBPP (resp. Π /∈ ioP/poly) if and only if OWFs secure against
PPT (resp. nuPPT) exist?

Black-box Barriers to OWF-Complete Problems. As alluded to above,
the barriers established by Bogdanov and Trevisan [BT03] and Akavia, Gol-
dreich, Goldwasser and Moshkovitz [AGGM06] also yield limitations of OWF-
complete problem. These works demonstrate that non-adaptive black-box reduc-
tions can only be used to reduce OWFs to the worst-case hardness of lan-
guages in AM∩coAM, which under standard derandomization assumptions equals
NP ∩ coNP. In other words, under standard derandomization assumptions, only
languages in NP ∩ coNP would exist in OWF in case we only considered Karp,
2 We thank an anonymous reviewer for pointing out this “trivial” complete problem.
3 That is, the problem is “uniform” w.r.t. the attack class. This is needed to prevent the

“complete” problem from simply encoding that OWF exists w.r.t. to a specific attack
model; uniformity/obliviousness w.r.t. the attack class ensures that the problem
captures the “essence” of the notion of one-wayness.

On One-Way Functions, the Worst-Case Hardness 225

or even non-adaptive black-box, reductions when defining the class OWF. But it
was shown already by Blum-Impagliazzo [BI87] and Rudich [Rud88] in the 1980s
that there are no so-called “fully black-box” constructions of a hard language in
NP∩coNP based on the existence of OWFs; in fact, recently, Bitansky, Degwekar
and Vaikuntanathan [BDV17] strengthened this result to show impossibility of
fully black-box constructions of a hard problem in NP∩coNP from a host of stan-
dard cryptographic primitives, including injective OWFs and indistinguishability
obfuscation [BDV17].

Of course, these results do not show that obtaining a OWF-complete prob-
lem is impossible—only that it will require using either adaptive black-box tech-
niques, or to use non black-box techniques, but either of these are rare, at least for
the analysis of the most basic cryptographic building blocks.

1.1 Our Results

In this paper, we demonstrate the existence of a OWF-complete problem. Our
problem will be natural variant of the standard time-bounded Kolmogorov com-
plexity problem and will be based on a recent thread of literature demonstrating
the existence of natural problems whose average-case hardness characterize the
existence of OWFs. As we shall see, we will show how to use non-black box
techniques to extend these results to also work in the worst-case regime.

In a bit more detail, we will present a promise version of the time-
bounded Kolmogorov complexity problem, parametrized by a threshold s. When
the threshold is large, worst-case hardness of this problem will characterize
“plain” OWFs, when it is “intermediate”, it will characterize quasi-polynomially
secure OWFs, and when it is “small”, it will characterize subexponentially
secure OWFs. In other words, we identify not only a OWF-complete prob-
lem, but the same problem, with a different threshold is also complete for
quasi-polynomial/subexponential OWFs. Additionally, as we shall see, in the
regime of quasi-polynomial/subexponential OWFs, it will suffice to assume
that the promise problem is (worst-case) hard w.r.t. sublinear time algorithms.

Before turning to the formal statement of our results, let us first review the
recent literature connecting OWFs and Kolmogorov complexity.

On OWFs and Kolmogorov Complexity: The MKtP Problem. Given a
truthtable x ∈ {0, 1}n of a Boolean function, what is the size of the smallest “pro-
gram” that computes x? This problem has fascinated researchers since the 1950
[Tra84,Yab59a,Yab59b], and various variants of it have been considered depend-
ing on how the notion of a program is formalized. For instance, when the notion
of a program is taken to be circuits (e.g., with AND,OR,NOT gates), then it
corresponds to the Minimum Circuit Size problem (MCSP) [KC00,Tra84], and
when the notion of a program is taken to be a time-bounded Turing machine,
then it corresponds to the Minimum Time-Bounded Kolmogorov complexity
problem (MKTP) [Kol68,Ko86,Sip83,Har83,All01,ABK+06]. Our focus here is
on the latter scenario. Given a string x describing a truthtable, let Kt(x) denote
the t-bounded Kolmogorov complexity of x—that is, the length of the shortest

226 Y. Liu and R. Pass

string Π such that for every i ∈ [n], U(Π, i) = xi within time t(|Π|), where U
is a fixed Universal Turing machine.4

Given a threshold, s(·), and a polynomial time-bound, t(·), let MKtP[s] denote
the language consisting of strings x such that Kt(x) ≤ s(|x|); MKtP[s] is clearly
in NP, but it is unknown whether it is NP-complete—indeed, this is a long-
standing open problem. In [LP20], Liu and Pass recently showed that when
the threshold s(·) is “large” (more precisely, when s(n) = n − c log n, for some
constant c), then mild average-case hardness of this language w.r.t., the uni-
form distribution of instances is equivalent to the existence of one-way functions
(OWF).5

Even more recently, a different work by Liu and Pass [LP21a] demonstrated
that when the threshold is smaller, and if we consider a notion called mild
average-case∗ hardness (which roughly speaking requires average-case hard-
ness conditioned on both YES and NO instances), then this problem charac-
terizes also quasi-polynomial or sub-exponential one-way functions. In partic-
ular, quasi-polynomially secure and subexponentially-secure OWFs are char-
acterized by mild average-case∗ hardness of MKtP[s] where the threshold are
s(n) = 2O(

√
log n) and s(n) = poly log n respectively. Intriguingly, their result—

following a literature on so-called hardness magnification [OS18,MMW19,CT19,
OPS19,CMMW19] [Oli19,CJW19,CHO+20] shows that it suffices to assume
sublinear hardness of these problems to provide those characterizations (when
the threshold is sublinear). We mention one caveat in these results—whereas
the original result of [LP20] characterizing standard OWFs applies both in the
uniform and non-uniform regime, the small threshold characterization (which
only require sublinear hardness) only applies in the non-uniform regime (i.e.,
they characterize hardness of MKtP[s] with respect to non-uniform algorithms
through OWFs secure against non-uniform algorithms).

Roughly speaking, our main results will show that if we consider a promise-
problem variant of the MKtP[s] problem, then we can demonstrate the above
characterization but in terms of simply worst-case hardness of the problem.
Additionally, our characterizations simultaneously holds in both the non-uniform
and uniform regime, as required by our definition of OWF-completeness.6

4 There are many ways to define time-bounded Kolmogorov complexity. We here con-
sider the “local compression” version—which corresponds to the above truthtable
compression problem—and where the running-time bound is a function of the
length of the program. A different version of (time-bounded) Kolmogorov complexity
instead considers the size of the shortest program that outputs the whole string x.
This other notion refers to a “global compression” notion, but is less appealing from
the point of view of truthtable compression, as the running-time of the program can
never be smaller than the length of the truthtable x.

5 Strictly speaking, [LP20] considered the “global compression” version of Kolmogorov
complexity, but when the threshold is large, these notion are essentially equiva-
lent, and the result from [LP20] directly applies also the “local compression” notion of
Kolmogorov complexity considered here.

6 In fact, our techniques could also be applied to the average-case setting and show
that the results in [LP21a] actually also work in the uniform regime.

On One-Way Functions, the Worst-Case Hardness 227

Computational Depth and “Natural” Instances. To state our results, let
us first (abuse the notations and) let MKtP[s] denote the promise problem where:

– YES-instances consist of strings x such that Kt(x) ≤ s(|x|);
– NO-instances consist of string x such that Kt(x) ≥ n − 1;

Note that the only difference between the MKtP[s] language defined above and
this promise problem is we restrict the NO-instances to have very high Kt-
complexity (i.e., they are “Kt-random”). Ideally, we would like to show that
worst-case hardness of this standard problem characterizes OWFs. We will, how-
ever, need to consider a somewhat stronger hardness assumption. Roughly speak-
ing, we will require this problem to be hard even when we restrict the inputs
to be of a certain “natural” form (i.e., we require that every algorithm fails on
some natural input), where naturality will be defined in a precise mathematical
way.

Given a promise problem Π = (ΠYES,ΠNO), and an event Q ⊆ {0, 1}∗, we
define the “conditioned” promise problem Π|Q def= (ΠYES∩Q,ΠNO∩Q). To define
naturality, we will consider the notion of computational depth [AFvMV06]. Recall
that the computational depth of a string x is defined as CDt(x) = Kt(x)−K(x).
For every function t and constant β, define the following event

Qt
β = {x ∈ {0, 1}∗ : Kt(x) − K(x) ≤ β log K(x)}

That is, the event that the computational depth is “small” relative to K(x).
Intuitively, the notion of computational depth is thought of a measure of “unnat-
urality” of strings: arguably, only “unnatural” strings have a large gap between
how much they can be efficiently and non efficiently compressed. Thus, by con-
ditioning on strings with (relatively) small computational depth, it means that
we require the problem to be hard on “natural” inputs. In other words, hardness
of a promise problem conditioned on the event Qt

β requires every algorithm to
fail on some “natural” string.

We remark that the event Qt
β is not computable as K(x) is not computable.

We mention, however, that all the result of this paper would still remain valid
if replacing K(x) by KEXP(x) = Kt′

(x) where t′(n) = 2poly(n).

The Work of Antunes and Fortnow [AF09]. We highlight that Antunes
and Fortnow [AF09] elegantly used computational depth to connect worst-case
hardness of a problem when restricting attention to elements with small compu-
tational depth and average-case hardness on sampleable distributions. We will
rely on some of the same intuitions, but emphasize a crucial difference. [AF09]
only connects the notion of errorless average-case hardness (i.e., average-case
hardness w.r.t. algorithms that never make mistake—they either give the right
answer or output ⊥) and worst-case hardness, and their proof techniques are
tailored to this notion. And for the particular problem that we consider (i.e.,
MKtP[s]), it is already known [Hir18,LP21b], that worst-case hardness directly
(without considering computational depth) implies errorless average-case hard-
ness with respect to the uniform distribution, so it would seem that compu-
tational depth is not helpful. Nevertheless, as we shall see, we will be able to

228 Y. Liu and R. Pass

essentially connect worst-case hardness conditioned on instances with small com-
putational depth and also two-sided error average-case hardness (and thus be
able to rely on results like [LP20,LP21a]).

We are now ready to state our main theorems.

Characterizing OWFs. Our first result demonstrates the first OWF-complete
problem, thus providing a positive answer to the second question in the intro-
duction:

Theorem 1 (Characterizing OWFs) For every polynomial t(n) ≥ 2n, all
constant β > 0, δ > 0, and any threshold function s(·), nδ ≤ s(n) < n − 1, the
following are equivalent:

– OWF (resp. non-uniformly secure OWF) exists;
– MKtP[n − 2]|Qt

β
�∈ ioBPP (resp. MKtP[n − 2]|Qt

β
�∈ ioP/poly)

– MKtP[s]|Qt
β

�∈ ioBPP (resp. MKtP[s]|Qt
β

�∈ ioP/poly).

As mentioned above, the above problem is robust in the sense that completeness
holds also when considering more general classes of “efficient adversaries” such as
probabilistic/non-uniform quasi-polynomal, or probabilistic/non-uniform subex-
ponential, attackers.7

Computational Depth and Average-Case Hardness. As mentioned above,
the work of Antunes and Fortnow [AF09] demonstrates that worst-case hardness
of a language L conditioned on instances with small computational depth implies
errorless average-case hardness on sampleable distributions.

One may, however, wonder whether a similar result can be shown also for
two-sided error average-case hardness—which for the particular MKtP problem
has been shown to be equivalent to OWFs (when considering average-case hard-
ness w.r.t. the uniform distribution) [LP20]. We do not know a proof of this
for general languages L (and thus the proof of Theorem 1 relies on a different
approach), but note that as a direct corollary of Theorem 1 and the main results
of [LP20], we have that worst-case hardness of MKtP[n − O(log n)] conditioned
on instances with small computational depth is equivalent to average-case hard-
ness of MKtP[n − O(log n)] w.r.t. the uniform distribution (since by our results,
the former is equivalent to OWFs, and by [LP20] the latter is equivalent to
OWFs). In fact, under standard derandomization assumptions, we can also get
average-case hardness under samplable distributions (as long as t is sufficiently
bigger than the running time of the sampler)—this follows since [LP22a] recently
showed (under derandomization assumptions) the equivalence between OWFs
and average-case hardness of MKtP[n−O(log n)] under sampleable distributions
(when t is sufficiently big).

The Complexity of MKtP[n−2]|Qt
β
and Going Beyond the coAM barrier.

An interesting consequence of Theorem 1 is the equivalence of bullet 2 and 3—
that is, the hardness of the problem remains the same when the thresholds is
7 We remark that this result also holds for the “global compression” version of time-

bounded Kolmogorov complexity, as in [LP20].

On One-Way Functions, the Worst-Case Hardness 229

anywhere from nΩ(1) to n − 2; as we shall see shortly, this will (likely) not be
the case when the threshold is significantly smaller (as the same problem will
characterize quasi-polynomial/sub-exponential OWFs).

We additionally remark that under reasonable assumptions—in particular,
under Rudich’s assumption [Rud97] regarding the existence of cryptographic
PRGs secure against coNP algorithms, and standard derandomization assump-
tions (i.e., the same ones used to traditionally argue that MKtP[s] is not inside
coAM [ABK+06,Hir18]) —MKtP[s]|Qt

β
is not inside coAM when t, β are suffi-

ciently big; as such, Theorem 1 yields the first problem believed to be outside
of AM ∩ coAM whose worst-case hardness (even just) implies the existence of
OWFs, providing a positive answer to question 1 in the introduction (under
computational assumptions). In more detail, we will show that the problem (at
least in some parameter regime that suffices to characterize OWFs) is not in
io-coNP/poly, which contains coAM.

Theorem 2 (Informally Stated). There exists some β > 0 such that under
Rudich’s conjecture and standard derandomization assumption, it holds that for
all sufficiently large polynomials t(n),

MKtP[n − 2]|Qt
β

�∈ io-coNP/poly

Impossibility of Fully Black-Box Constructions. As mentioned above, the
proof of our main theorems rely on non-black box techniques. In particular, in
contrast to the construction of OWFs from the average-case hardness of MKtP[s]
of [LP20] which is fully black-box, we make use of the code of the attacker in
analyzing the security of the OWFs. We show that this non-black box usage
is needed, by demonstrating the impossibility of fully black-box constructions
of OWF from the hardness of MKtP[s]|Qt

β
when β is sufficiently big. Roughly

speaking, we here refer to a reduction to MKtP as being fully black-box if both
the construction and the reduction treats the universal Turing machine in the
definition of Kt in a black-box way, and additionally the reduction only gets
black-box access to the attacker. We note that we here also rule out adaptive
black reductions (c.f. the results of [BT03,AGGM06] that only deal with non-
adaptive ones).

Theorem 3. For all sufficiently large β > 0, for all polynomials t(n) ≥ 2n, there
does not exists a fully black-box construction of OWFs from MKtP[n − 2]|Qt

β
�∈

ioP/poly.

We highlight that perhaps surprisingly, the proof of the black-box impossibility
result heavily relies on the proof techniques developed to show Theorem 1 (i.e.,
our main characterization).

Characterizing Qpoly/Subexponential OWFs. We show that MKtP[s]|Qt
β

becomes “easier” when the threshold is smaller by showing that its hardness char-
acterizes quasi-polynomially/sub-exponentially secure OWFs when the thresh-
old is smaller. We here additionally show that sublinear hardness of the same
problem also characterizes the same primitive.

230 Y. Liu and R. Pass

To simplify notation, we state these results for the setting of uniform security,
but emphasize that these results (just as Theorem 1 where we did it explicitly)
also work in the setting on non-uniform security. We highlight that this is not
immediate since we are employing non-black box techniques.

Theorem 4 (Characterizing Quasi-Polynomially Secure OWFs). For
every polynomial t(n) ≥ 2n, every constant β > 0, δ > 0, the following are
equivalent,

– Quasi-polynomially secure OWFs exist;
– MKtP[2O(

√
log n)]|Qt

β
�∈ ioBPTIME[nδ]

Theorem 5 (Characterizing Subexponentially Secure OWFs). For
every polynomial t(n) ≥ 2n, every constant β > 0, δ > 0, the following are
equivalent,

– Subexponentially secure OWFs exists;
– MKtP[poly log n]|Qt

β
�∈ ioBPTIME[nδ]

Theorems 4 and 5 follow from a more general theorem characterizing T -secure
OWF through the worst-case hardness of MKtP[s]|Qt

β
where s is polynomially

related to T−1 (see Theorem 15 in Sect. 3).

1.2 Perspective

Taken together, our results demonstrate that worst-case hardness of the same
natural problem—that is, i.e., MKtP[s] conditioned on inputs being “natu-
ral” (i.e., of small computational depth) characterizes all of OWFs, quasi-
polynomially secure OWFs and subexponentionally secure OWFs, depending
on how the threshold is set. There are several interesting consequences one can
draw from this:

– Characterizing the “holy grail”: As mentioned above, the holy grail of
Cryptography is basing OWFs on the assumption that NP �⊆ BPP (or more
precisely NP �⊆ ioBPP). By our results, solving this problem is equivalent to
showing that our promise problem is NP complete (perhaps with a non-black
box reduction). As far as we know, there are no barriers to this since as argued
above, the problem is unlikely to be inside coAM. There has been lots of
recent progress (see e.g. [Ila20,ILO20,Ila21,Ila22,LP22b,Hir22]) on showing
that MKtP[s] may be NP complete (for various variants of the problems), so
there is hope that this can be done.

– Characterizing Hardness Magnification for OWFs: Could it be that
plain OWFs imply quasi-polynomially secure (or even subexponentially secure
OWFs)? Our results demonstrate that this is equivalent to demonstrating a
reduction—in the worst-case regime—from the low threshold case to the high
threshold case for our promise problem.

On One-Way Functions, the Worst-Case Hardness 231

– Towards NP �= P, or even NP �⊆ BPTIME(2nε

) As far as we know, Theorem
4 and 5 yield the first problem whose sublinear worst-case hardness implies
that NP �= P (and in fact, they yield even the stronger consequence that NP
cannot be solved in quasi-polynomial or subexponential time). Worst-case
hardness w.r.t. sublinear time algorithms is typically easy to show for natural
problem (e.g., [LP21a] even showed it for a different variant of the MKtP[s]
problem) so there is hope that our results yield a new path toward solving
the NP v.s. P problem.

– Beyond OWFs: Our work introduces a new non black-box technique to ana-
lyze protocols based on the hardness of Kolmogorov complexity problems. We
believe these techniques will be useful also outside the realm of just OWFs.
Indeed, a very recent paper [BLMP23] which follows up on ours, demonstrates
how to use these techniques (and in particular how restricting attention to an
appropriate analog of computational depth) can be used to get a characteri-
zation of key-exchange agreement [DH76] using the worst-case hardness of a
Kolmogorov complexity-style problem.

Concurrent and Independent Work: A concurrent and independent elegant
work by Hirahara and Nanashima [HN23] also provides a worst-case character-
ization of OWFs.8 There are some conceptual similarities: both works consider
worst-case hardness of a language/promise problem conditioned on instances
with small computational depth.

There are also some significant differences:

– [HN23] does not actually characterize OWF but rather only so-called
infinitely-often OWFs (which are less relevant for cryptography). Their proof
technique seemingly does not extend to deal with “standard” OWFs. (In
contrast, ours directly extends to also characterize infinitely-often OWFs.)

– For our problem, changing the threshold enables performing “hardness mag-
nification” (i.e., characterizing stronger OWFs and enabling using simply sub-
linear worst-case hardness in the small threshold case.) Their problem/proof
approach is seemingly not amenable to this.

– The actual problem they consider is less standard/more complicated (“esti-
mating the probability that a random program outputs a certain string”)
than the one we consider (i.e., the standard MKtP problem). Additionally,
they also do not rely on the standard notion of computational depth but a
variant of it related to the above problem.
As a consequence, whereas our problem is (trivially) in NP, theirs is only
shown to be in AM (and even this requires some work).

– The problem in [HN23] is not proven to be OWF-complete according to our
notion of completeness as the characterization only holds in the uniform set-
ting (since a non black-box proof is used, security in the uniform setting
does not imply security in the non-uniform setting). In contrast, we show
equivalence in both the uniform and the non-uniform setting. (Conceivably,

8 Both papers were submitted to FOCS’23. Theirs was accepted, ours not.

232 Y. Liu and R. Pass

however, our new proof technique for dealing with non-uniformity may also
be applicable to their problem.)

– Finally, [HN23] do not show that their problem is not contained coAM; con-
ceivably, however, our proof technique may be applicable to show that theirs
also is not in coAM.

(Of course, [HN23] also contains other intriguing results, but we are here simply
comparing the characterization of OWFs.)

Despite all these differences, the results of [HN23] indicate that a conceptually
different type of a OWF-complete problem may be within reach, and consequently
that the class of OWF-complete promise problems may contain conceptually
different types of problem (similar to NP-complete problems)—we interpret this
as exciting evidence of the richness of the OWF class.

1.3 Proof Overview

We here provide a proof overview of Theorem 1, 4 and 5.

The Key Idea In a Nutshell. To explain our approach, let us start by a
simple but powerful observation. Let Π denote some decidable promise problem
and let KRc denote the event that K(x) ≥ n − c log n (i.e., x is asymptotically
“Kolmogorov Random”). Then, for every c > 1, worst-case hardness of the
conditional promise problem Π|KRc

implies mild average-case hardness of Π
with respect to the uniform distribution. To see this, assume for contradiction
that some uniform polynomial-time attacker A manages to solve Π on average
with probability 1 − 1/nc′

for some sufficiently big c′ > c. In other words, there
are at most 3 × 2n/nc′

instances on which A fails with probability ≥ 1/3 over
its randomness. But then all those instances must have Kolmogorov complexity
bounded by log(2n/nc′

) + O(log n) (to index the instance among the list of
elements on which A fails with probability ≥ 1/3, plus the additional O(log n)
to describe n as well as to provide the constant-size description of A). But for a
sufficiently large c′, this is strictly smaller than n − c log n, so A can only fail
on instances outside of the promise KRc. Note that the above argument is non-
black box: we rely on the fact that we have a short description of the attacker A.
In fact, the above argument seemingly only shows average-case hardness w.r.t
uniform algorithms A. However, by an additional trick we can extend it to work
also for non-uniform algorithms (assuming worst-case hardness of Π|KRc

with
respect to non-uniform polynomial-time algorithms). Assume for contradiction
that there exists some non-uniform polynomial-time algorithm with size/time
bounded by nd that breaks the average-case hardness of Π. Then, given d (which
can be described in O(1) bits), we can simply enumerate all possible non-uniform
attackers of size up to nd and pick the one who solves the promise problem with
the highest probability, and do the rest of the argument with respect to this
attacker (which now can be described using O(1) bits). Note that we here need
to rely on the decidability of the promise problem.

Characterizing OWF Through KR: A Warm-Up. We note that although
the above observation is simple, it is quite powerful. It can already be used,

On One-Way Functions, the Worst-Case Hardness 233

combined with the results of [LP20], to demonstrate that worst-case hardness
of MKtP[n − c log n]|KR2c

characterizes the existence of OWF for every suffi-
ciently large c. Roughly speaking, this follows from the fact that [LP20] showed
that mild average-case hardness of MKtP[n − c log n] is equivalent to the exis-
tence of OWF (for every sufficiently large c); in fact, by observing the proof of
[LP20], it turns out that for all sufficiently big c, the equivalence holds w.r.t.
MKtP[n− c log n] being 1− 1/nc+3-average-case hard (i.e., no PPT attacker can
solve the problem with probability better than 1 − 1/nc+3), which is implied by
the worst-case hardness of MKtP[n−c log n]|KR2c

by the above argument (since c
is sufficiently big). In other words, worst-case hardness of MKtP[n−c log n]|KR2c

implies the existence of OWFs. Furthermore, by [LP20], the existence of OWFs
imply that MKtP[n−c log n] is mildly hard on average, which by a standard aver-
aging argument implies worst-case hardness of MKtP[n − c log n]|KR2c

since the
probability of KR2c is 1 − O(1/n2c).

The reader may wonder why we need to through the result of [LP20] at all
here: the “key-observation” shows that worst-case hardness conditioned on KR2c

yields average-case hardness w.r.t. the uniform distribution. And as noted in the
previous sentence, average-case hardness w.r.t. the uniform distribution implies
worst-case hardness conditioned on KR2c, so it would seem that two-sided error
average-case and worst-case hardness conditioned on KR2c are equivalent! (and
then we can just rely [LP20] in a black-box way to get a OWF-complete problem).
There is an important issue with this approach: worst-case hardness conditioned
on KR2c only implies a weak form of average-case hardness, but in the other
direction we require a quantitatively stronger form of average-case hardness to
get back worst-case hardness conditioned on KR2c. Going through [LP20], and
its cryptographic machinery, enables doing this amplification. (So, at the end
of the day, with respect to the particular MKtP problem, it is the case that
two-sided error average-case and worst-case hardness conditioned on high K-
complexity are equivalent, but proving so relies on going through OWFs and
cryptographic machinery).

Characterizing OWFs Through CD. While the above yields a simple char-
acterization of OWFs, it requires tightly calibrating the constant c in the defini-
tion of KRc to the threshold of the MKtP problem, so it makes for a somewhat
brittle characterization. Furthermore, the simple argument above only works to
considering hardness of MKtP[s] where s = n − O(log n), and as such will not
be helpful when wanting to characterize quasi-polynomially/subexponentially
secure OWFs.

It turns out that instead conditioning on strings having small computational
depth [AFvMV06,AF09] enables us to deal with these issues and provides for a
clean characterization where we can simply condition on the same event (namely
Qt

β for any β > 0), and consider MKtP[s] with respect to any threshold s.
The forward direction of our proof, follows similar intuition to the above, but

requires going deeper into the constructions and proofs in [LP20,LP21a], and
combining the high-level ideas in those proofs with intuitions similar to the ones
use above. We can then show that for any constant β, worst-case hardness of

234 Y. Liu and R. Pass

MKtP[s]|Qt
β

implies OWF or even quasi-polynomially/subexponentially secure
OWF when the threshold is sufficiently small, and additionally, in the small
threshold case, it suffices to just require sublinear time (worst-case) hardness.

For the backward direction, we may again rely on the proofs in [LP20,LP21a]
combined the with the above observation to show that OWFs (resp T -secure
OWFs) imply worst-case hardness of MKtP[s]|Qt

β
. While the high-level ideas

here are similar to [LP20,LP21a], we are required to provide a tighter analysis
to deal with the fact that we here consider hardness of the promise problem
MKtP[s], where for NO-instances, x, requires Kt(x) ≥ n−1. As such, the actual
technical details here are somewhat different than those in [LP20,LP21a]. Addi-
tionally, [LP21a] (which considered the small threshold case in the average-case
setting) unfortunately only works for non-uniform attackers. To deal with uni-
form attacker, we develop a new proof technique (that also ought to work in
the average-case setting and may be of independent interest). Without getting
too deep in the details, the key obstacle is that [LP21a] relies on the security of
a primitive (called an conditionally-secure entropy-preserving PRF (cond EP-
PRF) for which it is (seemingly) hard to check if an attacker manages to break
its security, and non-uniformity was used to provide the input lengths on which
the attacker succeeds. We here show how to also deal with this obstacle without
non-uniform advice.

Roughly speaking, the key idea is to leverage the fact that in [LP21a], a
cond EP-PRF was constructed based on the existence of a PRG and a PRF
(primitives for which we efficiently check whether an attacker succeeds) using
an explicit (efficient) black-box reduction having the property that any attacker
that breaks the cond EP-PRF on some specific inputs length n can be used to
break the PRG (or the PRF) on some specific (and efficiently computable) input
length n′. We can next use this reduction to efficiently find the input lengths on
which the attacker succeeds in breaking the cond EP-PRF.

2 Preliminaries

For any string x ∈ {0, 1}∗, we let [x]n denote the first n-bit prefix of x. For any
functions s(·), we refer to it as a threshold function if s is time-constructible and
strictly increasing.

Sublinear-Time Algorithms. If an algorithm M runs in time nδ for some
δ < 1, we refer to M as a sublinear-time algorithm. Notice that sublinear-time
algorithms cannot read the whole input. In this work, we assume that a (uni-
form) sublinear-time algorithm, when running on some input, will be additionally
provided with the length of the input.

2.1 Promise Problems and “Conditioned” Problems

In this work, we focus on promise problems Π = (ΠYES,ΠNO), and algorithms
that decides Π on infinitely many input lengths. We say that an algorithm

On One-Way Functions, the Worst-Case Hardness 235

M decides Π infinitely often if there exists infinitely many n ∈ N such that
(ΠYES ∪ ΠNO) ∩ {0, 1}n �= ∅ and M decides Π on input length n.

We consider the promise variant of standard infinitely often complexity
classes. Let ioBPP (resp ioP/poly, io-coNP/poly) denote the class of promise prob-
lems where for any promise problem Π, Π ∈ ioBPP (resp ioP/poly, io-coNP/poly)
if and only if there exists a probabilistic (resp non-uniform, non-uniform co-non
deterministic) polynomial time algorithm M that decides Π infinitely often. For
any running time bound T , we define ioBPTIME[T], ioSIZE[T] in a similar way
(but allowing M to run in time T).

Let us introduce what it means by “conditioned” promise problems. For any
promise problem Π, and any event Q ⊆ {0, 1}∗, we define the promise problem

Π|Q def= (ΠYES ∩ Q,ΠNO ∩ Q)

Note that for any Q,Q′, Q ⊆ Q′, we have that Π|Q ⊆ Π|Q′ . (And therefore,
Π|Q′ is “harder” than Π|Q. Namely, if Π|Q �∈ ioBPP, Π|Q′ �∈ ioBPP.)

2.2 One-Way Functions

We recall the standard definitions of one-way functions (with security w.r.t.
uniform or non-uniform attackers).

Definition 6. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be a (T, ε)-one-way function if for any probabilistic algorithm
A of running time T (n), for all sufficiently large n ∈ N,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < ε(n)

We say that f is non-uniformly secure if the above holds for all non-uniform
algorithm A.

We say that f is T (n)-one-way (or is a T -hard one-way function) if f is
(T (n), 1/T (n))-one-way. We say that f is ε(n)-weak T (n)-one-way if f is
(T (n), 1 − ε(n))-one-way. If ε(n) is the inverse of a (monotonically increasing)
polynomial, we say f is weak T (n)-one-way. We say that f is simply one-way if
f is T (n)-one-way for all polynomials T (n). When T (n) is a super-polynomial
function, we refer to f as being subexponentially-secure (resp quasi-polynomially-
secure) if there exists a constant c > 0 such that f is 2nc

-one-way (resp nc log n-
one-way).

We recall the hardness amplification lemma [Yao82] which was originally
stated for (polynomially-hard) OWFs; we here extend it to work for T -one-way
functions.

Lemma 7 (Hardness Amplification [Yao82]). Assume that there exists a
weak T (n)-one-way function for an arbitrary function T (·). Then, there exists a

(T ′(n))-one-way function where T ′(n) =
√

T (nΩ(1))
nO(1) − nO(1).

We refer the read to [LP21a] for a proof of the above Lemma.

236 Y. Liu and R. Pass

2.3 The OWF Class

We turn to defining, OWF, the class of promise problems Π whose worst-case
hardness imply the existence of OWFs. Formally, Π ∈ OWF if and only if there
exists a efficiently computable function f such that the following holds: If there
exists a PPT (resp. a nuPPT algorithm A) such that A inverts f infinitely often—
that is, for infinitely many n ∈ N,

Pr[x ← {0, 1}n, y = f(x) : A(1n, y) ∈ f−1(f(x))] ≥ 1
2

then, Π ∈ ioBPP (resp. Π ∈ ioP/poly).
We highlight that containment in OWF requires the problem to be “as hard

as” the efficient function f (is to invert) simultaneously w.r.t. uniform PPT as
well as non-uniform polynomial-time algorithm. This uniformity is a “proxy” for
the uniformity imposed by standard definitions of black-box reductions which
also provide this guarantee. (One could also extend this uniformity to hold with
respect to attackers with larger, e.g., subexponential running time; while this
indeed is the case for our results, we simply stick to uniform/non-uniform PPT,
for simplicity of notation.)

Let us turn to define OWF-hardness. We say that Π is OWF-hard if the
following holds: If Π ∈ ioBPP (resp. ioP/poly), then any efficient function f can
be inverted w.p. 1/2 for infinitely many input length in probabilistic polynomial
time (resp. non-uniform polynomial time).

Finally, we say that Π is OWF-complete if Π ∈ OWF and Π is OWF-
hard. In other words, Π being OWF-complete means that Π ∈ ioBPP (resp.
Π ∈ ioP/poly) iff all efficient functions can be inverted for infinitely many input
lengths by PPT algorithms (resp. non uniform polynomial-time algorithms).

2.4 Time-Bounded Kolmogorov Complexity

We define the notion of t-time-bounded Kolmogorov complexity that we rely on.
We consider some universal Turing machines U that can emulate any Turing
machine M with polynomial overhead. The universal Turing machine U receives
as input a description/program Π ∈ {0, 1}∗ = (M,w) where M is a Turing
machine and w ∈ {0, 1}∗ is an input to M ; we let U(Π(i), 1t(|Π|)) denote the
output of M(w, i) when emulated on U for t(|Π|) steps.

Definition 8. Let U be a universal Turing machine and t(·) be a polynomial.
Define

Kt(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i), 1t(|Π|)) = xi}.

We remark that the notion of time-bounded Kolmogorov complexity has been
defined in a lot of different ways [Kol68,Sip83,Tra84,Ko86,ABK+06]; the defi-
nition we consider here is the “local compression” version (see e.g., [ABK+06,
LP21a]) where the program Π is required to efficiently output each individual
bit xi of the string x, given i as input.

On One-Way Functions, the Worst-Case Hardness 237

A basic computational problem regarding t-time-bounded Kolmogorov com-
plexity is the minimum Kt-complexity problem MKtP. In this work, we consider
its decisional version, which is parameterized by a threshold s(·), and the goal
is to distinguish strings x with small Kt-complexity (≤ s(|x|)) from those with
large Kt-complexity ≥ n − 1.

Definition 9. (MKtP) Let MKtP[s] denote the following promise problem:

– YES: x ∈ {0, 1}∗, Kt(x) ≤ s(|x|).
– NO: x ∈ {0, 1}∗, Kt(x) ≥ n − 1.

Computational Depth. We will focus our attention on MKtP with instances
having small computational depth [AFvMV06]. Roughly speaking, the compu-
tational depth of a string x is the difference between its Kt-complexity and
its (time-unbounded) K-complexity. Recall that for any string x ∈ {0, 1}∗, its
(time-unbounded) K-complexity, K(x), is defined to be the length of the shortest
program that produces x. Formally,

K(x) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N, U(Π, 1t) = x}

And we refer to Kt(x)−K(x) as the computational depth of x. Throughout this
work, for any polynomial t, any constant β > 0, we define

Qt
β

def= {x ∈ {0, 1}∗ : Kt(x) − K(x) ≤ β log K(x)}
be the set of strings with computational depth logarithmic in K(x). (And recall
that MKtP|Qt

β
is the promise variant of MKtP where we condition on instances ∈

Qt
β .) As argued in the introduction, Qt

β is the set of “natural” instances. Observe
that for any polynomial t0, t1, t1(n) ≥ t0(n), for any constant β1 ≥ β0 > 0, we
have that

Qt0
β0

⊆ Qt1
β0

, Qt0
β0

⊆ Qt0
β1

We recall the following fact about (time-bounded) Kolmogorov complexity
(and we refer to [LP21a] for a short proof).

Fact 10. There exists a constant c such that for every polynomial t(n) ≥ (1 +
ε)n, ε > 0, the following holds:

(1) For every x ∈ {0, 1}∗, Kt(x) ≤ |x| + c;
(2) For every integer n ∈ N, every function 0 < s(n) < n, 2�s(n)�−c ≤

|MKtP[s(n)] ∩ {0, 1}n| ≤ 2�s(n)�+1.

2.5 Distributions, Random Variables, and Entropy

Let D be a distribution. We let supp(D) denote the support of D. For any
x ∈ supp(D), we let D(x) denote Pr[D = x].

For a random variable X, let H(X) = E[log 1
Pr[X=x]] denote the (Shannon)

entropy of X. The following lemma will be useful for us.

238 Y. Liu and R. Pass

Lemma 11 (Implicit in [LP20,IRS21]). Let X be a random variable dis-
tributed over S ⊆ {0, 1}n, E be an set ⊆ S. It holds that

Pr[x ← X : x ∈ E] ≤ log |S| + 1 − H(X)
log |S| − log |E|

Proof: Let flag be a binary random variable (jointly distributed with x ∼ X)
such that flag = 1 if x ∈ E, and flag = 0 if x �∈ E. Let α denote the value of
Prx∼X [x ∈ E], and assume for contradiction that α > log |S|+1−H(X)

log |S|−log |E| . Note that
by the chain rule of entropy:

H(X) ≤ H(X, flag) = H(flag) + αH(X|x ∈ E) + (1 − α)H(X|x �∈ E)

Note that on the RHS, H(flag) ≤ 1 since flag is binary. H(X|x ∈ E) ≤ log |E|,
and H(X|x �∈ E) ≤ log |S| (since X is distributed over S). So the RHS is at
most

RHS ≤1 + α log |E| + (1 − α) log |S|
=1 + log |S| − α(log |S| − log |E|)

<1 + log |S| − log |S| + 1 − H(X)
log |S| − log |E| (log |S| − log |E|)

=H(X)

which is a contradiction. �

2.6 “Nice” Function Classes

We consider “nice” classes of function families, where the class of functions F is
said to be “nice” if

– for every function T ∈ F , T is time-constructible and strictly increasing.
– F is closed under (sublinear) polynomial compositions: for any T ∈ F , for all

0 < ε1, ε2 < 1, (T (nε1))ε2 ∈ F .

Given a class of functions, let F−1 denote the class of inverse function:
F−1 = {f s.t. f−1 ∈ F}. Several examples of “nice” classes of super-polynomial
functions (and their inverse classes) are (a) Fsubexp = {2cnε}c>0,0<ε<1 and
F−1

subexp = {c logβ n}c>0,β>1, (b) Fqpoly = {nc log n}c>0 and F−1
qpoly = {2c

√
log n}c>0.

The notion of “nice” function classes has the important property that
“polynomial-time” reductions “preserve F-hardness”. Roughly speaking, almost
all the reductions (considered in this work) are of form “if A is T (n)-hard, B is
(T (nΩ(1))Ω(1)/nO(1) − nO(1))-hard”. When A is a promise problem, we refer to
A as being T (n)-hard if A is hard for T (n)-time algorithms. When A is a cryp-
tographic primitive, we refer to A as being T (n)-hard if A is secure against
all T (n)-time attackers. The following fact shows that such reductions actually
prove the following statement: “if there exists T1 ∈ F such that A is T1(n)-hard,
then there exists T2 ∈ F such that B is T2(n)-hard”.

On One-Way Functions, the Worst-Case Hardness 239

Fact 12. Let F be a nice class of super-polynomial functions. For every T ∈ F ,
for all 0 < ε1, ε2 < 1, c1, c2 > 1, there exists a function T ′ ∈ F such that for all
sufficiently large n, T ′(n) ≤ T (nε1)ε2/nc1 − nc2 .

We refer the reader to [LP21a] for a proof of this fact.

3 Our Results

Our first result is an equivalence between OWFs and the hardness of MKtP[s]
on the natural instances, where the threshold s is moderately large and t is a
polynomial.

Theorem 13 (Characterizing OWFs). For any threshold function s(·), nε ≤
s(n) < n−1, ε > 0, any polynomial t(n) ≥ 2n, any constant β > 0, the following
are equivalent:

(a) MKtP[s]|Qt
β

�∈ ioBPP (resp. MKtP[s]|Qt
β

�∈ ioP/poly).
(b) One-way functions (resp. non-uniformly secure one-way functions) exist.

Proof: (a) ⇒ (b) follows from Theorem 16 (stated and proved in Sect. 4) and
Lemma 7. The non-uniform version of the implication (b) ⇒ (a) follows from
Theorem 19, and Lemma 21 (stated and proved in Sect. 5). The uniform version
of the implication follows from Theorem 19, Proposition 22, and Lemma 24
(stated and proved in Sect. 5). �

We remark that Theorem 1 (stated in the introduction) follows from Theorem 13
by taking s = nΩ(1) or s = n−2. In addition, this yields the first OWF-complete
problem.

Corollary 14. Let s, t, β as in Theorem 13. MKtP[s]|Qt
β

is OWF-complete.

Our second result demonstrates that the hardness of the same problem,
MKtP[s]|Qt

β
, with respect to polynomial time (or even sublinear-time) algo-

rithms, will characterize quasi-polynomially or subexponentially secure OWF
when the threshold s is small. We rely on the notion of “nice” classes of func-
tions, which captures classes of “polynomially-related” functions. We refer the
reader to Sect. 2.6 for more on “nice” classes and we here proceed to our theorem
statement.

Theorem 15 (Characterizing T -hard OWFs). Let F be a “nice” class of
super-polynomial functions. For any polynomial t(n) ≥ 2n, any constant β >
0, δ > 0, the following are equivalent:

(a) There exists a function T ∈ F such that T -hard (resp. non-uniformly T -hard)
one-way functions exist.

(b) There exists a function s ∈ F−1 such that MKtP[s]|Qt
β

�∈ ioBPTIME[nδ]
(resp. MKtP[s]|Qt

β
�∈ ioSIZE[nδ]).

240 Y. Liu and R. Pass

Proof: (b) ⇒ (a) follows from Theorem 17 (stated and proved in Sect. 4) and
Lemma 7. The non-uniform version of the implication (a) ⇒ (b) follows from
Theorem 19, and Lemma 20 (stated and proved in Sect. 5). Its uniform version
follows from Theorem 19, Proposition 22, and Lemma 23 (stated and proved in
Sect. 5). �

Taking F = {nc log n}c>0 to be the class of quasi-polynomial functions, we
obtain Theorem 4 (stated in the introduction), and taking F = {2cnε}c>0,0<ε<1

to be the class of subexponential functions, we obtain Theorem 5 (stated in
the introduction). Furthermore, we can take F to be any nice class of super-
polynomial functions (such as F = {nc log log n}c>0) and we obtain equivalence
between F-hard OWFs and the hardness of MKtP[F−1] on natural instances.

4 OWFs from Worst-Case Hardness of MKtP|Q
We start by proving that if there exist a polynomial t and a constant β > 0 such
that MKtP|Qt

β
is hard, then standard (weak) OWFs exist.

Theorem 16. If there exist a constant β > 0, a threshold function s, 0 < s(n) <
n − 1, and a polynomial t such that MKtP[s]|Qt

β
�∈ ioBPP (resp. ioP/poly), then

weak one-way (resp. weak non-uniformly secure one-way) functions exist.

Proof: Consider the function f : {0, 1}n+
log(n)� → {0, 1}∗, which given an
input �||Π ′ where |�| = �log(n)� and |Π ′| = n, outputs

�||U(Π(1), 1t(�))||U(Π(2), 1t(�))|| . . . ||U(Π(n − 1), 1t(�))||U(Π(n), 1t(�))

where Π is the �-bit prefix of Π ′. Note that U only has polynomial overhead, so
f can be computed in polynomial time.

This function is only defined over some input lengths, but by an easy padding
trick, it can be transformed into a function f ′ defined over all input lengths, such
that if f is weak one-way (over the restricted input lengths), then f ′ will be weak
one-way (over all input lengths): f ′(x′) simply truncates its input x′ (as little as
possible) so that the (truncated) input x now becomes of length n′ = n+�log(n)�
for some n and outputs f(x).

Assume for contradiction that f is not 1
q(n) -weak one-way (resp non-

uniformly 1
q(n) -weak one-way) where q(n) = nβ+4. There exists a polynomial

p(·) and a p-time attacker A such that the attacker A inverts the function f
with probability at least 1 − 1

q(n) for infinitely many n. We can assume without
loss of generality that there exists a constant γ such that for all sufficiently large
n, A (on input length n) can be described using γ bits given n: If A is a uni-
form attacker, we can let γ be the length of the code of A; if A = {An}n∈N is a
non-uniform attacker, on input length n, we can consider An as being the lexico-
graphically smallest p(n)-time non-uniform attacker such that An inverts f with
probability at least 1− 1

q(n) . (If there is no such attacker on input length n, we let
An be simply an outputting ⊥ attacker.) Note that An can be described using

On One-Way Functions, the Worst-Case Hardness 241

the code of f , the polynomial p(·), and the polynomial q(·), so the attacker A can
be described in constant bits. Fix some n such that A succeeds with probability
at least 1 − 1

q(n) on input length n.
We turn to constructing a polynomial-time uniform (resp non-uniform) algo-

rithm M to decide MKtP[s] on inputs z ∈ {0, 1}n ∩ Qt
β . Our algorithm M , on

input z, runs A(i||z) for every i ∈ [n] where i is represented as a �log(n)�-bit
string, and outputs 1 if and only if the length of the shortest program Π output
by A, which produces each bit in the string z within t(|Π|) steps, is at most s(n).
Since A runs in polynomial time, our algorithm will also terminate in polynomial
time.

We next show that our algorithm will output 1 with probability at least
2/3 on input z if Kt(z) ≤ s(n) and z ∈ Qt

β . Assume for contradiction that M

outputs 1 with probability < 2/3. Let w = Kt(z). Consider any string y such
that Kt(y) = w, and Lw be the set of “bad” strings such that

Lw
def= {y ∈ {0, 1}n : Kt(y) = w,Pr[M(y) = 1] < 2/3}

It follows that z ∈ Lw. We rely on the following claim on the Kolmogorov
complexity of strings in Lw. �

Claim 1. For all y ∈ Lw, K(y) < w − β log n.

Proof: We first argue that

|Lw| ≤ 3 · 2w−(β+3) log n

Consider any y ∈ Lw. Note that Kt(y) = w, there must exist a program Π of
size w such that Π outputs each bit of y in time t(|Π|). And (w,Π) will be
sampled with probability

1
n

2−w

in the one-way function experiment. However, since Pr[M(y) = 1] < 2/3, A
must fail to invert f on input (w||y) with probability at least 1/3. So A will fail
to invert f in the one-way function experiment with probability at least

1/3|Lw| · 1
n

2−w

which is at most 1
q(n) = 1

nβ+4 since A is a good inverter. We conclude that

|Lw| ≤ 3 · 2w+log(n)−(β+4) log n ≤ 3 · 2w−(β+3) log n.

We turn to showing how to obtain a short description for each string ∈
Lw. For any y ∈ Lw, consider the following program with n, w, t, the code
of M (which as shown before, is of constant length), and the location of y (in
Lw) hardwired in it. The program first generate the set Lw by enumerating all
strings in {0, 1}n, and writing down the string if its Kt-complexity is w and

242 Y. Liu and R. Pass

the probability that M(z) = 1 is < 2/3. The program can be described using
2 log n + O(log log n) + log |L| bits. So it follows that for any y ∈ Lw,

K(y) ≤ 2 log n + O(log log n) + w − (β + 3) log n + O(1) < w − β log n.

�

Therefore, K(z) < w − β log n. However, recall that Kt(z) = w and z ∈ Qt
β , it

holds that K(z) ≥ w − β log K(z) > w − β log n, which is a contradiction.
We finally prove that if Kt(z) > n − 1, M(z) will never output 1. Note that

M(z) will output 1 only when it finds a Kt-witness of length no more than s,
and there is no such witness if Kt(z) > n − 1. It follows that M(z) will never
output 1.

We turn to showing that the smaller the threshold in Theorem 16 is, the
stronger the OWF we deduce. And we only require sublinear-time hardness.

Theorem 17. Let F be a nice class of super-polynomial functions. Assume that
there exist a function s ∈ F−1, constants β, δ > 0, and a polynomial t > 0 such
that MKtP[s]|Qt

β
�∈ ioBPTIME[nδ] (resp ioSIZE[nδ]). Then, there exist T ∈ F and

a weak T -one-way (resp weak non-uniform T -one-way) function.

We defer the proof of Theorem 17 to the full version.

5 Worst-Case Hardness of MKtP|Q from OWFs

In this section, we prove that the existence of OWFs implies worst-case hardness
of MKtP|Q. To simplify the presentation, we first prove this in the non-uniform
setting where the reduction has access to some non-uniform advice. We will later
remove the non-uniform advice and prove it in the uniform setting.

5.1 Conditionally-Secure Entropy-Preserving Pseudorandom
Functions

We start by recalling the notion of a non-uniform conditionally-secure entropy-
preserving pseudorandom function [LP21a], which will be an important tool in
our proof.

Definition 18. An efficiently computable function f : {0, 1}n × {0, 1}k(n) →
{0, 1} is a non-uniform (T (·), ε(·))-conditionally-secure α-entropy-preserving
pseudorandom function ((T, ε)-cond α-EP-PRF) if there exist a sequence of
events = {En}n∈N such that the following conditions hold:

– (pseudorandomness): For every non-uniform T (n)-time attacker A and
sufficiently large n ∈ N,

|Pr[s ← {0, 1}n;Af(s,·)(1n) = 1|En] − Pr[f ′ ← F ;Af ′(·)(1n) = 1]| < ε(n),
(1)

where F = {f ′ : {0, 1}k(n) → {0, 1}}.

On One-Way Functions, the Worst-Case Hardness 243

– (entropy-preserving): For all sufficiently large n ∈ N, H(ttn(f(Un|En, ·)))
≥ n− α log n, where ttn(·) denote the n-bit prefix of the truthtable of the
function.

We refer to the constant α as the entropy-loss constant. We say that f is a
cond EP-PRF (without mentioning “non-uniform”) if the pseudorandomness
condition holds just w.r.t. all probabilistic T -time attackers. We refer to f as
a (non-uniform) ε-cond α-EP-PRF if f is secure w.r.t. all (non-uniform) PPT
attackers.

We say that f : {0, 1}n × {0, 1}k(n) → {0, 1} has rate-1 efficiency if for
all n ∈ N, x ∈ {0, 1}n, i ∈ {0, 1}k(n), f(x, i) runs in n + O(nε) time for some
constant ε < 1. Recall that a rate-1 efficient cond EP-PRF can be constructed
from OWFs [LP21a]. We notice that if the OWF we start with is T -hard, then
we obtain a T -hard cond EP-PRF. If the OWF is of (plain) polynomial security,
we obtain a cond EP-PRF that is polynomially secure.

Theorem 19 (Cond EP-PRF from OWFs [LP21a]. The following state-
ment holds.

– (T -hard cond EP-PRF) Let F be a nice class of super-polynomial functions.
Assume that there exists T ∈ F and a T -hard (resp non-uniform T -hard)
OWF. Then, for any constant α > 0, δ ≥ 1, there exist T1 ∈ F and a rate-1
efficient (T δ

1 , 0.1)-cond α-EP-PRF (resp non-uniformly secure cond EP-PRF)
f : {0, 1}n × [T1(n)] → {0, 1}.

– (Polynomially hard cond EP-PRF) Assume that there exists a OWF (resp
non-uniform OWF). Then, for any constant α > 0 and any polynomial d(n) ≥
n, there exists a rate-1 efficient 0.1-cond α-EP PRF (resp non-uniformly
secure cond EP-PRF) f : {0, 1}n × [d(n)] → {0, 1}.

[LP21a] only proved a weaker version of the above theorem (in which they showed
the existence of a cond α-EP-PRF for some constant α). A standard padding
argument will be needed to prove the stronger version stated above, and we
include a proof for Theorem 19 in the full version.

5.2 (Non-uniform) Worst-Case Hardness of MKtP|Q
from (Non-uniform) OWFs

We turn to showing that the existence of cond EP-PRFs implies hardness of
MKtP, even when conditioned on the event Qt

β . We will first present the proof
in the non-uniform setting.

Lemma 20 (Hardness of MKtP[T−1] from T -hard Cond EP-PRF). Let
F be a nice class of super-polynomial functions, δ > 1, β > 0 be some constants.
Assume that there exist T1 ∈ F and a non-uniformly secure rate-1 efficient
(T δ

1 , 0.1)-cond (β/10)-EP-PRF h : {0, 1}n × [T1(n)] → {0, 1}. Then, for every
constant ε′ > 0, 0 < δ′ < δ, every polynomial t(n) ≥ 2n, every T2 ∈ F satisfying
T2(n) ≤ T1(n/2), MKtP[T−1

2]|Qt
β

�∈ ioSIZE[nδ′
].

244 Y. Liu and R. Pass

Proof: Consider any polynomial t(n) ≥ 2n, and any constant 0 < δ′ < δ. Let
ε = 0.1. We will show that for any T2 ∈ F , T2(n) ≤ T1(n/2), MKtP[T−1

2]|Qt
β

�∈
ioSIZE[nδ′

].
Note that the truthtable of the PRF h is of length T1(n) (for seeds of length

n). For any function T2 ∈ F satisfying T2(n) ≤ T1(n/2), we will truncate the
cond EP-PRF h to another cond EP-PRF f that is easier to work with (so that
the truthtable of f is of length roughly T2(n)). Note that both h and T2 can be
computed by uniform algorithms, let γ be a (sufficiently large) constant such that
h together with T2 can be described within γ/4 bits. Let f : {0, 1}n × [T2(n +
γ)] → {0, 1} be the function obtained by truncating h to the first T2(n + γ)
entries. Note that T2(n + γ) < T2(2n) ≤ T1(n) (due to our choice of T2 and that
T2 is strictly increasing), so the truncation is always possible. Also notice that f
is still a rate-1 efficient (T δ

1 , ε)-cond (β/10)-EP-PRF (as h is). In addition, the
code of f can be described in γ/2 bits.

We assume for contradiction that there exists some mδ′
-time non-uniform

algorithm that decides each instance of MKtP[T−1
2] in Qt

β with probability 2
3 .

By a Chernoff-type argument, we can show that there exists an algorithm M
that succeeds with probability 0.99 and runs in O(mδ′

) time (by using constant-
fold parallel repetition and taking a majority vote). We will use the algorithm
M to build a non-uniform attacker A(1n) that breaks the cond EP-PRF f .

Note that f is a function that given a seed of length n, maps an integer
∈ [T2(n + γ)] to either ‘0’ or ‘1’. For any fixed seed x ∈ {0, 1}n, let ttm(f(x, ·))
denote the first m bits of the truth table of f(x, ·). Consider any integer m ≤
T2(n + γ). Note that for any x ∈ {0, 1}n, ttm(f(x, ·)) has low Kt-complexity
(with probability 1):

Kt(ttm(f(x, ·))) ≤ n + γ − 1

since a Turing machine that contains the code of f (of length γ/2, as argued
above) and the seed x (of length n) can output each bit i on the truth table in
t(n) time (since f is rate-1 efficient). However, a random string of length m has
high Kt-complexity with high probability:

Pr
y∈{0,1}m

[Kt(y) ≥ m − 1] ≥ 1 − 1
2
,

since there are at most 2m−1 Turing machines with description length no longer
than m−2, and each of them can produce at most a single truth table of length m.

With the above observations, we are ready to construct A (which breaks f).
On input length n, let m be an integer such that m ∈ [T2(n+γ−1), T2(n+γ)−1]
and the algorithm M succeeds in deciding MKtP[T−1

2]|Qt
β

on input length m. We
will provide our attacker A with the integer m as non-uniform advice. (Since M
only succeeds infinite often, A simply aborts if such m doesn’t exist.) With the
advice m, the attacker (denoted by Am) proceeds as follows. Given black-box
access to a function f ′ : [T2(n + γ)] → {0, 1}, Am(1n) first queries f ′ on every
input i ∈ [m] and obtains the first m bits of the truth table of f ′, ttm(f ′). Then
Am(1n) feeds ttm(f ′) to the algorithm M and outputs M(ttm(f ′)). Note that
the attacker Am(1n) runs in time O(m) + mδ′

< T1(n)δ.

On One-Way Functions, the Worst-Case Hardness 245

Since M decides MKtP[T−1
2] on each instances ∈ Qt

β with probability 0.99
on infinitely many input lengths m, we will show that the attacker A succeeds
in distinguishing the cond EP-PRF f from random functions on infinitely many
input lengths (which is a contradiction). Fix some input length m on which M
succeeds. Let n be the integer such that

T2(n + γ − 1) ≤ m < T2(n + γ)

(guaranteed to exist since T2 is strictly increasing). The following two claims
will show that Am will distinguish f from random with probability at least 2ε,
which conclude the proof. �

Claim 2. Am(1n) will output 0 with probability at least 1
2 − 0.02 when given

access to fr, where fr is uniformly sampled from F = {fr : [T2(n+γ)] → {0, 1}}.
Proof: Note that for a random fr, the probability that Kt(ttm(fr)) ≥ m−1 is at
least 1

2 . Note that K(ttm(fr)) is at least m − β log m with probability 0.01, so it
follows that ttm(fr) ∈ Qt

β if Kt(ttm(fr)) ≥ m−1. Since M decides MKtP[T−1
2]|Qt

β

with probability 0.99 on input length m, by a Union bound, Am(1n) will output
0 with probability 1

2 − 0.02. �

Claim 3. Am(1n) will output 0 with probability at most 0.2 + 0.01 when given
access to f ← f(Un|En, ·), where En is the event associated with f .

Proof: Recall that M decides each instance of MKtP[T−1
2] in Qt

β with proba-
bility 0.99 on input length m. Let s = �T−1

2 (m)� and notice that

s = n + γ − 1

(by the choice of n). Let
X = ttm(f(Un|En, ·))

be the random variable of the first m bits of the truth table of f . Recall that
any string x in the support of X will have Kt-complexity at most n+ γ − 1 = s.
Since f is entropy preserving, the entropy of X is at least

H(X) ≥ n − 0.1β log n

Let
S = supp(X)

be the set of pseudorandom truth tables. It follows that 2H(X) ≤ |S| ≤ 2n. Let

Z = {z ∈ S : z �∈ Qt
β}

be the set of pseudorandom truth tables that are outside of Qt
β . Recall that the

algorithm M is only guaranteed to work if the input is in Qt
β , so we can think

of Z as the set of “bad” strings. For any z ∈ Z, since z ∈ S and z �∈ Qt
β , it

holds that K(z) < Kt(z) − β log K(z) ≤ s − β log s. By a standard counting

246 Y. Liu and R. Pass

argument w.r.t. K-complexity, it follows that |Z| ≤ 2s−β log s+1. Recall that X
is a random variable distributed over S, and Z ⊆ S. By Lemma 11, it follows
that the probability that X ∈ Z is at most

Pr[X ∈ Z] ≤ log |S| + 1 − H(X)
log |S| − log |Z| ≤ n + 1 − (n − 0.1β log n)

n − 0.1β log n − (s − β log s)
≤ 0.2

when n is sufficiently large. Therefore, the probability that M(X) outputs 0 is
at most

Pr[M(X) = 0] = Pr[X ∈ Z] Pr[M(X) = 0|X ∈ Z] + Pr[X �∈ Z] Pr[M(X) = 0|X �∈ Z]

≤ Pr[X ∈ Z] + Pr[M(X) = 0|X �∈ Z]

≤0.2 + Pr[M(X) = 0|X ∈ Qt
β]

≤0.2 + 0.01

where the last step follows from the correctness of M . �

While in the above theorems, we assume super polynomial hardness, the
reduction runs in polynomial time. So the statement will also hold in the poly-
nomial hardness region.

Lemma 21 (Hardness of MKtP[nΩ(1)] from poly-hard Cond EP-PRF).
Let s(·) be a threshold function, nε ≤ s(n) ≤ n − 2, ε > 0. Let d(·) be a poly-
nomial such that s−1(n) ≤ d(n/2), and β > 0 be a constant. Assume that there
exists a rate-1 efficient non-uniformly secure (poly, 0.1)-cond (β/10)-EP-PRF
f : {0, 1}n × [d(n)] → {0, 1}. Then, for every constant ε′ > 0, every polynomial
t(n) ≥ (1 + ε′)n, MKtP[s]|Qt

β
�∈ ioP/poly.

Proof: This lemma follows from the proof of Lemma 20 by considering T1 being
d and T2 being s−1. �

5.3 Eliminating the Non-uniform Advice

The key observation we rely on in this section is that the security of our cond
EP-PRF is established through black-box reductions to standard cryptographic
primitives. Let us introduce the notion of black-box reductions we rely on.

We say that a (T, ε)-cond EP-PRF f has a polynomial-time black-box secu-
rity reduction to a (Tprg, εprg)-PRG fprg and a (Tprf , εprf)-PRF fprf if there exist
functions lprg, lprf (referred to as input length functions)9 , polynomials pprg, pprf
(referred to as security loss functions), and oracle machines Rprg, Rprf (referred
to as reductions) such that the following are satisfied:

9 Note that we consider reductions that establish almost-everywhere security, so it is
important for the reduction to specify on which input lengths it works.

On One-Way Functions, the Worst-Case Hardness 247

– lprg, lprf are time-constructible and increasing.
– For any T -time probabilistic adversary A, and any input length n (for f), let

nprg (resp nprf) be the input length for PRG (resp PRF) such that

lprg(nprg) ≤ n < lprg(nprg + 1), lprf(nprf) ≤ n < lprf(nprf + 1)

(Note that such nprg, nprf always exist since lprg, lprf are increasing.) If A(1n)
distinguishes the cond EP-PRF f from random functions on input length n
with advantage ε(n), then
(a) either RA

prg(1
nprg) distinguishes fprg from random with advantage

1
pprg(nprg,1/ε(n)) ≥ 4εprg(nprg) on input length nprg in time Tprg(nprg);

(b) or RA
prf(1

nprf) distinguishes fprf from random functions with advantage
1

pprf(nprf ,1/ε(n)) ≥ 4εprf(nprf) on input length nprf in time Tprf(nprf).
In other words, if A breaks f on input length n, either we break fprg on input
length nprg, or we break fprf on input length nprf .

If such a black-box reduction exists, we can prove that f is indeed a (T, ε)-cond
EP-PRF if fprg is a (Tprg, εprg)-PRG and fprf a (Tprf , εprf)-PRF. Note that the
security parameters Tprg, εprg (and Tprf , εprf) for the PRG (and the PRF) will
usually be implicit in (but can be inferred from) the reduction itself, and we
sometimes simply omit them if they will be clear from the reduction.

As mentioned before, we observe that the cond EP-PRF we obtain in Theo-
rem 19 has a black-box security reduction.

Proposition 22. Let f be the cond EP-PRF in Theorem 19. f has a black-box
security reduction to a PRG and a PRF.

(In the full version, we will formally state and prove that f indeed has a black-
box reduction.)

We proceed to proving the uniform version of Lemma 20.

Lemma 23. Let F be a nice class of super-polynomial functions, δ > 2, β > 0
be any constants. Assume that there exist T1 ∈ F and a rate-1 efficient (T δ

1 , 0.1)-
cond (β/10)-EP-PRF h : {0, 1}n × [T1(n)] → {0, 1} with a poly-time black-box
security reduction to a (Tprg, εprg)-PRG fprg and a (Tprf , εprf)-PRF fprf . Then,
for every constant 0 < δ′ < δ − 1, every polynomial t(n) ≥ 2n, every T2 ∈ F
satisfying T2(n) ≤ T1(n/2), MKtP[T−1

2]|Qt
β

�∈ ioBPP.

The proof of Lemma 23 is deferred to the full version.
We notice that Lemma 23 also holds w.r.t. polynomial hardness (since the

reduction runs in polynomial time).

Lemma 24. Let s(·) be a threshold function, nε ≤ s(n) ≤ n − 2, ε > 0. Let
d(·) be a polynomial such that s−1(n) ≤ d(n/2), and β > 0 be a constant.
Assume that there exists a rate-1 efficient (poly, 0.1)-cond (β/10)-EP-PRF f :
{0, 1}n × [d(n)] → {0, 1} with a black-box security reduction to a (poly, εprg)-
PRG fprg and a (poly, εprf)-PRF fprf . Then, for every constant ε′ > 0, every
polynomial t(n) ≥ (1 + ε′)n, MKtP[s]|Qt

β
�∈ ioBPP.

248 Y. Liu and R. Pass

6 Rudich’s Conjecture and Non-containment in coAM

In this section, we show that the promise problem that characterized OWFs is
unlikely to be in coAM. As such, it yields the first example of problem outside of
AM∩ coAM whose worst-case hardness even just implies the existence of OWFs.

We will rely on Rudich’s conjecture as well as standard derandomization
assumptions. Rudich [Rud97] conjectured the existence of a pseudorandom gen-
erator secure against (co-)non deterministic attackers. Let us recall the definition
of such PRGs.

Definition 25 ([Rud97]). Let g : {0, 1}n → {0, 1}n+1 be an efficiently com-
putable function. We say that g is a pseudorandom generator with non-
deterministic hardness if for all poly-time non-uniform non-deterministic
machine A, there exists a negligible function μ such that for all n ∈ N,

Pr[A(1n,Un+1) = 1] − Pr[A(1n, g(Un)) = 1] ≤ μ(n)

In other words, no non-uniform attacker can prove random strings are “random”
with higher probability than pseudorandom strings. Notice that the order of the
probabilities is important – there exists a trivial attacker (by just guessing the
seed) if the order is switched.

We are now ready to state the Rudich’s conjecture that we rely on.

Conjecture 26 (Implied by [Rud97, Conjecture 4]). There exists a PRG
g : {0, 1}n → {0, 1}n+1 with non-deterministic hardness.

We proceed to showing that under Rudich’s conjecture (and assuming an
appropriate derandomization assumption), the promise problem we consider
is not contained in coAM. (In more detail, we will show that it is not in
io-coNP/poly, which contains coAM.)

Theorem 27. Assume that Conjecture 26 holds and E �⊆ ioNSIZE[2Ω(n)]. Then,
there exists a constant β > 0, a polynomial t1(n), such that for all polynomials
t(n) ≥ t1(n), MKtP[n − 2]|Qt

β
�∈ io-coNP/poly.

Due to space limit, we defer the proof of Theorem 27 to the full version.

Deferred Content. We defer our result on impossibility of Fully Black-box
Constructions to the full version.

Acknowledgements. We thank the anonymous FOCS and TCC reviewers for their
helpful comments.

On One-Way Functions, the Worst-Case Hardness 249

References

[ABK+06] Allender, E., Buhrman, H., Kouckỳ, M., Van Melkebeek, D., Ronneb-
urger, D.: Power from random strings. SIAM J. Comput. 35(6), 1467–1493
(2006)

[AD97] Ajtai, M. and Dwork, C.: A public-key cryptosystem with worst-
case/average-case equivalence. In: Leighton, F.T., Shor, P.W. (eds.) Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pp. 284–293. ACM
(1997)

[AF09] Antunes, L., Fortnow, L.: Worst-case running times for average-case algo-
rithms. In: 2009 24th Annual IEEE Conference on Computational Com-
plexity, pp. 298–303. IEEE (2009)

[AFvMV06] Antunes, L., Fortnow, L., Van Melkebeek, D., Vinodchandran, N.V.: Com-
putational depth: concept and applications. Theor. Comput. Sci. 354(3),
391–404 (2006)

[AGGM06] Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing
one-way functions on NP-hardness. In: STOC 2006, pp. 701–710 (2006)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: Gary L. Miller (ed.) Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pp. 99–108. ACM (1996)

[All01] Allender, E.: When worlds collide: derandomization, lower bounds, and
kolmogorov complexity. In: Hariharan, R., Vinay, V., Mukund, M. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 1–15. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45294-X 1

[BDV17] Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness
through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 23

[BI87] Blum, M., Impagliazzo, R.: Generic oracles and oracle classes. In: 28th
Annual Symposium on Foundations of Computer Science (SFCS 1987),
pp. 118–126. IEEE (1987)

[BLMP23] Ball, M., Liu, Y., Mazor, N., Pass, R.: On interactive Kolmogorov com-
plexity and key-agreement, Kolmogorov comes to cryptomania (2023)

[Blu82] Blum, M.: Coin flipping by telephone - a protocol for solving impossible
problems. In: COMPCON 1982, Digest of Papers, Twenty-Fourth IEEE
Computer Society International Conference, San Francisco, California,
USA, February 22-25, 1982, pp. 133–137. IEEE Computer Society (1982)

[BM84] Blum, M., Micali, S.: How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

[Bra83] Brassard, G.: Relativized cryptography. IEEE Trans. Inf. Theory 29(6),
877–893 (1983)

[BT03] Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for
np problems. In: FOCS 2003, pp. 308–317 (2003)

[CHO+20] Chen, L., Hirahara, S., Oliveira, I.C., Pich, J., Rajgopal, N., Santhanam,
R.: Beyond natural proofs: Hardness magnification and locality. In: 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-319-63688-7_23

250 Y. Liu and R. Pass

[CJW19] Chen, L., Jin, C., Williams, R.R.: Hardness magnification for all sparse
NP languages. In: 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1240–1255. IEEE, (2019)

[CMMW19] Chen, L., McKay, D.M., Murray, C.D., Williams, R.R.: Relations and
equivalences between circuit lower bounds and karp-lipton theorems.
In: 34th Computational Complexity Conference (CCC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

[CT19] Chen, L., Tell, R.: Bootstrapping results for threshold circuits “just
beyond” known lower bounds. In: Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pp. 34–41 (2019)

[DH76] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf.
Theory 22(6), 644–654 (1976)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: STOC 1990, pp. 416–426 (1990)

[GG00] Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of
lattice problems. J. Comput. Syst. Sci. 60(3), 540–563 (2000)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. In: FOCS (1984)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[Gur89] Gurevich, Y.: The Challenger-solver Game: Variations on the Theme of
P = NP. In Logic in Computer Science Column, The Bulletin of EATCS
(1989)

[Har83] Hartmanis, J.: Generalized kolmogorov complexity and the structure of
feasible computations. In: 24th Annual Symposium on Foundations of
Computer Science (SFCS 1983), pp. 439–445 (1983)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[Hir18] Hirahara, S.: Non-black-box worst-case to average-case reductions within
NP. In: 59th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2018, pp. 247–258 (2018)

[Hir22] Hirahara, S.: Np-hardness of learning programs and partial MCSP. In:
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 968–979. IEEE (2022)

[HN23] Hirahara, S., Nanashima, M.: Learning in pessiland via inductive inference
(2023)

[IL89] Impagliazzo, R., Luby, M.: One-way functions are essential for complexity
based cryptography (extended abstract). In: 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Car-
olina, USA, 30 October - 1 November 1989, pp. 230–235 (1989)

[Ila20] Ilango, R.: Approaching MCSP from above and below: hardness for a con-
ditional variant and AC∧0[p]. In: 11th Innovations in Theoretical Com-
puter Science Conference, ITCS 2020, pp. 34:1–34:26 (2020)

[Ila21] Ilango, R.: The minimum formula size problem is (eth) hard. In: 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 427–432. IEEE (2021)

[Ila22] Ilango, R.: Constant depth formula and partial function versions of MCSP
are hard. SIAM J. Comput. (0), FOCS20–317 (2022)

On One-Way Functions, the Worst-Case Hardness 251

[ILO20] Ilango, R., Loff, B., Carboni Oliveira, I.: NP-hardness of circuit mini-
mization for multi-output functions. In: 35th Computational Complexity
Conference, CCC 2020, pp. 22:1–22:36 (2020)

[Imp95] Impagliazzo, R.: A personal view of average-case complexity. In: Structure
in Complexity Theory 1995, pp. 134–147 (1995)

[IRS21] Ilango, R., Ren, H., Santhanam, R.: Hardness on any samplable dis-
tribution suffices: new characterizations of one-way functions by meta-
complexity. Electron. Colloquium Comput. Complex. 28, 82 (2021)

[KC00] Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing,
21-23 May 2000, Portland, OR, USA, pp. 73–79 (2000)

[Ko86] Ko, K.-I.: On the notion of infinite pseudorandom sequences. Theor. Com-
put. Sci. 48(3), 9–33 (1986)

[Kol68] Kolmogorov, A.N.: Three approaches to the quantitative definition of
information. Int. J. Comput. Math. 2(1–4), 157–168 (1968)

[Lev03] Levin, L.A.: The tale of one-way functions. Probl. Inf. Transm. 39(1),
92–103 (2003)

[LP20] Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity.
In: 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pp. 1243–1254.
IEEE (2020)

[LP21a] Liu, Y., Pass, R.: Cryptography from sublinear time hardness of time-
bounded kolmogorov complexity. In: STOC (2021)

[LP21b] Liu, Y., Pass, R.:. On the possibility of basing cryptography on EXP �=
BPP. In: CRYPTO (2021)

[LP22a] Liu, Y., Pass, R.: Leakage-resilient hardness vs randomness. Electron.
Colloquium Comput. Complexity (2022). https://eccc.weizmann.ac.il/
report/2022/113/

[LP22b] Liu, Y., Pass, R.: On one-way functions from NP-complete problems. In:
Proceedings of the 37th Computational Complexity Conference, pp. 1–24
(2022)

[MMW19] McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on
resource-bounded compression imply strong separations of complexity
classes. In: Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1215–1225 (2019)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2),
151–158 (1991)

[Oli19] Oliveira, I.C.: Randomness and intractability in kolmogorov complexity.
In: 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2019)

[OPS19] Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-
of-the-art lower bounds (2019)

[OS18] Oliveira, I.C., Santhanam, R.: Hardness magnification for natural prob-
lems. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 65–76. IEEE (2018)

[Reg04] Regev, O.: New lattice based cryptographic constructions. J. ACM 51(6),
899–942 (2004)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: STOC, pp. 387–394 (1990)

https://eccc.weizmann.ac.il/report/2022/113/
https://eccc.weizmann.ac.il/report/2022/113/

252 Y. Liu and R. Pass

[RSA83] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems (reprint). Commun. ACM 26(1),
96–99 (1983)

[Rud88] Rudich, S.: Limits on the Provable Consequences of One-Way Functions.
University of California at Berkeley (1988)

[Rud97] Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. In: Rolim,
J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 85–93. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63248-4 8

[Sip83] Sipser, M.: A complexity theoretic approach to randomness. In: Proceed-
ings of the 15th Annual ACM Symposium on Theory of Computing, 25-27
April, 1983, Boston, Massachusetts, USA, pp. 330–335. ACM (1983)

[Tra84] Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-
force searches) algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

[Yab59a] Yablonski, S.: The algorithmic difficulties of synthesizing minimal switch-
ing circuits. Problemy Kibernetiki 2(1), 75–121 (1959)

[Yab59b] Yablonski, S.V.: On the impossibility of eliminating perebor in solving
some problems of circuit theory. Doklady Akademii Nauk SSSR 124(1),
44–47 (1959)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3-5 November 1982, pp. 80–91 (1982)

https://doi.org/10.1007/3-540-63248-4_8

One-Way Functions and pKt Complexity

Shuichi Hirahara1 , Zhenjian Lu2(B) , and Igor C. Oliveira2

1 National Institute of Informatics, Chiyoda, Japan
s_hirahara@nii.ac.jp

2 University of Warwick, Coventry, UK
{zhenjian.lu,igor.oliveira}@warwick.ac.uk

Abstract. We introduce pKt complexity, a new notion of time-bounded
Kolmogorov complexity that can be seen as a probabilistic analogue of
Levin’s Kt complexity. Using pKt complexity, we upgrade two recent
frameworks that characterize one-way functions (OWF) via symmetry of
information and meta-complexity, respectively. Among other contribu-
tions, we establish the following results:
(i) OWF can be based on the worst-case assumption that BPEXP is

not contained infinitely often in P/poly if the failure of symmetry of
information for pKt in the worst-case implies its failure on average.

(ii) (Infinitely-often) OWF exist if and only if the average-case easiness
of approximating pKt with two-sided error implies its (mild) average-
case easiness with one-sided error.

Previously, in a celebrated result, Liu and Pass (CRYPTO 2021 and
CACM 2023) proved that one can base (infinitely-often) OWF on the
assumption that EXP � BPP if and only if there is a reduction from
computing Kt on average with zero error to computing Kt on average
with two-sided error. In contrast, our second result shows that closing the
gap between two-sided error and one-sided error average-case algorithms
for approximating pKt is both necessary and sufficient to unconditionally
establish the existence of OWF.

Keywords: one-way functions · Kolmogorov complexity · average-case
complexity · symmetry of information.

1 Introduction

1.1 Context and Motivation

This paper is primarily concerned with research directions (1) and (2) described
next:

(1) Existence of one-way functions.
A one-way function is a function that is easy to compute but hard to invert on
average [11]. Due to its equivalence to several basic cryptographic primitives,
such as private-key encryption [14], pseudorandom generators [15], digital signa-
tures [48], and commitment schemes [43], the existence of one-way functions is
widely regarded as the most important open problem in Cryptography. In order
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 253–286, 2025.
https://doi.org/10.1007/978-3-031-78011-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_9&domain=pdf
http://orcid.org/0000-0002-3101-446X
http://orcid.org/0009-0007-3990-4751
http://orcid.org/0000-0003-4048-2385
https://doi.org/10.1007/978-3-031-78011-0_9

254 S. Hirahara et al.

to be precise in our subsequent discussion, we capture the question of the exis-
tence of one-way functions through the following formal statement:

∃OWF: There is a function f = {fn} ∈ FP, where each fn : {0, 1}n →
{0, 1}poly(n), such that for every probabilistic polynomial time (PPT) algorithm
A, and for every large enough n,

Pr
A, x∼{0,1}n

[A(fn(x)) ∈ f−1
n (fn(x))] ≤ 1

nω(1)
.

(2) Base one-way functions on a natural worst-case computational
assumption.
Since a proof of the existence of one-way functions would imply that P �= NP,
a less ambitious problem is whether we can base their existence on a widely
believed worst-case complexity assumption. This question has also received sig-
nificant attention over the past several decades (see, e.g., [1,7–9,21,25,36,42]
and references therein).

Recently, there have been attempts to investigate directions (1) and (2)
through the lens of the theory of (time-bounded) Kolmogorov complexity, which
studies the minimum encoding length of binary strings according to different
measures of complexity. Interestingly, the new approaches are complete, in the
sense that they provide both necessary and sufficient conditions to achieve (1)
and (2). We can categorize these approaches into two strands of research:

(A) Structural theory of time-bounded Kolmogorov complexity.
This research direction relates the existence of one-way functions to the fail-
ure of key properties of (time-unbounded) Kolmogorov complexity in the time-
bounded setting, such as language compression, conditional coding, and symme-
try of information.

(B) Complexity of computing time-bounded Kolmogorov complexity.
This research direction, often referred to as meta-complexity, connects one-way
functions to the computational hardness of estimating the time-bounded Kol-
mogorov complexity of a given string.

In both (A) and (B), several measures of (time-bounded) Kolmogorov com-
plexity have been considered, such as Kpoly, pKpoly and rKpoly in (A), as in
[18,38,39], and K, Kpoly, pKpoly, Kt, KT, and cKpoly in (B), as in [24,33–35,37,47].

In this work, we advance this area of research by proposing a new measure
of time-bounded Kolmogorov complexity that offers significant benefits for the
investigation of connections between (A) and (B) and directions (1) and (2).
We describe our contributions in detail next.

One-Way Functions and pKt Complexity 255

1.2 Our Contributions

pKt: A Probabilistic Analogue of Levin’s Kt Complexity. Recall that the
Kolmogorov complexity of a string x ∈ {0, 1}∗, denoted K(x), is the description
length |p| ∈ N of the shortest program p that prints x. Formally, we fix a universal
machine U , and minimize over the length of all strings p such that U(p) = x.

Despite the numerous applications of Kolmogorov complexity, its inherent
uncomputability becomes an important issue in situations where an upper bound
on the running time of algorithms is relevant. To mitigate this issue, Levin
[31] introduced a time-bounded variant of Kolmogorov complexity called Kt. In
Levin’s definition, the complexity of a string x considers both the length of a
program p generating x and its running time. Formally, Kt(x) denotes the mini-
mum over |p|+ �log t�, where p is a string such that U(p) = x when U computes
for at most t steps over the input string p. It is also possible to consider the
conditional Kt complexity of a string x given y, denoted Kt(x | y). In this case,
in addition to the input string p, we assume that the universal machine U has
random access to the string y. While the log t term might seem arbitrary at first,
it leads to a close relationship between Kt complexity and optimal search algo-
rithms. For this and other reasons, Levin’s definition has been highly influential
in algorithms and complexity theory (see, e.g., [2–4]).

In this work, we put forward a probabilistic variant of Kt complexity called
pKt. Informally, the new definition is simply Kt in the presence of public ran-
domness, i.e., x has “small” pKt complexity if with probability at least 2/3 over
the randomness r, x has “small” Kt complexity given access to r (think of it
as Kt in the “Common Random String” (CRS) model). Formally, for a string
x ∈ {0, 1}∗,

pKt(x) := min

{
k ∈ N

∣∣ Pr
r∼{0,1}2k

[
Kt(x | r) ≤ k

] ≥ 2
3

}
.

Thus bounded pKt complexity means that in the presence of a typical random
string r, x has bounded Kt complexity. A key advantage of pKt over Kt is that
the former considers randomized computations, which provides a much more
suitable setting for cryptography.

Our definition of pKt is inspired by rKt, a variant of Kt complexity consid-
ered in [44], and pKpoly, a similar probabilistic notion of Kolmogorov complexity
for fixed time bounds considered in [13] (see Section 2 for the corresponding
definitions). More information about probabilistic notions of time-bounded Kol-
mogorov complexity is available in [40].

OWF from BPEXP Lower Bounds via Worst-Case to Average-Case
Failure of SoI. We explore the possibility of basing one-way functions on a mild
worst-case computational assumption. We consider the widely believed hypoth-
esis that BPEXP � i.o.SIZE[poly], i.e., that there is a language computable in
probabilistic time 2poly(n) that requires super-polynomial size Boolean circuits
on all large enough input lengths. (Note that this is significantly weaker than
the standard hypothesis from derandomization that E � i.o.SIZE[2o(n)] [28].) In

256 S. Hirahara et al.

order to state our result, we first need to review a central notion from the theory
of Kolmogorov complexity.

Symmetry of Information (SoI) is a fundamental property of Kolmogorov
complexity [53] that has found applications in a number of areas (see, e.g., [32,
50]). It states that for every pair of strings x, y ∈ {0, 1}n,

K(x, y) ≈ K(y) + K(x | y) ≈ K(x) + K(y | x),

up to an additive factor of order ±O(log n) in each equation. In other words,
SoI says that: (i) to describe both x and y it is sufficient to describe x optimally
without considering y, then describe y optimally assuming access to a description
of x; and (ii) there is no significantly better way to describe the pair x, y. While
(i) is easily seen to hold, (ii) is non-trivial and states that

K(x, y) ≥ K(x) + K(y | x) − O(log n).

Interestingly, while SoI holds for time-unbounded Kolmogorov complexity, it
is known that it fails for Levin’s Kt complexity. More precisely, [49] established
that for every large n, there is a pair of strings x, y ∈ {0, 1}n such that

Kt(x, y) < Kt(x) + Kt(y | x) − ω(log n).

In contrast, whether SoI fails for other measures of time-bounded Kolmogorov
complexity remains open. It is known that this must be the case under the
existence of one-way functions [38,39]. More recently, [18] proved that SoI fails
for pKpoly in a certain average-case sense if and only if one-way functions exist.
In other words, it is not only sufficient but also necessary to understand SoI in
time-bounded Kolmogorov complexity in order to determine the existence of one-
way functions. Unfortunately, while SoI fails for Kt (unconditionally), we appear
to be far from establishing the failure of SoI for polynomial-time measures such
as pKpoly.

This motivates the consideration of the failure of SoI for pKt complexity,
which is merely a variant of Kt in the presence of a random string. To investi-
gate this question and its connections to cryptography, we introduce the following
statements.

Worst-Case-Asymmetry-pKt: For every constant c > 0, if n is large enough then
there exist x, y ∈ {0, 1}n such that

pKt(x, y) < pKt(x) + pKt(y | x) − c · log n.

Average-Case-Asymmetry-pKt: There is a polynomial-time samplable distribution
family {Dn}, where each Dn is supported over {0, 1}n×{0, 1}n, and a polynomial
q such that for every constant c > 0 and for every large enough n,

Pr
(x,y)∼Dn

[pKt(x, y) < pKt(x) + pKt(y | x) − c · log n] ≥ 1
q(n)

.

We are now ready to state the main result of this section.

One-Way Functions and pKt Complexity 257

Theorem 1 (Conditional Equivalence Between OWF and Worst-to-
Average-Case Failure of SoI). Assume that BPEXP � i.o.SIZE[poly]. The
following equivalence holds:

(Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt) ⇐⇒ ∃OWF

Additionally, we have

Average-Case-Asymmetry-pKt ⇐⇒ ∃OWF

BPEXP � i.o.SIZE[poly] =⇒ Worst-Case-Asymmetry-pKt

As a consequence of Theorem 1, we can base one-way functions on the worst-
case hardness assumption BPEXP � i.o.SIZE[poly] if the failure of SoI for pKt
in the worst case implies its failure on average. Note that the assumption that
BPEXP � i.o.SIZE[poly] is significantly weaker than NP � i.o.SIZE[poly].

Corollary 1. Suppose

Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt.

Then BPEXP � i.o.SIZE[poly] ⇒ ∃OWF.

In fact, we show that Average-Case-Asymmetry-pKt is equivalent to a worst-
case version of asymmetry of information with some additive error: pKt(x, y) <
pKt(x) + pKt(y | x) − O(cdt(x, y) + log t) for some x, y ∈ {0, 1}n, and some
t ≥ poly(n), where cdt(x, y) := pKt(x, y)−K(x, y) is called computational depth.
Thus, we can base one-way functions on BPEXP � i.o.SIZE[poly] if the failure of
SoI for pKt in the worst case is witnessed by a pair (x, y) of strings with small
computational depth. We refer to the full version [19] for details.

We note that the relation between worst-case and average-case complexity
is well understood in certain settings, such as with respect to computational
hardness against non-uniform circuits (see, e.g., [10,51] and references therein).
Whether similar “amplification” techniques can be developed in the context of
(a)symmetry of information is an intriguing research direction.

It would be very interesting to remove the assumption BPEXP �
i.o.SIZE[poly] from Theorem 1. Towards showing that the implication

Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt

yields one-way functions, we prove, without the lower bound assumption, that
if the implication Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt is
true, then natural properties [46] against sub-exponential size circuits do not
exist. (The latter statement about natural properties is closely related to the
existence of one-way functions of quasi-polynomial security.) We refer to the full
version [19] for more details about this result.

258 S. Hirahara et al.

OWF via One-Sided to Two-Sided Error Reductions for Approximat-
ing pKt. In this section, we consider the more ambitious goal of unconditionally
proving the existence of one-way functions. As mentioned above, several recent
results have shown that to achieve this goal it is sufficient to prove that certain
meta-computational problems about time-bounded Kolmogorov complexity are
computationally hard [24,33–35,37,47].

We upgrade this approach by showing that obtaining a reduction from two-
sided average-case approximations of pKt to one-sided average-case approxima-
tions of pKt suffices to show the existence of one-way functions. In other words,
instead of proving an unconditional lower bound, as in previous papers, designing
a reduction between two notions of average-case complexity is enough.

To formalize this result, we will need a couple of definitions. For a function
τ : N → N, let GapMpKtP[τ] be the following promise problem (YES,NO):

YES := {(x, 1s) | pKt(x) ≤ s} ,

NO := {(x, 1s) | pKt(x) > s + τ(|x|)} .

For an algorithm A, x ∈ {0, 1}∗, and s ∈ N, we say that A decides GapMpKtP[τ]
on (x, 1s) if the following holds:

A(x, 1s) =

⎧⎪⎨
⎪⎩
1 if pKt(x) ≤ s,

0 if pKt(x) > s + τ(|x|),
either 0 or 1 otherwise.

We will also need the following statements.

2-Sided-Error-Approx-pKt: For every polynomial-time samplable distribution fam-
ily {Dn}n supported over {0, 1}n, and every polynomial q, there exist a PPT
algorithm A and a constant c > 0 such that for all sufficiently large n and all
1 ≤ s ≤ n + O(log n),

Pr
x∼Dn,A

[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1 − 1
q(n)

,

where τ(n) = c · log n.

Mild-1-Sided-Error-Approx-pKt: There is ε > 0 and a PPT algorithm B such that,
for every large enough n, the following holds:

(1) If x ∈ {0, 1}n and pKt(x) ≤ nε, then Pr
B
[B(x) = 1] ≥ 2

3 .

(2) With probability at least 1/n over x ∼ {0, 1}n, Pr
B
[B(x) = 0] ≥ 2

3 .

(Note that, while 2-Sided-Error-Approx-pKt considers an arbitrary polynomial-
time samplable distribution, Mild-1-Sided-Error-Approx-pKt is only concerned
with the uniform distribution.)

One-Way Functions and pKt Complexity 259

A remark about terminology is in order. We note that any PPT algorithm
B that accepts every string x with pKt complexity at most nε and rejects every
string x with pKt complexity at least 0.99n satisfies conditions (1) and (2) above.
This is because one can show that the overwhelming majority of n-bit strings
have pKt complexity close to n. Since (2) significantly relaxes the correctness
requirement of B on strings of large complexity, we can think of the algorithm
B as a mild approximator for pKt. Regarding the error, if we think of strings
x with pKt complexity at most nε as positive instances, and strings x with
pKt complexity at least 0.99n as negative instances, then B makes mistakes
only on negative instances. On the other hand, the algorithm A in the state-
ment 2-Sided-Error-Approx-pKt can make mistakes on both negative and positive
instances. Therefore, A is a two-sided error algorithm, while B is one-sided.
(In Section 1.3 below, we discuss a proof that Mild-1-Sided-Error-Approx-pKt ⇒
2-Sided-Error-Approx-pKt.)

Similarly to the statement ∃OWF defined above, we can consider the weaker
statement ∃i.o.OWF, which postulates the existence of one-way functions that
are hard to invert on infinitely many input lengths. (The precise definition of
∃i.o.OWF appears in Section 2.)

We are ready to state the main result of this section.

Theorem 2. (Equivalence Between OWF and One-Sided to Two-Sided
Error Reductions for pKt). The following equivalence holds:

(2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt) ⇐⇒ ∃i.o.OWF

Additionally, we have1

¬ 2-Sided-Error-Approx-pKt ⇐⇒ ∃i.o.OWF

¬Mild-1-Sided-Error-Approx-pKt holds unconditionally

Previously, in a celebrated result, Liu and Pass [34] proved that one can
base (infinitely-often) OWF on the assumption that EXP � BPP if and only if
there is a reduction from computing Kt on average with zero error under the
uniform distribution to computing Kt on average with two-sided error. In con-
trast, as a consequence of Theorem 2, (infinitely-often) one-way functions exist
unconditionally if there is a probabilistic average-case polynomial-time reduction
from mildly approximating pKt with one-sided error to approximating pKt with
two-sided error.2 Moreover, the existence of a quasi-polynomial-time reduction
suffices, due to the proof of a slightly stronger result in Section 1.3 below. There-
fore, this result shows that the hardness needed for one-way functions comes from
1 We state the result in this way to allow for a direct comparison with prior work.
2 It is also possible to define zero-error and one-sided error (as opposed to mildly

one-sided error) average-case notions of approximating pKt. However, employing
them in Theorem 2 would make the result weaker (i.e., it is easier to obtain a mild
one-sided error algorithm from a two-sided error algorithm than to obtain a zero-
error algorithm from a two-sided error algorithm). For completeness, we provide a
comprehensive discussion of these notions in the full version [19].

260 S. Hirahara et al.

the difference between 1-sided and 2-sided error, and not from the assumption
that EXP � BPP.

Theorem 2 suggests a tantalizing possibility: the existence of one-way func-
tions would follow from the design of an efficient reduction involving differ-
ent notions of average-case complexity for the same computational task.3 For
instance, a reduction of this nature is known for UP ∩ coUP and can be con-
structed from an instance checker [22].

Given the stakes, it is natural to consider potential barriers that one might
need to overcome when attempting to obtain such a reduction. In our next result,
we establish that a reduction cannot be obtained through the use of relativizing
techniques (in the sense of [6]). More precisely, we consider a scenario where
an oracle O is available to all computations, i.e., the universal machine defining
pKt, the samplers defining the polynomial-time samplable distributions, and the
algorithms that attempt to approximate pKtO. We prove the following result.

Theorem 3. There exists an oracle O ∈ PSPACE relative to which
2-Sided-Error-Approx-pKt is true, but Mild-1-Sided-Error-Approx-pKt is false.

In other words, techniques that hold in the presence of an arbitrary oracle
cannot be used to obtain a one-sided to two-sided error reduction for approxi-
mating pKt. Indeed, Theorem 3 provides an even stronger PSPACE-relativization
barrier in the sense of [20]. We refer to the full version [19] for further discussions
on this barrier.

We remark that many techniques employed in the investigation of time-
bounded Kolmogorov complexity and meta-complexity relativize, but not all
of them (see [16] for a striking recent example). For this reason, we view Theo-
rem 3 more as a guiding principle than a strong negative result suggesting that
one should not investigate such reductions.

1.3 Techniques

In this section, we discuss the proofs of Theorem 1 and Theorem 2, which rely
on some intermediate results that might be of independent interest. Since our
arguments make use of a number of techniques from time-bounded Kolmogorov
complexity and rely on several ideas from previous papers, we only provide a
high-level exposition, referring to the main body of the paper for further technical
details. After this discussion, we summarise some advantages of pKt complexity
over other time-bounded Kolmogorov complexity measures.

OWF and Worst-Case to Average-Case Failure of SoI for pKt (Theo-
rem 1). First, a careful adaptation of the techniques from [18] and [39] allows
us to establish an equivalence between the failure of SoI for pKt on average and
the existence of one-way functions.

3 In a sense, one can think of the result as an algorithmic approach to establish the
existence of one-way functions.

One-Way Functions and pKt Complexity 261

Theorem 4. The following equivalence holds:

Average-Case-Asymmetry-pKt ⇐⇒ ∃OWF.

However, the more complex notion of pKt introduces additional technicalities,
as we explain next. Using ideas from [39], it can be shown that if SoI for Kpoly

holds on average, then for an average image y of the candidate one-way function,
one can upper bound the Kpoly complexity of most (say, at least 1/2) of the pre-
images x of y as follows.

Kpoly(x | y) � log |f−1(y)| =: k.

Then by defining a sampling procedure that randomly picks a program of size
k and run it for polynomially many steps (conditional on y), x can be obtained
with probability roughly 2−k, which is 1/|f−1(y)|. Since this holds for at least
|f−1(y)|/2 pre-images, it follows that we obtain some pre-image with decent
probability. (Contrapositively, if ∃OWF then asymmetry of information for Kt

holds on average.)
Using similar ideas, we can show that if average-case SoI for pKt holds, then

for an average image y of the candidate one-way function, one can upper bound
the pKt complexity of most of its pre-images x as follows.

pKt(x | y) � log |f−1(y)| =: k.

Now since we can only upper bound the pKt complexity of a pre-image (instead
of pKpoly), the previously mentioned sampling procedure no longer works. This
is because, by the definition of pKt, the above only implies that for a uniformly
random string r ∈ {0, 1}2k

, there are integers s and t such that s+log t ≤ k and
there is a program of size s that, given y and r, runs in time t and outputs x.
In particular, t may not be bounded by poly(n) in this case.

To cope with this issue, we further observe that for most of the pre-images
x, with high probability over r ∼ {0, 1}2k

, any program that generates x, given r
and y, must be large in the sense that

K(x | y, r) ≥ |f−1(y)| − O(log n).

This can by shown by using a counting argument. Now given the above, we can
say that for a uniformly random string r ∈ {0, 1}2k

, there are integers s and t
such that s+ log t ≤ k and there is a program of size s that, given y and r, runs
in time t and outputs x. Moreover, s must be at least k − O(log n). Note that
this implies t = poly(n).

At this point, it seems we can carry out the previous argument and show
that we can obtain a pre-image of y in polynomial time, by randomly picking
a string r ∈ {0, 1}2k

, a program p ∈ {0, 1}≤k and running p for poly(n) steps,
while given oracle access to r and y. However, there is one more issue. To perform
this sampling procedure, we need to pick a uniformly random string r of length
2k, which is not necessarily poly(n). Fortunately, since we only need to run our

262 S. Hirahara et al.

programs for poly(n) steps, we do not need to keep the entire random string.
Instead, we can generate random bits on-the-fly and maintain the same behavior
of our program as if it were running with a pre-generated random string.

Next, complementing Theorem 4, we explore the failure of SoI for pKt in the
worst case. We are able to show that the latter holds under a worst-case circuit
lower bound assumption for a language in BPEXP. This is a key result which
allows us to link a worst-case lower bound in the complexity-theoretic regime to
the cryptographic regime in Theorem 1.

Theorem 5. If BPEXP � i.o.SIZE[poly] then Worst-Case-Asymmetry-pKt holds.

To our knowledge, this is the first result showing the failure of symmetry of
information for a probabilistic notion of time-bounded Kolmogorov complexity
under a lower bound assumption in the complexity-theoretic regime, as opposed
to a lower bound assumption in the cryptographic regime (e.g., [18,39]).

In Theorem 5 the goal is to construct a pair (x, y) of n-bit strings witness-
ing the asymmetry of information of this pair with respect to pKt complexity.
Inspired by the unconditional construction of such a pair with respect to Kt
complexity [49], we attempt a generalization of the argument to the probabilis-
tic setting of pKt. The construction of [49] relies on a simple (deterministic)
exhaustive search that defines an appropriate pair (x, y) and certifies the nec-
essary Kt bounds for the strings. Unfortunately, in a probabilistic setting, it is
unclear if a similar (probabilistic) exhaustive search specifies a canonical pair
(x, y) with the desired properties, which is needed in order to obtain upper
bounds on probabilistic Kolmogorov complexity.

In more detail, a key step in the proof from [49] is to compute given a string y
the set SKt

y ⊆ {0, 1}n of strings of conditional Kt complexity at most s, for some
threshold s. This is done in time O(2s) using a deterministic algorithm A that
decides whether Kt(x | y) ≤ s for a given x. In our case, we are only able to use
a corresponding randomized algorithm B that checks whether pKt(x | y) ≤ s or
pKt(x | y) ≥ 2s, with no guarantee on the remaining instances. Unfortunately,
the exhaustive search over all strings performed with the help of B will not
produce a fixed set SpKt

y , since its behaviour outside the promise region means
that on different executions a different set of strings could be added to SpKt

y ,
according to the internal randomness of B.

We attempt to fix this issue under the assumption that BPEXP �
i.o.SIZE[poly], which is sufficient for the construction of a non-trivial pseudodeter-
ministic pseudorandom generator. The latter allows us to perform an exhaustive
search over probabilistic algorithms in a way that produces a canonical pair (x, y)
with high probability.

It turns out that this is not quite enough to finish the proof, because under
the weak lower bound assumption BPEXP � i.o.SIZE[poly] we are only able to
construct strings of conditional pKt complexity larger than s in time roughly
22

o(s)
. This is an important issue that is not present in [49]. To address this

difficulty, we show via a more sophisticated iterative process for constructing
strings that symmetry of information is indeed violated for some pair (x, y)

One-Way Functions and pKt Complexity 263

specified during the process. Since this is somewhat delicate and technical to
describe, we refer the reader to Section 4.2.

It is easy to see that Theorem 1 follows from Theorem 4 and Theorem 5 (see
Section 4.3).4

OWF and 1-Sided to 2-Sided Error Reductions for Approximating pKt
(Theorem 2). To establish this result, we first obtain an equivalence between the
existence of (infinitely-often) one way functions and the average-case hardness
of approximating pKt complexity with two-sided error.

Theorem 6. The following equivalence holds:

¬ 2-Sided-Error-Approx-pKt ⇐⇒ ∃i.o.OWF.

The proof of Theorem 6 makes use of a connection between one-way functions
and the hardness of approximating (time-unbounded) Kolmogorov complexity
K [24], which can be adapted to pKt by investigating the relation between K
and pKt for strings generated by a polynomial-time samplable distribution. In
more detail, the argument in [24] relied on the use of the coding theorem for
time-unbounded Kolmogorov complexity. Here, we extend their approach and
employ a recently discovered efficient coding theorem for pKpoly [41], which also
applies to pKt.

Next, we establish an unconditional lower bound against probabilistic algo-
rithms that mildly approximate pKt on average with one-sided error.

Theorem 7. Mild-1-Sided-Error-Approx-pKt is false. Moreover, the correspond-
ing lower bound holds against randomized algorithms running in time npoly(log n).

Theorem 7 highlights an important difference between pKt and Kt that plays
a central role in the proof of Theorem 2: we can establish unconditional complex-
ity lower bounds for computing pKt, while the same result is unknown for Kt.
The proof of Theorem 7 modifies an argument employed to show a complexity
lower bound of a similar nature for estimating rKt complexity [44]. It can be
described as an indirect diagonalization that heavily relies on techniques from
computational pseudorandomness. The proof relies on the following key lemmas:

1. If pKt can be approximated on average with mild-one-sided error in time
npoly(log n), then BPE ⊆ SIZE[npoly(log n)].

2. If pKt can be approximated on average with mild-one-sided error in time
npoly(log n), then PSPACE ⊆ BPTIME[npoly(log n)]. In particular, under this
assumption DSPACE[2no(1)

] ⊆ BPE. (We observe that this step is problematic

4 We note that the proof that there are strings (x, y) for which symmetry of infor-
mation fails is by constructing such strings for which the running time t of the pKt
witness is exponential. On the other hand, the proof that average-case symmetry of
information implies that we can break any one-way function uses the fact that on any
samplable distribution, with high probability on the sample y, the pKt witness has
polynomial running time. Bridging this gap is a very interesting research direction.

264 S. Hirahara et al.

in the setting of Kt, as it relies on techniques from pseudorandomness whose
underlying algorithms are randomized.)
These two lemmas, which require the analysis of different pseudorandom
generators and of the time-bounded Kolmogorov complexity of their output
strings, use that pKt is both “probabilistic” and “exponential” (as opposed to
Kt, which is “deterministic”, and pKpoly, which is “polynomial”).

3. There is a language in DSPACE[2no(1)
]\SIZE[npoly(log n)].

The proof of this third lemma uses a standard diagonalization technique.

Assuming Mild-1-Sided-Error-Approx-pKt holds, we obtain from Items 1 and 2
that DSPACE[2no(1)

] ⊆ BPE ⊆ SIZE[npoly(log n)], in contradiction with Item 3.
Finally, Theorem 2 easily follows from Theorem 6 and Theorem 7 (see

Section 5.3).
We note in passing that Theorem 6 can be used to give a reduction from

the task of approximating pKt with two-sided error over any polynomial-time
samplable distribution to the task of approximating pKt with one-sided error
over the uniform distribution and, in particular, can be used to prove

Mild-1-Sided-Error-Approx-pKt ⇒ 2-Sided-Error-Approx-pKt.

Indeed, under Mild-1-Sided-Error-Approx-pKt it is not hard to show that every
candidate cryptographic pseudorandom generator can be broken. Since the lat-
ter is equivalent to the non-existence of (infinitely-often) one-way functions
[15] (i.e., ¬∃i.o.OWF), we immediately derive 2-Sided-Error-Approx-pKt from
Theorem 6.

The benefits of pKt complexity. We summarize here some advantages of pKt
over other time-bounded Kolmogorov complexity measures:

– An optimal coding theorem is known to hold unconditionally for pKpoly [41]
and for pKt. This is a key principle in Kolmogorov complexity and a very use-
ful tool in applications. The same result is not known to hold unconditionally
for other complexity measures.

– A central aspect in recent investigations of meta-complexity and its appli-
cations is the advice complexity and time-bounded Kolmogorov complex-
ity measure associated with the reconstruction procedure of pseudorandom
generators. When using pKpoly and pKt, existing generators offer superior
bounds, which allow results to be more easily established in the polynomial-
time regime as opposed to the quasi-polynomial time regime and above.

– In contrast to the situation for pKpoly and other polynomial-time complexity
measures, we have unconditional super-polynomial complexity lower bounds
for approximating pKt (as in Theorem 7).

– The unconditional failure of symmetry of information is only known to hold
for an exponential-time measure (Kt), which suggests that it will be easier to
resolve this question for pKt and rKt as opposed to polynomial-time measures
such as pKpoly. Indeed, showing the failure of symmetry of information for
certain polynomial-time measures would imply that P �= NP [17], while no
consequence of a similar form is known in the case of pKt.

One-Way Functions and pKt Complexity 265

The first two bullets highlight advantages of the probabilistic measures pKpoly

and pKt over deterministic complexity measures such as Kt and Kt, while the last
two bullets highlight the advantages of pKt over polynomial-time measures (such
as pKpoly). We also note that, while pKt is closely related to Kt, super-polynomial
complexity lower bounds are not known for the problem of computing Kt. Over-
all, the aforementioned features make pKt complexity an attractive complexity
measure for the investigation of connections between one-way functions and the
theory of time-bounded Kolmogorov complexity.

1.4 Directions and Open Problems

There are a few directions to be explored that would advance this research
program. Moreover, to our knowledge the concrete problems listed below might
all be within the reach of existing techniques.

Theorem 5 establishes the failure of SoI for pKt under a circuit lower bound
assumption. In contrast, as mentioned above, it is known unconditionally that
SoI fails for Kt. Can the same be done for pKt? If not, can we connect this ques-
tion to major open problems about the power of randomness in computation?

Easiness assumptions can often be used to establish symmetry of informa-
tion for different complexity measures [12,13,17]. Is it possible to prove that if
BPEXP ⊆ i.o.SIZE[poly] then SoI holds for pKt on infinitely many input lengths
(i.e., ¬Worst-Case-Asymmetry-pKt)? This would allow us to strengthen Theo-
rem 2 and obtain the following equivalence:

(Worst-Case-Asymmetry-pKt =⇒ Average-Case-Asymmetry-pKt)

(BPEXP � i.o.SIZE[poly] =⇒ ∃OWF)

In other words, we would obtain that connecting the failure of SoI for pKt in the
worst case and in the average case is not only sufficient but also necessary to base
one-way functions on a worst-case non-uniform lower bound for BPEXP. Given
the techniques developed in previous papers, the main difficulty in showing SoI
for pKt from the assumption BPEXP ⊆ i.o.SIZE[poly] seems to be that it states
a non-uniform upper bound instead of a uniform one.

We obtained an unconditional lower bound against probabilistic quasi-poly-
time algorithms for the task of estimating pKt complexity (Theorem 7). If one
could show a sub-exponential time lower bound, this would relax even more
the running time of the reduction from two-sided approximation to mild one-
sided approximation needed to establish the existence of one-way functions in
Theorem 2.

Finally, there would be significant consequences to complexity theory and
cryptography if one could show that

2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt.

266 S. Hirahara et al.

Are there additional difficulties that must be overcome beyond the relativization
barrier established in Theorem 3?

Acknowledgements. We are thankful to Eric Allender for suggesting the inves-
tigation of the failure of symmetry of information for Kt and its connections to
cryptography in light of the results in [18]. We also appreciate the anonymous
reviewers for their valuable feedback on the presentation. This work received sup-
port from the Royal Society University Research Fellowship URF\R1\191059;
the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre
for Discrete Mathematics and its Applications (DIMAP) at the University of
Warwick.

Remainder of the paper. We give the necessary background in Section 2. In
Section 3, we formally define pKt and state some useful properties. We prove
Theorem 1 in Section 4, and Theorem 2 in Section 5. Due to space constraints,
we omit many proofs in this extended abstract. The full version of the paper is
available at [19].

2 Preliminaries

For a probability distribution D and a string x ∈ {0, 1}∗, we use D(x) to
denote the probability that x is sampled from D. For a distribution D over
{0, 1}n × {0, 1}n and a string y ∈ {0, 1}n, we let D(· | y) denote the conditional
distribution of D on the first half given that the second half is y.

One-Way Functions. Let FP denote the set of functions that can be computed
in deterministic polynomial time.

Definition 1 (One-Way Function). We say that a function f = {fn} ∈ FP,
where fn : {0, 1}n → {0, 1}poly(n), is a one-way function if for every probabilistic
polynomial time (PPT) algorithm A, and for every large enough n,

Pr
A, x∼{0,1}n

[A(f(x)) ∈ f−1(f(x))] ≤ 1
nω(1)

.

Definition 2 (Infinitely-Often One-Way Function). We say that a func-
tion f = {fn} ∈ FP, where fn : {0, 1}n → {0, 1}poly(n), is an infinitely-often
one-way function if for every probabilistic polynomial time (PPT) algorithm A,
there is an infinite set SA ⊆ N such that for every n ∈ SA,

Pr
A, x∼{0,1}n

[A(fn(x)) ∈ f−1
n (fn(x))] ≤ 1

nω(1)
.

Note that the set SA of inputs can depend on A. It is possible to show that
this definition implies that for every k there is an infinite set Sk ⊆ N such that
every PPT algorithm A that runs in time O(nk) only succeeds to invert f with
negligible probability on large input lengths n ∈ SA. (This is because one can
define a “universal” PPT algorithm B that runs every algorithm of time bound
nk+1 and description length log n while trying to invert fn.)

One-Way Functions and pKt Complexity 267

Theorem 8 ([26,27]). Assume infinitely-often one-way functions do not exist.
Let {Dn}n be a family of polynomial-time samplable distributions, and let q be
any polynomial. There exists a probabilistic polynomial-time algorithm B such
that for all n ∈ N,

Pr
x∼Dn,B

[Dn(x)
2

≤ B(1n, x) ≤ Dn(x)
]

≥ 1 − 1
q(n)

.

Kolmogorov Complexity. We fix a universal Turing machine U . We write
U(p) to indicate the output of U on an input string p, where p is written on the
input tape. For a string y, we write Uy to indicate that U has random access to
y. In other words, y is written on an oracle tape, and U can query the i-th bit
of y by specifying the index i on a query tape.

Definition 3 (Kt [31]). For x, y ∈ {0, 1}∗, the time-bounded Kolmogorov com-
plexity of x given y is defined as

Kt(x | y) := min
p∈{0,1}∗, t∈N

{
|p| + �log t� | Uy(p) outputs x within t steps

}
.

Definition 4 (pKt [13]). Let x, y ∈ {0, 1}∗ and t ∈ N. The probabilistic t-time-
bounded Kolmogorov complexity of x given y is defined as

pKt(x | y) := min
{

k ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[∃ p ∈ {0, 1}k s.t. Uy,r(p)
outputs x within t steps

]
≥ 2

3

}
.

We recall some useful results regarding Kolmogorov complexity.

Lemma 1 (See, e.g., [18, Lemma 9]). There exists a universal constant b > 0
such that for every distribution family {En}n, where each En is over {0, 1}n, and
for all n ∈ N,

Pr
x∼En

[
K(x) < log

1
En(x)

− α

]
<

nb

2α
.

Theorem 9 (Coding Theorem [30]). Let E be a distribution whose cumula-
tive distribution function can be computed by some program p. Then for every
x ∈ Support(E),

K(x | p) ≤ log
1

E(x) + O(1).

Theorem 10 (Efficient Coding Theorem [41]). For every distribution fam-
ily {Dn}n samplable in polynomial time, where each Dn is supported over {0, 1}n,
there exists a polynomial p such that for every x ∈ Support(Dn),

pKp(n)(x) ≤ log
1

Dn(x)
+ log p(n).

Theorem 11 ([18]). The following are equivalent.

268 S. Hirahara et al.

1. There exist no (resp. infinitely-often) one-way functions.
2. (Average-Case Conditional Coding) For every polynomial-time sam-

plable distribution family {Dn}n∈N supported over {0, 1}n ×{0, 1}n and every
polynomial q, there exists a polynomial p such that for infinitely many (resp.
all) n,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1
Dn(x | y)

+ log p(n)
]

≥ 1 − 1
q(n)

.

Pseudorandomness. We will need the following results in pseudorandomness.

Lemma 2 ([28,45]).] Suppose BPEXP �⊆ i.o.SIZE[poly] (resp. BPEXP �⊆
SIZE[poly]). Then for every ε > 0, there is a pseudorandom generator map-
ping r := sε bits to s bits, computable in pseudodeterministic time 2O(r), that
fools circuit of size s with error 1/s, for all but finitely many (resp. for infinitely
many) s.

Theorem 12 ([5,29]). For every constant 0 < λ < 1, there is a pseudoran-
dom generator

{
G

(−)
n : {0, 1}nλ → {0, 1}n

}
n
such that the following holds. Let

f : {0, 1}∗ → {0, 1}.
1. Gf

n can be can be computed in deterministic time exp
(
O(nλ)

)
given oracle

access to f on inputs of length at most nλ.
2. For every function D : {0, 1}n → {0, 1}, if∣∣∣∣∣ Pr

r∼{0,1}nλ

[
D(Gf

n(r)) = 1
] − Pr

x∼{0,1}n
[D(x) = 1]

∣∣∣∣∣ ≥ 1
O(n)

for every large enough n, then there is a sequence {Cn}n of polynomial-size
D-oracle circuits that computes f on input length n.

Theorem 13 ([28]). For every constant 0 < λ < 1, there is a pseudoran-
dom generator

{
IW(−)

n : {0, 1}nλ → {0, 1}n
}

n
such that the following holds. Let

f : {0, 1}∗ → {0, 1} be a function that is both random self-reducible and down-
ward self-reducible.
1. IWf

n can be can be computed in deterministic time exp
(
O(nλ)

)
given oracle

access to f on inputs of length at most nλ.
2. For every oracle O, if there is a probabilistic O-oracle algorithm D with run-

ning time t(n) such that∣∣∣∣∣ Pr
r∼{0,1}nλ

,D

[
D(IWf

n(r)) = 1
]

− Pr
x∼{0,1}n,D

[D(x) = 1]

∣∣∣∣∣ ≥ 1
O(n)

for every large enough n, then there is a randomized O-oracle algorithm with
running time poly(n) · t(n) that on every input x outputs f(x) with high proba-
bility.

Theorem 14 ([52]). There is a language LTV ∈ DSPACE[O(n)] that is PSPACE-
hard, random self-reducible, and downward self-reducible.

One-Way Functions and pKt Complexity 269

3 pKt: Probabilistic Levin Complexity

In this section, we formally define pKt and state some useful properties which
will be used in the proofs of our results.

We start with the definition of pKt.

Definition 5 (pKt). For x ∈ {0, 1}∗ and 0 < λ ≤ 1, the λ-probabilistic time-
bounded Kolmogorov complexity of x, denoted by pKtλ(x), is defined to be the
minimum k ∈ N such that with probability at least λ over r ∼ {0, 1}2k

, there
exist a program p ∈ {0, 1}∗ and a time bound t ∈ N that satisfy |p| + t ≤ k and
Ur(p) outputs x within t steps. Equivalently

pKtλ(x) := min

{
k ∈ N

∣∣ Pr
r∼{0,1}2k

[Kt(x | r) ≤ k] ≥ λ

}
.

We omit the subscript λ when λ = 2/3.

This definition can be extended to conditional Kolmogorov complexity in the
natural way. More specifically, in pKt(x | y) the machine U is also given oracle
access to the string y.

Proposition 1. There is a universal constant b > 0 such that for every x, y ∈
{0, 1}∗ and t ∈ N,

1. pKt(x | y) ≤ pKt(x | y) + log t, and
2. K(x | y) ≤ pKt(x | y) + b log |x|.

Next, we state a relation between Kt and pKt. The proof of this fact follows
by an easy adaptation of results from [12, Appendix A.2].

Proposition 2. If E � i.o.NSIZE
[
2Ω(n)

]
, then there is a constant c > 0 such

that for every string x ∈ {0, 1}∗, pKt(x) ≤ Kt(x) ≤ c · pKt(x).
Note that the relation between Kt and pKt from Proposition 2 is not as

tight as the relation between Kpoly and pKpoly described in [12, Appendix A.2].
This is due to the polynomial time overhead in the simulation, which can incur a
constant factor in the description complexity due to the log t term. In particular,
for this reason, we cannot easily derive the failure of SoI for pKt from the failure
of SoI for Kt under a lower bound assumption.

Lemma 3 (Success Amplification; following [13]). For any string x ∈
{0, 1}n, y ∈ {0, 1}∗, and 0 ≤ α < β ≤ 1, we have

pKtβ(x | y) ≤ pKtα(x | y) + O (log(q/α) + log n) ,

where q := ln(1/(1 − β)).

270 S. Hirahara et al.

We define a gap version of the minimum pKt problem, GapMpKtP, which
can be viewed as the decision version of the problem of approximating pKt.For
τ : N → N, let GapMpKtP[τ] be the following promise problem (YES,NO).

YES := {(x, 1s) | pKt(x) ≤ s} ,

NO := {(x, 1s) | pKt(x) > s + τ(|x|)} .

Lemma 4. There is a constant c > 0 such that for every τ(n) ≥ c log n,
GapMpKtP[τ] ∈ prBPE.

The following lemma will be convenient for us.

Lemma 5. There is a probabilistic algorithm B such that given x ∈ {0, 1}m

and y ∈ {0, 1}≤2m

, B(x, y) runs in time 2O(m), rejects (with high probability) if
pKt(x | y) < m/2 and accepts (with high probability) if pKt(x | y) ≥ 2m/3.

The following relates the problem of computing GapMpKtP and that of
approximating pKt.

Proposition 3. The following are equivalent.

1. 2-Sided-Error-Approx-pKt.
2. For every polynomial-time samplable distribution family {Dn}n supported

over {0, 1}n and every polynomial q there exist a probabilistic polynomial-
time algorithm A and a polynomial p such that for all n ∈ N,

Pr
x∼Dn,A

[pKt(x) − log p(n) ≤ A(x) ≤ pKt(x)] ≥ 1 − 1
q(n)

.

4 One-Way Functions and Asymmetry of Information for
pKt

4.1 Equivalence of OWF and Average-Case Asymmetry of
Information

We show the following which implies Theorem 4.

Theorem 15. The following are equivalent.

1. There exist no (resp. infinitely-often) one-way functions.
2. (Infinitely-Often (resp. Almost-Everywhere) Average-Case Symme-

try of Information for pKt) For every polynomial-time samplable distribu-
tion family {Dn}n supported over {0, 1}n × {0, 1}n and every polynomial q,
there exists a constant c such that for infinitely many (resp. all) n ∈ N,

Pr
(x,y)∼Dn

[pKt(x, y) ≥ pKt(x) + pKt(y | x) − c · log n)] ≥ 1 − 1
q(n)

.

One-Way Functions and pKt Complexity 271

Lemma 6. We have (Item 1 ⇒ Item 2) in Theorem 15.

To show Lemma 6, we need the following technical lemma.

Lemma 7. If one-way functions do not exist, then for every polynomial-time
samplable distribution family {En}n supported over {0, 1}n × {0, 1}n and for
every polynomial q, there exists a polynomial p such that for infinitely many
n ∈ N,

Pr
(a,b)∼En

[
pKt(a | b) ≤ log

1
En(a | b)

+ 2 log p(n)
]

≥ 1 − 1
q(n)

.

Proof. The lemma follows directly from Theorem 11 and Proposition 1. ��
We are now ready to show Lemma 6.

Proof. Let {Dn}n be a polynomial-time samplable distribution family and q be
a polynomial.

Let {En}n be the polynomial-time samplable distribution family that is dual
to {Dn}n in the following sense: To sample En, we sample (x, y) from Dn and
output (y, x). To show the lemma, it suffices to show that there exists a constant
c such that for infinitely many n ∈ N,

Pr
(a,b)∼En

[pKt(b, a) ≥ pKt(b) + pKt(a | b) − c · log n] ≥ 1 − 1
q(n)

.

Since we assume that one-way function do not exist, then by Lemma 7, there
exists a polynomial p such that for infinitely many n ∈ N,

Pr
(a,b)∼En

[
pKt(a | b) ≤ log

1
En(a | b)

+ 2 log p(n)
]

≥ 1 − 1
2q(n)

.

Let E ′
n be the marginal distribution of En on the second half. Note that

pKt(a | b) ≤ log
1

En(a | b)
+ 2 log p(n)

= log
En(a, b)
E ′

n(b)
+ 2 log p(n)

= log
1

En(a, b)
− log

1
E ′

n(b)
+ 2 log p(n). (1)

On the one hand, by Lemma 1, we get that for every n, with probability at
least 1 − 1/(2q(n)) over (a, b) ∼ En,

K(b, a) ≥ log
1

En(a, b)
− log 2q(n) − O(log n).

Then by Proposition 1, with the same probability we get

pKt(b, a) ≥ K(b, a) − O(log n) ≥ log
1

En(a, b)
− log 2q(n) − O(log n). (2)

272 S. Hirahara et al.

On the other hand, by Theorem 10, there exists a polynomial p′ such that
for every n and b ∈ Support(E ′

n),

pKt(b) ≤ pKp′(n)(b) + log p′(n) ≤ log
1

E ′
n(y)

+ 2 log p′(n). (3)

By plugging Equations (2) and (3) into Equation (1), and by a union bound,
we get that for infinitely many n ∈ N, with probability at least 1 − 1/q(n) over
(a, b) ∼ En,

pKt(a | b) ≤ pKt(b, a) − pKt(b) + 2 log p(n) + log 2q(n) + 2 log p′(n) + O(log n),

as desired. ��
Lemma 8. We have (Item 2 ⇒ Item 1) in Theorem 15.

Proof. Let f : {0, 1}n → {0, 1}n be any candidate one-way function that is sup-
posed to be infinitely-often secure. Let q be any polynomial. We will construct
a polynomial-time algorithm that inverts f with probability at least 1− 1/q(n).
We first show a few useful claims. ��
Claim 1 ([39, Lemma 3.5]). For every n and every x ∈ {0, 1}n, we have

K(f(x)) ≥ K(x) − log |f−1(f(x))| − O(log n).

Proof of Claim 1. Note that for every x ∈ {0, 1}n, we have

K(x | f(x)) ≤ log |f−1(f(x))| + O(log n). (4)

This is because given f(x), we can recover x knowing the index of x in the set
f−1(f(x)). Also, we have

K(x) ≤ K(x | f(x)) + K(f(x)),

which combined with Equation (4) yields

K(f(x)) ≥ K(x) − K(x | f(x))

≥ K(x) − log |f−1(f(x))| − O(log n).

This completes the proof of Claim 1. �
Claim 2. For infinitely many n ∈ N, with probability at least 1 − 1/q(n)2 over
x ∼ {0, 1}n, we have

pKt(x | f(x)) ≤ log |f−1(f(x))| + O(log q(n)).

Proof of Claim 2. Consider the polynomial-time samplable distribution family
{Dn} where each Dn samples x ∼ {0, 1}n and outputs (f(x), x).

One-Way Functions and pKt Complexity 273

By the assumption that infinitely-often average-case symmetry of information
for pKt holds, there is a constant c > 0 such that for infinitely many n ∈ N, with
probability at least 1 − 1/(2q(n)2) over x ∼ {0, 1}n,

pKt(x | f(x)) ≤ pKt(f(x), x) − pKt(f(x)) + c logn

≤ pKt(x) − pKt(f(x)) + c logn+O(log n)

≤ pKt(x) − K(f(x)) + c log n+O(log n)

≤ pKt(x) − (
K(x) − log |f−1(f(x))| − O(log n)

)
+ c logn+O(log n)

≤ pKt(x) − K(x) + log |f−1(f(x))| + c logn+O(log n), (5)

where the second inequality uses the fact that given x we can compute f(x)
efficiently and the second last inequality is by Claim 1.

Also, note that by a counting argument, with probability at least 1 −
1/(2q(n)2) over x ∼ {0, 1}n, we have

K(x) ≥ n − O(log q(n)),

which implies
pKt(x) − K(x) ≤ O(log q(n)).

Plugging this into Equation (5), we get, by a union bound, that with probability
at least 1 − 1/q(n)2 over x ∼ {0, 1}n

pKt(x | f(x)) ≤ log |f−1(f(x))| + O(log q(n)),

as desired. �
Claim 3. For every n ∈ N, every image y of f and k ≤ 2n, with probability at
least 1 − 1/q(n) over x ∼ f−1(y), we have

Pr
r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| − O(log q(n))

] ≥ 1 − 1
n

.

Proof of Claim 3 By a simple counting argument, for every fixed image y of f

and every fixed r ∈ {0, 1}2k

, we have

Pr
x∼f−1(y)

[
K(x | y, r) ≥ log |f−1(y)| − O(log q(n))

] ≥ 1 − 1
n · q(n)

.

This implies that every image y, we have

Pr
x∼f−1(y)

r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| − O(log q(n)

] ≥ 1 − 1
n · q(n)

.

Finally, by an averaging argument, we have that with probability at least 1 −
1/q(n) over x ∼ f−1(y), it holds that

Pr
r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| − O(log q(n)

] ≥ 1
n

,

as desired. �

274 S. Hirahara et al.

By Claim 2, we get that for infinitely many n ∈ N, with probability at least
1 − 1/q(n)2 over x ∼ {0, 1}n, we have

pKt(x | f(x)) ≤ log |f−1(f(x))| + O(log q(n)). (6)

In what follows, we fix n so that Equation (6) holds.
Now observe the following equivalent way of sampling (x, f(x)) while x is

uniformly at random: We first sample y := f(z) for a uniformly random z and
then sample x ∼ f−1(y). By an averaging argument, Equation (6) yields that
with probability at least 1−1/q(n) over y sample this way, for at least 1−1/q(n)
fraction of the x ∈ f−1(y), we have

pKt(x | y) ≤ log |f−1(y)| + O(log q(n)). (7)

Consider any good y such that Equation (7) holds. By Claim 3, we get that
for at least 1 − 1/q(n) fraction of the x ∈ f−1(y), it holds that

Pr
r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| − O(log q(n))

] ≥ 1 − 1
n

, (8)

where k := pKt(x | y).
let Sy be the set of x ∈ f−1(y) such that both Equations (7) and (8) hold.

Note that by a union bound,

|Sy| ≥ (1 − 2/q(n)) · |f−1(y)|.
Let d > 0 be a sufficiently large constant. Consider the following procedure

A that takes n and y as input and does the following.

1. Pick a uniformly random k ∼ [O(n)],
2. Pick a uniformly random r ∼ {0, 1}2k

,
3. Pick uniformly at random � ∼ [O(n)] and p ∼ {0, 1}�,
4. Run Uy,r(p) for nd steps and return its output.

Claim 4. For every x ∈ Sy, A(1n, y) outputs x with probability at least

1
poly(n) · |f−1(y)| .

Proof of Claim 4. Fix x ∈ Sy. Note that we have

pKt(x | y) ≤ log |f−1(y)| + O(log q(n)).

In other words, for k := pKt(x | y) ≤ log |f−1(y)|+O(log n), with probability at
least 2/3 over r ∼ {0, 1}2k

, there exist a program of p and a running time t ∈ N
such that |p| + log t ≤ k and Uy,r(p) outputs x within t steps. Note that t may
not be upper bounded by poly(n). However, if for that r we also have that

K(x | y, r) ≥ log |f−1(y)| − O(log q(n)), (9)

One-Way Functions and pKt Complexity 275

then it must be the case that |p| ≥ log |f−1(y)|−O(log q(n)). The condition |p|+
log t ≤ log |f−1(y)| + O(log q(n)) then implies that t ≤ nd for some sufficiently
large constant d.

Note that Equation (9) also holds with probability at least 1 − 1/n over
r ∼ {0, 1}2k

. It follows that with probability at least 2/3−1/n over r ∼ {0, 1}2k

,
there is a program p of size at most log |f−1(y)|+O(log q(n)) such that Uy,r(p)
outputs x within nd steps.

Therefore, after performing the first 3 steps in the procedure, we get such a
program p with probability at least

1
O(n)

·
(
2
3

− 1
n

)
· 1
O(n)

· 1
2log |f−1(y)|+O(log q(n))

≥ 1
poly(n) · |f−1(y)|) ,

as desired. �
Now consider the following procedure A′ that can simulate A.

1. Pick a uniformly random k ∼ [O(n)],
2. Pick uniformly at random � ∼ [O(n)] and p ∼ {0, 1}�,
3. Run Uy,(−)(p) for nd steps while answering its queries to the second oracle

string (which is of length 2k) as follows. For any valid query, if it did not
appear before, pick a random bit b, record the query as well as the bit b, and
return b; otherwise, return the corresponding bit recorded.

Denote the above procedure by A′. Note that A(1n, y) has running time poly(n).
Also, by Claim 4 the probability that A′(1n, y) outputs some x ∈ Sy is at least

|Sy| · 1
poly(n) · |f−1(y)|) ≥ 1

poly(n)
.

In other words, with probability at least 1/q(n) over x ∼ {0, 1}n (in which case
f(x) is good), A′(1n, y) outputs some pre-image of f(x) with probability at least
1/poly(n). This breaks the one-way-ness of f . ��

Finally, we complete the proof of Theorem 15.

Proof of Theorem 15. Each direction of the theorem follows directly from Lemmas
6 and 8, respectively.

Also, we note that while those lemmas only show the equivalence between the
non-existence of one-way functions and infinitely-often average-case symmetry
of information for pKt, it is straightforward to adapt the proofs to show the
equivalence between the non-existence of infinitely-often one-way functions and
almost-everywhere average-case symmetry of information for pKt. ��

4.2 Asymmetry of Information from Circuit Lower Bounds

In this subsection, we show the following which implies Theorem 5.

276 S. Hirahara et al.

Theorem 16. Suppose BPEXP �⊆ i.o.SIZE[poly] (resp. BPEXP �⊆ SIZE[poly]).
Then for every constant c > 0, there exist x, y ∈ {0, 1}n such that

pKt(x, y) < pKt(x) + pKt(y | x) − c · log n,

for all but finitely many (resp. infinitely many) n.

We first show the following technical lemma.

Lemma 9. Suppose BPEXP �⊆ i.o.SIZE[poly] (resp. BPEXP �⊆ SIZE[poly]). Then
for every constant c > 0, the following holds for all but finitely many (resp.
infinitely many) m. There exist v ∈ {0, 1}m and u ∈ {0, 1}m′

, where m ≤ m′ ≤
2m/(8c), such that

pKt(u, v) < pKt(u) + pKt(v | u) − m/4,

Proof. We first show the case for BPEXP �⊆ i.o.SIZE[poly].
For the sake of contradiction, suppose there is a constant c > 0 such that the

following holds for infinitely many m. For all v ∈ {0, 1}m and all u ∈ {0, 1}m′
,

where m′ ≤ 2m/(8c),

pKt(u, v) ≥ pKt(u) + pKt(v | u) − m/4.

Fix any (sufficiently large) m such that the above holds. For x ∈ {0, 1}m and
y ∈ {0, 1}≤2m

, let C(x,y) : {0, 1}2bm → {0, 1} be a circuit of size 2bm that views
its input as internal randomness and computes B(x, y), where B is the algorithm
in Lemma 5 and b ≥ 0 is a constant.

Let ε := 1/(32bc) and let Gs : {0, 1}r → {0, 1}s be the PRG in Lemma 2,
where s := 2bm and r := sε. We assume without loss of generality, using ampli-
fication if necessary, that the pseudodeterministic algorithm that computes Gs

outputs the correct answer except with exponentially small probability. We abuse
notation and use Gs to denote the algorithm that computes the PRG Gs. ��

Consider the following algorithm.

Algorithm 1 . Pseudodeterministic Constructions of Large pKt-Complexity
Strings
1: procedure A(1m, y)
2: for x ∈ {0, 1}m do
3: µx := Pr

z∼{0,1}r
[C(x,y)(Gs(z)) = 1]

4: if µx > 1/3 + 1/10 then
5: output x

6: Output ⊥

One-Way Functions and pKt Complexity 277

Claim 5. The above algorithm A, on input 1m and y ∈ {0, 1}≤2m

, runs in
time 22

m/(16c)
and outputs, with high probability, a fixed m-bit string x such that

pKt(x | y) ≥ m/2.

Proof of Claim 5 We first argue the running time. It is easy to that the algorithm
runs in time

2m · 2O(sε) ≤ 22
m/(16c)

.

Also, since Gs can be computed pseudodeterministically with error 1/ exp(s),
by a union bound over x ∈ {0, 1}m and z ∈ {0, 1}sε

, the algorithm will output
a fixed answer with high probability.

We now argue the correctness. Note that since Gs (1/10)-fools C(x,y) on
every x ∈ {0, 1}m and y ∈ {0, 1}≤2m

, for every x, (the canonical) μx is a good
estimate of Pr

B
[B(x, y) = 1]. Then an output x of the algorithm cannot be that

pKt(x | y) < m/2. This is because in that case the algorithm Pr
B
[B(x, y) =

1] < 1/3 and μx should be less than 1/3 + 1/10. Also, since we enumerate
every x in {0, 1}m, B(−, y) must accept at least one x, and in this case we have
μx ≥ 2/3 − 1/10 ≥ 1/3 + 1/10. This completes the proof of Claim 5. �

Let t := 2m/(10c). We define z1, z2, . . . , zt ∈ {0, 1}m as follows.

– z1 is the canonical output of A(1m, ∅).
– zi is the canonical output of A(1m, z1, . . . , zi−1) for i = 2, 3. . . . , t.

On the one hand, by our assumption and by Claim 5, we have

pKt(z1, z2, . . . , zt) ≥ pKt(z1, z2, . . . , zt−1) + pKt(zt | z1, z2, . . . , zt−1) − m/4
≥ pKt(z1, z2, . . . , zt−1) + m/2 − m/4
≥ pKt(z1, z2, . . . , zt−1) + m/4.

We can repeat the above for pKt(z1, z2, . . . , zt−1) and so on. As a result we get

pKt(z1, z2, . . . , zt) ≥ tm/4 ≥ 2m/(10c). (10)

On the other hand, since A is pseudodeterministic (and hence outputs the same
value with very high probability) and runs in time 22

m/(16c)
, given the numbers

m and t, we can obtain z1, z2, . . . , zt (with high probability) in time

O
(
t · 22m/(16c)

)
.

Therefore, we have

pKt(z1, z2, . . . , zt) ≤ O(logm) + O(log t) + 2m/(16c) < 2m/(8c),

which contradicts Equation (10).
The case for BPEXP �⊆ SIZE[poly] can be shown similarly. We assume, for

contradiction, that there is a constant c > 0 such that the following holds for all
but finitely many m. For all v ∈ {0, 1}m and all u ∈ {0, 1}m′

, where m ≤ m′ ≤
2m/(8c),

pKt(u, v) ≥ pKt(u) + pKt(v | u) − m/4.

278 S. Hirahara et al.

We then consider any (sufficiently large) s such that Gs is a good PRG, and let
m be the largest integer such that 2bm ≤ s. The remainder of the argument is
essentially the same. ��

We are now ready to show Theorem 16.

Proof of Theorem 16. We first show the case for BPEXP �⊆ i.o.SIZE[poly].
Let c > 0 be a sufficiently large constant, and let n be any large enough

integer. We let m be such that

2m/(8c) ≤ n < 2(m+1)/(8c). (11)

By Lemma 9, there exist v ∈ {0, 1}m and u ∈ {0, 1}m′
, where m ≤ m′ ≤ 2m/(8c),

such that
pKt(u, v) < pKt(u) + pKt(v | u) − m/4. (12)

We let
x := u0n−|u| and y := v0n−|v|. (13)

Then we have

pKt(x, y) ≤ pKt(u, v) + O(log n) (by Equation (13))
≤ pKt(u) + pKt(v | u) − m/4 + O(log n) (by Claim 12)
< pKt(x) + pKt(y | x) + O(log n) − m/4 + O(log n)

(by Equation (13))

≤ pKt(x) + pKt(y | x) + O(m/c) − m/4 (by Equation (11))
≤ pKt(x) + pKt(y | x) − m/5
≤ pKt(x) + pKt(y | x) − c log n, (by Equation (11))

where for the second last inequality we use that c is a sufficiently large constant.
The case for BPEXP �⊆ SIZE[poly] can be shown similarly. By Lemma 9, for

infinitely many m, there exist v ∈ {0, 1}m and u ∈ {0, 1}m′
, where m′ ≤ 2m/(8c),

such that
pKt(u, v) < pKt(u) + pKt(v | u) − m/4.

We can then let x := v0m′−|v| and y := u, and the remainder of the argument is
essentially the same as in the case for BPEXP �⊆ i.o.SIZE[poly] described above. ��

4.3 Proof of Theorem 1

In this subsection, we prove Theorem 1.

Proof of Theorem 1. Suppose it holds that

Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt.

Assuming BPEXP � i.o.SIZE[poly], by Theorem 16, Worst-Case-Asymmetry-
pKt holds, which then implies that Average-Case-Asymmetry-pKt also holds. By
Theorem 4, this implies that one-way functions exist.

One-Way Functions and pKt Complexity 279

On the other hand, suppose one-way functions exist. Then by Theorem 4,
Average-Case-Asymmetry-pKt holds. This trivially implies that

Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt,

as desired. ��

5 One-Way Functions and Hardness of Approximating
pKt

5.1 Equivalence of OWF and Average-Case Hardness of
Approximating pKt

We show the following which, by Proposition 3, implies Theorem 6.

Theorem 17. The following are equivalent.

1. Infinitely-often one-way functions do not exist.
2. (Average-Case Easiness of Approximating pKt) For every polynomial-

time samplable distribution family {Dn}n supported over {0, 1}n, there exist
a probabilistic polynomial-time algorithm A and a polynomial τ such that for
all n ∈ N,

Pr
x∼Dn,A

[pKt(x) − log τ(n) ≤ A(x) ≤ pKt(x)] ≥ 1 − 1
q(n)

.

Lemma 10. We have (Item 1 ⇒ Item 2) in Theorem 17.

Proof. Let {Dn}n be a polynomial-time samplable distribution family, where
each Dn is over {0, 1}n. Let q be any polynomial. Let τ be a polynomial specified
later.

First of all, by Theorem 10 and Proposition 1, there is a polynomial p such
that for all x ∈ Support(Dn),

pKt(x) ≤ pKp(n)(x) + log p(n) ≤ log
1

Dn(x)
+ 2 log p(n). (14)

On the other hand, by Lemma 1, we get

Pr
x∼Dx

[
K(x) > log

1
Dn(x)

− b · log n − 2 log q(n)
]

≥ 1 − 1
q(n)2

,

for some large constant b. Note that by Proposition 1,

K(x) ≤ pKt(x) + b · log n.

Then the above implies that with probability at least 1 − 1/q(n)2 over x ∼ Dn,
it holds that

pKt(x) > log
1

Dn(x)
− 2b · log n − 2 log q(n). (15)

280 S. Hirahara et al.

Let B be the algorithm in Theorem 8, instantiated with the polynomial
q′(n) := q(n)2. Then by Theorem 8, we get that at least 1−1/q(n)2 over x ∼ Dn

and the internal randomness of B,

Dn(x)
2

≤ B(1n, x) ≤ Dn(x). (16)

Our algorithm A works as follows: On (x, 1s), output

β := log
1

B(1n, x)
− 2b · log n − 2 log q(n) − 1.

It is easy to see that A runs in polynomial time. Next, we show its correctness.
Note that if both Equation (15) and Equation (16) hold, which happens with

probability at least 1 − 1/q(n) over x ∼ Dn and the internal randomness of A,
we have both

β := log
1

B(1n, x)
− 2b · log n − 2 log q(n) − 1

≤ log
1

Dn(x)
+ 1 − 2b · log n − 2 log q(n) − 1 (by Equation (16))

≤ pKt(x). (by Equation (15))

and

β : = log
1

B(1n, x)
− 2b · log n − 2 log q(n) − 1

≥ log
1

Dn(x)
− 1 − 2b · log n − 2 log q(n) − 1 (by Equation (16))

≥ pKt(x) − 2 − 2b · log n − 2 log q(n) − 2 log p(n) (by Equation (14))
≥ pKt(x) − log τ(n),

where the last inequality holds if we let τ be a sufficiently large polynomial. This
completes the proof of the lemma. ��
Lemma 11. We have (Item 2 ⇒ Item 1) in Theorem 17.

Proof Sketch The proof follows that of [23, Theorem 36]. At a higher level, the
idea is that if we have an efficient algorithm for approximating pKt on average
over polynomial-time samplable distributions, then we can construct a function
that distinguishes the output distribution of a cryptographic pseudorandom gen-
erator from the uniform distribution. This is because the outputs of such a gen-
erator have low pKt complexity while a uniformly random string has high pKt
complexity. By [15], this implies that infinitely-often one-way functions do not
exist. ��

We now complete the proof of Theorem 17.

Proof of Theorem 17. The theorem follows directly from Lemmas 10 and 11. ��

One-Way Functions and pKt Complexity 281

5.2 Hardness of Approximating pKt with Mild-One-Sided Error

In this subsection, we prove Theorem 7. We will need the following lemmas.

Lemma 12. If pKt can be approximated on average with mild-one-sided error
in time npoly(log n), then BPE ⊆ SIZE[npoly(log n)].

Proof. Let L ∈ BPE. we identify L with a function from {0, 1}∗ to {0, 1}.
Since pKt can be approximated on average with mild-one-sided error in time

npoly(log n), by standard amplification techniques, there exist a constant 0 < ε < 1
and a probabilistic polynomial-time A such that for all sufficiently large n,

Pr
x∼{0,1}n

[
Pr
A

[A(x) = 0] ≥ 1 − 1
n2

]
≥ 1

n
,

Note that this implies

Pr
x∼{0,1}n,A

[A(x) = 0] ≥ 1
2n

.

Also, for every x ∈ {0, 1}n with pKt(x) ≤ nε,

Pr
A

[A(x) = 1] ≥ 1 − 1
n2

.

Now let
{

G
(−)
n : {0, 1}nλ → {0, 1}

}
n

be the pseudorandom generator from
Theorem 12 instantiated with parameter λ := ε/2.

Firstly, note that for every r ∈ {0, 1}nλ

, GL
n(r) can be computed in deter-

ministic time exp
(
O(nλ)

)
given oracle access to L on inputs of length at most

nλ. Since L on inputs of length at most nλ can be computed in randomized time
exp(O(nλ)), it follows that GL

n(r) can be obtained (with high probability) in
randomized time exp(O(nλ)), which implies

pKt(GL
n(r)) ≤ O(nλ) ≤ nε. (17)

We remark that since GL
n can only be computed in a randomized manner, in the

above we can only upper-bound the pKt complexity of the output strings of GL
n ,

rather than the Kt complexity.5
It follows by the properties of the algorithm A that

Pr
r∼{0,1}nλ

,A

[
A(GL

n(r)) = 1
] ≥ 1 − 1

n2
and Pr

x∼{0,1}n,A
[A(x) = 1] ≤ 1 − 1

2n
.

Now by averaging, there exists some fixing of the internal randomness of A, which
gives a quasi-polynomial-size O-oracle circuit A′, so that A′ can distinguish the
output of GL

n from the uniform distribution with advantage at least 1/(3n).
By Theorem 12, we get that L can be computed by polynomial-size A′-oracle
circuits, and hence by a quasi-polynomial-size O-oracle circuit. ��
5 We would be able to upper bound Kt complexity if we started with a language in E

instead of BPE, but the resulting inclusion E ⊆ SIZE[npoly(logn)] would be insufficient
for the proof of a deterministic variant of Theorem 7, since a deterministic analogue
of Lemma 13 is unknown.

282 S. Hirahara et al.

Lemma 13. If pKt can be approximated on average with mild-one-sided error
in time npoly(log n), then PSPACE ⊆ BPTIME[npoly(log n)].

Proof Sketch. The proof is similar to that of Lemma 12. We consider the pseudo-
random generator IW(−)

n from Theorem 13, instantiated with the PSPACE-hard
language LTV in Theorem 14. Then using an algorithm that approximates pKt
with mild-one-sided error, we can distinguish the output distribution of IWLTV

n

from the uniform distribution. This yields a quasi-polynomial-time randomized
algorithm for computing LTV. ��

Finally, we need the following lemma.

Lemma 14. There is a language in DSPACE[2no(1)
]\SIZE[npoly(log n)].

We are now ready to show Theorem 7.

Proof of Theorem 7. Suppose, for the sake of contradiction, pKt can be approx-
imated on average with mild-one-sided error in time npoly(log n). First of all, by
Lemma 12, we get that BPE ⊆ SIZE[npoly(log n)].

By Lemma 14, there is a language L ∈ DSPACE[2no(1)
]\SIZE[npoly(log n)].

Now by Lemma 13, we get that PSPACE ⊆ BPTIME[npoly(log n)]. Then by a
padding argument, we get that L ∈ BPE. However, this means that BPE �∈
SIZE[npoly(log n)]. A contradiction. ��

5.3 Proof of Theorem 2

In this subsection, we show Theorem 2.

Proof of Theorem 2. Suppose it holds that

2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt.

By Theorem 7, we have that ¬Mild-1-Sided-Error-Approx-pKt holds, which
by the above implication yields that ¬ 2-Sided-Error-Approx-pKt holds. Then by
Theorem 6, we get that infinitely-often one-way functions exist.

On the other hand, suppose infinitely-often one-way functions exist. It fol-
lows from Theorem 6 that 2-Sided-Error-Approx-pKt does not hold. This trivially
implies that

2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt,

as desired. ��

One-Way Functions and pKt Complexity 283

References

1. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way
functions on NP-hardness. In: Symposium on Theory of Computing (STOC). pp.
701–710 (2006). https://doi.org/10.1145/1132516.1132614

2. Allender, E.: Applications of time-bounded Kolmogorov complexity in complex-
ity theory. In: Kolmogorov complexity and computational complexity, pp. 4–22.
Springer (1992). https://doi.org/10.1007/978-3-642-77735-6_2

3. Allender, E.: When worlds collide: Derandomization, lower bounds, and kol-
mogorov complexity. In: Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS). pp. 1–15 (2001). https://doi.org/10.
1007/3-540-45294-X_1

4. Allender, E.: The complexity of complexity. In: Computability and Complexity,
pp. 79–94. Springer (2017). https://doi.org/10.1007/978-3-319-50062-1_6

5. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Comput. Complex. 3, 307–
318 (1993). https://doi.org/10.1007/BF01275486

6. Baker, T.P., Gill, J., Solovay, R.: Relativizatons of the P =? NP Question. SIAM
J. Comput. 4(4), 431–442 (1975). https://doi.org/10.1137/0204037

7. Ball, M., Liu, Y., Mazor, N., Pass, R.: Kolmogorov comes to cryptomania: On
interactive Kolmogorov complexity and key-agreement. In: Symposium on Founda-
tions of Computer Science (FOCS). pp. 458–483 (2023). https://doi.org/10.1109/
FOCS57990.2023.00034

8. Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on NP-
hardness. In: Theory of Cryptography Conference (TCC). pp. 1–6 (2015). https://
doi.org/10.1007/978-3-662-46494-6_1

9. Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends Theor. Com-
put. Sci. 2(1) (2006). https://doi.org/10.1561/0400000004

10. Chen, L., Lu, Z., Lyu, X., Oliveira, I.C.: Majority vs. approximate linear sum and
average-case complexity below NC1. In: International Colloquium on Automata,
Languages, and Programming (ICALP). pp. 51:1–51:20 (2021). https://doi.org/
10.4230/LIPIcs.ICALP.2021.51

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

12. Goldberg, H., Kabanets, V.: A simpler proof of the worst-case to average-case
reduction for polynomial hierarchy via symmetry of information. Electron. Collo-
quium Comput. Complex. TR22-007 (2022), https://eccc.weizmann.ac.il/report/
2022/007

13. Goldberg, H., Kabanets, V., Lu, Z., Oliveira, I.C.: Probabilistic Kolmogorov com-
plexity with applications to average-case complexity. In: Computational Com-
plexity Conference (CCC). pp. 16:1–16:60 (2022). https://doi.org/10.4230/LIPIcs.
CCC.2022.16

14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9

15. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

16. Hirahara, S.: Np-hardness of learning programs and partial MCSP. In: Symposium
on Foundations of Computer Science (FOCS). pp. 968–979 (2022). https://doi.
org/10.1109/FOCS54457.2022.00095

https://doi.org/10.1145/1132516.1132614
https://doi.org/10.1007/978-3-642-77735-6_2
https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.1007/BF01275486
https://doi.org/10.1137/0204037
https://doi.org/10.1109/FOCS57990.2023.00034
https://doi.org/10.1109/FOCS57990.2023.00034
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1561/0400000004
https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.1109/TIT.1976.1055638
https://eccc.weizmann.ac.il/report/2022/007
https://eccc.weizmann.ac.il/report/2022/007
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.1109/FOCS54457.2022.00095

284 S. Hirahara et al.

17. Hirahara, S.: Symmetry of information from meta-complexity. In: Computational
Complexity Conference (CCC). pp. 26:1–26:41 (2022). https://doi.org/10.4230/
LIPIcs.CCC.2022.26

18. Hirahara, S., Ilango, R., Lu, Z., Nanashima, M., Oliveira, I.C.: A duality between
one-way functions and average-case symmetry of information. In: Symposium on
Theory of Computing (STOC). pp. 1039–1050 (2023). https://doi.org/10.1145/
3564246.3585138

19. Hirahara, S., Lu, Z., Oliveira, I.C.: One-way functions and pKt complexity. Cryp-
tology ePrint Archive, Paper 2024/1388 (2024), https://eprint.iacr.org/2024/1388

20. Hirahara, S., Lu, Z., Ren, H.: Bounded relativization. In: Conference on Compu-
tational Complexity (CCC). pp. 6:1–6:45 (2023). https://doi.org/10.4230/LIPIcs.
CCC.2023.6

21. Hirahara, S., Nanashima, M.: Learning in pessiland via inductive inference. In:
Symposium on Foundations of Computer Science (FOCS). pp. 447–457 (2023).
https://doi.org/10.1109/FOCS57990.2023.00033

22. Hirahara, S., Santhanam, R.: Errorless versus error-prone average-case complexity.
In: Innovations in Theoretical Computer Science Conference (ITCS). pp. 84:1–
84:23 (2022). https://doi.org/10.4230/LIPIcs.ITCS.2022.84

23. Ilango, R., Ren, H., Santhanam, R.: Hardness on any samplable distribution suf-
fices: New characterizations of one-way functions by meta-complexity. Electron.
Colloquium Comput. Complex. TR21-082 (2021), https://eccc.weizmann.ac.il/
report/2021/082

24. Ilango, R., Ren, H., Santhanam, R.: Robustness of average-case meta-complexity
via pseudorandomness. In: Symposium on Theory of Computing (STOC). pp.
1575–1583 (2022). https://doi.org/10.1145/3519935.3520051

25. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
Structure in Complexity Theory (CCC). pp. 134–147 (1995). https://doi.org/10.
1109/SCT.1995.514853

26. Impagliazzo, R., Levin, L.A.: No better ways to generate hard NP instances than
picking uniformly at random. In: Symposium on Theory of Computing (STOC).
pp. 812–821 (1990). https://doi.org/10.1109/FSCS.1990.89604

27. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: Symposium on Theory of Computing
(STOC). pp. 230–235 (1989). https://doi.org/10.1109/SFCS.1989.63483

28. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In: Leighton, F.T., Shor, P.W. (eds.) Sympo-
sium on Theory of Computing (STOC). pp. 220–229 (1997). https://doi.org/10.
1145/258533.258590

29. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31(5),
1501–1526 (2002). https://doi.org/10.1137/S0097539700389652

30. Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foun-
dation of probability theory. Problemy Peredachi Informatsii 10(3), 30–35 (1974)

31. Levin, L.A.: Randomness conservation inequalities; information and independence
in mathematical theories. Inf. Control 61(1), 15–37 (1984). https://doi.org/10.
1016/S0019-9958(84)80060-1

32. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations, 4th Edition. Texts in Computer Science, Springer (2019). https://doi.org/
10.1007/978-3-030-11298-1

https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.1145/3564246.3585138
https://doi.org/10.1145/3564246.3585138
https://eprint.iacr.org/2024/1388
https://doi.org/10.4230/LIPIcs.CCC.2023.6
https://doi.org/10.4230/LIPIcs.CCC.2023.6
https://doi.org/10.1109/FOCS57990.2023.00033
https://doi.org/10.4230/LIPIcs.ITCS.2022.84
https://eccc.weizmann.ac.il/report/2021/082
https://eccc.weizmann.ac.il/report/2021/082
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1

One-Way Functions and pKt Complexity 285

33. Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity. In: Sympo-
sium on Foundations of Computer Science (FOCS). pp. 1243–1254 (2020). https://
doi.org/10.1109/FOCS46700.2020.00118

34. Liu, Y., Pass, R.: On the possibility of basing cryptography on EXP �=BPP. In:
International Cryptology Conference (CRYPTO). pp. 11–40 (2021). https://doi.
org/10.1007/978-3-030-84242-0_2

35. Liu, Y., Pass, R.: On one-way functions from NP-complete problems. In: Con-
ference on Computational Complexity (CCC). pp. 36:1–36:24 (2022). https://doi.
org/10.4230/LIPIcs.CCC.2022.36

36. Liu, Y., Pass, R.: On one-way functions and the worst-case hardness of time-
bounded Kolmogorov complexity. Electron. Colloquium Comput. Complex. TR23-
103 (2023), https://eccc.weizmann.ac.il/report/2023/103

37. Liu, Y., Pass, R.: One-way functions and the hardness of (probabilistic) time-
bounded Kolmogorov complexity w.r.t. samplable distributions. In: International
Cryptology Conference (CRYPTO). pp. 645–673 (2023). https://doi.org/10.1007/
978-3-031-38545-2_21

38. Longpré, L., Mocas, S.: Symmetry of information and one-way functions. Inf. Pro-
cess. Lett. 46(2), 95–100 (1993). https://doi.org/10.1016/0020-0190(93)90204-M

39. Longpré, L., Watanabe, O.: On symmetry of information and polynomial time
invertibility. Inf. Comput. 121(1), 14–22 (1995). https://doi.org/10.1006/inco.
1995.1120

40. Lu, Z., Oliveira, I.C.: Theory and applications of probabilistic Kolmogorov com-
plexity. Bull. EATCS 137 (2022), http://bulletin.eatcs.org/index.php/beatcs/
article/view/700

41. Lu, Z., Oliveira, I.C., Zimand, M.: Optimal coding theorems in time-bounded Kol-
mogorov complexity. In: International Colloquium on Automata, Languages, and
Programming (ICALP). pp. 92:1–92:14 (2022). https://doi.org/10.4230/LIPIcs.
ICALP.2022.92

42. Nanashima, M.: On basing auxiliary-input cryptography on np-hardness via non-
adaptive black-box reductions. In: Innovations in Theoretical Computer Science
(ITCS). pp. 29:1–29:15 (2021). https://doi.org/10.4230/LIPIcs.ITCS.2021.29

43. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991). https://doi.org/10.1007/BF00196774

44. Oliveira, I.C.: Randomness and intractability in Kolmogorov complexity. In: Inter-
national Colloquium on Automata, Languages, and Programming (ICALP). pp.
32:1–32:14 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.32

45. Oliveira, I.C., Santhanam, R.: Pseudodeterministic constructions in subexponen-
tial time. In: Symposium on Theory of Computing (STOC). pp. 665–677 (2017).
https://doi.org/10.1145/3055399.3055500

46. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35
(1997). https://doi.org/10.1006/jcss.1997.1494

47. Ren, H., Santhanam, R.: Hardness of KT characterizes parallel cryptography. In:
Computational Complexity Conference (CCC). pp. 35:1–35:58 (2021). https://doi.
org/10.4230/LIPIcs.CCC.2021.35

48. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Symposium on Theory of Computing (STOC). pp. 387–394 (1990). https://
doi.org/10.1145/100216.100269

49. Ronneburger, D.: Kolmogorov Complexity and Derandomization. Ph.D. thesis,
Rutgers University (2004)

50. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov complexity and algorith-
mic randomness. American Mathematical Society (2017)

https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://eccc.weizmann.ac.il/report/2023/103
https://doi.org/10.1007/978-3-031-38545-2_21
https://doi.org/10.1007/978-3-031-38545-2_21
https://doi.org/10.1016/0020-0190(93)90204-M
https://doi.org/10.1006/inco.1995.1120
https://doi.org/10.1006/inco.1995.1120
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://doi.org/10.4230/LIPIcs.ITCS.2021.29
https://doi.org/10.1007/BF00196774
https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.1145/100216.100269
https://doi.org/10.1145/100216.100269

286 S. Hirahara et al.

51. Sudan, M., Trevisan, L., Vadhan, S.P.: Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001). https://doi.org/10.1006/jcss.
2000.1730

52. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via
uniform reductions. Comput. Complex. 16(4), 331–364 (2007). https://doi.org/10.
1007/s00037-007-0233-x

53. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the algorithmic
concepts of randomness and information. UMN (Russian Math. Surveys) 25(6),
83–124 (1970). https://doi.org/10.1070/rm1970v025n06abeh001269

https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1070/rm1970v025n06abeh001269

On Bounded Storage Key Agreement
and One-Way Functions

Chris Brzuska1(B), Geoffroy Couteau2, Christoph Egger2, and Willy Quach3

1 Aalto University, Espoo, Finland
chris.brzuska@aalto.fi

2 Université Paris Cité, CNRS, IRIF, Paris, France
3 Weizmann Institute of Science, Rehovot, Israel

Abstract. We study key agreement in the bounded-storage model,
where the participants and the adversary can use an a priori fixed
bounded amount of space, and receive a large stream of data. While
key agreement is known to exist unconditionally in this model (Cachin
and Maurer, Crypto’97), there are strong lower bounds on the space
complexity of the participants, round complexity, and communication
complexity that unconditional protocols can achieve.

In this work, we explore how a minimal use of cryptographic assump-
tions can help circumvent these lower bounds. We obtain several contri-
butions:

– Assuming one-way functions, we construct a one-round key agree-
ment in the bounded-storage model, with arbitrary polynomial space
gap between the participants and the adversary, and communication
slightly larger than the adversarial storage. Additionally, our proto-
col can achieve everlasting security using a second streaming round.

– In the other direction, we show that one-way functions are necessary
for key agreement in the bounded-storage model with large space
gaps. We further extend our results to the setting of fully-streaming
adversaries, and to the setting of key agreement with multiple stream-
ing rounds.

Our results rely on a combination of information-theoretic arguments
and technical ingredients such as pseudorandom generators for space-
bounded computation, and a tight characterization of the space efficiency
of known reductions between standard Minicrypt primitives (from distri-
butional one-way functions to pseudorandom functions), which might be
of independent interest.

1 Introduction

Perhaps surprisingly, while cryptographic primitives must typically rely on hard-
ness assumptions in the time-bounded setting (and proving their security uncon-
ditionally would entail proving P �= NP), several cryptographic primitives of
interest are known to exist unconditionally in the bounded-storage model (BSM).
In this model, introduced by Maurer [Mau92], the participants and adversary
are space-bounded (with a gap between the space s honest parties need and the
space a the adversary needs) and have one-time read access to a huge random
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 287–318, 2025.
https://doi.org/10.1007/978-3-031-78011-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_10&domain=pdf
https://doi.org/10.1007/978-3-031-78011-0_10

288 C. Brzuska et al.

string (of length � a). In the BSM, symmetric key encryption [Mau92], signa-
tures [DQW22], key agreement [CM97], and oblivious transfer [Din01], all exist
unconditionally. Yet, unconditional constructions of “public-key-style” primi-
tives in the bounded-storage model typically suffer from strong efficiency lim-
itations regarding the space gap between honest parties and adversaries, round
complexity, and communication complexity. For example, the bounded-storage
model key agreement (from now on, BSM-KA) of [CM97] requires the honest
parties to use s = ω(

√
a) bits of storage. More recently, the work of [DQW23]

circumvented this limitation, but at the cost of requiring r = ω(a/s2) streaming
rounds and C = ω((a/s)2) bits of communication. Unfortunately, these limita-
tions are known to be inherent: the protocol of [CM97] was shown in [DM08]
to achieve an optimal space gap a = Θ̃(s2) when the BSM-KA uses a single
streaming round, and [DQW23] further proved that the number of rounds must
grow with a, and the communication must grow superlinearly with a, whenever
a � s2. Therefore, achieving unconditional security for BSM-KA requires paying
a significant price either in honest parties space or in rounds and communication.

In this work, we initiate the study of cryptography in the bounded-storage
model beyond the regime where the impossibility results of [DM08,DQW23]
apply. That is, we ask:

Is it possible to circumvent known lower bounds on key agreements in the
bounded-storage model by making a minimal use of cryptographic assumptions?

To study this question, we place ourselves in the streaming variant of the
BSM, introduced in [DQW23], where the participants themselves can stream
long strings (of length C � a � s) to each other. In [DQW23], it was argued
that this captures more adequately the properties one wants from cryptography
with bounded-storage.

1.1 Our Contributions

We provide an affirmative answer to the question. As our first contribution, we
exhibit a key agreement in the streaming model tolerating an arbitrary (poly-
nomial) gap between the space s of the honest parties and the space a of the
adversary, using a single streaming round and C = Õ(a) bits of communication,
assuming the existence of one-way functions (OWFs).

Theorem 1 (Informal). Let λ be a security parameter and a = a(λ) be an
arbitrary polynomial in λ. Assuming the existence of one-way functions, there
is an BSM-KA protocol in the streaming model secure against an eavesdropper
with space a that uses a single long stream of length a · poly(λ) (followed by a
single poly(λ)-sized short message in the other direction), and where the honest
parties use s = poly(λ) storage.

In the Theorem above, poly(λ) denotes a fixed polynomial independent of
a. The BSM-KA uses two rounds of communication with one stream; it can
alternatively use a single simultaneous round of streaming (in both directions),

On Bounded Storage Key Agreement and One-Way Functions 289

yielding a non-interactive key agreement in the streaming model. Eventually,
the security of the BSM-KA can be strengthened to everlasting security (the
shared key remains protected even if the adversary becomes all powerful after
the completion of the protocol) at the cost of using an additional round of
streaming.

Theorem 1 shows that OWFs are sufficient to obtain an (everlasting-secure)
key agreement in the streaming model, which is essentially optimal regarding
space gaps and round complexity. Then, we ask:

Are one-way functions also necessary for obtaining key agreement in the
streaming model in the regime where it cannot exist unconditionally?

To approach this question, we initiate a systematic study of the relations
between various forms of key agreements in the streaming model and the exis-
tence of one-way functions. We make significant progress towards answering the
above question affirmatively. Our work also leaves several natural and intriguing
questions open; we hope that our preliminary findings will motivate their study
in future works.

In the course of our analysis, we observe that answering this question
requires tightly characterizing the space efficiency of reductions between vari-
ous Minicrypt primitives such as distributional OWFs, weak OWFs, standard
OWFs, pseudorandom generators, and variants of pseudorandom functions. We
provide some preliminary investigation in this direction, characterizing the space
efficiency of existing reductions between these primitives, which we believe might
be of independent interest. We believe that our work provides some additional
motivation for the question of designing space-tight reduction between Minicrypt
primitives, a natural question which has not received much attention so far.

Answering the question turns out to require careful considerations regarding
the type of protocols and the type of adversaries that are considered. Before
stating our results, we provide a brief outline of these considerations:

– key agreements in the streaming model can have a single long stream (and
multiple short rounds), or multiple long streams. The distinction between
these two settings was traditionally made on the basis of the desirability
of minimizing the number of long rounds (see for example the discussion
on the “desirable property (a)” in [DQW23]). For the question we raise, it
turns out that another important distinction for single-long-stream protocols
is whether the protocol starts with the long stream (a setting called the
“traditional bounded-storage model” in [DQW23]), or whether it starts with
short rounds.

– One can consider two types of space-bounded adversaries (we follow the
naming conventions of [DQW23] for these two models and refers the reader
to [DQW23] for further discussions on the distinction): “fully streaming adver-
saries” have space bounded by a throughout the entire protocol, while adver-
saries in the “unbounded processing model” are allowed unlimited short-term
storage, and are only subject to keeping an a-bit state in between long rounds.
Of course, building key agreement in the unbounded processing model is more

290 C. Brzuska et al.

desirable (our construction of Theorem 1 is in this model), while proving
impossibility results in the full streaming model yields a stronger result.

We note that our notion of unbounded processing differs from that
of [DQW23] due to our use of computational assumptions: in [DQW23], an
unbounded processing adversary has bounded storage during the streaming
rounds, unbounded storage otherwise, and unbounded computational power
throughout. We consider here a variant where the adversary remains probabilis-
tic polynomial time (hence, in particular, always uses a polynomial amount of
storage) but has no further storage bound inbetween the streaming rounds (but
can only store an a-bit state after a long round). To avoid confusion, we will some-
time use the terminologies “fully-streaming PPT adversary” and “unbounded-
processing PPT adversary”, where PPT refers to probabilistic polynomial-time.
Eventually, we also consider everlasting security, where the adversary are (fully-
streaming or unbounded-processing) PPT throughout the protocol, but become
all powerful after the protocol.

In the following, we will write SM-KA to denote key agreement in the stream-
ing model for a fully-streaming PPT adversary, and UP-KA to denote key agree-
ment in the streaming model for an adversary in the unbounded processing PPT
model. With this terminology in mind, our protocol in Theorem 1 is actually an
UP-KA, secure in the unbounded-processing PPT model (the strongest adversar-
ial model we consider). We complement this result by showing that space-bounded
OWFs (i.e., functions which are one-way against PPT adversaries with a fixed
polynomially-bounded amount of storage) actually suffice for constructing SM-
KA (where the adversary is fully streaming) via our construction. This requires
in particular carefully tracking the space efficiency of the traditional construc-
tions of pseudorandom generators from OWFs [HILL99], and of pseudorandom
functions from pseudorandom generators [GGM84].

Corollary 2 (Informal). Let λ be a security parameter and a = a(λ) be an
arbitrary polynomial in λ. Assuming the existence of space-bounded one-way
functions with space bound poly(a), there is an SM-KA protocol secure against a
fully-streaming PPT eavesdropper with space a that uses a single long stream of
length a · poly(λ) (followed by a single poly(λ)-sized short message in the other
direction), and where the honest parties use s = poly(λ) storage.

We now state our main results towards showing the necessity of OWFs for
streaming key agreement beyond the unconditional regime. We first focus on
protocols which involve a single streaming message and a short answer.

Theorem 3 (Informal). Assume that there exists a streaming key agreement
KA against space-a PPT adversaries consisting of a single long stream from Alice
to Bianca and a short message from Bianca to Alice and using s � √

a space
for the honest parties. Then,

– if KA is an UP-KA, there exists one-way functions;
– if KA is an SM-KA, there exists space-bounded one-way functions.

On Bounded Storage Key Agreement and One-Way Functions 291

The conclusion of Theorem 3 is the best possible, as it matches exactly our
positive results of Theorem 1 and Corollary 2. However, one may ask whether
it could be possible to relax the requirement of one-way functions if we either
restrict the adversary to be fully streaming, and/or if the protocol can have
additional streaming rounds and short rounds. In this more general setting, we
prove the following theorem:

Theorem 4 (Informal). Assume that there exists a streaming key agreement
against space-a (fully-streaming or unbounded-processing) PPT adversary with
r rounds using s � a1/polylog(r)r

space for the honest parties, for a suitably large
polylog. Then,

– if KA is an UP-KA, there exists non-uniform, infinitely-often one-way func-
tions;

– if KA is an SM-KA, there exists non-uniform, infinitely-often space-bounded
one-way functions f : {0, 1}n → {0, 1}n with space bound nΩ(polylog(r)r).

The conclusions of Theorem 4 are weaker than that of Theorem 3 on two
aspects: first we only get infinitely-often secure OWFs, and second, the conclu-
sion requires assuming a larger space gap. The first limitation (infinitely-often
security) is an unfortunate but standard consequence of the use of a disjunction
argument based on the existence of a OWF inverter (a similar limitation appears
in many previous works). As for the last limitation, we observe that when the num-
ber of long streams is 1, assuming only a � s2 (up to polylog factor) suffices to
achieve the weaker conclusion of space-bounded distributional OWFs. We view
as an interesting open question the goal of obtaining space-bounded OWFs from
streaming key agreement with a smaller space gap (ideally a � s2). A natural
starting point to solve this question would be to find a space-tight reduction from
(space-bounded) distributional OWFs to OWFs, a question which we believe to
be also of independent interest. Additionally, we note that the one-way functions
obtained in Theorem 4 are non-uniform; our result can be strengthened to provide
uniform one-way functions in the special case of a single long stream.

Due to the exponential dependency in r, Theorem 4 is only meaningful in the
setting where r is a constant. We leave as an intriguing open question to prove (or
disprove) that SM-KA with a superconstant number of rounds imply OWFs.

1.2 Discussions

One-way functions are known to be a necessary assumption for most crypto-
graphic primitives [IL89]. Several lines of work have investigated the neces-
sity of one-way functions for various types of cryptographic protocols, notably
in the setting of zero-knowledge interactive proofs for NP [OW93], single-
server private information retrieval [BIKM99], and constant-bias coin flip-
ping [MPS10,HO11,BHT14]. In each case, unconditionally secure variants of
these protocols can be obtained by relaxing the constraints, such as using mul-
tiple parties or servers [BOL85,CGKS95] or restricting the class of languages to
SZK.

292 C. Brzuska et al.

Our work fits in this broad program by studying another example of crypto-
graphic protocol, streaming-model key-agreements, in the regime where it cannot
exist unconditionally. Similar to constant-bias coin flipping and zero-knowledge
for NP, we actually show that one-way functions are essentially equivalent to
streaming key agreement. Our results nevertheless leave several gaps in the space
gap between the honest parties and the adversary, most notably for protocols
with a large numbers of streaming rounds. Whether these gaps can be closed, or
whether some non-trivial forms of streaming key agreement beyond the uncon-
ditional regime could possibly exist without one-way functions remains an inter-
esting open question, the main one left open by our work.

Turning to our positive result, the efficiency achieved by our protocol is
essentially the best possible regarding space requirement for the honest parties
(concretely, using a pseudorandom function with 128 bit keys to instantiate the
protocol, the parties only need a few hundreds bits of storage) and round com-
plexity (a single long round). However, it still requires a large amount of com-
munication, larger than the space bound a of the adversary. A natural question
is whether communicating more than a remains necessary if we assume one-way
functions.1 While this is somewhat orthogonal to our work, we still discuss it
briefly.

Intuitively, if the adversary can store the entire stream, we would expect
them to break the key agreement by virtue of the inexistence of key agreement
from one-way functions [IR89]. And indeed, if the total communication c is
below

√
a, the protocol can be broken in time roughly quadratic in the honest

parties’ runtime by the attack of Barak and Mahmoody [BM09] (the attack is
only efficient in the number of oracle queries, but it can be made concretely
efficient given a one-way function inverter, see e.g. [CFM21]). However, if the
total communication c is much closer to a (e.g. δ · a for some constant δ <
1), the question becomes equivalent to the following problem: is it possible to
build key agreement from one-way functions against polynomial-time linear space
adversaries? Interestingly, this question remains wide open as of today, even if
we model the one-way function with a random oracle: all known attacks on
key agreements from random oracles [IR89,BM09] appear to inherently require
a quadratic amount of space (in the runtime of the honest parties, hence in
particular in the communication overhead of the protocol), yet all known variants
of Merkle’s seminal key agreement protocol in the ROM [Mer74,Mer78] can be
broken in linear space.

1.3 Our Techniques

OWFs are Sufficient for Streaming Key Agreement. We start with our construc-
tive results. Our construction of gap-optimal and round-optimal UP-KA from
1 Of course, in the unbounded processing model, the question is meaningless as the

adversary can store everything and get unbounded space afterwards, which makes
it essentially an unbounded-space polytime adversary. The question makes sense,
however, in the fully-streaming model where the adversarial storage remains bounded
after the computation.

On Bounded Storage Key Agreement and One-Way Functions 293

OWFs is suprisingly simple and conceptually quite natural in hindsight. Our
starting point is the unconditional key agreement protocol of Cachin and Mau-
rer [CM97]: in this protocol, Alice streams C > a bits to Bianca, who stores
s ≈ √

C bits of the stream while Alice does the same. By the birthday paradox,
the parties get a collision with noticeable probability, and after exchanging the
positions of the bits they stored, agree on a key.

We observe that if Alice has the ability to recompute the stream, then the
parties can store considerably less data: Bianca can store s ≈ λ bits (where λ
is a fixed security parameter) and send her positions to Alice, who recomputes
the stream and stores the same bits. The common key is extracted from these
bits. This suggests a simple methodology: in our protocol, Alice stores a pseu-
dorandom function (PRF) key k ∈ {0, 1}λ and then streams C > a many bits
PRF(k, 1), ..,PRF(k,C). Bianca receives the stream and stores λ many of the bits
at random locations �1, .., �λ which she sends to Alice once her streaming phases
ended. They both set their key to be

key := Ext(PRF(k, �1)‖..‖PRF(k, �λ)). (1)

Except for an additional game-hop based on the PRF, the security analysis of this
protocol is analogous to [CM97] and, conceptually, captures that in space a � C,
the adversary only has a small probability p to have stored the information about
PRF(k, �i) and thus, its advantage is upper-bounded by pλ. Furthermore, the
protocol can be made everlasting secure using the bounded storage extractor of
Vadhan [Vad04]: instead of outputting the key, Alice creates a stream of length
2a and both parties use the key k obtained from the computational protocol as
extraction seed.2

Eventually, in the fully-streaming PPT model (where the adversary remains
space-bounded after the protocol), it is clear that it suffices for the PRF above
to be secure against space-bounded PPT adversaries. However, while PRFs are
known to be equivalent to OWFs [HILL99,GGM84], it is not immediately obvi-
ous that space-bounded PRFs should be equivalent to space-bounded OWFs –
and indeed, this does not appear to follow from existing reductions! Neverthe-
less, by carefully tracking down the space efficiency of the OWF-to-PRG and
PRG-to-PRF reductions, we observe that space-bounded OWFs are actually
sufficient (albeit with a loss in space) to build space-bounded consecutive PRFs,
a simple variant of PRF which restricts the queries to be consecutive integers
(which clearly suffices to instantiate our protocol above).

OWFs are Necessary for Stream-First UP-KA. Conversely, we show that the
existence of UP-KA beyond the unconditional

2 This is very close in spirit to the hybrid-BSM approach discussed in [DM04], where
a similar idea is used to convert a “standard” computational key exchange into an
everlasting one. However, several works [DM04,HN06] have pointed out that this
strategy fails in general. Our setting is slightly different, and is in particular not
captured by the impossibility results in [DM04,HN06], and our concrete instantiation
can actually be proven secure formally.

294 C. Brzuska et al.

Fig. 1. fIL

regime implies a one-way function. We start with
stream-first UP-KA, and show that any such pro-
tocol implies a OWF. Our OWF construction
follows Impagliazzo and Luby’s approach [IL89]
who, given a key agreement protocol KA, con-
struct a distributional OWF (dOWF), i.e., a
OWF where it is hard to sample a uniformly
random pre-image, see Fig. 1. fIL generates a
(transcript, key) from the distribution induced by
the key agreement protocol, and then replaces key with a uniform key with proba-
bility 1

2 . fIL is a dOWF because a uniformly random pre-image of (transcript, key)
would reveal the bit b, i.e., whether the key key is real or random. Unfortunately,
when KA is a streaming key agreement, we cannot claim that fIL is a dOWF,
since accessing the entire protocol transcript might allow trivial inversion attacks:
For example, in our protocol, described in and before Eq. (1), given the entire
transcript, one can simply take the indices �1, .., �λ which Bianca sent to Alice
and then look up the values of PRF(k, �i) for all 1 ≤ i ≤ λ in Alice’s message.

To circumvent this issue, we rely on the information-theoretic attacker of
Dziembowski and Maurer [DM08] (we call it Eve). At a high level, the attacker
sample O(s) views for Bianca consistent with the long stream. The main The-
orem of Dziembowski and Maurer (stated in a re-phrased, weaker version as
Theorem 21 in our work) states that the view of Eve has large mutual informa-
tion with the shared key. Equivalently, the distributions induced by the sampling
of Eve’s view (for a random stream) together with the short message (after the
long stream) and either the shared key or the random key are statistically far. If
the protocol is secure, these distributions must be computationally indistinguish-
able; this suggests a modified distributional OWF fDM (represented on Fig. 2)
that replaces Alice’s stream by the adversary’s E ′

DMs view. Here, short-transcript
denotes the short message from Bianca to Alice.

Fig. 2. The dOWF candidate fDM

By Dziembowski-Maurer,
when state and key come
from a real protocol exe-
cution, f(0, rA, rB , (rB,1, ..,
rB,400s), key′) and f(1, ..)
are statistically far from
one another, so that a uni-
form inverter of fDM directly
yields a distinguisher for
the key agreement protocol.
Now, given a dOWF, we
obtain a PRF via a sequence of MiniCrypt reductions:

distributional OWF
[IL89,Yao82]⇒ OWF

[HILL99]⇒ PRG
[GGM84]⇒ PRF

It remains to argue that the resulting PRF is space-efficient, e.g., in addition to
storing the key k, the PRF uses only uses |k| bits additional space. Since the

On Bounded Storage Key Agreement and One-Way Functions 295

original dOWF internally computes the stream of an UP-KA, a straightforward
implementation of dOWF might indeed consume a lot of space and so might the
PRF constructed from it. However, given any pseudorandom function PRF with
key length λ, we know that it consumes at most space poly(λ) for some fixed
polynomial poly. Now, based on PRF, define the following space-efficient PRFSE

with key-length λSE := λ + poly(λ)

PRFSE(k, x) := PRF(k1..λ, x),

where k1..λ are the first bits of key k. In addition to space |k| to store the key k,
PRFSE indeed only uses space |k| ≥ poly(λ).

To obtain SM-KA (i.e. KA in the fully-streaming PPT model), it suffices
to assume a space-bounded one-way function (SB-OWF) that is secure against
space-bounded PPT adversaries. In order to prove that SM-KA implies SB-OWF,
we need to further modify fDM once more for this purpose. Namely, if Alice and
Bianca use a lot of randomness, they receive this randomness as a stream3.
However, the function fDM needs to take all of this randomness as input – which
can be potentially larger than the space bound a of the adversary! In contrast, a
SB-OWF should be computable using much less space than the space a allocated
to the adversary.

A natural idea to circumvent this limitation is to derandomize the
input of fDM via a pseudorandom generator. Of course, since we seek to
prove the existence of a SB-OWF, we cannot assume a PRG which is
already a stronger primitive. Fortunately, it turns out that in this set-
ting, it suffices to rely on a non-cryptographic pseudorandom generator for
space-bounded algorithms, such as Nisan’s PRG for read-once branching pro-
grams [Nis90]. A slight technicality remains: we need to argue that the distri-
bution {fDM(b, rA, rB , (rB,1, .., rB,400s), key′) : (rA, rB)←${0, 1}∗} is statistically
close to the distribution obtained by replacing (rA, rB) by the output of a PRG
for space-bounded algorithms. Unfortunately, this is not implied by the security
of the PRG, since PRG security only implies that it fools distinguishers out-
putting a single bit – that is, it only guarantees that the marginal distributions
of each of the output bits are statistically close, but not that the distributions
themselves are statistically close (a property called non-boolean pseudorandom-
ness in [DI06]). Fortunately, a closer look at the security analysis of Nisan’s
PRG [Nis90] (with minor modifications of the parameters of the proof) reveals
that it actually already is an unconditionally secure non-boolean PRG for space-
bounded algorithm, which allows us to conclude.

OWFs versus General Streaming Key Agreement. Eventually, we turn to our
last result, summarized in Theorem 4. We follow the round-reduction method
introduced in DQW [DQW23] to prove a lower bound on multi-round streaming
protocols. Essentially, their approach recursively uses (a variant of) the uncondi-
tional attacker of Dziembowski and Maurer [DM08] to convert an �-long-round
3 This is equivalent to having one-time read access to their random tape, which is the

standard way to model probabilistic space-bounded algorithms.

296 C. Brzuska et al.

UP-KA KA� into an (� − 1)-long-round streaming key agreement KA�−1, as fol-
lows:

– One party, say, Bianca, locally samples s+1 states (stB1 , · · · , stBs , stBs+1) consis-
tent with her state after the first long round of KA�. She sends (stB1 , · · · , stBs)
to Alice.

– Alice samples an “Alice view” stA of KA� consistent with the s states
(stB1 , · · · , stBs) received from Bianca.

– Both parties execute the rest of KA� using stA and stBs+1 as their state.

It is easy to see that the above yields a correct (� − 1)-long-round protocol
KA�−1; the crux in the analysis of DQW lies in showing that this round-reduction
also preserves security.

Now, to show that a streaming key agreement beyond the unconditional
regime implies OWFs, we show that a one-way function inverter can be used to
make the DQW round-reduction efficient. At a high level,

– Bianca locally samples a valid transcript T for all the short rounds of KA�.
Then, she samples (s + 1) pre-long-round states (prestateB

1 , · · · , prestateB
s+1)

consistant with T (using the efficient inverter for distributional OWFs),
locally simulates the long stream, and computes in parallel the s+1 resulting
states (stB1 , · · · , stBs , stBs+1), and sends the s first states to Alice.

– Alice samples stA consistent with (stB1 , · · · , stBs), using again the distribu-
tional OWF inverter, and both parties execute the rest of KA� using stA and
stBs+1 as their state.

Using a dedicated analysis (building upon the methods of DQW), we prove
that the above protocol is an (�−1)-long-round secure streaming key agreement
KA�−1, with the same adversarial space bound. However, there is a degradation
in the honest parties space, which increased from s in KA� to Ω(s2) in KA�−1.
After � rounds of round-reduction, we obtain a protocol KA0 with space bound
s′ = s2

�

and no long rounds. If s′ < a, this yields a contradiction. One intuitively
expects this strategy to rule out the existence of KA� with adversarial storage
a > s2

�

, which is polynomial as long as � is a constant.
The above high-level sketch leaves several important details under the rug. In

particular, for technical reasons, the space loss of our reduction actually grows
with the total number r of rounds of the protocol rather than the number � of
long rounds; the loss is of the form spolylog(r)

r

< a, which remains polynomial
as long as r is a constant. Eventually, in the fully-streaming setting, we rely on
the inexistence of space-bounded OWFs to perform the round-reduction and use
in addition an information-theoretic PRG of Nisan [Nis90] to derandomize the
space-bounded OWF constructed, which introduces additional technicalities and
yields a worse gap (though still polynomial when r is a constant).

1.4 Related Works

The bounded storage model has received significant attention since its introduc-
tion by Maurer [Mau92], both in the symmetric setting [Lu02,DR02,ADR02,

On Bounded Storage Key Agreement and One-Way Functions 297

DM02,Vad04] and in the public-key setting [CM97,CCM98,Din01,DHRS04,
HCR02,DQW23]. Recently, a breakthrough result of Raz on space lower bounds
for learning parities [Raz16,Raz17] has led to a renewal of interest for the
model [KRT17,GRT18,GZ19,DQW22].

A closely-related, but distinct model compared to our work is the hybrid
bounded-storage model (hybrid BSM), introduced in [DM04] and further stud-
ied in [HN06]. In the hybrid BSM as in our model, the adversary is space-bounded
and computationally bounded throughout the execution of the protocol. How-
ever, the setting and goal are quite different: in the hybrid BSM, the parties first
agree on a shared key via a “standard” computational key-exchange (e.g. the
Diffie-Hellman key exchange), and then use the shared key K to agree on which
positions to read from a long stream to generate a new key K ′. The hope is that
even if the standard key-exchange is only computationally secure, since the long
stream disappears afterwards, the scheme will enjoy everlasting security, and K ′

will remain private even if the adversary becomes all powerful afterwards. The
work of [DM04] showed (via a contrived counter-example) that this intuition fails
to hold in general, and [HN06] proved a general black-box impossibility result for
the hybrid-BSM, as well as a positive result in the bounded-storage + random
oracle models. We note that, while we also consider everlasting security and com-
putationally bounded adversaries, our setting is different in that we do not use a
classical (computational) key agreement combined with an unconditional BSM
key agreement; rather, we directly build a streaming key agreement from one-
way functions. Other works that discuss combinations of the bounded-storage
model with computational assumptions in a different setting include [MST04]
(on timestamping in the BSM), [GZ21] (achieving primitives that are impossible
to achieve classically by combining the BSM with computational assumptions),
and [BS23] (combining BSM with grey-box obfuscation to obtain simulation-
secure functional encryption).

Eventually, as we discussed earlier, our work fits in the general program
of demonstrating the necessity of one-way functions for various cryptographic
protocols in the regime where they cannot exist unconditionally, such as
zero-knowledge interactive proofs for NP [OW93] and constant-bias coin flip-
ping [MPS10,HO11,BHT14].

1.5 Organization

In Sect. 2, we introduce some technical definitions and lemmas. Section 3 intro-
duces our models for streaming key agreement, with either fully-streaming
PPT adversaries (SM-KA) or unbounded processing PPT adversaries (UP-KA).
Section 4 introduces our construction of UP-KA with small honest space require-
ment from pseudorandom functions, using a single streaming round, and extends
this construction to show a stream-first SM-KA from space-bounded (consecu-
tive) pseudorandom functions. Section 5 provides two converse of our construc-
tion, showing that stream-first UP-KA beyond the unconditional regime implies
one-way functions, and that general UP-KA with a constant number of streaming
rounds imply infinitely-often OWFs. Section 6 extends our analysis to SM-KA

298 C. Brzuska et al.

using information-theoretic pseudorandom generators for space-bounded com-
putations, obtaining space-bounded OWFs and infinitely-often space-bounded
OWFs for stream-first and general SM-KA respectively; it relies on a derandom-
ization lemma which had been observed before, but without a precise quantita-
tive statement. A self-contained proof of this derandomization lemma is included
in Appendix C of the full version of this paper Eventually, in Sect. 7, we fill the
remaining gap with respect to our construction by proving that space-bounded
one-way functions imply space-bounded consecutive pseudorandom functions.

2 Preliminaries

Definition 5 (Infinitely Often Distributional One-Way Functions). A
function f is a ε infinitely often distributional one-way functions (ε-io-dOWF),
if it can be computed in time polynomial in its input size and for infinitely many
λ1 < λ2 < .., it holds that for all PPT algorithms A and large enough j

SD
(
(Uλj

, f(Uλj
)), (A(1λj , f(Uλj

)), f(Uλj
))

)
> ε(λj),

where Uλj
denotes the uniform distribution over {0, 1}λj .

Remark. We will also use non-uniform ε-io-dOWFs where f can be computed by
a non-uniform sequence of polynomial-size circuits.

2.1 Information-Theoretic Tools

Definition 6 (Extractor [NZ96]). We say that an efficient function Ext :
{0, 1}SEED × {0, 1}n → {0, 1}� is an (α, ε)-extractor if for all random vari-
ables (X,Z) such that X is supported over {0, 1}n and H∞(X | Z) ≥ α we
have SD((Z, S,Ext(S;X)), (Z, S, U�)) ≤ ε where S,U� are uniformly random and
independent bit-strings of length d, � respectively.

Lemma 7 (Extractor [ILL89]). For α ≥ � + 2 log(1/ε) and SEED ≥ n + �,
there exist an (α, ε)-extractor Ext : {0, 1}SEED × {0, 1}n → {0, 1}�. Furthermore,
such an extractor can be computed in O(n) time and space.

Let h(p) be the binary entropy function and h−1 its inverse s.th. p ≥ 1
2

Lemma 8 (Bit-Entropy [DQW23] Lemma 3.1). For 1 ≤ δ ≤ 1, assume
X,Y are random variables, where X is distributed over {0, 1}k. Let X[i] denote
the i’th bit of X. If H∞(X | Y) ≥ δk, and I is uniformly random over [k] and
independent of X, Y then H∞(X[I] | Y, I) ≥ − log(h−1(δ))

Lemma 9 (Jensen). For all random variables X, E[X2] ≥ E[X]2.

On Bounded Storage Key Agreement and One-Way Functions 299

3 Key Agreement in the Streaming Model

In this section, we will introduce the notion of key agreement in the streaming
model. We start by introducing the notion of streaming algorithm we will use
throughout the paper as well as some notational conventions. We further provide
security notions both in the fully streaming setting—all parties remain space-
restricted at all times—and the unbounded processing setting where parties may
temporarily use arbitrary (polynomial) space for processing messages.

Table 1. Conventions on variable
names

λ : security parameter

s : space bound for honest parties

C : Communication stream length

r : rounds, i.e., nbr. of messages

a : adversary’s space bound

Notation and Conventions. An algorithm A
may have input to one or more streamed
inputs. We write A(a, b) to indicate (stream-
ing) access to the ordered tuple (a, b) and
A(a; b) if A can read independently from
streams a and b. Concretely, A(st, x; r) indi-
cates that A can read from a stream contain-
ing first the state st and then the transcript x
as well as independently read random coins
from r. Additionally, we annotate inputs which exceed the memory limit and
thus need to be read in a streaming fashion by superscript str, e.g., rstr. We
write strstr.read(len) for reading len bits from a stream and strstr.write(val) for
writing the value val to the stream. Finally, throughout this paper we stick to
the conventions on variable names outlined in Table 1. As is the tradition in key
agreement, we denote the adversary by E (Eve) to avoid confusion with Alice
who is abbreviated with A. Note that we often omit the security parameter for
succinctness of notation.

3.1 Fully Streaming Model

In the streaming model, algorithms are restricted in the space they use through-
out their executions. They can still read from input streams and write to output
streams larger than their space bound.

Definition 10 (Streaming algorithm). Let s : N → N and c : N → N be
polynomials in λ. An algorithm A is an (s, C)-streaming PPT, if it gets the
security parameter 1λ, some input x with |x| ≤ C(λ) as well as two parallel
streams (strstr; rstr) with |strstr| ≤ C(λ), outputs a value y and a stream strstrA
such that

Efficiency. A runs in time polynomial in λ,
Space-bound. A uses at most s(λ) bits of storage at any point of time and, in

particular, |y| ≤ s(λ), and
Stream-bound. |strstrA | ≤ C(λ).

Note that A does not have further randomness beyond the randomness received
as a rstr. Further, as A receives multiple streams as input, it can independently
read from the randomness and is not required to fully read any of the streams
it receives.

300 C. Brzuska et al.

Definition 11 (Key Agreement in the Streaming Model (SM-KA)). Let
s, C, and r be polynomials in λ. A (s, C, r)-SM-KA protocol KA consists of r
(s, C)-streaming PPT (A1, B1, . . . , Ar/2, Br/2), such that each of the PPT P has
syntax

(st′, x′str, key) ← P (st, xstr; rstr)

with |key| = λ and together, they satisfy correctness (cf. Definition 12).

When running a (s, C, r)-SM-KA protocol, A1 and B2 take as input an empty
state, and since A1 sends the first message, A1 also takes as input an empty xstr.
Only the last stages Ar/2 and Br/2 return a key, but for uniformity of syntax
and w.l.o.g., we let all protocol stages return a key. With this understanding
of the syntax, we define a protocol as follows:

KA(rA
str, rB

str) = (rstrA,1, ..r
str
A,r/2, r

str
B,1, .., r

str
B,r/2)

stA ← []; stB ← []; xstr
B,0 ← []

for i = 1, .., r/2 do

(stA, xstr
A,i, keyA,i) ← Ai(stA, xstr

B,i; r
str
A,i)

(stB , xstr
B,i, keyB,i) ← Bi(stB , xstr

A,i; r
str
B,i)

keyA ← keyA,r/2

keyB ← keyB,r/2

xstr ← (xstr
A,1, x

str
B,1, .., x

str
A,r/2, x

str
B,r/2)

return (xstr, keyA, keyB)

Definition 12 (Correctness). Let s, C, and r be polynomials in λ. An
(s, C, r)-SM-KA is εKA-correct if for all but finitely many λ

Prrstr

[
keyA = keyB : (xstr, keyA, keyB) ← KA(rstr)

]
= 1 − εKA.

If εKA is negl we sometimes omit it.

Security of a (s, C, r)-SM-KA protocol has an additional parameter a which
bounds the length of the adversary’s storage and requires that Alice’s key is
indistinguishable from random (and thus, by correctness, so is Bianca’s key).

Definition 13 (Fully Streaming Security). Let s, C, r and a be polynomials
in λ. KA is a (s, C, r, a)-SM-KA δKA-secure protocol if it is a (s, C, r)-SM-KA
and for all but finitely many λ and all (a,Cr)-streaming PPT E, the advantage
AdvstreamKA,E (λ) :=

∣
∣
∣
∣

Prrstr,rE str

[
1 = E(1λ, keyA;xstr; rE) : (xstr, keyA, keyB) ← KA(rstr)

]

−Prrstr,rE str,key

[
1 = E(1λ, key;xstr; rE) : (xstr, keyA, keyB) ← KA(rstr)

]
∣
∣
∣
∣

is upper bounded by δKA. If δKA is negl in λ we sometimes omit it.

On Bounded Storage Key Agreement and One-Way Functions 301

3.2 Unbounded Processing Model

In addition, we relax the space-bound and define unbounded processing algo-
rithms. Unbounded processing algorithms may use arbitrary (polynomial in λ)
space, however their output y still has to satisfy |y| ≤ s(λ).

Definition 14 (Unbounded Processing Protocol). Let s : N → N and
c : N → N be polynomials in λ. An protocol Π is an (s, C)-unbounded-
processing PPT, if it consists of rounds (st, strstr, x) ← send(1λ, st), (st, x) ←
receive(1λ, st, strstr) where Alice and Bianca alternate in running the send and
receive algorithms such that

Efficiency. send and receive run in time polynomial in λ,
Stream-bound. |strstr| ≤ C(λ).
Small State and Output. The state st and output x is bounded by s(λ)

Definition 15 (Key Agreement in the Unbounded Processing (UP-
KA)). Let s, C, and r be polynomials in λ. A (s, C, r)-UP-KA protocol KA con-
sists of r UP round functions PPT (sendA,1, receiveB,1), . . . , (sendB,r, receiveA,r),
with syntax

(st′, x′str, key) ← send(st; rstr)
(st′, key) ← receive(st, xstr; rstr)

with |key| = λ and together, they satisfy correctness (cf. Definition 12). Regroup-
ing, we also consider the sequence (A1 := (receiveA,1, sendA,1), B1 := (receiveB,1,
sendB,1)), . . . , (Ar/2 := (receiveA,r/2, sendA,r/2), Br/2 := (receiveB,r/2,
sendB,r/2)) where the first receive algorithm and the last send algorithm is empty.

For security in the Unbounded Processing setting, we need to split the adver-
sary in one instance per round E1, . . . , Er and final distinguishing adversary E .
Similarly to the round algorithms, E are required to be PPT in λ and follow the
syntax st ← E(st, strstr; rstr) where |st| ≤ a(λ).

Definition 16 (Unbounded Processing (UP-KA) security). Let s, C, and
r be polynomials in λ. KA is a (s, C, r, a)-UP-KA δKA secure protocol if it is
a (s, C, r)-UP-KA and for all but finitely many λ and for all PPT E1, . . . , Er

outputting a state stEi
with |stEi

| ≤ a(λ) and all PPT E, the advantage

AdvunboundKA,Er ,E(λ) := |Pr[1 = E(1λ, keyA; stEr
; rE)] Pr[1 = E(1λ, key; stEr

; rE)]|

is upper bounded by δKA, where the probabilities are taken over sampling rstr,
the (implicit) randomness of E , E1, . . . , Er and, for the second probability, key,
xstr, keyA, keyB) ← KA(rstr) and ststrEi

← Ei(stEi−1 , x
str
i) and (xstr

1 , · · · , xstr
2r) ←

xstr). If δKA is negl in λ we sometimes omit it.

302 C. Brzuska et al.

Normal Form

We additionally place the following additional constraints on protocols in both
the fully streaming and unbounded processing model:

Short Rounds are Short. In particular, all short messages in a protocol fit
within honest parties space s(λ)

No Consecutive Long Rounds. Between two long (streaming) messages, we
require at least one short message

4 Constructing Key Agreement

In this section we present our (s, C, r = 2)-SM-KA and (s, C, r = 2)-UP-KA
protocols. Recall, that in contrast to [CM97] the stream is generated by Alice
using a PRF. Consequently, Bianca can choose a single index and send it to
Alice who can reconstruct the bit using the (small) PRF key. To produce a large,
uniform key, we parallel compose the basic protocol Õ(λ) times and extract the
key using a seed chosen by Bianca. In our proof, we rely on consecutive PRFs—
a weaker notion of PRFs which can only be accessed on consecutive values—as
this notion suffices for our proofs and can be constructed space efficient from
one-way functions.

4.1 Consecutive PRFs

While the reduction for the GGM construction of PRFS [GGM84] requires space
linear in the number of queries, the reduction can be made space-efficient under
the restriction of only allowing sequential queries. We formally discuss this reduc-
tion in the last section of the full version and use consecutive PRFs in our con-
struction.

Definition 17. A function f : {0, 1}λ × {0, 1}λ →
{0, 1} is a sequential PRF if for all probabilistic
adversaries A running in time poly(λ)

∣
∣
∣
∣
∣
∣

Prk←${0,1}λ

[
1 = AEVAL0

f,k(·)(1λ)
]

−Prk←${0,1}λ

[
1 = AEVAL1

f,k(·)(1λ)
]

∣
∣
∣
∣
∣
∣
≤ negl(λ)

EVALb
f,k(i)

if ctr = ⊥ then ctr ← 0

asserti = ctr + 1

ctr ← i

if b = 0 then y ← f(k, i)

else y←${0, 1}
return y

4.2 SB-PRF ⇒ Fully Streaming Key-Agreement

For simplicity we set the desired length of the produced keys to λ matching the
security parameter of the consecutive PRF.

On Bounded Storage Key Agreement and One-Way Functions 303

Fig. 3. Honest Protocol KA := ((A1, B1), (A2)) where boxed parts are repeated e :=

30λ times in parallel

Theorem 18 (SB-PRFs ⇒ fully streaming key-agreement (SM-KA)).
Let PRF be a Consecutive SB-PRF {0, 1}λ × {0, 1}λ → {0, 1} which can be eval-
uated in space sPRF and Ext and (3λ, λ)-extractor {0, 1}30λ ×{0, 1}31λ → {0, 1}λ.
Then KAFig. 3 is a (s, C, r = 2)-SM-KA protocol with perfect correctness and
honest user space s = O(λ · log(C) + sPRF) and (s, C, r = 2, a = C

60λ)-SM-KA
security

The proof is fairly standard and omitted in the conference version but
included in the full version of this paper.

4.3 PRF ⇒ Unbounded Processing Key-Agreement

Theorem 19 (PRFs ⇒ unbounded processing key-agreement (UP-
KA)). Let PRF be a PRF {0, 1}λ × {0, 1}λ → {0, 1} and Ext and (3λ, λ)-
extractor {0, 1}30λ × {0, 1}31λ → {0, 1}λ. Then KAFig.3 is a (s, C, r = 2)-
UP-KA protocol with perfect correctness and honest user space s = O(λ) and
(s, C, r = 2, a = C

60λ)-UP-KA security

Proof Sketch. The unbounded processing model places fewer restrictions on the
honest parties, and thus we can avoid the requirement for the PRF to allow
evaluation in restricted space. For security, observe that the only point where
we used the space restriction on the adversary was to bound the size of the
adversary’s space after receiving the stream from Alice. As Eve is space bounded
between rounds in the unbounded processing model as well, the same argument
applies. ��

304 C. Brzuska et al.

4.4 Arbitrary Output Length and Everlasting Security

[DQW23] show that it is possible to obtain large keys at the cost of one additional
round: Alice streams C uniform bits and both parties use their derived key k as
seed to extract a large key K using a bounded storage extractor [Vad04] with good
locality. This transformation applies directly to our construction as well, with
additional space cost O(|K|) for the honest parties. We further observe that this
step is secure against unbounded adversaries and the seed k can be published after
the protocol terminates thus resulting in a protocol with everlasting security.

5 Unbounded Processing: UP-KA Implies dOWFs

5.1 Stream-First Key Agreement ⇒ dOWF

We start by considering the stream first setting, where Alice first sends a long
streaming message to Bianca, and afterwards, Bianca sends a short message to
Alice. As outlined in Sect. 1.3, if KA is a strong stream-first UP-KA protocol that
is secure against adversaries with large enough space, then fDM (cf. Figure 2) is
a dOWF.

Theorem 20 (Stream-first UP-KA ⇒ dOWF). Let KA be a stream-first
(s, C, r, a)-UP-KA protocol with a ≥ 400s2, correctness error εKA ≤ 1

400 and
security gap δKA ≤ 1

5 , then fDM is an εI-dOWF for any constant εI ≤ 1
10 .

The proof of Theorem 20 builds on the following Dziembowski-Maurer (DM)
theorem on the function fDM which is induced by a key agreement protocol KA.
For b ∈ {0, 1}, we define the distributions fDM(b,R) by sampling r = (rA, rB ,
rB,1, .., rB,s, key

′) uniformly at random and returning fDM(b, r).

Theorem 21 (Dziembowski-Maurer). If KA is a stream-first (s, C, r, a)-UP-
KA or SM-KA protocol with εKA ≤ 1

400 -correctness error. Then for all large
enough λ,

SD(fDM(0, R), fDM(1, R)) ≥ 9
10

Remark. Dziembowski and Maurer prove a stronger version of Theorem 21 which
precisely characterizes the entropy of the key rather than only its statistical dis-
tance from a uniformly random key. The above is a re-statement of Dziembowski-
Maurer (DM) in the DQW fully streaming/unbounded processing model, sim-
plified for our application. A self-contained proof of Theorem 21 is included in
Appendix A of the full version of this paper

In addition to DM, we will use the following useful claim throughout this
and the next section to lower bound the advantage of a distinguisher induced by
a uniform inverter.

Claim 1. For b ∈ {0, 1}, let Xb be two arbitrary distributions, and let Y be the
distribution which samples b uniformly and then returns z←$Xb.Then,

Eb,z←$Y [Prb′,z′←$Y [b′ = b | z′ = z]] ≥ (SD(X0,X1))2

On Bounded Storage Key Agreement and One-Way Functions 305

We prove Claim 1 in Appendix B of the full version and now use Claim 1 to
prove Theorem 20.

Proof of Theorem 20. Assume towards contradiction that fDM is not an εI-dOWF
for εI = 1

10 . Then, there exists a PPT inverter I such that for infinitely many
security parameters

SD((B,R, fDM(B,R)), (I(fDM(B,R)), fDM(B,R))) < εI , (2)

where R is the uniform input (rstrA , rstrB , (rstrB,1, .., r
str
B,400s), key

′). Let EI be the
distinguisher which given z, runs

(b, r)←$I(z); return b.

We construct the following adversary EI against the stream-first (s, C, r, a)-UP-
KA protocol KA: Adversary EI prepares the running of 400s different copies
of Bianca, each with its own randomness stream rstrB,j which EI does not store,
but instead generates (in parallel) on the fly as needed. When EI receives stream,
adversary EI computes stB,j ← B1(stream, rstreamB,j) in parallel for all 1 ≤ j ≤ 400s
and stores stB,1, .., stB,400s. Next, EI receives short-transcript, key, runs

(b∗, r)←$I(stB,1, .., stB,400s, short-transcript, key)

and returns b∗. In the proof, we denote by EU the analogous (inefficient) adversary
which, instead of the (efficient) I, runs U that returns a perfectly uniform pre-
image of z under fDM.

Space. The adversary EI samples 400s Bianca states, each of which requires
space s. Thus, in the streaming phase, EI runs in space 400s2. Note that I is
run after receiving the stream has terminated, so that its space consumption
does not affect E ’s space limitation while receiving.

Advantage. Now, we can lower bound the advantage AdvunboundKA,EI (λ) as follows:

| PrrA
str,rB

str,rEI
str,key

[
1 = EI (1λ, key;xstr; rEI) : (xstr, keyA, keyB) ← KA(rA

str, rB
str)

]

− PrrA
str,rB

str,rEI
str

[
1 = EI(1λ, keyA;xstr; rEI) : (xstr, keyA, keyB) ← KA(rA

str, rB
str)

]|
= | Prr,I [(1, ∗) = I(fDM(1, r))] − Prr,I [(1, ∗) = I(fDM(0, r))]|
(†)
≥ |Prr,U [(1, ∗) = U(fDM(1, r))] − Prr,U [(1, ∗) = U(fDM(0, r))]| − 4ε

= | Prr,U [(1, ∗) = U(fDM(1, r))] + Prr,U [(0, ∗) = U(fDM(0, r))] − 1| − 4ε

≥ 2Eb,r[Prr′,b′ [b′ = b | fDM(b′, r′) = fDM(b, r)]] − 1 − 4εI
Cl. 1≥ 2SD(fDM(1, R), fDM(0, R))2 − 1 − 4εI
T. 21≥ 2

(
9
10

)2

− 1 − 4εI > 2
(

9
10

)2

− 1 − 4
10

>
3
5

− 2
5

=
1
5

≥ δKA

where (†) follows, because I approximates the uniform distribution ε well, but
since the statistical distance in (2) is over the choice of b as well, the loss is
doubled, and then, it is further doubled since we have a loss for each term. ��

306 C. Brzuska et al.

5.2 Sampling st Conditioned on q Copies of Itself

Let us open up one of the ideas of Dziembowski-Maurer (DM) underlying their
proof of Theorem 21, since it is a useful tool for generalizing Sect. 5.1 to key
agreement protocols with multiple streaming rounds.

DM show that q equally distributed Bianca states already contain most of the
information of Bianca’s actual state. Using DM’s ideas, Dodis, Quach and Wichs
(DQW) strengthen the lemma into stating that, in fact, sampling a Bianca state
conditioned on q of his own states will yield an almost equally distributed state.
Both DM and DQW state their lemmas in more general terms and we follow their
tradition here. Namely, consider a pair of jointly distributed random variables
(Z, Y). First sample Y and then q random variables Z1, .., Zq, each of which is
sampled according to the distribution of Z conditioned on Y . Now, the claim is
that if we sample Z ′ according to Z conditioned on Z1, .., Zi (rather than on Y)
for a suitable 1 ≤ i ≤ q, then these two distribution are close. In the lemma below,
X is equal to f(Y) for some (potentially probabilistic) function f .

Lemma 22 (DQW). ∃i : 1 ≤ i ≤ q such that

SD((X,Z,Z1, .., Zi), (X,Z ′, Z1, .., Zi)) ≤
√

H(X)
2(q + 1)

Remark. Intuitively, sampling Z ′ conditioned on more information about Y
should be useful to decrease the statistical distance and hence, one might think
that choosing i = q is always a valid choice. However, the proof of Lemma 22
currently just relies on the chain rule for mutual information and only shows
that such an i exists. Note that we stated Theorem 21 with 400s instead of i,
because statistical distance can only increase when adding more variables, but
the same argument does not directly apply here.4

When we apply Lemma 22 in Sect. 5.3, X is Alice’s state, Z1, .., Zq are Bianca
states and Z and Z ′ are also Bianca states. Since Alice’s state size is upper-
bounded by s, we also have H(X) ≤ s, and choosing q = s1+2m

2 yields an upper

bound of
√

H(X)
2(q+1) ≤ √

s
s1+2m ≤ 1

sm .

5.3 dOWFs via Round Reduction

Section 5.1 shows that stream-first UP-KA (with large enough space gap) implies
a dOWF. This result is of interest on its own and didactically meaningful, since
all subsequent analyses of success probability follow a similar template, but have
additional steps or additional conceptual ideas. Nevertheless, the most important

4 More precisely, for any function g, SD((X, X ′), (Y, Y ′)) ≥ SD(g(X, X ′), g(Y, Y ′))
and choosing g to be a projection on the first variable shows SD((X, X ′), (Y, Y ′)) ≥
SD(X, Y). Unfortunately, (X, Z′, Z1, .., Zi) is not a projection of (X, Z′, Z1, .., Zq),
since Z′ is conditioned on Z1, .., Zi and Z1, .., Zq, respectively.

On Bounded Storage Key Agreement and One-Way Functions 307

role of the result for stream-first UP-KA is that it establishes as base case for
an inductive argument that we carry out in this section.

Concretely, we follow the DQW round reduction template: DQW prove that
if there is an r-message UP-KA/SM-KA protocol, then there is also an r − 1-
message UP-KA/SM-KA protocol with slightly worse parameters. Arguing by
induction, we then obtain that any r-message UP-KA/SM-KA protocol with
large enough parameters implies a stream-first UP-KA/SM-KA protocol (possi-
bly with an empty first stream, if all messages end up being short), which we
already know implies a dOWF.

The DQW round reduction technique operates in the information-theoretic
setting, and we would like to adopt their technique to the computational setting.
Unfortunately, several sampling operations in the DQW round reduction are
inefficient. Thus, we prove that an r-message UP-KA/SM-KA protocol can be
transformed into an r − 1-message SM-KA protocol with slightly worse parame-
ters or that an infinitely-often dOWF exists. Applying the argument iteratively,
we obtain that an r-message UP-KA/SM-KA protocol implies an or statement
over r + 1 possible candidates for an infinitely often (io) dOWF.

Conceptual Idea. To present the conceptual idea behind the DQW round reduc-
tion technique and our variant of it, we now describe the protocol transforma-
tion using inefficient reverse sampling and then subsequently replace inefficient
reverse sampling by an inverter I similarly as in the previous section.

We denote A1, B1, A2, B2, .. the code of Alice and Bianca in the original pro-
tocol and add an overline for the transformed protocol A1, B1, A2, B2, ... Assume
w.l.o.g. that Alice sends the first message xA.

Short Messages. If the message xA is short, then we can just “move it into
Bianca’s computation” and have Alice perform reverse sampling to compute
her state later, i.e., we obtain a protocol where Bianca sends the following first
message:

B1

(stA, xA)←$A1

// The randomness rA is implicit.

(stB , xB)←$B1(xA)

xB ← (xA, xB)

return (stB , xB)

A1(xB)

parse (xA, xB) ← xB

rA
str←$(Amess

1)−1(xA)

(stA, xA) ← A1(rA)

(st′A, x′
A)←$A2(stA, xB)

return (st′A, x′
A)

Amess
1 (rA

str)

(stA, xA) ← A1(rA
str)

return xA

We now prove that the function Amess
1 which maps Alice’s randomness to

Alice’s message xA is a dOWF—or that we have a protocol with one round less.
Namely, if Amess

1 is not a dOWF, then we obtain a new r − 1 message protocol
where we replace the inefficient inverse sampling rA

str←$(Amess
1)−1(xA) of Alice’s

state by an efficient sampler. W.l.o.g., we consider protocols in a normal form,
where no two streaming rounds follow onto each other, but rather, there are
always short rounds in between.

308 C. Brzuska et al.

Lemma 23 (Short messages). Let m > 0 be a constant. Let KA be a
(s, C, r, a)-UP-KA with a > s2+2m

2 , correctness error εKA, security δKA, where
the length of the first message is bounded by s2+2m

2 . Then, either Amess
1 is an

εI-io-dOWF, or there exists an inverter I for Amess
1 such that for all but finitely

many λ,
SD((Amess

1 (R), R), (Amess
1 (R), I(Amess

1 (R)))) < εI , (3)

where R is a uniform sample of rA
str. Moreover, KA defined by A1 (replacing

(Amess
1)−1 by I), B1 and Aj := Aj+1, Bj := Bj for j > 1 is a (s2+2m, C, r−1, a)-

UP-KA with correctness error εKA = εKA + εI and security δKA = δKA + εI .

Remark. We only obtain an infinitely often (io) dOWF rather than a dOWF,
because we need I to successfully invert Amess

1 on all but finitely many λ for
security and correctness to hold.

Proof. Communication length C. Note that for KA, the transcript

(xB,1, xA,1, xB,2, ..)

is equal to
((xA,1, xB,1), xA,2, xB,2, ..

and thus, the communication complexity of the two protocols are identical (we
omit constant costs for bracketing (xA,1, xB,1)).

Normal Form. The protocol is still in normal form: If xB,1 in KA was a stream,
then xA,2 is short. Now, xB,1 = (xA,1, xB,1) is a stream, too, and xA,1 = xA,2 is
still short. If xB,1 in KA was short, then xB,1 = (xA,1, xB,1) is still short, since
|xA,1| + |xB,1| ≤ s2+2m

2 + s < s2+2m.

Space Bounds of Honest Parties. Since we only modified the behaviour of the
parties on non-streaming rounds, their behaviour in streaming rounds remains
the same, using the same space bounds as before. Moreover, the B1 only stores a
state stB = stB of size s. Finally, for A1, the receiveA1

can just store the message

xB,1 = (xA,1, xB,1) because |xA,1|+ |xB,1| ≤ s2+2m

2 + s < s2+2m is lower than its
space bound.

Correctness. The distribution of Bianca’s key in KA and KA is identical, but
the distribution of Alice’s key might change by at most εI due to the statistical
distance of the sampler.

Security. Let E be a PPT adversary against KA and assume towards contradiction
that E ’s advantage δE > δKA + εI . Since the transcript (xB,1, xA,1, xB,2, ..) of KA
is equal to ((xA,1, xB,1), xA,2, xB,2, ..) and since |xA,1| ≤ a, the reduction RE
against KA can store xA,1 and then run the first stage of E only once RE also
receives xB,1. Subsequently, RE proceeds exactly as E .

RE ’s simulation of KA is up to εI-far from the distribution of KA, since Alice’s
state in KA has statistical distance at most εI from her state in KA. Hence, we
obtain that RE has advantage

δRE ≥ δE − εI > δKA − εI + εI = δKA

On Bounded Storage Key Agreement and One-Way Functions 309

against KA and we reach a contradiction. ��

Long Messages. Now, in the case that Alice’s first message xA is long, Bianca
cannot generate Alice’s first message xA, send it to her together with his own
message xB and then Alice performs reverse sampling given xA, because this
would destroy the normal form of the protocol, since xB is a short message and
might be followed by a long message. Therefore, we would like to replace xB by
a message which is also short.

Lemma 22 gives us a tool how Alice can sample an almost well-distributed
state given something short, namely s copies of her own state. Indeed,
Bianca could sample s copies of Alice’s state in the unbounded pre-processing
model (and assuming a suitably efficient inverter). However, for consistency with
the next section, we implement a different strategy here that will also work in
the fully streaming setting.

As we have already seen in fDM, Bianca can efficiently sample several of
her own states. Very surprisingly, DQW show that if Alice samples her state
conditioned on i copies of Bianca’s state stB,1,..,stB,i, her state is actually well-
distributed, yielding the following transformed protocol, where i is the index
guaranteed by Lemma 22.

B1

(stA, xstr
A)←$A1

// Running Alice.

for j = 1..i :

(stB,j , xB,j)←$B1(x
str
A)

// Sampling i ≤ s
a+2c

Bianca states.

z ← (stB,1, xB,1, .., stB,i, xB,i)

(rstrA ,)←$(B1 ◦ A1)
−1(z)

// Re-sample conditional

// randomness for Alice.

(st′A, x
′str
A) ← A1(r

str
A)

// Running Alice.

(stB , xB)←$B1(x
′,str
A)

// Sampling a fresh Bianca state.

xB ← (z, xB)

return (stB , xB)

A1(xB)

(z, xB) ← parse xB

(rstrA ,)←$(B1 ◦ A1)
−1(z) // Re-sample cond.

// rand. for Alice.

(stA, xstr
A) ← A1(r

str
A) // Running Alice.

(st′A, x′
A)←$A2(stA, xB)

stA ← st′A
xA ← x′

A

return (stA, xA)

(B1 ◦ A1)(rstrA , (rB,1, .., rB,i))

(stA, xstr
A) ← A1(r

str
A) // Running Alice.

for j = 1..i :

(ststrB,j , x
str
B,j) ← B1(x

str
A ; rB,j)

// Computing i ≤ s
1+2m

Bianca states.

return (stB,1, xB,1, .., stB,i, xB,i)

The function (B1 ◦ A1) is a natural candidate for a dOWF since the above
protocol transformation only works if (B1◦A1) is not an (infinitely often) dOWF.
Before turning to an efficient implementation of the protocol using an efficient
inverter for B1◦A1, let us briefly consider why these inefficient versions of A1 and
B1 would yield a good joint distribution of Alice and Bianca states. The DQW
key idea here is that both Alice and Bianca, sample their state conditioned on

310 C. Brzuska et al.

xB,1, stB,1,..,xB,i, stB,i only. Therefore, Alice’s state is perfectly distributed as in
the original protocol by the definition of conditional sampling. Now, to argue
that the joint distribution of Alice’s and Bianca’s state is close to the original
distribution, we invoke Lemma 22 on Bianca’s state to conclude that sampling
conditioned on xB,1, stB,1,..,xB,i, stB,i yields a sample that is statistically close
to the original distribution. We now make these arguments formal.

Lemma 24 (Long messages). Let m > 0 be a constant. Let KA be a
(s, C, r, a)-UP-KA with a > s2+2m, correctness error εKA and security δKA, where
the length of the first message is greater than s2+2m

2 . B1 ◦ A1 is a non-uniform
εI-io-dOWF, or there exists an inverter I for B1◦A1 such that for all but finitely
many λ,

SD((B1 ◦ A1(R), R), (B1 ◦ A1(R), I(B1 ◦ A1(R)))) < εI , (4)

where R is a uniform sample of rstrA , (rB,1, .., rB,i) and i is the index guaranteed
by Lemma 22. Moreover, KA defined by A1 (replacing (B1 ◦A1)−1 by I), B1 and
Aj := Aj+1, Bj := Bj for j > 1 is a (s2+2m, C, r−1, a)-UP-KA with correctness
error εKA = εKA + 2εI + 1

sm and security δKA = δKA + 2εI + 1
sm .

Remark. The non-uniformity is induced by the need to know the index i, which
cannot be computed efficiently and which might be a different index for each
security parameter. Thus, the non-uniform advice is O(log λ) when Lemma 24
is applied once and O(r log λ) when Lemma 24 is applied recursively r times.

Proof. Communication Length C. Since we assumed that |xA| > s2+2m

2 , the
communication complexity of the protocol decreased, since instead of xA, we
now send up to s1+2m

2 Bianca states each of which has size at most s, so overall,
we replaced a message of size |xA| > s2+2m

2 by a message of size ≤ s2+2m

2 .

Normal Form. The protocol is still in normal form. Since xA,1 is long, xB,1 in
KA is short. Now, xB,1 is still short, since it contains |xB,1| ≤ s bits as well as up
to s1+2m

2 many Bianca states, each of which are of size at most s, so the overall
length of xB,1 is bounded by s2+2m

2 + s < s2+2m and thus below the new space
bound for honest parties.

Space Bounds of Honest Parties. Analogously to the short message case, the
parties’ behaviour in rounds other than the first remains the same, using the
same space bounds as before. Moreover, B1 only stores a state stB = stB of
size s. And similarly to before, for A1, the receiveA1

can just store the message

xB,1 = (xA,1, xB,1) because s2+2m

2 + s < s2+2m is lower than its space bound.

Security. Let E a PPT adversary with space-bound a against KA and assume
towards contradiction that E has advantage δKA > δKA +2εI + 1

sm . We construct
a new PPT adversary RE against KA. As in the previous section, after the
first message of KA, the reduction RE just runs E , we thus now focus on RE ’s
simulation of the first message xB,1 of KA. Upon receiving xstr

A as a stream, RE
computes s1+2m

2 many Bianca states in parallel as follows:

On Bounded Storage Key Agreement and One-Way Functions 311

Fig. 4. Hybrids for Lemma 24

for j=1..i:
(stB,j ,xB,j)←$ B1(xstr

A)
// Sampling i ≤ s1+2m Bianca states.

z← (stB,1, xB,1, .., stB,i, xB,i)

Since a > s2+2m

2 , RE can store those. Next, upon receiving receiving Bianca’s
message xB, RE runs E on (z, xB), and from there just runs E . We argue about
the statistical distance of RE ’s simulation by game-hopping. In Fig. 4, the upper-
left column describes how the joint distribution of (z, xB , stB , stA,2) is generated
in E ’s simulation, and the lower-right column describes how the joint distribution
of (z, xB , stB , stA,2) is generated in KA.

From the 1st to 2nd column, we replace sampling of Bianca’s state and mes-
sage by conditional inverse sampling. By Lemma 22, the statistical distance is

312 C. Brzuska et al.

at most 1
sm , cf. discussion in Sect. 5.2. From the 2nd to 3rd column, we sample

Alice’s state conditionally. This step is perfect. Finally, from the 3rd to 4th col-
umn, we replace the 2 perfect inverse samplings by inverse samplings by I; the
statistical distance is < 2εI . Thus, we obtain that RE has advantage greater than

δKA − 1
sm

− 2εI > δKA +
1

sm
+ 2εI − 1

sm
− 2εI = δKA

and we reach a contradiction.

Correctness. As we analyzed security via a statistical sequence of game-hops, the
analysis implies that the overall distribution of the protocol’s behaviour changes
by 2εI + 1

sm and thus, the correctness error increases by the same amount.
��

5.4 Conclusion

We proved in the unbounded processing PPT model that, when space gaps are
large enough, r-message UP-KA can be transformed into r − 1-message UP-KA,
or an io-dOWF exists. Moreover, we proved that stream-first UP-KA implies
dOWFs. Now, we put these transformations together into the following theo-
rem which states that r-message UP-KA with large enough space gaps implies
io-dOWF. Note that for the following theorem, no efforts have been made to
optimize the parameters.

Theorem 25 (UP-KA ⇒ io-dOWF). Let r be a constant. Let KA be a
(s, C, r, a)-UP-KA with a ≥ s(3m)r

, where m is a constant such that m ≥
logs 104r for large enough security parameters. Then, there exists a non-uniform
ε-io-dOWF with ε = 1

104r .

Proof. Space of Honest Parties. Lemma 23 and Lemma 24 both increase the
space of honest parties from s to s2+2m. Thus, after r−1 applications of either of
the lemmas, we obtain space s(2+2m)r−1 ≤ s(3m)r−1

. Now, Theorem 20 requires
the adversary to have space at least (s(3m)r−1

)2. which is indeed lower than
a = s(3m)r

.

Correctness and Security. Each application of Lemma 23 and Lemma 24 reduces
correctness and security by at most 2εI+ 1

sm . Theorem 20 requires the correctness
error of the stream-first protocol to be at most 1

400 and the security gap to
be at most 1

5 . The increase of the correctness error and security gap are both
dominated by 2r · εI = 2

104 . Additionally, we get a term that is upper bounded
by r · 1

sm ≤ 1
104 , and 3

104 < 1
400 , which is also smaller than 1

5 . ��

6 Fully Streaming: SM-KA Implies SB-dOWFs

6.1 A Derandomization Lemma

We start by stating a derandomization lemma, which states (in essence) that
if an algorithm A takes as input a random stream r of length |r| � s (and

On Bounded Storage Key Agreement and One-Way Functions 313

possibly some additional short input), runs in time t, uses space at most s, and
returns an output of size s, then this algorithm can be derandomized into an
algorithm Der(A) that uses slightly larger space Θ(s · log t) but takes as input
only O(s·log t) bits of randomness, such that the output distribution of Der(A) is
statistically close to that of A. Looking ahead, our results in the fully-streaming
model will build upon this lemma to convert the OWFs constructed in Sect. 5
into SB-OWFs.

Lemma 26 (Derandomization). There exist a global constant c and a trans-
formation Der such that the following holds: Let A be a deterministic algorithm,
taking as input a uniformly random string r ∈ {0, 1}t (its randomness), run-
ning in time t and space s and producing an output of length ≤ s. Then if
2s ≥ 8t2 log t,

SD(A(r),Der(A)(rshort)) ≤ 2−s,

where r←${0, 1}t, rshort←${0, 1}s(log t+c), and Der(A) runs in time at most c · t ·
log t · s2 and uses space at most 56 log t · s + c · s

In Appendix C of the full version, we prove Lemma 26. We stress that the
proof is not from us: it basically follows the analysis of Nisan from [Nis90]. How-
ever, Lemma 26 does not follow from any Theorem in Nisan’s paper, but rather
follows from the proof of Theorem 1 in Nisan’s paper. For completeness, we
therefore reproduce this proof here, following the presentation given in the lec-
ture notes of Ryan O’Donnell5, with some suitable adaptation of the parameters
to derive Lemma 26. In essence, the core observation is that Nisan’s pseudo-
random generator for low-space algorithms satisfies a stronger property: it fools
non-boolean distinguishers that output a string x ∈ {0, 1}s (where fooling means
that the output distribution of the distinguishers given outputs of Nisan’s PRG is
statistically close to their output distribution given true random coins). We also
note that this property has been observed before: it was mentioned in passing
in the works of Nisan and Zuckerman [NZ96] and of Dubrov and Ishai [DI06].

6.2 Stream-First Key Agreement ⇒ SB-dOWF

We now adapt the proof of Theorem 20 to the fully streaming setting. Naturally,
the resulting dOWF is only secure against space-bounded adversaries.

Definition 27 (Space-bounded Distributional One-Way Functions). A
function f : {0, 1}n → {0, 1}m is a (s, a, ε)-space-bounded distributional one
way function (SB-dOWF), if the following conditions hold.

Space-bounded Efficiency. f can be computed in time polynomial in λ and in
space s(λ). Furthermore, we impose m(λ) ≤ s(λ).

Security. For every polynomial-time adversary A which uses at most s(λ) bits
of storage, we have that for all large enough λ,

SD
(
(Un, f(Un)), (A(1λ, f(Un)), f(Un))

) ≥ ε(λ). (5)

5 https://www.cs.cmu.edu/∼odonnell/complexity/docs/lecture16.pdf.

https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

314 C. Brzuska et al.

Remark. Analogously to infinitely often OWFs (Definition 5), we will later also
use (s, a, ε)-io-SB-dOWFs, where (5) only holds for infinitely many λ. Jumping
ahead, the infinitely often property will later be needed In the long message lemma
(included in the full version), which is the analogous statement to Lemma 24.
Again, we will use a dOWF inverter to construct a protocol, and correctness
requires the inverter to invert correctly on all but finitely many λ. We will also con-
sider non-uniform versions of (s, a, ε)-io-SB-dOWFs, where f can be computed by
a non-uniform sequence of polynomial-size circuits of width ≤ a. Again, as for
Lemma 24, the non-uniform advice will be the index i guaranteed by Lemma 22.

Different from Theorem 20, we first need to modify fDM, since it encodes
the protocol into a deterministic function and the participants could use (much)
more randomness than space, increasing the input length of fDM beyond the
adversary’s space bound. We thus invoke Lemma 26 (derandomization) and,
instead consider fstream−1st(b, rshort) which is a derandomized version of fDM and
has (almost) the same output distribution despite using significantly less ran-
domness.

Theorem 28 (Stream-first SM-KA ⇒ SB-dOWF). Let KA be a stream-
first (s, C, r, a) SM-KA in with a = O(

s4+k
)

for some constant k > 0, correctness
error εKA ≤ 1

400 , security gap δKA < 1
103 and A and B running in overall time t.

Additionally, we assume (for convenience) that 56 · 400 log(400ts) + 400c) ≤ s,
and 4003c log(400st) ≤ s. Then,

fstream−1st(b, rshort) :=

{
Der(fDM(0, ·))(rshort) if b = 0
Der(fDM(1, ·))(rshort) if b = 1

with rshort ∈ {0, 1}s3
, is an (s′, a, εI)-SB-dOWF with space s′ = s3, time ts3 for

any εI ≤ 1
5 .

The proof of Theorem 28 is analogous to the proof of Theorem 20, with an addi-
tional (small) loss for the derandomization inaccuracy as well as an additional
increase in space due to the derandomization. The details can be found in the
full version of this paper.

6.3 Conclusion

We proved in the fully streaming PPT model that, when space gaps are large
enough, r-message SM-KA can be transformed into r − 1-message SM-KA, or a
non-uniform io-SB-dOWF exists. Moreover, we proved that stream-first SM-KA
implies SB-dOWFs. Now, analogously to Theorem 25, we put these transforma-
tions together into the following theorem which states that r-message SM-KA
with large enough space gaps implies a non-uniform io-SB-dOWF. Note that for
the following theorem, no efforts have been made to optimize the parameters.

Theorem 29 (SM-KA ⇒ io-SB-dOWF). Let r and w be constants. Let KA
be a (s, C, r, a)-SM-KA with a ≥ s(3mw)r

, where m is a constant such that
m ≥ logs 104wr for large enough security parameters. Then, there exists a non-
uniform (sf , af , εf)-io-SB-dOWF f with af = sw

f and with εf = 1
104r .

On Bounded Storage Key Agreement and One-Way Functions 315

Discussion. DQW use a (short) common reference string (CRS) as a technical
tool in their round reduction arguments for the fully streaming protocol, which
allows them to rely on setup routines that are not necessarily space-bounded—
note that this is the only reason that the CRS is useful, because else, the CRS
could just be generated and sent by the party who generates the first message. In
addition to being a technical tool, including a CRS makes their result stronger,
since DQW also rule out protocols where the CRS is not (space-)efficiently com-
putable. We, in turn, do not achieve such a stronger result, since we seek to
build (space-)efficiently computable SB-dOWF. Thus, we cannot use a CRS as a
technical tool where we move (space-)inefficient computations that the transfor-
mation incurs. However, using derandomization (Lemma 26) as well as efficient
inverters (which exist assuming that a certain function is not an SB-dOWF), our
results also show that in our setting, all transformations can be implemented in
a space-efficient manner. It is conceivable that analogous derandomization argu-
ments also apply to DQW (using inefficient inverters), but we did not investigate
this question in sufficient depth to make this claim.

7 SB-dOWFs Implies SB-PRFs

Impagliazzo and Luby (IL [IL89]) show that distributional OWFs imply weak
OWFs via universal hashing, and that Yao shows that weak OWFs imply stan-
dard OWFs via parallel repetition, cf. [Yao82,Gol01], then several construc-
tions transform OWFs into PRGs [HILL99,HRV13,VZ12], and finally, Goldreich,
Goldwasser and Micali transform PRGs into PRFs [GGM84]. The goal of this
section is to show that the aforementioned reductions are sufficiently tight in
space so that, together with Theorem 29, we obtain the following theorem for
SM-KA.

Theorem 30 SM-KA ⇒ SB-PRFs). There exists a universal constant u
such that the following holds: let r and w be arbitrary constants. Let KA be
a (s, C, r, a)-SM-KA with a ≥ su·(3mw)r

, where m is a constant such that
m ≥ logs 104wr for large enough security parameters. Then, there exists a non-
uniform (sf , af)-io-SB-consecutive-PRF F with af = sw

f .

Theorem 30 follows mainly by inspection, and observing that the reductions
mentioned above preserve the fine-grained space hardness of the notions pretty
well. Due to space constraints the proof is only included in the full version of
the paper.

Acknowledgments. Chris Brzuska was supported by the Research Council of Finland
grant No. 358950. Geoffroy Couteau was supported by the French Agence Nationale de
la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE), by the France
2030 ANR Project ANR22-PECY-003 SecureCompute, and by ERC project OBELiSC
(Grant 101115790). Christoph Egger was supported by the European Commission under
the Horizon2020 research and innovation programme, Marie Sklodowska-Curie grant
agreement No 101034255. Willy Quach was supported by the Israel Science Foundation
(Grant No. 3426/21), and by the Horizon Europe Research and Innovation Program
via ERC Project ACQUA (Grant 101087742).

316 C. Brzuska et al.

References

[ADR02] Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded
storage model. IEEE Trans. Inf. Theory 48(6), 1668–1680 (2002)

[BHT14] Berman, I., Haitner, I., Tentes, A.: Coin flipping of any constant bias implies
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 398–407.
ACM Press, May/June 2014

[BIKM99] Beimel, A., Ishai, Y., Kushilevitz, E., Malkin, T.: One-way functions are
essential for single-server private information retrieval. In: 31st ACM STOC,
pp. 89–98. ACM Press, May 1999

[BM09] Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an
O(n2)-query attack on any key exchange from a random oracle. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8 22

[BOL85] Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and
minima of Banzhaf values. In: 26th Annual Symposium on Foundations of
Computer Science (SFCS 1985), pp. 408–416. IEEE (1985)

[BS23] Barhoush, M., Salvail, L.: Functional encryption in the bounded storage
models. CoRR, abs/2309.06702 (2023)

[CCM98] Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-
bounded receiver. In: 39th FOCS, pp. 493–502. IEEE Computer Society
Press, November 1998

[CFM21] Couteau, G., Farshim, P., Mahmoody, M.: Black-box uselessness: composing
separations in cryptography. In: Lee, J.R. (ed.) ITCS 2021, vol. 185, pp.
47:1–47:20. LIPIcs, January 2021

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October
1995

[CM97] Cachin, C., Maurer, U.: Unconditional security against memory-bounded
adversaries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
292–306. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

[DHRS04] Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious
transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 446–472. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24638-1 25

[DI06] Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling.
In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 711–720. ACM Press, May
2006

[Din01] Ding, Y.Z.: Oblivious transfer in the bounded storage model. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 155–170. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 9

[DM02] Dziembowski, S., Maurer, U.M.: Tight security proofs for the bounded-
storage model. In: 34th ACM STOC, pp. 341–350. ACM Press, May 2002

[DM04] Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-
storage model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 8

[DM08] Dziembowski, S., Maurer, U.: The bare bounded-storage model: the tight
bound on the storage requirement for key agreement. IEEE Trans. Inf. The-
ory 54(6), 2790–2792 (2008)

https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/3-540-44647-8_9
https://doi.org/10.1007/978-3-540-24676-3_8
https://doi.org/10.1007/978-3-540-24676-3_8

On Bounded Storage Key Agreement and One-Way Functions 317

[DQW22] Dodis, Y., Quach, W., Wichs, D.: Authentication in the bounded storage
model. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part III. LNCS, vol. 13277, pp. 737–766. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-07082-2 26

[DQW23] Dodis, Y., Quach, W., Wichs, D.: Speak much, remember little: cryptog-
raphy in the bounded storage model, revisited. In: Hazay, C., Stam, M.
(eds.) EUROCRYPT 2023, Part I. LNCS, vol. 14004, pp. 86–116. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30545-0 4

[DR02] Ding, Y.Z., Rabin, M.O.: Hyper-encryption and everlasting security. In: Alt,
H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 1–26. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7 1

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer
Society Press, October 1984

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge
University Press, Cambridge (2001)

[GRT18] Garg, S., Raz, R., Tal, A.: Extractor-based time-space lower bounds for
learning. In: Diakonikolas, I., Kempe, D., Henzinger, M.: (eds.) 50th ACM
STOC, pp. 990–1002. ACM Press, June 2018

[GZ19] Guan, J., Zhandary, M.: Simple schemes in the bounded storage model.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
500–524. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-
4 17

[GZ21] Guan, J., Zhandry, M.: Disappearing cryptography in the bounded storage
model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp.
365–396. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-
1 13

[HCR02] Hong, D., Chang, K.-Y., Ryu, H.: Efficient oblivious transfer in the bounded-
storage model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 143–159. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 9

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

[HN06] Harnik, D., Naor, M.: On everlasting security in the hybrid bounded storage
model. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 192–203. Springer, Heidelberg (2006). https://
doi.org/10.1007/11787006 17

[HO11] Haitner, I., Omri, E.: Coin flipping with constant bias implies one-way func-
tions. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 110–119. IEEE Computer
Society Press, October 2011

[HRV13] Haitner, I., Reingold, O., Vadhan, S.P.: Efficiency improvements in con-
structing pseudorandom generators from one-way functions. SIAM J. Com-
put. 42(3), 1405–1430 (2013)

[IL89] Impagliazzo, R., Luby, M.: One-way functions are essential for complexity
based cryptography (extended abstract). In: 30th FOCS, pp. 230–235. IEEE
Computer Society Press, October/November 1989

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: 21st ACM STOC, pp. 12–24.
ACM Press, May 1989

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way
permutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

https://doi.org/10.1007/978-3-031-07082-2_26
https://doi.org/10.1007/978-3-031-07082-2_26
https://doi.org/10.1007/978-3-031-30545-0_4
https://doi.org/10.1007/3-540-45841-7_1
https://doi.org/10.1007/978-3-030-17659-4_17
https://doi.org/10.1007/978-3-030-17659-4_17
https://doi.org/10.1007/978-3-030-90453-1_13
https://doi.org/10.1007/978-3-030-90453-1_13
https://doi.org/10.1007/3-540-36178-2_9
https://doi.org/10.1007/3-540-36178-2_9
https://doi.org/10.1007/11787006_17
https://doi.org/10.1007/11787006_17

318 C. Brzuska et al.

[KRT17] Kol, G., Raz, R., Tal, A.: Time-space hardness of learning sparse parities. In:
Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 1067–1080.
ACM Press, June 2017

[Lu02] Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-
line strong extractors. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 257–271. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 17

[Mau92] Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure random-
ized cipher. J. Cryptol. 5(1), 53–66 (1992)

[Mer74] Merkle, R.: C.s. 244 project proposal. In: Facsimile (1974). http://www.
merkle.com/1974

[Mer78] Merkle, R.C.: Secure communications over insecure channels. Commun.
ACM 21(4), 294–299 (1978)

[MPS10] Maji, H.K., Prabhakaran, M., Sahai, A.: On the computational complexity
of coin flipping. In: 51st FOCS, pp. 613–622. IEEE Computer Society Press,
October 2010

[MST04] Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the
bounded storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 460–476. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 28

[Nis90] Nisan, N.: Psuedorandom generators for space-bounded computation. In:
22nd ACM STOC, pp. 204–212. ACM Press, May 1990

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst.
Sci. 52(1), 43–52 (1996)

[OW93] Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-
trivial zero-knowledge. : [1993] The 2nd Israel Symposium on Theory and
Computing Systems, pp. 3–17. IEEE (1993)

[Raz16] Raz, R.: Fast learning requires good memory: a time-space lower bound for
parity learning. In: Dinur, I. (ed.) 57th FOCS, pp. 266–275. IEEE Computer
Society Press, October 2016

[Raz17] Raz, R.: A time-space lower bound for a large class of learning problems. In:
Umans, C. (ed.) 58th FOCS, pp. 732–742. IEEE Computer Society Press,
October 2017

[Vad04] Vadhan, S.P.: Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. Cryptol. 17(1), 43–77 (2004)

[VZ12] Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In: Karloff, H.J., Pitassi, T. (eds.)
44th ACM STOC, pp. 817–836. ACM Press, May 2012

[Yao82] Yao, A.C.-C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, Novem-
ber 1982

https://doi.org/10.1007/3-540-45708-9_17
https://doi.org/10.1007/3-540-45708-9_17
http://www.merkle.com/1974
http://www.merkle.com/1974
https://doi.org/10.1007/978-3-540-28628-8_28
https://doi.org/10.1007/978-3-540-28628-8_28

Rate-1 Zero-Knowledge Proofs
from One-Way Functions

Noor Athamnah(B), Eden Florentz – Konopnicki, and Ron D. Rothblum

Taub Faculty of Computer Science, Technion, Haifa, Israel

noor.athamnah@gmail.com, edenko@campus.technion.ac.il,

rothblum@cs.technion.ac.il

Abstract. We show that every NP relation that can be verified by a
bounded-depth polynomial-sized circuit, or a bounded-space polynomial-
time algorithm, has a computational zero-knowledge proof (with statis-
tical soundness) with communication that is only additively larger than
the witness length. Our construction relies only on the minimal assump-
tion that one-way functions exist.

In more detail, assuming one-way functions, we show that every NP
relation that can be verified in NC has a zero-knowledge proof with com-
munication |w| + poly(λ, log(|x|)) and relations that can be verified in
SC have a zero-knowledge proof with communication |w|+ |x|ε ·poly(λ).
Here ε > 0 is an arbitrarily small constant and λ denotes the security
parameter. As an immediate corollary, we also get that any NP rela-
tion, with a size S verification circuit (using unbounded fan-in XOR,
AND and OR gates), has a zero-knowledge proof with communication
S + poly(λ, log(S)).

Our result improves on a recent result of Nassar and Rothblum
(Crypto, 2022), which achieves length (1 + ε) · |w| + |x|ε · poly(λ) for
bounded-space computations, and is also considerably simpler. Building
on a work of Hazay et al. (TCC 2023), we also give a more complicated
version of our result in which the parties only make a black-box use of the
one-way function, but in this case we achieve only an inverse polynomial
soundness error.

1 Introduction

Zero-knowledge proofs, introduced in the groundbreaking work of Goldwasser
Micali and Rackoff [GMR89], are interactive protocols in which a powerful but
untrusted prover convinces a verifier of the validity of a computational statement,
in such a way, that no additional information is revealed. Different notions of
zero-knowledge have been studied in the literature. In this work we focus exclu-
sively on proofs offering statistical soundness and computational zero-knowledge,
and refer to this notion whenever we say zero-knowledge proof (see Remark 4
for a discussion of related variants).

In their seminal work, Goldreich, Micali and Wigderson [GMW86] con-
structed a zero-knowledge proof for checking that a given graph is 3-colorable
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 319–350, 2025.
https://doi.org/10.1007/978-3-031-78011-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_11&domain=pdf
http://orcid.org/0000-0001-5481-7276
https://doi.org/10.1007/978-3-031-78011-0_11

320 N. Athamnah et al.

(assuming the existence of one-way functions). As 3-coloring is NP-complete,
their result yielded the amazing fact that every problem in NP (i.e., every prob-
lem possessing a classical proof) also has a zero-knowledge proof.

The protocol of [GMW86], henceforth referred to as GMW, proceeds by
having the prover commit to a random 3-coloring of the graph G = (V,E),
the verifier chooses an edge and the prover decommits to the colors of the two
endpoints. In order to get soundness error 2−λ, this base protocol is repeated
sequentially1 Θ(|E| · λ) times.

Thus, the overall communication in the GMW protocol is |V | · |E| · poly(λ).
This should be contrasted with the direct NP proof which has length |V |·log2(3).2

Things becomes even worse when considering general NP languages – for such
languages, due to the Karp reduction to 3-coloring, the GMW protocol gives
communication that is (a relatively large) polynomial in the complexity of the NP
verification circuit rather than the length of the raw witness. A similar overhead
is incurred by other classical approaches such as Blum’s [Blu86] Hamiltonicity
protocol.

It is natural to wonder whether the overhead incurred by these protocols
is inherent. This question has been studied in several works that show that it
is possible to achieve communication that is polynomial in the witness length,
rather than the size of the verification circuit, for a large subclass3 of NP rela-
tions [IKOS09,KR08,GKR15,RRR21,NR22,HVW23]. Similarly to the original
GMW protocol, the protocols in this line of work all rely on the existence of
one-way functions, an assumption that is also known to be necessary for the
construction of zero-knowledge proofs for NP [OW93,HN24]. A different app-
roach, proposed by Gentry et al. [GGI+15], constructs zero-knowledge proofs
with communication m+poly(λ), where m is the size of the witness and λ is the
security parameter, but relies on the existence of a fully homomorphic encryp-
tion scheme (FHE), which is (believed to be) a much stronger assumption (and
is currently only known to be instantiable assuming the circular security of LWE
[Gen09,BV11,MV24], or via indistinguishibility obfuscation [CLTV15]).4

All the aforementioned results that rely on one-way functions incur at the
very least a large multiplicative blowup over the witness size. In a recent work,
Nassar and Rothblum [NR22], relying only on the existence of one-way functions,
showed that any bounded space NP relation, has a zero-knowledge proof with
length (1+ γ) ·m+nβ ·poly(λ), where m is the witness length, n is the instance
length, λ is the security parameter and γ, β > 0 are arbitrarily small constants.

1 While it may seem natural to repeat the protocol in parallel, this is insecure, see
[HLR21].

2 For this high-level discussion, we ignore minor issues arising from rounding and
efficient bit-representation of trits.

3 The results obtained in this line of work differ, but loosely speaking, other than
[GGI+15], all known results hold for NP relations that can be decided by either
bounded depth circuits or by bounded space algorithms.

4 Gentry et al. [GGI+15] focus on non-interactive zero-knowledge proofs, but note
that their approach is also applicable to interactive zero-knowledge.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 321

1.1 Our Results

As our main result, we construct zero-knowledge proofs, with communication
that is only additively larger than the witness length, for any NP relation that can
be verified either by a bounded space algorithm or by a bounded-depth circuit.
Our constructions rely only on the minimal assumption of one-way functions.

Theorem 1 (Succinct Zero-Knowledge for Bounded Depth). Assume
that one-way functions exist. Let R be an NP relation with input size n and
witness size m, that can be decided by a polynomial-size circuit with depth D
and assume n ≤ poly(m). Then, R has a zero-knowledge proof with soundness
error 2−λ and communication complexity m+poly(λ, log(m),D) where λ denotes
the security parameter.

Furthermore, the prover and verifier run in time poly(n, λ), the protocol is
public-coin and the number of rounds is poly(λ, log(m),D).

Theorem 2 (Succinct Zero-Knowledge for Bounded Space). Assume
that one-way functions exist. Let R be an NP relation with input size n and
witness size m that can be decided by a polynomial-time and space S algorithm
and assume n ≤ poly(m). Then, for every constant δ > 0, the relation R has a
zero-knowledge proof with soundness error 2−λ, and communication complexity
m + nδ · poly(S, λ), where λ denotes the security parameter.

Furthermore, the prover and verifier run in time poly(m,λ), the protocol is
public-coin and the number of rounds is poly(λ).

Theorems 1 and 2 improve on the result in [NR22] in that they achieve a truly
additive overhead in communication over the raw witness length (in contrast to
the the (1 + γ) multiplicative overhead in [NR22]).5 For example, Theorem 1
implies that satisfiability of a polynomial-size formula on n-variables has a zero-
knowledge proof with communication n+poly(λ, log n), and 3-colorability of an
n-vertex graph has a zero-knowledge proof with communication n · log2(3) +
poly(λ, log n).

These results are optimal in two ways. First, in terms of assumptions, they
only rely on the minimal assumption that one-way functions exist [OW93,HN24].
Second, in terms of communication, assuming the strong exponential-time
hypothesis (SETH) [IP99], the witness length is a lower bound on communi-
cation (up-to additive terms), due to known limitations on so-called “laconic”
provers [GH98,GVW02]. Given the above, we refer to zero-knowledge proofs
with a strictly additive overhead over the witness as having rate-1.

The proofs of Theorems 1 and 2 are also significantly simpler than that of
[NR22] (which relied on recent non-trivial results on high-rate interactive ora-
cle proofs (IOPs) [RR20]). The key idea, on which we elaborate in Sect. 1.2, is a
form of “hybrid zero-knowledge” and is inspired by the construction in [GGI+15]
5 Our result is also more general than that of [NR22] in that it holds also for bounded

depth circuits, whereas [NR22] is explicitly only stated for bounded space algorithms.
Nevertheless, by relying on [RR20, Remark 1.5], the techniques of [NR22] could also
yield proofs with communication roughly (1 + γ) · m for bounded-depth circuits.

322 N. Athamnah et al.

(and can be further traced back to hybrid encryption). In a nutshell, we give a
simple reduction from constructing a rate-1 zero-knowledge proof, to construct-
ing a zero-knowledge with communication that can depend polynomially on the
witness length (rather than the size of the verification circuit). Theorems 1 and 2
then follow by combining our reduction with known zero-knowledge proofs from
the literature.

It is worth pointing out some second order differences between Theorem 1 and
Theorem 2, which are inherited from doubly-efficient interactive-proofs on which
they rely. The additive term in the communication in Theorem 1 depends only
poly-logarithmically on the input-size, whereas in Theorem 2 the dependence has
the form nδ. On the other hand, the round complexity in Theorem 2 is poly(λ)
whereas in Theorem 1 the number of rounds also depends poly-logarithmically
on the witness size and linearly on the depth.

Circuit-size Communication for General NP Relations. Theorem 1 also yields a
new zero-knowledge proof for general NP relations with communication that is
only additively larger than the size of the verification circuit. This essentially
follows from the NP completeness of SAT: any NP relation can be verified in
(poly-)logarithmic depth, if the witness includes the values obtained by all of
the gates in the evaluation of the verification circuit (indeed, this “extended
witness” can be checked by verifying that each gate is separately satisfied by the
assignment).

Corollary 3 (Succinct Zero-Knowledge for General Relations).
Assume that one-way functions exist. Let R be an NP relation that can be ver-
ified by a circuit of size S with unbounded fan-in XOR, AND and OR gates.
Then, R has a zero-knowledge proof with soundness error 2−λ and communica-
tion complexity S + poly(λ, log(S)), where λ is the security parameter.

Corollary 3 improves over a similar result for general circuits obtained by
[IKOS09], which had a constant multiplicative overhead, and a result that can
be derived from [NR22], which gives (1 + ε) multiplicative overhead.

Remark 4 (On Computationally Sounds Proofs). In contrast to the statistically
sound proofs considered in this work, it is well-known that (assuming the exis-
tence of collision-resistant hash functions) there exist zero-knowledge arguments
(aka computationally sound proofs) in which the communication is substantially
smaller than the witness length [Kil92].

Our focus however is on the case of statistical soundness. In this case, assum-
ing reasonable hardness assumptions, the witness length poses a barrier on the
communication [GH98,GVW02].

1.1.1 Zero-Knowledge with Black-Box Use of the OWF

Many of the aforementioned constructions of succinct zero-knowledge proofs,
including the protocols establishing Theorems 1 and 2, make a non black-box
use of the one-way function. This means that the implementation of the prover

Rate-1 Zero-Knowledge Proofs from One-Way Functions 323

and the verifier depends on the actual code of the one-way function. This is in
contrast to a black-box construction in which it suffices for the parties to receive
oracle access to the one-way function (in other words, the one-way function is
merely used as a sub-routine). Non black-box constructions are usually consid-
ered less efficient than their black-box counterparts and it is therefore desirable
to construct protocols that avoid such a non black-box use of the one-way func-
tion. Such constructions are also more modular, enabling applications that may
not be possible otherwise (see [KRV24] for a recent example).

The MPC-in-the-head framework of Ishai et al. [IKOS09] gives an alternate
approach that enables a black-box use of the one-way function. In particular, a
very recent work by Hazay, Venkitasubramaniam and Weiss [HVW23] builds on
this framework to construct black-box zero-knowledge proofs with communica-
tion roughly (1 + ε) · m, thereby matching the non black-box result of [NR22].
A downside of their result, compared to [NR22], is that they only achieve a con-
stant soundness error (which cannot be reduced by repetition unless we blowup
the communication).

Our second set of results are zero-knowledge proofs with a black-box use
of the one-way function, that improve on the result of [HVW23] in two ways.
Our main improvement is that we obtain proof length that is only additively
larger than m – i.e., a rate-1 zero-knowledge proof (improving on the (1 + ε)
multiplicative overhead in [HVW23]). The second improvement is that we obtain
soundness error that is polynomial in the (reciprocal of) the security parameter,
thereby improving on the constant error achieved in [HVW23]. Our construction
also avoids the use of the relatively heavy hammer of high-rate IOPs used by
[HVW23] and relies on more basic tools (e.g., the doubly-efficient interactive
proof of [GKR15]).

Theorem 5. Assume that one-way functions exist. Let R be an NP relation with
input size n and witness size m, that is computable by a (non-uniform) circuit
family C of size S = S(n) and depth D = D(n) and assume n ≤ poly(m). Then,
for any ε > 0 the relation R has a zero-knowledge proof with perfect completeness,
and soundness error ε, in which the verifier, prover and simulator all only make
a black-box use of the one-way function. The communication complexity is m +
poly

(
1
ε , λ,D, log(S)

)
, where λ is the security parameter.

Furthermore, the prover and verifier run in polynomial time, the protocol is
public-coin and the number of rounds is poly(D, log(S)).

We remark that a similar result to Theorem 5 for bounded space computa-
tions can also be obtained, see discussion in Sect. 1.2.2.

1.2 Techniques

In this section we give an overview of our techniques.

324 N. Athamnah et al.

1.2.1 Rate-1 Zero-Knowledge: Proving Theorems 1 and 2 As men-
tioned above, the proofs of Theorems 1 and 2 are surprisingly simple. The key
idea behind the protocols, which is inspired by [GGI+15], is to reduce the con-
struction of rate-1 zero-knowledge proofs, to constructing zero-knowledge proofs
whose communication depends polynomially only on the witness length.

The protocol proceed as follows. Given an input x and its witness w, the
prover randomly samples a short seed s ∈ {0, 1}λ for a pseudorandom generator
(PRG) G and then uses it to mask the witness. That is, the prover computes
and sends u = G(s) ⊕ w to the verifier.

At this point, we view the PRG seed s as playing the role of a new witness,
in the sense that if the verifier knew s then she could verify that x is indeed
in the language. Needless to say, sending s in the clear would violate the zero-
knowledge property, but we observe that it now suffices for the the prover to
prove, in zero-knowledge, that it could have revealed an s that would have made
the verifier accept. The key benefit is that s, which serves as the new witness,
is much shorter than the original witness. Hence, we can afford to use one of
the pre-existing zero-knowledge proofs that have a polynomial overhead in the
witness. Thus, while the first message sent has length exactly m = |w|, the length
of the messages sent afterwards is polynomial in the length of the seed s.

In more detail, given an NP relation R, the prover generates u = G(s) ⊕ w
and we consider the relation R′

G =
{

((x, u), s) | (x,G(s) ⊕ u) ∈ R
}
. Observe

that the tuple ((x, u), s) is in R′
G if and only if (x,G(s) ⊕ u) ∈ R. So by sending

u, we have reduced the problem to one with a smaller witness.
The relation R′

G is in NP, since given s we can compute G(s) in polynomial
time in |w|, and then run the NP verifier on (x,G(s)⊕u), which can also be done
in poly(|x|) time. Moreover, we observe that if R can be decided in small depth
then so can R′

G – this follows from the fact that, assuming one-way functions,
there exists a PRG G : {0, 1}λ → {0, 1}m computable by depth log(m) · poly(λ)
(and size poly(m,λ)) circuits. Indeed such a PRG follows by using a stretch-
doubling PRG (which can be constructed from a one-way function [HILL99])
and applying the [GGM86] tree-based construction for log(m) levels. Therefore,
since the relation R′

G is verifiable in small depth, using pre-existing results from
the literature6 [GKR15], this relation has a zero-knowledge proof with a commu-
nication complexity poly(λ, log(n),D), where D denotes the depth of the original
verification circuit.

Overall, we obtain a zero-knowledge proof for R with communication
complexity that is larger than the witness length only by an additive
poly(λ, log(n),D) factor.

For relations R that can be verified in small space we follow a similar app-
roach, using a zero-knowledge proof for small space relations with polynomial
overhead in the witness size [RRR21] and using a PRG computable in small space

6 The main result in [GKR15] is a doubly-efficient interactive proof for bounded-
depth computations, which is not zero-knowledge. We use here a corollary [GKR15,
Theorem 1.6] that obtains computationally zero-knowledge proofs for bounded depth
NP relations.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 325

(such a PRG follows essentially by the textbook stretch increasing construction
of a PRG, see [Gol01, Construction 3.3.2]).

1.2.2 Rate-1 Zero-Knowledge: The Black-Box Way A downside of the
approach described in Sect. 1.2.1 is that the prover and verifier make a non
black-box use of the one-way function. This is due to the fact that the new
relation R′

G has the PRG G encoded as part of its specification circuit. All
known general purpose zero-knowledge proofs need an explicit representation
of the NP verification circuit (and this is inherent, see [Ros12]). Thus, a zero-
knowledge proof for R′

G has to use the code of the PRG, which translates into a
non black-box use of the one-way function that G is based on.

In this section we present a different approach in which the prover, verifier
and simulator all make a black-box use of the one-way function. A caveat of this
alternate approach is that we only get a soundness error that is polynomially
related to the (reciprocal of the) security parameter, rather than an exponen-
tially small soundness error as in Theorems 1 and 2. Nevertheless, this already
significantly improves on the constant soundness error achieved by the previous
black-box construction of Hazay et al. [HVW23].

We continue with the idea of hiding the witness by masking it with a PRG,
but rather than employing an off-the-shelf zero-knowledge protocol to prove
that the masked witness can be opened, we use a general interactive protocol,
which is not zero-knowledge, and make it zero-knowledge by applying multi-
party computation (MPC) techniques, details follow.

Following [HVW23] (although their idea is not quite articulated in the same
way), our main step is constructing a form of “distributed zero-knowledge”, in
which we have a single prover and k verifiers. The goal is for the verifiers to
each be convinced that the prover holds a valid witness, but in such a way that
a subset t < k of the verifiers does not learn anything else. The distributed
zero-knowledge protocol can then be compiled into a standard one (i.e., with
a single monolithic verifier), using the MPC-in-the head approach: the prover
emulates the interaction between the k verifiers via an MPC protocol, and sends
commitments to their views. The monolithic verifier can now request that some
of these views be opened to check that the MPC protocol was executed correctly.

In order to get our desired communication complexity, we therefore need for
the overall communication in the k-party distributed protocol to be roughly m+
poly(λ), and for the MPC-in-the-head emulation to only increase this additively.

The Distributed Zero-Knowledge Protocol. We start by secret sharing the witness
w to the k verifiers, where, for i ∈ [k − 1] the share is a PRG seed si and the
remaining k-th share is set to w ⊕ (

⊕k−1
i=1 (G(si)). Note that this is indeed a

secret sharing of the witness w, since by expanding the seed and XORing, we
can recover the witness. Also, the overall communication of this step is at most
m + k · poly(λ) as desired.

326 N. Athamnah et al.

Assume that the NP relation is decidable in small depth. The prover now
starts an execution of the doubly-efficient GKR protocol for bounded-depth com-
putations [GKR15] to prove that (x,w) ∈ R. In each round in the protocol, rather
than sending the next GKR prover message in the clear, the prover secret shares
it between the parties. Since the GKR protocol is public-coin, the GKR verifier’s
messages can be generated by some global source of randomness. Note that for
circuits verifiable in NC, the communication in this part is just k · polylog(n).

At the end of the interactive phase, the GKR verifier needs to check some
predicate on (x,w) and the interaction transcript. Since our verifier is dis-
tributed, we perform this task via an off-the-shelf (semi-honest secure) MPC
protocol.

The idea so far yields a zero-knowledge proof, but hides a somewhat subtle
flaw. The circuit which the parties emulate via the MPC protocol needs to fully
expand the k PRG seeds, recover the witness and then check that the witness
is valid. This means that the size of the circuit is at least k · m, which increases
the complexity of the MPC protocol beyond what we can afford.

Holography to the Rescue. To resolve this difficulty, we recall an extremely useful
property of the GKR protocol (as well as related protocols in the literature) –
it is a holographic proof [BFLS91,GR17]. Namely, the GKR verifier does not
need full access to its input w but rather only to compute a single point in the
low degree extension of w.7 Moreover, the desired point depends only on the
verifier’s randomness.

Given this, rather than applying the MPC protocol on the full shares of w,
we have each of the k verifiers compute its local contribution to the low degree
extension at the desired point. Here we crucially use the fact that both the secret-
sharing and low-degree extension are computed as linear8 functions, and so the
sum of contributions of the shares is indeed equal to the low degree extension of
w at the desired point.

Thus, the MPC protocol only needs to recombine these small shares and then
run the GKR verification step.

Compiling into a Monolithic Verifier. We now compile the distributed protocol
to one with a single monolithic verifier. The prover simply sends commitments to
all of the shares of the witness and the messages that were sent to the k parties,
and then runs the MPC “in the head”. To maintain short communication, for
the last share of w, which has length m, we use a commitment scheme with only

7 Recall that a low degree extension of a string w ∈ {0, 1}m is a low degree multivariate
polynomial that agrees with w on a prescribed sub-domain (see Sect. 2.2 for details)
For our purposes it will only be important that the low-degree extension is a linear
function.

8 It is important here that these procedures are linear over the same field. To do this,
we employ the GKR protocol over a characteristic 2 fields, in which case the additive
secret sharing can be via an XOR (a linear function over such fields). Also, the secret
sharing is not quite linear, because the k-th share is a PRG seed that first needs to
be expanded, but this suffices for our approach.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 327

additive overhead (which can be achieved similarly to our original construction
by XORing with the output of a PRG).

After the prover simulates the MPC, it sends commitments to the parties
views. The verifier then chooses t parties at random and asks the prover to
decommit to everything concerning these parties. Assuming the MPC protocol
has perfect correctness, the only way for the prover to cheat is by providing
one of the players with an incorrect view or a pair of players with inconsistent
views. The former case is caught with probability at least t/k and the latter with
probability at least t·(t−1)

k·(k−1) . So the last thing for the verifier to do is to check the
validity of all decommitments and that all revealed parties behaved consistently
with the protocol.

In order to get a polynomially small soundness error, we set k = poly(λ)
and use as our MPC protocol the semi-honest GMW protocol [GMW87] in the
OT-hybrid model, which offers perfect semi-honest security against t = k − 1
parties. This yields a soundness error of O(1/k).

We remark that an analogous result for bounded space computations can also
be obtained by replacing the [GKR15] that we used with the [RRR21] protocol
for bounded space computations, which is also holographic.

Remark 6 (On Negligible Soundness via Malicious MPC]). Following [IKOS09],
it is natural to try to improve the above and obtain a negligible soundness error
by relying on an MPC protocol with malicious security. Recall that in malicious
MPC the computation is robust even if a constant fraction of the parties are
corrupt. The idea would then be for the verifier to request to a open a constant
fraction of the parties views such that either she will identify one of the corrupt
parties and reject or, if all the opened views are consistent, the computation
should be correct.

The reason why this attempt fails is that malicious MPC robustness holds at
the condition that the function has the same output no matter the input of the
corrupted parties. In the case where the function being computed by the parties
is the NP verification of the relation, this attempt would work, since no matter
what the witness is, the function should reject. However, we apply the MPC on
a much simple function (which recover the low degree extension at just a single
point) and changing the input of even just one party can change the result of
the computation.

1.3 Open Questions

The main open question left by our work is constructing rate-1 zero-knowledge
proofs for all NP relations. By the aforementioned result of [GGI+15], such
proofs are known to exist assuming (full-fledged) FHE, but the question is
whether a similar result can be established from a weaker assumption; ideally,
just from the minimal assumption of one-way functions. We remark that, using
our hybrid zero-knowledge approach, such a rate-1 zero-knowledge proof would
follow from the existence of a zero-knowledge proof for NP that has an arbitrary

328 N. Athamnah et al.

polynomial dependence on the witness length (but does not scale linearly with
the size of the verification circuit).

A second question left open by our work is whether we can construct succinct
zero-knowledge proofs that use the one-way function as a black-box, but achieve a
negligible soundness error (in contrast to the inverse polynomial soundness error
achieved by our construction). We remark that [IKOS09], building on [DI06],
give such a result with communication O(|C|)+poly(λ, log(|C|)), where C is the
size of the NP verification circuit. This falls short of our goal of additive overhead
over the NP witness. Actually, to the best of our knowledge it is not even known
how to construct such protocols (i.e., with black box use of the one-way function
and negligible soundness error) with communication poly(m) + poly(λ, log(m))
(even for NP relations that are decidable in NC).

1.4 Organization

Preliminaries are in Sect. 2. In Sect. 3 we construct the succinct zero-knowledge
proofs that establish Theorems 1 and 2. The constructions that make a blackbox
use of the one-way function, proving Theorem 5, are in Sect. 4.

2 Preliminaries

For an NP relation R, we denote by LR the language LR = {x : ∃w, s.t. (x,w) ∈
R}. Throughout this work we use n to denote the instance size |x|, and m to
denote the witness size |w|.

2.1 Computational Indistinguishably

Definition 7. Let D = {Dλ}λ∈N
, E = {Eλ}λ∈N

be two distribution ensembles
indexed by a security parameter λ. We say that the ensembles are computa-
tionally indistinguishable, denoted D

c≈ E, if for any family of polynomial size
circuits {Cλ}λ∈N, the following quantity is a negligible function in λ:

∣
∣
∣
∣ Pr
x←Dλ

[Cλ(x) = 1] − Pr
x←Eλ

[Cλ(x) = 1]
∣
∣
∣
∣ .

Fact 8 (Computational Data-Processing Inequality). If the distributions
D and E are computationally indistinguishable, and A is a PPT algorithm, then
A(D) and A(E) are also computationally indistinguishable.

2.2 Interactive Proofs

Definition 9 (Interactive Proof). A pair of interactive machines (P, V) is
called an interactive proof system for a language L, if V is a probabilistic
polynomial-time machines, and the following conditions hold for every security
parameter λ ∈ N:

Rate-1 Zero-Knowledge Proofs from One-Way Functions 329

– Completeness: For every x ∈ L, V accepts with probability 1 when inter-
acting with P on common input (x, 1λ).

– Soundness: For every x /∈ L, and every prover P ∗, V accepts with probability
at most ε(λ) when interacting with P ∗ on common input (x, 1λ).

We say that an interactive proof has an efficient prover if P can be implemented
in (probabilistic) polynomial-time. In the context of an interactive proof for an
NP relation, we allow the prover access to an NP witness.

We remark that all proofs that we construct in this work will have an efficient
prover.

The Interactive Proof-System of [GKR15]. Our construction will build on the
interactive proof-system of [GKR15]. This protocol relies on the multi-linear
extension encoding, which we recall next. Let F be a finite field and d an integer.
The multi-linear extension of a function f : {0, 1}d → F is the unique multi-linear
polynomial (over F) such that f̂(x) = f(x), for all x ∈ {0, 1}d. A multi-linear
extension of a string w ∈ {0, 1}d can be defined by viewing the string as the
truth-table of a function fw : {0, 1}log(d) → {0, 1}. The multi-linear extension
can be explicitly written as:

f̂(x) =
∑

h∈{0,1}d

f(h) · I(x, h)

where
I(x, h) =

∏

j∈[d]

(
xj · hj + (1 − xj) · (1 − hj)

)
.

This formula also directly shows that the multi-linear extension at a given point
x ∈ F

d can be computed in time 2d · poly(log(F)).

Theorem 10 (Follows from [GKR15, Theorem 1.5]). Let L be a language
computable by a (non-uniform) circuit family C of size S = S(n) and depth
D = D(n). Let F = F(n) be a constructible field ensemble. Then, there exists a
two phase public-coin interactive proof (P, Vinteractive, Vpost) with the following
properties

1. In the interactive phase (P, Vinteractive), P gets as input (C,x) and Vinteractive

gets only S = |C|. The prover P runs in time poly(S), and Vinteractive

runs in time D · poly(log(S), log(|F|)). Denote by transcript all messages sent
between the parties. The communication complexity of the interactive phase
is poly(D, log(S), log(|F|)).

2. From transcript and the circuit C we can derive z ∈ F
d, α ∈ F and 〈C〉 ∈

{0, 1}poly(D,log(S),log(|F|)) in time poly(S).
3. Vpost gets as input

(
transcript, 〈C〉, x̂(z)

)
and either accepts or rejects. Vpost

performs a test on (transcript, 〈C〉) and checks the claim x̂(z) = α. Vpost

runs in time poly(D, log(S), log(|F|).

330 N. Athamnah et al.

The interactive protocol obtained by first running the interactive phase, then
having the verifies derive 〈C〉, x̂(z) and finally running Vpost, has perfect com-

pleteness and soundness error O
(

D log S
|F|

)
.

We remark that [GKR15, Theorem 1.5] does not separate the proof-system into
two phases as above. However, such a separation follows easily using the fact
that the GKR protocol is holographic, meaning that the verifier’s only needs to
preprocess some queries to the low degree extension of the input prior to the
interaction, and subsequently runs in poly(D, log(S)) time.

2.3 Zero-Knowledge Proofs

Next, we recall the definition of zero-knowledge proofs. For sake of simplicity
we focus on the basic standalone definition but note that our constructions also
achieve the stronger notion of auxilary-input zero-knowledge.

Definition 11 (Zero-Knowledge Proofs). Let (P, V) be an interactive proof
system for an NP relation R with security parameter λ. The proof-system
(P, V) is computational zero-knowledge if for every polynomial-time interactive
machine V̂ there exists a probabilistic polynomial-time machine Sim, called the
simulator, such that for every ensemble (x,w) = (xλ, wλ)λ, with (xλ, wλ) ∈ R
the following distribution ensembles are computationally indistinguishable:

–
{

V iew
P (w)

V̂

(
x, 1λ

)}

λ∈N

, and

–
{
Sim

(
x, 1λ

)}
λ∈N

.

Succinct Zero-Knowledge Proofs. Next, we state two prior works obtaining suc-
cinct zero-knowledge proofs for bounded depth and bounded space computa-
tions. In contrast to our results, these prior works have a large multiplicative
overhead over the witness length.

Theorem 12 ([GKR15, Theorem 1.6]). Assume one-way functions exist, and
let λ = λ(n) ≥ log(n) be a security parameter. Let L be a language in NP/poly,
whose relation R can be computed on inputs of length n with witnesses of length
m = m(n) by Boolean circuits of size poly(n) and depth d(n). Then L has a
zero-knowledge interactive proof:

1. The prover runs in time poly(n, λ) (given an NP witness), the verifier runs
in time poly(n, λ) and number of rounds is poly(λ, d(n)).

2. The protocol has perfect completeness and soundness error 2−λ.
3. The protocol is public-coin, with communication complexity m ·poly(λ, d(n)).

Remark 13. The theorem statement in [GKR15] (i.e., [GKR15, Theorem 1.6])
does not explicitly state the number of rounds, but it can be inferred in a straight-
forward manner from the protocol. Additionally, the stated soundness error there
is 1

2 , but the protocol can be repeated λ times (sequentially) to achieve a sound-
ness error of 2−λ.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 331

Theorem 14 ([RRR21, Theorem 2]). Assume one-way functions exist, and
let δ > 0 be a constant. Let R be an NP relation, with instance length n, and
witness length m that can be verified by a poly(m)-time and space S = S(m)
Turing Machine, where n ≤ poly(m). Then, the relation R has a public-coin
zero-knowledge interactive proof with perfect completeness, constant soundness
error, and communication complexity (m + S(m)) · mε · poly(λ). The (honest)
prover, given a valid witness, runs in time poly(m,λ). The verifier runs in time
poly(m,λ).

2.4 Pseudorandom Generator

Definition 15 (Pseudorandom Generator). A pseudorandom generator
(PRG) is a deterministic polynomial-time algorithm G satisfying the following
two conditions:

1. Expansion: There exists a function 	 : N → N such that 	(λ) > λ for all
λ ∈ N, and |G(s)| = 	(|s|) for all s ∈ {0, 1}∗.

2. Pseudorandomness: The ensembles {G(Uλ)}λ and {U�(λ)}λ are computa-
tionally indistinguishable.

Proposition 16. Assuming one-way functions exist, for every polynomial 	 =
	(λ), there exist a PRG G : {0, 1}λ → {0, 1}� computable by circuits of size
poly(λ,) and depth poly(λ) · log().

We emphasize that here (as well as in Theorem 17 below) poly refers to a fixed
polynomial that is independent of 	.

Theorem 16 follows from the tree based PRF construction of Goldreich et
al. [GGM86] (see also [Gol01, Construction 3.6.5]), where we simply output the
log()-th layer of the tree (where the root is at layer 0).

Proposition 17. Assuming one-way functions exist, for every polynomial 	 =
	(λ), there exists a PRG G : {0, 1}λ → {0, 1}� computable by a time poly(λ,)
and space poly(λ) + log() Turing machine.

Theorem 17 follows from the standard stretch-increasing PRG construction (see
[Gol01, Construction 3.3.2]).

2.5 Commitment Scheme

Next, we define commitment schemes. We focus on non-interactive statistically
binding commitments in the common random string (CRS) model, which can
be constructed from one-way functions.

Definition 18 (Commitment Scheme). A commitment scheme in the CRS
model is a tuple of probabilistic polynomial-time algorithms (Gen,Com, V er)
with the following semantics:

1. crs ← Gen(1λ), where crs is referred to as the common reference string.

332 N. Athamnah et al.

2. For any string m ∈ {0, 1}∗ : (com, dec) ← Com(crs,m).
3. For any com, dec,m ∈ {0, 1}∗ : {0, 1} ← V er(crs, com,m, dec).

The scheme must satisfy the following requirements:

1. Correctness: V er always accepts in an honest execution, i.e., for any string
m and any security parameter λ,

Pr
crs←Gen(1λ)

(com,dec)←Com(crs,m)

[
V er(crs, com,m, dec) = 1

]
= 1.

2. Hiding: For any two strings m1,m2 ∈ {0, 1}∗ and any common reference
string crs, the distribution of the commitment of m1 and m2 are computa-
tionally indistinguishable, i.e., if we denote by Comc only the commitment
part of Com then: {Comc(crs,m1)}λ∈N

c≈ {Comc(1λ, crs,m2)}λ∈N .
3. Binding: For every λ ∈ N, with probability at least 1−2−λ over the common

reference string, any commitment com∗ has at most one value m that can be
accepted by V er, i.e.,

Pr
crs←Gen(1λ)

⎡
⎣∃m1, m2, dec1, dec2 ∈ {0, 1}∗ :

m0 �= m1,
V er(crs, com∗, m1, dec1) = 1,
V er(crs, com∗, m2, dec2) = 1

⎤
⎦ < 2−λ.

Theorem 19 ([Nao91,HILL99]). Assuming the existence of a one-way func-
tion, there exists a commitment scheme in the CRS model. Furthermore, the
commitment scheme only makes a black-box use of the one-way function.

Fact 20. Let D a distribution over strings of length λ, f a function and com a
commitment scheme. Then (D, com(f(D)) and (D, com(0λ)) are computation-
ally indistinguishable.

2.6 Multi-party Computation

We consider the following multi party computation model: n parties wish to
evaluate a function defined jointly on their n private inputs. While there are
many variations of this model, we focus on the one where the output of all of the
parties should be the same (aka “secure function evaluation”). The communica-
tion between parties is synchronous and all pairwise communication channels are
secure. Additionally, following [IKOS09],we also allow an OT-channel between
every two parties. In each round, each party can perform local computations on
all its view (input and all messages seen up to that round), send messages to
any other party and read all its incoming messages. A protocol in this setting,
is a specification for each of the n parties.

For this setting we define the notion of privacy and robustness as given by
[IKOS09]:

Definition 21 (Correctness). Given a deterministic n-party functionality
f(w1, ..., wn) (where input wi belongs to party i), we say that Π realizes f with
perfect correctness if for all inputs w1, . . . , wn, the probability that the output of
some party is different from the output of f is 0, where the probability is over
the randomness of all of the parties.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 333

Definition 22 (t-Privacy). Let 1 ≤ t < n. We say that Π realizes f with
perfect t-privacy if there exists a PPT simulator Sim such that for any inputs
w1, . . . , wn, and every set of corrupted parties T ⊂ [n], where |T | ≤ t, the joint
views of parties in T (which includes their inputs, randomness and received mes-
sages) is distributed identically to Sim(T, (wi)i∈T , f(w1, . . . , wn)).

We will rely on the classical construction of a secure MPC protocol against
t ≤ n − 1 corruptions, which has perfect semi-honest security in the OT-hybrid
model, due to Goldreich, Micali and Wigderson [GMW87].

Theorem 23 ([GMW87]). For any n-input functionality f , computable by a
circuit of size S, there is an n-party protocol in the OT-hybrid model with perfect
correctness and perfect (n − 1)-privacy. The parties run in time poly(S, n).

3 Succinct Zero-Knowledge Proofs

In this section we prove our main results: zero-knowledge proofs for any NP
relation that can be verified either in bounded space or by a bounded depth
circuits. We start with a technical definition, which, for any NP relation R gives
a related relation R′ with a shorter witness (but while increasing the length of
the input and complexity of verifying the relation). For an NP relation R, recall
that we use n to denote the input length, m to denote the witness length and λ
to denote the security parameter.

Definition 24. Let R be an NP relation, and G be a PRG, then we define the
NP relation R′

G �
{(

(x, u), s
)

:
(
x,G(s) ⊕ u

) ∈ R
}
.

Our main technical lemma shows how to covert a zero-knowledge proof for R′
G

to one for R (where we benefit if the protocol for R′
G mainly depends on the

witness length).

Lemma 25. Let R be an NP relation with input size n and witness size m, G
be a PRG, and λ a security parameter. If R′

G has a zero-knowledge proof with
communication complexity cc(m,n, λ) and soundness error ε, then R has a zero-
knowledge proof with communication complexity m + cc(m,n, λ) and soundness
error ε.

Before proving Lemma 25, we first show how to use it to derive our main
results.

Deriving Theorems 1 and 2 from Lemma 25. Let R be an NP relation by depth
D = D(n) polynomial-sized circuits. Assuming the existence of one-way function,
by Theorem 16, there exists a PRG G : {0, 1}λ → {0, 1}m computable by depth
log(m) · poly(λ) and size poly(m,λ) circuits. This implies that the relation R′

G

can be decided by a depth D+log(m) ·poly(λ) and size poly(n,m, λ) circuit. By
Theorem 12 (and once again using the assumption that one-way functions exist),
we have that R′

G has a zero-knowledge proof with communication complexity

334 N. Athamnah et al.

cc(m,n, λ) = poly(log(m), λ,D), and soundness error 2−λ (and a polynomial-
time prover and verifier). Theorem 1 now follows directly from Lemma 25.

Theorem 2 follows similarly, by combining the small space PRG of Theorem
17 with the succinct zero-knowledge proof for bounded space computations of
Theorem 14.

3.1 Proof of Lemma 25

Let R be an NP relation. The zero-knowledge proof for R, which establishes
Lemma 25, is presented in Fig. 1.

Fig. 1. Succinct Zero-Knowledge Proof for NP Relation R

Let R′
G be the related NP relation (see Definition 24) and assume that

(P ′, V ′) is a zero-knowledge proof for R′
G.

Completeness. Let (x,w) ∈ R. For any s ∈ {0, 1}λ, by construction, it holds
that

(
(x, u), s

) ∈ R′
G, where u = G(s) ⊕ w. Thus, the protocol (P ′, V ′) is run on

a YES instance. Perfect completeness now follows immediately from the perfect
completeness of (P ′, V ′).

Soundness. Let x /∈ LR and let P ∗ be a cheating prover strategy. Without loss
of generality we assume that P ∗ is deterministic. We denote P ∗’s first message
in the protocol by u∗. Assume toward a contradiction that (x, u∗) ∈ L′

R. By
definition, there exists an s s.t. (x, u∗ ⊕ G(s)) ∈ R, but that contradicts our
assumption that x /∈ LR. Therefore (x, u∗) /∈ L′

R and so, the protocol (P ′, V ′)
is run on a NO instance. By the soundness of the latter protocol, the verifier
accepts with probability at most ε.

Complexity. The prover sends u to V , where u = G(s) ⊕ w so |u| = |w|. Then,
the parties emulate (P ′, V ′) to prove that ((x, u), s) ∈ R′. The communication
complexity for R′

G from the given zero-knowledge protocol is cc(m,n, λ) . Thus,
overall we get communication complexity |w|+cc(m,n, λ). In addition, assuming
P ′ and V ′ are polynomial-time, then so are P and V .

Rate-1 Zero-Knowledge Proofs from One-Way Functions 335

Computational Zero-Knowledge. Computational zero-knowledge follows from
the computational zero-knowledge of (P ′, V ′) and the pseudorandomness of G,
details follow.

Given a malicious verifier V̂ we show how to simulate its view. We note that
after P sends the first message, the parties run the zero-knowledge protocol for
R′

G, hence we can view the behavior of V̂ from that point on as the behavior
of a malicious verifier in the (P ′, V ′) protocol. We denote this residual cheating
verifier behavior by V̂ ′. Since (P ′, V ′) is zero-knowledge, V̂ ′ has a simulator S′

that can simulate its view. We use S′ to construct an S for V̂ :

S(x, 1λ) :

1. Choose u∗ ∈ {0, 1}m.
2. Run S′ on input

(
(x, u∗), 1λ

)
and output (x, u∗, S′(x, u∗)).

Claim. For every ensemble (x,w) ∈ R it holds that
{

V iew
P (w)

V̂
(x, 1λ)

}

λ∈N

c≈
{
S(x, 1λ)

}
λ∈N

.

Proof. The proof is via a hybrid argument. Define the following hybrid distribu-
tions (to avoid cluttering the notation we omit the 1λ from all distributions):

H0 :=
(
x, u, V iewV̂ ′

(
x, u)

))
,

H1 :=
(
x, u, S′(x, u)

))
,

H2 :=
(
x, u∗, S′(x, u∗)

)
,

where s ∈R {0, 1}λ is a random seed, u = G(s) ⊕ w and u∗ ∈R {0, 1}m. Note
that H0 = V iew

P (w)

V̂
(x) and that H2 = S(x) and so it suffices to show that H0

and H2 are both computationally indistinguishable from H1.

H0
c≈ H1: Assume towards a contradiction that the distributions are computa-

tionally distinguishable. Then, there exists a distinguisher D that distinguishes
between H0 and H1 with non-negligible advantage δ. By an averaging argument,
there is some s = (sλ)λ∈N such that D has a distinguishing δ advantage con-
ditioned on choosing s as the PRG seed. We hardwire this choice of s into the
distinguisher D as non-uniform advice and denote the resulting distinguisher by
Ds. We use Ds to build a distinguisher D′ between V iewV̂ ′((x, u)) and S′(x, u)
(recall that u = G(s) ⊕ w with the aforementioned s) in contradiction to the
zero-knowledge property of (P ′, V ′). Since (x, u) is the input of the protocol
(P ′, V ′) they already exists in the view of V̂ ′, so D′ will take them from the
view, concatenate everything to (x, u, V iewV̂ ′(z)(x, u)), then use D and achieve
the same distinguishing probability δ.

336 N. Athamnah et al.

H1
c≈ H2: Assume towards a contradiction that there exists a non-uniform dis-

tinguisher D that distinguishes between the hybrids for some (x,w). We build
D′ that distinguishes between Un and G(U|λ|). We give D′ the non-uniform
advice (x,w). Given as input r ∈ {0, 1}m, the distinguisher D′ runs D on input
(x,w⊕r, S′(x,w⊕r)) and outputs the result. If r is sampled from Un, then w⊕r
will also be a random element of Un and thus (x,w⊕r, S′(x,w⊕r)) will be of the
same distribution as (x, u∗, S′(x, u∗)). On the other hand, if r is sampled from
G(U|λ|) then (x,w⊕r, S′(x,w⊕r)) is the same distribution as (x, u, S′(x, u)). So
D′ will be able to distinguish with the same probability as D, in contradiction
to the pseudorandomness of G.

4 Zero-Knowledge with Black-Box Use of the OWF

Recall that the proof of Theorems 1 and 2 relies on a protocol in which the prover
and verifier make a non black-box use of the one-way function (see Lemma 25 for
details). In this section, we prove Theorem 5 which gives a different construction
that only makes black-box use of the one-way function. A caveat however is that
here we only achieve an inverse polynomial soundness error, whereas Theorem
1 and Theorem 2 had an exponentially small error.

As mentioned in the introduction, the proof of Theorem 5 is inspired by,
and improves upon the aforementioned work of Hazay, Venkitasubramaniam
and Weiss [HVW23]. Similarly to their work, we utilize the MPC-in-the-head
[IKOS09] techniques in order to avoid the non black-box use of the one way
function.

4.1 Proof of Theorem 5

Let R be an NP relation. We denote by n the instance length and m the witness
length, we denote with S = S(n) the size of the verification circuit and D = D(n)
its depth. Let λ be a security parameter and ε the desired soundness error.
To construct the protocol establishing Theorem 5, we will use the following
ingredients, all of which either exist unconditionally or can be constructed (via
a fully black-box construction) from a one-way function:

– A pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}m (e.g., the one from
Theorem 17, but any PRG with a similar stretch would do – the depth bound
is not needed) with security parameter λ′ = λ + log(3/ε)

– The non-interactive statistically binding CRS commitment scheme from The-
orem 19, which we denote by com.

– The interactive protocol from Theorem 10, denoted (PGKR, Vinteractive, Vpost).
Wedenote the number or rounds in the interactive part by r = O(D·log(S)).We
choose a field with characteristic 2 and size Θ

(
D·log(S)

ε

)
, where all operations

below will be done over this field.
– An MPC protocol from Theorem 23 with perfect security and (k −1)-privacy

with k parties, where k = Θ(1/ε).

Rate-1 Zero-Knowledge Proofs from One-Way Functions 337

Using these components, the zero-knowledge proof for R that establishes Theo-
rem 5 is presented in Fig. 2.

We proceed to show that the protocol satisfies the desired properties.

Complexity. First, the verifier sends to P a reference string of size poly(λ).
Then, P sends to V commitments to all random seeds and wcom. Each com-
mitment is of size poly(λ), and |wcom| = m. The prover and verifier run the
interactive phase that has communication complexity poly(D, log(S), log(|F|)),
and since it is secret shared among k parties, we have communication k ·
poly(D, log(S), log(|F|)).

The prover P then sends commitments to the views of all k parties in the
MPC. The MPC’s input for each party consists of the multi-linear extension at
point z, which has size log(F), and bj (where bj = (mi,j)i∈[r], the messages from
Step Item 4), each of size poly(D, log(S), log(|F|)). The size of the circuit com-
puted by the MPC is poly(D, log(S), log(|F|)), as derived from the complexity
of Vpost in Theorem 10.

By Theorem 23, the parties run in time polynomial in the size of the input
and the circuit, so the size of the view is at most poly(k,D, log(S), log(F)). The
size of the commitment to the view is there poly(λ, k,D, log(S), log(|F|)). Finally,
P sends the O(k) decommitments of size poly(λ) each.

Overall, the communication complexity is therefore m + poly(λ, k,D, log(S),
log(|F|)). The communication complexity stated in the theorem statement now fol-
lows by taking k = Θ(1ε) and F as mentioned above. In addition since the commit-
ment, PRG, GKR protocol and the MPC protocol are computable in polynomial-
time, then so are P and V .

Completeness. Let (x,w) ∈ R. If (P, V) follow the protocol specification,

the input of Vpost in Step 5c is:

(

coinsV ,

(
⊕

j∈[k]

bj

))

, where by construction

⊕
bj

j∈[k]

=
(
mi

)
i∈[r]

. Hence,

(

coinsV ,

(
⊕

j∈[k]

bj

))

is the transcript of the interac-

tion between (PGKR, Vinteractive). Also note that 〈C〉 is the circuit “hash” for

the GKR protocol. Lastly,
⊕

j∈[k]

aj =

(
⊕

j∈[k−1]

Ĝ(sj)[z]

)

⊕ ŵs[z] = ŵ[z], where

the last equality stems from the fact that the low degree extension is a linear
function and the addition is done bit-wise over a field of characteristic two.

Thus, Vpost’s input in Step 5c is a valid run of the GKR protocol and by its
perfect completeness, the verifier will accepts. Hence, from the (perfect) com-
pleteness of the MPC protocol, the run of the MPC protocol will be an accepting
one. Since P behaved according to the protocol, P should be able to open all
the commitments correctly, and all checks in Step 8 will pass and therefore V
accepts.

Soundness. Let x /∈ LR and let P ∗ be a cheating prover strategy. Without loss
of generality we assume that P ∗ is deterministic.

338 N. Athamnah et al.

Common Input: x ∈ {0, 1}n and security parameter 1λ.
Prover’s Additional Input: witness w ∈ {0, 1}m, such that (x, w) ∈ R.

The Protocol:

1. V generates a reference string for the commitment scheme and sends it to P
using security parameter λ′ = λ + log(3/ε). All commitments in the protocol
are done using the commitment scheme com with respect to this reference
string, which we omit to avoid cluttering the notation.

2. P generates k random PRG seeds s1, . . . , sk ∈ {0, 1}λ.
3. P sends commitments {com(si)}i∈[k] to all the seeds. In addition, it sends

wcom = ws ⊕ G(sk), where ws = (w ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)). (The pair
(wcom, com(sk)) should be interpreted as a commitment to ws).

4. P and V emulate the interactive phase of the GKR protocol (see Theorem
10) on input (Cx, w) (where Cx denotes the circuit that computes the relation
R with x hardcoded). However, in every round i ∈ [r], whenever PGKR wants
to send a message mi, the prover does not forward the message directly, but
rather generates an additive secret sharing of the message s.t mi,1⊕· · ·⊕mi,k =
mi, and sends to V commitments to mi,1, . . . , mi,k. (We denote the coins sent
from V to P in this stage as coinsV).

5. (a) P derives z ∈ F
d and 〈C〉 (He can do it from Item 4 as explained in

Theorem 10).
(b) P computes the multi-linear extension of G(s1), . . . , G(sk−1) and ws at

the point z. That is, for every j ∈ [k − 1], it computes aj = Ĝ(sj)[z], and
additionally computes ak = ŵs[z] (see Sect. 2.2 for details).

(c) P executes (“in its head”) the k-party MPC protocol with the fol-
lowing inputs. For party j ∈ [k − 1], the input is inputj = (aj , bj),
where bj := (mi,j)i∈[r]. For the last party inputk = (ak, bk), where
bk := (mi,k)i∈[r]. The MPC is executed relative to the functionality

Vpost

((
coinsV ,

⊕
j∈[k]

(bj)
)
, 〈C〉, ⊕

j∈[k]

aj

)
. Where bj = (mi,j)i∈[r].

(a) P sends commitments to the views of the k parties in the MPC protocol.
6. V randomly chooses a subset of size t = k − 1 of the parties, denoted by

Tq = [k]\{q}, and sends it to P .
7. For every j ∈ Tq, the prover P decommits to everything related to j, namely

sj , (mi,j)i∈[r], and the view of party j.
8. V verifies that (1) all inputs of the parties in Tq were computed correctly, (2)

all their views are consistent (3) all parties properly followed the specification
of the MPC protocol (4) all of the parties accepted. If all tests pass then V
accepts, otherwise it rejects.

Fig. 2. Succinct Zero-Knowledge Proof for NP Relation R

Rate-1 Zero-Knowledge Proofs from One-Way Functions 339

By Definition 18, since we used security parameter λ′ ≥ log(3/ε), with proba-
bility at least 1−ε/3 the reference string generated in Step 1 produces a perfectly
binding commitment. We continue the analysis under the assumption that the
CRS is indeed perfectly binding, while noting that this can only increase the
soundness error by ε/3.

Consider the following possible behaviors of P ∗:

1. It produces an invalid decommitment.
2. The behavior of one of the parties in the MPC protocol transcript, that is

defined by the commitment (since they are perfectly binding), does not follow
the protocol specification.

3. A pair of views is inconsistent (i.e., messages sent by one party are not received
correctly by the other parties).

In the first case the verifier when checking the decommitments. In the second
case, with probability 1 − 1

k , the verifier V will choose the relevant party and
reject. In the third case, with probability at least 1 − 2

k the relevant pair of
parties is selected and the verifier rejects.

Additionally, if P calculates 〈C〉 incorrectly then this either does not change
the outcome of the MPC or it changes (at least) one of the parties’ behavior, or
creates an inconsistency between the views of two parties, then once again with
probability 1 − 2

k , V will choose the relevant party/parties and reject. Thus, we
can continue the analysis assuming the MPC protocol computes the intended
function on the defined inputs while adding at most 2

k to the soundness error.
Assuming all commitments can be opened and in one way, and assuming

P simulates the MPC protocol correctly and on the inputs derived from the
opening of the commitments as defined in the protocol, then from the per-
fect correctness of the MPC protocol, we get that the MPC protocol calculates
the output of Vpost(coinsV , {mi}i∈[r]), 〈C〉, ŵ∗[z]. For some w∗ (derived from
the unique de-commitment and recombining of the messages in Item 5b), and
(coinsV , {mi}i∈[r]), 〈C〉 derived of a possible run of the GKR protocol. Since
x /∈ LR, for any such w∗ it holds that (x,w∗) /∈ R and so the circuit Cx does not
accept w∗. By fixing the field size to be Θ(D·polylog(S)

ε) for a sufficiently large
constant in the Θ-notation, by Theorem 10, the GKR protocol has a soundness
error of ε/3.

Overall, the probability that V accepts is at most ε
3 + 2

k + ε
3 . By choosing

k := 6
ε� we can get the desired soundness error of ε.

Computational Zero-knowledge. Let V ∗ be a malicious verifier, which we assume
without loss of generality to be deterministic. For a given input (x,w) ∈ R, we
denote V ∗’s first message on input x (which should specify a reference string
for the commitment) by ref . By Definition 18, the commitment is hiding when
using any reference string, in particular ref . For clarity of notation we therefore
omit ref below, but note that all commitments are done relative to this fixed
reference string.

Our proof of zero-knowledge follows the outline of the textbook proof of zero-
knowledge of the 3-coloring protocol [Gol01, Section 4.4.2.3]. In particular, we

340 N. Athamnah et al.

will present a simulator S that is allowed to output a special abort symbol ⊥
and analyze it via two key propositions:

– In Proposition 26 we show that the probability that S(x) outputs ⊥ is at
most 1 − O(1

k).
– In Proposition 27 we show that conditioned on not outputting ⊥, the output

of S(x) is computationally indistinguishable from the verifier’s view in a real
execution of the protocol.

These two properties, combined with rejection sampling, yield the desired sim-
ulator (see [Gol01, Definition 4.3.2] for details). The base simulator (which is
allowed to abort) is presented in Fig. 3.

Proposition 26. The probability that S outputs ⊥ is at most 1 − O(1/k).

Proof. Recall that V ∗ is deterministic. We assume without loss of generality that
V ∗ always specifies a valid set Tq∗ (i.e. Tq∗ ⊆ [k] is a subset of size k −1) in Step
6 (since otherwise we can just interpret its message as some fixed Tq∗).

We view two strings m = (s, α, β),m′ = (s′, α′, β′), where s, s′ represent
some choice of seeds for the PRG (in Step 3), α, α′ two randomness choices for
the secret sharing (in Step 4) and β, β′ two randomness choices for the MPC
simulator (in Step 5d). These randomness choices, together with a choice of q ∈
[k] (in Step 5c) and randomness of the commitments, define all the randomness
of the simulator.

Denote by Pr[V ∗
q∗(m, q)] the probability, taken over the randomness only of

the commitment, that the verifier V ∗ requests q∗ given simulator behavior corre-
sponding to randomness (m, q). For any different choices (m, q) and (m′, q′), due
to the hiding property of the commitment, the difference between the probabil-
ities of the verifier making the choice q∗ for these two interactions is negligible
(otherwise there exist two distinct messages that we can distinguish between
using V ∗).

Thus, for every polynomial p1 and every choice q∗ it holds that
|Pr[V ∗

q∗(m, q)] − Pr[V ∗
q∗(m′, q′)]| < 1

p1(n)
. Using this inequality, we prove the

claim.
The simple idea is that if the choice of the verifier for Tq∗ is made regardless

(up to negligible probability) of the messages sent by the prover, then with
probability close to 1

k the verifier will choose the same set and there will be no
abort. The rigorous proof that follows is with elementary manipulations over the
probabilities.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 341

The Simulator for V ∗

Input: main input x ∈ L and security parameter 1λ.

1. The simulator S starts emulating V ∗ on input x and obtain in response a
reference string ref . All commitments in the protocol are done using this
reference string, which we omit similarly to the protocol.

2. S chooses w̃ ∈ {0, 1}m and generates k random PRG seeds s1, . . . , sk ∈ {0, 1}λ.
3. S sends to V ∗ commitments to all random seeds {si}i∈[k]. In addition, it sends

w̃com = w̃s ⊕ G(sk), where w̃s = (w̃ ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)) .
4. S emulates with V ∗ the interactive phase of the GKR protocol as follows:

In every round i ∈ [r], the simulator S randomly chooses m̃i, and secret
shares the message to k shares s.t m̃i,1 ⊕ · · · ⊕ m̃i,k = m̃i, and sends to V ∗

commitments to m̃i,1 . . . m̃i,k. We denote the coins sent from V to P in this
stage by coinsV ∗ , and the entire interaction in this stage (the commitments
to all shares as well as the verifier’s coins) by t̃rGKR.

5. (a) Based on the interaction, S computes z ∈ F
d and 〈C〉 as described in

Theorem 10.
(b) S computes the multi-linear extension of G(s1), . . . , G(sk−1) and w̃s at

the point z. That is, for every j ∈ [k − 1], it computes aj = Ĝ(sj)[z], and

additionally computes ak = ̂̃ws[z].
(c) S chooses a random subset Tq = [k]\{q} of k − 1 parties.
(d) S computes the inputs for the selected parties as in the proto-

col, and runs the MPC simulator denoted SMPC on the selected
parties’ inputs. The MPC simulation is executed wrt the function

Vpost

((
coinsV ∗ ,

⊕
j∈[k]

bj

)
, 〈C〉, ⊕

j∈[k]

aj

)
, where bj = (m̃i,j)i∈[r]. We denote

SMPC ’s output for party i ∈ Tq by ṽiewi.

(e) S sets the view of the remaining party q, to a default value, ṽiewq =
0|view|, and sends to V ∗ commitments to the k − 1 views generated by
SMPC and the view of the remainder party q and all communication
channels. Denote these commitments by com(ṽiewi)i∈[k].

6. V ∗ responds with a set Tq∗.
7. If Tq �= Tq∗, then S outputs ⊥ and terminates. Otherwise, S outputs(

x, ref, c̄, w̃com, t̃rGKR, {com(ṽiewi)}i∈[k], Tq, {decS(i), decm(i), decv(i)s}i∈T

)
,

where (1) c̄ = com(s1), . . . , com(sk), (2) decs(i), decm(i), decv(i) respectively
the decommitments to si, m̃i and party i’s view.

Fig. 3. Zero-Knowledge Simulator

342 N. Athamnah et al.

We note that all randomness choices are independent, hence using elementary
manipulations:

Pr[S = ⊥] = E
s̄,α,β,q

⎡

⎣
∑

q∗ �=q

Pr
[
V ∗

q∗(ms̄,α,β , q)
]
⎤

⎦

≤ E
s̄,α,β,q

⎡

⎣
∑

q∗ �=q

(
Pr[V ∗

q∗(0̄, 0)] +
1

2k2

)
⎤

⎦

≤ E
s̄,α,β

⎡

⎣E
q

⎡

⎣
∑

q∗ �=q

Pr[V ∗
q∗(0̄, 0)]

⎤

⎦

⎤

⎦ +
1
2k

= E
s̄,α,β

⎡

⎣E
q∗

⎡

⎣
∑

q �=q∗
Pr

[
V ∗

q∗(0̄, 0)

⎤

⎦

⎤

⎦ +
1
2k

= E
s̄,α,β

[
(k − 1) E

q∗

[
Pr[V ∗

q∗(0̄, 0)]
]
]

+
1
2k

= E
s̄,α,β

[
(k − 1)

k

]
+

1
2k

= 1 − 1
2k

,

and the proposition follows.

Denote by S̄(x) the distribution of S(x) conditioned on S(x) �= ⊥ (i.e.,
conditioned on Tq = Tq∗).

Proposition 27. The ensembles S̄(x) and {V iew
P (w)
V∗ (x, λ)}x∈L are computa-

tionally indistinguishable.

Proof. Let Tq ⊆ [k] denote the set of parties that the verifier selects, both
with respect to the simulator and the prover (note that Tq depends on the
previous messages that the prover/simulator sent). For x ∈ L, both S̄(x) and
V iew

P (w)
V∗ (x, λ)

x∈L
are sequences of the following form:

(
x, ref, c̄, wcom, trGKR,

{
com(viewi)

}
i∈[k]

, Tq,
{
decS(i), decm(i), decv(i)

}
i∈T

)
.

Since we fixed (x,w) and ref we omit them from the notation when analyzing
these two distributions.

We define for each subset Tq = [k]\q two random variables describing, respec-
tively, the output of S̄ and the view of V ∗ in a real interaction, in the case that
the verifier’s request equals Tq:

1. Let μq(x) denote the output of S̄(x) conditioned on having the verifier’s
request in Step 6 equal Tq when interacting with V ∗. Let pq(x) denote the
probability that the verifier requests the set Tq when interacting with S̄(x).

Rate-1 Zero-Knowledge Proofs from One-Way Functions 343

2. Let νq(x) denote V iew
P (w)
V ∗ (x) conditioned on V iew

P (w)
V ∗ (x) having the veri-

fier’s request in Step 6 in the protocol (i.e., when interacting with P (x,w))
equal Tq. Let fq(x) denote the probability that V ∗ selects Tq when interacting
with P (x,w) in the protocol.

Assume toward a contradiction that the two ensembles in the statement of the
claim are distinguishible. Then one of the following cases must occur.

Case 1: There exists q ∈ [k] such that |pq − fq| is non-negligible. To show that
Case 1 leads to a contradiction, we first argue that the part of the interaction
up to the opening of the commitment is computationally indistinguishible. This
is is captured by the following claim.

Claim. It holds that (c̄, w̃com, t̃rGKR, com(ṽiewi)i∈[k])
c≈ (c̄, wcom, trGKR,

com(viewi)i∈[k]), where c̄ = (com(s1), . . . , com(sk)).

Section 4.1 follows in a straightforward manner from hiding property of the
commitment scheme and so we defer its proof to Sect. 4.1.1.

Assuming Case 1 occurs, we can build a (non-uniform) distinguisher between
the two distributions by feeding V ∗ with the distribution and seeing whether it
outputs q, the distinguisher output 1 if q was chosen and 0 otherwise thus case
1 leads to contradiction.

Case 2: If we are not in Case 1, then, loosely speaking, for every q it holds that

|pq(x) − fq(x)| ≤ 1
poly(|x|).

Since we assumed the ensembles are distinguisible, by an averaging argument,
there exists some q ∈ [k] for which pq and fq are close and yet the distinguisher
is able to distinguish even conditioned on this value of q. Formally, there exists
a probabilistic polynomial-time algorithm A, a polynomial p(·), and an infinite
sequence of integers such that for each integer n (in the sequence) there exists
an x, |x| = n and a set of parties Tq such that the following conditions hold9:

1. fq(x) > 1
2·p(n) ,

2. |pq(x) − fq(x)| < 1
8·p(n)2 ,

3. |Pr[A(μq(x)) = 1] − Pr[A(νq(x)) = 1]| > 1
2·p(n) .

We proceed to show that Case 2 leads to a contradiction to the following
claim,
9 The conditions follows from the fact that A distinguishes the two distributions and

that Case 1 does not hold. From an averaging argument, there exist a player q ∈ [k]

s.t
∣∣∣fq(x) · Pr[A(μq(x))] − pq(x) · Pr[A(νq(x))]

∣∣∣ ≥ 1
p(n)

. Now for Item 2 we use the

fact that Case 1 does not hold, using a suitably large polynomial. Now we conclude

that
∣∣∣fq(x) · Pr[A(μq(x))] − fq(x) · Pr[A(νq(x))]

∣∣∣ ≥ 1
2·p(n)

and Items 1 and 3 follow.
.

344 N. Athamnah et al.

Claim. Let Tq = [k]\{q} be a fixed set of parties, denote:

H0

=
(
c̄, w̃com, t̃rGKR,

{
com(ṽiewi)

}
i∈[Tq]

, com(ṽiewq), Tq,
{
decS(i), decm(i), decv(i)

}
i∈Tq

)

H1

=
(
c̄, wcom, trGKR,

{
com(viewi)

}
i∈[Tq]

, com(viewq), Tq,
{
decS(i), decm(i), decv(i)

}
i∈Tq

)

then, H0
c≈ H1.

We yet again defer the proof of the claim to Sect. 4.1.2 and proceed directly
to showing why it leads to a contradiction. Namely, we use A to construct a
distinguisher A′ that distinguishes between H0 and H1 thereby contradicting
Sect. 4.1. Consider A′ that emulates the simulator and checks if Tq was chosen
by V ∗. If so A′ runs A on its input (which is sampled either from H0 or H1).
Otherwise A′ outputs 0.

We proceed to show that A′ indeed distinguishes between these two distri-
butions:

∣
∣ Pr[A′(H0)] − Pr[A′(H1)]

∣
∣

=
∣
∣
∣fq(x) · Pr[A(μq(x))] − pq(x) · Pr[A(νq(x))]

∣
∣
∣

≥ fq(x) ·
∣
∣
∣ Pr[A(μq(x))] − Pr[A(νq(x))]

∣
∣
∣ − Pr[A(νq(x))] · ∣∣pq(x) − fq(x)

∣
∣

≥ fq(x) ·
∣
∣
∣ Pr[A(μq(x))] − Pr[A(νq(x))]

∣
∣
∣ − ∣

∣pq(x) − fq(x)
∣
∣

>
1

2 · p(n)
· 1
2 · p(n)

− 1
8 · p(n)2

=
1

8 · p(n)2
,

where the first inequality follows from the (reverse) triangle inequality and the
third inequality from the above distance bound on pq vs. fq. Thus, A′ distin-
guishes between H0 and H1 with non-negligible probability, in contradiction to
Sect. 4.1.

This concludes the proof of Proposition 27.

4.1.1 Proof of Section 4.1
The proof is via a hybrid argument. Define:

H0 :=
(
c̄, w̃com, t̃rGKR, com(ṽiewi)i∈[k])

)
,

H1 :=
(
c̄, wcom, t̃rGKR, com(ṽiewi)i∈[k]

)
,

H2 :=
(
c̄, wcom, trGKR, com(viewi)i∈[k]

)
.

We show that H0 and H2 are both indistinguishable from H1, from which the
claim follows.

Rate-1 Zero-Knowledge Proofs from One-Way Functions 345

H0
c≈ H1: Assume towards a contradiction that the distributions are computa-

tionally distinguishable. Then, since the only difference between the hybrids lies
in w̃com versus wcom, there exists a distinguisher D that distinguishes between
(w̃com) and wcom. (recall wcom = ws ⊕ G(sk), where ws = (w ⊕ G(s1) ⊕ · · · ⊕
G(sk−1)), and w̃com = w̃s ⊕ G(sk), where w̃s = (w̃ ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)).
We construct D′ that distinguishes between Un and G(U|λ|). We give D′ the
non-uniform advice (x,w).

The distinguisher D′, given an input r ∈ {0, 1}m, chooses s1, . . . , sk−1, and
runs D on the input ŵcom = r ⊕ (w ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)) and outputs the
result. If r is sampled from Un, then ŵcom will also be a random element of Un

and thus ŵcom will be of the same distribution as w̃com. On the other hand, if r
is sampled from G(U|λ|) then ŵcom is the same distribution as wcom. So D′ will
be able to distinguish with the same probability as D, in contradiction to the
pseudorandomness of G.

H1
c≈ H2: Due to the hiding property of the commitment, for any two strings

m1,m2 ∈ {0, 1}∗ and any common reference string ref , the distribution of the
commitment of m1 and m2 are computationally indistinguishable. Thus the com-
mitments of the simulator are computationally indistinguishable from the com-
mitments to in the real interation.

4.1.2 Proof of Section 4.1 We first show that the inputs and views of the
parties selected in the set Tq are computationally indistinguishable in the two
cases: that is, when V ∗ interacts with P vs. its interaction with S.

For simplicity of notation we will assume without loss of generality that
q = 1 and we use T to denote the selected set T = {2, . . . , k}. Thus, we need to
show that

(
(si)i∈T , w̃s, (m̃i)i∈T , (ṽiewi)i∈[T]

)
c≈

(
(si)i∈t, ws, (mi)i∈T , (viewi)i∈[T]

)
,

where recall that for i ∈ T :

– mi is the share for party i of the GKR message in the real interaction (Fig. 2,
Step 4) and m̃i is is the corresponding share of a random message, in the
simulation (Fig. 3, Step 4).

– ĩnputi is the input to party i in the MPC protocol, derived by the simulator
in Fig. 3, Step 5d . That is, ĩnputi =

(
Ĝ(si)(z), m̃i

)
, for i �= k and ĩnputk =

(̂̃ws(z), m̃k

)
.

– ṽiewi consists of the input for party i followed by the output of SMPC for
the party i. Thus,

{
(ṽiewi)

}
i∈[T]

=
(
(ĩnputi)i∈T , SMPC

(
ĩnputi)i∈T

))
.

– inputi is the input to party i in the MPC protocol in the real interation,
Fig. 2, Step 5c . Thus, inputi =

(
s(Ĝ(si)(z),mi

)
for i �= k, and inputk =

(
ŵs(z),mk

)
.

– viewi is inputi followed by the view of that party in the MPC protocol (all
in the real interaction).

346 N. Athamnah et al.

We first show the distribution of the inputs and views of the parties in T are
computationally indistinguishable in the two cases. We then conclude that the
commitment and decommitment to those distributions are also computationally
indistinguishable. Finally, we show we can add to those distributions the com-
mitment of the remaining party and coinsV ∗ sent by V ∗ in Step 4 and the claim
follows.

The proof is via a hybrid argument. Consider the following hybrid distribu-
tions:

H0 :=
(
(si)i∈T , w̃s, (m̃i)i∈T ,

{
(ṽiewi)

}
i∈[T]

)

=
(
(si)i∈T , w̃s, (m̃i)i∈T , ((ĩnputi)i∈T , SMPC((ĩnputi)i∈T)

)

H1 :=
(
(si)i∈T , ws, (m̃i)i∈T , ((inputi)i∈T , SMPC((inputi)i∈T)

)
,

where for i �= k,
(
inputi

)
=

(
Ĝ(si)(z)), m̃i)

)
, and (inputk

)
=

(
ŵs(z)), m̃k)

)

H2 :=
(
(si)i∈T , ws, (mi)i∈T , ((inputi)i∈T , SMPC((inputi)i∈T)

)
,

H3 :=
(
(si)i∈T , ws, (mi)i∈T ,

{
(viewi)

}
i∈[T]

)
.

H0
c≈ H1: We first show that (s2, . . . , sk−1, w̃s)

c≈ (s2, . . . , sk−1, ws). Assume

there exists a distinguisher D that distinguishes between (s2, . . . , sk−1, w̃s) and
(s2, . . . , sk−1, ws) with non-negligible advantage. Recall that w̃s =

(
w̃ ⊕G(s1)⊕

· · · ⊕ G(sk−1)
)

and ws =
(
w ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)

)
.

We construct D′ that distinguishes between Un and G(U|λ|). We give D′ the
non-uniform advice (x,w). The distinguisher D′, given as input r ∈ {0, 1}m,
generates s2, . . . , sk−1 ∈ {0, 1}{|λ|}, then computes G(s2) . . . G(sk−1) and runs
D on input (s2 . . . , sk−1, w̄s), where w̄s = r ⊕ (w ⊕ G(s2) ⊕ · · · ⊕ G(sk−1)) and
outputs the result. If r is sampled from Un, then w̄s will also be a random
element of Un and thus w̄s will be of the same distribution as w̃s. On the other
hand, if r is sampled from G(U|λ|) then w̄s is the same distribution as ws. So
D′ will be able to distinguish with the same probability as D, in contradiction
to the pseudorandomness of G.

Observe that H0 and H1 are obtained from the two distributions above via the
same procedure. Namely, (ĩnputi)i∈T and (inputi)i∈T are computed by applying
G on the seeds and computing the multi-linear extension at the point z, followed
by, either ̂̃ws(z), (m̃i)i∈T or ŵs(z), (m̃i)i∈T . Then, in the same way run SMPC on
(ĩnputi)i∈T and (inputi)i∈T). Hence, using Theorem 8, since G, the multi-linear
extension and SMPC are PPT algorithms, we conclude that H0

c≈ H1.

H1 ≡ H2: Recall (mi)i∈[k] is the distribution of the additive secret sharing of
the GKR messages as in Fig. 2, Step 4 , whereas (m̃i)i∈[k] is the distribution of
a secret sharing of a random message in Fig. 3, Step 4 .

Since the restriction of an additive secret sharing to any set of k −1 shares is
uniformly random, it follows that (mi)i∈T is distributed identically to (m̃i)i∈T .

Rate-1 Zero-Knowledge Proofs from One-Way Functions 347

Thus, since the rest of the distributions are simply computed in the same
manner for both distributions similarly to the previous case, we conclude H1 ≡
H2.

H2 ≡ H3 By the (k − 1)-privacy of the MPC protocol (see Definition 22
and Theorem 23), it holds that {(viewi)}i∈[T] is distributed identically to
SMPC((inputi)i∈T). Thus, since the input and the rest of the hybrids are iden-
tical in the two cases, we have that H2 ≡ H3.

Thus, we conclude that H0
c≈ H3. Denote:

C0 :=
(
com(s2), . . . w̃com, com(sk), com(m̃2) . . . com(m̃k),

{
com(ṽiewi)

}
i∈[T]

, dec
)

C1 :=
(
com(s2), . . . wcom, com(sk), com(m2) . . . com(mk),

{
com(viewi)

}
i∈[T]

, dec
)
,

where dec = {decS(i), decm(i), decv(i)}i∈T and decs(i), decm(i), decv(i) are the
decommitments to si, m̃i and party i’s view, respectively.

Observe that C0 (resp., C1) is computed from H0 (resp., H3) by the same
procedure – namely, committing to the seeds, (m̃i)i∈T (resp., (mi)i∈T) and
(ṽiewi)i∈T (resp., (viewi)i∈T), generating a random seed sk and computing
w̃com = w̃s⊕G(sk) (resp., wcom = ws⊕G(sk)). Thus, by Theorem 8, we conclude
that C0

c≈ C1.
Finally, from Theorem 20 we can add the commitment to the input of the

remaining party j = 1, i.e.:

(C0, com(s1), com(m̃1), com(ṽiew1))
c≈ (C1, com(s1), com(m1), com(view1)).

The remaining difference between the claim and what we have proved are
trGKR and t̃rGKR. Recall that trGKR = (com(m1), . . . , com(mk), coinsV ∗), and
t̃rGKR = (com(m̃1), . . . , com(m̃k), coinsV ∗), where coinsV ∗ are the strings sent
by V ∗ in step 4 . From Section 4.1, the interaction up to the opening of the
commitment is computationally indistinguishable between the interaction with
P and S̄. Therefore, coinsV ∗ are also indistinguishable between the interaction
of V ∗ with P and S̄. Hence, we can add coinsV ∗ to the distributions, and the
claim follows.

Acknowledgements. We thank Yuval Ishai for useful discussions, and the anony-
mous reviewers insightful comments.

Noor Athamnah and Ron Rothblum are funded by the European Union (ERC,
FASTPROOF, 101041208). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the Euro-
pean Research Council. Neither the European Union nor the granting authority can
be held responsible for them.

348 N. Athamnah et al.

References

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in
polylogarithmic time. In: Koutsougeras, C., Vitter, J.S. (eds.) Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, 5-8 May
1991, New Orleans, Louisiana, USA, pp. 21–31. ACM (1991)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Proceed-
ings of the International Congress of Mathematicians, vol. 1, p. 2. Citeseer
(1986)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, 22-25 October 2011, pp. 97–106. IEEE Computer Society (2011)

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 19

[DI06] Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 30

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford
University, USA (2009)

[GGI+15] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using
fully homomorphic hybrid encryption to minimize non-interactive zero-
knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[GKR15] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for Muggles. J. ACM 62(4), 27:1–27:64 (2015)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements
in zero-knowledge, and a methodology of cryptographic protocol design.
In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, vol. 263 of LNCS, pp. 171–
185. Springer, Heidelberg(1986)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or A completeness theorem for protocols with honest majority. In: Aho,
A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pp. 218–229. ACM (1987)

[Gol01] Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press (2001)

[GR17] Gur, T., Rothblum, R.D.: A hierarchy theorem for interactive proofs of prox-
imity. In: Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical Com-
puter Science Conference, ITCS 2017, 9-11 January 2017, Berkeley, CA,
USA, vol. 67 of LIPIcs, pp. 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017)

https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/11818175_30

Rate-1 Zero-Knowledge Proofs from One-Way Functions 349

[GVW02] Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir
via list-recoverable codes (or: parallel repetition of GMW is not zero-
knowledge). In: Khuller, S., Williams, V.V. (eds.) STOC 2021: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
21-25 June 2021, pp. 750–760. ACM (2021)

[HN24] Hirahara, S., Nanashima, M.: One-way functions and zero knowledge (2024)
[HVW23] Hazay, C., Venkitasubramaniam, M., Weiss, M.: Beyond MPC-in-the-head:

black-box constructions of short zero-knowledge proofs. In: Rothblum, G.N.,
Wee, H. (eds.) Theory of Cryptography - 21st International Conference,
TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings,
Part I, vol. 14369 of LNCS, pp. 3–33. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-48615-9 1

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[IP99] Impagliazzo, R. and Paturi, R.: Complexity of k-SAT. In: Proceedings of
the 14th Annual IEEE Conference on Computational Complexity, Atlanta,
Georgia, USA, May 4-6, 1999, pp. 237–240. IEEE Computer Society (1999)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis,
J.A. (eds.) Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pp. 723–
732. ACM (1992)

[KR08] Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70583-3 44

[KRV24] Keret, O., Rothblum, R.D., Vasudevan, P.N.: Doubly-efficient batch veri-
fication in statistical zero-knowledge. IACR Cryptol. ePrint Arch., p. 781
(2024)

[MV24] Micciancio, D., Vaikuntanathan, V.: SoK: learning with errors, circular secu-
rity, and fully homomorphic encryption. In: Tang Q., Teague, V. (eds.)
Public-Key Cryptography - PKC 2024 - 27th IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Sydney, NSW,
Australia, April 15-17, 2024, Proceedings, Part IV, vol. 14604 of LNCS, pp.
291–321. Springer (2024). https://doi.org/10.1007/978-3-031-57728-4 10

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991). https://doi.org/10.1007/BF00196774

[NR22] Nassar, S., Rothblum, R.D.: Succinct interactive oracle proofs: applications
and limitations. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptol-
ogy - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, 15-18 August 2022, Proceedings,
Part I, volume 13507 of LNCS, pp. 504–532. Springer (2022). https://doi.
org/10.1007/978-3-031-15802-5 18

[OW93] Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial
zero-knowledge. In: Second Israel Symposium on Theory of Computing Sys-

https://doi.org/10.1007/978-3-031-48615-9_1
https://doi.org/10.1007/978-3-031-48615-9_1
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-031-57728-4_10
https://doi.org/10.1007/BF00196774
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.1007/978-3-031-15802-5_18

350 N. Athamnah et al.

tems, ISTCS 1993, Natanya, Israel, 7-9 June 1993, Proceedings, pp. 3–17.
IEEE Computer Society (1993)

[Ros12] Rosulek, M.: Must you know the code of f to securely compute f ? In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 87–104.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 7

[RR20] Ron-Zewi, N., Rothblum, R.: Local proofs approaching the witness length.
In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pp.
846–857. IEEE (2020)

[RRR21] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive
proofs for delegating computation. SIAM J. Comput. 50(3), 49–62 (2021)

https://doi.org/10.1007/978-3-642-32009-5_7

Consensus and Messaging

Consensus in the Presence of Overlapping
Faults and Total Omission

Julian Loss1 , Kecheng Shi1,3, and Gilad Stern2(B)

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2 Tel Aviv University, Tel Aviv, Israel

gilad.stern@mail.huji.ac.il
3 Saarland University, Saarbrücken, Germany

Abstract. Understanding the fault tolerance of Byzantine Agreement
protocols is an important question in distributed computing. While the
setting of Byzantine faults has been thoroughly explored in the literature,
the (arguably more realistic) omission fault setting is far less studied. In
this paper, we revisit the recent work of Loss and Stern who gave the
first protocol in the mixed fault model tolerating t Byzantine faults, s
send faults, and r receive faults, when 2t+ r+ s < n and omission faults
do not overlap. We observe that their protocol makes no guarantees
when omission faults can overlap, i.e., when parties can simultaneously
have send and receive faults. We give the first protocol that overcomes
this limitation and tolerates the same number of potentially overlapping
faults. We then study, for the first time, the total omission setting where
all parties can become omission faulty. This setting is motivated by real-
world scenarios where every party may experience connectivity issues
from time to time, yet agreement should still hold for the parties who
manage to output values. We show the first agreement protocol in this
setting with parameters s < n and s+r = n. On the other hand, we prove
that there is no consensus protocol for the total omission setting which
tolerates even a single overlapping omission fault, i.e., where s+r = n+1
and s > 2, or a broadcast protocol for s+ r = n and s > 1 even without
overlapping faults.

1 Introduction

Consensus is a fundamental problem in distributed computing that asks a set of
n parties to agree on a common output. Their task is complicated by a subset of
faulty parties who interfere with the honest parties’ execution of the consensus
protocol by sending incorrect messages or simply crashing. Consensus serves as
a key building block in various applications such as verifiable secret sharing,
MPC, state-machine replication, and more. The overwhelming majority of the
literature considers protocols for the fully malicious (a.k.a. Byzantine) setting,
where nodes can exhibit arbitrary behaviour. These protocols offer a high degree
of security, which may be justified in high-stakes applications such as blockchain
systems or reliable databases. On the other hand, the fault tolerance of such
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 353–382, 2025.
https://doi.org/10.1007/978-3-031-78011-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_12&domain=pdf
http://orcid.org/0000-0002-7979-3810
http://orcid.org/0000-0002-0846-9773
https://doi.org/10.1007/978-3-031-78011-0_12

354 J. Loss et al.

protocols is also inherently limited. Indeed, it is well-known that in the plain
model without setup, consensus can be solved if and only if the number t of
(maliciously) faulty parties satisfies t < n/3. While this can be ameliorated
by relying on cryptographic setup such as digital signatures, it can be shown
that even given these additional tools, consensus can be achieved if and only if
t < n/2. A natural question is therefore whether a higher fault tolerance can be
achieved if the faulty parties’ deviant behaviour is restricted in some manner.
One of the most important types of faults one can consider in this context are
omission faults. Omission faults are parties who run the protocol code honestly,
but for which some of the protocol messages may get lost during sending (send
omission) or during receiving (receive omission). On one hand, omission faults
model a realistic network setting where intermittent failures may occur. On the
other hand, consensus can be solved for any number of omission faults o < n
(assuming a synchronous network). Moreover, under some conditions, it is even
possible to guarantee uniformity, meaning that any omission faulty party that
does output, does so in agreement with honest parties [21,23,29]. In this work, we
significantly advance our understanding of the omission fault setting by showing
the following results:

– We begin by revisiting the recent work of Loss and Stern [19] who consider
a model with mixed types of faults. More precisely, their work gives the
first protocol tolerating (simultaneously) t Byzantine faults, r receive faults
(for whom the adversary can drop arbitrary incoming messages), and s send
faults (for whom the adversary can drop arbitrary outgoing messages), s.t.
2t + r + s < n. We observe that their protocol does not work when faults can
be overlapping, i.e., when a party can become both receive and send faulty at
the same time. To overcome this limitation, we give a novel consensus protocol
which tolerates the same number of faults, but allows to count overlapping
faults twice (i.e., as both send- and receive faulty) in the above formula.

– In the second part of our paper, we study consensus in a setting where every
party can be either send faulty or receive faulty, i.e., r + s ≤ n. This setting
is motivated by the fact that, from time to time, every party may experience
connectivity issues and lose messages. In this case, we would still like to
guarantee that for parties who successfully complete the protocol, their output
satisfies the usual requirements of a consensus protocol. On the positive side,
we give the first protocol in this setting achieving consensus. An interesting
feature of our protocol is that it runs in only O(s) many rounds and achieves
perfect security. On the negative side, we show that there is no broadcast
protocol in this setting when s > 1. Additionally, whenever s > 2 there is
no protocol tolerating even a single overlapping omission fault, i.e., where
s + r = n + 1.

Consensus in the Presence of Overlapping Faults and Total Omission 355

1.1 Our Techniques

We now give a technical overview of our results.

Zombies and Ghosts. Our work builds on the ideas of Zikas, Hauser and
Maurer [29] and of Loss and Stern [19]. Zikas et al. constructed an information
theoretic consensus protocol resilient to t Byzantine corruptions, s send cor-
ruptions and r receive corruptions when n > 3t + r + s. At the base of their
constructions, they utilized the idea of self-detection. When a party s sends a
message m directly to some party p, p might not receive m for two possible
reasons: p might be receive faulty or s might be Byzantine or send faulty (or
both). In order to help party p self-detect as receive faulty in the above scenario,
s instead relays m to p through every other party in the network. If p is not
receive faulty, it receives messages from many other parties containing either m
or a notification that s did not send a message to p. On the other hand, if p is
receive faulty, it may receive only very few messages. In the latter scenario, p can
detect that it is receive faulty. It then becomes a zombie, and stops participating
in the protocol in order to make sure it does not harm the rest of network by
propagating messages that are inconsistent with honest parties’ protocol states.

The work of Loss and Stern generalizes these ideas to the cryptographic
setting, assuming n > 2t + r + s. The novelty of their construction is a means
for send faulty parties to detect themselves, upon which they become ghosts
and stop participating in the protocol. As before, parties in their protocol send
messages to each other through the whole network in order to allow for receive
faulty parties to detect themselves as zombies. However, in their protocol, parties
also reply to the sender, allowing it to learn whether it succeeded in sending its
message or whether it should abort by becoming a ghost. If a sender s receives
very few of these abort messages, it knows that its message was delivered to at
least one non-faulty party p, who will then be able to propagate it to the rest of
the network. These ideas are used in their most basic primitive, a weak multicast
protocol (WMC). In WMC, the sender s either successfully delivers its message
m to at least one non-faulty party or detects itself as send-faulty.

Additional Challenges with Full-Omission Faults. We notice that the
WMC protocol of Loss and Stern (and by extension, all protocols building on
top of it) does not cover the most general type of omission fault which cause a
party to become simultaneously send- and receive faulty, i.e., full-omission faulty.
Specifically, when the sender s in their WMC protocol is full-omission faulty, it
may not receive the abort messages that non-faulty parties send back to s when
they did not receive its message. This prevents s from detecting itself as faulty
and becoming a ghost. Dealing with this issue turns out to be very subtle. We
devise a novel WMC protocol that leverages additional communication among
the receivers, so as to help the sender s detect itself as faulty.

In more detail, parties that do not receive messages from s inform each other
of this fact in the form of “abort” messages. Now any party p that is exclusively
send faulty must have received all abort messages from all non-faulty parties.
In the last step of our protocol parties then forward a list of all of the abort
messages they received back to s. This allows us to modify the conditions under
which s turns itself a ghost compared to the protocol of Loss and Stern. Namely,

356 J. Loss et al.

our protocol counts the total number of abort messages received directly or
indirectly through the above mechanism. In this manner, we force the adversary
into the following dilemma. Either, it drops a large number of messages to s
in the last step of the protocol. This causes the sender to infer that it must be
receive faulty and turn itself a zombie. Alternatively, the adversary delivers the
collection of abort messages assembled by at least one party that received all
abort messages from all non-faulty parties back to s. This, on the other hand,
will make s detect itself as send-faulty and turn itself a ghost. In summary,
our WMC allows even a full-omission faulty sender to either send its message
to at least one non-faulty party, or turn detect itself as send or receive faulty
by the end of the protocol. Using our new protocol, it is possible to construct
an undead graded multicast protocol, as defined in Loss and Stern’s work [19].
The construction is provided Appendix C and is very similar to the construction
in [19], with very slight changes to the validity condition. The undead graded
multicast protocol can be used as a drop in replacement for calls to GMC in the
protocols of Loss and Stern. In this manner, we can easily carry over the their
consensus protocol to the full-omission setting.

Total Omission Setting. In the second technical part of our work, we initiate
the study of a setting in which all parties could be omission faulty. This is a very
realistic setting that is based on the observation that in practice, it may be very
difficult to guarantee permanent connectivity of any of the individual protocol
participants. In this case, we would still like a protocol that ensures uniformity,
i.e., that parties who output are in consensus with each other. We design a
uniform consensus protocol resilient to any s send faults and r receive faults s.t.
s + r = n and s < n. For completeness, we also show that no such protocol
exists if s = n. This slighlty strengthens a previous result of Hadzilacos [15]who
showed that no broadcast protocol exists when s = n. We remark that one could
imagine a setting where s + r > n without overlapping faults, in which the
adversary has the flexibility to choose the actual number of corrupted parties of
each kind. We do not address this setting in our paper, but believe that this is
a very interesting direction for future work.

An interesting question that arises as a consequence of studying the total
omission setting is how it relates to the work of Eldefrawy et al. [11]. Their work
includes a lower bound showing that n > 2t + r + s is a necessary condition for
consensus. Namely, their bound is stated in a model which allows the adversary
to forcibly “zombify” receive faulty parties at the onset of the protocol, upon
which they cease any subsequent participation.

This severely limits the generality of protocols covered by this lower bound,
since some protocols might have parties send messages even after detecting their
own faults. In particular, our protocol for the total omission setting heavily relies
on parties who have detected themselves as zombies to continue assisting in the
rest of the protocol.

Impossibility Results. We complement our study of the total omission setting
by proving two impossibility results. This helps us fill in some of the gaps in our
current understanding of the task of consensus.

Consensus in the Presence of Overlapping Faults and Total Omission 357

– Although we construct a uniform consensus protocol with in the total omis-
sions setting, surprisingly, we show that it is impossible to construct a broad-
cast protocol in this setting whenever s > 1. We briefly illustrate why this is
the case. Our consensus protocol relies heavily on the capability of the receive
faulty parties to distribute their initial inputs to the non-receive faulty pro-
tocol parties. This approach fails completely for a broadcast protocol, since
only the sender has input.

– Our second impossibility result shows that it is generally impossible to con-
struct a uniform consensus protocol if s + r > n and s > 2. This shows our
protocol has the optimal corruption threshold.

1.2 Related Work

The study of consensus protocols, and the related study of broadcast protocols,
has a long history [9,12,16,20]. Early results dealt with constructing protocols
for systems with a single type of failure. For example, Hadzilacos [15] showed
that broadcast is possible in a system of s send faulty parties if and only if n > s.
Following that, Perry and Toueg [22] shows that broadcast is possible in systems
with o general omission faults if n > o, while not requiring uniformity, i.e., where
omission faulty parties output the correct values. When considering protocols
that do require uniformity of outputs, works by Raynal and Parvédy [21,23]
showed that consensus is possible if and only if n > 2o. Dolev and Strong [9]
showed that a similar result holds for Byzantine authenticated broadcast (i.e.
with a PKI setup) can be solved in the presence of t Byzantine faults if n > t+1.
On the other hand, Lamport, Shostak and Pease [16] showed that Byzantine
consensus can be solved if n > 3t in the unauthenticated setting and n > 2t in
the authenticated setting.

Later work also dealt with constructing such protocols in networks of mixed
faults. Garay and Perry [13] constructed a consensus protocol resilient to t
Byzantine parties and c crash faulty parties that can crash in any point in
time and stop participating in the protocol, assuming that n > 3t + c. Siu, Chin
and Yang [26] strengthened this result and constructed a consensus protocol
resilient to t Byzantine parties and k parties with arbitrary non-malicious faults
if n > 3t + k. Additional more specialized models dealt with t malicious par-
ties, k non-malicious parties and f parties that can act maliciously, but cannot
send different messages to different parties. Protocols such as those of Tham-
bidurai and Park [27] and of Lincoln and Rushby [18] are correct as long as
n > 3t+2f +k. The more recent work of Hauser, Maurer and Zikas [29] showed
that consensus, broadcast and MPC constructions are possible in networks with
t Byzantine parties, s send faulty parties and r receive faulty parties, assum-
ing that n > 3t + r + s. Recently, Konstantinos and Zikas [3] provided a tight
characterization of feasibility for information theoretically secure consensus and
MPC with in networks with Byzantine and full-omission faults in the general
adversary structure.

Using many of these ideas, the recent work of Eldefrawy, Loss and Terner [11]
Abraham, Dolev, Kagan and Stern [1] and Loss and Stern [19] construct mixed-

358 J. Loss et al.

fault protocols in the authenticated setting. Abraham et al. [1] construct an
authenticated consensus protocol if n > 2t + c Eldefrawy et al. construct such a
protocol if n > 2t+2s+ r, or if n > 2t+ r + s and send faulty parties can either
successfully send all messages in a given round, or no messages. The followup
work by Loss et al. removes this requirement on send faulty parties and achieves
consensus if n > 2t + r + s. One approach to achieving high resilience is to
limit the adversary’s actions, and only allow it to act Byzantine in certain parts
of the code. This means that in some sense, faulty parties have mixed faults:
Byzantine in some code sections, but only non-malicious in others. For exam-
ple, the works of [5,7,8,17,28] use trusted execution environments (or similar
abstractions) to enforce such behaviour from Byzantine parties. Alternatively,
some protocols only allow specific parties to be Byzantine [25] or only allow one
type of corruption at a time [2].

Similar results have been shown in partially synchronous systems that start
as asynchronous networks, and eventually stabilize and become synchronous.
For example, the Scrooge [24] protocol is secure if n > 4t + 2c. On the other
hand, theUpright [6] and SBFT [14] protocols are secure as long if n > 3t + 2k
and n > 3t + 2c respectively. Note that like results in synchronous networks,
the latter two protocols also “naturally” combine the resilience of protocols for
a single faulty type. That is, we know that n > 3t or n > 2k is required for
partially synchronous protocols when allowing only Byzantine or non-malicious
faults respectively [10].

2 Models, Definitions and Notations

2.1 Network Model

Throughout this work we deal with a fully-connected network of n parties. This
means that each pair of parties has a direct channel between them, allowing
parties to send messages to each other. The channels are authenticated, mean-
ing that when parties receive a message they know the identity of the sender.
In addition, when dealing with Byzantine corruptions, we assume a PKI setup,
which allows parties to sign messages and verify each other’s messages. We follow
the standard approach of modelling the signature scheme as perfectly unforge-
able. When replacing these signatures with existentially unforgeable signatures,
the guarantees of the protocols hold when considering computationally bounded
adversaries. We use the notation 〈m〉i to mean the message m, accompanied
by i’s signature on the message. The network is assumed to be synchronous.
This means that the parties have access to synchronized clocks and run protocol
proceeds in well-defined rounds. Parties can send messages in the beginning of
a round, and all message that aren’t dropped by the adversary (see below) are
delivered at the end of the round. Messages can be delivered within each round in
whichever order the adversary chooses. Parties can then choose which messages
to send in a certain round based on the messages received from the previous
round. Our protocols are described in steps of fixed duration (i.e., number of
rounds) that are executed in lock-step one after another.

Consensus in the Presence of Overlapping Faults and Total Omission 359

2.2 Adversary Model

Our work aims to design protocols with mixed-fault networks. There are four
types of corruption in our work, and we will mention which types are included
at the beginning of each section.

– Send-Omission Faults. Send faulty parties follow the protocol description.
For any message sent from a send faulty party, the adversary can choose to
drop that message. We assume there are at most s send omission faults.

– Receive-Omission Faults. Receive faulty parties follow the protocol
description. For any message sent to a receive faulty party, the adversary
can choose to drop that message. We assume that there are at most r send
omission faults.

– Full-Omission Faults. Full omission faulty parties follow the protocol
description and are both send faulty and receive faulty. This means that
the adversary can drop any message sent by or to full omission faulty parties.

– Byzantine/Malicious Faults. Byzantine/Malicious parties can deviate
arbitrarily from the protocol. We assume there are at most t Byzantine par-
ties.

In this work we consider a strongly adaptive adversary that can corrupt
parties at any time throughout the protocol, and can drop messages to receive
faulty parties, drop messages to send faulty parties and replace messages sent
by Byzantine parties in the same round they are corrupted. When corrupting a
party, the adversary learns its entire state. On the other hand, the lower bounds
of this paper work for a static adversary that chooses which parties to corrupt
in the beginning of the protocol.

2.3 Definitions

In this section we define the tasks to be solved in the paper. We follow the ideas
and notation presented by Loss et al. [19] in the definitions. In their protocols,
parties always receive two flags z, g as inputs, in addition to any inputs they
receive in the protocol. In all of the protocols, parties may not receive ⊥ as an
input, and indeed never receive that input in our protocols. One could allow such
inputs by having distinct ⊥ values for each protocol. The flags z and g indicate
whether the party is already a zombie or a ghost respectively in the beginning
of the protocol, and parties store these values in the beginning of each protocol.
This allows parties to exclude themselves from protocols if they already know
they are zombies or ghosts. A party that is not a zombie or a ghost is said to be
alive. Parties then output a value x along with two flags z, g. The outputs z and
g indicate whether the party is a zombie or a ghost respectively by the end of the
protocol. When dealing with mixed faults with the presence of Byzantine faults
we keep this notation in order to be consistent with previous work. However, in
protocols for the total omission setting, parties might be required to participate
even if they detect their own faults. In addition, in this setting our protocols do
not allow for parties to detect their send faults and become ghosts. This means

360 J. Loss et al.

that inputting the flags Z,G and outputting the flag g are not meaningful in
this setting, and for simplicity we remove these flags. Standard definitions of the
tasks are also provided in Appendix A. The standard definitions are the same as
the undead versions, except parties do not become zombies or ghosts. The lower
bounds in this paper hold for the standard definitions, which also imply lower
bounds for the undead versions.

Undead Weak Multicast. An undead weak multicast protocol, defined in
the work of Loss et al. [19], allows parties to attempt to send their values to
all other parties in the presence of Byzantine, send and receive faults. This is
done in such a way that receive faulty parties can detect that they did not
receive the message, and send faulty parties can detect that no non-faulty party
received the message. In their work, Loss et al., construct an undead uniform
consensus protocol in such a network by first constructing an undead multicast
protocol. They then construct a stack of protocols culminating in a consensus
protocol. In this work we adapt the undead weak multicast protocol and only
very slightly adapt the undead graded multicast protocol. Therefore, an undead
weak multicast definition is provided below, and the definition and adaptation
of the undead graded multicast protocol is provided in Appendix C.

Definition 1. Let Π be a protocol executed by parties 1, . . . , n, with a designated
sender i∗ starting with an input m �= ⊥. In addition, every party i has two values
zi, gi ∈ {True,False} as input. Every party outputs a triplet (x, z, g) such that x
is either a possible message or ⊥, and z, g are boolean values.

– Validity. If i∗ is non-faulty or receive faulty and is alive in the beginning
of the protocol, every non-Byzantine party j either outputs (x, z, g) such that
x = m, or such that z = True. In addition, if i∗ is send faulty, no non-
Byzantine party outputs (x, z, g) such that x /∈ {m,⊥}.

– Detection. If i∗ is send faulty and it is alive at the end of the protocol, at
least one non-faulty party output (x, z, g) such that x = m.

– Termination. All non-Byzantine parties complete the protocol and output a
value.

– No Living Undead. If a non-Byzantine party j outputs (x, z, g) such that
z = True (resp. g = True), then it is receive faulty (resp. send faulty).

If Π has the Validity, Detection, Termination and No Living Undead properties
whenever at most t parties are Byzantine, s parties are send faulty and r par-
ties are receive faulty, we say that it is a (t, s, r)-secure undead weak multicast
protocol.

Very Weak Multicast. In order to construct a consensus protocol in the total
omission setting, we start by constructing a rudimentary multicast primitive
which we call a very weak multicast protocol. This protocol has a designated
sender that attempts to multicast its message. Informally, the multicast must
succeed if the sender is receive faulty, or if it is send faulty and there are fewer

Consensus in the Presence of Overlapping Faults and Total Omission 361

than r receive faulty parties. Parties that do not receive the message due to
their own receive faults must become zombies. Formally, the protocol is defined
as follows:

Definition 2. Let Π be a protocol executed by parties 1, . . . , n, where i∗ is the
designated sender starting with an input m �= ⊥. Every party j ∈ [n] outputs
(x,Zj) at the end of the protocol, where x is either a possible message or ⊥, Zj

is a boolean value.

– Validity. Every party outputs (x,Z) such that x ∈ {m,⊥}. In addition, if i∗

is non-faulty and there are at most r − 1 receive faulty parties or if i∗ is a
receive faulty party, then every party j either outputs (m,False), or outputs
(⊥,True) by the end of the protocol.

– Termination. All parties terminate and output a value at the end of the
protocol.

– No Living Undead. If some party j outputs (x,True), then j is receive
faulty.

If Π has the Validity, Termination and No Living Undead properties whenever
at most t parties are Byzantine, s parties are send faulty and r parties are receive
faulty, we say that it is a (t, s, r)-secure very weak multicast protocol.

Undead Uniform Consensus. In a uniform consensus protocol, all parties
have an input and they are required to output the same value, or possibly out-
put ⊥ if they are receive faulty. Importantly, in “normal” consensus protocols,
the output of receive faulty parties is not required to be consistent with other
parties’ outputs. In a uniform consensus protocol, even faulty parties must out-
put the same value as all other values, unless they can detect their own faults
and output ⊥. Similarly to above, parties also output a boolean flag z, indicating
whether they detected their own receive faults and became zombies. For a defi-
nition of a uniform consensus protocol without the notion of undead parties, see
Appendix A.

Definition 3. Let Π be a protocol executed by parties 1, . . . , n, where each party
j ∈ [n] starts with input mj �= ⊥. Every party j outputs (xj , Zj) at the end of
the protocol.

– Validity. If each party j starts with the same value mj = m, all parties
output (m,False) or (⊥,True) at the end of the protocol.

– Consistency. All non-faulty parties and send faulty parties output xj = m
for the same value m at the end of the protocol. In addition, every receive
faulty party either outputs m or ⊥.

– Termination. Each party j terminates and outputs (xj , Zj) at the end of
the protocol.

– No Living Undead. If Zj = True at the end of the protocol, j must be a
receive faulty.

362 J. Loss et al.

If Π has the Validity, Consistency, Termination and No Living Undead prop-
erties whenever at most t parties are Byzantine, s parties are send faulty and
r parties are receive faulty, we say that it is a (t, s, r)-secure undead uniform
consensus protocol.

Broadcast. The task of broadcast is highly related to the task of consensus, and
has been shown to be equivalent in some network settings [4,15]. In this task,
one designated sender has an input m and all parties output the same value x
in the end of the protocol. If the sender does not exhibit faults that prevent it
from sending its input (i.e. send or Byzantine faults), all parties should output
x = m as well. For a formal definition see Appendix A.

3 Byzantine Agreement with Overlapping Omission
Faults

This section deals with the construction of a Byzantine Agreement protocol
in the presence of t Byzantine faults, r receive faults and s send faults when
n > 2t + r + s and the faults can overlap. The lower bound of [11] shows that
this is the optimal resilience for protocols in which the adversary is allowed
to forcibly zombify receive-faulty parties, causing them to stop communicating.
While in this section we construct a protocol achieving this resilience, showing
a tight lower bound in the general case or a tighter upper bound for protocols
in which the adversary cannot force receive-faulty parties to remain silent is
an interesting open problem. The work of [19] constructs a protocol with such
resilience when disallowing overlapping omission faults. In this section we adapt
their protocol to the overlapping fault setting. Their protocol is constructed
from a stack of four protocols: undead weak multicast, undead graded multicast,
undead weak consensus and finally undead consensus.

The most basic protocol in the stack, the undead weak multicast protocol,
heavily relies on send faulty parties receiving an indication that others did not
hear their message. This allows them to become ghosts and stop participating in
the protocol. This mechanism does not work when these parties can also exhibit
receive faults. In order to remedy this, parties also send these indications to
each other, which are then forwarded back to the faulty sender. If a sender
receives enough of these messages it will be able to detect its own send faults
and become a ghost. On the other hand, if a party receives too few of these
forwarded messages (or messages indicating that no error occurred), they will
detect their receive faults and become zombies instead. The protocol is presented
in Fig. 1.

The rest of the stack is nearly identical to the original construction. Very
slight adaptations to the undead graded multicast definition and protocol are
presented in Appendix C. In the original construction, if a party is receive faulty,
it must succeed in sending its message. This property is actually not needed for
the rest of the constructions and the proofs, as they only rely on fully non-faulty
parties succeeding in sending their messages. In that sense, that property is “too

Consensus in the Presence of Overlapping Faults and Total Omission 363

strong” and is used in the original work only because it is possible to achieve.
Since the rest of the constructions and proofs remain exactly the same in the
mixed-fault setting, Appendix C only contains adaptations to the undead graded
multicast protocol.

Fig. 1. An undead weak multicast protocol

Proofs of the following two claims are provided in Appendix B.1.

Lemma 1. Assume at most t parties are Byzantine, s parties are send faulty
and r parties are receive faulty, where 2t + r + s < n. No non-Byzantine party j
will send 〈Abort〉j in step 3 of ΠWMC unless the designated sender has Byzantine
or send faults.

Theorem 1. Protocol ΠWMC is a (t, s, r)-secure undead weak multicast protocol
resilient to overlapping faults if n > 2t + s + r.

364 J. Loss et al.

4 Undead Uniform Consensus in the Total Omission
Setting

This section deals with constructing a uniform consensus protocol in the total
omission setting. That is, we construct an (s, r)-secure uniform consensus pro-
tocol that is resilient to s send faults and r receive faults when s + r = n. Con-
structing this protocol fills in a gap left by the lower bound presented in [11].
Their lower bound showed that in a setting where Byzantine failures are also
allowed, n > 2t + r + s must hold in order to solve the task. Setting t = 0,
this would seem to imply that n > r + s is required in the total omission set-
ting. However, their lower bound assumes that the adversary is also allowed to
actively “zombify” receive faulty parties throughout the protocol. This means
that it can force them to stop participating in the protocol. While in some pro-
tocols [19,29] parties do stop participating if they detect their own faults, this
assumption limits the generality of the result. In the protocol presented in this
section, parties do detect their own faults in order to be able to output ⊥ when
required, but do not necessarily stop participating in the protocol. In fact, since
this model does not consider mixed faults, a party can act upon finding out that
it is receive faulty. By that we mean that such a party knows that its message
will arrive at all parties that aren’t receive faulty, and thus it can use that power
to help push forward consensus. This work extends ideas of [22,23] to the total
omission model, while using the syntax of [19,29] regarding zombification.

4.1 Very Weak Multicast

We first construct an (s, r)-secure very weak multicast protocol in the syn-
chronous setting resilient to s send faults and r receive faults, where s < n
and s + r = n. In the protocol, the sender sends its message to all parties. Par-
ties then forward the received message, or ⊥ if no message was received. Finally,
every party that received a small number of messages (fewer than n−s) becomes
a zombie. Every other party outputs the message received or forwarded from i∗ if
such a message exists, and ⊥ otherwise. This protocol is described fully in Fig. 2.

A proof of the following claim is provided in Appendix B.2.

Lemma 2. Protocol ΠVWMC is an (s, r)-secure very weak multicast protocol for
any s, r such that s < n, s + r ≤ n without overlapping faults.

Note that generally when we say parties send messages to all parties, for simplic-
ity we also assume that they send messages to themselves. Parties (including i∗)
can choose not to send messages to themselves and slightly adjust the counting
in order to account for one fewer message being received.

4.2 Optimal Uniform Consensus

Now we construct an (s, r)-secure undead uniform consensus protocol ΠTOC in
the total omission setting, i.e. with n = s + r. The protocol proceeds in s +

Consensus in the Presence of Overlapping Faults and Total Omission 365

Fig. 2. A Very Weak Multicast Protocol

1 rounds. Each round has a designated sender, which is rotated in a round
robin fashion. Each sender invokes the very weak multicast protocol with its
current value and zombie flags one by one. Parties simply adopt any non-⊥
value they receive and continue propagating it in the next rounds. Intuitively,
having s + 1 such rounds guarantees that at least one of the rounds has a leader
that is not send faulty. Every party will either receive that leader’s message
or become a zombie. Considering the latest such leader, all following leaders are
only send faulty, and thus receive its message. This means that they will continue
propagating its message in the following rounds, and thus its message will be all
parties’ output from the protocol. The protocol is provided in Fig. 3.

Fig. 3. A consensus protocol for s + r ≤ n.

A proof of the following theorem is provided in Appendix B.3.

366 J. Loss et al.

Theorem 2. Protocol ΠTOC is an (s, r)-secure undead uniform consensus pro-
tocol for any s, r such that s < n, s + r ≤ n without overlapping faults.

5 Lower Bounds

This section provide several new lower bounds that show the optimality of the
presented uniform consensus protocol. We also show the impossibility of broad-
cast in the total omission conditions, despite being able to construct a uniform
consensus protocol in this setting.

5.1 Total Send Corruption

The protocol in Sect. 4 works when s + r ≤ n, as long as s < n. We start by
showing that s < n is a necessary condition in order to construct a uniform
consensus protocol. Intuitively, we partition the parties into 2 groups and only
allow parties to communicate within the groups. If one group receives one input
and the other receives another, they would be forced to output different values
and the protocol would not remain consistent. A proof of the following theorem
is provided in Appendix D.1

Theorem 3. There does not exist an (n, 0)-secure uniform consensus protocol.

5.2 Total Omission Broadcast

One might expect that since uniform consensus can be solved in the total omis-
sion setting, broadcast would be solvable as well. Note that the uniform consen-
sus construction in this paper uses the fact the receive faulty parties can push
their inputs to all other parties, which can then be used to achieve consensus.
However, in a broadcast protocol only one party’s input is taken into considera-
tion. If that party is send faulty, it will not be able to successfully push its value
to all other parties, making this approach fail.

We formalize this by constructing a broadcast lower bound in the total omis-
sion setting. In this lower bound, we have the designated sender i∗ communicate
with a set A of s − 1 parties freely. The rest of the parties, denoted by a set
B, do not hear anything from i∗ or from A, either due to them being receive
faulty, or due to the rest being send faulty. Parties in B must output some value,
even without hearing anything from i∗, while the rest of the parties hear all sent
messages and must be consistent with i∗’s input because the parties in B might
simply be receive faulty. Since this can be made to take place even when parties
in B are non faulty the rest are send faulty, we immediately break the consis-
tency of the protocol. A proof of the following theorem is provided in Appendix
D.2.

Theorem 4. There is no (s, r)-secure broadcast protocol resilient to s send
faults and r receive faults for any s, r such that s ≥ 1, s + r = n without over-
lapping faults.

Consensus in the Presence of Overlapping Faults and Total Omission 367

5.3 Consensus with Overlapping Faults

In this section, we prove that the threshold s + r ≤ n is necessary to achieve
uniform consensus as long as s > 2. This shows the optimal corruption tolerance
of our uniform consensus protocol. The basic idea in the proof of Theorem 4
relies on the fact that hearing one party’s messages (in that proof, the sender)
is not reliable, because it could be send faulty and thus only a subset of the
parties hear those messages. In the following proof, we use this idea to show
that one could “switch” one party’s input without changing the outputs of all
parties. After switching all of the parties’ inputs, we finally find either a validity
violation or a consistency violation.

Below we prove the lower bound for the minimal case in which s > 2 and
s �= n, i.e. n = 4, s = 3 and r = 2. A proof of the general case is provided
in Appendix D.3. In the lower bound for the minimal case, we have 4 parties,
R1, R2, S1, S2. In all of the executions S1, S2 are send faulty and R1, R2 are
receive faulty. R1 and R2 sometimes also exhibit overlapping send faults. In
addition, R1, R2 hear nothing in all executions, and S1, S2 only hear messages
from R1, R2, but not necessarily all of these message. We start off with all four
parties having the input 1, and use the previous intuition to show that one could
switch the inputs of R1, R2 gradually by making them send faulty as well. This is
done in a series of executions, with each pair of consecutive executions having at
least one party with the same view, forcing the same value to be output. Finally,
after switching the inputs of R1, R2, it is easy to switch the two final inputs and
reach either a consistency violation or a validity violation. Figure 4 illustrates the
executions used in the lower bound. The proof in Appendix D.3 uses the same
strategy, simply switching all receive faulty parties’ inputs one-by-one, and then
switching the send faulty parties’ inputs.

Theorem 5. There is no (s, r)-secure uniform consensus protocol resilient to
overlapping faults for any s, r s.t. s > 2 and s + r > n.

Proof. We prove the lower bound holds for n = 4, s = 3, r = 2, and a proof for
the general case is provided in Appendix D.3. Note that when r < 2, all parties
can be send faulty, which was already proven impossible in Theorem 3. Assume
there are four parties, R1, R2, S1 and S2. R1 and R2 are receive faulty in all
executions, and have overlapping send faults in some of the executions. S1 and
S2 are send faulty in all executions. The adversary drops all messages sent to
R1, R2 and all messages sent from S1, S2 in all executions. This means that in
all executions R1 and R2 hear no messages, and S1, S2 hear only messages from
R1 and R2, but might not hear some in executions where they have overlapping
send faults as well. In all of the following descriptions, parties S1, S2 hear all
messages sent by R1, R2, unless explicitly stated otherwise.

1. In the first execution, all parties start with input 1 and no parties has over-
lapping faults.

2. In the second execution, R1 has overlapping send faults. All parties start with
input 1. The adversary drops all message sent from R1 to S2, but delivers
messages from R1 to S1.

368 J. Loss et al.

Fig. 4. Lower Bound Executions. A node with the text P, b indicates that party P has
input b. Parties named Ri are receive faulty, parties named Si are send faulty, and
parties named O have overlapping faults. Arrows indicate messages are successfully
sent, dashed arrows indicate that message are dropped. Parties whose names are colored
red have views indistinguishable from the previous execution. (Color figure online)

3. In the third execution, R1 has overlapping send faults. R1 starts with input 0
and all other parties have the input 1. The adversary drops all messages sent
from R1 to S2, but delivers messages from R1 to S1.

4. In the forth execution, R1 starts with input 0 and all other parties have input
1. All messages from R1, R2 are delivered to S1, S2.

5. In the fifth execution, R2 has overlapping send faults. All messages sent from
R2 to S2 are dropped, but messages from R2 to S1 are delivered. R1 starts
with input 0, and all other parties start with input 1.

6. In the sixth execution, R2 has overlapping send faults. All messages sent from
R2 are dropped by the adversary. R1 and R2 start with input 0, while S1 and
S2 starts with input 1.

7. In the seventh execution, R2 has overlapping send faults. All messages sent
from R2 are dropped by the adversary. S2 starts with input 1 and all other
parties start with input 0.

8. In the eighth execution, R2 has overlapping send faults. All messages sent
from R2 are dropped by the adversary. All parties start with input 0.

By the validity requirements, parties S1 and S2 must output 1 in execution 1.
S1 has indistinguishable views in executions 1 and 2, so it outputs 1 in execution
2. Since the protocol is consistent, S2 does so as well. On the other hand, S2 has
indistinguishable views in executions 2 and 3 since it hears nothing from R1 in

Consensus in the Presence of Overlapping Faults and Total Omission 369

both. Therefore, it outputs 1 in execution 3 and therefore S1 does so too. S1’s
view is identical in executions 3 and 4 and thus it outputs 1 in execution 4, and S2

outputs 1 as well due to consistency. Executions 4 and 5 are indistinguishable
from S1’s point of view, so it outputs 1 in execution 5. From consistency, S2

outputs 1 too in execution 5. S2 has identical views in executions 5 and 6, so
it must output 1, and so does S1 from consistency. S2’s views in execution 7 is
indistinguishable from its view in execution 6, so it outputs 1, and so does S1.
Finally, S1’s views in executions 7 and 8 are indistinguishable, and thus it outputs
1 in both. However, all parties have the input 0 in execution 8. This means that
from validity, S1 must output 0 in execution 8, reaching a contradiction.

Note 1. Execution 4 and 6 can be removed from the proof, but are kept in the
proof in order to have a small number of changes between consecutive executions.

Acknowledgements. Julian Loss was supported by the European Union, ERC-2023-
STG, Project ID: 101116713. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union. Neither the
European Union nor the granting authority can be held responsible for them.

Gilad Stern was Supported in part by ISF 2338/23, AFOSR Award FA9550-23-
1-0387, AFOSR Award FA9550-23-1-0312, and an Algorand Foundation grant. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States
Government, AFOSR or the Algorand Foundation.

The authors would like to express their sincere gratitude to the anonymous review-
ers for their valuable feedback and constructive comments.

A Standard Task Definitions

A.1 Uniform Consensus

Definition 4. Let Π be a protocol executed by parties 1, . . . , n, where each party
j ∈ [n] starts with input mj �= ⊥. Every party j outputs xj at the end of the
protocol.

– Validity. If each party j starts with the same value mj = m, all parties that
are not receive faulty output m, and receive faulty parties output m or ⊥ at
the end of the protocol.

– Consistency. All non-faulty parties and send faulty parties output xj = m
for the same value m at the end of the protocol. In addition, every receive
faulty party either outputs m or ⊥.

– Termination. Each party j terminates and outputs xj at the end of the
protocol.

If Π has the Validity, Consistency and Termination properties whenever at most
s parties are send faulty and r parties are receive faulty, we say that it is an
(s, r)-secure uniform consensus protocol.

370 J. Loss et al.

A.2 Broadcast

Definition 5. Let Π be a protocol executed by parties 1, . . . , n, where i∗ is the
designated sender starting with an input m �= ⊥. Every party j outputs xj at the
end of the protocol.

– Validity. If the sender is non-faulty or receive faulty, every party that isn’t
receive faulty outputs m and receive faulty parties output m or ⊥ at the end
of the protocol.

– Consistency. Every non-faulty or send faulty party j outputs xj = v for the
same value v ∈ {m,⊥} at the end of the protocol. In addition, every receive
faulty party outputs xj = v or xj = ⊥.

– Termination. Each party j terminates and outputs xj at the end of the
protocol.

If Π has the Validity, Consistency and Termination properties whenever at most
s parties are send faulty and r parties are receive faulty, we say that it is an
(s, r)-secure broadcast protocol.

B Proofs of Protocols

B.1 Proofs for Undead Weak Multicast

Lemma 1. Assume at most t parties are Byzantine, s parties are send faulty
and r parties are receive faulty, where 2t+ r + s < n. No non-Byzantine party j
will send 〈Abort〉j in step 3 of ΠWMC unless the designated sender has Byzantine
or send faults.

Proof. Assume there is a non-Byzantine party j that sends 〈Abort〉j . It must
have received 〈⊥〉 from at least n− t−s ≥ t+r+1 different parties, and at least
one of those messages is from a party without receive omission or Byzantine
faults. That party would have received the message if the designated sender is
neither send faulty nor Byzantine.

Theorem 1. Protocol ΠWMC is a (t, s, r)-secure undead weak multicast protocol
resilient to overlapping faults if n > 2t + s + r.

Proof. Validity. We will start by showing the first part of the property: if i∗

is non-faulty or is receive faulty and alive in the beginning of the protocol, all
non-Byzantine parties either output m or become zombies. If that is the case, i∗

sends 〈m〉i∗ to every party and all non-faulty parties receive it and forward it.
Since i∗ is non-Byzantine, it only sends one verifying signature and thus every
party that isn’t Byzantine either outputs m or ⊥. Furthermore, every party that
is neither receive faulty nor Byzantine, receives i∗’s message and outputs m. It
is only left to show that receive faulty parties output (x, z, g) such that x = m or
z = True. If a receive-faulty party j sets Zj = True then it outputs z = Zj = True
and we are done. If that is not the case, then it receives messages from at least

Consensus in the Presence of Overlapping Faults and Total Omission 371

n − t − s ≥ 2t + s + r + 1 − t − s = t + r + 1 different parties. Since at most
t + r parties are either Byzantine or receive-faulty, at least one of the messages
j received was from a party that is neither Byzantine nor receive faulty. Those
parties receive the message m from i∗ and forward it, and thus every j �= i∗ that
hasn’t become a zombie, outputs m. In addition, if Zi∗ �= True by the end of the
protocol, it outputs (m,Zi∗ , Gi∗) as well.

For the second part of the property, we will assume that i∗ is send faulty.
Party i∗ only signs the message m and thus no party receives another signed
message from i∗. This means that every non-Byzantine party either outputs m
or ⊥.

Detection. If Zi∗ = False and Gi∗ = False at the end of the protocol, i∗ receives
messages from at least n−t−s parties in step 4 with and receives Abort messages
from at most t parties. Since n−t−s ≥ t+r+1, i∗ received the report sent by at
least one party that is neither Byzantine nor receive faulty. This party heard all
Abort messages sent by all non-faulty parties. In other words, i∗ either directly
or indirectly heard all Abort messages sent by non-faulty parties. Since in total
it received Abort messages from at most t parties, at least one non-faulty party
did not send such a message. This party received i∗’s message and will output
it in the end of the protocol.

Termination. All parties terminate after exactly 4 rounds.

No Living Undead. In the end of the protocol, every party j outputs
(mj , Zj , Gj). This means that we need to argue that only receive faulty par-
ties set Zj = True and only send faulty parties set Gj = True.

– NLU of the designated sender: If the sender is non-faulty, by Lemma 1, at
most t parties p send 〈Abort〉p messages, and thus i∗ does not set Gi∗ = True.
In addition, it will receive at least n − t − s many messages in the step 4, so
it won’t set Zi∗ = True either.

– NLU of all other parties: Each non-receive-faulty party j must receive at least
n − t − s messages in the step 3, so they won’t set Zj = True and they don’t
set Gj = True anywhere in the protocol.

B.2 Proofs for Very Weak Multicast

Lemma 2. Protocol ΠVWMC is an (s, r)-secure very weak multicast protocol for
any s, r such that s < n, s + r ≤ n without overlapping faults.

Proof. Validity. For the first part of the property, note that parties only output
a value other than ⊥ if they received i∗’s message containing m, or another
party’s message forwarding m. In either case, parties only send i∗’s input. For
the second part of the property, we start by considering a non-faulty sender i∗

and assuming that there are fewer than r receive faulty parties. If some party
j output (x,Zj) with Zj = False, it must have received messages from at least
n − s > r − 1 many parties. By assumption, at most r − 1 parties are receive
faulty, so at least one of the messages comes was received from a party that is
not receive faulty. Those receive i∗’s message in round 1 and forward it, and thus
in both cases j receives the sender’s input, sets mj = m and outputs this value.

372 J. Loss et al.

Now assume the sender is receive faulty. If some party j output (x,Zj) with
Zj = False, it must have received messages from at least n− s ≥ r many parties.
If it received messages from all receive faulty parties, by the non-overlapping
assumption, it must have received one from i∗ as well and set mj = m. Otherwise,
it received at least one message from a send-faulty party. That party does not
exhibit any receive faults, so it received m from i∗ and forwarded that message
to j. In either case j sets mj = m and outputs that value.

Termination. The protocol ΠVWMC terminates in exactly 2 rounds.

No Living Undead. Assume that some party j outputs Zj = True. It only sets
Zj to True if it receives messages from a total of less than n − s many different
parties in Steps 2 and 3 of ΠVWMC. This means that j did not receive a message
from at least one party that is not send faulty. This implies that j must be a
receive faulty party, as required.

B.3 Proofs for Total Omission Consensus

Theorem 2. Protocol ΠTOC is an (s, r)-secure undead uniform consensus pro-
tocol for any s, r such that s < n, s + r ≤ n without overlapping faults.

Proof. Validity. Assume all parties start with the same input m. This means
that they all set Ij = m in the beginning of the protocol. We will show that if
all parties have Ij = m in the beginning of a round, this will continue to hold in
the end of the round. Following a simple inductive argument, this means that all
parties have Ij = m in the end of round s + 1, and thus either output (Ij ,False)
if Zj = False or (⊥,True) otherwise. Assume that all parties have Ij = m in the
beginning of round r. This means that the round’s leader sends (m,Zr) in the
ΠVWMC protocol. From the validity property of the protocol, all parties receive
(m′, Z) such that m′ ∈ {m,⊥}. This means that each j either updates Ij to m
if it output m′ = m, or does not update Ij at all otherwise. Therefore all parties
have Ij = m in the end of the round as well.

Consistency. First assume that at least one of the first s + 1 leaders is receive
faulty, and let l be the maximal such party. If that is not the case, then there are
no receive faulty parties among the first s + 1 leaders. Since there are at most s
send faulty parties, at least one of these parties is non-faulty. In addition, if at
least s+1 parties are not receive faulty, then there are at most n−(s+1) ≤ r−1
receive faulty parties. Let l be the nonfaulty leader with the maximal index such
that l ≤ s + 1. In either case, let m′ be the message sent by the leader l. From
the validity property of ΠVWMC, every party j either receives the message m′ and
sets Ij = m′ or sets Zj = True at the end of round l.

We will show that in every subsequent round (if such a round exists), every
party is either receive faulty with Zj = True or has Ij = m′. Note that in both of
the above cases, there are no receive faulty leaders after round l. That is, parties
l + 1, . . . , s + 1 are not receive faulty. First, since parties l + 1, . . . , s + 1 are not
receive faulty, from the Validity and No Living Undead properties of ΠVWMC,

Consensus in the Presence of Overlapping Faults and Total Omission 373

each such j outputs m′,False from the protocol in round l and updates Ij = m′.
Therefore, in the beginning of round l + 1, the leader sends the value Il+1 = m′

in the ΠVWMC protocol and thus from the Validity property, every party either
outputs m′ or ⊥. This means that every party that updates its Ij variable in
round l+1 updates it to m′. Following identical logic, the same holds for rounds
l + 2, . . . , s + 1, and thus parties don’t update Ij to any value other than m′

following round l. Finally, every party that has Zj = True outputs (⊥,True)
from the protocol. Every other party updated Ij = m′ in round l, and possibly
in following rounds as well, and finally output (m′,False).

Termination. The protocol terminates after s+1 rounds and each party j will
output (mj , Zj).

No Living Undead. Parties only set Zj = True in the protocol if they output
(x,True) in one of the invocations of ΠVWMC. From no living undead property of
ΠVWMC, only receive faulty parties do so, as required.

C Undead Graded Multicast

C.1 Definition

An undead graded multicast protocol has a designated sender i∗ with input m.
Every party i also has two flags zi, gi ∈ {True,False} as input indicating whether
it is already a zombie or a ghost when starting the protocol. Every party outputs
a value, as well as grade y ∈ {0, 1, 2}, indicating whether it thinks that the
sender succeeded in propagating its message. If some party thinks that a non
Byzantine sender definitely succeeded in sending its message (outputs y = 2),
then all parties actually received that message or became zombies. The protocol
is formally defined bellow.

Definition 6. Let Π be a protocol executed by parties 1, . . . , n, with a designated
sender i∗ starting with an input m �= ⊥. In addition, every party i has two values
zi, gi ∈ {True,False} as input. Every party outputs a tuple (x, y, z, g) such that x
is either a possible message or ⊥, y ∈ {0, 1, 2} and z, g are boolean values.

– Validity. If i∗ is non-faulty, every non-Byzantine party j outputs (x, y, z, g)
such that either x = m, y = 2, or such that z = True. In addition, if i∗ is
send faulty, no non-Byzantine party outputs (x, y, z, g) such that x /∈ {m,⊥}.

– Detection. If i∗ is send faulty and it is alive at the end of the protocol, every
non-faulty party output (x, y, z, g) such that x = m and y ≥ 1.

– Consistency. If i∗ is non-Byzantine, for every two non-Byzantine par-
ties j, k that output (xj , yj , zj , gj) and (xk, yk, zk, gk) respectively, either
|yj − yk| ≤ 1, or at least one of zj , zk equals True. In addition, either xj = ⊥
and yj = 0, or xj = m.

– Termination. All parties complete the protocol and output a value.
– No Living Undead. If a non-Byzantine party j outputs (x, y, z, g) such that

z = True (resp. g = True), then it is receive faulty (resp. send faulty).

374 J. Loss et al.

If Π has the Validity, Detection, Consistency, Termination and No Living
Undead properties whenever at most t parties are Byzantine, s parties are send
faulty and r parties are receive faulty, we say that it is a (t, s, r)-secure undead
graded multicast protocol.

The only difference from the original definition, provided in [19], is in the
validity property. In the original property, validity was required to hold when i∗

is either receive faulty or non-faulty. This is much harder to achieve if overlapping
faults are allowed. That is because originally, a zombie could send a message and
know that it will arrive even after finding out it is receive faulty. However, a party
with overlapping omission faults might become a zombie instead of becoming
a ghost and thus won’t know whether its future messages will arrive at their
destination. Therefore, in this definition we only require the validity to hold
when the sender is non-faulty. Thankfully this is enough, as the proofs of [19]
only rely on non-faulty parties successfully sending their messages.

C.2 Construction

In the protocol, the sender starts by sending its input to all parties in an undead
weak multicast protocol. Following that, every party that is still alive forwards
the received message in an undead weak multicast protocol as well. If a party
received a message from i∗ in both rounds it knows that it did not become a
ghost, and thus at least one non-faulty party received its message in the first
round. This means that it can output m, 2 and be assured that all other parties
will receive the message from that non-faulty party and be able to output m
with a grade of at least 1, or become zombies (Fig. 5).

C.3 Security Proof

Theorem 6. Protocol ΠGMC is a (t, s, r)-secure undead graded multicast protocol
resilient to overlapping faults if n > 2t + s + r.

Proof. Validity. If i∗ is non-faulty, then from the Validity of the ΠWMC protocol,
every non-Byzantine party j outputs 〈m〉i∗ in the weak multicast instances with
i∗ as sender in both rounds or outputs either Z ′

j = True or Zj,i∗ = True. In the
first case, j outputs m, 2, z, g in the end of the protocol, and in the second it
outputs ⊥, 0,True, g. Note that from the no living undead property of ΠWMC, i∗

has Z ′
i∗ = G′

i∗ = False so it does send 〈m〉i∗ in the second round as well.

Detection. Assume i∗ is send faulty and is alive in the end of the protocol. This
means that it has Zi∗ = Gi∗ = False in the end of the protocol and outputs these
flags. It did not set Zi∗ = True or Gi∗True in the beginning of round 2, so it
output Z ′

i∗ = G′
i∗ = False. From the detection and no living undead properties

of the ΠWMC protocol, some non-faulty party k output 〈m〉i∗ ,False,False from
the first call to ΠWMC. Party j then sent that message in the ΠWMC protocol, and
from the validity and detection properties of the protocol every non-Byzantine
party outputs xj,k, Zj,k, Gj,k such that either xj,k = 〈m〉i∗ or has Zj,k = True.

Consensus in the Presence of Overlapping Faults and Total Omission 375

Fig. 5. An undead graded multicast protocol

If Zj,k, then j sets Zj = True and outputs ⊥, 0,True, Gj . From the no living
undead property, this only takes place if j is receive faulty. On the other hand,
if xj,k = 〈m〉i∗ , then j received m with a valid signature from i∗. Since i∗ only
signs one message, m is the only message j will receive with a valid signature,
and thus j outputs m, y, z, g with y = 1 if it hasn’t done so with y = 2 already.

Consistency. Assume i∗ is not Byzantine and let j, k be two non-Byzantine
parties that output (xj , yj , zj , gj) and (xk, yk, zk, gk) respectively. If either zj =
True or zk = True, then the first part of the property holds. The first part of the
property also holds if neither party outputs a grade of 2, i.e. if yj �= 2 and yk �= 2,
In order to prove the final case, assume w.l.o.g that yj = 2. If that is the case, it
received the same message 〈m′〉i∗ from i∗ in both calls to ΠWMC. Since i∗ is not
Byzantine and from the validity of the ΠWMC protocol, i∗ sent the message m′

in both of these calls. If i∗ is either non-faulty or receive faulty, from the validity
of the ΠWMC protocol, every nonfaulty party received that message in the first
call to ΠWMC. If i∗ is send faulty, from the detection of the protocol, at least
one non-faulty party l receive the message. Following that, l sent the message
in the second round. By assumption, k outputs zk = False. This means that it
output Zk,l = False as well, because otherwise it would have become a zombie
and output zk = True. By validity, this means that it also output xk,l = 〈m′〉i∗ .
Finally, during the output determination, if k doesn’t output (m′, 2, zk, gk), it

376 J. Loss et al.

will reach the second condition and output (m′, 1, zk, zk) instead. For the second
part of the property, if j receives some message 〈m′〉i∗ with a verifying signature
by i∗, it outputs xj = m′. Since i∗ is not Byzantine it only signs its input m,
so xj = m. If j does not receive such a message, then it output ⊥, 0, Zj , Gj , as
required.

Termination. The protocol after exactly two calls to ΠWMC.

No Living Undead. Party j outputs the flags Zj , Gj in the end of the protocol.
It sets Zj = True if Z ′

j = True or Zj,k = True for some k. Similarly, it only sets
Gj = True if G′

j = True or Gj,k = True for some k. The values Z ′
j , G

′
j as well

as Zj,k, Gj,k are the flags output from the ΠWMC protocol. From the no living
undead property of ΠWMC, Z ′

j or Zj,k only equal True if j is receive faulty.
Similarly, G′

j or Gj,k only equal True if j is send faulty, as required.

D Lower Bound Proofs

D.1 Total Send Corruption Uniform Consensus

Theorem 3. There does not exist an (n, 0)-secure uniform consensus protocol.

Proof. Assume there exists an (n, 0)-secure uniform consensus protocol. Let
A,B ⊆ [n] be an arbitrary partition of [n] to non-empty sets. That is A∪B = [n],
A∩B = ∅ and neither A nor B are empty. We build three executions as follows.

1. In the first execution, all parties start with the input 1. The parties in A
are non-faulty and the parties in B are send faulty. The adversary drops all
messages sent from parties in group B to parties in group A. By the validity
requirements, all parties in group A must output 1.

2. In the first execution, all parties start with the input 0. The parties in A
are send faulty and the parties in B are non-faulty. The adversary drops all
messages sent from parties in group A to parties in group B.

3. In the third execution, all parties are send faulty. Parties in A start with
input 1 and parties in group B start with input 0. The adversary drop all
messages sent between parties in group A and in group B, but delivers all
messages within each of the groups.

All parties in group A have indistinguishable views in execution 1 and in execu-
tion 3, and thus must output 1 in both. On the other hand, all parties in group
B have indistinguishable views in execution 2 and execution 3 and thus must
output 0 in both. Parties in execution 3 output different values, and thus the
protocol does not have the consistency property, reaching a contradiction.

D.2 Total Omission Broadcast

Theorem 4. There is no (s, r)-secure broadcast protocol resilient to s send faults
and r receive faults for any s, r such that s ≥ 1, s + r = n without overlapping
faults.

Consensus in the Presence of Overlapping Faults and Total Omission 377

Proof. Assume there exists an (s, r)-secure broadcast protocol for s ≥ 1, s+ r =
n. Let i∗ be the index of the designated sender, and let A,B be an arbitrary
partition of [n] \ {i∗} such that |A| = s − 1 and |B| = r. For example, let A be
the s − 1 minimal indices that are not i∗, and let B = [n] \ (A ∪ {i∗}). In all
of the following executions i∗ and parties in A successfully communicate with
each other and within A, and hear messages sent by parties in B. On the other
hand, parties in B hear nothing from i∗ or from parties in A, but communicate
successfully among themselves. We construct four executions as follows.

1. In the first execution, i∗ has the input 0. Parties in A and i∗ are send faulty,
but parties in B are non faulty. Parties in A and i∗ communicate among
themselves, but due to their send faults all messages to B are dropped. In
addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

2. In the second execution, i∗ has the input 1. Parties in A and i∗ are send
faulty, but parties in B are non faulty. Parties in A and i∗ communicate
among themselves, but due to their send faults all messages to B are dropped.
In addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

3. In the third execution, i∗ has the input 0. Parties in A and i∗ are non-faulty,
but parties in B are receive faulty. Parties in A and i∗ communicate among
themselves, but all messages to B are dropped due to their receive faults.
In addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

4. In the fourth execution, i∗ has the input 1. Parties in A and i∗ are non-faulty,
but parties in B are receive faulty. Parties in A and i∗ communicate among
themselves, but all messages to B are dropped due to their receive faults.
In addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

Note that in the third and fourth executions, i∗ and parties in A are non-faulty.
From validity they must all output 0 and 1 in executions 3 and 4 respectively. In
addition, the view of these parties in executions 1 and 3 are indistinguishable, as
well as their views in executions 2 and 4. This means that they must also output
0 and 1 in executions 1 and 2 respectively. On the other hand, parties in B have
identical views in all 4 executions, and thus act the same in all of them. These
parties are non-faulty in executions 1 and 2 and thus must output consistent
values. If parties in B output a value v �= 01 in all executions, then this leads to
a consistency violation in execution 1. Similarly, if they output a value v �= 1 in
all executions, then this leads to a consistency violation in execution 2.

1 Technically, in probabilistic protocols there might not be only one possible output
in this case. Since this proof deals with perfectly secure protocols, it is enough that
there is a positive probability they output v �= 0.

378 J. Loss et al.

D.3 Generalizing Theorem 5

The technique in Theorem 5 showed that it is possible to take one receive faulty
party and switch its input, but all parties must still output the same value. In
order to prove the general result, one could start with all parties having the input
1, and then switching their inputs one-by-one until all of them have the input 0.
Finally, if the send faulty parties’ messages are all dropped, their inputs can also
be switched without other parties noticing. Finally, we will find that all parties
have the input 0, but output the value 1, which will contradict the validity of
the protocol. A formal proof of the general case of Theorem 5 is provided below.

Theorem 5. There is no (s, r)-secure uniform consensus protocol resilient to
overlapping faults for any s, r s.t. s > 2 and s + r > n.

Proof. Assume there exists an (s, r)-secure uniform consensus protocol resilient
to overlapping faults for some s, r such that s > 2 and s+r > n. For every i ∈ [r]
let Ri = i and for every j ∈ [s] let Sj = r + j. In all of the executions, parties
R1, . . . , Rr will be receive faulty (and one possibly send faulty as well) and parties
S1, . . . , Ss will be send faulty. In all of the executions Parties R1, . . . , Rr will
receive no message due to their receive faults, and the messages sent by S1, . . . , Ss

will be dropped. This means that the Sj parties will hear from every party
Ri, except for possibly those that are also send faulty in particular executions.
Messages sent from every Ri in all executions must be identical since all receive
faulty parties hear nothing in all executions. We will show inductively on i ∈
{0, . . . , r} that in the following conditions all send faulty parties must output 1:

– parties R1, . . . , Rr are receive faulty, parties S1, . . . , Ss are send faulty, and
no party has full omission faults,

– parties R1, . . . , Ri have the input 0 and all other parties have the input 1,
and

– parties R1, . . . , Rr receive no messages and parties S1, . . . , Ss receive all mes-
sages from parties R1, . . . , Rr but no messages from each other.

For i = 0, this immediately holds because all parties have input 1 and thus
the send faulty parties must output 1 due to validity. We assume this is the
case for i < r and will show that this holds for i + 1 as well. We will do so by
constructing 5 executions:

1. R1, . . . , Ri have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and receive no messages, S1, . . . , Ss are send faulty and only
receive messages sent by R1, . . . , Rr.

2. R1, . . . , Ri have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and S1, . . . , Ss are send faulty. Ri+1 also has send omissions,
i.e. it has full omission faults. R1, . . . , Rr hear no messages. Ri+1’s messages
are not delivered to S1. S1, . . . , Ss hear all other messages from R1, . . . , Rr

and hear no message sent by each other.

Consensus in the Presence of Overlapping Faults and Total Omission 379

3. R1, . . . , Ri have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and parties S1, . . . , Ss are send faulty. Ri+1 also has send omis-
sions, i.e. it has full omission faults. R1, . . . , Rr hear no messages. Ri’s mes-
sages are not delivered to S1, . . . , Ss. S1, . . . , Ss hear all other messages from
R1, . . . , Rr and hear no message sent by each other.

4. R1, . . . , Ri+1 have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and parties S1, . . . , Ss are send faulty. Ri also has send omis-
sions, i.e. it has full omission faults. R1, . . . , Rr hear no messages. Ri’s mes-
sages are not delivered to S1, . . . , Ss. S1, . . . , Ss hear all other messages from
R1, . . . , Rr and hear no message sent by each other.

5. R1, . . . , Ri+1 have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and receive no messages, S1, . . . , Ss are send faulty and only
receive messages sent by R1, . . . , Rr.

The first execution is the one described in the induction hypothesis, and thus
S1, . . . , Ss output 1. S2, . . . , Sn’s views in executions 1 and 2 are indistinguishable
and thus they output 1 in execution 2 as well2. From the consistency of the
protocol, S1 outputs 1 as well. S1 has an identical view in executions 2 and 3,
so it outputs 1 in execution 3. From the consistency of the protocol, S2, . . . , Ss

outputs 1 as well. S2, . . . , Ss’s views in executions 3 and 4 are indistinguishable,
so they output 1 in execution 4. From the consistency of the protocol, S1 outputs
1 as well. Finally, S1’s has identical views in executions 4 and 5 and thus it
outputs 1 in execution 5, and so do S2, . . . , Ss. Note that execution 5 is one
in which R1, . . . , Rr are receive faulty, S1, . . . , Ss are send faulty. In addition,
parties R1, . . . , Ri+1 have the input 0 and the rest of the parties have the input
1. In other words, we proved the claim for i + 1.

Applying this claim to i = r, we find that if R1, . . . , Rr have the input
0 and S1, . . . , Ss have the input 1, and the only message delivered are those
from R1, . . . , Rr to S1, . . . , Ss, all parties output 1. We now construct three final
executions to show that all parties output 1 even when they all have the input
0, which would contradict the validity of the protocol.

1. R1, . . . , Rr have input 0 and S1, . . . , Ss have input 1. R1, . . . Rr are receive
faulty and receive no messages, S1, . . . , Ss are send faulty and only receive
messages sent by R1, . . . , Rr.

2. R1, . . . , Rr, S1 have input 0 and S2, . . . , Ss have input 1. R1, . . . Rr are receive
faulty and receive no messages, S1, . . . , Ss are send faulty and only receive
messages sent by R1, . . . , Rr.

3. All parties have the input 0. R1, . . . Rr are receive faulty and receive no mes-
sages, S1, . . . , Ss are send faulty and only receive messages sent by R1, . . . , Rr.

Execution 1 is the execution described in the induction above with i = r. As
shown, all parties output 1. S2, . . . , Ss have indistinguishable views in executions
1 and 2 and thus they output 1 in execution 2 as well. From the consistency of

2 The assumption that s > 2 is used here to guarantee that S2 exists.

380 J. Loss et al.

the protocol, S1 does so as well. S1’s views in executions 2 and 3 are indis-
tinguishable, so it outputs 1 in execution 3. From consistency, S2, . . . , Ss also
output 1. However, all parties have the input 0, so this violates the validity of
the protocol, reaching a contradiction.

Note that in the definitions used in this paper, receive faulty parties are
allowed to output ⊥, but send faulty parties must output a correct value. This
proof can be adjusted to show that in execution 3 parties S1, . . . , Ss must output
non-⊥ values even if we allow send faulty parties to output ⊥. In order to show
that Si must output non-⊥ values in execution 3 above, we can construct another
execution which is identical to execution 3, except Si is non-faulty, but receives
no messages from the rest of the send faulty parties. Si’s view is identical in
execution 3 and this new execution, and thus it must output non-⊥ values in
both since it is non-faulty in one of them. Since this is true for an arbitrary Si,
this is true for all of them.

References

1. Abraham, I., Dolev, D., Kagan, A., Stern, G.: Brief announcement: authenticated
consensus in synchronous systems with mixed faults. In: Scheideler, C. (ed.) 36th
International Symposium on Distributed Computing, DISC 2022, 25-27 October
2022, Augusta, Georgia, USA. LIPIcs, vol. 246, pp. 38:1–38:3. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.DISC.
2022.38

2. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses
with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23–26,
2014, pp. 355–362. IEEE Computer Society (2014). https://doi.org/10.1109/DSN.
2014.43

3. Brazitikos, K., Zikas, V.: General adversary structures in byzantine agreement and
multi-party computation with active and omission corruption. Cryptology ePrint
Archive (2024)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996). https://doi.org/10.1145/226643.226647

5. Chun, B., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only mem-
ory: making adversaries stick to their word. In: Bressoud, T.C., Kaashoek, M.F.
(eds.) Proceedings of the 21st ACM Symposium on Operating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, 14-17 October 2007, pp. 189–204.
ACM (2007). https://doi.org/10.1145/1294261.1294280

6. Clement, A., et al.: Upright cluster services. In: Matthews, J.N., Anderson, T.E.
(eds.) Proceedings of the 22nd ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009. pp. 277–290.
ACM (2009). https://doi.org/10.1145/1629575.1629602

7. Correia, M., Lung, L.C., Neves, N.F., Veŕıssimo, P.: Efficient byzantine-resilient
reliable multicast on a hybrid failure model. In: 21st Symposium on Reliable Dis-
tributed Systems (SRDS 2002), 13-16 October 2002, Osaka, Japan, pp. 2–11. IEEE
Computer Society (2002). https://doi.org/10.1109/RELDIS.2002.1180168

8. Correia, M., Neves, N.F., Veŕıssimo, P.: How to tolerate half less one byzantine
nodes in practical distributed systems. In: 23rd International Symposium on Reli-
able Distributed Systems (SRDS 2004), 18-20 October 2004, Florianpolis, Brazil,

https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1109/RELDIS.2002.1180168

Consensus in the Presence of Overlapping Faults and Total Omission 381

pp. 174–183. IEEE Computer Society (2004). https://doi.org/10.1109/RELDIS.
2004.1353018

9. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983). https://doi.org/10.1137/0212045

10. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288–323 (1988)

11. Eldefrawy, K., Loss, J., Terner, B.: How byzantine is a send corruption? In: Applied
Cryptography and Network Security: 20th International Conference, ACNS 2022,
Rome, Italy, June 20-23, 2022, Proceedings, pp. 684–704. Springer-Verlag, Heidel-
berg (2022). https://doi.org/10.1007/978-3-031-09234-3 34

12. Fitzi, M., Maurer, U.: Efficient Byzantine agreement secure against general adver-
saries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134–148. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0056479

13. Garay, J.A., Perry, K.J.: A continuum of failure models for distributed computing.
In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 153–165. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-56188-9 11

14. Golan-Gueta, G., et al.: SBFT: a scalable and decentralized trust infrastructure.
In: 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019, pp. 568–580. IEEE
(2019). https://doi.org/10.1109/DSN.2019.00063

15. Hadzilacos, V.: Issues of fault tolerance in concurrent computations (databases,
reliability, transactions, agreement protocols, distributed computing). Ph.D. thesis,
Harvard University (1985)

16. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

17. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: TrInc: small trusted hard-
ware for large distributed systems. In: Rexford, J., Sirer, E.G. (eds.) Proceedings of
the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2009, 22-24 April 2009, Boston, MA, USA. pp. 1–14. USENIX Association
(2009). http://www.usenix.org/events/nsdi09/tech/full papers/levin/levin.pdf

18. Lincoln, P., Rushby, J.M.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: Digest of Papers: FTCS-23, The Twenty-Third
Annual International Symposium on Fault-Tolerant Computing, Toulouse, France,
22-24 June 1993. pp. 402–411. IEEE Computer Society (1993). https://doi.org/10.
1109/FTCS.1993.627343

19. Loss, J., Stern, G.: Zombies and ghosts: optimal byzantine agreement in the pres-
ence of omission faults. In: Rothblum, G., Wee, H. (eds.) Theory of Cryptogra-
phy Conference, pp. 395–421. Springer (2023). https://doi.org/10.1007/978-3-031-
48624-1 15

20. Micali, S., Rogaway, P.: Secure Computation. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 32

21. Parvédy, P.R., Raynal, M.: Uniform agreement despite process omission failures.
In: 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings, p. 212.
IEEE Computer Society (2003). https://doi.org/10.1109/IPDPS.2003.1213388

22. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986). https://
doi.org/10.1109/TSE.1986.6312888

https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1137/0212045
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/BFb0056479
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1007/978-3-031-48624-1_15
https://doi.org/10.1007/978-3-031-48624-1_15
https://doi.org/10.1007/3-540-46766-1_32
https://doi.org/10.1007/3-540-46766-1_32
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888

382 J. Loss et al.

23. Raynal, M.: Consensus in synchronous systems: a concise guided tour. In: 2002
Pacific Rim International Symposium on Dependable Computing, 2002. Proceed-
ings, pp. 221–228. IEEE (2002)

24. Serafini, M., Bokor, P., Dobre, D., Majuntke, M., Suri, N.: Scrooge: reducing the
costs of fast byzantine replication in presence of unresponsive replicas. In: Pro-
ceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1 2010, pp. 353–362.
IEEE Computer Society (2010). https://doi.org/10.1109/DSN.2010.5544295

25. Serafini, M., Suri, N.: The fail-heterogeneous architectural model. In: 26th IEEE
Symposium on Reliable Distributed Systems (SRDS 2007), Beijing, China, 10-12
October 2007, pp. 103–113. IEEE Computer Society (2007). https://doi.org/10.
1109/SRDS.2007.33

26. Siu, H.S., Chin, Y.H., Yang, W.P.: Byzantine agreement in the presence of mixed
faults on processors and links. IEEE Trans. Parallel Distrib. Syst. 9(4), 335–345
(1998). https://doi.org/10.1109/71.667895

27. Thambidurai, P.M., Park, Y.: Interactive consistency with multiple failure modes.
In: Seventh Symposium on Reliable Distributed Systems, SRDS 1988, Columbus,
Ohio, USA, October 10-12, 1988, Proceedings, pp. 93–100. IEEE Computer Society
(1988). https://doi.org/10.1109/RELDIS.1988.25784

28. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Veŕıssimo, P.: Efficient
byzantine fault-tolerance. IEEE Trans. Computers 62(1), 16–30 (2013). https://
doi.org/10.1109/TC.2011.221

29. Zikas, V., Hauser, S., Maurer, U.: Realistic failures in secure multi-party compu-
tation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 274–293. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 17

https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/71.667895
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1007/978-3-642-00457-5_17

On the (Im)possibility
of Game-Theoretically Fair Leader

Election Protocols

Ohad Klein1(B) , Ilan Komargodski1,2 , and Chenzhi Zhu3

1 Hebrew University of Jerusalem, Jerusalem, Israel
ohadkel@gmail.com, ilank@cs.huji.ac.il

2 NTT Research, Sunnyvale, CA, USA
3 Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA, USA

zhucz20@cs.washington.edu

Abstract. We consider the problem of electing a leader among n parties
with the guarantee that each (honest) party has a reasonable probability
of being elected, even in the presence of a coalition that controls a subset
of parties, trying to bias the output. This notion is called “game-theoretic
fairness” because such protocols ensure that following the honest behav-
ior is an equilibrium and also the best response for every party and coali-
tion. In the two-party case, Blum’s commit-and-reveal protocol (where
if one party aborts, then the other is declared the leader) satisfies this
notion and it is also known that one-way functions are necessary. Recent
works study this problem in the multi-party setting. They show that
composing Blum’s 2-party protocol for log n rounds in a tournament-
tree-style manner results with perfect game-theoretic fairness: each hon-
est party has probability � 1/n of being elected as leader, no matter
how large the coalition is. Logarithmic round complexity is also shown
to be necessary if we require perfect fairness against a coalition of size
n´1. Relaxing the above two requirements, i.e., settling for approximate
game-theoretic fairness and guaranteeing fairness against only constant
fraction size coalitions, it is known that there are O(log∗ n) round pro-
tocols.

This leaves many open problems, in particular, whether one can go
below logarithmic round complexity by relaxing only one of the strong
requirements from above. We manage to resolve this problem for commit-
and-reveal style protocols, showing that

– Ω(log n/ log log n) rounds are necessary if we settle for approximate
fairness against very large (more than constant fraction) coalitions;

– Ω(log n) rounds are necessary if we settle for perfect fairness against
nε size coalitions (for any constant ε > 0).

These show that both relaxations made in prior works are necessary to go
below logarithmic round complexity. Lastly, we provide several additional
upper and lower bounds for the case of single-round commit-and-reveal
style protocols.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 383–412, 2025.
https://doi.org/10.1007/978-3-031-78011-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_13&domain=pdf
http://orcid.org/0000-0002-9485-890X
http://orcid.org/0000-0002-1647-2112
http://orcid.org/0000-0002-4276-2797
https://doi.org/10.1007/978-3-031-78011-0_13

384 O. Klein et al.

1 Introduction

Suppose that Rivest, Shamir, and Adleman win yet another important award for
the invention of their groundbreaking RSA crypto-system. The award committee
announces that all of them are invited to the ceremony but only one of them
can deliver a presentation. Since they all want to present and they all reside in
different parts of the world, they need to run a leader election protocol over the
internet. Of course, they are aware of Cleve’s famous lower bound [5] stating that
strongly fair protocols do not exist, i.e., in any protocol, there exists a strategy
for half of the parties to bias the output. However, not all hope is lost because
for their application the classical notion of fairness is overly stringent. Indeed,
a recent line of works [3,4,8,12,17] observed that a relaxed notion of fairness,
called game-theoretic fairness, in the context of leader election is often sufficient
and also possible to achieve even when an arbitrary number of parties may be
corrupt.

To exemplify the notion and possibility of game-theoretic fairness we recall
Blum’s original 2-party coin flipping protocol [2]: each party first commits to a
random coin, they then open their coin, and the XOR of the two bits is used to
elect the winner. If one party fails to commit or correctly open, it is eliminated
and the remaining party is declared the winner. Blum’s protocol satisfies game-
theoretic fairness in the following sense. As long as the commitment scheme is
not broken, a corrupt party cannot bias the coin to its own favor no matter
how it deviates from the protocol. Note that Blum’s protocol is not strongly fair
since a corrupt party can indeed bias the coin, but only to the other party’s
advantage.

The above 2-party protocol can be generalized to handle n parties via a
tournament-tree protocol, as follows. Suppose that n is a power of 2 for simplic-
ity. We first divide the n parties into n/2 pairs, and each pair elects a winner
using Blum’s protocol. The winner survives to the next round, where we again
divide the surviving n/2 parties into n/4 pairs. The protocol continues in the
same manner for log2 n rounds when a final winner is elected.1 At any point in
the protocol, if a party fails to commit or correctly open its commitment, it is
eliminated and its opponent survives to the next round.

The recent work of Chung et al. [3] proved that the above tournament-tree
protocol satisfies a strong notion of game-theoretic fairness, as explained below.
Suppose that the winner obtains a utility of 1 and everyone else obtains a utility
of 0. As long as the commitment scheme is not broken, the tournament tree
protocol guarantees that:

– No coalition of any size can increase its own expected utilty no matter what
strategy it adopts.

– No coalition of any size can harm any individual honest player’s expected
utility, no matter what strategy it adopts.

1 By default, throughout this paper log stands for log2.

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 385

Recent work in this space [3,4,8,17] calls the former notion cooperative-
strategy-proofness (or CSP-fairness for short), and calls the latter notion max-
imin fairness. Philosophically, CSP-fairness guarantees that any rational, profit-
seeking individual or coalition has no incentive to deviate from the honest pro-
tocol; and maximin fairness ensures that any paranoid individual who wants
to maximally protect itself in the worst-case scenario has no incentive to devi-
ate either. In summary, the honest protocol is an equilibrium and also the best
response for every player and coalition. Therefore, prior works [3,4,8,17] argue
that game-theoretic notions of fairness are compelling and worth investigating
because (1) they are arguably more natural (albeit strictly weaker) than the clas-
sical strong fairness notion in practical applications; and (2) the game-theoretic
relaxation allows us to circumvent classical impossibility results pertaining to
strong fairness in the presence of majority coalitions [5].

Since we know that the tournament tree protocol satisfies game-theoretic
fairness, a natural question is whether logarithmic round complexity is necessary.
A protocol of [12] (following up on [3]) showed that if we settle for an approximate
notion of game-theoretic fairness, then the answer is no: there are O(log∗ n)-
round protocols.2 In approximate fairness we require to satisfy the above notions
of game theoretic fairness (i.e., CSP-fairness and maximin fairness) up to an ε
slack. More specifically, we say that a protocol is (1 ´ ε)-fair if every coalition’s
expected utility cannot exceed 1/(n(1 ´ ε)) times the size of the coalition and
if any honest individual’s expected utility cannot drop below (1 ´ ε)/n. Perfect
fairness holds when (1 ´ ε)-fairness holds with ε “ 0.

While the above works provide feasibility of round-efficient protocols for
game-theoretically fair leader election, it is still widely open to characterize the
minimal round complexity needed. This is a major problem left open in the works
of [3,12]. Most strikingly, it is not even known if single-round commit-and-reveal
style protocols exist. This seemingly simple setting with minimal interaction
already turns out to be quite challenging to analyze and our work is the first to
address this problem with various possibility and impossibility results.

Single-Round Protocols. We start by focusing on single-round “commit-and-
reveal” protocols which consist of two phases: in the first phase each party com-
mits to a value. In the second phase, each party either opens their commitment
or sends a special abort symbol. Finally, a publicly known function is applied to
the revealed values, specifying the identity of a leader. To simplify, we assume
an ideal commitment scheme; this has the advantage of separating the compu-
tational issue regarding cryptography from the game-theoretic aspects of the
problem. Note that this will only make our lower bounds stronger.

Before stating our main results, we want to illustrate the non-triviality of
the problem by going back to the Rivest-Shamir-Adleman conundrum. As men-

2 In fact, their protocol enables a smooth trade-off between the round complexity and
the resilience to strategic behavior, but their framework requires at least Ω(log∗ n)
rounds to provide any meaningful fairness guarantee. Here log∗ n denotes the mini-
mum number of times the logarithm function must be iteratively applied to n before
the result is less 1.

386 O. Klein et al.

tioned, they can fairly decide who will deliver the presentation using a “depth-
two” tournament tree (commit-and-reveal-commit-and-reveal). Can they do it
using only commit-and-reveal? We answer this question by showing the following
results:

1. An upper bound : there is a commit-and-reveal protocol achieving (3/4)-
fairness.

2. A lower bound : there is no commit-and-reveal protocol achieving (1 ´ ε)-
fairness for any ε < 1/4.

The upper bound is obtained via the following simple protocol: every pair
runs Blum’s perfectly fair leader election protocol. A party is declared as the
leader if it wins both of its tournaments. If no party won both tournaments, we
simply declare party 1 as the leader. Because the pair-wise protocol is perfectly
fair, any fixed party will be declared as leader with probability at least 1/4.
Thus, the protocol is (1/4)/(1/3) “ (3/4)-fair. The more surprising aspect of
the above result is the lower bound, showing that this protocol is optimal. Our
proof relies on a non-trivial application of the minimax principle. More generally,
we prove the following theorem for any number of parties:

Theorem 1 (Fairness of single-round protocols; informal). For protocols
on n parties, even in the presence of a corrupted coalition of size n ´ 1:

– There exists (n/2n´1)-fair single-round “commit-and-reveal” protocol.
– Any α-fair single-round “commit-and-reveal” protocol satisfies α ď n/2n´1.

Extensions. By a “grouping” argument we extend the above impossibility result
to the setting where the honest set of parties consists of a constant β fraction
of parties. For instance, when β “ 1/3, our result shows that there is no (8/9)-
fair leader election protocol. See Theorem 18 for the exact statement. Lastly, we
consider the low-corruption regime, i.e., when the coalition is of size say 1 or
2 and n � 3 is arbitrarily large. We show (in Theorem 25) that in this setting
there are no perfectly fair leader election protocols.

Multiple-Round Protocols. It was shown in [3, Theorem 8.1] that Ω(log n)
rounds are required for perfectly fair leader election among n parties. When the
protocol is required to be only approximately fair, the number of rounds can be
reduced to O(log∗ n) by [12].

This gap is due to two differences between the regimes. First, perfect fairness
is more stringent, requiring ε “ 0 in the fairness definition. Second, the Ω(log n)
lower bound implicitly assumes protection against a corrupted coalition of size
n ´ 1 (which we abbreviate as (n ´ 1)-corruption), while the O(log∗ n)-round
protocol assumes a constant fraction (i.e. n ´ Ω(n)) of corrupted parties.

Therefore, there are two cases in which the round complexity is undetermined
(in addition to the question of whether the O(log∗ n) protocol is most round-
efficient), giving rise to the following questions:

– Question 1: Is there a o(log n)-round protocol with guaranteed approximate
fairness against coalitions of size n ´ o(n)?

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 387

– Question 2: Is there a o(log n)-round protocol with guaranteed perfect fair-
ness against coalitions of size less than n ´ 1?

We answer both of the above questions by providing nearly tight lower bounds
on the number of rounds in both cases. At a high level, we show that for every ε P
(0, 1), perfect fairness in the presence of nε corrupted parties requires Ω(log n)
rounds. We proceed with a more precise statement of our results.

Approximate Fairness. We show that Ω(log n/ log log n) rounds are necessary
even in a weak (1/n)-fairness requirement by extending an argument of [3].
The protocols we consider are as in [3], and are composed of a sequence of r
rounds, each of which is a “commit-and-reveal” sub-protocol, as described earlier.
Specifically, we prove the following theorem in Sect. 5.

Theorem 2 (Approximate fairness against large coalitions requires at
least log(n)/ log log(n) rounds). A leader election protocol on n parties, having
r “commit-and-reveal” rounds, in which each honest party has a chance of 1/n2

to be elected (i.e. 1/n-fairness), even in the presence of a corrupted coalition of
size n ´ k, must satisfy

r >
log(n) ´ log(k)
log log(n) ` 3

.

We further extend this result to the case of committee election, where a small
set of t parties is to be elected; see Sect. 5 for detail.

Perfect Fairness. We also show a logarithmic lower bound on the round com-
plexity of any perfectly fair leader election protocol in the presence of sub-(n´1)
corrupted parties. Specifically, we prove the following theorem in Sect. 6.2.

Theorem 3 (Perfect fairness against size-k coalitions requires at least
log k rounds). A leader election protocol on n parties, having r “commit-and-
reveal” rounds, which is perfectly fair in the presence of a corrupted coalition of
size k, must satisfy

r ě �log(min(n, 2k))� .

Organization. In Sect. 2, we provide a technical overview of our proofs. In
Sect. 3, we define fairness, committee-election protocols, and prove an n-party
minimax theorem. In Sect. 4, we give a tight bound on the fairness of single-
round protocols. In Sect. 5, we apply this bound to bound the round-efficiency
of reasonably-fair protocols. Finally, in Sect. 6, we lower bound the number of
rounds of perfectly fair protocols.

1.1 Additional Related Work

There are several prior results on lower bounds of coin flipping protocols that
imply certain impossiblity results of leader election protocols. In the information-
theoretical regime, Russel, Saks and Zuckerman [14] showed that for any n-party

388 O. Klein et al.

coin flipping protocols with r “ o(log∗ n) rounds where each party can only send
one bit per round, a coalition of a constant fraction of parties can bias the
outcome. Later, Filmus et al. [7] extended the results to protocols where each
party is allowed to send arbitrary messages. In the setting where a constant
fraction of parties are corrupted, since a fair n-party r-round leader election
protocol implies an n-party (r ` 1)-round coin flipping protocol safe against
a constant bias, the results imply that there is no fair n-party leader election
protocol with r “ o(log∗ n) rounds in the information-theoretical regime. The
(log∗ n`O(1))-round protocol by Russell and Zuckerman [15] and Feige’s famous
lightest bin protocol [6] show that the above lower bounds are tight.

A result by Berman, Haitner and Tentes [1] (improving on [11]) shows that
any 2-party weak coin flipping protocol safe against any constant bias implies the
existence of one-way functions. Here the security of 2-party weak coin flipping
guarantees that the adversary cannot bias the outcome towards 1 by corrupting
party one and cannot bias the outcome towards 0 by corrupting party two. The
result implies that any fair n-party leader election protocol in the dishonest
majority setting implies the existence of one-way functions, since such an n-
party leader election protocol implies a 2-party weak coin flipping protocol safe
against a constant bias.

We also note that there is a line of work on random selection protocols in the
information-theoretical regime [9,10,16], wherein n parties want to agree on a
random value sampled from a output universe of size p and the security goal is to
prevent the corrupted parties from causing the output to lie in some small subset
of the output universe. Although one can view a random selection protocol as a
leader election protocol for p “ n, we emphasize that their security goal is very
different from our fairness notion. In particular, they do not prevent an attacker
that controls n´1 parties from always making sure that the output is one of the
corrupted n ´ 1 parties, which is exactly the setting that we are interested in.
As another evidence of the difference, Gradwohl, Vadhan and Zuckerman [10]
give a log∗(n)-round random selection protocol in the dishonest majority setting
without using any cryptography/ideal model commitments, while for our notion
of fairness this is impossible [1] (as mentioned above).

1.2 Open Problems

One limitation of our impossibility results is that we only consider the commit-
and-reveal style protocols, and it is unclear whether we can generalize our impos-
sibility results to stronger models (e.g., only assuming one-way functions or
oblivious transfer).

Another main open problem is whether we can extend our lower bounds on
the number of rounds to the setting where the number of honest parties is greater
than n/ log n. For example, when a constant fraction of parties are honest, the
protocol of [12] needs O(log∗ n) rounds, but we do not know whether this is
optimal.

Regarding upper bounds, for the (n ´ 1)-corruption case, we only know that
there are perfectly fair protocols with log n rounds, but it is unclear whether

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 389

we can do slightly better than log n rounds for approximate fairness. Our lower
bound shows that a fair protocol needs at least log n

log log n`O(1) rounds. It is inter-
esting to see whether we can close this gap.

In the regime of perfect fairness, it is unclear whether our lower bound is
tight. Even if the adversary only corrupts a single party, it is unclear whether
we can construct a perfectly fair leader election protocol with r < log n rounds
or show it is impossible. Also, for single-round protocols, we only show there is
no perfect leader election protocol, but it is unclear whether it can be extended
to committee election protocol. For example, it is unclear whether we can elect
2 out of 5 parties by a single round protocol with perfect fairness assuming only
one party is malicious.

2 Technical Overview

In this section we describe the technical methods underlying the proofs of our
main results. In Sect. 2.1 we explain the ideas behind the proof of the single-
round setting Theorem 1, and in Sect. 2.2 we explain how to obtain our results
in the multi-round setting, i.e., Theorems 2 and 3.

For the lower bounds of approximate fairness, we focus on the (n ´ 1)-
corruption case in the following explanations. Our results for (n ´ k)-corruption
follow by “grouping” various sets of parties together and treating them as one,
as follows: Roughly, given a fair n-party protocol against (n´k)-corruptions, we
construct a fair n/k-party protocol against (n/k´1)-corruptions by partitioning
n parties into n/k groups of size k and viewing each group as a single party. We
refer to Sects. 4.3 and 5.1 for details on this reduction.

2.1 Lower Bounds for Single-Round Commit-and-Reveal Protocols

Given a single-round n-party commit-and-reveal leader election protocol, we
show that there exists an adversary corrupting n ´ 1 parties such that the prob-
ability that the honest party is the leader is at most 2´(n´1). Since the protocol
is commit-and-reveal, the adversary must choose the inputs for all corrupted
parties before seeing the honest party’s input. After receiving the honest party’s
input, the only strategy of the adversary is to let some corrupt parties abort.

The idea of our attack is to let all but one corrupted party abort. After
receiving the input of the honest party, the adversary checks whether there
exists a corrupted party i such that party i wins against the honest party if all
corrupted parties except party i abort. Denote the event that the honest party
j wins against party i as Lossi. The intuition that this attack works is that, on
average, the probability that Lossi occurs should be at most 1/2, and therefore,
since there are n ´ 1 corrupted parties, the probability that no corrupted party
wins against the honest party should be at most 2´(n´1).

However, this simple argument does not work. The main issue is that the two
events Lossi and Lossk for two corrupted parties i and k are not independent. In
fact, they both depend on the input of the honest party j. The idea to address

390 O. Klein et al.

this is to fix the input of the honest party in our analysis. Since Lossi depends
only on the inputs of party i and the honest party, assuming the adversary
chooses the input of each corrupted party independently, the events Lossi and
Lossk are independent given the input of the honest party xj . Therefore, the
probability that the honest party is the leader is at most maxx

∏
i Pr[Lossi|x],

where Pr[Lossi|x] denotes as the probability that Lossi occurs given that x is
input of the honest party.

The problem then reduces to bounding maxx

∏
i Pr[Lossi|x]. To this end, we

define a few notations for describing the adversary’s strategy. We use Si to denote
a (mixed) strategy for choosing the input of party i. We denote pi,j(Si, xj) as
the probability that Lossi occurs under the strategy Si given that party j is the
honest party and the input of party j is xj . Then, the probability that the honest
party j wins and elected as the leader is upper bounded by

Wj “ min
{Si}iP[n]\{j}

max
xj

∏

i

pi,j(Si, xj). (1)

Recall that the protocol is ‘not fair’ even if for one specific j the value Wj is
too small. We will even show that the expected value of log(Wj) over uniformly
random j ∼ [n] is small.

To bound (1), we use the minimax theorem from game the-
ory. The minimax theorem shows that for any two parties i and j,
minSi

maxxj
pi,j(Si, xj) ` minSj

maxxi
pj,i(Sj , xi) “ 1. Therefore, denoting

pi,j :“ minSi
maxxj

pi,j(Si, xj), we rewrite the minimax equation as pi,j`pj,i “ 1
for all i ‰ j P [n]. Also, the probability that the honest party is the leader is
bounded by

∏
iP[n]\{j} pi,j .

Overall, we converted the problem to the following question: given 0 ď pi,j ď
1 and pi,j ` pj,i “ 1 for all i ‰ j P [n], show that there exists j such that∏

iP[n]\{j} pi,j ď 2´(n´1). To show this, we take the logarithm of both sides,
which converts products to sums. Since pi,j `pj,i “ 1, by Jensen’s inequality, we
have log pi,j ` log pj,i ď 2 log(pi,j/2`pj,i/2) “ ´2. It remains to show that there
exists j such that

∑
iP[n]\{j} log pi,j ď ´(n ´ 1). For simplicity, we demonstrate

the proof for n “ 3. By summing of all pairs of i ‰ j, we have

log p2,1 ` log p3,1 ` log p1,2 ` log p3,2 ` log p1,3 ` log p2,3 ď ´6 .

Therefore, one of the followings holds:

log(W1) “ log p2,1 ` log p3,1 ď ´2,

log(W2) “ log p1,2 ` log p3,2 ď ´2,

log(W3) “ log p1,3 ` log p2,3 ď ´2.

This proves that any one-round leader election protocol cannot be α-fair for
α ě 2´(n´1)/(1/n) “ n/2n´1. We refer to Sect. 4.2 for the full proof.

Extending to Committee Election. Committee election protocols are similar to
leader election protocols, except that they elect a committee of t parties, instead
of just one party. Each party wants to be elected with probability about t/n.

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 391

If we wish to show that single-round protocols are not fair, we cannot use
the same adversary for committee election protocols, since it aborts all but two
parties. This means that the honest party will always be elected once two parties
are elected. The adversary is supposed to prevent this from happening.

To address this, the idea is to partition the corrupted parties into groups of
size k where k is larger than the committee size. After receiving the honest party’s
input, the adversary picks a group and lets all other groups abort. Similarly to the
leader election case, assuming that party j is the honest party and the input of j
is xj , for a set of parties T Ă [n]\{j} and a (mixed) strategy ST of parties in T ,
we denote pT,j(ST , xj) the probability that the honest party is in the committee
under the strategy ST given that all corrupted parties except those in T abort.
Denote pT,j :“ minST

maxxj
pT,j(ST , xj). By extending the minimax theorem to

the (k ` 1)-party case, we can show that
∑

jPT ′ pT ′\{j},j ď t, where T ′ Ă [n] is
a set of size k ` 1. Intuitively, this shows that on average pT,j ď t/(k ` 1). Also,
given party j as the honest party and a partition P “ (T1, . . . , T(n´1)/k) of the
corrupted parties, the probability that the honest party is in the committee is
bounded by

∏
T PP pT,j . Using a similar calculation for the leader election case,

we show that there exists party j and a partition P such that
∑

T PP log pT,j ď
(n ´ 1)/k log(t/(k ` 1)). We refer to Sect. 4.2 for the full proof.

By setting k “ 2t´1, the probability that the honest party is in the committee
is bounded by 2´ n´1

2t´1 . We remark that other choices k cannot improve the bound
asymptotically. In fact, our upper bound for single-round committee election
protocols indicates that the lower bound is tight up to a constant factor in the
exponent. Intuitively, the lower bound means that it is not possible to fairly elect
a committee of size smaller than O(n/ log n) in one-round, which is a useful fact
used in proving the lower bounds of multi-round protocols (that we discuss next).

2.2 Extending to Multi-round Protocols

Here, we shall focus on leader election protocols and note that similar arguments
apply to committee election protocols as well. The key step is to show the fol-
lowing inductive argument: given an α-fair r-round n-party commit-and-reveal
leader election protocol Π, there exists an α′-fair (r´1)-round commit-and-reveal
leader election protocol Π ′ for Ω(n/ log n) parties, where α′ is not significantly
lower than α. Intuitively, this means that at each round the number of parties
can only shrink by at most a factor of 1/ log n. Therefore, a fair n-party leader
election protocol requires at least log n

log log n`O(1) rounds.
We prove such a reduction as follows. After the first round of commit-and-

reveal, we observe that some parties might be “eliminated,” making the proba-
bility that these parties are elected become small or 0. We first show that the
number of parties that are not “eliminated” is Ω(n/ log n), meaning that the
number of parties after the first round does not shrink too much. We show this
by viewing the first round as a single-round committee election protocol, where
the elected committee is the set of parties that are not “eliminated.” Now, we
use our lower bound for single-round committee election protocols to conclude
that the number of parties that are not “eliminated” is Ω(n/ log n). Finally,

392 O. Klein et al.

we construct Π ′ from Π by fixing the first-round execution and grouping all
eliminated parties together with one of the remaining parties as one party.

To make the above argument formal, we need to first define the condition
under which a party is eliminated formally and show that the condition implies
that Π ′ is α′-fair for some α′ > 0. Concretely, after the first-round execution, we
say a party i is eliminated if and only if there exists an adversary corrupting all
but party i such that the probability that i is elected is smaller than α/n´2/n2.
Then, for the resulting (r ´ 1)-round protocol, no matter which parties the
adversary corrupts the probability that the honest party is elected is at least
α/n ´ 2/n2, meaning that the (r ´ 1)-round protocol is Ω((α ´ 2/n)/ log n)-fair.

Also, we need to show that there exists a first-round execution such that
the number of remaining (non-eliminated) parties is Ω(n/ log n). We prove it
by contradiction. Suppose this is not true. By our lower bound of single-round
committee election protocols, there exists an adversary such that the honest
party is not eliminated after the first round with probability at most 1/n2.
Therefore, by the definition of “elimination,” we can construct an adversary
such that the honest party is elected as the leader with probability at most
ε/n ´ 1/n2, which contradicts the fact that Π is ε-maximin-fair. The full details
are given in Sect. 5.

2.3 Lower Bounds for Perfectly Fair Protocols

The prior result [3] by Chung et al. shows that any perfectly fair n-party leader
election protocol against (n ´ 1)-corruption is at least �log n�-round. We extend
their result to protocols against k-corruption by showing that the requirement
for the number of corrupted parties in the following key step of their proof can be
relaxed. Concretely, their proof shows that for any perfectly fair n-party leader
election protocol against (n ´ 1)-corruption, there exists a first-round execution
such that given the first-round execution, the number of parties left is at least
n/2, where we say a party is eliminated if the probability that the party is elected
is 0. We relax the condition of (n ´ 1)-corruption in the above claim and show
that for any perfectly fair n-party leader election protocol against k-corruption,
there exists a first-round execution such that given the first-round execution, the
number of parties left is at least min{n/2, k}. Given the first-round execution, we
can view the rest of the execution of the protocol as a protocol for min{n/2, k}
parties by fixing the execution for all the eliminated parties arbitrarily. Intuitvely,
since there are k corrupted parties, the resulting protocol must be perfectly fair
even if all but one party are corrupted. Since the prior result indicates that the
resulting protocol needs at least �log(min{n/2, k})� rounds, the n-party protocol
needs at least �log(min{n/2, k})� ` 1 rounds. We refer to Sect. 6 for details.

3 Preliminaries

Notations. We use [n] to denote the set {1, . . . , n} and [�..n] to denote the set
{�, . . . , n}. We use x P Ωn to denote a vector and xi to denote the i-th entry of
x. We always use log x to denote the logarithm of x to the base 2.

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 393

3.1 Commit-and-Reveal Committee Election Protocols

An (n, r, t)-commit-and-reveal committee election protocol is a 2r-round interac-
tive protocol among n parties that outputs a committee of size at most t. In this
context, we assume that each party has a public identity 1, 2, . . . , n, and that the
interaction is synchronous, so that the protocol proceeds in rounds. Further, we
use the notion of an ideal commitment functionality Fcom, as defined in Fig. 1.

Fig. 1. The ideal commitment functionality Fcom

For each i P [r], in the (2i ´ 1)-th round, each party j picks an element x
(i)
j

from Ω and sends (commit, i, x
(i)
j) to Fcom. W.l.o.g., in an honest execution, we

assume that x
(i)
j is sampled uniformly from Ω. In the 2i-th round, after receiving

(receipt, j′, i) for each party j′, each party j sends (open, i) to Fcom. If the party
aborts in either of the two rounds or does not open its commitment, we denote
x
(i′)
j “ ⊥ for i ď i′ ď r. Finally, each party uses a deterministic algorithm which

takes (x(1), . . . ,x(r)) as input to compute the selected committee. Since all com-
munication relies on the functionality Fcom, which implicitly implies broadcast
channels, each party receives the same view during the execution of the protocol,
and thus all parties agree on the final selected committee.

For simplicity, we say the protocol is an r-round commit-and-reveal protocol.
We call x(i) the input of round i and x

(i)
j the input of party j in round i.

Formally, the commit-and-reveal committee election protocol can be represented
as a function Π, indicating which parties win the election and are included in
the committee (see Definition 4).

Definition 4 (Commit-and-Reveal Committee/Leader Election). For
any integers r ě 1 and 1 ď t ď n, an (n, r, t)-commit-and-reveal committee
election protocol with input space Ω is a function

Π : (({⊥} Y Ω)n)r → ({0, 1})n

such that for any x(1), . . . ,x(r) P ({⊥} Y Ω)n, 1 ď ∑n
i“1 Πi(x(1), . . . ,x(r)) ď t,

where Πi(x(1), . . . ,x(r)) denotes the i-th entry of the output of Π. In particular,
an (n, r, 1)-commit-and-reveal committee election protocol is an (n, r)-commit-
and-reveal leader election protocol.

394 O. Klein et al.

Remark 5. We note here that for committee election we only require the pro-
tocol to select a non-empty committee with size at most t instead of exactly
t. This is because we mainly consider impossibility results in this paper, and
our definition can cover a wider range of protocols, which makes our impossibil-
ity results stronger. Also, for our positive results (see Sect. 4.1), our committee
election protocol does always select t parties.

Security. An adversary can corrupt k parties at the beginning, before the rounds
begin. Since we use the ideal commitment functionality, during each round, the
only strategy of the adversary is to choose the inputs of all corrupt parties
independent of all honest parties’ inputs (for that round) and decide, for each
corrupted party, whether to abort according to the revealed inputs of the honest
parties. That is, we assume the adversary is rushing, i.e., the adversary can
decide whether to abort after observing all honest parties’ revealed inputs.

Fairness. We use the same fairness definition as [12]. Maximin-fairness means
that the adversary cannot decrease the probability that an honest party is in the
committee by a factor of (1 ´ ε), and is formally defined in Definition 6. Fur-
thermore, CSP-fairness means that the adversary cannot increase the expected
fraction of corrupted parties in the committee by a factor of 1

1´ε , and is formally
defined in Definition 7.

Definition 6 (Maximin-Fairness). We say that an (n, r, t)-commit-and-
reveal committee election protocol is (1 ´ ε, k)-maximin-fair if for any adversary
A that corrupts a set S Ď [n] of parties of size k, and for any i P [n] \ S,

Pr[i is in the committee] ě (1 ´ ε)t
n

,

where the probability is taken over the randomness of A and all honest parties’
inputs {x

(�)
j }jP[n]\S,�P[r] with x

(�)
j sampled uniformly from Ω.

Definition 7 (CSP-Fairness). We say that an (n, r, t)-committee election pro-
tocol is (1 ´ ε, k)-CSP-fair if for any adversary A that corrupts a set S Ď [n] of
parties of size k,

E[the fraction of corrupted parties in the committee] ď k

n(1 ´ ε)
,

where the expectation is taken over the randomness of A and all honest parties’
inputs {x

(�)
j }jP[n]\S,�P[r] with x

(�)
j sampled uniformly from Ω.

Moreover, we say a scheme is (1 ´ ε, k)-fair if the scheme is both (1 ´ ε, k)-
maximin-fair and (1 ´ ε, k)-CSP-fair. We say a scheme is perfectly fair against
k-corruption if and only if the scheme is (1, k)-fair.

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 395

3.2 Minimax Theorem

We first recall the minimax theorem from game theory, which was first proved
in [13]. Then, we show an n-variable extension of the theorem, which is used in
our proofs of lower bounds for single-round protocols. For any n-variable function
f : Ωn → R, a (mixed) strategy for a set S Ď [n] (of players) is a probability
distribution over all inputs {xi P Ω}iPS . Such a strategy can be regarded as a
function S : Ω|S| → [0, 1] such that

∑
xPΩ|S| S(x) “ 1. Given two strategies

S1,S2 where S1 is for S Ď [n] and S2 is for [n] \ S, we denote

f(S1, {xj}jP[n]\S) :“
∑

{xi}iPSPΩ|S|

S1({xi}iPS)f(x1, . . . , xn)

and
f(S1,S2) :“

∑

xPΩn

S1({xi}iPS)S2({xj}jP[n]\S)f(x1, . . . , xn) .

Theorem 8 (Minimax Theorem [13]). For any 2-variable function f : Ω2 →
R, we have

max
S1

min
S2

f(S1,S2) “ min
S2

max
S1

f(S1,S2) ,

where S1 denotes a strategy for the first input and S2 denotes a strategy for the
second input.

Using the above theorem, we deduce the following lemma, which can be
viewed as an n-variable extension of the original minimax theorem.

Lemma 9 (n-Party Minimax). For any k P R, and any n-variable functions
f1, . . . , fn : Ωn → R such that

∑
iP[n] fi(x) ď k for any x P Ωn, we have

∑

iP[n]
min
S

̂i

max
Si

fi(Ŝi,Si) ď k ,

where S
̂i denotes a strategy for [n] \ {i} and Si denotes a strategy for {i}.

Remark 10. In order to see that Lemma 9 extends Theorem 8, we can apply
the former twice with (f1, f2, k) “ (f, ´f, 0) and with (f1, f2, k) “ (´f, f, 0)
respectively.

Proof. By viewing fi as a two-variable function and applying Theorem 8, we
have

min
S

̂i

max
Si

fi(Ŝi,Si) “ max
Si

min
S

̂i

fi(Ŝi,Si) .

For each i P [n ´ 1], there exists S(0)
i such that

max
Si

min
S

̂i

fi(Ŝi,Si) “ min
S

̂i

fi(Ŝi,S(0)
i) .

396 O. Klein et al.

Then, for each i P [n ´ 1],

min
Sn

fi(S(0)
1 , . . . ,S(0)

n´1,Sn) ě min
S

̂i

fi(Ŝi,S(0)
i) “ max

Si

min
S

̂i

fi(Ŝi,Si).

Therefore,

max
Sn̂

min
Sn

∑

iP[n´1]

fi(Sn̂,Sn) ě min
Sn

∑

iP[n´1]

fi(S(0)
1 , . . . ,S(0)

n´1,Sn)

ě
∑

iP[n´1]

min
Sn

fi(S(0)
1 , . . . ,S(0)

n´1,Sn)

ě
∑

iP[n´1]

max
Si

min
S

̂i

fi(Ŝi,Si) .

(2)

Thus,
∑

iP[n]
min
S

̂i

max
Si

fi(Ŝi,Si) “ min
Sn̂

max
Sn

fn(Sn̂,Sn) `
∑

iP[n´1]

max
Si

min
S

̂i

fi(Ŝi,Si)

ď min
Sn̂

max
Sn

⎛

⎝k ´
∑

iP[n´1]

fi(Sn̂,Sn)

⎞

⎠` max
Sn̂

min
Sn

∑

iP[n´1]

fi(Sn̂,Sn)

“ k ´
⎛

⎝max
Sn̂

min
Sn

∑

iP[n´1]

fi(Sn̂,Sn)

⎞

⎠` max
Sn̂

min
Sn

∑

iP[n´1]

fi(Sn̂,Sn)

“ k ,

where the first equality is due to the minimax theorem, the first inequality is
due to Equation (2), and the next equality is due to the fact that minx ´f(x) “
´ maxx f(x).

4 Upper and Lower Bounds of Single-Round Protocols

In this section, we first show a single-round n-party commit-and-reveal leader
election protocol that is (n/2n´1, n ´ 1)-fair. Then, we show that the protocol is
optimal by proving a tight lower bound for the (n ´ 1)-corruption case. Finally,
we extend the results to a general corruption setting .

We extend both the upper and lower bounds to committee election protocols.
The bounds we get are tight up to a constant factor in the exponent for the
(n ´ 1)-corruption case. These bounds are used in the next section when we
extend our lower bounds to multi-round protocols.

4.1 Optimal Single-Round Leader Election

The protocol works as follows. We let each pair of parties run a 2-party tourna-
ment. I.e., each party first commits to a random bit, which is then revealed in

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 397

Fig. 2. The single-round commit-and-reveal committee election protocol Πopt.

the second round, and the winner of the tournament is indicated by the XOR
of the two revealed bits. If one of the two parties aborts, the other party is
the winner of the tournament. Finally, if there exists a party that wins all its
tournaments, then the party is selected as the leader (note that the winner is
unique). Otherwise, we select an arbitrary party.

Remark 11. We note that we can easily make the protocol perfectly fair in honest
executions by letting a random party be selected when there is no party that
won all its tournaments. More concretely, this can be done by letting party 1
additionaly sample a random index i P [n] and put it in the input. If there is no
party that won all its tournaments, party i will be selected as the leader. We will
see that this change will not affect our analysis of fairness, and we only show a
version without perfect fairness in honest executions for simplicity of presenting
the protocol.

Since the probability that any honest party wins each tournament is at least
1/2, the probability of any honest party to be selected as the leader is at least
1/2n´1, no matter how the corrupted parties behave. This implies that the pro-
tocol is (n/2n´1, n ´ 1)-fair. The above protocol can be extended to select a
committee of size t, by dividing the parties into t groups with sizes at most
�n/t�, and electing a leader inside each group using the previous method. Sim-
ilarly, the probability of any honest party to be selected is at least 2´(�n/t�´1).
This protocol is detailed in Fig. 2, and is denoted by Πopt.

Theorem 12. For any n ě 2 and 1 ď t ď n/2, there exists a (n, 1, t)-commit-
and-reveal committee election protocol that is (2´(�n/t�´1) n

t , n ´ 1)-fair. In par-
ticular, for t “ 1, there exists a (n, 1)-commit-and-reveal leader election protocol
that is (2´(n´1)n, n ´ 1)-fair.

Proof. We show that Πopt is (2´(�n/t�´1) n
t , n´1)-fair. Let A be an adversary that

corrupts n´1 parties. For any honest party, no matter how A behaves, the prob-
ability that it wins against another party in its group is at least 1/2. Therefore,
the probability that the honest party is in the committee is at least 2´(�n/t�´1),

398 O. Klein et al.

which implies that Πopt is (α, n´1)-maximin-fair, where α :“ 2´(�n/t�´1) n
t . This

also implies that the expected fraction of corrupted parties in the committee is
at most t´2´(�n/t�´1)

t , which means Πopt is (n´1
n´α , n ´ 1)-CSP-fair. Since α ď 1

and n´1
n´α ě 1

2´α ě α, Πopt is (α, n ´ 1)-fair. ��

4.2 Lower Bound for (n ´ 1)-Corruption

We show the above leader election protocol has the best possible fairness guar-
antee by showing the following theorem.

Theorem 13 (Single-Round, (n ´ 1)-Corruption). For any integers 1 ď
t ď n/2, there is no (n, 1, t)-commit-and-reveal committee election protocol that
is (α, n ´ 1)-fair for α > 2´	 n´1

2t´1
 n
t .

Remark 14 Note that in the t “ 1 case, which corresponds to leader election,
Theorem 13 shows that the protocol Πopt is optimally fair when exposed to n´1
corruptions.

Remark 15. In the proof, we show a slightly stronger result that there is no
(α, n ´ 1)-maximin-fair protocol for α > 2´	 n´1

2t´1
 n
t .

Proof. Let Π be an (n, 1, t)-commit-and-reveal committee election protocol. For
any set T Ď [n], suppose all parties not in T abort. Denote ΠT as the protocol Π
given all parties not in T abort, i.e., ΠT ({xi}iPT) :“ Π({x′

i}iP[n]), where x′
i “ xi

if i P T and x′
i “ ⊥ otherwise.

For each i P T , there exists a strategy ST,i for the players T \ {i} that mini-
mizes maxxiPΩ ΠT

i (ST,i, xi), where ΠT
i (ST,i, xi) is defined according to Sect. 3.2.

By Lemma 9, we have that
∑

iPT

max
xiPΩ

ΠT
i (ST,i, xi) ď t . (3)

Denote pT,i :“ maxxiPΩ ΠT
i (ST,i, xi), which is the maximal probability that

party i is in the committee under ST,i. We let t ď k ď n be an arbitrary integer
and denote � :“ 	(n ´ 1)/k
. To construct an adversary A, we pick an index
i P [n] as the honest party (the party A does not corrupt) and pick a partition
P “ (T1, . . . , T�) of [n]\{i} such that one of groups is of size k′ “ n´1´k(�´1)
and all the other groups are of size k. We note here that k′ ě k. Denote Pi as
the set of all such partitions.

For each Tj , A uses the strategy STjY{i},i to sample the inputs for the parties
in Tj . After A sees the input of party i, it picks a Tj (if any) such that party i
is not in the committee if all corrupted parties not in Tj aborts. Otherwise, A

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 399

does nothing. Thus, the probability that party i is in the committee is at most

Pr
xi∼Ω,{x′

i}i′PTj
∼STj Y{i},i

⎡

⎣
∧

jP[�]
Π

TjY{i}
i ({x′

i}i′PTjY{i}) “ 1

⎤

⎦

ď max
xiPΩ

Pr
{x′

i}i′PTj
∼STj Y{i},i

⎡

⎣
∧

jP[�]
Π

TjY{i}
i ({x′

i}i′PTjY{i}) “ 1

⎤

⎦

“ max
xiPΩ

∏

jP[�]
Pr

{x′
i}i′PTj

∼STj Y{i},i

[
Π

TjY{i}
i ({x′

i}i′PTjY{i}) “ 1
]

ď
∏

jP[�]
max
xiPΩ

Π
TjY{i}
i (STjY{i},i, xi)

“
∏

jP[�]
pTjY{i},i ,

where the probability is taken over uniform choice of xi from Ω and the ran-
domness used by STjY{i}. Also, note that the seond equality is due to the fact

that the event Π
TjY{i}
i (STjY{i},i, xi) “ 1 and Π

Tj′ Y{i}
i (STj′ Y{i},i, xi) “ 1 are

independent for j′ ‰ j given a fixed xi.
It is left to show there exists an index i P [n] and a partition P P Pi such that

the above probability is small. By summing over all possible i and partitions,

∑

iP[n]

∑

P PPi

log

(
∏

T PP

pT Y{i},i

)

“
∑

iP[n]

∑

P PPi

∑

T PP

log(pT Y{i},i)

“
∑

T ′Ď[n]
|T ′|P{k`1,k′`1}

∑

iPT ′

∑

(T ′\{i})PP PPi

log(pT ′,i)

“
∑

T ′Ď[n]
|T ′|P{k`1,k′`1}

∑

P PPT ′

∑

iPT ′
log(pT ′,i)

ď
∑

T ′Ď[n]
|T ′|P{k`1,k′`1}

∑

P PPT ′

|T ′| log(t/|T ′|)

“ n!
(k′ ` 1)!(k!)�´1(� ´ 1)!

(k′ ` 1) log(t/(k′ ` 1))

` n!
(k ` 1)!(k!)�´2(k′)(� ´ 2)!

(k ` 1) log(t/(k ` 1)))

“ n!
(k!)�´1k′!(� ´ 1)!

(log(t/(k′ ` 1)) ` (� ´ 1) log(t/(k ` 1)))

ď n!
(k!)�´1k′!(� ´ 1)!

� log(t/(k ` 1))) ,

400 O. Klein et al.

where PT ′ denotes the set of all partitions of [n] \ T ′ of the form (T1, . . . , T�´1)
such that, in case |T ′| “ k′ ` 1, each group is of size k; in case of |T ′| “ k ` 1,
one of groups is of size k′ and all the other groups are of size k. Also, note that
the first inequality is due to Eq. 3 and Jensen’s inequality. Since

∑

iP[n]

∑

P PPi

1 “ n!
(k!)�´1k′!(� ´ 1)!

,

there exists i P [n] and P P Pi such that log
(∏

T PP pT Y{i},i

) ď � log(t/(k `1)) “⌊
n´1

k

⌋
log(t/(k`1)). By setting k “ 2t´1, we get log

(∏
T PP pT Y{i},i

) ď ´ ⌊ n´1
2t´1

⌋
,

which concludes the proof. ��

4.3 Lower Bounds for (n ´ k)-Corruption

For any (n, 1, t)-commit-and-reveal committee election protocol Π that is
(αn

t , n´k)-maximin-fair, we can construct a (n/k, 1, t)-commit-and-reveal com-
mittee election protocol from Π by partitioning n parties into n/k groups of size
k and viewing each group as a single party. Each group is in the committee if
and only if one of the party in the group is in the committee. We can show that
the new protocol is (α n

kt , n/k ´ 1)-maximin fair.
Also, for any (n, 1, t)-commit-and-reveal committee election protocol Π that

is (n´k
nα , n ´ k)-CSP fair, i.e., for any adversary that corrupts at most n ´ k

parties, the expected fraction of corrupted parties in the committee is at most
α, we can construct an (n/k, r, t)-commit-and-reveal committee election protocol
Π that is (αn/k, n/k ´ 1)-CSP fair from Π in the same way as the above.

Combining the above two arguments, we have the following lemma.

Lemma 16. If there exists a (n, r, t)-commit-and-reveal committee election pro-
tocol Π that is (α, n ´ k)-fair, then there exists a (n/k, r, t)-commit-and-reveal
committee election protocol that is

(

max
{

α

k
,

(

1 ´ n ´ k

αn

)
n

tk

}

, n/k ´ 1
)

-maximin fair.

Remark 17. Here we only consider the case k divides n for simplicity of pre-
senting the results as the bound would not change asymptotically for the case k
does not divide n. If k does not divide n, similarly to the proof of Theorem 13,
we can divide n parties into � “ 	n/k
 groups with � ´ 1 groups of size k and
the last group of size k′ “ n ´ k(� ´ 1) ě k, and get a (n/k
 , r, t) committee
election protocol Π ′ from a (n, r, t) committee election protocol Π. The rest of
proof goes through since corrupting � ´ 1 parties in Π corresponds to corrupt-
ing at most n ´ k parties in Π. The final bound on maximin fairness changes
to max {α 	n/k
 /n, (1 ´ (n ´ k)/(αn)) · (n/k
 /t)}, which is asymptotically the
same as the bound in the above lemma.

Proof. For a (n, r, t)-commit-and-reveal committee election protocol Π that is
(α, n ´ k)-fair, we construct a (n/k, r, t)-commit-and-reveal committee election

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 401

protocol Π ′ from Π by partitioning n parties into n/k groups T1, . . . , Tn/k of
size k and letting each party i in Π ′ simulate the behaviors of parties in Ti such
that party i is selected in Π ′ if and only if one of parties in Ti is selected in Π.

Consider an adversary A against Π ′ that corrupts n/k ´ 1 parties. Denote
the honest party corresponding to the group Ti. We can view A as an adversary
A′ against Π that corrupts all parties not in Ti, and the number of corrupted
party is n´k. Since Π is (α, n´k)-fair, it holds that (1) the probability that any
honest party is selected is at least α t

n and (2) the expected fraction of corrupted
parties in the committee is at most (n´k)

nα .
Since Ti is selected in Π ′ if one of the honest parties is selected in Π, by (1),

Ti is selected with probability at least α t
n , which means Π ′ is (α/k, n/k ´ 1)-

maximin fair. If Ti is not selected, then the fraction of corrupted parties in the
committee is 1. By (2), it holds that 1 ´ Pr[Ti is selected] ď (n´k)

nα . Therefore,
the probability that Ti is selected is at least (1 ´ (n ´ k)/(nα)), which means Π ′

is ((1 ´ (n ´ k)/(nα))n/(tk), n/k ´ 1)-maximin fair. Therefore, we can conclude
the lemma. ��

By Theorem 13 and Remark 15, we know there is no (n/k, 1, t)-commit-and-
reveal committee election protocol that is (β, n/k ´ 1)-maximin-fair for β >

2´	n/k´1
2t´1
 n

kt . Therefore, by Lemma 16, we have the following theorem.

Theorem 18. For any integers 1 ď t ď k ď n/2, there is no (n, 1, t)-commit-
and-reveal committee election protocol that is (α, n ´ k)-fair for

α > min

⎧
⎨

⎩
2´ n´k

k(2t´1)
n

t
,

n ´ k

n
(
1 ´ 2´ n´k

k(2t´1)

)

⎫
⎬

⎭
.

In particular, for leader election protocols, there is no single-round n-party leader

election protocol that is (α, n ´ k)-fair for α > min

⎧
⎨

⎩
2´ n´k

k n, n´k

n

(

1´2´ n´k
k

)

⎫
⎬

⎭
.

From the above theorem, for k “ βn where 0 < β < 1/2 is a constant, there
is no (n, 1)-commit-and-reveal leader election protocol that is (α, n(1 ´ β))-fair
for α < 1´β

1´2
´ 1´β

β

. For k ď n
4 log n , there is no (n, 1)-commit-and-reveal leader

election protocol that is (1/n, n ´ k)-fair.

5 Lower Bounds for Multiple Rounds

We extend the lower bounds for single-round commit-and-reveal protocols to
multi-round commit-and-reveal protocols for the (n ´ 1)-corruption case, which
is formally stated in Theorem 19. In particular, we show that there is no r-round
leader election protocol that achieves constant-fairness against (n´1)-corruption
for r ď log n

log log n`3 , which is implied by Corollary 20 below.

402 O. Klein et al.

Theorem 19. For any 0 < δ < 1, any integer r, t ě 1, and any integer n ě
t(2 �log 1/δ�)r, there is no (n, r, t)-commit-and-reveal committee election protocol
that is (α, n ´ 1)-maximin-fair for α > rδn/t.

For any n ě 1, if we set δ “ 1/n3, for any r ď log(n/t)
log(2�log n3�) ď log n´log t

log log n`3 , by
applying the above theorem, we get the following corollary.

Corollary 20. For any integer 1 ď t ď n, any integer r ď log n´log t
log log n`3 , there

is no (n, r, t)-commit-and-reveal committee election protocol that is
(

1
nt , n ´ 1

)
-

maximin-fair.

To prove Theorem 19, the key tool is the following inductive argument.
Roughly, it shows that a maximin-fair (n, r, t)-commit-and-reveal protocol
implies either a maximin-fair (n, 1, n′)-commit-and-reveal protocol or a maximin-
fair (n′, r ´ 1, t)-commit-and-reveal protocol.

Lemma 21. For any integers 1 ď t ď n′ and n ě 2n′, any integer r ě 1,
and 0 < α′ < α, if there exists an (n, r, t)-commit-and-reveal committee election
protocol that is (αn/t, n ´ 1)-maximin-fair, there exists either an (n′, r ´ 1, t)-
commit-and-reveal committee election protocol that is ((α ´ α′)n′/t, n′ ´ 1)-
maximin-fair or an (n, 1, n′)-commit-and-reveal committee election protocol that
is (α′n/n′, n ´ 1)-maximin-fair.

We use Lemma 21 through the following corollary. Intuitively, it shows that
a maximin-fair (n, r, t)-commit-and-reveal protocol implies a fair (n′, r ´ 1, t)-
commit-and-reveal protocol for n′ “ O(n/ log n).

Corollary 22. For any integers 1 ď t ď n′ and n ě 2n′, any integer r ě 1, and
0 < α, if there exists a (n, r, t)-commit-and-reveal committee election protocol
that is (αn/t, n´1)-maximin-fair, there exists an (n′, r´1, t)-commit-and-reveal
committee election protocol that is ((α ´ 2´	 n´1

2n′´1
)n′/t, n′ ´ 1)-maximin-fair.

To prove Corollary 22 we note that Theorem 13 implies that there is no (n, 1, n′)-
commit-and-reveal protocol that is (2´	 n´1

2n′´1
 n
n′ , n ´ 1)-maximin-fair. Hence,

among the two options in Lemma 21, only the first is eligible. This immedi-
ately implies Corollary 22.

We now show how to prove Theorem 19 using Corollary 22.

Proof. (Theorem19). For r “ 1, since n ě 2t �log(1/δ)� implies 2´	 n´1
2t´1
 ď

2´	 n
2t
 ď 2´�log(1/δ)� ď δ, the theorem follows from Theorem 13. For r > 1,

suppose the theorem holds for (r ´ 1)-round protocols. For any t ě 1 and
n ě t(2 �log 1/δ�)r, assume there exists an (n, r, t)-commit-and-reveal proto-
col that is (α, n ´ 1)-maximin-fair for α < rδn/t. Let n′ “ n/(2 �log 1/δ�).
Since 2´	 n´1

2n′´1
 ď δ, by Corollary 22, there exists an (n′, r ´ 1, t)-commit-and-
reveal protocol that is (α′, n′ ´ 1)-maximin-fair, where α′ “ α ´ δn/t. Since
α′ < (r ´ 1)δn′/t and n′ “ n/(2 log 1/δ) ě t(2 log 1/δ)r´1, it contradicts with
the assumption that the theorem holds for (r ´ 1)-round protocols. Therefore,
we concludes the theorem by induction. ��

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 403

Finally, we show how to prove Lemma 21. The key idea of the proof is to
consider a fixed first-round input. For an (n, r, t)-committee election protocol
that is (αn/t, n ´ 1)-maximin-fair, by fixing a first-round input x P Ωn, we can
view it as an (n, r ´ 1, t)-committee election protocol. Then, we look into the
probability pi that each party i is in the committee if the adversary corrupts all
parties but i and acts optimally. If, for any x, the number of i P [n] such that
pi ě α ´ α′ is more than n′, we can construct an (n′, r ´ 1, t)-committee election
protocol that is ((α ´ α′)n′/t, n′ ´ 1)-maximin-fair. Otherwise, if for all x, at
most n′ of them satisfy pi ě α´α′, then we can construct an (n, 1, n′)-committee
election protocol such that given x, party i is in the committee if and only if
pi ě α ´ α′ and we can show this protocol is (α′n/t, n ´ 1)-maximin-fair.

Proof. (Lemma21). Let Π be an (n, r, t)-commit-and-reveal committee election
protocol that is (αn/t, n ´ 1)-maximin-fair. Suppose there is no (n′, r ´ 1, t)-
committee election protocol that is ((α ´ α′)n′/t, n′ ´ 1)-maximin-fair and no
(n, 1, n′)-commit-and-reveal committee election protocol that is (α′n/n′, n ´ 1)-
maximin-fair. We just need to show that there is an adversary A against Π
corrupting n ´ 1 parties such that the probability that the honest party is in
the committee is less than α. For any first-round input x P ({⊥} Y Ω)n, let
Tx :“ {i | xi ‰ ⊥} and denote Πx(·) :“ Π(x, ·), which is an (n, r ´ 1, t)-
committee election protocol. Denote px,i as the minimal probability that party
i is in the committee over all adversaries for Πx that corrupts all parties but i.
Denote Sx :“ {i P Tx |px,i ě α ´ α′}.

We first show that |Sx | ď n′ for all x. Suppose |Sx | > n′. We construct an
(n′, r ´ 1, t) protocol Π ′ from Πx as follows. We first pick an arbitrary set S′ of
party of size |Sx | ´ n′ ` 1 from Sx and then let Π ′ be the same as Πx except
we let a single party (denoted as party i∗) simulate the behaviors of parties
in S′ Y ([n] \ Sx), while the rest of parties (i.e., parties in Sx \ S′) acts the
same as before. Party i∗ is selected in Π ′ if and only if one of parties in the
set corresponding to i∗ is selected in Πx. Then, party i∗ would be selected with
probability as least px,j for any j P S′ even if all othe parties are corrupted.
Also, for party each j P Sx \ S′, px,j is exactly the probability that party j
is guaranteed to be elected in Π ′, given that j is honest and all other n′ ´ 1
parties are corrupted. Therefore, each honest party among the n′ players wins
with probability at least α ´ α′. Thus, Π ′ is ((α ´ α′)n′/t, n′ ´ 1)-maximin-fair,
which contradict the impossibility assumption of such protocols.

We continue by describing the adversary A against the original protocol Π.
Consider an (n, 1, n′)-committee election protocol Γ defined using Sx as follows.
For any input x, party i is elected to be in the committee if and only if i P Sx ,
i.e., Γi(x) :“ 1{i P Sx}. By our assumption, there is no (n, 1, n′)-committee
election protocol that is (α′n/n′, n ´ 1)-maximin-fair. Therefore, there exists an
adversary B against Γ corrupting n ´ 1 parties such that the probability of the
honest party to be in the committee is at most α′. We now construct A using B.
In the first-round, A behaves exactly the same as B. After the first-round, A uses
the best strategy for the rest of the execution. Let party i be the honest party.
After the first round, if i is not in Sx , where x denotes the first-round message,

404 O. Klein et al.

we know the probability that i is in the committee is at most px,i < α ´ α′.
By the definition of B, we have that the probability of i P Sx is less than α′.
Therefore, the probability that party i is in the committee is less than α. This
concludes the proof. ��

5.1 Lower Bounds for (n ´ k)-Corruption

By Lemma 16, if there exists a (n, r, t)-commit-and-reveal committee election
protocol Π that is (α, n ´ k)-fair, then there exists a (n/k, r, t)-commit-and-
reveal committee election protocol that is (α/k, n/k´1)-maximin-fair. Therefore,
by Theorem 19, we have the following corollary.

Corollary 23. For any 0 < δ < 1, any integer r, t, k ě 1, and any integer
n ě tk(2 �log 1/δ�)r, there is no (n, r, t)-commit-and-reveal committee election
protocol that is (α, n ´ k)-maximin-fair for α > rδn/t.

For any constant n ě 1, if we set δ “ 1/n3, by applying the above corollary, we
get the following corollary.

Corollary 24. For any integer 1 ď t, k ď n, any integer r ď log n´log t´log k
log log n`3 ,

there is no (n, r, t)-commit-and-reveal
(

1
nt , n ´ k

)
-maximin-fair committee elec-

tion protocol.

6 Lower Bounds for Perfect Fairness

We recall that a n-party leader election protocol is perfectly fair against k-
party corruption if and only if it is (1, k)-fair, i.e., the probability of any honest
party being selected is at least 1/n if the number of corrupted party is at most
k. We first show that even if only one party is corrupted, there is no single-
round perfectly fair leader election protocol. The prior impossibility results [3]
by Chung et al. only show it for the (n´1)-corruption case. Also, for multi-round
protocols, we extend the prior results [3] to the case of k-corruption for k < n´1
and show that there is no r-round perfectly fair leader election protocol against
k-corruption for r < min{�log n� , �log k� ` 1}.

Notations. We define the following convenient notations to simplify our proofs.
For any x P ({⊥} Y Ω)n and y P {⊥} Y Ω, we use (x : xi ← y) to denote a
vector which is exactly the same as x except the i-th entry of x is changed to
y. If multiple entries are changed, we denote it as (x : {xi ← yi}iPS), where S is
a subset of [n].

6.1 Impossibility of Single-Round Protocols

Theorem 25. For any n ě 3 and 1 ď k < n, there is no perfectly fair single-
round commit-and-reveal leader election protocol against k-corruption.

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 405

Proof Sketch. Our proof can be divided in two steps. First, we show that for any
(1, k)-fair single-round commit-and-reveal leader election protocol Π, Π must
be abort-invariant, i.e., the resulting leader will not change, if any party other
than the leader aborts. Moreover, this implies that if any party i other than the
resulting leader changes its input, the leader must be either the original leader
or changed to i, which is formally stated in Lemma 26. Then, we show that this
property implies that there must exist an input y∗ for party i∗ and another party
j∗ ‰ i∗ such that if the input of party i∗ is y∗, party j∗ will never be the leader
no matter how the other parties choose their inputs. This means that Π is not
fair.

To find such (y∗, i∗, j∗), we start from an arbitrary input x of all parties.
Suppose party i is selected given x. We pick an arbitrary j ‰ i and attempt
to find another input y of party j such that the leader is changed to party j if
party j changes its input to y while the inputs of all other parties remain the
same as x. If such y does not exist, it means that j would never be selected no
matter what input party j picks. Also, due to abort-invariance of Π, j would
never be selected no matter how parties other than i and j choose their inputs
given party i selects xi. Therefore, (y∗ “ xi, i

∗ “ i, j∗ “ i) is the tuple we want.
If such y exists, we repeat the above for input (x : xj ← y) until we find such a
tuple.

We then show that the above process always terminates. Suppose it does not
terminate. Since the input set is finite, we can find a loop of input-party pairs
(x1, i1), . . . , (x�, i�) with (x1, i1) “ (x�, i�) such that xk is the same as xk´1

except that party ik is selected given xk and the input of party ik is changed.
To yield a contradiction, the idea is to start from x1 and do all the changes
in the loop except that we do not change the input of party i1. Equivalently,
we consider an alternative loop (x′

1, i1), . . . , (x
′
�, i�) where x′

k :“ (xk : xk,i1 ←
x1,i1). We show that for ik ‰ i1, given x′

k, party ik is still selected. Then,
since i�´1 ‰ i� “ i1, it implies that party i�´1 is selected given x′

�´1. However,
since x1 “ x′

� “ x′
�´1, party i1 should be selected given x′

�´1, which yields a
contradiction.

Lemma 26. Suppose Π : ({⊥} Y Ω)n → {0, 1}n is a perfectly maximin-fair
n-party single-round commit-and-reveal leader election protocol against a single-
party corruption. Π must be abort-invariant, i.e., for any x P Ωn and i P [n] such
that Πi(x) “ 0, it holds that Πj(x : xi ← ⊥) “ Πj(x) for any j P [n]. Moreover,
abort-invariant implies, for any x P Ωn, y P Ω, if Πi(x) “ Πi(x : xi ← y) “ 0,
i.e., party i is not selected given x or (x : xi ← y), then Πj(x : xi ← y) “ Πj(x)
for any j P [n].

Proof. (Lemma26). Suppose Π is not abort-invariant, which means there exists
x P Ωn and i, j P [n] such that Πi(x) “ 0, Πj(x) “ 1, and Πj(x : xi ← ⊥) “ 0.
We construct an adversary A as follows. A corrupts party i and lets party i run
the protocol honestly except party i aborts if the inputs of all parties are exactly
x. Then, the probability that party j is selected as the leader is smaller than
the probability that party j is selected when all parties behave honestly, which
is exactly 1/n. Therefore, the protocol is not perfectly fair.

406 O. Klein et al.

We now show the “moreomver” part. For any x P Ωn, y P Ω, and i P [n] such
that Πi(x : xi ← y) “ 0, since Π is abort-invariant, we have Πj(x : xi ← y) “
Πj(x : xi ← ⊥) “ Πj(x) for any j P [n]. ��
Proof. (Theorem25). Suppose Π : ({⊥} Y Ω)n → {0, 1}n is a n-party single-
round commmit-and-reveal leader election protocol. We just need to show that
there exists an input y∗ P Ω for some party i∗ and another party j∗ ‰ i∗ such
that Πj∗(x) “ 0 for all x P Ωn with xi∗ “ y∗, which implies that Π is not fair.

We use the following algorithm to find (i∗, y∗, j∗); The algorithm is not effi-
cient, but it is sufficient in order to show the existence of (i∗, y∗, j∗). Initially,
the algorithm picks an arbitrary input x0 P Ωn. We denote i0 as the leader
given x0 as the inputs of all parties and y0 :“ x0,i0 as the input of party i0.
Then, we keep iterating the following. At the �-th iteration, since n ě 3, the
algorithm picks an arbitrary i� P [n] \ {i�´1, i�´2}. (For the first iteration, the
algorithm picks an arbitrary i1 P [n] \ {i0}.) Then, it finds y� such that party
i� is the leader given x� :“ (x�´1 : x�´1,i�

← y�) as the inputs of all parties,
i.e., the input of party i� is changed to y� while the inputs of all other parties
remain the same as x�´1. If such y� does not exist, then the algorithm returns
(i∗ ← i�´1, y

∗ ← y�´1, j
∗ ← i�).

We first show that (i∗, y∗, j∗) returned by the algorithm satisfies the property
mentioned at the beginning of the proof. Denote x∗ :“ x�´1. By the execution
of the algorithm, party j∗ is not selected given input x∗. For any x P Ωn with
x1 “ y∗, we change x∗ step by step to make it equal to x and party j∗ remains
not the leader. First, we change the input of party j∗ in x∗ to xj∗ . By the
execution of the algorithm, party i∗ remains the leader. Then, by Lemma 26,
the leader is not changed to j∗ if party k P [n] \ {i∗, j∗} changes its input to xk,
which concludes our claim.

It is left to show the algorithm always returns. Suppose the algorithm does
not return. Since the input space is finite, the algorithm must find a loop
(i�,x�, y�), . . . , (im,xm, ym) such that (i�,x�, y�) “ (im,xm, ym). We now show
that such a loop cannot exist. By the execution of the algorithm, it holds that
xj`1 is the same as xj except that the input of party ij`1 is changed to yj`1 for
� ď j < m and party ij is leader given the input xj for � ď j ď m.

To yield a contradiction, we consider the following loop of inputs
(x̃�, . . . , x̃m), where x̃j is the same as xj except that the input of party i�
is changed to y�, i.e., x̃j :“ xj : xj,i�

← y�. We will show that party i� is not
selected as the leader given input x̃j for any � < j ď m. It yields a contradiction
since party i� is selected as the leader given input xj “ x̃� “ x̃m. More precisely,
we are going to show that for any � ` 1 ď j ď m, if ij ‰ i�, then party ij is
selected given x̃j , and if ij “ i�, then party ij´1(‰ ij “ i�) is selected given x̃j .

First, for j “ � ` 1, since i�`1 ‰ i�, we know x̃�`1 “ x�`1. Therefore, party
ij is selected given x̃j .

For j > �`1, there are three cases: (i) ij´1 ‰ i� and ij ‰ i�; (ii) ij´1 ‰ i� and
ij “ i�; (iii) ij´1 “ i�. For the first two cases, suppose party ij´1 is selected given
x̃j´1. If ij ‰ i�, since both party i� and party ij are not selected given x̃j´1,
by Lemma 26, party i� is also not selected given x̃j “ (x̃j´1 : x̃j´1,ij

← yj).

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 407

Then, since x̃j “ (xj : xj,i�
← y�), by Lemma 26, we have Πij

(x̃j) “ Πij
(xj) “

1. Otherwise, if ij “ i�, we have x̃j´1 “ x̃j and thus party ij´1 is selected given
x̃j .

For case (iii), suppose party ij´2 is selected given x̃j´1. By the execution of
the algorithm, we know ij , ij´1(“ i�), ij´2 are distinct. Since both party i� and
party ij are not the leader given the inputs x̃j´1, by Lemma 26, party i� is not
selected either given x̃j “ (x̃j´1 : x̃j´1,ij

← yj). Then, since x̃j “ (xj : xj,i�
←

y�), by Lemma 26, we have Πij
(x̃j) “ Πij

(xj) “ 1. Therefore, we can conclude
the statement by induction. ��

6.2 Lower Bounds for Multi-round Protocols

For multi-round protocols, the prior result [3] by Chung et al. shows that there
is no perfectly fair (�log n� ´ 1)-round leader election protocol against (n ´ 1)-
corruption. We show that their result can be extended to any k-corruption for
k ě n/2. Also, for 2 ď k < n/2, we show there is no perfectly fair �log k�-
round protocol. Formally, we show Theorem 27. We also note that this result is
incomparable to our result for the single-round case since the statement is trivial
for k “ 1.

Theorem 27. For any 2 ď k ď n, there is no perfectly fair r-round
commit-and-reveal leader election protocol against k-corruption for r ď
�log(min{n/2, k})�.

We prove a stronger statement: we show that the impossibility result holds
even for protocols satisfying a weaker security notion, called tightness, which is
introduced in [3]. We say a protocol is tight against k-corruption if and only if
the winning probability of any honest party given k corrupted parties is as high
as in honest executions, which is formally defined as follows. It is clear that a
perfectly fair protocol against k-corruption is tight against k-corruption.3

Definition 28 ([3]). A n-party leader election protocol Π is tight against k-
corruption if and only if for any adversary A that corrupts at most k parties
and any honest party i, no matter how A behaves,

Pr[i is the leader] ě Pi ,

where Pi denotes the probability that party i is elected in an honest execution.

The proof technique is similar to [3]. We say that a party is still alive after
i rounds if the party still has a chance to be the leader after i rounds. To show
a lower bound on round complexity, the idea is to lower bound the number of
alive parties. The prior work [3] shows that in a tight protocol against (n ´ 1)-
corruption, the number of alive parties after the first round is at least n′/2, where

3 For a perfectly fair protocol, the winning probability of any party in an honest
execution is 1/n. Therefore, the winning probability of any honest party i given k
corrupted parties is at least Pi “ 1/n.

408 O. Klein et al.

n′ denotes the alive parties before the first round. Then, by fixing the first round
input, one can show the rest of protocol is still tight, and the same argument
shows that the number of alive parties after i round is at least n′/2i. Since in
the final round, the number of alive parties is 1 and thus the round complexity
of a tight protocol is at least �log(n′)�.

We extend the prior proof to the case of k-corruption and show that the
number of alive parties after the first round is at least min{n′/2, k}.4 By a similar
induction, we conclude that the round complexity is at least �log(min{n′/2, k})�
and for perfectly fair protocols, we have n′ “ n.

Remark 29. We also note that the technique here is different from the previ-
ous section on the single-round protocols. The single-round result shows that
the number of alive parties after the first round is at least 2 given that one
party is corrupted. However, it is unclear how to improve this bound for larger
corruptions.

Proof. (Theorem 27) Let Π : ({⊥} Y Ω)nr → {0, 1}n be a r-round commit-and-
reveal leader election protocol. For any x P ({⊥} Y Ω)n, denote Pi(x) as the
probability that party i is elected in an honest execution given that the first-
round inputs of all parties are x. We say that party i is eliminated if Pi(x) “ 0.
Otherwise, we say that the party i is still alive. Denote S(x) :“ {i P [n] | Pi(x) >
0} as the set of the alive parties. Also, we denote S0 :“ ⋃xPΩn S(x), which is
the set of parties that are alive before the first round, and denote n′ “ |S0|. We
say Π is a protocol with n′ alive parties.

We first show the the following lemma which generalizes the abort-invariant
property of single-round leader election protocols (Lemma 26) to the multi-round
case. Roughly, the abort-invariance means that for any first-round input x, an
eliminated party i given x, and j ‰ i, Pj(x) would not change if party i aborts,
and moreover, it implies that if party i changes its input, Pj(x) would only
decrease. The proof is similar to the single-round case and deferred to the end
of the section.

Lemma 30. Suppose Π : ({⊥} Y Ω)n → {0, 1}n is a tight n-party commit-
and-reveal leader election protocol against a single-party corruption. Π must be
abort-invariant, i.e., for any x P Ωn and i P [n] such that Pi(x) “ 0, it holds
that Pj(x : xi ← ⊥) “ Pj(x) for any j P [n]. Moreover, for any y P Ω,
Pj(x : xi ← y) ď Pj(x) for any j P [n] \ {i}.
We use the lemma to show the following claim.

Claim. If Π is tight, then there exists x P Ωn such that |S(x)| ě min{n′/2, k}.

Proof. Let x0 P Ωn be an arbitrary input. Without loss of generality, assume
S0 “ {1, ..., n′} and S(x0) “ {1, . . . , �}. The claim holds if � ě min{n′/2, k}.
Otherwise, we run the following algorithm to find x such that |S(x)| ě
4 Note that this statement is only useful when k ě 2. For k “ 1, it means the number

of alive parties after the first round is at least 1, which holds trivially.

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 409

min{n′/2, k}. For 1 ď i ď n′ ´ �, the algorithm finds yi P Ω such that
party � ` i becomes alive after it changes its first round input to yi, i.e.,
P�`i(xi´1 : xi´1,�`i ← yi) > 0 and sets xi :“ xi´1 : xi´1,�`i ← yi. The algorithm
returns xi if |S(xi)| ě min{n/2, k}.

We first show that the algorithm can find yi for each i. Suppose for any
y P Ω such that P�`i(xi´1 : xi´1,�`i ← y) “ 0. Since the algorithm did not
return, we know |S(xi´1)| < min{n′/2, k}. For any x′ P Ωn such that x′

j “
xi´1,j for each j P S(xi´1), we show that P�`i(x′) “ 0. First, if we change the
input of party � ` i to x′

�`i, we have P�`i(xi´1 : xi´1,�`i ← x′
�`i) “ 0. Denote

x′′ “ xi´1 : xi´1,�`i ← x′
�`i. By Lemma 30, if we change the input of each party

j P [n] \ ({� ` i} Y S(xi´1)) from x′′
j to x′

j , the probability that party i ` � is
the leader is still 0, which implies P�`i(x′) “ 0. This shows that Π is not tight,
since the adversary can prevent party � ` i from being selected by corrupting all
parties in S(xi´1) and setting their first-round inputs to be the same as xi´1.

We now show that the algorithm always returns. For 1 ď i ď n′ ´ �, we show
that j P S(xi) for each � ` 1 ď j ď � ` i, which implies that the algorithm
must returns when i “ min{n′/2, k} ď n′ ´ �. For each 1 ď i ď n′ ´ �, suppose
j P S(xi´1) for each � ` 1 ď j ď � ` i ´ 1, which trivially holds for i “ 1.
Denote D :“ {x P Ωn | xj “ x0,j for j P [�] Y {i ` �}}. For each x′ P D, since all
parties in [(� ` 1)..n] \ {� ` i} are eliminated given x0, by Lemma 30, we know
P�`i(x′) “ P�`i(x0 : {x0,j ← x′

j}jP[(�`1)..n]\{�`i}) ď P�`i(x0) “ 0, which means
party � ` i is eliminated given any input x′ P D. Then, by Lemma 30, for any
j P [n] \ {� ` i}

Pj(x′ : x′
�`i ← yi) ď Pj(x′) . (4)

Since Π is tight, it holds that for any j P [(� ` 1)..n] \ {� ` i} and any y P Ω,

Ex′∼D[Pj(x′)] “ Ex′∼D[Pj(x′ : x′
�`i ← y)] ,

since otherwise the adversary can decrease the chance that party j is selected
by corrupting parties [�] Y {� ` i} (the number of which is at most k) and
letting the input of parties [�] be that same as x′ and the input of party � ` i
be y that gives the worst expectation. Therefore, by Eq. (4), we have Pj(x′ :
x′

�`i ← yi) “ Pj(x′) for each x′ P D. Since xi´1 P D and Pj(xi´1) > 0 for each
� ` 1 ď j ď � ` i ´ 1, we have Pj(xi) “ Pj(xi´1 : xi´1,�`i ← yi) “ Pj(xi´1) > 0.
Also, since P�`i(xi) > 0, we have j P S(xi) for each � ` 1 ď j ď � ` i. Therefore,
we can conclude the statement by induction. ��
We now show that for any tight protocol Π with n′ alive parties, the round
complexity of Π is at least �log(min{n′/2, k})� by doing induction on n′. For
n′ “ 1, which means the leader is already determined at the beginning, the
statement holds trivially since r ě 0. For n′ > 1, suppose the statement holds
for smaller n′ and Π is a protocol with n′ alive parties and optimal round
complexity. By the claim, there exists x P Ωn such that |S(x)| ě min{n′/2, k}.
Given that the first-round inputs is x, we can view the rest of the execution
of Π as a (r ´ 1)-round leader election protocol. Denote the resulting protocol

410 O. Klein et al.

as Π ′. It is not hard to show that Π ′ is also tight and the number of alive
parties of Π ′ before the first round is |S(x)|. Since Π is round optimal, we
have|S(x)| < n′. By our assumption, the round complexity of Π ′ is at least
�log(min{|S(x)|/2, k})� ě �log(min{n′/4, k/2, k})� “ �log(min{n′/2, k}/2)� “
�log(min{n′/2, k})� ´ 1, which implies the round complexity of Π is at least
�log(min{n′/2, k})�. We can conclude the theorem since a perfectly fair n-party
protocol against k-corruption is a tight protocol against k-corruption with n
alive parties. ��
Proof. (Lemma 30). Suppose Π is not abort-invariant, which means there exists
x P Ωn and i ‰ j P [n] such that Pi(x) “ 0, Pj(x) ‰ Pj(x : xi ← ⊥). Without
loss of generality we can assume Pj(x) > Pj(x : xi ← ⊥).5 We construct an
adversary A as follows. A corrupts party i and lets party i run the protocol
honestly except party i aborts if the inputs of all parties are exactly x. Then,
the probability that party j is selected as the leader

Pr
x′∼Ωn

[x “ x′]·Pj(x : xi ← ⊥) `
∑

z‰xPΩn

Pr
x′∼Ωn

[z “ x′] · Pj(z)

< Pr
x′∼Ωn

[x “ x′] · Pj(x) `
∑

z‰xPΩn

Pr
x′∼Ωn

[z “ x′] · Pj(z)

“
∑

zPΩn

Pr
x′∼Ωn

[z “ x′] · Pj(z) “ Pj ,

where Pj is the probability that party j is selected in an honest execution.
Therefore, the protocol is not tight.

For the “moreover” part, suppose there exists y P Ω and j P [n]\{i} such that
Pj(x : xi ← y) > Pj(x). Since Π is abort-invariant, we have Pj(x : xi ← y) >
Pj(x) “ Pj(x : xi ← ⊥). Let x̂ :“ (x : xi ← y). Then, Pj(x̂) < Pj(x̂ : x̂i ← ⊥).
Therefore, we can use the same argument from the first part to construct an
adversary A that breaks the tightness of Π. ��

Acknowledgments. Klein and Komargodski were supported in part by an Alon
Young Faculty Fellowship, by a grant from the Israel Science Foundation (ISF Grant
No. 1774/20), by a grant from the US-Israel Binational Science Foundation and the
US National Science Foundation (BSF-NSF Grant No. 2020643), and by the European
Union (ERC, SCALE,101162665). Ilan Komargodski is the Incumbent of the Harry
& Abe Sherman Senior Lectureship at the School of Computer Science and Engineer-
ing at the Hebrew University. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the Euro-
pean Research Council. Neither the European Union nor the granting authority can
be held responsible for them. Zhu was supported in part by NSF grants CNS-2026774,
CNS-2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from
Microsoft.

5 Otherwise, since
∑

kP[n]\i Pk(x) “ 1 “ ∑
kP[n]\i Pk(x : xi ← ⊥), if there exists j

such that Pj(x) < Pj(x : xi ← ⊥), there also exists j′ such that Pj′(x) > Pj′(x :
xi ← ⊥).

On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols 411

References

1. Berman, I., Haitner, I., Tentes, A.: Coin flipping of any constant bias implies one-
way functions. J. ACM 65(3), 1–95 (2018). https://doi.org/10.1145/2979676

2. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

3. Chung, K.M., Chan, T.H.H., Wen, T., Shi, E.: Game-theoretic fairness meets
multi-party protocols: the case of leader election. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 3–32. Springer, Cham, Virtual
Event (2021). https://doi.org/10.1007/978-3-030-84245-1 1

4. Chung, K.-M., Guo, Y., Lin, W.-K., Pass, R., Shi, E.: Game theoretic notions of
fairness in multi-party coin toss. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018.
LNCS, vol. 11239, pp. 563–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 21

5. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press (1986).
https://doi.org/10.1145/12130.12168

6. Feige, U.: Noncryptographic selection protocols. In: 40th FOCS, pp. 142–153. IEEE
Computer Society Press (1999). https://doi.org/10.1109/SFFCS.1999.814586

7. Filmus, Y., Hambardzumyan, L., Hatami, H., Hatami, P., Zuckerman, D.: Biasing
boolean functions and collective coin-flipping protocols over arbitrary product dis-
tributions. CoRR arxiv preprint arxiv: abs/1902.07426 (2019). http://arxiv.org/
abs/1902.07426

8. Gelashvili, R., Goren, G., Spiegelman, A.: Short paper: on game-theoretically-fair
leader election. In: Eyal, I., Garay, J.A. (eds.) FC 2022. LNCS, vol. 13411, pp.
531–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18283-9 26

9. Goldreich, O., Goldwasser, S., Linial, N.: Fault-tolerant computation in the full
information model. SIAM J. Comput. 27(2), 506–544 (1998)

10. Gradwohl, R., Vadhan, S., Zuckerman, D.: Random selection with an adversar-
ial majority. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 409–426.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 25

11. Haitner, I., Omri, E.: Coin flipping with constant bias implies one-way functions.
In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 110–119. IEEE Computer Society Press
(2011). https://doi.org/10.1109/FOCS.2011.29

12. Komargodski, I., Matsuo, S., Shi, E., Wu, K.: log∗-round game-theoretically-fair
leader election. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS,
vol. 13509, pp. 409–438. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15982-4 14

13. v. Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische annalen 100(1),
295–320 (1928)

14. Russell, A., Saks, M.E., Zuckerman, D.: Lower bounds for leader election and
collective coin-flipping in the perfect information model. In: 31st ACM STOC, pp.
339–347. ACM Press (1999). https://doi.org/10.1145/301250.301337

15. Russell, A., Zuckerman, D.: Perfect information leader election in log*n + O(1)
rounds. In: 39th FOCS, pp. 576–583. IEEE Computer Society Press (1998).
https://doi.org/10.1109/SFCS.1998.743508

https://doi.org/10.1145/2979676
https://doi.org/10.1007/978-3-030-84245-1_1
https://doi.org/10.1007/978-3-030-03807-6_21
https://doi.org/10.1007/978-3-030-03807-6_21
https://doi.org/10.1145/12130.12168
https://doi.org/10.1109/SFFCS.1999.814586
http://arxiv.org/1902.07426
http://arxiv.org/abs/1902.07426
http://arxiv.org/abs/1902.07426
https://doi.org/10.1007/978-3-031-18283-9_26
https://doi.org/10.1007/11818175_25
https://doi.org/10.1109/FOCS.2011.29
https://doi.org/10.1007/978-3-031-15982-4_14
https://doi.org/10.1007/978-3-031-15982-4_14
https://doi.org/10.1145/301250.301337
https://doi.org/10.1109/SFCS.1998.743508

412 O. Klein et al.

16. Sanghvi, S., Vadhan, S.P.: The round complexity of two-party random selection.
In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 338–347. ACM Press
(2005). https://doi.org/10.1145/1060590.1060641

17. Wu, K., Asharov, G., Shi, E.: A complete characterization of game-theoretically
fair, multi-party coin toss. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022, Part I. LNCS, vol. 13275, pp. 120–149. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06944-4 5

https://doi.org/10.1145/1060590.1060641
https://doi.org/10.1007/978-3-031-06944-4_5

The Cost of Maintaining Keys
in Dynamic Groups with Applications
to Multicast Encryption and Group

Messaging

Michael Anastos1(B) , Benedikt Auerbach2 , Mirza Ahad Baig1 ,
Miguel Cueto Noval1 , Matthew Kwan1 , Guillermo Pascual-Perez1 ,

and Krzysztof Pietrzak1

1 ISTA, Klosterneuburg, Austria
{michael.anastos,mbaig,mcuetono,matthew.kwan,gpascual,pietrzak,

bauerbac}@ista.ac.at
2 PQShield, Oxford, UK

benedikt.auerbach@pqshield.com

Abstract. In this work we prove lower bounds on the (communication)
cost of maintaining a shared key among a dynamic group of users. Being
“dynamic” means one can add and remove users from the group. This
captures important protocols like multicast encryption (ME) and contin-
uous group-key agreement (CGKA), which is the primitive underlying
many group messaging applications.

We prove our bounds in a combinatorial setting where the state of the
protocol progresses in rounds. The state of the protocol in each round
is captured by a set system, with each of its elements specifying a set of
users who share a secret key. We show this combinatorial model implies
bounds in symbolic models for ME and CGKA that capture, as building
blocks, PRGs, PRFs, dual PRFs, secret sharing, and symmetric encryp-
tion in the setting of ME, and PRGs, PRFs, dual PRFs, secret sharing,
public-key encryption, and key-updatable public-key encryption in the
setting of CGKA. The models are related to the ones used by Micciancio
and Panjwani (Eurocrypt’04) and Bienstock et al. (TCC’20) to analyze
ME and CGKA, respectively.

We prove – using the Bollobás’ Set Pairs Inequality – that the cost
(number of uploaded ciphertexts) for replacing a set of d users in a group
of size n is Ω(d ln(n/d)). Our lower bound is asymptotically tight and
both improves on a bound of Ω(d) by Bienstock et al. (TCC’20), and
generalizes a result by Micciancio and Panjwani (Eurocrypt’04), who
proved a lower bound of Ω(log(n)) for d = 1.

Benedikt Auerbach conducted part of this work at ISTA.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 413–443, 2025.
https://doi.org/10.1007/978-3-031-78011-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_14&domain=pdf
http://orcid.org/0000-0001-5475-6522
http://orcid.org/0000-0002-7553-6606
http://orcid.org/0000-0003-3650-7893
http://orcid.org/0000-0002-2505-4246
http://orcid.org/0000-0002-4003-7567
http://orcid.org/0000-0001-8630-415X
http://orcid.org/0000-0002-9139-1654
https://doi.org/10.1007/978-3-031-78011-0_14

414 M. Anastos et al.

1 Introduction

1.1 Membership Changes in Multicast Encryption and Continuous
Group-Key Agreement

Multicast Encryption and CGKA. A prevalent problem in many areas of
cryptography involves the agreement on a common key by a group of protocol
users. This underpins communication primitives which try to achieve scalability
beyond what is offered by point-to-point communication. The problem is made
more interesting (and practical) if we further consider a dynamically-changing
group of users, i.e., where users get added and removed to and from the group,
and which thus requires an ever-evolving common key. The two main primitives
capturing this problem are, arguably, Multicast Encryption (ME) and Continu-
ous Group-Key Agreement (CGKA). The former, with constructions dating back
to the 1990 s, considers the problem in the presence of a central authority (CA)
that has access to all secrets and is in charge of sending protocol messages to users
in order to effect group membership changes. In turn, CGKA is a much newer
primitive, resulting from the development of end-to-end encrypted messaging
systems, such as WhatsApp or Signal, and the recent IETF standard Message
Layer Security (MLS). Given that the goal of these systems is the confidentiality
of the messages exchanged, the reliance on a central authority to manage key
material is naturally out of the question. Instead, group members themselves
are the ones who refresh the key material when membership changes take place,
with communication taking place over an untrusted server. CGKA has the addi-
tional security goal of post-compromise security (PCS), which roughly states
users can “heal” from a compromise, so that future keys/messages can become
again secure.

As mentioned before, the main goal of these protocols is to provide scalability
to large groups, and so it is important that the protocols messages are small. In
particular, these should be of size sub-linear in the group size n.

Key-Trees. The main technique employed by efficient ME and CGKA con-
structions are so-called key-trees, which were first used by [16,17] for building
multicast protocols. A key-tree is a (usually, though not necessarily, binary) tree
graph where each node is associated to a key. In the case of ME, keys typically
correspond to a symmetric encryption scheme, whereas for CGKA, they corre-
spond to a key-pair of a public-key encryption scheme. Leaves in the tree are
associated to users, and the root of the tree corresponds to the group key. Fur-
ther, the tree can be seen as a directed graph, with edges capturing the following
hierarchical relationship between the keys: knowledge of the (in the CGKA case,
secret) key of the source implies knowledge of the (secret) key of the target. It is
easy to see that, if we consider the key at each leaf being known to exactly the
user associated to it, users know exactly the keys on the path from their leaf to
the root. This is known as the tree invariant, and the security of the protocol
can be seen as ensuring this invariant holds throughout key-material changes.

The benefit of using key-trees is that, by making use of the auxiliary keys
corresponding to the internal tree nodes, key material can be refreshed and

The Cost of Maintaining Keys in Dynamic Groups with Applications 415

shared to the rest of the group very efficiently. For the purpose of simplicity,
in the following we focus on the communication cost of replacing users, i.e.,
substituting one user with another, so that the group size remains constant.
In practice, this is equivalent to eliminating the keys known to the removed
user, including the group key, and communicating the new (freshly sampled)
group key to the new user and the remainder of the group.1 It is clear that the
cost of removing a user from the group, i.e., that of communicating a new key
to the remainder of the group, is similar to that of a replacement. Thus, we
will indistinctly use the term replacement throughout the paper except where
a distinction is relevant. In particular, due to the tree invariant, key-trees allow
to replace (or remove) a user with a cost equal to the length of the path of the
replaced (removed) user times the in-degree of the nodes in said path. Indeed,
each new key for a node along the path can be communicated to all users (leaves)
below it by simply encrypting it to all of its children. If we consider a binary
tree, this cost is approximately 2 log(n).2 This was improved upon by multicast
protocols using a pseudo-random generator (PRG) [8] to derive the new keys
along a path, reducing the communication by a factor of 2. Most CGKA protocols
incorporate this technique as well, thus also allowing for a replacement with
log(n) cost.

Batching Replacements for ME. A natural attempt to improve on the effi-
ciency of the above constructions would be to consider batching replacements.
Indeed, if we wanted to batch d replacements, we would need to replace only
d(1 + log(n/d)) nodes in expectation [13] (those on the intersection of the paths
of d uniformly random leaves), as opposed to d log(n). One would hope that this
would translate to protocols with an improved communication cost. And indeed,
this is the case, as shown implicitly by [13] and explicitly for ME in [11,14], which
propose protocols, using only hashing and encryption as building blocks, that
allow batching dynamic operations and, in the case where only replacements
are performed, can replace d users in a single round of communication with a
communication cost of d(1 + log(n/d)). A further motivation for these works
was to alleviate out-of-sync-related issues that can arise in bigger groups where
re-keying becomes more frequent.

Batching Replacements for CGKA. Similar approaches can be seen in
CGKA constructions, where the situation is more involved due to the absence
of a central authority. Indeed the main example of this approach is TreeKEM,
the CGKA underlying MLS [4]. Here, d users can be replaced, concurrently in 2
rounds of communication, with a communication cost of d(1 + log(n/d)) at the
1 In CGKA, a so-called update operation, designed to provide security against a poten-

tial compromise of the issuer, can also be seen as such a replacement, where the old
(potentially leaked) state is replaced by a new one.

2 Computing the amortized cost of removing users is more convoluted, since by remov-
ing the key of a node one effectively increases the in-degree of its parent. Whereas
replacing this key in ME can be easily done by the central authority, it becomes an
issue for CGKA protocols, where removing a sizeable number of users can result in
subsequent communication costs degrading to linear in n.

416 M. Anastos et al.

cost of increasing the cost of future group communication.3 A first round where
all d users announce a new key for the leaf will follow by another where one of
the d users will sample the new group key. In TreeKEM the keys on the paths
of the other d − 1 users will get deleted and set to null, thus preventing their
usage until they are replaced by future operations. Hence, this communication
complexity is only achieved under so-called “fair-weather” conditions, i.e., under
beneficial sequences of operations that, e.g., contribute towards quickly replacing
the removed keys. All of the subsequent protocols based on TreeKEM share the
same or very similar issues.

Lower Bounds. Given the upper bounds highlighted above, an interesting ques-
tion is whether they are optimal. The first steps in this direction were taken in
works by Canetti, Malkin and Nissim [9] and Snoeyink, Suri and Varghese [15],
both, however, making restricting assumptions on the schemes and, in partic-
ular, not allowing for the use of pseudorandom generators. Regarding single
(non-batched) replacements in ME, Micciancio and Panjwani [12] showed, in a
symbolic model in the style of Dolev and Yao [10], that the protocol by [8] is
optimal among those built using encryption and PRGs, proving a worst-case
lower bound of log(n) + o(1).

As a result of the introduction of CGKA and the big amount of constructions
proposed in the last years, a new line of work proving similar lower bounds in the
symbolic model has been taking shape. Particularly interesting to our setting,
Bienstock, Dodis and Rösler [6], in a work on the communication complexity of
concurrent recovery from corruption in CGKA, implicitly prove a lower bound of
d for batched user replacements, which essentially says that every new leaf key in
the group must be addressed separately. In the case d = 1 Alwen et al. [1] lift the
bound of [12] to an average case bound, and further extend it to CGKAs. This
work also generalizes the bound to the case of several, potentially overlapping
groups. The recent [3] generalizes [6] to a setting where the condition of recovery
from corruption is relaxed a larger number of rounds.

Going beyond bounds in the symbolic model, Bienstock et al. [5], by means
of a black-box separation from public-key encryption, analyze the worst-case
efficiency of CGKA. The work gives a sustained lower bound that is linear in the
group size, i.e., Ω(n). This is done for a sequence of operations, in which a set
of users of size Ω(n) is added to the group, followed by a sequence of removals
and adds of a single user per round. However, the bound does not apply to ME
and is worst-case, meaning that it relies on a particular, adversarially chosen
sequence of additions and removals of users.

Despite both the ME constructions above and the lower bound of [12] existing
for roughly 20 years, neither better constructions nor a matching lower bound
considering batching have been proposed since, leaving upper bounds of order
d(1 + log(n/d)) and the implicit lower bound of d [6] as the state of the art
regarding batched user replacements in ME.

3 If considering only removals, the additive term d would not be present, as this
corresponds to the individual encryptions to the new users.

The Cost of Maintaining Keys in Dynamic Groups with Applications 417

1.2 Our Contributions

A Tight Lower Bound on Batched User Replacements. In this work we
close the gap between upper and lower bounds on the communication complexity
incurred by batched user replacements in multicast encryption and continuous
group-key agreement. On a high level, we prove the following statement.

In the symbolic model, consider a secure and correct ME (or CGKA)
scheme. If a set of d users chosen uniformly at random from a group with
n members is replaced with different users, then the protocol messages
must have contained at least ln(2)

3 · d · log(n/d) ciphertexts in expectation.

In the above we allow for symmetric encryption, pseudorandom generators,
(dual) pseudorandom functions, and secret sharing as building blocks for ME,
and for (key-updatable) public-key encryption, pseudorandom generators, (dual)
pseudorandom functions, and secret sharing in the case of CGKA. As there exist
constructions of ME [11,14,18] and CGKA [4] (the latter however only with
respect to fair-weather complexity, as discussed above) that achieve a commu-
nication cost of d(1 + log(n/d)) our bound is tight up to a small multiplicative
factor.4 Intuitively, this shows that existing ME and CGKA constructions are
optimal and, in particular, suggests that the way the removal of users is handled
in the MLS standard [4] cannot be improved by simple means.

We point out that our bound is an average case bound, as the set of replaced
users is chosen uniformly at random (as is the case for the single user bound of
[1]), as opposed to ones relying on an adversarially chosen sequences of opera-
tions [3,5,12]. Our technical statements regarding ME and CGKA (Corollary 1
for ME and see the full version [2] for CGKA) take amortized communication
complexity into account. I.e., we consider a game running over tmax rounds
where, in every round t, a set of dt group members, chosen uniformly at random
from the current group, is replaced by new users. Then, if we denote the set of
ciphertexts and keys sent in round t by Mt, we prove that

E

[
tmax∑
t=0

|Mt|
]

≥ ln(2)
3

tmax∑
t=1

dt log
(

n

dt

)
.

Note that we cannot guarantee that |Mt| ≥ (ln(2)/3) · dt · log(n/dt) for all t.
This is necessary as, in principle, some of the communication required to replace
the users in round t might already have happened in prior rounds, as will be
discussed in greater detail below.

Proof Overview. Conceptually, we follow the approach of [3], who prove lower
bounds on the cost incurred by CGKA schemes recovering from corruption(s)
over several rounds. That is, we decouple the combinatorial problem at the core
4 We point out that for typical use cases we have d � n. Further, the case log(n/d) < 1

in which our bound is not asymptotically optimal implies d > n/2. In this case the
linear lower bound by Bienstock, Dodis, and Rösler [6] is asymptotically optimal.

418 M. Anastos et al.

of minimizing the cost for batched user replacements from the more technical
issues that arise when arguing within the confines of the symbolic model. More
precisely, our proof consists of two major parts, the first of which is common
to both the case of multicast encryption and CGKA simultaneously. First, in
Sect. 3 we capture the problem of securely replacing a batch of users in ME
and CGKA in a clean, self-contained combinatorial model, and prove our lower
bound within this model. The second step consists of showing that bounds in
the combinatorial model imply bounds in the symbolic model. This is done for
ME in Sect. 4 in the full version, the proofs being very similar. We discuss these
steps in greater detail below.

The Combinatorial Model. Our aim with the combinatorial model is to cap-
ture in an intuitive way how the sets of users that share a secure secret evolve
over time. Here, ‘secret’ can be thought of as a symmetric key or secret key
depending on whether we want to model ME or CGKA. More precisely, for
nmax, tmax ∈ N, we let [nmax] be the universe of users and, for rounds t ∈ [tmax],
consider a sequence of groups Gt ⊆ [nmax] evolving round-by-round by replacing
a set of group members in every round. We then capture the secrets shared by
users in each round as a sequence of set systems St ⊆ 2[nmax]. A set S ⊆ [nmax]
being part of St intuitively means that there exists a secret r with the following
two properties. On the one hand, the set of users in Gt that, in round t (or any
round before), are able to recover r from their internal states and the protocol
messages sent so far is exactly given by S; and, on the other hand, r is secure.
The latter means that, even given the protocol messages as well as the current
and all prior states of every user not in Gt, it is not possible to recover r.

Correctness and security of the corresponding ME or CGKA scheme impose
two restrictions on St. Namely, for all t we have Gt ∈ St, which corresponds to
the existence of a secure group key shared by all the members in Gt. Further, as
keys known to non-members of the group are being considered insecure, it must
be the case that S ⊆ Gt for all S ∈ St.

The set system St evolves over time. Removing a user u from the group leads
to all secrets they had at some point access to being considered insecure. This
means that all sets in St−1 that contained u can no longer be present in St. On
the other hand, by sending protocol messages, new secrets can be shared with
users, meaning that sets can be added to St. Adding sets to St, however, comes
at a communication cost, since the corresponding secrets cannot be simply sent
in the clear, but instead must be encrypted under (potentially multiple) secure
keys already present in the system. We capture this with a cost function Cost(t)
that, for now, can be thought of as a lower bound on the ciphertexts needed to
be sent in the rounds up to t, in order to communicate the secrets corresponding
to St. While the definition of St can be seen as a natural generalization of the set
system introduced for static groups in [3] to the setting of dynamic groups, our
definition of the cost function deviates substantially from prior lower bounds
in the symbolic model, and we consider it to be one of the main conceptual
contributions of this work, as we discuss below.

The Cost of Maintaining Keys in Dynamic Groups with Applications 419

Defining the Cost Function. Prior works giving lower bounds for ME or
CGKA schemes in the symbolic model follow one of two different approaches
for counting the number of ciphertexts sent in order to achieve both correctness
and security of the scheme. [1,12] for round t use as cost function the amount
of ciphertexts that were used to communicate the group key of round t − 1,
and are no longer of use in round t as they are encryptions of keys that are
known by users removed from the group in round t. Each of these ciphertexts
can be identified with a particular secret (which is one of the encryption keys
used in the ciphertext), and thus in our abstraction this cost metric can be seen
as giving a cover of the set Gt−1 \ Dt using sets in St−1, where Dt denotes
the set of users removed from the group in round t. Moreover, it also admits
another interpretation, namely, these ciphertexts are encryptions of secrets that
are known by users in Dt and this means that the cost metric can be seen as
counting some of the sets removed from the set system in round t.

On the other hand, [3,6] consider the number of ciphertexts sent in a par-
ticular round t that are necessary to communicate a new secret r to (some of)
the group members. Note that in order to communicate r, it must have been
encrypted under secret keys already established by the scheme. Seen through
the abstraction of set system St, this means if the set S (corresponding to r) is
added to St, it must have been covered by the union of a collection of sets in
St−1. Accordingly, one can essentially use as cost function the size of a minimum
cover of S with respect to St−1, i.e., the smallest amount of sets in St−1 the union
of which covers S. To be a bit more precise, the cover may also include single-
tons {u} for all users u ∈ [nmax] (corresponding to the users’ personal keys). In
particular, this is relevant regarding users being added to the group which, by
the rules imposed by correctness and security, cannot be part of any set in St−1.

In this work we define Cost(t) taking into account both the number of
removed sets and the size of a minimum cover of Gt using sets in St−1 and
singletons for all users u ∈ [nmax]. Unlike [1,12], which only take into account
some of the destroyed sets, we generalize their approach and count every set
removed from the set system. This is motivated by the following observation.
When considering a scheme in the combinatorial model, we would like to exploit
that, in every round t, the group Gt must be an element of St. Following the
second cost metric described above, we can argue that the cost of adding the
corresponding key to the set system must be at least the size of a minimum cover
of Gt with respect to the prior set system St−1. However, we consider a security
experiment running over multiple rounds and do not want to impose unnecessary
restrictions on St−1. In particular, it could be the case that St−1 = 2Gt−1 is the
full power set of the prior group. Thus, if we denote the d users removed from and
added to Gt−1 by Dt and At, respectively, we have that S = (Gt−1 \Dt) ∈ St−1,
and obtain a minimum cover of the new group as

Gt = S ∪
⋃

u∈At

{u}.

This means that removing the users from the group comes essentially for
free, and the only contribution to the cost function stems from adding the users

420 M. Anastos et al.

in At to the group. As a consequence, using this cost metric we would end up
with a cost that is linear in d, in turn recovering the bound already implicitly
given in [6].

Note, however, that in the example above the set system St−1 contains a
number of sets that is exponential in the group size n. Further, every set in
St−1 containing at least one of the removed users would no longer be considered
secure after round t, and there is an exponential number of sets of this type.
Thus, in the first cost metric discussed above, i.e., counting sets removed from
the system, maintaining such a huge system would be prohibitively expensive.
For this reason, in this paper we use the sum of the two prior approaches as cost
metric and define

Cost(t) = |{S ∈ St−1 : S ∩ Dt �= ∅}|︸ ︷︷ ︸
sets removed from St−1

+ SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})︸ ︷︷ ︸
size of minimum cover of Gt

.

For an illustration of our cost function for a concrete key-tree see Fig. 1. We
stress that Cost(t) is not to be understood as the amount of ciphertexts sent
in round t, but instead as a lower bound on the ciphertexts sent up to, and
including, that round. Further, our precise definition of the cost function (see
Definition 2) also accounts for minor potential savings in terms of ciphertexts,
stemming from the following two observations. On the one hand, that adding
singletons to St does not necessarily require sending a ciphertext; on the other,
that one ciphertext in the second summand of Cost(t) can be saved by deriving
new keys from the output of a pseudorandom generator evaluated on the secret
corresponding to one of the sets making up the minimum cover.

Lower Bounding Cost(t) in the Combinatorial Model. The example dis-
cussed above suggests a trade-off between the two terms of Cost(t). Intuitively,
the larger the set system St−1, the cheaper it is to add Gt to St. Here, the extreme
case is given by the example discussed above, which essentially corresponds to
preparing a key for the removal of every possible subset of Gt−1, and that leads
to a large cost due to the first summand of Cost(t). The opposite extreme would
be St−1 = Gt−1 ∪ {{u} : u ∈ Gt−1} where, except for the group key, there is
only a personal key for every group member. In this case any cover of Gt with
respect to the previous set system would be made up of singletons and thus of
size linear in |Gt|. Hence, to minimize the overall cost, intuitively it makes sense
to balance the two components of Cost(t), which turns out to also be the case
for the best known constructions of ME [11,14,18]. In these constructions, based
on balanced binary trees, replacing d uniformly random group members requires
in expectation to replace Θ(d(1 + log(n/d))) keys in the system, each of which
comes at the cost of one ciphertext. Further, the expected size of a minimum
cover of Gt turns out to be of the same size. Accordingly, both summands of
Cost(t) are of order Θ(d(1 + log(n/d))).

We show that these constructions are optimal (up to a small constant factor)
by roughly proving in Theorem 1 that, for every choice of (St)tmax

t=0 satisfying the

The Cost of Maintaining Keys in Dynamic Groups with Applications 421

Fig. 1. Example of our cost function on a balanced binary key-graph (top). The set
associated to a node (key) is given by all leaves (users) whose path to the root contains
the node in question. The figure depicts users 7, 11, 12, 13 in the group Gt−1 =
{1, . . . , 16} being replaced by users 17, 18, 19, and 20, producing group Gt. Gray and
blue nodes were already part of the system at time t−1, blue nodes are added at time t.
Our cost function Cost(t) counts the sets in St−1 no longer secure after removing the
users (bottom left, corresponding to the red nodes), as well as the size of a minimum
cover of the new group with respect to the remaining secure sets and the added users’
personal keys (bottom right, corresponding to the blue edges), i.e., the number of
ciphertexts that have to be sent in order to establish the new group key Kt. Note that
what is described here is a simplification ignoring possible optimizations and special
cases (that our formal model does capture). (Color figure online)

requirements of the combinatorial model, it must hold that

E

[
tmax∑
t=0

Cost(t)

]
≥

tmax∑
t=1

dt ln
(

n

dt

)
,

where dt denotes the amount of users replaced in round t and the set Dt of users
replaced is sampled uniformly at random in every round. In the proof we consider
two families (XDt

)Dt⊆Gt−1 and (YDt
)Dt⊆Gt−1 of set systems XDt

, YDt
⊆ 2[nmax],

parameterized by all possible choices of Dt. These essentially correspond to the
two summands of the cost function. Accordingly, the elements of XDt

capture
the sets in St−1 that are destroyed due to the removal of users in round t, and the
elements of YDt

correspond to a minimum cover of the new group Gt with respect
to St−1. We then observe that the two families of set systems satisfy a disjoint-
edness condition required for the Bollobás Set Pairs Inequality [7]. Applying the
inequality allows us to lower bound a term related to

∑
Dt⊆Gt−1

|XDt
| + |YDt

|
which, after some calculations, yields the desired bound on Cost(t).

422 M. Anastos et al.

Translation to the Symbolic Model. In the second conceptual step, we prove
that lower bounds on

∑tmax
t=1 Cost(t) in the combinatorial model imply lower

bounds on the amount of ciphertexts sent by a secure and correct ME or CGKA
scheme in the symbolic model, albeit at a potential loss of a factor of 1/3. In
the symbolic model [10], one considers ME or CGKA schemes constructed from
cryptographic primitives used as building blocks that are essentially modeled to
satisfy ideal security. Our lower bound for ME allows for pseudorandom gen-
erators (PRGs), pseudorandom functions (PRFs), dual PRFs (dPRFs), secret
sharing, and symmetric encryption (SE), and thus in particular covers all build-
ing blocks used for the corresponding upper bounds [11,14,18]. Compared to
prior lower bounds, it covers more building blocks than the ones considered
in [1,12], which do not cover dPRFs. Our lower bound for CGKA uses PRGs,
PRFs, dPRFs, secret sharing, public-key encryption (PKE), and key-updatable
public-key encryption (kuPKE) as building blocks, and in particular covers all
primitives used in important schemes like MLS [4]. Regarding a comparison to
prior bounds, while it covers strictly more primitives than the one of [1], it is
incomparable to the bound of [6], who do not allow for secret sharing, but addi-
tionally consider broadcast encryption (BE). We consider it an interesting open
question, whether our bound can be extended to BE, but point out that it is
a very powerful primitive, on the one hand, has to the best of our knowledge
not been used in practical CGKA constructions, and, on the other hand, implies
the existence of a multicast encryption scheme with constant communication
complexity As a consequence any such bound would have to substantially differ
from the techniques used in this work.

We now describe the translation of our combinatorial bound to the symbolic
model in more detail. In every round t, to every secure secret r present in the
symbolic model we associate the set of users that had access to r in a round
up to and including t. Then, we prove that the resulting set systems satisfy
the security and correctness properties imposed in the combinatorial model, and
further that

tmax∑
t=0

|Mt| ≥ 1
3

tmax∑
t=0

Cost(t),

where Mt denotes the protocol message sent in the symbolic model in round t.
In fact, the inequality holds even if we only take into account the number of
ciphertexts sent rather than all protocol messages. In combination with our lower
bound in the combinatorial model, this immediately yields the desired bounds
on ME and CGKA.

The loss of 1/3 in our bound is due to the following. Consider the cost
function Cost(t), for some t, in the combinatorial model. Intuitively, each of
the two components, i.e., amount of sets removed from the system and size of
a minimum cover of Gt, is justified by the requirement that a corresponding
amount of ciphertexts is sent to communicate the respective secrets. However, it
might be the case that a ciphertext that corresponded to a part of the minimum
cover of group Gt in a later round t′ > t, might be the one being used to justify

The Cost of Maintaining Keys in Dynamic Groups with Applications 423

the cost of a set being removed from St′−1 following the removal of some users.
In this case, the same ciphertext is being counted twice in

∑tmax
t=1 Cost(t).

For a minimal example of this, consider the universe of users {ui : i =
0, . . . , nmax}, where each user holds a personal keys ki, and the sequence of
groups is given by Gt = {u0, ut}. I.e., the second user of a group of size 2 is
replaced in every round by encrypting the new group key to user ut’s personal
key (it is possible to communicate the new group key to user 0 without the need
of an additional ciphertext by making a clever use of a pseudorandom generator).
Then, the ciphertext accounting for the minimum cover of Gt is the same as the
one corresponding to the set Gt = {u0, ut} that is being removed from the set
system St when considering the cost of the following round t+1. Accordingly we
have that Cost(t) = 2 for every round, while only one ciphertext is being sent
per round.

However, we are able to show that this kind of double counting is essentially
the only thing that can go wrong in our translation between combinatorial and
symbolic models. The idea behind this is to derive separate bounds on the sum
over t of each summand of Cost(t).

We start by studying
∑tmax

t=0 (SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt}) − 1). In
order to find a cover for the set Gt we first cover the subset of users in Gt−1 that
are not removed from the group at time t, i.e., Gt−1 \Dt. Every user in Gt−1 \Dt

must be able to derive the group key of round t − 1 and do so by decrypting
some ciphertexts sent in or before round t − 1. If for each of these ciphertexts
we consider the set of users who know the secret key needed for decryption we
obtain a cover Ct,1 of Gt−1 \ Dt. Moreover, these ciphertext can be chosen so
that they are an encryption of a secret that is no longer useful in round t. This
guarantees that the ciphertexts used for Ct,1 and Ct̃,1 are different for t �= t̃.
Therefore

∑tmax
t=1 |Ct,1| ≤

∑tmax−1
t=0 |Mt|.

Next we obtain a cover for Gt by considering the singletons {u} for each
user that is added in round t. Since the users being added at time t do not
share any secrets with the users in Gt−1, we have |Mt| ≥ |At| − 1, where the
subtraction comes from the possible use of PRGs. However this might introduced
some double counting as these ciphertext might be used to obtain the inequality
at the end of the previous paragraph. Thus

tmax∑
t=0

|Mt| ≥ 1
2

tmax∑
t=0

(SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt}) − 1).

Regarding our bound on the first summand of Cost(t), if we consider a set
S associated to some secret r in round t − 1 that contains at least two users, it
must be the case that at least one of them had to decrypt a ciphertext in order
to learn r. Now, the additional restriction that S ∩ Dt �= ∅ guarantees that this
ciphertext is not used in future rounds and therefore we obtain

tmax∑
t=0

|Mt| ≥
tmax∑
t=1

|{S ∈ St−1 : S ∩ Dt �= ∅ and |S| > 1}|.

424 M. Anastos et al.

Combining the bounds on both components yields our bound on
∑tmax

t=1 Cost(t).

2 Preliminaries

2.1 Definitions and Results from Combinatorics

Definition 1 (Cover and (size of a) minimum cover). Let n ∈ N and
S ⊆ 2[n]. Then for X ⊆ [n], a cover of X with respect to S is a set T ⊆ S
satisfying X =

⋃
T∈T T . A cover of X with respect to S of minimal cardinality

is referred to as a minimum cover. We will use the notation SizeMinCov(X,S)
to denote the cardinality of a minimum cover of X with respect to S.

We now recall two results from combinatorics; the well-known inequality of arith-
metic and geometric means and the Bollobás Set Pairs Inequality.

Proposition 1 (Inequality of arithmetic and geometric means). For
k ∈ N let x1, . . . , xk ∈ R be non-negative. Then

k∏
i=1

xi ≤
(

1
k

k∑
i=1

xi

)k

.

Lemma 1 (Bollobás Set Pairs Inequality [7]). Let m ∈ N and consider
families of finite sets X = {X1,X2, . . . , Xm} and Y = {Y1, Y2, . . . , Ym} such
that Xi ∩ Yj = ∅ if and only if i, j ∈ [m] are equal. Then

m∑
i=1

(
|Xi| + |Yi|

|Xi|

)−1

≤ 1.

3 Lower Bounds in the Combinatorial Model

In this section we present a simple combinatorial model for the batched replace-
ment of users in multicast encryption and continuous group-key agreement (in
Sect. 3.1) and then use it to derive a lower bound on the communication required
to replace sets of users picked uniformly at random from the group members (in
Sect. 3.2).

3.1 The Combinatorial Model

In this section we present a simple, purely combinatorial model that aims to
capture the communication cost of batched replacements of users in multicast-
encryption (ME) and continuous group-key agreement (CGKA) schemes. In both
settings, a group of users evolving through rounds wants to agree on a sequence of
group-keys by sending and processing protocol messages. In the case of ME, these
are generated and sent by a central authority, whereas in the case of CGKA they
are generated by the users themselves and distributed via an untrusted server.

The Cost of Maintaining Keys in Dynamic Groups with Applications 425

Security essentially requires that, even given access to all protocol messages and
the current and prior internal states of all users not currently in the group, it is
not possible to gain any information on the current group key. Our model closely
resembles the one of [3] but extends it to dynamic groups, and further differs
in some aspects such as, for example, the cost metric (see Remark 1). Looking
ahead, in Sect. 4 we show that lower bounds in the combinatorial model imply
lower bounds on the number of ciphertexts sent in ME schemes in the symbolic
model.

High-level Structure and Evolution of the Group. An instantiation of the
combinatorial model consists of two integers nmax, tmax ∈ N, a set G0 ⊆ [nmax],
sequences of sets (Dt, At)tmax

t=1 , and a sequence of collections of sets (St)tmax
t=0 . Here

[nmax] represents the universe of users, tmax the number of rounds, and G0 the
initial group. For t ∈ [tmax], the sets Dt and At represent the users removed and
added from and to the group, respectively. Accordingly, for t ≥ 1 we inductively
define the group in round t as

Gt := (Gt−1 ∪ At) \ Dt.

To make the additions and removals to and from the group meaningful we impose
the requirement that Dt ⊆ Gt−1 and At ⊆ [nmax] \Gt−1 for all t ≥ 1. Regarding
the removed users, we will even impose the stronger requirement that they are
never added back to the group, i.e., that for all t ∈ [tmax] we have that

At ⊆ [nmax] \
(
Gt−1 ∪

t−1⋃
t′=1

Dt′
)
.

Looking ahead, this requirement will be necessary to formally justify our cost
function. Consider the scenario where every even round user u replaces user v,
and vice versa in odd rounds. Then, after the first couple of rounds, no more
communication is required, as all users could simply switch between 2 previously
established group keys, essentially allowing the repeated replacement of 2 users
for free when considering the amortized cost over many rounds. Our restriction
above, thus, allows us to get around artificial examples of this kind.

Associated Set System and Cost Function. The final component of the
combinatorial model is a sequence (St)tmax

t=0 , where every St ⊆ 2[nmax] is a col-
lection of sets of users. We will refer to St as the set system at time t. The
intuition behind a set S being part of St is that, in the corresponding ME or
CGKA scheme, there exists a key that is secure in round t and known to exactly
the users contained in S. More precisely, this means that the key is derivable
from the (current or any prior) internal state of every user u ∈ S, but cannot be
recovered from the sent protocol messages as well as the current and previous
states of users not in S.

To capture the correctness and security of ME and CGKA schemes the set
systems St in an instantiation of the combinatorial model must satisfy the fol-
lowing two properties.

426 M. Anastos et al.

(i) Gt ∈ St for all t ∈ [tmax]. This corresponds to all group members in round t
agreeing on a secure key.

(ii) S ⊆ Gt for all sets S ∈ St. This property represents that all keys known to
users not in Gt are being considered insecure in round t.

Finally, we associate a cost to each round in an instantiation of the combinatorial
model. The cost of round t is given by the sum of two terms; the first essentially
being the size of a minimum cover of the new group Gt with respect to set
system St−1 of round t − 1, and the second essentially being the number of sets
in St−1 no longer present in St due to the removal of the users in Dt. Intuitively,
the first summand corresponds to a lower bound on the number of ciphertexts
that have to be send in round t in order to establish the group key Kt and
the second summand to keys established in previous rounds that are no longer
secure, but were established at the cost of sending at least one ciphertext (see
Remark 1).

Definition 2. Let
(
(nmax, tmax,G0), (Dt, At)tmax

t=1 , (St)tmax
t=0

)
be an instantiation

of the combinatorial model. We define the cost of round 0 as

Cost(0) = SizeMinCov(G0, {{u} : u ∈ G0}) − 1 = |G0| − 1,

and for t ≥ 1 we define the cost of round t as

Cost(t) = SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt}) − 1
+ |{S ∈ St−1 : S ∩ Dt �= ∅ and |S| > 1}|.

Looking ahead, we will show that
∑tmax

t=0 Cost(t) in the symbolic model corre-
sponds to a lower bound on the number of ciphertexts sent as part of protocol
messages over the whole execution of the experiment, albeit with a loss of a fac-
tor of 3. Before proving our lower bound in the combinatorial model we discuss
some similarities and differences to the combinatorial model used in [3], which is
used to derive lower bounds on the communication cost of recovering from state
corruptions in CGKA by means of concurrent key updates.

Remark 1. While the structure of our combinatorial model closely resembles the
one of [3], it differs from it in the following aspects.

(a) Our model allows for additions and removals of users to and from the group.
(b) We work with a different cost function. The cost metric used in [3] for

set S ∈ St \ St−1 and round t (following the minimum cover approach
discussed in the introduction) essentially quantifies the communication cost
required in round t to add S to the set system. The cost function we use in
this work additionally takes the cost of sets being eliminated from St−1 into
account. Accordingly Cost(t) is not to be understood as the communication
sent in the current round, but instead also takes communication that already
occurred in prior rounds into account.

The Cost of Maintaining Keys in Dynamic Groups with Applications 427

(c) [3] also connects the cost of adding a set S to St to a minimum cover with
respect to the previous set system St−1, However, [3] uses a relaxed definition
of minimum cover, which requires S to be covered by a union of sets, not
necessarily to be equal to the union. The intuition behind this is that, in this
work, instead of security against an adversary corrupting users, we want to
protect the group key against the users themselves as soon as they have been
removed from the group, even if they stored all keys they previously had
access to. Phrased differently, if a secret/symmetric key is communicated to
a user at any point in time, we assume it remains known to that user for
the remainder of the experiment. Accordingly, in this work we define the
set system St by associating to a (secure) key the set of users in Gt which,
at any point in time until round t, had access to the key. Since (except for
the user generating the key from fresh randomness) all other users in the
corresponding set must have learned it from a ciphertext encrypted under a
secure key already known to them, the corresponding communication cost
must be at least the size of a minimum cover of the set with respect to the
previous set system (in the stronger sense of Definition 1).

On the other hand, [3] associated to a key the set of users which are able
to recover the key from their states since the last corruption before round t,
effectively allowing users to forget keys they knew in some prior round and
leading to a relaxed definition of minimum cover.

3.2 Lower Bound for Batched Replacements of Users

We now prove a bound on the communication complexity of batched replacement
of users in the combinatorial model. It essentially states that the prior multicast
encryption schemes batching dynamic operations [11,14] and the MLS contin-
uous group-key agreement standard [4] (the latter with respect to fair-weather
communication complexity) are optimal up to a small constant factor.

On a technical level, we define two families of subsets of Gt, which essentially
correspond to the two contributors to the cost function, i.e., the sets forming a
minimum cover of the new group Gt with respect to the previous set system, and
the sets containing at least one user removed in the current round, respectively.
We then observe that said families satisfy the disjointedness condition required
to apply the Bollobás Set Pairs Inequality. This allows us to lower bound their
sizes, which after some calculations implies the desired bound.

We first prove an implication of the Bollobás Set Pairs Inequality (Lemma 1).

Lemma 2. Let X = {X1,X2, . . . , Xm} and Y = {Y1, Y2, . . . , Ym} be families
of subsets of a finite set Z such that Xi ∩ Yj �= ∅ if and only if i, j ∈ [m] are
distinct. Then

m∑
i=1

(|Xi| + |Yi|) ≥ m ln m.

428 M. Anastos et al.

Proof. The condition of Xi ∩ Yj �= ∅ for all i �= j implies Xi, Yi �= ∅ ∀i ∈ [m].
Thus, from Lemma 1 we obtain

m∑
i=1

(
|Xi| + |Yi|

|Xi|

)−1

≤ 1,

which, using the bound
(

n

k

)
≤

(en

k

)k

, implies

1 ≥
m∑

i=1

(
|Xi| + |Yi|

|Xi|

)−1

≥
m∑

i=1

(
e (|Xi| + |Yi|)

|Xi|

)−|Xi|

=
m∑

i=1

e−|Xi| ·
(

1 +
|Yi|
|Xi|

)−|Xi|
.

Now, using that (1 + x/n)−n ≥ e−x and by multiplying by 1/m we obtain that

1
m

≥ 1
m

m∑
i=1

e−|Yi| · e−|Xi| ≥ 1
m

m∑
i=1

e−(|Yi|+|Xi|).

By the inequality of arithmetic and geometric means (Proposition 1) we
have that

1
m

≥
(m∏

i=1

e−(|Xi|+|Yi|)
)1/m

=
(m∏

i=1

e(|Xi|+|Yi|)
)−1/m

,

which by taking ln gives the desired result of
∑m

i=1 (|Xi| + |Yi|) ≥ m ln m. ��
We are now able to show that in the combinatorial model replacing a set

of d users chosen uniformly at random in a group of size n has cost at least
d · ln(n/d) in expectation. The bound holds in an amortized sense, i.e., even
if the experiment is repeated for several rounds. More formally, we obtain the
following.

Theorem 1. Let n, tmax, nmax ∈ N and (dt)tmax
t=1 such that dt ∈ N with dt ≤

n for all t. Consider an instantiation of the combinatorial model with respect
to (nmax, tmax,G0) and (Dt, At)tmax

t=1 where |G0| = n and, for all t, the set Dt of
removed users is sampled uniformly at random from the set {D ⊆ Gt−1 | |D| =
dt}, and At can be arbitrary according to the restrictions At ⊆ [nmax] \ (Gt−1 ∪⋃t−1

t′=1 Dt′) and |At| = |Dt|. Then it holds that

E

[
tmax∑
t=0

Cost(t)

]
≥

tmax∑
t=1

(
dt ln

(
n

dt

)
− 1

)
,

where the expectation is taken over the choice of (Dt)t. In particular, if dt = d
for all t, then

E

[
tmax∑
t=0

Cost(t)

]
≥ tmax ·

(
d · log

(n

d

)
− 1

)
.

The Cost of Maintaining Keys in Dynamic Groups with Applications 429

Proof. Since |Dt| = |At| = dt for all t > 0, we have |Gt| = n for all t ≥ 0.
We first consider the cost of a single round t ∈ [tmax]. By definition Gt =
(Gt−1 ∪ At) \ Dt, where Dt ⊂ Gt−1, and Gt−1 ∩ At = ∅. Therefore we get that
Gt ∩ Gt−1 = Gt−1 \ Dt = Gt \ At and

SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})
= SizeMinCov(Gt \ At,St−1 ∪ {{u} : u ∈ Gt \ At}) + |{{u} : u ∈ At}|
= SizeMinCov(Gt \ At,St−1 ∪ {{u} : u ∈ Gt \ At}) + dt

= SizeMinCov(Gt−1 \ Dt,St−1 ∪ {{u} : u ∈ Gt−1 \ Dt}) + dt (1)

as S ∩At = ∅ for all S ∈ St−1 (as S ⊆ Gt−1 by Property (ii) of the combinatorial
model).

Now for each possible subset Dt ⊆ Gt−1 such that |Dt| = dt, consider the sets

XDt
= {S ∈ St−1 | S ∩ Dt �= ∅} ∪ {{u} : u ∈ Dt}
= {S ∈ St−1 | S ∩ Dt �= ∅ and |S| > 1} ∪ {{u} : u ∈ Dt}. (2)

Further, let YDt
denote any minimum cover of Gt−1 \ Dt with respect to St−1 ∪

{{u} : u ∈ Gt−1 \ Dt}. Such a minimum cover always exists since Gt−1 \ Dt is
actually covered by sets in St−1 ∪ {{u} : u ∈ Gt−1 \ Dt}. Note that YDt

also is a
minimum cover of Gt−1 \Dt with respect to (St−1∪{{u} : u ∈ Gt−1 \Dt})\XDt

,
and that by Eq. 1 we have that

SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt}) = |YDt
| + dt. (3)

We claim that XDt
∩ YD′

t
= ∅ if and only if Dt = D′

t. Take the case of
Dt = D′

t; if S ∈ YDt
, then by definition of YDt

, S �∈ XDt
, thus XDt

∩ YDt
= ∅.

Now for the case of Dt �= D′
t, there must be a user u such that u ∈ Dt, u �∈ D′

t.
Since YD′

t
covers Gt−1 \ D′

t, there must exist S ∈ YD′
t

such that u ∈ S. Thus
S ∈ XDt

. Hence XDt
∩ YD′

t
�= ∅.

Using Lemma 2 we obtain

1(
n
dt

) ∑
Dt⊆Gt−1,|Dt|=dt

|XDt
| + |YDt

| ≥ 1(
n
dt

)(
n

dt

)
ln

(
n

dt

)
≥ dt ln

n

dt
. (4)

Note that Eq. 4 gives a lower bound on the expectation of |XDt
| + |YDt

| if the
set Dt is chosen uniformly at random. To make this formal, given n, nmax, tmax,
(dt)tmax

t=1 , and G0, we define a sequence of random variables (Dt,At,Gt)tmax
t=1 all

taking values in 2[nmax] where G1 := (G0 ∪ A1) \ D1 and for t ≥ 2

Gt := (Gt−1 ∪ At) \ Dt.

The sequence is distributed as follows. The set D1 of users removed in the
first round is distributed uniformly over {D1 ⊆ G0 : |D1| = d1} and A1 can
distributed arbitrarily over {A1 ⊆ [nmax] \G0 : |A1| = d1}. Now, conditioned on
Dt′ = Dt′ , At′ = At′ , and Gt′ = Gt′ for t′ ∈ [t − 1], the random variables Dt is

430 M. Anastos et al.

distributed uniformly over {Dt ⊆ Gt−1 : |Dt| = dt} and At can be distributed
arbitrarily over {At ⊆ [nmax] \ (Gt−1 ∪

⋃t−1
t′=1 Dt′) : |At| = dt}.

If we consider the expected cost of round t (see Definition 2) with respect to
the sequence of adds and removes given by (Dt,At)tmax

t=1 we obtain by Eqs. 2, 3,
and 4 that

E[Cost(t)] = E[|{S ∈ St−1 : S ∩ Dt �= ∅ and |S| > 1}|]
+ E[SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})] − 1

≥ E[|XDt
| − dt + |YDt

| + dt] − 1

≥ dt ln
n

dt
− 1.

Now, the theorem’s statement follows by linearity of expectation. ��

4 Lower Bound for Batched Replacements in Multicast
Encryption

In this section we define multicast encryption in the symbolic model and show
that the lower bound on batched replacement of users in the combinatorial model
of Sect. 3 carries over. Section 4.1 specifies the symbolic model and provides
syntax for multicast encryption, Sect. 4.2 proves the corresponding bound. For
the results for CGKA see the full version of this paper [2].

4.1 Multicast Encryption in the Symbolic Model

Considered Building Blocks. We now define syntax for multicast encryption
(ME) in a symbolic model in the style of Dolev and Yao [10]. In models of
this type, keys and ciphertexts of cryptographic primitives are seen as symbolic
variables, which are generated according to grammar rules, and can be derived
from sets of other symbolic variables according to an entailment relation �,
which itself models ideal security notions of the used cryptographic building
blocks. Throughout this section we will denote symbolic variables in typewriter
font to distinguish them from non-symbolic inputs and outputs of algorithms.
Further, single variables are depicted using lower case letters, sets of variables
using upper case letters.

In our symbolic treatment of multicast encryption we consider symbolic vari-
ables of the following two types; (pseudo)random strings denoted by r and mes-
sages m. The former will also serve as keys of symmetric encryption schemes
and, in this context, we will often denote them by k. Similarly, ciphertexts of
symmetric encryption are of message type and we will often denote them by c.
We consider ME schemes constructed from symmetric encryption schemes (SE),
pseudorandom generators (PRG), pseudorandom functions (PRF), dual pseudo-
random functions (dPRF) and secret sharing defined according to the following
syntax.

The Cost of Maintaining Keys in Dynamic Groups with Applications 431

– A symmetric encryption scheme SE = (SE.Enc,SE.Dec) specifies an encryp-
tion algorithm SE.Enc(k, m) that, on input symmetric key k of type r and
message m, returns a ciphertext c that is of message type. Deterministic
decryption algorithm SE.Dec(k, c), on input symmetric key k and cipher-
text c, returns a message m.
We require perfect correctness, i.e., SE.Dec(k,SE.Enc(k, m)) = m for all k and
m.

– A pseudorandom generator PRG(r), on input random string r, returns a
value (r1, r2), consisting of two pseudorandom strings. For simplicity we
restrict ourselves to PRGs with stretch 2. Note that PRGs with larger stretch
can easily be built from these using standard methods.

– A pseudorandom function PRF(r, ad), on input random string r and non-
symbolic associated data ad, returns a pseudorandom string r′.

– A dual pseudorandom function dPRF(r1, r2), takes two random strings r1, r2
as input and returns a pseudorandom string r′ = dPRF(r1, r2) =
dPRF(r2, r1).

– A secret sharing scheme given by two algorithms S and R. On input a message
m, S outputs a set of s many shares S(m) = {Si(m)}i∈[s] of type message and the
original message can be recovered given some subset of shares as determined
by an access structure Γ ⊆ 2[s], namely, for every I ∈ Γ , R(I, {Si(m)}i∈I) = m.

We now describe the grammar rules and entailment relation.

variable type grammar rule

r ← terminal type, PRG(r),PRF(r), dPRF(r1, r2)
m ← r, SE.Enc(k, m),Si(m)

entailment relation

m ∈ M ⇒ M � m
M � r ⇒ M � PRG(r) = (r1, r2)
M � r ⇒ ∀ad : M � PRF(r, ad)
M � r1, r2 ⇒ M � dPRF(r1, r2)
M � r, m ⇒ M � SE.Enc(r, m)
M � (r, c) : c = SE.Enc(r, m) ⇒ M � m
∃I ∈ Γ : M � {Si(m)}i∈I ⇒ M � m

The grammar rules state that (pseudo)random coins can either be directly sam-
pled or generated using a PRG or be obtained as the image of PRF or dPRF;
that the encryption algorithm of SE, on input a key of type r and message m,
generates a ciphertext; and that messages can be of arbitrary type. The entail-
ment relation states that every symbolic variable contained in a set M can be
recovered from the set. Further, it models ideal PRG security, stating that out-
puts of a PRG can only be recovered if given access to the respective input. PRF
security is also modeled in the same way, which means that there is no signifi-
cant difference between PRGs and PRFs in the symbolic model. The security of
a dPRF is modeled by requiring that outputs of a dPRF can only be recovered

432 M. Anastos et al.

given access to both inputs. Similarly, ideal SE security, i.e., that ciphertexts can
only be decrypted if given access to the corresponding key. For a more detailed
explanation and examples of the symbolic model we refer to [12]. The security of
the secret sharing scheme corresponds to the requirement that the original mes-
sage can be recovered from a set of shares as determined by the access structure.
Given a set M of symbolic variables we denote the set of all variables derivable
from it using the entailment relation by Der(M), i.e.,

m ∈ Der(M) exactly if M � m.

If M1, M2 are two sets of symbolic variables, we use the notation Der(M1, M2) =
Der(M1 ∪ M2).

Multicast Encryption Syntax. A multicast encryption scheme essentially
allows a central authority to provide a dynamically changing group of users with
a group key by sending protocol messages via a broadcast channel. The main goal
being to use protocol messages that are as small as possible while still achieving
correctness and security, i.e., that group members in every round agree on a
group key that, however, cannot be recovered from the sent protocol messages
even if given access to all previous states of non-members of the group.

As our goal in this work is to prove lower bounds and these are easier to state
by keeping the group size constant over all rounds, we work with a simplified
syntax only allowing for replacements of users, but not arbitrary removes and
adds. We essentially follow [1,12], who analyzed the communication cost of mul-
ticast encryption for replacing a single user per round in the setting of a single
group and of a system of potentially overlapping groups, respectively. The main
difference in this work is that we allow for batched operations, i.e., replacing a
set of more than one user at a time. Note that such a replacement can always
be implemented by both removing and adding parties and thus our bounds in
particular also hold for schemes allowing these operations.

In the following we split the inputs and outputs of algorithms into a symbolic
part, i.e., sets of symbolic variables, and a non-symbolic part containing, e.g.,
user identifiers. As already stated above, the former variables are depicted in
typewriter font, the latter in italics.

A multicast encryption scheme ME specifies algorithms ME.Setup, ME.Init,
ME.Repl, ME.Proc, ME.Key with the following syntax.5

– ME.Setup(nmax; R) takes as input nmax, the universe of users, and the set of
random coins R. It sets up the initial state (ST−1

u , st−1
u) for every user u ∈

[nmax]. The symbolic part of the initial state, namely, ST−1
u is subject to

the requirements that ST−1
u = {k−1

u } where k−1
u is of type random string

and ST−1
u ∩ Der(

⋃
v∈[nmax]\{u} ST

−1
v) = ∅. Similar assumptions are also made

in [1,12]. For instance, in [12] it is assumed that each user is assigned exactly
one key that cannot be derived from those assigned to other users, while in [1]

5 One can consider the possibility that some of these algorithms be randomized by
also including non-symbolic randomness as an input and the results would hold for
any choice of non-symbolic randomness.

The Cost of Maintaining Keys in Dynamic Groups with Applications 433

users are additionally assigned a key for each subgroup they belong to with
the property that they cannot be derived from keys of users that do not belong
to the corresponding subgroup. Making this kind of assumption is justified.
Otherwise one could consider schemes in which communication is artificially
reduced. For instance, generating two keys kS,1, kS,2 for each possible subset
S ∈ 2[nmax] during setup and instead of giving users these keys, they would
get a ciphertext cS = Enc(kS,1, kS,2) for each set they are a member of and
then the key kS,1 would be sent in the clear in a later round.6

– ME.Init(G0; R), on input the first group G0 and a set of random coins R,
outputs a control message (M,M). Further, it implicitly sets up the initial
group key k0.

– ME.Repl(At,Dt; R) allows replacing a set Dt of group members by a set At of
new users. In round t it takes as input the set At ∈ [nmax] \ Gt−1 of users to
be added to the group, Dt ⊆ Gt−1, the set of users to be removed, and a set
of random coins R. We require that |At| = |Dt|. The output of the algorithm
is a control message (M,M). Further, the algorithm implicitly sets up the tth

group key kt.
– Deterministic algorithm ME.Proc((STt−1

u , st t−1
u), (M,M)) takes as input, in

round t, a user’s internal state (STt−1
u , st t−1

u) as well as a control mes-
sage (M,M) (either output by ME.Init or by ME.Repl). It returns the user’s
updated state (STt

u, st t
u).

– Deterministic algorithm ME.Key(STt
u, st t

u), on input user u’s state at the end
of round t, returns the tth group key kt.

The algorithms ME.Setup, ME.Init, ME.Repl are run by the central author-
ity and it is understood that they also take as input all users’ states and all
messages despite this not being explicitly indicated. We require that symbolic
outputs of algorithms are derivable from the symbolic part of their inputs,
e.g. if (STt

u, st t
u) ← ME.Proc((STt−1

u , st t−1
u), (M,M)) then it must hold that

(STt−1
u , M) � STt

u. Moreover, we also require that only a finite number of deriva-
tion steps is needed. Further and for brevity, while in the following we will make
the users removed from, and added to, the group explicit, we will often drop
the non-symbolic parts of protocol messages and users’ states, and simply write
STt

u ← ME.Proc(STt−1
u , M).

Correctness and Security. We capture security and correctness of multicast-
encryption schemes in the symbolic model simultaneously with the game in
Fig. 2. Similar to the experiment in the combinatorial model, the game is param-
eterized by a tuple (nmax, tmax,G0) which specifies the initialization of the group
and a sequence (At,Dt)tmax

t=1 of users added to, and removed from, the group. In

6 The restriction that ST−1
u consists of just one element can be weakened if one requires

that it only consists of random coins and for all coins r ∈ ST−1
u it holds that r /∈

Der((ST−1
u \ {r}) ∪ ∪v∈[nmax]\{u}ST

−1
v). This is done in the full version in the case of

CGKA schemes and it applies, mutatis mutandis, to the case of ME. But it comes
at the cost of an additional step in the proof of the lower bound, so we leave it for
the appendix.

434 M. Anastos et al.

round 0 the states of all users in [nmax] are set up using ME.Setup and the
group G0 is initialized using ME.Init and ME.Proc. Then security and correct-
ness are verified for the first round, meaning that (a) all users in G0 have access
to the (unique) group key k0, and (b) the non-members of G0 are not able to
derive k0 from their internal states and the protocol message M0 sent in round 0
even if colluding. If both checks succeed, the game proceeds in rounds t. In each
of them the users in At are added to the group and the users in Dt removed
from it using ME.Repl(At,Dt), and all current group members are made to pro-
cess the resulting protocol message Mt with ME.Proc. Again it is checked that
the round satisfies correctness and security. The former means that all users in
Gt derive the same group key for round t, which can essentially be seen as the
requirement that

∃kt : kt = ME.Key(STt
u) for all u ∈ Gt.

Note that this in particular implies kt ∈ Der(STt
u) for all u ∈ Gt.

The latter means that, even if all non group-members never deleted their old
states and collude, they are not able to recover the current group key, i.e.,

kt /∈ Der
(
(Mt′)t

t′=0, ((ST
t′
u)t

t′=−1)u∈[nmax]\Gt

)
.

This notion of security only asks for post-compromise security and not forward-
secrecy since we are not considering the possibility that the group key at time t
can be derived from future exposures. This only strengthens our lower-bound. If
one of the checks fails, the game aborts and returns 0, else it returns 1. We say
that a ME scheme ME is correct and secure, if game SEC with respect to any
input (nmax, tmax,G0), (At,Dt)tmax

t=1 returns 1.

Fig. 2. Symbolic security and correctness game for multicast encryption scheme ME.
In Line 16 if the condition after require is not met the game aborts and outputs 1,
meaning that the execution of the game is considered to have been secure.

The Cost of Maintaining Keys in Dynamic Groups with Applications 435

Useful Keys and Associated Set System. Consider an execution of
game SECME with respect to (nmax, tmax,G0) and (At,Dt)tmax

t=1 . Let t ∈ [tmax]0 :=
[tmax] ∪ {0} and consider a random coin r that was generated in some round up
to and including t. We say r is useful at time t, if

r /∈ Der
(
(Mt′)t

t′=0, ((ST
t′
u)t

t′=−1)u∈[nmax]\Gt

)
,

which means that it cannot be derived from all protocol messages sent so far and
all prior and current states of users that are not members of the group at time t.
Following [3], we associate to a secure coin r a set of users, with the important
difference, however, that in this work the set contains all users that had access
to r at any point in time.

Definition 3. Consider an execution of security game SECME with respect to
input (nmax, tmax,G0) and (At,Dt)tmax

t=1 . Let t ∈ [tmax]0 and r be a random coin.
We define

S(t, r) := {u ∈ [nmax] | r ∈ Der(ST−1
u , (Mt′)t′≤t : u∈Gt′)}

It should be noted that STt′
u ⊆ Der(ST−1

u , (Mt′)t′≤t : u∈Gt′) for t′ ≤ t. Further, we
define the set system at time t as

St := {S ⊆ [nmax] | ∃ useful coin r : S = S(t, r)}.

We prove two Lemmas that capture how derivation works in the symbolic
model and connects it to the sets defined in Definition 3.

Lemma 3. Let r be of type random coin and useful at time t ∈ [tmax]0, and u
a user such that u ∈ S(t, r). Then (at least) one of the following cases holds.

1. There exist r′ with PRG(r′) = (r1, r2) and i ∈ {1, 2} such that r = ri.
Further, r′ is useful at time t and u ∈ S(t, r′).

2. There exists r′ and associated data ad such that PRF(r′, ad) = r. Further, r′

is useful at time t and u ∈ S(t, r′).
3. There exist r1 and r2 such that dPRF(r1, r2) = r, at least one of r1 and r2

is useful at time t, and u ∈ S(t, r1) ∩ S(t, r2).
4. r ∈ ST−1

u

5. There exists c = e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(r) where ei = SE.Enc(ri, ·) or
ei = Sij (·) and
(a) c ∈

⋃
t̃≤t : u∈Gt̃

Mt̃,
(b) if ei = SE.Enc(ri, ·) and i ≥ g + 1, ri is not useful at time t,
(c) there exists i ∈ {0, . . . , h} such that ei = SE.Enc(ri, ·),
(d) eg = SE.Enc(rg, ·) and rg is useful at time t, and
(e) for all encryptions ei = SE.Enc(ri, ·), it holds that u ∈ S(t, ri).

Proof. If r admits a PRG pre-image r′, r′ must be useful at time t since r
is. Therefore we have two possible cases depending on whether u ∈ S(t, r′). If
u ∈ S(t, r′) we are in Case 1. If u /∈ S(t, r′), then one of the following holds:

436 M. Anastos et al.

– r ∈ ST−1
u ∪

⋃
t′≤t : u∈Gt′ Mt′ and the fact that r is useful implies that r ∈ ST−1

u .
– Or, by repeatedly applying the last two rules of the entailment relation, there

exists a ciphertext c ∈ ST−1
u ∪

⋃
t′≤t : u∈Gt′ Mt′ of the form e0(·) ◦ . . . ◦ eg(·) ◦

. . . ◦ eh(r) where each ei is an application of S or SE.Enc such that condition
(e) holds. By assumption ST−1

u only contains symbols of type random coins,
so c ∈

⋃
t′≤t : u∈Gt′ Mt′ . Therefore there must exist at least one encryption in

c under a useful key since r is useful. This shows (c) and (d). Condition (b)
is just a matter of choice.

The two options above correspond to Cases 4 or 5, respectively.
If r does not admit a PRG pre-image, we consider whether it admits a PRF

pre-image r′, which must be useful at time t since r is. If u ∈ S(t, r′) we are in
Case 2, else we are in Cases 4 or 5. If r does not admit a PRF pre-image, we
study whether there exist r1 and r2 such that dPRF(r1, r2) = r. In this case at
least one of r1 and r2 must be useful at time t since r is. If u ∈ S(t, r1)∩S(t, r2),
then we are in Case 3. Else we are in Cases 4 or 5.

Repeatedly applying Lemma 3 one can obtain the following result:

Lemma 4. Let r be of type random coin and useful at time t ∈ [tmax]0, and u a
user such that u ∈ S(t, r). Then there exists a sequence {r1,u,t, . . . , r�u,u,t} such
that

6. for all i the secret ri,u,t is useful at time t and u ∈ S(t, ri,u,t),
7. r�u,u,t = r,
8. r1,u,t ∈ ST−1

u , and
9. for all i ∈ {1, . . . , �u − 1} one of the following is true

(a) PRG(ri,u,t) = (r1, r2) for some r1, r2 such that either ri+1,u,t = r1 or
ri+1,u,t = r2, or

(b) there exists ad such that PRF(ri,u,t, ad) = ri+1,u,t, or
(c) there exists r′

i,u,t such that u ∈ S(t, r′
i,u,t) and dPRF(ri,u,t, r′

i,u,t) =
ri+1,u,t, or

(d) there exists a ciphertext ci,u,t ∈
⋃

t̃≤t : u∈Gt̃
Mt̃ such that

ci,u,t = e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(ri+1,u,t)

where all properties of Case 5 are satisfied and ri,u,t = rg the secret used
in eg = SE.Enc(rg, ·).

Observe that �u depends on u, t and r, so in some cases we make this explicit
and write �u,t,r or just �u,t if the random coin r is clear from context.

Proof. Let r ← r and Seq ← ∅. Repeat (r,Seq) ← f(r,Seq) until r = STOP
where:

f(r,Seq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if we are in Case 1, do (r,Seq) ← (r′, {r} ∪ Seq),
if we are in Case 2, do (r,Seq) ← (r′, {r} ∪ Seq),
if we are in Case 3 and ri is useful, do (r,Seq) ← (ri, {r} ∪ Seq),
if we are in Case 4, do(r,Seq) ← (STOP, {r} ∪ Seq),
if we are in Case 5, do(r,Seq) ← (rg, {r} ∪ Seq).

The Cost of Maintaining Keys in Dynamic Groups with Applications 437

By construction, Properties 6, 7, 8, as well as one of Properties 9a to 9d are
clearly satisfied by Seq at every point in time. This process must end since
we require that only a finite number of derivation steps is made by the ME
algorithms.

Now we follow the approach of [12] in order to construct a graph for each
round and use it to establish a connection between the sets in St and those in
St−1 obtaining a similar result to the one in [3].

The sequences constructed in Lemma 4 suggest considering the following
graph Gt = (Vt, Et) for t ∈ [tmax − 1]0. The set of nodes Vt is a subset of useful
random coins at time t which corresponds to the elements of the sequences
{kt

1,u,t, . . . , k
t
�u,u,t} associated to the group key kt = kt

�u,u,t and each user u ∈
S(t, kt). The set of edges Et consists of all pairs of the form (kt

i,u,t, k
t
i+1,u,t).

In the case that an edge (kt
i,u,t, k

t
i+1,u,t) is obtained from Property 9c, i.e.,

there exists r′
i,u,t such that dPRF(ri,u,t, r′

i,u,t) = ri+1,u,t and u ∈ S(t, r′
i,u,t), one

can construct the sequence from Lemma 4 using the secret r′
i,u,t instead of ri,u,t

when both ri,u,t and r′
i,u,t are useful at time t. If this happens, we make the same

choice for all users in order to guarantee that one dPRF pre-image (Case 9c) does
not result in two edges in Et. This is possible since u ∈ S(t, ri,u,t) ∩ S(t, r′

i,u,t).
If an edge (kt

i,u,t, k
t
i+1,u,t) satisfies Properties 9a, 9b or 9c we refer to it as

a trivial edge, while we refer to an edge that satisfies Property 9d as a com-
munication edge. The graph Gt has some basic properties which we state in the
following result.

Lemma 5. Let ME be a correct and secure ME scheme. Consider an execution
of game SECME on input (nmax, tmax,G0) and (At,Dt)tmax

t=1 such that Dt ⊆ Gt−1

and At ⊆ [nmax] \ (Gt−1 ∪
⋃t−1

t′=1 Dt) for all t ∈ [tmax]. Let t ∈ {0, . . . , tmax − 1}
and kt denote the group key at time t output by ME.Key in Line 22. Then the
following properties of the graph Gt are true.

10. For every u ∈ S(t, kt), the node kt
1,u,t has no incoming edges and kt

1,u,t �=
kt
1,v,t for all u �= v. Actually it holds that S(t, k−1

u) = {u}.
11. For every node kt

i,u,t there exists at most one node r such that PRG(r) =
(r′

1, r
′
2) and r′

j = kt
i,u,t for some j ∈ {1, 2}, or that PRF(r, ad) = kt

i,u,t for
some ad, or that dPRF(r, r′) = kt

i,u,t or dPRF(r′, r) = kt
i,u,t for some r′

(where r′ may not be in Vt).
12. There exists at most one user u in S(t, kt) such that for all 1 ≤ i ≤ �u − 1

the edge (ri,u,t, ri+1,u,t) is a trivial edge.
13. If Dt+1 �= ∅, then for every u ∈ S(t, kt) \ Dt+1, there exists ju,t such that

1 ≤ ju,t < �u,t and for the corresponding edge (kt
ju,t,u,t, k

t
ju,t+1,u,t) ∈ Et there

exists a user v ∈ Dt+1 such that v ∈ S(t, kt
ju,t+1,u,t) and for all w ∈ Dt+1

we have w /∈ S(t, kt
ju,t,u,t). Moreover, ju,t will denote the least integer in

{1, . . . , �u,t − 1} with this property.

Proof. Since ST−1
u = {k−1

u }, it follows from Property 8 that kt
1,u,t = k−1

u . If
there exists (r, k−1

u) ∈ Et, then there exists a user v ∈ S(t, kt) such that u �= v

438 M. Anastos et al.

and kt
i,v,t = r and kt

i+1,v,t = k−1
u by definition of Gt. By Property 6 applied to

kt
i+1,v,t, we obtain v ∈ S(t, k−1

u). This would imply that it would not be secure
to remove user v in round t + 1 while maintaining u in the group. Indeed,

kt+1 ∈ Der(ST−1
u , (Mt′)t′≤t+1: u∈Gt′) ⊆ Der

(
(Mt′)t+1

t′=0, ((ST
t′
u)t+1

t′=−1)u∈[nmax]\Gt

)
.

We have actually shown that v ∈ S(t, k−1
u) implies v = u. Therefore S(t, k−1

u) =
{u}. This completes the proof of Property 10.

Property 11 follows directly from the properties of the symbolic model and
the fact that when constructing Gt we choose only one edge of the two possible
for dPRF evaluations.

Property 12 is a direct consequence of the two previous properties.
Property 13 follows from the observation that the node k�u,u,t = kt satisfies

the first condition for all users in Dt+1 and the node k1,u,t = k−1
u satisfies the

second condition (by Property 10). Since Dt+1 �= ∅ by assumption, there must
exist an edge with the required property.

4.2 Lower Bound on Batched Replacements

We now show that a subset S̃t of the set system St defined above satisfies the
properties of the combinatorial model regarding correctness and security and,
additionally, that the amount of ciphertexts sent in the symbolic model matches
the cost function of Sect. 3.1 (with respect to the set system S̃t) up to a multi-
plicative loss of 3. As a consequence, the lower bound derived in Sect. 3.2 applies
to batched replacements in multicast in the symbolic model.

Lemma 6. Let nmax and tmax be in N and (dt)tmax
t=1 such that dt ≤ nmax for

all t. Let ME be a correct and secure ME scheme. Consider an execution of
game SECME on input (nmax, tmax,G0) and (At,Dt)tmax

t=1 such that Dt ⊆ Gt−1

and At ⊆ [nmax] \ (Gt−1 ∪
⋃t−1

t′=1 Dt′) for all t ∈ [tmax]. Let (St)tmax
t=0 be the

associated set system as defined in Definition 3. Further, for t ∈ [tmax]0 let

S̃t =

{
S ∈ St

∣∣∣∣∃r such that S = S(t, r), r is useful at time t and
�r1, r2 such that dPRF(r1, r2) = r and S(t, r1) ∩ S(t, r2) = S(t, r)

}
.

Then it holds that

(i) Gt ∈ S̃t for all t ∈ [tmax]0,
(ii) S ⊆ Gt for all S ∈ St and, in particular, S ⊆ Gt for all S ∈ S̃t

(iii)
∑tmax

t=0 |Mt| ≥ 1/3 ·
∑tmax

t=0 Cost(t), where Cost(t) is the cost function defined
in Sect. 3.1 with respect to S̃t, namely:

Cost(t) = (SizeMinCov(Gt, S̃t−1∪{{u} : u ∈ Gt})−1)+|{S ∈ S̃t−1 : S ∩ Dt 	= ∅ and |S| > 1}|.

The Cost of Maintaining Keys in Dynamic Groups with Applications 439

The reason for introducing S̃t is that allowing the use of dPRFs means that
the original set St also contains the intersection of any pair of sets such that
one of the associated secrets is useful and this does not require any additional
communication. Before turning to the lemma’s proof we state our bound on
the communication complexity of batched replacements in multicast encryption,
which follows directly by applying Theorem 1 to set system (S̃t)tmax

t=0 which is
possible due to Lemma 6.

Corollary 1. Let n ≤ nmax and tmax be in N and (dt)tmax
t=1 such that dt ≤ n

for all t. Let ME be a correct and secure ME scheme. Consider an execution of
game SECME on input (nmax, tmax,G0) and (At,Dt)tmax

t=1 where |G0| = n and,
for all t, the set Dt of removed users is sampled uniformly at random from the
set {D ⊆ Gt−1 | |D| = dt} and At can be arbitrary according to the restric-
tions At ⊆ [nmax] \ (Gt−1 ∪

⋃t−1
t′=1 Dt′) and |At| = |Dt|. Then, it holds that

E

[
tmax∑
t=0

|Mt|
]

≥ ln(2)
3

tmax∑
t=1

dt log
(

n

dt

)
,

where the expectation is taken over the choice of (Dt)t. In particular, if dt = d
for all t, then

E

[
tmax∑
t=0

|Mt|
]

≥ ln(2)
3

tmax · d · log
(n

d

)
.

Proof (Proof of Lemma 6). We start proving Property (ii). Let S = S(t, r) ∈ St

and u ∈ S. By definition of S(t, r) we have that r ∈ Der(ST−1
u , (Mt′)t′≤t : u∈Gt′)

and since r is useful at time t it holds that r /∈ Der((Mt′)t
t′=0, ((ST

t′
u)t

t′=−1)u/∈Gt
).

Thus u ∈ Gt as claimed in Property (ii).
Now we proceed to show that Property (i) is true. Recall that STt

u ⊆
Der(ST−1

u , (Mt′)t′≤t : u∈Gt′). By correctness there exists a key kt such that kt =
ME.Key(STt

u) for all users u ∈ Gt and by security we have that kt /∈ Der((Mt′)t
t′=0,

((STt′
u)t

t′=−1)u/∈Gt
), so S(t, kt) = Gt and S(t, kt) ∈ St. Moreover, assume that

there exist r1, r2 such that dPRF(r1, r2) = kt and S(t, r1)∩S(t, r2) = S(t, kt) =
Gt. Since kt is useful at time t, there exists i ∈ {1, 2} such that ri is use-
ful at time t. By Property (ii) it must hold that S(t, ri) ⊆ Gt. The fact that
S(t, r1)∩S(t, r2) = S(t, kt) = Gt implies that we also have Gt ⊆ S(t, ri). There-
fore S(t, ri) = Gt. By repeating this process we can find a secret r that is useful
at time t such that S(t, r) = Gt and that satisfies the property that �r1, r2 such
that dPRF(r1, r2) = r and S(t, r1) ∩ S(t, r2) = S(t, r). This shows that Gt ∈ S̃t

as claimed in Property (i). Observe that we have shown S(t, kt) = Gt and not
just Gt ∈ S̃t.

440 M. Anastos et al.

We now proceed to prove Property (iii). We divide the proof into showing
each of the following two equations separately:

tmax∑
t=0

|Mt| ≥ 1
2

tmax∑
t=0

(SizeMinCov(Gt, S̃t−1 ∪ {{u} : u ∈ Gt}) − 1) (5)

tmax∑
t=0

|Mt| ≥
tmax∑
t=1

|{S ∈ S̃t−1 : S ∩ Dt �= ∅ and |S| > 1}|. (6)

Let t ∈ {1, . . . , tmax} and denote by kt the group key of round t. If Dt = ∅,
SizeMinCov(Gt, S̃t−1 ∪ {{u} : u ∈ Gt}) − 1 = 0, so we assume that Dt �= ∅. In
order to construct a cover of Gt we give a cover of Gt \ At and a cover of At.
Observe that u ∈ Gt \ At if and only if u ∈ Gt−1 \ Dt.

For each u ∈ Gt−1 \ Dt, we consider the index ju,t−1 from Property 13. We
claim that

Ct,1 = {S(t − 1, kt−1
ju,t−1,u,t−1) | u ∈ Gt−1 \ Dt}

is a cover of Gt−1 \ Dt and Ct,1 ⊆ St−1. The fact that u ∈ S(t − 1, kt−1
ju,t−1,u,t−1)

and S(t − 1, kt−1
ju,t−1,u,t−1) ∈ St−1 is a consequence of Property 6. It also holds

that S(t − 1, kt−1
ju,t−1,u,t−1) ⊆ Gt−1 \ Dt by Properties 13 and (ii).

Let dju,t−1+1 denote the in-degree of the node kt−1
ju,t−1+1,u,t−1 in Gt−1 and

let u1 = u, u2, . . . , uh be users such that kt−1
ju,t−1+1,u,t−1 = kt−1

jui,t−1+1,ui,t−1 for
i = 1, . . . , h and for any user v with kt−1

jv,t−1+1,v,t−1 = kt−1
ju,t−1+1,u,t−1, there exists

a unique i ∈ {1, . . . , h} such that kt−1
jv,t−1,v,t−1 = kt−1

jui,t−1,ui,t−1. I.e., we choose
exactly one user ui for each of the incoming edges of the node kt−1

ju,t−1+1,u,t−1

that satisfy Property 13. Therefore dju,t−1+1 ≥ h. Each node kt−1
ju,t−1+1,u,t−1 has

at most one incoming trivial edge (Property 11). All the other dju,t−1+1 − 1
incoming edges correspond to ciphertexts in

⋃t−1
t′=0 Mt′ . If dju,t−1+1 ≥ h + 1,

then the node kt−1
ju,t−1+1,u,t−1 contributes to Ct,1 with at most h ≤ dju,t−1+1 − 1

sets. If dju,t−1+1 = h, then we can consider the graph we would obtain for
the secret kt−1

ju,t−1+1,u,t−1 rather than kt−1. Let’s denote it H. The set of nodes
corresponds to the elements of the sequences constructed in Lemma 4 for the
secret kt−1

ju,t−1+1,u,t−1 and the set of edges consists of all pairs of consecutive
elements in those sequences. Since the node kt−1

ju,t−1+1,u,t−1 in H has at least
one additional incoming edge that corresponds to the user v ∈ Dt guaranteed
to exist by Property 13 for Gt−1, which does not contribute to Ct,1, the node
kt−1

ju,t−1+1,u,t−1 contributes to Ct,1 with at most h = dju,t−1+1 sets and we have

at least dju,t−1+1 ciphertexts in
⋃t−1

t′=0 Mt′ . Thus |Ct,1| ≤
∑t−1

t′=0|Mt′ |.
We observe that S(t−1, kt−1

ju,t−1+1,u,t−1)∩Dt �= ∅. Therefore, kt−1
ju,t−1+1,u,t−1 is

not a useful random coin at time t. This guarantees that the node kt−1
ju,t−1+1,u,t−1

will not be in Gt̃ for t̃ ≥ t. Therefore
∑tmax

t=1 |Ct,1| ≤
∑tmax−1

t=0 |Mt|.
Moreover, we can find covers C′

t,1 ⊆ S̃t−1 such that
∑tmax

t=1 |C′
t,1| ≤

∑tmax−1
t=0 |Mt|.

We obtain C′
t,1 from Ct,1 by substituting the sets that are in St−1 \ S̃t−1 for

The Cost of Maintaining Keys in Dynamic Groups with Applications 441

sets in S̃t−1. Let’s assume that there exist r1, r2 such that dPRF(r1, r2) =
kt−1

ju,t−1,u,t−1 and S(t − 1, r1) ∩ S(t − 1, r2) = S(t − 1, kt−1
ju,t−1,u,t−1). Since

kju,t−1,u,t−1 is useful at time t − 1, there exists i ∈ {1, 2} such that ri is
useful at time t − 1. From S(t − 1, r1) ∩ S(t − 1, r2) = S(t − 1, kt−1

ju,t−1,u,t−1)
and the way sequences are constructed in Lemma 4, it follows that ju,t−1 > 1,
kt−1

ju,t−1−1,u,t−1 = ri. From S(t − 1, r1) ∩ S(t − 1, r2) = S(t − 1, kt−1
ju,t−1,u,t−1),

we obtain S(t − 1, kt−1
ju,t−1,u,t−1) ⊆ S(t − 1, ri) = S(t − 1, kt−1

ju,t−1−1,u,t−1).
The minimality condition imposed on ju,t by Property 13 guarantees that
S(t − 1, kt−1

ju,t−1−1,u,t−1) ∩ Dt = ∅. This shows that C′
t,1 = (Ct,1 \ {S(t −

1, kt−1
ju,t−1,u,t−1)}) ∪ {S(t − 1, ri)} is also a cover of Gt−1 \ Dt and it has the same

size as Ct,1. Therefore by repeating this process we obtain a cover of Gt−1 \ Dt

with respect to S̃t−1 and it has at most as many sets as the original Ct,1. We
denote it C′

t,1 and it holds that

tmax∑
t=1

|C′
t,1| ≤

tmax−1∑
t=0

|Mt|. (7)

Now we give a cover of At. The argument also considers the case where t = 0
if we define A0 = G0. For each u ∈ At, let iu,t ∈ {1, . . . , �u,t} be maximal such
that for all 1 ≤ j < iu,t, (kt

j,u,t, k
t
j+1,u,t) is a trivial edge. By Property 12, there

exists at most one user in At such that iu,t = �u,t. For every user u ∈ At such
that iu,t < �u,t, there exists a ciphertext ciu,t,u,t as proven in Property 9d. All
these ciphertexts must be different or else there would exist users u, v ∈ At such
that kt

iu,t,u,t = kt
iv,t,v,t, which would contradict Properties 11 and 10.

Each of the ciphertexts ciu,t,u,t belongs to
⋃

t̃≤t : u∈Gt̃
Mt̃. From the condition

At ⊆ [nmax]\(Gt−1∪
⋃t−1

t′=1 Dt), it follows that ciu,t,u,t ∈ Mt. Thus we have at least
|At|−1 many ciphertexts sent in round t. The cover of At, Ct,2 = {{u} | u ∈ At}
satisfies the inequality |Mt| ≥ |Ct,2|−1. From this inequality and Eq. 7, we obtain

1
2

tmax∑
t=1

|Ct,1| +
1
2

tmax∑
t=0

(|Ct,2| − 1) ≤ 1
2

tmax−1∑
t=0

|Mt| +
1
2

tmax∑
t=0

|Mt| ≤
tmax∑
t=0

|Mt|.

This shows Eq. 5 since |C′
t,1| ≤ |Ct,1| and C′

t,1 ∪ Ct,2 is a cover of Gt for all
t ∈ [tmax]0 (we take C′

0,1 = ∅).
Now we show Eq. 6. Let S = S(t−1, r) ∈ S̃t−1 such that S∩Dt �= ∅ , |S| > 1,

and �r1, r2 that satisfy the following two properties: dPRF(r1, r2) = r and
S(t−1, r1)∩S(t−1, r2) = S(t−1, r). We proceed to consider the graph Gt−1,r =
(Vt−1,r, Et−1,r) where Vt−1,r is a subset of useful random coins at time t−1 which
corresponds to the elements of the sequences {r1,u,t−1, . . . , r�u,u,t−1} constructed
in Lemma 4 for each user u ∈ S(t − 1, r). The set of edges Et−1,r consists of
all pairs (ri,u,t−1, ri+1,u,t−1). From Property 127 and the fact that |S| > 1, it
follows that not all edges in Et−1,r are trivial edges. If the node r only has only
7 Property 12 was shown for the graph Gt and the same argument shows that this

property also holds for Gt−1,r.

442 M. Anastos et al.

one incoming edge of the form (r�u−1,u,t−1, r�u,u,t−1 = r) for some u ∈ S(t−1, r)
and it is a trivial edge, then S(t − 1, r�u−1,u,t−1) = S(t − 1, r). In order to show
this we consider two cases:

– if �r1, r2 such that dPRF(r1, r2) = r, then (r�u−1,u,t−1, r�u,u,t−1 = r) must
correspond to a PRG or a PRF and S(t − 1, r�u−1,u,t−1) = S(t − 1, r),

– if ∃r1, r2 such that dPRF(r1, r2) = r, but S(t − 1, r1) ∩ S(t − 1, r2) � S(t −
1, r), then there exists a user v ∈ S(t − 1, r) \ S(t − 1, r1) ∩ S(t − 1, r2) and
by Property 9c r�v−1,v,t−1 �= r1 and r�v−1,v,t−1 �= r2. This contradicts the
assumption that r had only one incoming edge.

As argued in the previous paragraph we may assume without loss of gener-
ality that for some user u ∈ S(t − 1, r) = S the edge (r�u−1,u,t−1, r�u,u,t−1 = r)
corresponds to a ciphertext c�u−1,u,t ∈

⋃t−1
t′=0 Mt′ . This shows that

∑t−1
t′=0|Mt′ | ≥

|{S ∈ S̃t−1 : S ∩ Dt �= ∅ and |S| > 1}|. Moreover, the fact that S ∩ Dt �= ∅ guar-
antees that r does not appear in Gt̃−1,r̃ for any t̃ > t and useful r̃ at time t̃ by
Property (ii). Thus,

tmax−1∑
t=0

|Mt| ≥
tmax∑
t=1

|{S ∈ S̃t−1 : S ∩ Dt �= ∅ and |S| > 1}|.

Finally we multiply Eq. 5 by 2/3 and Eq. 6 by 1/3 and add them together to
obtain

∑tmax
t=0 |Mt| ≥ 1/3 ·

∑tmax
t=0 Cost(t), as desired.

References

1. Alwen, J., et al.: Grafting key trees: efficient key management for overlapping
groups. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044,
pp. 222–253. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 8

2. Anastos, M., et al.: The cost of maintaining keys in dynamic groups with applica-
tions to multicast encryption and group messaging. Cryptol. ePrint Arch. Paper
2024/1097 (2024). https://eprint.iacr.org/2024/1097

3. Auerbach, B., Cueto Noval, M., Pascual-Perez, G., Pietrzak, K.: On the cost of
post-compromise security in concurrent continuous group-key agreement. In: Roth-
blum, G., Wee, H. (eds.) TCC 2023, Part III. LNCS, vol. 14371, pp. 271–300.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-48621-0 10

4. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (Jul 2023). https://
doi.org/10.17487/RFC9420, https://www.rfc-editor.org/info/rfc9420

5. Bienstock, A., Dodis, Y., Garg, S., Grogan, G., Hajiabadi, M., Rösler, P.: On
the worst-case inefficiency of CGKA. In: Kiltz, E., Vaikuntanathan, V. (eds.)
TCC 2022, Part II. LNCS, vol. 13748, pp. 213–243. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-22365-5 8

6. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551,
pp. 198–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 8

7. Bollobás, B.: On generalized graphs. Acta Math. Acad. Scientiarum Hung. 16(3),
447–452 (1965)

https://doi.org/10.1007/978-3-030-90456-2_8
https://eprint.iacr.org/2024/1097
https://doi.org/10.1007/978-3-031-48621-0_10
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.1007/978-3-031-22365-5_8
https://doi.org/10.1007/978-3-031-22365-5_8
https://doi.org/10.1007/978-3-030-64378-2_8

The Cost of Maintaining Keys in Dynamic Groups with Applications 443

8. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM’99.
Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is
Now (Cat. No. 99CH36320), vol. 2, pp. 708–716. IEEE (1999)

9. Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs
for multicast encryption. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592,
pp. 459–474. Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 32

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

11. Li, X.S., Yang, Y.R., Gouda, M.G., Lam, S.S.: Batch rekeying for secure group
communications. In: Proceedings of the 10th International Conference on World
Wide Web, pp. 525–534. WWW ’01, Association for Computing Machinery, New
York, NY, USA (2001). https://doi.org/10.1145/371920.372153, https://doi.org/
10.1145/371920.372153

12. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic mul-
ticast key distribution. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 153–170. Springer, Berlin, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24676-3 10

13. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

14. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using
one-way function trees. IEEE Trans. Software Eng. 29(5), 444–458 (2003)

15. Snoeyink, J., Suri, S., Varghese, G.: A lower bound for multicast key distribution.
In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), vol. 1, pp. 422–431 (2001). https://doi.org/10.1109/
INFCOM.2001.916725

16. Wallner, D., Harder, E., Agee, R.: Key management for multicast: issues and archi-
tectures. Request for Comments 2627, Internet Engineering Task Force (1999).
https://www.rfc-editor.org/rfc/rfc2627

17. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Trans. Networking 8(1), 16–30 (2000)

18. Yang, Y., Li, X., Zhang, X., Lam, S.: Reliable group rekeying: a performance
analysis. In: ACM SIGCOMM Computer Communication Review (2002). https://
doi.org/10.1145/383059.383062

https://doi.org/10.1007/3-540-48910-X_32
https://doi.org/10.1007/3-540-48910-X_32
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/371920.372153
https://doi.org/10.1145/371920.372153
https://doi.org/10.1145/371920.372153
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1109/INFCOM.2001.916725
https://doi.org/10.1109/INFCOM.2001.916725
https://www.rfc-editor.org/rfc/rfc2627
https://doi.org/10.1145/383059.383062
https://doi.org/10.1145/383059.383062

Compact Key Storage in the Standard
Model

Yevgeniy Dodis(B) and Daniel Jost

New York University, New York, USA
{dodis,daniel.jost}@cs.nyu.edu

Abstract. In recent work [Crypto’24], Dodis, Jost, and Marcedone
introduced Compact Key Storage (CKS) as a modern approach to backup
for end-to-end (E2E) secure applications. As most E2E-secure applica-
tions rely on a sequence of secrets (s1, . . . , sn) from which, together with
the ciphertexts sent over the network, all content can be restored, Dodis
et al. introduced CKS as a primitive for backing up (s1, . . . , sn). The
authors provided definitions as well as two practically efficient schemes
(with different functionality-efficiency trade-offs). Both, their security
definitions and schemes relied however on the random oracle model
(ROM).

In this paper, we first show that this reliance is inherent. More con-
cretely, we argue that in the standard model, one cannot have a general
CKS instantiation that is applicable to all “CKS-compatible games”, as
defined by Dodis et al., and realized by their ROM construction. There-
fore, one must restrict the notion of CKS-compatible games to allow for
standard model CKS instantiations.

We then introduce an alternative standard-model CKS definition that
makes concessions in terms of functionality (thereby circumventing the
impossibility). More precisely, we specify CKS which does not recover
the original secret si but a derived key ki, and then observe that this
still suffices for many real-world applications. We instantiate this new
notion based on minimal assumptions. For passive security, we provide
an instantiation based on one-way functions only. For stronger notions,
we additionally need collision-resistant hash functions and dual-PRFs,
which we argue to be minimal.

Finally, we provide a modularization of the CKS protocols of Dodis et
al. In particular, we present a unified protocol (and proof) for standard-
model equivalents for both protocols introduced in the original work.

1 Introduction

Backup is an essential functionality of any application storing user data. For
instance, users of a secure messaging (SM) application may expect cloud backup
to be provided such that they do not lose their conversation history or sent

Y. Dodis—Research partially supported by NSF grant CNS-2055578, and gifts from
JP Morgan, Protocol Labs, Stellar, and Algorand Foundation.
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 444–475, 2025.
https://doi.org/10.1007/978-3-031-78011-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_15&domain=pdf
http://orcid.org/0000-0003-1013-6318
http://orcid.org/0000-0002-6562-9665
https://doi.org/10.1007/978-3-031-78011-0_15

Compact Key Storage in the Standard Model 445

and received attachments, such as photos, in the event their device is broken,
lost, or stolen. The existing cryptographic literature on backup heavily focuses
on how to secure a cryptographic secret under a human-memorizable secret,
such as a low-entropy password. For instance, WhatsApp combines hardware
secure modules (HSM) with PAKE such that users can retrieve a cryptographic
secret, that is securely stored on WhatsApp’s HSMs, based on their password.
Various solutions replacing the trust assumption on the HSM with secret sharing
have also been proposed. For example password-protected secret sharing (PPSS)
[1,11] and more recent solutions such as updatable oblivious key management
[12] and DPaSE [6].

In contrast, very little attention has been paid to what cryptographic secret
should be securely stored or how this interacts with the security of the applica-
tion under consideration. Indeed, most end-to-end (E2E) secure applications use
the rather naive solution of using a static secret key to symmetrically encrypt
the user content and upload it to the cloud. This not only can have determinan-
tal effects on the application’s (presumed) security as recently demonstrated by
Fábrega et al. [9] but also lacks all of the advanced security properties, such as
forward secrecy (FS) and post-compromise security (PCS), we have been accus-
tomed to from E2E-secure protocols. Secure messaging furthermore has a clear
push toward enabling large groups with potentially thousands of members—such
as the recent IETF Message Layer Security (MLS) standard. The naive backup
solution, however, cannot take advantage of this inherent redundancy across
users for either storage or bandwidth.

Compact Key Storage. In recent work, Dodis et al. [7] introduce the notion of
compact key storage (CKS). Essentially, CKS serves as the backup of underlying
secrets of an E2E-secure application, rather than the content itself. For instance,
for an SM application using the Double Ratchet protocol, CKS would back up
the keys from the symmetric ratcheting layer used to encrypt and authenticate
the ciphertexts. In addition, the service provider would then need to retain the
original Double Ratchet ciphertexts or outsource them to some cloud storage of
the users’ choice.

CKS uses a compact secret state that evolves whenever a user’s application
learns or generates a new key, offloading the storage to an untrusted server.
Crucially, (1) any users outsourcing the same sequence of keys can use a shared
outsourced storage and (2) CKS allows for fine-grained FS and PCS such that
every user can restore exactly the set of keys they once knew and have not erased
in the meantime. The compact local state can then be backed up using traditional
methods such as HSMs or secret sharing. This has several key benefits:

– PCS/FS: When using CKS for backup, the combined application inherits the
PCS/FS guarantees of the underlying messaging application. In particular,
user can efficiently erase messages from their storage and the backup by
securely replacing their CKS state with an updated one.

– Deduplication: All cloud storage (both the CKS storage and the storage of
the application ciphertexts) is shared among all users of a given chat.

446 Y. Dodis and D. Jost

– Delegation: Fine-grained FS enables efficient delegation of parts of the con-
versation history. The user can create a copy of their CKS state, erase all
parts they wish not to share, and then delegate access by sending the CKS
state to another party.

In their work, Dodis et al. observe that the natural security notion—key
indistinguishability from randomness, conditioned on the outsourced storage—is
impossible. Instead, the authors propose a novel security notion of preservation
security which, roughly speaking, demands that a broad class of applications
remains secure when enhanced by CKS. That is, for each given application one
needs to show that it is “CKS compatible” to deduce that it can be securely
augmented by any secure CKS scheme. They then provide formal definitions of
preservation security and present efficient schemes. However, both the security
notion and the protocol inherently live in the Random Oracle model (ROM).

1.1 Contributions

In this work, we investigate CKS in the standard model.

Impossibility of Preservation Security. First, we show that the notion of preser-
vation security by Dodis et al. inherently requires an idealized model. More con-
cretely, we show that for any CKS scheme in the standard model, there exists
a CKS-compatible game that becomes insecure when enhanced with the CKS
scheme.1

Standard Model CKS Definitions. While the original CKS notion was aimed at
augmenting any (legacy) E2E-secure application, we observe that if the applica-
tion is designed with CKS in mind, then the aforementioned impossibility can be
circumvented. More concretely, we observe the following: if instead of recovering
the original secrets (s1, . . . , sn), henceforth called seed, each party only needs
to recover a derived key (k1, . . . , kn) then the impossibility no longer holds. For
instance, assume that the seeds are the output of a Continuous Group Agreement
(CKA) or Continuous Group Key Agreement (CGKA) protocol. Our proposed
notion is compatible with any E2E-secure application that only uses a derived
key ki = KDF(si) instead of the seed. This can either be a new application
explicitly with CKS in mind (in which case the standard-model CKA scheme
gets to choose the KDF) or a legacy application that already happens to involve
an additional key derivation step (under modest assumptions on the KDF).

On a high level, we observe that the impossibility stems from circularity
that necessitates an idealized model such as the ROM. Having an explicit key
derivation step then resolves this circularity. Indeed, we observe that for this
weaker notion of CKA, indistinguishability from randomness is achievable, no
longer necessitating the (rather intricate) notion of preservation security. We
1 Note the order of quantifiers. A stronger statement that there exist CKS-compatible

applications that are insecure for any CKS scheme is conceivable, but left to future
work. Still, our result means we cannot instantiate the definition from [7].

Compact Key Storage in the Standard Model 447

then adapt the CKS notion accordingly. Our standard-model CKS is incompa-
rable with the original ROM-based definition from [7]. On the one hand, we
obtain the stronger indistinguishability-based notion. On the other hand, we
have to concede in several aspects:

– As mentioned above, standard-model CKS recovers only keys instead of the
seeds. This makes it (potentially) unsuitable for some legacy applications.

– Delegation of keys only. Similarly, parties can only delegate keys. This some-
what restricts functionality as the receiving party can no longer equally con-
tribute to the shared outsourced state without the original seeds.

– Selective security only. Fully adaptive security seems to imply non-committing
encryption for messages longer than the key, as the compact local state is
significantly shorter than the total length of the keys that are outsourced. This
is generally known to be impossible in the standard model. We therefore settle
for selective security, even though for (some of) our schemes the framework by
Kamath et al. [13] should yield at least quasi-polynomial reductions against
adaptive adversaries.

Standard-Model CKS Schemes. We present an efficient scheme for standard-
model CKA. When targeting outsider security and an honest-but-curious server,
our scheme only needs a PRG and one-time secure symmetric encryption. In
other words, in its weakest form, it can be constructed purely from one-way
functions. When targeting an actively malicious server, we additionally need
collision-resistant hash functions. To achieve insider security, where either parties
delegate inconsistent keys, or already start with inconsistent seeds, our scheme
additionally needs a Dual-PRF [2,4], for which it is an open problem whether
they can be constructed from one-way functions.

Modularization. Dodis et al. [7] present two CKS schemes: One which allows all-
or-nothing delegation (and all-or-nothing erasure) and which has a constant size
local state stu. The other allows to efficiently delegate any continuous interval of
secrets and has a local state that grows logarithmically in the number of epochs.
At their core, both schemes use Convergent Encryption (CE) [8] to recursively
aggregate the two secrets into one and a ciphertext. Slightly simplified, the for-
mer scheme aggregates the old state stu and the secret s for the next consecutive
epoch as:

– Parse (K,T) ← stu
– Compute a new key K ′ ← H(stu||s)
– Compute C ′ ← SE.Enc(K, (stu||s))
– Compute T ′ ← H(C ′‖T)
– Set st′u ← (K,T) and send C ← (C, T ′) to the server.

This process is called “derive” in the schematic representation of the all-or-
nothing scheme in Fig. 1. The security of the scheme inherently requires the ROM
for the key generation in the second step. Moreover, the authors of [7] observe that
the abstraction of CE as Message Locked Encryption (MLE) by Bellare et al. [3]

448 Y. Dodis and D. Jost

Fig. 1. [7, Fig. 7]. A schematic representation of all-or-nothing CKS scheme from [7].
The top half depicts the parties outsourcing the keys, while the lower half shows the
key-recovery process.

does not apply to the recursive application, and the authors instead proved the
scheme’s security directly based on the security of the symmetric encryption
SE.Enc and the ROM. This raises the question: what is the appropriate substi-
tute for the above “derivation box” for standard-model CKS? Observe that while
the above construction allows to recover s based on the ciphertext and the local
state, whereas standard-model CKS only needs to recover a key that is derived
from the seed. We, therefore, answer this question by introducing the abstraction
of a Trapdoor KDF (TKDF). A TKDF, in a nutshell, represents a kind of “invert-
ible” KDF that generates a key k and updated state z′ from a seed s and previous
state z, such that from z a secret trapdoor t to invert the operation can be derived.

As a second abstraction, we introduce the notion of iterative CKS, which is a
class of CKS protocols that encompass both schemes from [7]. This abstraction
has several benefits: (1) its definitions are significantly simpler than the ones
of fully general CKS; (2) it allows us to formalize and prove the security of a
natural unified protocol of which the all-or-nothing and the interval protocol
are special cases. In particular, we note that the iterative CKS notion reduces
finding the right trade-off between functionality (in terms of delegation and fine-
grained erasure) and efficiency of the scheme to a graph theoretic problem. The
class of graphs involved is further closely related to graphs studied in pebbling
games, for instance, allowing us to link it with the work on adaptive security by
Jafargholi et al. [10] and Kamath et al. [13].

1.2 Outline

In Sect. 2, we first argue the impossibility of standard-model CKS, according to
the definition of [7], and then introduce an alternative definition with weakened
functionality (which still suffices for many practical applications). In Sect. 3,
we then introduce the TKDF notion, abstracting over the core component of

Compact Key Storage in the Standard Model 449

both constructions from [7], and provide an efficient instantiation from standard-
model primitives. In Sect. 4 we introduce a special case of CKS protocols, dubbed
iterative CKS, and show how a generic protocol (based on TKDF) abstracts over
both protocols from [7]. Finally, in Sect. 5, we sketch how any iterative CKS
protocol implies a general (standard model) CKS protocol.

2 Compact Key Storage

2.1 Overview

Recall from Sect. 1 that Compact Key Storage allows a group of users that know a
shared set of secrets (s1, . . . , sn) to maintain a shared backup of those secrets. To
this end, for every new secret si obtained by the users, at least one user uploads
a ciphertext Ci to the (untrusted) server. Each user u only keeps a small local
state stu and the server storage should not grow in the number of users—hence
the name compact. All users must then be able to use their local state and the
ciphertexts to recover all secrets they once knew (and have not explicitly erased).
Importantly, [7] introduced CKS for dynamic groups, meaning that not every
user necessarily knows all secrets. On the contrary, a user who does not know
a certain secret si should not be able to derive any information about si from
the CKS ciphertexts. This, in turn, implies post-compromise security, as stu
before the user u learned si together with all ciphertexts (C1, . . . ,Cn) must not
leak information about si. Unfortunately, it was shown in [7] that the natural
definition of si remaining pseudorandom given all ciphertexts (C1, . . . ,Cn), and
a party’s initial state, is impossible even in idealized models.

Before recapping the formal CKS notion of [7], let us provide a high-level
summary of the desired functionality.

– Outsourcing secrets. Each user can append a secret si for a new epoch i to
their local state. To save bandwidth, this should, intuitively, be an operation
done locally by all users except one. As this is infeasible when having users
who know substantially different subsets of secrets, [7] relaxed this condition
slightly. More precisely, a user U should upload unless another user U′, who
knew a superset of the secrets of the former, did the upload when learning si.

– Retrieving secrets. Whenever the user U later wants to retrieve one or more
of the secrets they knew at some point, they should be able to use their local
state stu and the help of the server. The notion of [7] imposes integrity to
ensure that U will never retrieve a different secret than they originally knew.
Of course, as for any outsourced storage scheme a malicious server can do a
denial-of-service attack. A strong correctness notion, however, ensures that
as long as the server is honest other malicious group members cannot prevent
U from retrieving their secrets.

– Key delegation. A user U should be able to delegate access to the entirety or
parts of their secrets by sending a short message msg over a secure channel to
any other user U′. Using msg, U′ should then be able to recover those secrets
with the help of the server.

450 Y. Dodis and D. Jost

– Key erasure. To securely delete specific content of the application, the user U
should be able to delete access to their secrets. In other words, U may wish to
erase si (or more generally a subset of the secrets) such that afterward their
updated state stU and the ciphertexts (C1, . . . ,Cn) no longer reveal infor-
mation about si, without requiring the server to securely erase information.
This can be seen as a special case of delegation where the user delegates them-
selves the set of secrets they wish to retain; more efficient implementations
are however conceivable.

It is not too hard to see that it is impossible for a scheme to support erasing
and delegating arbitrary subsets of the secrets while maintaining a compact local
state. Thus, [7] parametrized each concrete CKS in the set of operations that
it supports efficiently. Those sets are described as predicates that determine
whether an operation is feasible for a set of epochs share given the set of epochs
know for which the user currently “knows” the secrets (i.e., learned and not
erased them).

Definition 1 ([7, Def. 1]). A delegation family G is a predicate G : P(N) ×
P(N) → {0, 1}, where for a set know ⊆ N of epochs with the respective keys
known to a party, G(know, share) indicates whether they can delegate share ⊆ N.
Analogously, a retrieval family R and a erasure family E indicate whether the
party can recover share ⊆ N or erase share ⊆ N, respectively.

2.2 CKS Syntax

We now recap the Compact Key Storage notion. The following section is mostly
taken verbatim from [7].

Definition 2 ([7, Def. 2]). A Compact Key Storage (CKS) scheme CKS for a
delegation family G, a retrieval family R, and an erasure family E (or (G,R, E)-
CKS for short) is an interactive protocol between stateful user U and server S
algorithms, respectively, defined by the following sub-algorithms:

Initialization:

– The stS ← S.Init(1κ) algorithm initializes the server’s state.
– The st ← U.Init(1κ) algorithm initializes a user’s state.

Key Management:

– The non-interactive append algorithm takes the current state st, an epoch e,
a secret s, and flag upload. The invocation

(
st′, stup

)
← U.Append(st, e, s,upload),

produces an updated state st′ and, if upload = true, an upload state stup. (If
upload = false, then stup = ⊥.)

Compact Key Storage in the Standard Model 451

– The interactive upload algorithm takes the upload state and after the interac-
tion (

⊥; st′S
)

←
〈
U.Upload(stup) ↔ S.Upload(stS)

〉
,

the server outputs an updated state st′S.
– The interactive erase algorithm takes the current state st and a set of epochs

share ⊆ N. After the following interaction
(
st′;⊥

)
←

〈
U.Erase(st, share) ↔ S.Erase(stS)

〉
,

both the user outputs an updated state st′ (and the server has no output).

Delegation:

– The interactive granting algorithm takes a user U1’s state st1 and a set
share ⊆ N of keys to be shared with another user U2. After the interaction

(
msg;⊥

)
←

〈
U1.Grant(st1, share) ↔ S.Grant(stS)

〉

the user outputs the information msg to be sent to the other party U2.
– The interactive grant-accepting algorithm extends another user’s U2 known

key set by processing a grant msg. After the interaction
(
st′2, stup;⊥

)
←

〈
U2.Accept(st2, share,msg,upload) ↔ S.Accept(stS)

〉

the user outputs an updated state st′2, as well as (if upload = true) a state
for the Upload algorithm.

Retrieval:

– The interactive key-retrieval algorithm restores the secrets for epochs share ⊆
N with the interaction

(
secrets; st′S

)
←

〈
U.Retrieve(st, share) ↔ S.Retrieve(stS)

〉

ending with the user outputting a function secrets : share → s, as well as an
updated server state.

A CKS scheme is considered efficient if all operations work in sublinear—
ideally logarithmic—time in the number of epochs n (when secrets are appended
in consecutive order). As such, the predicates (G,R, E) dictate efficiency require-
ments: if for instance a party wants to retrieve an arbitrary set I of epochs, they
can find a minimal cover I = I1 ∪ · · · ∪ Ik of subsets consistent with R and
retrieve subset. This leads to an overall efficiency of O(k log(n)). In terms of
client state, we require it to grow at most in the order of O(d log(n)), with d
denoting the number of erasure operations.

In case secrets are appended sparsely (such as odd epochs only), are appended
completely out of order, or linearly many erasures have been performed, efficiency
may degrade to linear time. The server state must grow at most linearly in the
number of overall epochs outsourced by any party, and in particular, must not
grow in the number of participating parties.

452 Y. Dodis and D. Jost

2.3 Impossibility of Standard-Model CKS

The authors of [7] showed that any non-trivial state compactness guarantee of
the user makes it impossible to satisfy the most desirable key indistinguishability
property for CKS, even if one only wants to recover all n secrets (s1, . . . , sn) from
the latest state stn of the user, with the help of the CKS server. Concretely, the
following probability cannot be upper bounded by 1

2 + negl(κ) for all efficient
attackers A:

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b ←$ {0, 1}
st ← U.Init(1κ); stS ← S.Init(1κ)

s01, s
1
1, s

0
2, s

1
2, . . . , s

0
n, s1n ←$ {0, 1}κ

∀i ∈ [n] : (st, stup) ← U.Append(st, i, s0i , true),(
⊥; stS

)
←

〈
U.Upload(stup) ↔ S.Upload(stS)

〉

b′ ← A(1κ, sb1, . . . , s
b
n, stS)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Intuitively, one cannot expect that the n secrets (s1, . . . , sn) are still pseudoran-
dom when the attacker gets access to the CKS functionality (in particular, server
public storage stS). This is because CKS provides a testable functionality—(user)
state compaction—which is not possible with random unrelated secrets.

To circumvent this result in the random oracle model (ROM), the authors
introduced a rather intricate, weaker notion of “CKS-preservation”, described
below. Note that while the authors of [7] observed that relying on an idealized
model for CKS-preservation seemed inherent, no formal result was proven. In the
next section, we close this gap, showing that preservation security is impossible
in the standard model. Since preservation security was meant to be the weakest
meaningful security notion for CKS this, in spirit, establishes that CKS recover-
ing the original secrets (as a standalone primitive) is impossible in the standard
model.2

Impossibility of CKS-Preservation. Intuitively, CKS-preservation relaxes key
indistinguishability with the requirement that access to the CKS functional-
ity does not hurt the security of the underlying application Π (originally not
designed with CKS in mind). To make this statement non-tautologous, [7] had
to define the types of applications Π where this makes sense, without using CKS-
syntax inside Π, but still keeping Π as general as possible. They call such games
CKS-compatible. Below we give a special case of such a CKS-compatible game,
which already shows the impossibility of standard-model CKS-presevation.

Concretely, we will concentrate on the (subset of) CKS-compatible games Π
where: (1) Π has a sequence of secrets (s1, . . . , sn); (2) Π remains secure even if
permits the adversary A has access to the testing oracle Test(i, s) which returns
1 if s = si. The ROM-based construction of [7] worked for all the games in

2 In the standard model, our result is a strict strengthening of the impossibility result
of key-indistinguishable CKS from [7], but does not generalize to idealized models.

Compact Key Storage in the Standard Model 453

this class, provided the honest parties do not use the random oracle utilized by
the CKS.3 Thus, to show the standard-model impossibility of instantiating this
result, we only need to construct a single game Π which satisfies properties (1)
and (2), but where the knowledge of server state stS will break Π.

Counter-Example Game. We consider the following game Π between the chal-
lenger C and the polynomial-time attacker A, where κ is the security parameter,
and n is chosen large enough so that the length of the CKS state stn after
appending n random secrets si ∈ {0, 1}κ satisfies |stn| ≤ n(κ − ω(log κ)).

1. C samples random s1, . . . , sn ∈ {0, 1}κ.
2. C computes the states of the user after appending s1, . . . , sn:

st0 ← U.Init(1κ)
∀i ∈ [n] : (sti, ·) ← U.Append(sti−1, i, si, false),

3. C sends stn to A.
4. C honestly responds to Test(i, s) queries of A: return 1 iff s = si.
5. A send guess values s′1, . . . , s

′
n.

6. C outputs 1 iff ∀i ∈ [n] si = s′i.

First, we argue that this game is easily won by the attacker if the attacker A
additionally gets the server state stS when the standard-model CKS is applied
to s1, . . . , sn, as allowed by the CKS-preservation security security definition
from [7]. This is true because the correctness of the CKS holds even when the
Append and the Upload algorithms are run by the different users. Namely, the
adversary can still successfully recover the original secrets s1, . . . , sn, by using
the “Alice’s state” stn (given to A by the challenger C above) and the server state
stS obtained when “another user Bob” (corresponding to the helper in the “CKS-
enhanced game” of [7]) uploaded the corresponding ciphertexts to the server.
Hence, CKS-preservation does not happen for Π.

Second, we nevertheless argue that the original game Π is “CKS-compatible”.
Namely, Π is secure against any polynomial time attacker A, who does not get
to see the server state stS in Π, but is allowed to have the Test oracle. To
see this, we use a standard compression argument. Let us say that A made
q = poly(κ) queries to the Test oracle. The key observation is to notice that
one can compactly encode all q responses using significantly fewer than q bits.
Namely, for each i ∈ [n], we only need to know the first index j ∈ [q + 1] where
the q’s query of A was successful (or set j = q + 1 if this never happened).
Thus, all q answers obtained by A take at most n log(q+1) = O(n log κ) bits to
encode. Now, if the attacker wins Π with non-negligible probability, we can use
A to successfully compress nκ truly random bits s1, . . . , sn as follows:

– Include the final state stn, whose size is assumed to be |stn| ≤ n(κ−ω(log κ)).
– Include the encoding of q test queries of A, which takes at most n log(q+1) =

O(n log κ) bits to encode.
3 In practice, this is easy to accomplish with salting.

454 Y. Dodis and D. Jost

Combined, this information is enough to run the attacker to produce its guess
s′1, . . . , s

′
n. Yet, the compression string has overall length |stn| + n log(q + 1) �

nκ. Which means that the probability that (s′1, . . . , s
′
n) = (s1, . . . , sn) must be

negligible. Which shows that game Π is CKS-compatible.

Discussion. We make several observations. First, our game Π was allowed to
depend on the (hypothetical) algorithms of the standard-model CKS. Indeed,
unlike ROM, there is no effective mechanism to prevent honest users from (arti-
ficially) utilizing the CKS inside the game Π, if Π is only restricted to satisfy
very weak properties (1) and (2) for CKS-preservation.4 Notice, that simple tech-
niques like utilizing the common reference string do not help, since that string
should be available to the users to run the CKS, and a general application (even
CKS-compatible) could still “trick” the users to use the right common reference
string. Second, our counter-example above is extremely artificial, specifically
targeting to break CKS-compatibility, while supporting the Test oracle. This is
expected, since for most “natural” applications, such as Signal or MLS, we expect
the heuristic instantiation of the ROM-based construction of [7] to be secure in
the real world. Instead, the counter-example below should be viewed from the
lens that “CKS-preservation” does not appear to be the right security notion of
CKS for standard-model instantiations. Indeed, our standard model solution will
go back to the clean and elegant key-indistinguishability, but will slightly change
the functionality of the application to circumvent the impossibility result below.

2.4 Weaker Standard Model CKS

In this section, we now introduce our new notion of standard-model CKS. Sim-
ply put, we distinguish between seeds (s1, . . . , sn) and keys (k1, . . . , kn), where
each key is (deterministically) derived from its respective seed. More concretely,
U.Append appends a seed si whilst U.Retrieve later recovers the respective key
ki. In addition, delegation is assumed to only delegate keys rather than seeds.
This weaker notion of CKS, of course, is only compatible with applications that
distribute seeds, for instance as part of a CGKA, but then use keys for the
message encryption layer.

Definition 3. A Standard Model Compact Key Storage (CKS) scheme CKS
is a CKS scheme for which there is additionally a deterministic algorithm
U.Key(e, s) → k which takes an epoch e and a seed s, and returns the cor-
responding key k. A standard-model CKS scheme is defined with respect to a
generalized delegation family G, retrieval family R, and erasure family E, each
of which takes two arguments: the set of epochs for which a party knows the
seeds (and therefore also the keys) and the set of epochs for which they know the
keys only. Finally, for consistency, we denote the output of U.Retrieve as keys
(instead of secrets).
4 Indeed, we will later observe (cf. Theorem 3 and Corollary 4) that for a special sub-

class of protocols, we can build provably secure CKS in the standard model, even
satisfying key indistinguishability!.

Compact Key Storage in the Standard Model 455

Correctness and Security. We now adapt correctness and security to the
standard-model setting. The former remains mostly unchanged from ROM-CKS
with the obvious difference that U.Retrieve now must return the correct keys
instead of seeds. That is, if a user for epoch e appended a seed s to their
CKS state, then correctness requires that U.Retrieve later recovers U.Key(e, s),
instead of s as in the ROM-CKS notion.

ROM-CKS formalized security as two properties: preservation security and
integrity. Intuitively, the former demands that applying CKS to a so-called “CKS-
compatible” application does not undermine that application’s security. The lat-
ter, on the other hand, requires that the CKS scheme only recovers correct
seeds—that is, the ones they initially appended to their state—or an error, for
an honest party interacting with a malicious server potentially colluding with
other malicious users. Integrity of standard-model CKS also remains mostly
unchanged from ROM-CKS, with the obvious changes to accommodate the key
derivation. We present both the adapted correctness and integrity games in the
full version of this work.

In the remainder of this section, we present the key-indistinguishability
notion of standard-model CKS. This notion replaced the preservation-security
notion and, intuitively, represents the desired best-possible security.

Definition 4. We say that a standard-model (G,R, E)-CKS scheme CKS is
key indistinguishable, if the probability of any PPT adversary A winning the
(G,R, E)-CKS-KeyIndistACKS game from Fig. 2 is negligible in κ.

The goal of the adversary is to guess whether the game uses real keys (b = 0)
or random ones (b = 1). The game follows the template of the preservation-
security game from [7], which is very similar to the one of the correctness and
integrity games. Notably, the adversary has various oracles mirroring the CKS
algorithms. For each of the interactive algorithms, the adversary furthermore
assumes the role of the server; that is, the game considers an actively malicious
server. (Note that we assume the adversary not to interleave calls of the oracles
for the same user.) The game mostly just executes the protocol while keeping
track of some additional state. For instance, KnownSeed[U, e] and KnownKey[U, e]
keep track whether the user u knows the seed and key for epoch e, respectively.
Furthermore, the game uses ActualKey[u, e] to keep track whether the key known
by the user for an epoch is the one chosen by the game or one injected by the
adversary. The seeds and keys chosen by the game are tracked using Seed[e] and
Keys[e].

Observe that the function sample-if-nec samples one fresh seed for every
epoch e and then uses that one consistently thorough the execution. Furthermore,
depending on the bit b, it either derives the respective key or chooses an inde-
pendent one. Those keys are then output as part of U.Append and U.Retrieve
as challenges, whenever the respective user is known to use the proper seed. (If
the adversary instead provides a seed for U.Append, by inputting s = ⊥, then
sample-if-nec just returns keys that are consistent.)

Finally, note that in the Grant oracle the adversary gets to choose whether
they receive the message produces by U.Grant or not, using the leak flag. This

456 Y. Dodis and D. Jost

Fig. 2. The key-indistinguishability notion for standard-model CKS. We assume the
adversary to not interleave calls of the adversarial oracles for the same user.

message is assumed to be transmitted over a secure channel to the recipient;
therefore, leaking the message implies leaking the delegated keys. If the message
is transmitted securely, then the adversary is given an opaque handle h to the
message instead, which they later can use for delivery to another user u′. In
the Accept oracle, the adversary can then either input a handle h or a granting
message msg. In the former case, the game looks up the actual granting message
msg, as well as for which of the granted keys correspond to actual keys chosen
by the game (as opposed to keys injected by the adversary).

Note that the game formalizes selective security by having the adversary
commit to the set Corr of all epochs for which the keys can be compromised

Compact Key Storage in the Standard Model 457

before starting the interaction. Any type of corruption, whether leaking a user’s
private set or a grant message, is then predicated all of the keys which can
be deduced by correctness being for corruptible epochs. Finally, observe that
this formalizes forward secrecy and post-compromise security as corruptions are
allowed whenever a user are not supposed to know the epoch’s actual key.

3 Trapdoor Key Derivation

3.1 Defining TKDFs

In this section, we introduce the Trapdoor KDF (TKDF) primitive that will
serve as the fundamental building block for our standard-model schemes. Recall
from Sect. 1.1 that TKDF, in a nutshell, represents a kind of “invertible” KDF
that generates a key k and updated state z′ from a seed s and previous state z,
such that from z a secret trapdoor t to invert the operation can be derived.

A schematic representation of a TKDF scheme is presented in Fig. 3. Observe
that (to avoid circularity) we only require the inversion to recover the key and
trapdoor rather than the seed and state. To be suitable for our CKS construction,
we also require certain operations to be deterministic, as expressed as part of
the following definition.

Definition 5. A Trapdoor Key Derivation Function (TKDF) scheme is
a tuple (TKDF.Key,TKDF.Derive,TKDF.Trapdoor,TKDF. Invert) of PPT
algorithms with an associated seed space S, key space K, state space Z, trap-
door space T , and ciphertext space C.

– The deterministic key derivation algorithm ki ← TKDF.Key(si) outputs the
key ki corresponding to a seed si

– The state derivation algorithm (zi, ci) ← TKDF.Derive(si, zi−1) takes a seed
si and a state zi−1 as inputs, and outputs the next state zi and a ciphertext
ci. The algorithm can be randomized, but zi is a deterministic function of the
inputs. Hence, only ci may depend on the algorithm’s randomness.

– The deterministic ti ← TKDF.Trapdoor(zi) algorithm outputs a trapdoor ti
based on the state.

– The deterministic inversion algorithm (ki, ti−1) ← TKDF. Invert(ci, ti) takes
the ciphertext and trapdoor, and outputs the key and the previous trapdoor.

We generally require the state space Z to be small (e.g., about as big as the key
space) and in particular to consist only of elements of the same length.

Let us first define correctness. Correctness requires that TKDF. Invert cor-
rectly inverts TKDF.Derive, as formalized by the following definition.

458 Y. Dodis and D. Jost

Fig. 3. A schematic representation of our symmetric TKDF scheme.

Definition 6 (Correctness). We say that a TKDF is correct, if

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ki, ti−1) = TKDF. Invert(ci, ti)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

si ←$ S, zi−1 ←$ Z,

ti−1 ← TKDF.Trapdoor(zi−1),
ki ← TKDF.Key(si),

(zi, ci) ← TKDF.Derive(si, zi−1),
ti ← TKDF.Trapdoor(zi)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1,

where the randomness is taken both over the sampling of zi−1 and si, as well as
over the coins of TKDF.Derive.

For security, we require that the resulting key ki is indistinguishable from an
independent uniform random, for an attacker that does not know the seed si.
Analogously, we require that the trapdoor ti is indistinguishable from random
for an attacker that does not know the secret state zi. (This will be important
for being able to iterate the TKDF.) Finally, we require the ciphertext ci to be
semantically secure and not reveal any information about either ki or ti−1 to an
adversary not knowing ti. The precise security definitions are a bit subtle. We
now first state the formal definition and then discuss some of the intricacies.

Definition 7 (TKDF Security). A TKDF scheme is said to be secure if there
exists a PPT algorithm TKDF.Sim(ti, ki, ti−1) → ci which simulates ciphertexts
such that the following three properties hold:

1. Key randomness. For any PPT A, the advantage

AdvGKeyRand
TKDF

(A) :=
∣
∣
∣Pr[GKeyRand-0

TKDF (A) ⇒ 1] − Pr[GKeyRand-1
TKDF (A) ⇒ 1]

∣
∣
∣

is negligible in the security parameter κ, for the real-or-ideal game from Fig. 4.

2. Trapdoor randomness. For any PPT A, the advantage

AdvGTdRand
TKDF

(A) :=
∣
∣Pr[GTdRand-0

TKDF (A) ⇒ 1] − Pr[GTdRand-1
TKDF (A) ⇒ 1]

∣
∣

is negligible in the security parameter κ, for the real-or-ideal game from Fig. 5.

Compact Key Storage in the Standard Model 459

3. Semantic security. For any keys k0i and k1i , and any trapdoors t0i−1 and
t1i−1, the following distributions are computationally indistinguishable:

{(
k0i , k

1
i , t

0
i−1, t

1
i−1,TKDF.Sim(ti, k0i , t

0
i−1)

)
: ti ←$ T

}

≈c

{(
k0i , k

1
i , t

0
i−1, t

1
i−1,TKDF.Sim(ti, k1i , t

1
i−1)

)
: ti ←$ T

}
.

We denote with AdvGIND-CPA-OT
TKDF

(A) the maximum respective advantage for an
adversary A, over any challenge.

We say that the TKDF scheme is one-time secure if no PPT adversary has
non-negligible advantage when restricted to a single Derive query in the key-
randomness and trapdoor-randomness games.

Let us consider the key-randomness property. Intuitively, this property
requires that ki is indistinguishable from random when not knowing the seed
si. However, the property further has to account for leakage from the cipher-
text and, especially, the state zi (which can be used for subsequent evaluations).
Therefore, the property demands that ki and zi are indistinguishable from inde-
pendently sampled uniform random values. In any actual scheme, however, those
values are related via the ciphertext ci by correctness: Any attacker can derive ti
from zi and use this to decrypt ci, resulting in (ti−1, ki). Therefore, GKeyRand-1

TKDF

allows the ciphertext to be generated consistently using a simulator TKDF.Sim.
Crucially, the simulator ensures that ti from zi are only related indirectly via the
trapdoor ti, i.e., that the above check is essentially the only thing an attacker
can do to distinguish ki and zi from independent uniform random values. Finally,
note that the attacker gets multiple TKDF.Derive queries for their prior state
zi−1 of choice. This will turn out to be vital for active security where several
users knowing the same seed si are tricked to evaluate the TKDF with different
prior states. Indeed, for passive security one-time TKDF security suffices.

Trapdoor randomness is then defined analogously to key randomness. For
instance, the attacker gets to do multiple TKDF.Derive to anticipate attacks
where to parties with the same secret state zi are tricked into using different
seeds si chosen by the adversary.

Finally, consider semantic security. This is essentially one-time IND-CPA
security for the ciphertext. Note that as all three security properties use the
same simulator, the former ones already imply that the simulated ciphertext is
indistinguishable from a real one. Phrasing semantic security in terms of the
simulator will turn out to make the definition a bit easier to use in hybrid
arguments where either key randomness or trapdoor randomness is applied first.

3.2 Symmetric TKDF

For more CKS schemes with non-trivial delegation and erasure, we need a TKDF
that treats its two inputs more interchangeably than the basic TKDF notion
introduced above. That is, a TKDF does not strictly distinguish between the

460 Y. Dodis and D. Jost

Fig. 4. The games formalizing key-randomness of a TKDF scheme.

Fig. 5. The games formalizing trapdoor-randomness of a TKDF scheme.

concepts of seeds and states and allows them to be used somewhat interchange-
ably. In particular, we want (1) a TKDF state z can be used as a seed for a
subsequent TKDF call, and (2) that trapdoors are generated analogously to
derived keys.

We call such a TKDF a symmetric TKDF. (We remark that unlike the notion
of a symmetric PRF [4] we do not necessarily require that such a TKDF treats
its argument symmetrically, i.e., TKDF.Derive(s, z) = TKDF.Derive(z, s), but
simply that the two arguments play the same general role.) We formalize the
structural requirement in the following definition.

Definition 8. A symmetric TKDF is a TKDF scheme with the following struc-
tural properties:

– The seed space is equal to the state space, i.e., S = Z, and the key space is
equal to the trapdoor space, i.e., K = T .

– The key derivation is equivalent to the trapdoor derivation. In other words,
that TKDF.Key = TKDF.Trapdoor.

Compact Key Storage in the Standard Model 461

The security of a symmetric TKDF is the same as the security of a reg-
ular TKDF. Note that key randomness and trapdoor randomness coincide iff
TKDF.Derive treats its argument symmetrically.

3.3 A Standard-Model Symmetric-TKDF Construction

We now present a simple construction of a symmetric TKDF. The construction
is based on a length-doubling PRG, a dual-PRF [2,4], and a one-time secure
symmetric encryption scheme SE. Recall that a dual-PRF is a deterministic
algorithm dPRF : {0, 1}κ × {0, 1}κ → {0, 1}κ that behaves like a PRF in both
arguments, i.e., such that for a uniform random key k, both dPRF(k, ·) and
dPRF(·, k) are PRFs. The scheme first uses the PRG to expand the seed si into
the key ki and an auxiliary value xi, and to expand the previous zi−1 into yi

and the previous trapdoor ti−1. The values xi and yi are then combined using
the dPRF to obtain the next state zi. From this state, we moreover derive the
current trapdoors ti as the second part of the output yield from expanding zi

(analogously as for ti−1). ti then serves as encryption key to encrypt (ti−1, ki).
The trapdoor algorithm simply recomputes ti from zi and, finally, the inversion
algorithm decrypts the ciphertext to obtain the trapdoor and key.5 A schematic
depiction of the scheme is presented in Fig. 6, whereas for completeness formal
definition is given in Fig. 7.

Fig. 6. A schematic representation of the Symmetric TKDF scheme from Fig. 7.
The left box shows both TKDF.Key (the upper output only depending on si) and
TKDF.Derive (the middle and lower outputs).

5 We remark that if a party consecutively computes zi ← TKDF.Derive(si, zi−1), and
zi+1 ← TKDF.Derive(si+1, zi), then an actual implementation would not need to
expand zi in both operations separately. Thus, the number of PRG iterations per
epoch is actually two instead of three.

462 Y. Dodis and D. Jost

Fig. 7. A simple construction based on a PRG, a dual-PRF, and symmetric encryption.
Note that TKDF.Key and TKDF.Trapdoor are the same, as required for a symmetric
TKDF.

Note that we assumed here that Z = S = {0, 1}κ. Using a length-doubling
PRG, we can thus observe that K = T = {0, 1}κ as well, implying that our
construction satisfies the structural property of a symmetric TKDF. Correctness
then immediately follows by the correctness of the symmetric encryption scheme
SE. Security is established by the following theorem.

Theorem 1. Assume SE is a one-time IND-CPA secure symmetric encryption
scheme, PRG is a secure length-doubling pseudo-random generator, and dPRF
is a secure dual-PRF. Then, the TKDF from Fig. 7 scheme is secure. More
formally, for each of the three properties and every PPT adversary A, there
exist attackers APRG against the PRG security game GIND

PRG, and ASE against
the IND-CPA game GIND-CPA

SE , that have roughly the same running time, such
that

AdvGKeyRand
TKDF

(A) ≤ AdvGIND
PRG

(APRG) + AdvGIND
dPRF

(AdPRF) (1)

AdvGTdRand
TKDF

(A) ≤ AdvGIND
PRG

(APRG) + AdvGIND
dPRF

(AdPRF) (2)

AdvGIND-CPA-OT
TKDF

(A) ≤ AdvGIND-CPA-OT
SE

(ASE). (3)

Proof. We use the following simple simulator that just mimics the encryption
performed by the scheme

TKDF.Sim(ti, k0i , t
0
i−1) := SE.Encti((ti−1, ki)).

First, consider key randomness. Observe that, in the TKDF.Derive computation
of GKeyRand-0

TKDF , by PRG security ki and xi are indistinguishable from independent
and uniformly random sampled values as si is sampled uniformly at random and
not otherwise used. Now, we can apply dual-PRF security to conclude that
in the Derive oracle the dPRF(xi, zi−1) evaluation furthermore behaves like a
uniform random function in the second argument. Therefore, we can instead
replace zi with the output of a URF, as in GKeyRand-1

TKDF . The indistinguishability
now follows by observing that TKDF.Derive just computes ti and ti−1 the same

Compact Key Storage in the Standard Model 463

way as TKDF.Trapdoor in GKeyRand-1
TKDF , followed by the same encryption that

TKDF.Sim performs.
The trapdoor randomness follows analogously, using that dPRF(·, zi−1)

behaves like a uniform random function for zi−1 chosen uniformly at random.
Finally, consider the semantic security. Given the definition of our simulator,
this follows directly from the one-time IND-CPA security of SE.Enc. ��

Corollary 1. Trapdoor KDFs exist if and only if dual-PRFs exist.

Proof. Dual-PRFs imply the existence of one-way functions and, thus, PRG
and (one-time secure) symmetric encryption. Therefore, the first direction fol-
lows from Theorem 1. Moreover, observe that key-randomness and trapdoor-
randomness games jointly imply dual-PRF security with respect to the first
output zi of TKDF.Derive.

Variants. We now consider some variants of the scheme. First, observe that
for one-time TKDF security, we can replace the dual-PRF with a simple XOR
operation of xi and yi. The proof follows analogously, observing that for a single
evaluation xi⊕yi behaves indistinguishable from the dual-PRF. While dPRFs are
known to be constructible from standard assumptions [4] it is an open problem
whether than can be constructed from one-way functions only.

Theorem 2. When replacing zi ← dPRF(xi, yi) with zi ← xi⊕yi in the scheme
from Fig. 7, then the modified scheme is one-time TKDF secure, assuming SE is
a one-time IND-CPA secure symmetric encryption scheme and PRG is a secure
length-doubling pseudo-random generator.

Corollary 2. The existence of one-way functions implies the existence of one-
time secure TKDF schemes.

Second, we observe that the usage of the PRG is just one special case of a
key derivation mechanism, expanding a seed si or state zi into two independent
secrets. Therefore, if we have a legacy application that already prescribes a key-
derivation step, and that allows us to derive one more unrelated secret, then our
scheme can be made compatible with the legacy application. For instance, the
MLS group messaging protocol already involves a key derivation function (KDF)
based on HKDF [5,14]. Our TKDF scheme, could therefore derive ki according
to that key derivation and xi using the same key derivation but on a different
context (and analogously for expanding zi). As long as the legacy application
does not use that context itself, the composed scheme is secure. The proof of the
following theorem follows analogous to Theorem 1.

Theorem 3. For any secure key derivation function (KDF) we can replace the
usage of PRG in the scheme from Fig. 7 with the KDF evaluated twice on two dis-
tinct contexts. The resulting scheme is a secure TKDF, assuming the KDF, the
dual-PRF are secure and SE is a one-time IND-CPA secure symmetric encryp-
tion scheme.

464 Y. Dodis and D. Jost

4 Iterative CKS

Recall from Sect. 1.1 that the all-or-nothing scheme by Dodis et al. was built
around iteratively applying a “derivation” that aggregates a secret state and a
seed into a new secret state (and a ciphertext) as depicted in Fig. 1. The second
scheme by Dodis et al.—which allows for efficient delegation and erasure of
arbitrary continuous intervals of secrets—follows a similar template. Indeed, the
scheme simply arranges the epochs as leaves in a binary tree, where each node
aggregates its two children. (We refer to [7] for details on the scheme.)

In this section, we abstract CKS schemes built around this template. We
call such a scheme an iterative CKS scheme, for which we define the respective
notion. The corresponding (security) definitions for this special case turn out
to be significantly simpler than the (fully general) CKS notion as introduced in
[7]. We then present a unified protocol for the iterative CKS template, based on
a TKDF, and prove its security. This essentially allows us to reduce choosing
the right trade-off between functionality (in terms of delegation and fine-grained
erasure) and efficiency of CKS schemes to a graph theoretic problem.

4.1 Syntax

In this section, we formally introduce the simplified iterative CKS notion. On
a high level, the idea is that such a scheme repeatedly aggregates secrets—
which could either be seeds or secret states themselves—into a new secret and
a ciphertext. Intuitively, the resulting secret should allow to reverse the aggre-
gation. Therefore, recursively, the state when combined with the appropriate
ciphertexts should allow recovering any secret that went into the aggregation.

Note that the aggregation essentially forms a directed graph with seeds as
sources and each non-source having indegree two. To avoid circularity, we will
restrict ourselves to directed acyclic graphs (DAG). The following definition
assigns each node the set of epochs that have a path from their source to the
node, i.e., the set of seeds they aggregate over.

Definition 9. We say S ⊆ P(2N) is a set family for an interactive CKS if:

1. ∅ /∈ S
2. {e} ∈ S, for all e ∈ N
3. For each set S ∈ S with |S| > 1, there exists a unique decomposition S1,S2 ∈

S such that S = S1 ∪ S2.

Furthermore, let DagS denote the respective DAG over the set S where an edge
(Si,Sj) is present iff there exists S ′ ∈ S such that Sj = Si ∪ S ′. By property 3,
each internal node of DagS has in-degree 2.

We now define iterative CKS for a set family S. Recursively aggregating
seeds according to edges in DagS, such a scheme allows a party knowing all
seeds {se | e ∈ S} to create a compact seeds state SSS and a compact keys state
KSS , as well as ciphertext CS . For security, the ciphertexts should not reveal

Compact Key Storage in the Standard Model 465

any information about the keys derived from the seeds. For correctness, on the
other hand, the keys state KSS and ciphertext CS should be sufficient to recover
the keys by “undoing” the aggregation and, ultimately, recover individual keys
ke.

Definition 10. An Iterative Compact Key Storage (I-CKS) scheme CKS con-
sists of the following PPT algorithms:

– GenPub(1κ) → pub generates public parameters for the scheme.
– DeriveKey(pub, se, e) → ke returns the key corresponding to a seed for epoch

e. This algorithm is assumed to be deterministic.
– Init(pub, e, se) → (SS{e},C{e}) initializes a secret seeds state for S = {e}.

Additionally, output an (optional) ciphertext.
– Compact(S1,SSS1 ,S2,SSS2) → (SSS1∪S2 ,CS1∪S2) takes two seed states and

compacts them into a joint one and a ciphertext to be stored. This assumes
that (S1 ∪ S2) ∈ S.

– DeriveKS(S,SSS) → KSS computes the keys state corresponding to a seeds
state.

– Expand(S,KSS ,CS ,S1,S2) → (KSS1 ,KSS2) obtains the keys state for a
subintervals S1 ⊂ S and S2 ⊂ S based on the keys state for the joint interval
S = S1 ∪ S2 and the respective ciphertext.

– Recover(e,KS{e},C{e}) → ke recovers the key ke for an epoch e.

Correctness. We now formalize the correctness of our notion. Simply put, we
require the following two properties:

1. Recover “undoes” Init. Consider an epoch e ∈ N. Then,
– (SS{e},C{e}) ← Init(pub, e, se)
– KS{e} ← DeriveKS({e},SS{e})
– k′

e ← Recover(e,KS{e},C{e})
outputs the correct key, i.e., k′

e = DeriveKey(pub, se, e).
2. Expand “undoes” Compact. Consider an epoch sets S1,S2 ∈ S such that their

union is in S. Then,
– (SSS′ ,CS′) ← Compact(S1,SSS1 ,S2,SSS2)
– KSS′ ← DeriveKS(S ′,SSS′)
– (KS ′

S1
,KS ′

S2
) ← Expand(S ′,KSS′ ,CS′ ,S1,S2)

produces keys states such that KS ′
S1

is interchangeable with KSS1 obtained
via DeriveKS(S1,SSS1), and KS ′

S2
is interchangeable with KSS2 , respectively.

A formal version of correctness is presented in Fig. 8. Note that the game treats
any seeds state, keys state, and ciphertext for the same epoch set S ∈ S inter-
changeably. In a deterministic scheme this is trivially achieved by each being
unique—we however only formally require DeriveKey to be deterministic.

466 Y. Dodis and D. Jost

Fig. 8. The Iterative CKS correctness game.

4.2 Security

For security, we consider two games: pseudorandomness and integrity. The pseu-
dorandomness game is depicted in Fig. 9. The game allows the adversary to
create an arbitrary number of seed states for a single epoch, using Init, and
then to gradually accumulate seeds using Compact, returning the ciphertext to
the adversary. For Init, the adversary obtains either the real key ke, if b = 0,
or a random one, if b = 1. Note that the adversary can also inject their own
seed by inputting se = ⊥, in which case the real key is used. Finally, note that,
for simplicity, the game formalizes selective security, with the adversary having
to commit to the set of corruptions Corr ahead of time. However, observe that
the structure of our game (and I-CKS in general) is essentially one of a peb-
bling game on the graph DagS. Therefore, the framework on adaptive security
by Jafargholi et al. [10] and Kamath et al. [13] should allow us to get (quasi-
polynomial) adaptive security for specific graphs DagS.

Definition 11. An I-CKS scheme is secure, if for any set family S, the follow-
ing advantage

AdvGKeys-RoR
I-CKS

(A) := Pr[GKeys-RoR
I-CKS (A) ⇒ 1]

is negligible in κ for any PPT adversary A. We say that the scheme is passively
secure if the advantage is negligible for any A who is restricted to only pass
se = ⊥ to the Init oracle.

The integrity is similar to the correctness game in structure. It, however, no
longer restricts the adversary to submit honestly generated ciphertexts and, in

Compact Key Storage in the Standard Model 467

Fig. 9. The real-or-random security game for an Iterative CKS scheme.

turn, allows the algorithms to fail. Integrity then requires that Recover either
fails or outputs the same key ke that was initially aggregated over. In addition,
the game can be won if Compact succeeds on seed states that contain conflicting
information for the same epoch. Observe that the game formalizes a strong
variant of integrity where all states are presumed to be public (analogous to the
general CKS integrity game) (Fig. 10).

Definition 12. An I-CKS scheme is said to satisfy integrity, if for any set
family S, the following advantage is negligible in κ for any PPT adversary A:

AdvGIntegrity
I-CKS

(A) := Pr[GIntegrity
I-CKS (A) ⇒ 1].

4.3 Constructing I-CKS from TKDF

We now build a generic iterative CKS scheme based on a (symmetric) TKDF.
Recall from Sect. 1.1 that the goal of a TKDF was to provide a standard-model
abstraction for the “derive” and “invert” boxes used in the schemes of [7]. See,
for example, Fig. 1 for a high-level schematic of the ROM-CKS all-or-nothing
scheme—and compare it with the intended analogous for the standard model
presented in Fig. 11.

The scheme for a set family S is then fairly straightforward. In a nutshell,
TKDF states roughly correspond to seed states, and TKDF trapdoors to key
states. For each internal node of DagS we use TKDF.Derive to compact the
seed states of its two child nodes as part of Compact. Conversely, for Expand
we use TKDF. Invert to obtain the key states of the node’s children. We now
discuss the scheme in a bit more detail; see Fig. 12 for a pseudocode description.

468 Y. Dodis and D. Jost

Fig. 10. The integrity game for an Iterative CKS scheme.

Seed states and key states. For now, let us describe a variant of the scheme
without integrity. Each seed state SSS is then of one of two forms: (a) a regular
state SSS = zS storing a TKDF state, or (b) an immediate state SSS = se, in
case S = {e}. (For clarity, we further mark the state with the constant ‘seeds′.)
Analogously, each keys state KSS either (a) is a TKDF trapdoor KSS = tS , if
|S| > 1, or (b) a key KS e = ke if S = {e}.

Init and Recover. Both Init and Recover are, in principle, extremely simple. The
former just outputs SS{e} = se as seed state, with no ciphertext necessary. The
latter takes KS{e} = ke and outputs ke.

Some complications arise from supporting regular TKDF, for instance for the
all-or-nothing scheme depicted in Fig. 11. Observe that here SS{1} and SS{2}
have to behave slightly differently, as the former seed s1 has the extra derivation
with the initial constant state z̃. (Looking slightly ahead, the TKDF.Derive
mixing in s2 will be performed as part of Compact of SS{1} and SS{2}.) To
solve this issue, the formal protocol from Fig. 12 solves this issue by introducing
a “base set” B ⊆ N of epochs, for which such an extra derivation should be
performed. Both B and z̃ are then considered protocol parameters.

Compact, DeriveKS, and Expand. As already mentioned, Compact corresponds
directly to TKDF.Derive and Expand to TKDF. Invert. Similarly, DeriveKS
corresponds directly to TKDF.Trapdoor, deriving the TKDF trapdoor (= keys
state) from the TKDF state (= seeds state). One more subtlety arises, however.
We want different users to compact two states in the same order, i.e., they

Compact Key Storage in the Standard Model 469

Fig. 11. The all-or-nothing scheme from Fig. 1 adapted to the standard-model CKS
setting, using a TKDF instead of convergent encryption. z̃ is some fixed TKDF state
used to initialize the iteration. Note that the tags Ti from Fig. 1 are omitted here (which
are not to be confused with the trapdoors ti).

should agree on which of the states SSS1 or SSS2 is used as a first and which
as a second argument. Otherwise, various parties who may learn the same set of
seeds in different orders may still create incompatible outsourcings, undermining
the compactness of the server state. In particular, the order must be well defined
when using Expand to recover prior trapdoors. We solve this by introducing
as a protocol parameter an order ≺ on any two sets S1 and S2 which can be
combined. (Note that this is not required to be a proper order relation among
all S, something like the lexicographic order on the descriptions of S1 and S2

would suffice.)

Integrity. Finally, let us enhance our protocol to satisfy integrity. This can be
done using a collision-resistant hash function Hpub(·). Each state is enhanced
with a hash, where the hash of a combined state is set to h = Hpub(h1, h2, c),
when computing Compact on seed states with hashes h1 and h2, respectively,
and c is the TKDF ciphertext produced during Compact. The hashes h1 and h2

are then output as part of the ciphertext along c, i.e., we set C = (h1, h2, c). For
an immediate state SS{e} the hash just binds the epoch number e.

Correctness and Security. The correctness of the scheme follows from the
correctness of the TKDF and inspection.

Theorem 4. The iterative CKS scheme from Fig. 12 is correct if the underlying
TKDF is correct and has deterministic ciphertexts. More concretely,

AdvGCorr
I−CKS

(A) ≤ (qInit + qCompact) · AdvGCorr
TKDF

(A′)
)

470 Y. Dodis and D. Jost

Fig. 12. A description of the I-CKS scheme based on a (symmetric) TKDF. Note
that for brevity we did not include the public hash key pub as part of every state.
Furthermore, in Compact and Expand we assume S1 ≺ S2; the general protocol is
obtained by invoking the algorithm with reversed arguments in the other case.

where qInit and qCompact denote bounds on the number of Init and Compact calls.

We now establish security of the TKDF scheme. A proof of the following
theorems is presented in the full version of this work.

Theorem 5. The iterative CKS scheme from Fig. 12 satisfies real-or-random
security of keys if the TKDF is secure. More concretely,

AdvGKeys-RoR
I-CKS

(A) ≤ (qInit + qCompact) ·
(
AdvGKeyRand

TKDF
(A1) + AdvGTdRand

TKDF
(A2)

+ AdvGIND-CPA-OT
TKDF

(A3)
)

where qInit and qCompact denote bounds on the number of Init and Compact calls.

Theorem 6. The iterative CKS scheme from Fig. 12 satisfies integrity if the
hash function Hpub(·) is collision-resistant and the TKDF correct and has deter-
ministic ciphertexts. More concretely,

AdvGIntegrity
I-CKS

(A) ≤ (qInit + qCompact) ·
(
AdvGCorr

TKDF
(A′) + AdvGCR

H
(A′′)

)

where qInit and qCompact denote bounds on the number of Init and Compact calls.

Compact Key Storage in the Standard Model 471

Variants. The above scheme is secure against an active adversary controlling
the server (i.e., delivering wrong ciphertexts) and malicious insiders making par-
ties use inconsistent and adversarially chosen seeds. We state some simple obser-
vations about weaker security models. First, we note that hash functions are
only needed to protect against an active attacker delivering wrong ciphertexts.

Corollary 3. Standard-model I-CKS against honest-but-curious servers, i.e.,
without integrity, can be built from dual-PRFs. Additionally, the TKDF cipher-
texts do not need to be deterministic.

Second, we observe that one-time TKDF security suffices when considering
outsider security only.

Lemma 1. Outsider-secure I-CKS, e.g., when restricting the adversary to sub-
mit se = ⊥ for the Init oracle can be built from one-time secure TKDF and,
therefore, from one-way function only.

5 CKS from Iterative CKS

In this section, we sketch how to turn any iterative CKS scheme into a regular
(standard model) CKS scheme. This provides a template for how to use iterative
CKS for a group of parties to outsource a sequence of keys that are derived from
seeds. Note that the key derivation U.Key(e, s) for the standard-model CKS
scheme is just the one from the iterative CKS scheme, i.e., DeriveKey(se, e). If
we target insider security or security against malicious servers, we require the
iterative CKS scheme to have deterministic ciphertexts. For the weakest passive
security notion, any I-CKS scheme suffices. In the following, we consider the
stronger security notion (and briefly discuss the weaker variants).

Server State and Algorithms. The server just implements a bulletin board BB.
Each entry stores an I-CKS ciphertext C and is indexed by a collision-resistant
hash thereof, i.e., BB[Hpub(C)] = C . Importantly, the server will compute the
hash themselves. This ensures that a malicious insider cannot overwrite a valid
ciphertext of another user, or preemptively set a position of the bulletin board to
something invalid. For a passively secure CKS protocol, we can index the bulletin
board using a description of the set S instead, i.e., BB[S] = CS . The server will
then store the first ciphertext sent for each S and ignore all subsequent ones.

As we will see, U.Upload will just send a set of ciphertexts that the server
will store. Similarly, U.Erase, U.Grant, U.Accept, and U.retrieve will query the
bulletin board for a subset of positions. We note that for our specific iterative
CKS scheme, this could be a bit optimized: as C = (h1, h2, c) the user would not
need to (iteratively) query for h1 and h2 and the server could just (recursively)
include all ciphertexts needed by the protocol.

472 Y. Dodis and D. Jost

User State. The client state depends on the graph DagS. More specifically, the
client stores the seeds state SSS or the keys state KSS for a subset of nodes.
We say that for a node S ∈ S, we say that SSS is derivable if either (a) SSS
is directly stored or (b) it is derivable for at least one of the parent nodes of
S. We say that KSS is derivable if either (a) KSS is stored, (b) SSS is stored,
or (c) the keys state is derivable for at least one of the parent nodes of S. We
say that SSS and KSS are indirectly derivable if the respective options (a) do
not apply. The user state is then maintained subject to the following invariant,
where additional seeds states or keys states are purged.

Invariant 1 (Compactness). A node S ∈ S only has the seeds state SS stored
if it’s not indirectly derivable. Analogously, it only has the keys state KS stored
if it’s not indirectly derivable. (This in particular means that no node stores both
seeds and keys state.)

Appending Seeds. When appending a seed se for an epoch e, the algorithm
proceeds in three steps:

1. Create a seeds state SS{e} ← Init(e, se) for the leaf node.
2. Iteratively derive seeds along all paths starting at the leaf node using

Compact. That is, for any of the nodes along a path, if the seeds states
of both children are known, then use Compact to compute the one for this
node.

3. Purge any seeds states or keys states that violate compactness.

The upload state stup then contains all ciphertexts produced by Compact. We
assume those ciphertexts to be deterministic (which does not violate security;
for instance, our TKDF uses a one-time IND-CPA secure encryption scheme)
then they can simply be sent to the server.

Retrieving Keys. To retrieve the key ke for an epoch e, U.retrieve identifies a
node on a path from the leaf S = {e} for which either the seeds state or the
keys state is stored. (If multiple candidates exist, pick e.g. the one the shortest
distance from the leaf.) If it is a seeds state, use DeriveKS to derive the respective
keys state. Then the algorithm uses Expand and finally Recover to retrieve the
key. For each step, request the necessary ciphertexts from the server. To retrieve
the keys for an entire subset of epochs share ⊂ N, the above steps are generalized
by identifying a suitable set of (internal) nodes that cover share with respect to
reachability in DagS.

Delegation. Delegation works similarly to the retrieval of keys, except that inter-
nal nodes are not further expanded if all or their descendants are part of the set
of delegated keys share ⊂ N. Note that the delegation message can either contain
keys states KSS or SSS . The latter is preferable if it is stored by the delegating
user. The accepting user receives those elements. If they already know keys for
any epoch e ∈ share they check consistency by recovering the key ke accord-
ing to their own state and the retrieved one. Afterward, they add the obtained
information to their local state and compact it.

Compact Key Storage in the Standard Model 473

Erasing Keys. Erasure works like self-delegation of the epochs not erased, except
that no consistency checks are needed. That is, if a user knows—i.e., can cur-
rently recover—keys for epochs K and wants to erase share, then they self-
delegate K \ share.

Functionality and Efficiency. Observe that the efficiency of the above scheme
inherently depends on DagS. As a result, the choice of DagS also dictates which
sets of epochs can be efficiently retrieved, delegated, and erased as formalized
by R, G, and E . We do not make this connection fully formal but only highlight
some of the relations.

– Small covers. For the user state to be compact, there need to exist nodes
that “cover” large sets of epochs, i.e., for which a large set of leaf nodes
are descendants. For instance in the all-or-nothing scheme in [7] there exist
nodes that cover [1, n], for any n, and in the interval scheme nodes that cover
[2i, 2i + 2j − 1] for i, j ∈ {0, 1, . . .}.
Similarly, delegation and erasure only work efficiently for subsets share ⊂ N
that have a small cover, sub-linear in share.

– Limited out degrees. If a node in DagS has too many ancestors on disjoint
paths, then U.Append becomes inefficient. In [7], both schemes used a struc-
ture where each node has out-degree 1.

– Short diameter. If DagS contains too long path, then U.Append or U.retrieve
can become inefficient. This is, for instance, the reason why the all-or-nothing
scheme cannot support efficient (i.e., sub-linear) retrieval of individual keys.

Security and Correctness. The security of the standard-model CKS scheme
reduces directly to the respective properties of the iterative CKS scheme. In
other words, the integrity of the CKS scheme follows from the integrity of the I-
CKS scheme, and analogously for pseudorandomness and correctness. The proof
of the following theorem follows by inspection.

Theorem 7 (Informal). The above sketched CKS scheme is correct and secure
if the iterative CKS scheme is correct and secure. The same furthermore applies
to the variants considering passive security or security against an honest-but-
curious server.

Legacy Compatibility. Observe that the result from Theorem 3 carries over
to the entire CKS scheme.

Corollary 4. Assume there is an E2E-secure application that provides a secure
KDF, that we can evaluate on one additional input, to derive keys from initial
seeds (and does not otherwise use the seeds). Then we can build a CKS scheme
that is compatible with said application that recovers the keys.

In particular, this class of legacy applications contains common schemes such
as the Double Ratchet or MLS, which use a key schedule based on HKDF.

474 Y. Dodis and D. Jost

References

1. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011, pp. 433–444. ACM
Press (2011). https://doi.org/10.1145/2046707.2046758

2. Bellare, M.: New proofs for NMAC and HMAC: security without collision resis-
tance. J. Cryptol. 28(4), 844–878 (2015). https://doi.org/10.1007/s00145-014-
9185-x

3. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9_18

4. Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assump-
tions: a generic validation of an HMAC assumption. Cryptology ePrint Archive,
Report 2015/1198 (2015). https://eprint.iacr.org/2015/1198

5. Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the MLS key deriva-
tion. In: 2022 IEEE Symposium on Security and Privacy, pp. 2535–2553. IEEE
Computer Society Press (2022). https://doi.org/10.1109/SP46214.2022.9833678

6. Das, P., Hesse, J., Lehmann, A.: DPaSE: distributed password-authenticated
symmetric-key encryption, or how to get many keys from one password. In: Suga,
Y., Sakurai, K., Ding, X., Sako, K. (eds.) ASIACCS 2022, pp. 682–696. ACM Press
(2022). https://doi.org/10.1145/3488932.3517389

7. Dodis, Y., Jost, D., Marcedone, A.: Compact key storage. In: Reyzin, L., Stebila,
D. (eds.) Advances in Cryptology - CRYPTO 2024, pp. 75–109. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-68379-4_3

8. Douceur, J., Adya, A., Bolosky, W., Simon, P., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: Proceedings 22nd
International Conference on Distributed Computing Systems, pp. 617–624 (2002).
https://doi.org/10.1109/ICDCS.2002.1022312

9. Fábrega, A., Pérez, C.O., Namavari, A., Nassi, B., Agarwal, R., Ristenpart,
T.: Injection attacks against end-to-end encrypted applications. In: 2024 IEEE
Symposium on Security and Privacy (SP), pp. 85–85. IEEE Computer Society,
Los Alamitos (2024). https://doi.org/10.1109/SP54263.2024.00082. https://doi.
ieeecomputersociety.org/10.1109/SP54263.2024.00082

10. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_5

11. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
276–291. IEEE Computer Society, Los Alamitos (2016). https://doi.org/10.1109/
EuroSP.2016.30. https://doi.ieeecomputersociety.org/10.1109/EuroSP.2016.30

12. Jarecki, S., Krawczyk, H., Resch, J.K.: Updatable oblivious key management for
storage systems. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019, pp. 379–393. ACM Press (2019). https://doi.org/10.1145/3319535.3363196

https://doi.org/10.1145/2046707.2046758
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
https://eprint.iacr.org/2015/1198
https://doi.org/10.1109/SP46214.2022.9833678
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1007/978-3-031-68379-4_3
https://doi.org/10.1109/ICDCS.2002.1022312
https://doi.org/10.1109/SP54263.2024.00082
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00082
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00082
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1109/EuroSP.2016.30
https://doi.org/10.1109/EuroSP.2016.30
https://doi.ieeecomputersociety.org/10.1109/EuroSP.2016.30
https://doi.org/10.1145/3319535.3363196

Compact Key Storage in the Standard Model 475

13. Kamath, C., Klein, K., Pietrzak, K., Walter, M.: The cost of adaptivity in security
games on graphs. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp.
550–581. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_19

14. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7_34

https://doi.org/10.1007/978-3-030-90453-1_19
https://doi.org/10.1007/978-3-642-14623-7_34

Bruisable Onions: Anonymous
Communication in the Asynchronous

Model

Megumi Ando1(B) , Anna Lysyanskaya2 , and Eli Upfal2

1 Tufts University, Medford, MA, USA
mando@cs.tufts.edu

2 Brown University, Providence, RI, USA

Abstract. In onion routing, a message travels through the network via
a series of intermediaries, wrapped in layers of encryption to make it
difficult to trace. Onion routing is an attractive approach to realizing
anonymous channels because it is simple and fault tolerant. Onion rout-
ing protocols provably achieving anonymity in realistic adversary models
are known for the synchronous model of communication so far. In this
paper, we give the first onion routing protocol that achieves anonymity
in the asynchronous model of communication. The key tool that our
protocol relies on is the novel cryptographic object that we call bruisable
onion encryption. The idea of bruisable onion encryption is that even
though neither the onion’s path nor its message content can be altered
in transit, an intermediate router on the onion’s path that observes that
the onion is delayed can nevertheless slightly damage, or bruise it. An
onion that is chronically delayed will have been bruised by many inter-
mediaries on its path and become undeliverable. This prevents timing
attacks and, as we show, yields a provably secure onion routing protocol
in the asynchronous setting.

1 Introduction

The ability to communicate anonymously is an increasingly vital component of
digital life and citizenship. From Iranian protesters wishing to safely to inform
the world what is happening in the streets of Tehran, to Russian citizens trying
to communicate with outside media, anonymity gives people all over the world a
chance to exercise their fundamental rights without fear of repercussions. Prac-
tical tools such as Tor [DMS04] (i.e., “The onion router,” inspired by Chaum’s
onion routing idea [Cha81] described below) or VPNs have a lot of room for
improvement. Both are easily blocked, and neither guarantees privacy even from
the network adversary (e.g., a standard model for a resourceful ISP- or AS-level
adversary) [MD05,SEV+15,WSJ+18,Rop21].

A communications protocol is anonymous [ALU21] if for any pair of input
vectors (σ0, σ1) that differ only on the inputs and outputs1 of honest parties (e.g.,
1 Here, by “output” of a party P we mean a set of messages {m} such that some party

P ′ receives (m, P) as part of its input. I.e. P ′ intends to send m to P .

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 476–507, 2025.
https://doi.org/10.1007/978-3-031-78011-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78011-0_16&domain=pdf
http://orcid.org/0000-0002-4639-9163
http://orcid.org/0000-0002-3567-3550
http://orcid.org/0000-0002-9321-9460
https://doi.org/10.1007/978-3-031-78011-0_16

Bruisable Onions: Anonymous Communication in the Asynchronous Model 477

Alice sends to Bob in σ0 and to Charlie in σ1), the adversary (whose capabilities
vary depending on the adversarial model) cannot tell from interacting with the
honest nodes in a protocol run whether the input was σ0 or σ1.2

The goal of research on onion routing [Cha81,Cha88,CL05,vdHLZZ15,
ALU18,KBS20,ALU21,AL21,KHRS21,ACLM22] is to achieve this definition in
the presence of a malicious adversary corrupting a fraction of the participants,
with a communication- and computation- efficient, fault-tolerant and decentral-
ized protocol. In an onion routing protocol, to send a message to Bob, Alice first
picks a sequence of intermediary parties I1, . . . , I�−1 and then forms a layered
cryptographic object called an onion using the message and the routing path
(I1, . . . , I�−1,Bob). Alice then sends the onion to the first intermediary I1 on
the routing path who peels off just the outermost layer of the onion (i.e., pro-
cesses the onion) and sends the peeled onion O2 to the next party I2 on the
routing path, I2 peels O2 and sends the peeled onion O3 to I3, and so on. This
procedure continues until Bob receives the message from Alice.

In an onion routing protocol that uses standard cryptographic onions [CL05],
even a powerful adversary who can corrupt (and “look into” or even control)
some of the parties cannot link an honest party’s incoming onion to its outgoing
onion. This lack of transparency allows for shuffling onions when they are batch-
processed at an honest party [RS93,BFT04,IKK05,ALU18].

Technical Challenge: Asynchronous Onion Routing. In recent years, several
protocols were presented as provably secure yet practical solutions [CBM15,
vdHLZZ15,TGL+17,KCDF17,ALU18,ALU21]. However, all these protocols’
security analysis requires synchronous communication. In the synchronous
communications setting, time progresses in rounds, and message transmis-
sions are lossless and instantaneous. While modeling communications in this
way makes designing and analyzing anonymity protocols more tractable, it
is somewhat of a cheat. Currently deployed anonymity protocols, such as
Tor [DMS04] and Loopix [PHE+17], are known to be vulnerable to traffic analy-
sis attacks [MD05,SEV+15,WSJ+18,AMWB23] that exploit the asynchronous
nature of communication in the real world.

Constructing a solution for the asynchronous setting is challenging because
the adversary can easily influence the traffic flow, for example, by mounting a
BGP interception attack [SEV+15], so that a targeted message arrives with an
expected and observable delay. (See Sect. 1.1 for an example of a timing attack
on a preciously known solution.) The adversary can do this even if the onions are
batch-processed and even if we are willing to pay a cost by increasing the latency
and/or volume of dummy traffic. As we explain below, this attack method breaks
the anonymity of every known protocol designed and proven secure for the syn-
chronous setting; this is a problem that is not trivially fixable by using sychro-
nizers (which assume no failures) or clock synchronization algorithms (which
guarantees that most if not all of the honest parties are synchronized) [Lyn96].

2 Alternative definitions of anonymity exist [BKM+13,KBS+19], but we will be refer-
ring to the standard cryptographic definition here.

478 M. Ando et al.

In this paper, we present the first provably anonymous onion routing protocol
for the asynchronous communications setting.

1.1 Towards a Solution: A Discussion

Starting Point: Solution for the Synchronous Setting. Let P = {P1, P2, . . . , PN}
be participants in an onion routing protocol. In the synchronous setting, it is
possible to achieve anonymity against the passive adversary (who observes all
network traffic and passively observes at a constant fraction of the parties) by
thoroughly shuffling together the messages. Consider the simple protocol, Πp. In
this protocol, each participant P ∈ P receives a message-recipient pair (m,R)
as input and forms a single onion using m and the routing path (I1, . . . , I�−1, R)
where each Ij ∈ P is chosen independently and uniformly at random from a
set of servers (some subset of the participants). Ando, Lysyanskaya, and Upfal
showed that Πp is anonymous so long the expected server load (the number of
onions that each server processes in a round) and the round complexity are both
at least polylogarithmic in the security parameter [ALU18].

However, Πp is not anonymous against the active adversary (who controls
the corrupted parties and can make them deviate from the protocol). The active
adversary can direct corrupted nodes to drop onions and learn who is talk-
ing with whom by observing who receives fewer messages than anticipated. For
example, if the first intermediary on the routing path from Alice to her recipient
(Bob) is adversarial (which happens with constant probability), the adversary
can drop Alice’s onion in the first round and learn who Alice’s recipient is when
Bob doesn’t receive a message in the end. Additionally, the adversary can direct
corrupted parties to replace onions formed by honest senders with ones they gen-
erate. In such an attack, the adversary can trick the honest parties into believing
that onions (sufficiently) shuffle when they don’t since the adversary knows what
the onions they generate look like. We can circumvent this attack using check-
point dummy onions [ALU18,ALU21]. For cryptographic reasons explained in
Preliminaries, the adversary cannot forge checkpoint onions; thus, if the adver-
sary drops too many onions, each party independently realizes this when they
observe correspondingly far fewer checkpoint onions.

A natural idea for an onion routing protocol is for each party Pi to form
a random number (polylogarithmic in the security parameter) of checkpoint
onions (each for a randomly chosen recipient), along with an onion bearing the
actual payload for the Pi’s recipient. In such a scenario, one of two things can
happen. If the adversary drops many onions, then the protocol aborts when the
parties detect this from the missing checkpoint onions; otherwise, the checkpoint
onions provide sufficient cover for the message-bearing onions. That is, as shown
by Ando, Lysyanskaya, and Upfal, this protocol (dubbed Πa – “a” for “active
adversary”) is differentially private from the active adversary corrupting at most
a constant fraction of the parties in the synchronous model [ALU18]. Specifically,
the adversarial views corresponding to any two neighboring input vectors that
differ only on honest parties’ inputs and outputs, are statistically similar as
defined by standard differential privacy; see Definition 1.

Bruisable Onions: Anonymous Communication in the Asynchronous Model 479

Defining Local Clocks for Πa. To adapt Πa for the asynchronous model, we must
contend with the fact that there are no global rounds. Each party may, however,
keep a local clock. Our first idea is that a participant Pi advances his clock based
on some way of satisfying himself that most of the onions that meant to arrive in
the current epoch (according to the local clock) have already arrived; say some
τ fraction of them. We can use checkpoint onions to achieve this. Additionally,
Pi sends out (processed) onions in batches only when it advances its clock. This
way, these onions are guaranteed to shuffle since Pi processes onions only once
a sufficient number of them have been received.

Motivation for Bruisable Onions. Unfortunately, this approach does not quite
work. As mentioned previously, in the asynchronous setting, the main challenge
is preventing the adversary from mounting a timing attack that compromises
anonymity. For example, the adversary can delay one of Alice’s onions but not
delay or drop any other onion. Assuming that the protocol is running continu-
ously, this will ensure that the adversary will observe a late onion delivery at
Alice’s recipient with (non-negligibly) higher probability than at any other recip-
ient. So, what we want is a mechanism that drops onions that are (chronically)
running behind. A first attempt at accomplishing this might be to mark a layer in
the middle of each onion. E.g., if the onion O consists of layers O = (O1, . . . , O�)
for the parties on the routing path (I1, . . . , I�−1, R), then peeling O�/2 reveals
that it is layer �/2. The processing party I�/2 can use this information to deter-
mine whether O�/2 is late relative to its local clock. The problem with this
approach is that when I�/2 is adversarial, I�/2 may not drop O�/2.

Our solution is to use cryptographic means to allow a few different inter-
mediaries (polylogarithmic in the security parameter in number and randomly
chosen) to each “bruise” an onion if it arrives late. The idea is that an onion
that is chronically running behind will be bruised many times and will not reach
its final destination (its recipient) because it will have accumulated too many
bruises for the innermost onion to be recoverable.

Note that the parties don’t immediately drop onions upon late arrivals. If
they did, the protocol – even under good network conditions – would not deliver
any message. This is because τ fraction of the onions arriving on time “in epoch
j − 1” doesn’t translate into each party eventually receiving τ fraction of the
expected jth layer checkpoint onions. More likely, some parties will not receive
enough checkpoint onions to progress, and the protocol will stall. So, what we
want is for onions to be “bruisable;” that is, a party can “bump” an onion so
that the damage to it (the “bruise”) shows up only later. Within the context of
our protocol, a “bruised” onion can travel on, unnoticed by others that it has
been modified in any way until it reaches the last intermediary I�−1 at which
point the damage is finally discovered. If the damage is great enough, I�−1 is
unable to extract the identity of the recipient from the bruised onion.

Our Contributions. Our list of contributions in this paper are as follows:

– A new cryptographic primitive: bruisable onion encryption. See
Sect. 3 for the formal definition including the correctness and security prop-

480 M. Ando et al.

erties. Other than for the application to onion routing in the asynchronous
model, bruisable encryption is interesting because it is an example of an
encryption scheme that is both malleable in a way that’s useful in an appli-
cation (since an intermediary is explicitly allowed to bruise an onion) and
yet provide security against an adversary who is allowed to adaptively query
participants to process onions of its choice.

– A construction of a bruisable onion encryption scheme: Tulip Onion
Encryption Scheme (TOES). See Sect. 4 for the construction, and Sect. 4.2
for the proof of security. Specifically, we show that TOES is bruisable-onion
secure (Definition 2) assuming the existence of CCA2-secure public encryp-
tion schemes with tags, block ciphers, and collision-resistant hash functions
(Theorem 1).

– The first provably anonymous onion routing protocol in the asyn-
chronous setting: Πt (”t” for “tulip” or “threshold”). See Sect. 5 for
the construction and Sect. 6 for the analysis of our protocol. We show that
for small constant corruption rate (e.g., 10%) and drop rate (e.g., 10%), our
protocol simultaneously guarantees: a positive constant message delivery rate
(Theorem 2) and (ε, negl(λ))-differential privacy from the active adversary for
any constant ε > 0 (Theorem 3 and Corollary 1). The anonymity guarantee
holds for any corruption rate strictly less than 50% (and any drop rate). The
message delivery guarantee holds even in the extreme case where the adver-
sary chooses to bruise every onion layer it receives. In the setting where the
adversary is maliciously bruising onions only at 5% of the parties and not
dropping onions, the guaranteed message delivery rate is over 0.85.

2 Preliminaries

For a natural number n, [n] is the set {1, . . . , n}. For a set Set, we denote the
cardinality of Set by |Set|, and item ←$Set is an item from Set chosen uniformly
at random. If Dist is a probability distribution over Set, item ← Dist is an item
sampled from Set according to Dist. For an algorithm Algo, output ← Algo(input)
is the (possibly probabilistic) output from running Algo on input. A function
f(λ) of the security parameter λ is said to be negligible if it decays faster than
any inverse polynomial in λ. An event occurs with overwhelming probability
(abbreviated w.o.p.) if its complement occurs with negligible probability in the
security parameter λ. Similar to the convention that poly(λ) means polynomially
bounded in λ, we introduce an analogous notation polylog(λ), by which we means
polylogarithmically bounded in λ. Throughout the paper, we use the symbol ⊥
to indicate a dummy object (such as a dummy message or a dummy recipient).

2.1 Modeling the Problem

System Parameters. Let λ be the security parameter. We assume that every
quantity of the system, including the number N of participants, is bounded by
a polynomial in λ.

Bruisable Onions: Anonymous Communication in the Asynchronous Model 481

Parties. Let Parties = {P1, . . . , PN} be the static set of participants. We assume
a setting with a public-key infrastructure (PKI); more precisely, we assume that
every participant knows the set Parties and the public key pk(P) associated with
each party P ∈ Parties.

Inputs. The input σi for each party Pi ∈ Parties is a set of message-recipient
pairs, that is, σi = {(mi,1, Ri,1), . . . , (mi,l, Ri,l)}, where the inclusion of a
message-recipient pair (mi,j , Ri,j) means that Pi is instructed to send the
message mi,j to the recipient Ri,j . By the input vector, we mean the vector
σ = (σ1, . . . , σN) containing everyone’s inputs.

Two input vectors σ0 and σ1 are neighboring if they are the same except
that the honest destinations for a pair of messages originating at honest parties
are swapped. More precisely, there exist (m,Pu) ∈ σ0,i and (m′, Pv) ∈ σ0,j such
that σ1,i = (σ0,i ∪{(m′, Pv)}) \ {(m,Pu)}, σ1,j = (σ0,j ∪{(m,Pu)}) \ {(m′, Pv)},
and σ1,k = σ0,k for all k ∈ [N] \ {i, j}.

Adversary Model. The adversary is active, meaning that in addition to observing
all network traffic, the adversary can also corrupt and control up to a constant χ
fraction of the parties. The adversary chooses which parties to corrupt prior to
the execution of the protocol. For our result on guaranteed message delivery,
we further assume that the adversary may drop (at corrupted parties) up to a
constant γ fraction of the honest parties’ message packets.

Message Schedule. The N parties form an asynchronous network, connected
pairwise by authenticated channels. Every message on the channels is guaranteed
eventual delivery after an arbitrarily long delay chosen by the adversary. This
setting is in keeping with how the message schedule is modeled in Byzantine
consensus literature [Bra84,CR93]; here, the adversary maintains a queue of
messages that have yet to be delivered and decides which messages are delivered
next. Combined with the adversary’s power to control the corrupted parties to
behave arbitrarily, this has the net effect that the adversary fixes the message
schedule and additionally can add/drop messages at corrupted nodes.

Adversarial View. Given a communications protocol Π, adversary A, and input
vector σ, let ViewΠ,A(σ) denote the adversary’s view in a run of Π on input σ
in the presence of the adversary A; that is, ViewΠ,A(σ) is a random variable
representing everything that the adversary can observe including the network
traffic and the states and computations of the corrupted parties.

2.2 Definition of Anonymity

The notion of anonymity that we use in this paper is standard (computational)
differential privacy:

Definition 1 ((ε, δ)-DP [DMNS06]). A communication protocol Π is (ε, δ)-
differentially private if for every adversary A and every pair of neighboring inputs

482 M. Ando et al.

σ0 and σ1 and every set V of adversarial views,

Pr
[
ViewΠ,A(σ0) ∈ V

]
≤ eε Pr

[
ViewΠ,A(σ1) ∈ V

]
+ δ.

We say that Π is computationally (ε, δ)-differentially private [MPRV09] if
the above bound holds for all polynomially bounded adversaries.

2.3 Checkpoint Onions

A technical challenge in realizing anonymity from the active adversary is pre-
venting the adversary from gleaning information by biasing the number of onions
that arrive at the recipients. For example, the adversary who suspects that Alice
is sending a message to Bob can try to confirm their suspicion by dropping the
onion originating from Alice before it shuffles with other onions.

In prior work, Ando, Lysyanskaya, and Upfal introduced a cryptographic
tool called checkpoint onions [ALU18] (a.k.a. dummy onions). These onions do
not carry a payload; instead, their purpose is to provide cover traffic for “real”
payload-carrying onions. They allow intermediary parties to locally determine
if the active adversary is disrupting network traffic and causing onions to get
dropped. This is accomplished as follows: Each pair of networked parties (the
end-users as well as the intermediaries) (Pi, Pj) is associated with a secret key si,j

for a pseudorandom function Fsi,j
. This function mostly evaluates to something

other than 0k, but if Fsi,j
(x) = y �= 0k, then party Pi expects to receive an

onion containing the string y in round r. I.e. party Pj must form an onion such
that, at round r, this onion will reach party Pi and contain the string y. If party
Pi is expecting such an onion but does not receive it, it means that the active
adversary has disrupted the network.

3 Bruisable Onion Encryption

We introduce a new cryptographic primitive called bruisable onion encryption.
Unlike in standard onion encryption, in bruisable onion encryption, each mixer
on the routing path has a choice to add an extra bit of information to the
onion: to ding (bruise) the onion or not. If the onion sustains too many bruises
(i.e., a sufficient number of the mixers on the path bruise the onion), then the
identity of the recipient R and the innermost onion O� for the recipient become
unrecoverable.

Another difference between standard onion encryption and bruisable onion
encryption is the addition of a new type of intermediaries, called gatekeepers. A
bruisable onion O travels along its routing path (M1, . . . ,M�1 , G1, . . . , G�2 , R)
consisting of some �1 mixers, followed by some �2 gatekeepers and the recipient R.
While the role of the mixers is to batch-process the onion (along with other
onions) or to bruise it, gatekeepers are responsible for routing the onion all
the way to the recipient only if the mixers didn’t bruise it too much. Without
gatekeepers, an onion that arrives at the last mixer M�1 on its routing path with

Bruisable Onions: Anonymous Communication in the Asynchronous Model 483

the threshold number X of bruises (with X bruises the onion can be delivered
to the recipient; with X +1, it cannot) can be processed by M�1 with or without
further bruising. If M�1 is adversarial, it can try both and learn the number
of bruises. So, we need gatekeepers to prevent this line of attack; an honest
gatekeeper will detect that this is the same onion except for the number of
bruises, and will not process it a second time.

A bruisable onion encryption scheme consists of the following algorithms:

KeyGen takes the security parameter 1λ and the name of a party P as
input, and outputs a public key pair (pk(P), sk(P)), i.e., (pk(P), sk(P)) ←
KeyGen(1λ, P).

FormOnion takes a (fixed length) message m, a routing path P = (M1, . . . ,M�1 ,
G1, . . . , G�2 , R) consisting of �1 “mixers” and �2 “gatekeepers,” the public keys
of the parties in P , and a sequence y = (y1, . . . , y�1+�2) of metadata where the
metadata string yi is intended for the ith processing party on the routing path.
(The metadata conveyed to each intermediary is a useful component of an
onion routing protocol: it allows the sender to communicate something about
the onion to the processing party. For example, in our protocol in Sect. 5, the
metadata is the pseudorandom nonces in the checkpoint onions.) FormOnion
outputs a list of lists of onions O = (O1, . . . O�) where � = �1+�2+1. That is,
letting pk(P) denote the public keys of the parties in P , O = (O1, . . . O�) ←
FormOnion(m,P , pk(P),y).

In standard onion encryption as defined by Camenisch and Lysyan-
skaya [CL05], FormOnion outputs a list of onions, O = (O1, . . . , O�). This
list is called the “evolution of the onion” because it is how the onion should
evolve as it travels along the routing path; each Oi is the onion that the ith

intermediary should receive and process.
In bruisable onion encryption, the evolution depends on if and when the

onion gets bruised. Accordingly, FormOnion outputs a list of lists of onions,
(O1, . . . O�), where each list Oi contains all possible variations of the ith

onion layer. The first list O1 = (O1) contains just the onion for the first
mixer. For 2 ≤ i ≤ �1, the list Oi contains i options, Oi = (Oi,0, . . . , Oi,i−1);
each Oi,j is what the ith onion layer should look like with j prior bruises. For
�1 + 1 ≤ i ≤ �1 + �2, the list Oi contains �1 + 1 options, depending on the
total bruising from the mixers. The last list O� = (O�1+�2+1) contains just
the innermost onion for the recipient.

Note that the routing path P may start and/or end with a sub-path
consisting of dummy parties, in which case FormOnion outputs onions for
only the non-dummy routing parties. For example, if the routing path is
(⊥,⊥, P3, P4, P5,⊥, . . . ,⊥), FormOnion outputs (O3,O4,O5).

PeelOnion takes the secret key sk(P) of the processing party P and an onion O.
Its output is (i, y, O′, P ′) where i is the position of the party P on the onion’s
routing path and y is the metadata, while (O′, P ′) falls into one of four cases:
if P is not the recipient, (O′, P ′) is either (1) the peeled onion O′ and its
next destination P ′ or (2) (⊥,⊥) if the onion is malformed or too bruised; if
P is the recipient, then P ′ = ⊥, while O is either (3) a message m or (4) ⊥.
(i, y, O′, P ′) ← PeelOnion(sk(P), O).

484 M. Ando et al.

BruiseOnion is an algorithm that allows an intermediary to damage the onion, or
bruise it. This option is only available to the mixers on the routing path, i.e.,
to the first �1 intermediaries. BruiseOnion takes as input the secret key sk(P)
of the party P and the onion O to be bruised as input, and outputs a bruised
onion O′ to send to its next destination, O′ ← BruiseOnion(sk(P), O).

3.1 Correctness Definition

If a bruisable onion is processed only either by running the PeelOnion algorithm
or the BruiseOnion algorithm at every hop, we require that it should travel along
the intended routing path specified by the sender. Further, if the bruising isn’t
too bad (i.e., it falls under some threshold θ), the gatekeepers should be able
to recover the innermost onion and the recipient; otherwise, routing the onion
through (G1, . . . , G�2) should reveal the empty final destination ⊥. We formalize
this intuition below.

Let Σ = (KeyGen,FormOnion,PeelOnion,BruiseOnion) be a bruisable encryp-
tion scheme. Let Parties be any set of participants. For each Pi ∈ Parties, let
(pk(Pi), sk(Pi)) be the key pair generated by running KeyGen on Pi. Let m be
any message from the message space; let P = (M1, . . . ,M�1 , G1, . . . , G�2 , R) be
any list of parties in Parties; let y = (y1, . . . , y�1+�2) be any sequence of meta-
data. Let � = �1 + �2 + 1. (O1, . . . ,O�) is the result of running FormOnion on m,
P , the public keys pk(P) of the parties in P , and y, i.e., O = (O1, . . . O�) ←
FormOnion(m,P , pk(P),y).

We say that Σ is correct with respect to the threshold 0 < θ ≤ 1, the number
�1 of mixers, and the number �2 of gatekeepers if the following are satisfied:

– Correct peeling and bruising. For 1 ≤ i < �1 + �2, 1 ≤ j ≤ |Oi|, let
(i′, y, O, P) be the output of PeelOnion(sk(Pi), Oi,j). Then i′ = i, y = yi,
O = Oi+1,j , and P = Pi+1. In other words, when processing an onion, the
mixer correctly recovers its position i in the list of processing parties, its
metadata yi, the onion Oi+1,j to send forth with the same amount of bruising,
and its destination Pi+1. Moreover, for 1 ≤ i ≤ �1, 1 ≤ j ≤ |Oi|, let O′ be
the output of BruiseOnion(sk(Pi), Oi,j). Then O′ = Oi+1,j+1.

– Correct gatekeeping. For i = �1 + �2, 1 ≤ j ≤ �1 + 1, let (i′, y, O, P)
be the output of PeelOnion(sk(Pi), Oi,j). If j ≤ θ�1, then i′ = i, y = yi,
O = O�, and P = R. In other words, when processing an onion that is not
too bruised, the last gatekeeper correctly recovers its position i = �1 + �2 in
the list of processing parties, its metadata yi, the onion O� to send forth, and
the recipient R. However, if j > θ�1, then i′ = i, y = yi, O = ⊥, and P = ⊥.
In other words, if the onion is too bruised, the honest gatekeeper still recovers
its metadata but not the onion to send forth or the next destination.

– Correct message. Peeling the innermost onion layer recovers the intended
message, i.e., PeelOnion(skR, O�) = (�,⊥,m,⊥).

Bruisable Onions: Anonymous Communication in the Asynchronous Model 485

3.2 Security Definition

We define security for bruisable onion encryption using the following game,
BrOnSHH (which stands for bruisable onion security with an honest mixer and an
honest gatekeeper). BrOnSHH is parameterized by the security parameter 1λ, the
adversary A, the bruisable onion encryption scheme Σ = (KeyGen,FormOnion,
PeelOnion,BruiseOnion), and the system parameters θ (which controls how much
bruising can be tolerated) and �1 and �2 (which specify the numbers of mixers
and gatekeepers for an onion’s path).

The challenger controls an honest mixer, an honest gatekeeper, and an honest
recipient. The challenge onion might or might not be intended for the honest
recipient, but it must be routed through the honest mixer and gatekeeper. The
adversary controls all intermediaries other than the honest mixer, the honest
gatekeeper, and the honest recipient.

– Setup: The adversary A and the challenger C set up the parties’ keys.
1. The adversary A sends the names of the honest mixer Pm, the honest

gatekeeper Pg, the honest recipient Pr, and the adversarial parties Bad;
and the public keys pk(Bad) of the adversarial parties to the challenger C.

2. For each honest party P ∈ {Pm, Pg, Pr}, C generates a key pair (pk(P),
sk(P)) ← KeyGen(1λ, P) and sends pk(Pm), pk(Pg), pk(Pr) to A.

– First Query Phase:
3. A can direct an honest party to peel or bruise an onion by submit-

ting queries to peel (resp. bruise) an onion O on behalf of an honest
party P ∈ {Pm, Pg, Pr}, in which case C responds with the output of
PeelOnion(sk(P), O) (resp. BruiseOnion(sk(P), O)).

– Challenge Phase: A picks the parameters of the challenge onion, and C
replies with the challenge onion O1.
4. A sends to C: the message m; the routing path P where Pm = Mi1

in position i1 ≤ �1 is one of the mixers (M1, . . . ,M�1), Pg = Gi2−�1 in
position �1 < i2 ≤ �1 + �2 is one of the gatekeepers (G1, . . . , G�2), and the
recipient R may be Pr; and the sequence y = (y1, . . . , y�1+�2) of metadata.

5. C samples a bit b ←$ {0, 1}.
• If b = 0, Q = P . z = y.

• If b = 1, Q = (M1, . . . ,Mi1−1, Pm,

�1+�2+1−i1︷ ︸︸ ︷
⊥, . . . ,⊥). z = (y1, . . . , yi1 ,

�1+�2+1−i1︷ ︸︸ ︷
⊥, . . . ,⊥).

C returns the first onion O1 in the output from running FormOnion on
m, Q, the public keys pk(Q), and z, i.e., ((O1),O2, . . . ,O�1+�2+1) ←
FormOnion(m,Q, pk(Q),z).

– Second query phase: A is again allowed to submit queries to have an onion
peeled or bruised by an honest party P .
6. If b = 0; or the request isn’t

• to peel or bruise an onion in Oi1 as the mixer Pm (query type 1),
• to peel an onion in Oi2 as an honest gatekeeper Pg (type 2), or

486 M. Ando et al.

• to peel the onion O�1+�2+1 as the recipient Pr (type 3);
the challenger processes the request by running the scheme’s algorithm
(as before).

7. If the query is type 1, 2, or 3 (defined above), and this is not the first
request of this type; the challenger responds with an error message.

8. Else (b = 1):
i. Query type 1: the query is to the mixer Pm to peel or bruise an

onion Oi1,j ∈ Oi1 . C runs FormOnion on the dummy message ⊥ and
the path after Pm to Pg, i.e.,

Qi1+1→i2
= (

i1
︷ ︸︸ ︷

⊥, . . . , ⊥, Mi1+1, . . . , M�1 , G1, . . . , Gi2−�1−1, Pg,

�1+�2+1−i2
︷ ︸︸ ︷

⊥, . . . , ⊥)

zi1+1→i2 = (

i1
︷ ︸︸ ︷

⊥, . . . , ⊥, yi1+1, . . . , yi2 ,

�1+�2+1−i2
︷ ︸︸ ︷

⊥, . . . , ⊥)

Oi1+1→i2 ← FormOnion(⊥, Qi1+1→i2
, pk(Qi1+1→i2

), zi1+1→i2).

Suppose the query was to peel (resp. bruise); C sets bruisecount = j
(resp. bruisecount = j + 1) and returns (i1, yi1 , Oi1+1,0, Mi1+1)
to A where Oi1+1,0 is the first onion in the output Oi1+1→i2 =
((Oi1+1,0, . . . , Oi1+1,i1),Oi1+2, . . . ,Oi2) of FormOnion. (bruisecount is
the number of bruises that the onion acquires before reaching Mi1 .
The challenger keeps track of this information to ensure that the
innermost onion is recoverable only if it should be.)

ii. Query Type 2: the query is to the gatekeeper Pg to peel an onion
Oi2,j ∈ Oi2 . Let m′ = m if R = Pr or bruisecount+j ≤ θ�1; otherwise,
let m′ = ⊥. Let R′ = R if bruisecount+j ≤ θ�1; otherwise, let R′ = ⊥.
C runs FormOnion on the message m′ and the routing path consisting
of the gatekeepers after Pg and the recipient R′, i.e.,

Qi2+1→ = (

i2︷ ︸︸ ︷
⊥, . . . ,⊥, Gi2−�1+1, . . . , G�2 , R

′)

zi2+1→ = (

i2︷ ︸︸ ︷
⊥, . . . ,⊥, yi2+1, . . . , y�1+�2)

Oi2+1→ ← FormOnion(m′,Qi2+1→, pk(Qi2+1→),zi2+1→)

C returns (i2, yi2 , Oi2+1,0,Mi2+1) to A where Oi2+1,0 is the first onion
in the output Oi2+1→ = ((Oi2+1,0, . . . , Oi2+1,i1),Oi2+2, . . . O�1+�2+1)
of FormOnion.

iii. Query type 3: the query is to the recipient Pr to peel the onion
O�1+�2+1. C returns the message m.

– At the end, A outputs a guess b′ for the bit b and wins if b′ = b.

We define bruisable-onion security as follows.

Definition 2. A bruisable onion encryption scheme Σ is bruisable-onion secure
for parameters θ, �1, �2 if there is a negligible function ν : N �→ N such that every
p.p.t. adversary A wins the game BrOnSHH(1λ,A, Σ, θ, �1, �2) with advantage at
most ν(λ), i.e.,

∣∣Pr
[A wins BrOnSHH(1λ,A, Σ, θ, �1, �2)

] − 1
2

∣∣ ≤ ν(λ).

Bruisable Onions: Anonymous Communication in the Asynchronous Model 487

Intuition for the Security Definition. Our definition captures the idea that
if the onion encryption scheme is secure, the adversary cannot determine any
meaningful information about an onion that is “hidden behind an honest party:”

– Layers for parties up to the honest mixer. The adversary cannot dis-
tinguish between the scenario where the challenger forms O1 as specified by
the adversary (case b = 0) from the scenario where the challenger forms O1

without using the message m, the routing path after Pm, or the metadata
corresponding to the path after Pm (case b = 1). See step 5 of the security
game.

– Layers for Parties after the Honest Mixer up to the Honest Gate-
keeper. The adversary cannot tell whether the peeled (resp. bruised) ver-
sion O′ of the challenge onion Oi1,j for Pm is obtained by peeling (resp. bruis-
ing) Oi1,j as specified by the adversary (case b = 0), or if O′ is a fresh onion
formed information-theoretically independently of the message m, the path
and metadata up to Pm, the path and metadata after Pg, or the amount of
bruising that the onion has incurred so far (case b = 1). See step 6 and step 8i
of the security game.

– Layers for the parties after the honest gatekeeper. If the challenge
onion incurs more than (resp. at most) the threshold number (θ�1) of bruises,
then the innermost onion and the recipient are unrecoverable (resp. remain
recoverable). In this event, the adversary cannot tell whether the onion O′′

that the gatekeeper Pg produces as the peeled version of its challenge onion
Oi2,j was obtained by peeling Oi2,j (case b = 0), or if O′ is a fresh onion
information-theoretically independent of the bruising so far and, if R = Pr,
the message m (resp. the message m, the recipient R, and the bruising so
far). See step 6 and step 8ii of the security game.

– Replay attacks. Note that in both the real world and in our security game,
the adversary can send an onion for processing to the same honest party
more than once. A feature of bruisable onions is that the adversary can send
different versions of the same onion, corresponding to different amounts of
bruising. We cannot guarantee security if more than one version is processed
according to the protocol since that would reveal how bruised an onion was
when it got to the adversary. Thus, in our security game, the challenger will
not process the same onion more than once, and this includes differently
bruised versions of the same onion. An honest participant in a protocol that
uses bruisable onion encryption needs to keep state information and do the
same. It is important that a replayed onion be detectable even if it’s a different
version. In our construction in Sect. 5, different versions of the same layer of
the same onion share a symmetric key; storing this key would enable one to
identify and reject replayed onions.

Remark. Although we do not provide a UC functionality for bruisable onion
encryption in this paper, we note that our definition here should be sufficient
to UC-realize any reasonable modeling of such a functionality in the spirit of
the ideal functionalities for (regular, non-bruisable) onion encryption of prior
work [CL05,AL21]. In this approach, an ideal functionality for bruisable onion

488 M. Ando et al.

encryption would form onions on behalf of honest parties piece-wise. Given a
routing path P , the “segments of P” are the subpaths of P that partition P in
such a way that each subpath forms a contiguous sequence of adversarial parties
followed by a single honest party (or no honest party if the segment is that last
subpath containing an adversarial recipient). For example, letting capitalized
parties denote honest parties, for the path P = (P1, p2, p3, P4, P5, p6, P7), the
segments are (P1), (p2, p3, P4), (P5), and (p6, P7). The ideal functionality forms
the onion layers for each segment separately, without knowledge of the rest of the
path, the message, or the bruise count so far; this ensures that onion layers across
different segments are information-theoretically unrelated to each other. For each
FormOnion query, the ideal functionality keeps track of which onion layers are
part of the onion via an internal table or dictionary, as well as the cumulative
bruise count. Our security definition would ensure that, whether the onion layers
are formed correctly (as in the real world) or piecemeal by the simulator, no
adversary can distinguish; the proof that a bruisable onion encryption scheme
satisfying our definition would UC-realize such a functionality would follow the
outline of the proof of Ando and Lysyanskaya [AL21], adjusted for the addition
of bruises and gatekeepers. Seen in this way, the UC composition theorem allows
us to analyze the anonymity of our onion routing protocol separately from the
security of the onions.

4 Tulip Onion Encryption Scheme

Our onion encryption scheme produces a type of onion that we call tulip bulbs.
A tulip bulb consists of three components: the header H containing the routing
information, the content C containing the payload, and the “sepal” S for peeling
the penultimate onion layer. (The sepal is the outermost part of a flower that
protects the flower while it is still a bud. In our construction, the sepal protects
the rest of the content by “absorbing” the bruising.)

Below, we explain on a high level how a tulip bulb is formed and how it
will be processed; this will be helpful for understanding our overall construction.
Given a party P , let (pk(P), sk(P)) denote the public key and secret key of P ;
and let Oi denote the tulip bulb (one of the |Oi| options) for the ith party on
the routing path (M1, . . . ,M�1 , G1, . . . , G�2 , R) of length � = �1 + �2 + 1.

The Header Hi. In our construction, for each i, all variations in Oi have the
same header Hi and content Ci; the only differences are in the sepals. The
header Hi = (Ei, Bi) consists of the ciphertext Ei and the rest of the header Bi.
Ei is an encryption under pk(Pi) of the tuple (i, yi, ki) where i is the position,
yi is the metadata, and ki is the layer key. For 1 ≤ i < �−1, Bi is an encryption
under ki of the identity of the next processor Pi+1 and header Hi+1 of the tulip
bulb Oi+1 that will be sent to Pi+1.

The header H�−1 for the last gatekeeper G�2 is somewhat different. The
ciphertext E�−1 decrypts to the key k�−1; using k�−1, G�2 can process the sepal.
If the sepal is not too damaged and processing it yields the bulb master key K,

Bruisable Onions: Anonymous Communication in the Asynchronous Model 489

then the rest of the header B�−1 can be decrypted under K, yielding the identity
of the recipient R and the header H� for R.

The Content Ci. The content Ci is an encryption under the layer key ki of
the content Ci+1 of Oi+1. If Pi is the recipient, then it is an encryption of the
message.

The Sepal Si. The sepal Si looks different depending on whether the processor Pi

is a mixer Mi or a gatekeeper Gj for j = i − �1. Specifically:

– For 1 ≤ i ≤ �1, the processor Pi is the mixer Mi. The sepal Si received by
Mi consists of �1 − i + 2 blocks, (Si,1, . . . , Si,�1−i+2). For example, if �1 = 3,
then the first mixer’s tulip bulb has four sepal blocks, the second mixer has
three, and the last mixer receives a bulb with only two sepal blocks.

Suppose we want a bulb to be irrevocably lost after d bruises, but d − 1
bruises are tolerated.3 For the first mixer M1, the first d sepal blocks are
encryptions of the bulb master key K, salted and wrapped in layers of sym-
metric encryption keyed by k1, . . . , k�−1. The rest of the sepal blocks are
salted encryptions of 0 (dummies), also salted and wrapped in layers of sym-
metric encryption keyed by k1, . . . , k�−1. Let S1,1, . . . , Si,�1+1 denote these
sepal blocks. I.e., letting “〈K〉” denote a sepal block that contains the bulb
master key, and “〈0〉,” a dummy block,

S1 = (S1,1, . . . , S1,�1+1) = (

d times︷ ︸︸ ︷
〈K〉, . . . , 〈K〉,

�1−d+1 times︷ ︸︸ ︷
〈0〉, . . . , 〈0〉)

To process the tulip bulb without bruising it, M1 peels a layer of encryption
from all the blocks in S1 and then “drops” the first block from the right. So
the sepal S2 for the next processing party retains the same number of blocks
with the bulb master key, i.e.,

unbruised S
(1)
2 = (S2,1, . . . , S2,�1) = (

d times︷ ︸︸ ︷
〈K〉, . . . , 〈K〉,

�1−d times︷ ︸︸ ︷
〈0〉, . . . , 〈0〉)

To bruise the tulip bulb, M1 forms S2 by dropping the first block from the
left instead, i.e.,

bruised S
(2)
2 = (S2,1, . . . , S2,�1) = (

d−1 times︷ ︸︸ ︷
〈K〉, . . . , 〈K〉,

�1−d+1 times︷ ︸︸ ︷
〈0〉, . . . , 〈0〉)

In general, to peel the sepal Si = (Si,1, . . . , Si,�1−i+2) without bruising it, the
ith mixer Mi drops the rightmost sepal block Si,�1−i+2. To bruise the sepal, Mi

drops the leftmost sepal block Si,1. Carrying out this procedure ensures that
the only remaining sepal block in S�1+1 for the last gatekeeper G1 contains
the bulb master key K if and only if the number of times that the sepal was

3 In our onion routing protocol in Sect. 5, d is set so that the innermost tulip bulb is
recoverable when ≤ θ fraction of the bruisable layers are bruised, i.e., d = θ�1.

490 M. Ando et al.

bruised is at most d − 1. So, the i options for the sepal Si correspond to the
i distinct max(�1 + 2 − i, 1) contiguous blocks (with the appropriate number

of encryptions peeled off) from

d times︷ ︸︸ ︷
〈K〉, . . . , 〈K〉,

�1−d+1 times︷ ︸︸ ︷
〈0〉, . . . , 〈0〉.

Note that if the mixer is not honest, they can rearrange the blocks or mod-
ify the sepal in an “illegal” way outside the prescribed procedures outlined
above. Verification hashes are stored in the header of the tulip bulb to allow
honest parties to detect when this happens. Care must be taken that these
verification hashes not reveal anything about the possible sepals other than
their validity. See the remark below. Moreover, if the last few mixers on the
routing path are all adversarial, the adversary can attempt to “open” more
than one sepal block, which could potentially leak some information about
prior bruisings. The honest gatekeepers prevent this from happening since
honest parties will process a tulip bulb only once, and a tulip bulb with a
repeating key ki will be treated as a different variant of the same tulip bulb.
See Sect. 4.1 for how the sepal blocks and the verification hashes are formed.

– For �1 + 1 ≤ i < �, the processor Pi is the gatekeeper Gi−�1 . The sepal Si

received by Gi−�1 is either the encryption of the bulb master key K under
symmetric keys ki, . . . , k� (if the tulip bulb wasn’t bruised too much), or
the encryption of 0 (if it was). Pi processes the sepal by peeling a layer of
encryption: Si+1 is the decryption of Si under ki.

– The last gatekeeper G�2 either recovers the master key K from S� or discovers
that it cannot be recovered. If K is recovered, then G�2 can process the rest
of the header H�.

Remark on How to Incorporate Verification Hashes. Mixer Mi receives onion
Oi = (Hi, Ci, Si), where Si is one of i sepal candidates S

(1)
i , . . . , S

(i)
i , as described

above. In order to ensure that the sepal does not get corrupted in transit but in
fact corresponds to the sepal prepared by the sender, our construction includes
(in lexicographic order) the values {h(S(j)

i)}1≤j≤i for a collision-resistant hash
function h. Let us go over what can go wrong with if we include only these
hashes and how to fix it. First, note that a collision-resistant hash function may
still leak information about its pre-image. In a contrived example, h(S(j)

i) may
leak the position of the first occurrence of the binary string “tulip fever” in its
pre-image, if any, and still remain a collision-resistant hash function. Recall that
S
(j+1)
i is obtained by dropping the first λ bits of S

(j)
i and concatenating some

additional random bits to the end; in the event that S
(j)
i contains the string

“tulip fever” in position p, S
(j+1)
i will contain “tulip fever” in position p − λ.

Thus, our contrived hash function would leak that S
(j+1)
i is the sepal for the

onion that has one additional bruising compared to one with sepal S
(j)
i .

Luckily, we show that this is not a problem if we also include additional
dummy hashes of strings that could never be proper sepals. The idea is to create
one random, dummy sepal block that is never included in any sepals, but that will
be hashed with valid sepal blocks in a circular manner. See Formal description.

Bruisable Onions: Anonymous Communication in the Asynchronous Model 491

4.1 Formal Description

Our onion encryption scheme, Tulip Onion Encryption Scheme (TOES), builds
on standard cryptographic primitives: a CCA2-secure public key encryption
scheme with tags (KeyGen,Enc,Dec),4 a block cipher, and a collision-resistant
hash function h. In the description below, let “{·}k” denote symmetric encryp-
tion under the key k, and let “} · {k” denote symmetric decryption under
k. This notation is consistent with prior work on onion encryption schemes,
namely [CL05,AL21,ACLM22].

The onion encryption scheme’s key generation algorithm is just KeyGen. We
assume a public key infrastructure where the keys (for at least the honest parties)
are supplied by running KeyGen. For each party P , let (pk(P), sk(P)) denote the
public-key and secret-key for party P .

Below, we describe how to form a tulip bulb containing the message m for the
routing path (M1, . . . ,M�1 , G1, . . . , G�2 , R), and the metadata y = (y1, . . . , y�−1)

Generating the Tulip Keys. To begin with, we pick layer keys k1, . . . , k� and
master key K independently and uniformly at random from the key space of
our symmetric encryption scheme. As explained earlier, each ki will be used to
encrypt the onion layer for the ith processing party on the routing path; the
master key is needed to recover the eventual recipient.

Forming the First Sepal. S1. We describe how to compute the sepal portion of the
tulip bulb O1 for the first mixer M1 on the routing path. The sepal S1 consists
of d key-blocks (the 〈K〉-blocks) S1,1, . . . , S1,d, as well as �1 − d + 1 null-blocks
(the 〈0〉-blocks) S1,d+1, . . . , S1,�1+1.

Each key-block 〈K〉 is the bulb master key K, salted and encrypted under
k1, . . . , k�−1; that is,

S1,j = {. . . {K, sj}k�−1 . . . }k1 ∀1 ≤ j ≤ d

where sj ←$SaltSpace is a random value from an appropriately large salt space.
The procedure for forming a null-block 〈0〉 is essentially the same except that
we wrap 0 instead of the value K in layers of encryption, i.e.,

S1,j = {. . . {0, sj}k�1+1 . . . }k1 ∀d + 1 ≤ j ≤ �1 + 1.

If the sepal Si was not processed correctly (i.e., not just peeled or bruised), then
the processing party Pi should be able to detect this. To that end, we store
verification hashes (i.e., hashes of all possible values that a correctly formed and
processed Si can take on, plus a few dummy hash values), denoted by Ai, in
the header. These hash values are computed as follows: First, let Ti,j denote the
sepal block S1,j without the i−1 outermost encryption layers, and let Ti,�1+2 be
a dummy sepal block (i.e., a truly random string of length the number of bits in
a sepal block, wrapped in layers of encryptions keyed by ki, . . . , k�−1), which we
will call the “clasp” for reasons that will become evident in the next sentence.
4 See [CS98] for the original formal description of encryption with tags.

492 M. Ando et al.

Each hash value Ai,j is the hash of one of the l = max(1, �1 + 2 − i) contiguous
blocks on the ring (really a “bracelet”) (Ti,1, . . . , Ti,�1+2) where the block after
the clasp Ti,�1+2 is Ti,1. Letting A′

i = {Ai,0, Ai,1, . . . , Ai,�1+2}, Ai is the vector,
sorted in lexicographic order, of the hashes of the elements of A′

i, i.e., letting
T�−1,�1+2 ←$ {0, 1}|S1,1|,

Ti,j =} . . . }S1,j{k1 . . . {ki−1 ∀j ∈ [�1 + 1]
Ti,�+2 = {. . . {Ti,�1+2}k�−1 . . . }ki

Ai,j = h
(
Ti,(j mod �1+2), . . . , Ti,(j+l−1 mod �1+2)

) ∀j ∈ [�1 + 2]
Ai = Sort({Ai,0, Ai,1, . . . , Ai,min(i,�1+1)})

Note that computing the hashes can be accomplished efficiently as the number
|Ai| of hashes in each onion layer is �1 + 2. See the next section for details on
where the hashes are stored. The hash values constitute all possible ranges on
the bracelet; this prevents the adversarial intermediary (a mixer or a gatekeeper
prior to the last gatekeeper) from learning any information about how bruised
the onion is so far. The clasp (and resulting dummy values) are needed to enable
detection of any illegal rearrangement of the sepal blocks.

Forming the Header and Content for the Last Onion Layer. After forming the
sepal S1, we obtain the header H1 and content C1 via a recursive process. First,
we form the last onion layer for the �th party (the recipient R). The content C�

is just the encryption of the message m under the key k�, i.e., C� = {m}k�
. We

form the tag t� by taking the hash of C�, i.e., t� = h(C�). The tag ensures that
R can peel the last layer only if they receive an onion with the correct header
and content. The header H� is completed by taking the encryption under the
key pk(R) of the role “Recipient,” the hop-index � + 1, and the key k�, i.e.,

E� = Enc(pk(R), t�, (Recipient, �, k�))
H� = E�

Forming the Header and Content for Penultimate Onion Layer. Next,
we form the penultimate layer H�−1, C�−1 for the last gatekeeper G�2 . The con-
tent C�−1 is the encryption of C� under the master key K, i.e.,

C�−1 = {C�}K = {{m}k�
}K

Block B�−1,1 is the encryption of E� and the identity of the recipient R under
the master key K, i.e.,

B�−1,1 = {R,E�}K

The header H�−1 consists of blocks E�−1, B�−1,1 where E�−1 is the encryp-
tion under the public key pk(G�2) and the appropriate tag t�−1 of the role

Bruisable Onions: Anonymous Communication in the Asynchronous Model 493

“LastGatekeeper,” the hop-index � − 1, the nonce y�−1, the verification hashes
A�−1, and the sepal layer key k�−1, i.e.,

t�−1 = h(B�−1,1, . . . , B�−1,�−1, C�−1)
E�−1 = Enc(pk(G�2), t�−1, (LastGatekeeper, � − 1, y�−1,A�−1, k�−1))
H�−1 = (E�−1, B�−1,1, . . . , B�−1,�−1)

Forming the Outer Layers. For 1 ≤ i ≤ � − 2, the header and content Hi, Ci

builds on the header and content of the previous layer Hi+1, Ci+1, similar to
how the penultimate layer builds on the last layer. Here, Ei is the encryption
of the processing party’s role (either “Mixer” or “Gatekeeper”), the hop-index i,
the nonce yi, the verification hashes Ai, and the key ki. See below:

Ci = {Ci+1}ki

Letting Ii+1 be the i + 1th party on the path,

Bi,1 = {Ii+1, Ei+1}ki

Bi,j = {Bi+1,j−1}ki
∀2 ≤ j ≤ � − j + 1

ti = h(Bi,1, . . . , Bi,�−1, Ci)
Ei = Enc(pk(Pi), ti, (Role, i, yi,Ai, ki))
Hi = (Ei, Bi,1, . . . , Bi,�−1)

See Fig. 1 below for a pictorial description of the tulip bulb O1.

Fig. 1. A pictorial description of how an onion is formed using TOES. The verification
hashes A1 for M1 are the hashes h(S1,1, S1,2, S1,3), h(S1,2, S1,3, T1,4), h(S1,3, T1,4, S1,1),
and h(T1,4, S1,1, S1,2) in lexicographical order, where T1,4 ←$ {0, 1}|S1,1|.

Forming an Onion with an Incomplete Path. We form an onion for a path
that begins and/or ends with the empty path, e.g., (⊥,⊥, P3, P4, P5,⊥, . . . ,⊥),
by setting the intermediary party for the empty locations (the ⊥’s) to be the
sender; and if the recipient is ⊥, the sepal blocks are all dummy sepal blocks
〈0〉. In this case, the algorithm outputs only the onion vectors for the parties
corresponding to non-empty locations on the path.

494 M. Ando et al.

Remark on the Onion Size. Recall that �1 is the number of mixers on a routing
path, and �2 is the number of gatekeepers. Each onion consists of a content block,
a number of sepal blocks, and a number of header blocks. The length of each
message block is just the length of a message (let us call this �m). Each onion
layer consists of at most �1 +1 sepal blocks and �1 + �2 +1 header blocks, where
the length of each sepal block is the length of each layer key (so, roughly λ),
and the length of each header block is dominated by the size of the verification
hashes in a layer (so, roughly O(λ�1)). Thus, the overall size of a tulip bulb is
O(λ(�21 + �2)) + �m.

4.2 Proof of Security

Here, we summarize our proof that our construction satisfies the definition of
security provided in Definition 2.

Theorem 1. Tulip Onion Encryption Scheme is bruisable-onion secure, assum-
ing the existence of CCA2-secure public key encryption schemes with tags, block
ciphers, and collision-resistant hash functions.

Proof (Proof Idea). We first provide a hybrid argument for the case where the
challenge onion is too bruised to recover the innermost onion. Proofs for the
other cases (when the onion is recoverable and/or when the recipient is honest)
are given after the proof of this first case.

Below, we describe a sequence of hybrid experiments Hybrid0, . . . ,Hybrid18
and provide a brief explanation (in color) of why each pair of consecutive exper-
iments consists of indistinguishable scenarios. (See full version of the paper for
more details.) Recall that in the security game BrOnSHH, the honest mixer is
Mi1 , sitting in position 1 ≤ i1 ≤ l1; and the honest gatekeeper is Gj=i2−�1 ,
sitting in position �1 + 1 ≤ i2 ≤ �2.

Hybrid0: the challenge onion O1 is formed correctly. (This is the same as the
game when b = 0.)

 Indistinguishable from CCA2-secure public key encryption.
Hybrid1: same as Hybrid0 except that the ciphertext Ei1 is an encryption under
pk(Mi1) of the dummy key 0. (The challenger still samples for the layer key ki1

and uses it to form the ith1 onion layers Oi1 .)
 Indistinguishable from the collision resistance of the hash function

Hybrid2: same as Hybrid1 except that if, in the second query phase, the challenger
receives an onion O = ((E,B), C, S) �∈ Oi1 such that E = Ei1 , the challenger
responds with ⊥ (rather than processing O).

 Indistinguishable from PRP security.
Hybrid3: same as Hybrid2 except that the challenger forms the ith1 onion layers
Oi1 using a truly random permutation rather than a PRP keyed with ki1 .

 Identically distributed since Oi1−1, . . . ,O1 are wrapped around truly ran-
dom blocks.
Hybrid4: same as Hybrid3 except that the challenger uses the dummy message
content ⊥ and the truncated path (M1, . . . ,Mi1 ,⊥) and associated sequence

Bruisable Onions: Anonymous Communication in the Asynchronous Model 495

(y1, . . . , yi1 ,⊥) of metadata (instead of the real message and full path and
sequence of metadata) to form O1.

 Identically distributed since the inner layers O�, . . . ,Oi1+1 are independent
of the path up to Mi1 .
Hybrid5: same as Hybrid4 except that the first query to peel or bruise an onion
Oi1 = Oi1,k ∈ Oi1 on behalf of Mi1 peels to a new onion formed using the
message m, the routing path (⊥,Mi1+1, . . . , R), and the associated sequence of
metadata (⊥, yi1+1, . . . , y�−1). (The newly formed onion Oi1+1 has the correct
number k of bruises.)

 Indistinguishable from PRP security.
Hybrid6: same as Hybrid5 except that the challenger forms the ith1 onion layers
Oi1 using the PRP keyed with ki1 instead of a truly random permutation.

 Indistinguishable from CCA2-security.
Hybrid7: same as Hybrid6 except that the ciphertext Ei1 is an encryption of
the real key ki1 rather than the dummy key 0. (At this stage, the challenge
onion O1 is same as that in the game when b = 1, but the onions returned
by Mi1 and Gj are not quite the same as when b = 1. The challenger forms
O1 using the message ⊥, the routing path (M1, . . . ,Mi1 ,⊥), and the metadata
(y1, . . . , yi1 ,⊥). The onion Oi1+1 returned by the challenger on behalf of the
mixer Mi1 is a new onion with the correct number of bruises, formed by running
FormOnion on m, (⊥,Mi1+1, . . . , R), and the metadata (⊥, yi1+1, . . . , y�−1). The
challenger obtains the onion Oi2+1 returned by the on behalf of the gatekeeper
Gj by running PeelOnion on the query onion.)

 Indistinguishable from CCA2-secure public key encryption.
Hybrid8: same as Hybrid7 except that the ciphertext Ei2 is an encryption under
pk(Gj) of the dummy key 0. (The challenger still samples for the layer key ki2

and uses it to form the ith2 onion layers Oi2 .)
 Indistinguishable from the collision resistance of the hash function

Hybrid9: same as Hybrid8 except that if, in the second query phase, the challenger
receives an onion O = ((E,B), C, S) �∈ Oi2 such that E = Ei2 , the challenger
responds with ⊥ (rather than processing O).

 Indistinguishable from PRP security.
Hybrid10: same as Hybrid9 except that the challenger forms the ith2 onion layers
Oi2 using a truly random permutation rather than a PRP keyed with ki2 .

 Identically distributed since Oi2−1, . . . ,Oi1+1 are wrapped around truly
random blocks.
Hybrid11: same as Hybrid10 except that the challenger uses the path
(⊥,Mi1+1, . . . , Gj ,⊥) and associated sequence of metadata (instead of the real
message and full path and sequence of metadata) to form Oi1+1.

 Identically distributed since the inner layers O�, . . . ,Oi2+1 are independent
of the path up to Gj .
Hybrid12: same as Hybrid11 except that the first query to peel or bruise an onion
Oi2 = Oi2,k ∈ Oi2 on behalf of Gj peels to a new onion formed using the message
m, the routing path (⊥, Gj+1, . . . , R), and the associated sequence of metadata.
(The newly formed onion Oi2+1 has the correct number k of bruises.)

496 M. Ando et al.

 Indistinguishable from PRP security.
Hybrid13: same as Hybrid12 except that the challenger forms the ith2 onion layers
Oi2 using the PRP keyed with ki2 instead of a truly random permutation.

 Indistinguishable from CCA2-security.
Hybrid14: same as Hybrid13 except that the ciphertext Ei2 is an encryption of the
real key ki2 rather than the dummy key 0.

 Identically distributed since the sepals are truly random blocks wrapped
in layers on encryption, and the verification hashes don’t reveal how bruised the
sepals are.
Hybrid15: same as Hybrid14 except for how bruised the onion Oi1+1 is. The onion
Oi1+1 that Mi1 returns will be completely unbruised. The challenger remembers
how bruised Oi1 was, however, and forms the onion Oi2+1 accordingly; thus,
Oi2+1 is formed identically as in Hybrid11. (At this stage, the challenge onions
O1 and Oi1+1 are the same as that in the game when b = 1, but the onion
returned by Gj is not quite the same as when b = 1.)

 Indistinguishable from PRP security.
Hybrid16: same as Hybrid15 except that the challenger forms the penultimate
onion layers O�−1 using a truly random permutation rather than a PRP keyed
with k�−1.

 Identically distributed because since O�−2, . . . ,Oi2+1 are wrapped truly
random blocks.
Hybrid17: same as Hybrid16 except that the challenger uses the message ⊥ and
the recipient ⊥.

 Indistinguishable from PRP security.
Hybrid18: same as Hybrid17 except that the challenger forms the penultimate
onion layers O�−1 using the PRP keyed with k�−1 instead of a truly random
permutation. Note that Hybrid18 is indistinguishable to the case when b = 1.

The hybrid argument for the case where the challenge onion is recoverable,
and the recipient is honest is the same as above, except that, in Hybrid17, only
the message is ⊥ (the recipient remains R). When the recipient is adversarial,
the hybrid argument is just Hybrid0-Hybrid15 above (without Hybrid16-Hybrid18).

5 Our Onion Routing Protocol, Πt

5.1 Choosing the Onion Parameters

We describe our anonymous onion routing protocol, Πt.
Let TOES = (KeyGen,FormOnion,PeelOnion,PeelOnionHelper,BruiseOnion)

be the bruisable onion encryption scheme in Sect. 4. Let �1 be the number of
mixers on the routing path, let �2 be the number of gatekeepers, and let �3 be
the (expected) number of onions at each intermediary per hop. Let F1 and F2

be pseudorandom functions (PRFs) such that F1 outputs zero with frequency
(�1 + �2)�3/|Parties| = (�1 + �2)�3/N = Ω (polylog λ) /N , and the range of F2 is
superpolynomial in the security parameter λ. We assume a setup with a public
key infrastructure (PKI); note that the PKI enables each pair of parties (Pi, Pk)
to set up a shared secret key ski,k,e.g., by using Diffie-Hellman key exchange.

Bruisable Onions: Anonymous Communication in the Asynchronous Model 497

For each sender Pi, let σi denote the input for Pi. For each (mi, Ri) ∈ σi,
party Pi forms an onion bearing the message mi to the recipient Ri. Additionally,
Pi forms a polylog (in the security parameter) number of checkpoint onions.

The algorithms for forming the onions are essentially those of Πa [ALU18],
except we use tulip bulbs instead of standard ones. Specifically, we use tulip
bulbs with �1 = Ω (polylog λ) mixers per onion, �2 = Ω (polylog λ) gatekeepers
per onion, and d = θ�1 key-blocks per sepal. For completeness, we describe these
algorithms in detail below.

Forming the Message-Bearing Onions. To form the message-bearing onion for
the message-recipient pair (mi, Ri) ∈ σi, Pi first samples �1 + �2 parties M1, . . . ,
M�1 , G1, . . . , G�2 uniformly at random and then runs the onion-forming algo-
rithm FormOnion on the message mi, the routing path P = (M1, . . . ,M�1 ,
G1, . . . , G�2 , Ri), the public keys associated with the parties in P (which we

will denote pk(P)), and the sequence ⊥ = (

�1+�2 times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥) of metadata. Here, “⊥”

denotes the empty metadata. See Fig. 2 below for the pseudocode.

Fig. 2. Pseudocode for forming the message-bearing onion

Forming the Checkpoint Onions. Next, Pi forms the checkpoint onions. Pi ini-
tializes the sets of nonces, Y1, . . . ,Y�1 , to the empty set.

Then, for every pair (j, Pk) where j ∈ [�1] is a hop-index and Pk ∈ Parties is
a party, Pi determines whether or not they should form an onion for party Pk to
be verified in the jth hop. This is done by computing the pseudorandom function
F1 on the shared key ski,k and the hop-index j. If the output equals zero, Pi

sets the checkpoint nonce y to F2(ski,k, j); adds y to the nonce-set Yj ; samples
�1+�2+1 parties M1, . . . ,M�1 , G1, . . . , G�2 , R uniformly at random; and forms a
checkpoint onion by running FormOnion on the empty message “⊥,” the routing
path P = (M1, . . . ,M�1 , G1, . . . , G�2 , R), the public keys pk(P) associated with

the parties on the path, and the sequence y = (

j−1 times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥, y,

�1+�2−j times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥) of

metadata. See Fig. 3 below for the pseudocode.

5.2 Routing Onions

After forming the onions, Pi releases them into the network. From this point on,
Pi acts as an intermediary or recipient. That is, Pi first sends each of its onions

498 M. Ando et al.

Fig. 3. Pseudocode for forming checkpoint onions

to the first party on the onion’s routing path and then waits to receive onions.
In contrast to the setup for Πa, here, the honest parties must determine when to
send out batch-processed onions without relying on a global clock; accordingly,
our protocol for processing and routing tulip bulbs (i.e., onions) differs from that
of Πa.

To begin with, Pi sets counters c1, . . . , c�1 , j to zero.
Upon receiving an onion O, Pi processes it: That is, Pi first peels the onion.

Pi drops the onion if this produces a layer key that Pi has seen before; that
is, the layer key also serves as a session id for preventing replay attacks. What
happens next depends on Pi’s role:

– (Role = Recipient) If the peeled onion O′ is a message for Pi, Pi outputs it.
– (Role = Gatekeeper) If Pi is a gatekeeper for O and peeling O produces a

peeled onion O′ and a destination P ′ for O′, Pi sends O′ to P ′ right away.
(Note that if Pi is the last gatekeeper on the routing path, Pi can recover
the identity of the recipient R and the onion for R only if a sufficiently small
number of mixers bruised the onion en route. See Sect. 4 to recall how the
onion encryption construction works and its security properties.)

– (Role = Mixer) Otherwise if Pi is a mixer for O, Pi determines whether O
was received “on time” or not (relative to Pi’s internal clock). If O arrived
late, Pi bruises the onion O and immediately sends the bruised onion O′′ to its
next destination. If Pi is the last mixer on the routing path (i.e., Pi = M�1),
Pi sends the peeled onion O′ to the first gatekeeper G1.

Otherwise if O is either early or on time, Pi places the peeled onion O′

(along with its next destination P ′) in its message outbox. If processing O
reveals the non-empty nonce y �= ⊥, then Pi first checks whether y belongs in
a set Yk. (Recall from Sect. 5.1 that Yk is the set of kth layer checkpoint nonces
Pi expects to see from the onions it receives.) If it does, then Pi increments
ck by one, and updates Yk to exclude y.

Upon processing sufficiently many jth layer onions (i.e., if cj ≥ τ |Yj | where
0 < τ ≤ 1 is a system parameter), Pi sends out these onions (but not the

Bruisable Onions: Anonymous Communication in the Asynchronous Model 499

onions for future hops) in random order, and advances its local clock (i.e.,
increments j by one). Note that onions are shuffled at honest intermediaries
when they are batch-processed and sent out in random order. See Fig. 4 for
the pseudocode.

Fig. 4. Pseudocode for processing onions

6 Provable Guarantees

Recall the system parameters set forth in the Preliminaries section: χ is the
constant corruption rate. That is, we assume that the adversary can corrupt up
to a χ fraction of the parties. γ is the constant drop rate. An onion is indis-
tinguishable if it was formed by an honest party and either bears a message
or is a checkpoint onion for verification by an honest party; for our result on
guaranteed message delivery, we assume that the adversary can drop up to γ
fraction of indistinguishable onions. (Note that onions for verification by adver-
sarial parties are distinguishable from other onions when the adversary observes
the checkpoint values.)

500 M. Ando et al.

Recall the onion encryption parameters, �1, �2, θ, and the onion routing
parameter, �3, τ , from Sects. 4–5: �1 is the number of mixers on a routing path.
�2 is the number of gatekeepers on a routing path. θ is the upper bound on the
fraction of onion layers that can be bruised before the innermost onion becomes
unrecoverable. �3 is the expected number of onions processed at an intermediary
and hop. τ is the fraction of checkpoints needed to progress the local clock to
the next hop. See Table 1 for a quick reference to the variables.

Table 1. Table of adversary and system parameters.

Description

χ Fraction of nodes that A can corrupt

γ Fraction of (indistinguishable) onions that A can drop

�1 = Ω (polylog λ) Number of planned mixers on a routing path

�2 = Ω (polylog λ) Number of planned gatekeepers on a routing path

θ > 1
2

+ χ Fraction of layers in an onion that cannot be bruised

�3 = Ω (polylog λ) Expected number of onions per intermediary per hop

τ < (1 − γ)(1 − χ) Fraction of checkpoints needed to progress

We present the provable guarantees for our protocol, Πt. We show that when
we set the parameters as in Table 1, Πt delivers at least (arbitrarily close to)(

1/2+τ−2θ
1−θ

)(
1 − O(1

polylog λ)
)

− γ fraction of the honest parties’ messages dif-
ferentially privately. For small constants χ, γ (e.g., 10% corruption rate and
10% drop rate), this translates to a constant fraction message delivery rate.
In a more reasonable setting where at most 5% of the parties are adversarial
and maliciously bruising onions, and with 0% drop rate, Πt guarantees a much
higher message delivery rate of over 0.85; and as the corruption rate goes to 0,
the message delivery rate tends to 1. One cannot expect much better solutions
since, even in the synchronous setting, the adversary can always bring down the
message delivery rate by dropping sufficiently many onions (from known lower
bounds [DMMK18], the round complexity of anonymous protocols is at least
polylogarithmic in the security parameter, which implies that every randomly
chosen routing path includes a corrupted party with overwhelming probability).

In the proofs, we make ample use of the following fact, which is a corollary
of the Azuma-Hoeffding inequality [MU05, Theorem 13.7]: Let B be a set of
marbles. Let S be a random sample with or without replacement of the marbles,
and let X be the number of red marbles in the sample S. If the expected number
of red marbles in the sample, E [X], is at least polylog in the security parameter,
then with probability 1 − e−Ω(poly(λ)), X ∈ E [X] (1 ± O((polylog(λ))−1). For
brevity, we write that a random variable X is w.o.p. arbitrarily close to a value V
if Pr

[
X �∈ V (1 ± O((polylog λ)−1))

]
= e−Ω(poly(λ)).

Bruisable Onions: Anonymous Communication in the Asynchronous Model 501

6.1 Proof of Message Delivery Rate

We first prove that Πt guarantees a constant fraction message delivery rate in
the regime where (1 + 2τ − 4θ)

(
1 − O(1

polylog λ)
)

> 2γ(1 − θ). Specifically,

Theorem 2. A run of protocol Πt with parameters �1 = Ω (polylog λ), �2 =
Ω (polylog λ), �3 = Ω (polylog λ), θ > 1

2 +χ, τ < 1− γ(1−χ)−χ, and (1+ 2τ −
4θ)

(
1 − O(1

polylog λ)
)

> 2γ(1 − θ), delivers at least

(
1/2 + τ − 2θ

1 − θ

)(
1 − O(

1
polylog λ

)
)

− γ > 0

fraction of the honest parties’ messages with overwhelming probability.

Proof. Let j ∈ [�1] be a hop-index, and Pk a party. Let Cj,k be the set of check-
point values that Pk expects to observe during hop j. Since the number of parties
is O(poly λ), �1, �2 ∈ Ω (polylog λ), and intermediate parties on onions’ routes are
chosen uniformly at random, w.o.p. for all j and k, the actual number of check-
point values with Pk at hop j is arbitrarily close to its expectation, E [|Cj,k|].
Thus, in the remainder of the proof, w.l.o.g., we can use the expectations of all
these values.

We first need to show that under the conditions of the theorem, the protocol
at each party progresses through all the hops of the protocol. Indeed, for every
hop-index j ∈ [�1] and honest party Pk, w.o.p., the adversary can drop up to
approximately γ fraction of the indistinguishable checkpoints in Cj,k (Azuma-
Hoeffding inequality), plus all of the other checkpoints (the non-indistinguishable
ones that the adversarial parties are supposed to send to Pk). Thus, w.o.p., Pk

is guaranteed to eventually receive sufficiently many onions in Cj,k to progress to
the next hop (i.e., Pk receives at least slightly less than the expected 1 − γ(1 −
χ) − χ = (1 − γ)(1 − χ) fraction of the onions in Cj,k).

An onion doesn’t make it to its final destination for one of two reasons: either
the onion was dropped by the adversary (reason 1), or it was too bruised to be
reconstructed at the penultimate step (reason 2). The adversary can maximize
the total number of onions that don’t make it by not overlapping onions that
don’t make it because of reason 1 and those that don’t because of reason 2. That
is, the adversary doesn’t waste a bruising on an onion that they will ultimately
drop.

The fraction of onions dropped by the adversary is bounded by γ. Next we
compute the fraction of onion that arrived too bruised at the penultimate step.
To bound this number we first bound the total number of bruises of all onions
in all iterations of the protocol.

Let us first bound the fraction of the jth layers of indistinguishable onions
that Pk bruises. If Pk is honest, they will follow the protocol and only bruise (the
jth layers of) onions they receive after observing τ fraction of the values in Cj,k.
The adversary can fix the schedule so that Pk receives checkpoints in Cj,k from
the adversarial parties first. Even so, w.o.p., the number of checkpoint values in

502 M. Ando et al.

onions formed by adversarial parties, Aj,k, is arbitrarily close to the expected
number E [Aj,k] (Azuma-Hoeffding inequality). Likewise, w.o.p., the number of
checkpoint values in indistinguishable onions, Hj,k, is arbitrarily close to the
expected number E [Hj,k] (Azuma-Hoeffding inequality). It follows that w.o.p.,
Pk observes at least (arbitrarily close to) (τ − χ)|Cj,k| = (τ − χ)(Aj,k + Hj,k)
checkpoints values embedded in indistinguishable onions. This translates to Pk

observing at least (arbitrarily close to) τ−χ
1−χ of the checkpoints values embedded

in indistinguishable onions “on time.”
In contrast, an adversarial party can bruise every onion layer it processes.
Thus, the total fraction of layers of indistinguishable onions that will be

bruised is bounded above by the expression: (fraction bruised when in honest
parties) × (fraction of honest parties) + (fraction bruised while in corrupted
party) × (fraction corrupted parties) i.e., w.o.p., at most (arbitrarily close to)

(
1 − τ − χ

1 − χ

)
(1 − χ) + 1 · χ =

(
1 − χ − τ + χ

1 − χ

)
(1 − χ) + χ

= 1 − τ + χ (1)

An onion is too bruised (i.e., the innermost layer of the onion cannot be recov-
ered) if it is bruised too many times (i.e., for > θ fraction of the bruisable layers).
Thus, from (1), the adversary can sufficiently bruise, w.o.p., at most arbitrarily
close to (1−τ +χ)/(1−θ) ≤ (1/2−τ +θ)/(1−θ) fraction of the indistinguishable
onions.

This leaves at least arbitrarily close to 1−
(

1/2−τ+θ
1−θ + γ

)
=

(
1/2+τ−2θ

1−θ

)
− γ

fraction of message-bearing onions being both “originating from honest parties”
and “ultimately delivered” (Azuma-Hoeffding inequality).

Remark on Censorship. An adversary can censor a party in our protocol by
delaying just that party’s onions and causing them to be too bruised and even-
tually undelivered. This is the only way to achieve anonymity: if these delayed
onions were ever delivered, they would be de-anonymized. Thus, the lack of cen-
sorship resilience is inherent to the asynchronous model. Moreover, note that in
the asynchronous model where the adversary controls all the links, censorship is
always within the adversary’s power (even in a protocol that eventually deliv-
ers all messages) since the messages that the adversary aims to censor can be
delayed until other parts of the computation are done; so even if they are even-
tually delivered, the adversary can make sure that by the time they arrive, they
are no longer useful for whatever protocol the honest participants need them for.
Giving the adversary in our protocol the ability to cause them to be dropped
altogether does not provide the adversary extra power.

Here, we prove that Πt is computationally differentially private.

Theorem 3. For any constant ε > 0, Πt with parameters �1 = Ω (polylog λ),
�2 = Ω (polylog λ), �3 = Ω (polylog λ), and θ > 1

2 + χ is computationally
(ε, negl(λ))-differentially private from the adversary who corrupts up to χ < 1

2
fraction of the parties and drops any fraction 0 ≤ γ ≤ 1 of the indistinguishable
onions.

Bruisable Onions: Anonymous Communication in the Asynchronous Model 503

Proof. We prove below that Πt achieves (statistical) (ε, negl(λ))-differential pri-
vacy for any constant ε > 0 when the PRFs F1 and F2 are truly random
functions, and the underlying bruisable onion scheme is perfectly secure.5 From
Canetti’s UC composition theorem [Can01], this implies that Πt is computation-
ally differentially private when we use PRFs and our onion encryption scheme
from Sect. 4 instead.

Let σ0, σ1 be any neighboring input vectors. That is, σ0 and σ1 are identical
except on the inputs of two honest senders Pi and Pj and the “outputs” of two
receivers Pu and Pv. On input vector σ0, Pi sends a message to Pu, and honest
Pj sends a message to Pv; while in σ1, this is swapped (Pi sends to Pv, while Pj

sends to Pv). For b ∈ {0, 1}, let (Ii,1, . . . , Ii,�1+�2 , Rb,i) be the routing path that
Pi picks for their message-bearing onion, and let (Ij,1, . . . , Ij,�1+�2 , Rb,j) be the
routing path that Pj picks for their message-bearing onion.

We prove the theorem by cases.

Case 1: Neither Pi’s Message nor Pj’s Message is Delivered. The only difference
between the scenario when the input vector is σ0 and the scenario when it is
σ1 is the receivers for Pi and Pj ’s challenge messages. Everything else is identi-
cally distributed. Thus, in this case, the adversarial views for the two settings
are perfectly indistinguishable since the adversary never observes the challenge
onions’ layers for Pu and Pv, i.e., ViewΠt,A(σ0) = ViewΠt,A(σ1).

Case 2: Both Pi’s Message and Pj’s Message is Delivered. In this case,
ViewΠt,A(σ0) and ViewΠt,A(σ1) are statistically indistinguishable, i.e., the total
variation distance between ViewΠt,A(σ0) and ViewΠt,A(σ1) is negligible in the
security parameter, from Lemma 1 below (proven in the next subsection):

Lemma 1. Let O = (O1, . . . , O�1+�2+1) and O′ = (O′
1, . . . , O

′
�1+�2+1) be any two

message-bearing onions that were formed by honest parties that make it to their
final destinations. Let P be the origin (the honest sender) of O, and let P ′ be
the origin of O′. Let i1 < · · · < iw ≤ �1 be the hop-indices where O shuffles with
other onions (i.e., arrives on time or early at an honest party), and let i′1 < · · · <
i′w′ ≤ �1 be the moments when O shuffles with other onions. (1) W.o.p., there
exists a positive constant c > 0 such that |I| = |{i1, . . . , iw}∩{i′1, . . . , i′w′}| ≥ c�1.
(2) Let r = max I = max{i1, . . . , iw} ∩ {i′1, . . . , i′w′} be the last time that both
O and O′ shuffle. Given the unordered set {Or, O

′
r}, the adversary can correctly

match P to Or and P ′ to O′
r with probability only negligibly greater than 1/2.

Case 3: Pi’s message or Pj’s Message is Delivered. In this case, ViewΠt,A(σ0) and

ViewΠt,A(σ1) are differentially private; in other words, Pr
[
ViewΠt,A(σ0) ∈ V

]
≤

5 That is, we assume that the adversary cannot determine any meaningful information
“hidden behind an honest party,” e.g., the adversary cannot determine the message
or the rest of the routing path of an onion that goes into an honest intermediary;
see Sect. 3.2 for more details. Further, we assume that the gatekeepers always drop
an onion with too many bruises (> θ�1) since w.o.p., at least one of the �2 =
Θ (polylog λ) gatekeepers in each onion is honest.

504 M. Ando et al.

eε Pr
[
ViewΠt,A(σ1) ∈ V

]
+ negl(λ) for every set V of views. W.l.o.g., we assume

that Pi’s message makes it to its recipient Rb,i, but Rb,j does not receive Pj ’s
message. Let r be the final hop at which O shuffles with other onions. The
indistinguishable onions, including the message-bearing onion O from Pi to Rb,i,
are sufficiently shuffled together by hop r by Lemma 2 below:

Lemma 2. Let O = (O1, . . . , O�1+�2+1) be any indistinguishable onion. If O
shuffles with other onions a polylog (in the security parameter) number of times
before some hop r, then given Or and any rth layer indistinguishable onion O′

r

in the adversarial view, the adversary can correctly guess which is the evolved
version of O1 with probability only negligibly greater than one-half.

Since the adversary cannot determine the origin of any indistinguishable
onion at hop r (from the above claim), the only information the adversary has
to help determine the input setting is the volumes of onions received by each
recipient. W.o.p., the number n of indistinguishable checkpoint onions for either
Pu or Pv is arbitrarily close to the expected number E [n] since E [n] is poly-
logarithmic in the security parameter (Azuma-Hoeffding inequality). Seen this
way, the number of indistinguishable checkpoint onions for Pu, which we denote
by nu, and the number of indistinguishable checkpoint onions for Pv, which
we denote by nv, are Binomial random variables with n trials and bias 1

2 , i.e.,
nu, nv ← Binomial(n, 1

2). Thus, the numbers of messages received are obscured
by a Binomial Mechanism which, for n = Ω (polylog λ), was shown [DKM+06]
to be (ε/2, negl(λ))-differentially private for any positive constant ε. It follows
from the composition theorem for differential privacy that Πt achieves (compu-
tational) (ε, negl(λ))-differential privacy for any positive constant ε. ��

Recall neighboring input vectors: σ0 and σ1 are neighboring if they are the
same except for a pair of messages to be sent from honest senders and received
by honest recipients. We note that, from the composition theorem for differential
privacy, Theorem 3 holds even if we loosen this notion. Specifically,

Corollary 1. Let the swap-distance d(σ0, σ1) between σ0 and σ1 be the length
(minus one) of the shortest sequence of input vectors (σ0, σ0→1,1, . . . , σ0→1,d =
σ1). Consider Πt with parameters �1 = Ω (polylog λ), �2 = Ω (polylog λ),
�3 = Ω (polylog λ), and θ > 1

2 + χ. For any constant swap-distance d ≥ 0,
any small constant ε > 0, any (computationally-bounded) adversary A who cor-
rupts up to χ < 1

2 fraction of the parties, any pair of inputs σ0 and σ1 such

that d(σ0, σ1) ≤ d, and any set V of adversarial views, Pr
[
ViewΠt,A(σ0) ∈ V

]
≤

eε Pr
[
ViewΠt,A(σ1) ∈ V

]
+ negl(λ).

7 Conclusion and Open Problems

We present the first provably anonymous communication protocol in an asyn-
chronous environment. Our protocol guarantees differential privacy of the sources
and destinations information of the messages under a strong adversity model.

Bruisable Onions: Anonymous Communication in the Asynchronous Model 505

The adversary fully controls the schedule of delivery of all messages, can corrupt
a constant fraction of the parties, and drop a constant fraction of all messages.

While our work proves the possibility of anonymity in a fully asynchronous
network, many questions were left open for further research. In particular, we are
also interested in stronger privacy models than just differential privacy, and in
anonymous bidirectional communication in a dynamic network with node churn.

Our work also raised interesting questions regarding the inherent vulnerabil-
ity of asynchronized communication to adversarial attacks and inherent gaps in
security between synchronized and asynchronized models.

Acknowledgments. This work was supported by NSF grants CCF-2312243 and
CCF-2312241.

References

ACLM22. Ando, M., Christ, M., Lysyanskaya, A., Malkin, T.: Poly Onions: Achiev-
ing Anonymity in the Presence of Churn. In: Kiltz, E., Vaikuntanathan,
V. (eds.) Theory of Cryptography. TCC 2022. LNCS, vol. 13748. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-22365-5 25

AL21. Ando, M., Lysyanskaya, A.: Cryptographic shallots: a formal treatment of
repliable onion encryption. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13044, pp. 188–221. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90456-2 7

ALU18. Ando, M., Lysyanskaya, A., Upfal, E.: Practical and provably secure onion
routing. In: ICALP 2018, LIPIcs, vol. 107. Schloss Dagstuhl (July 2018)

ALU21. Ando, M., Lysyanskaya, A., Upfal, E.: On the complexity of anonymous
communication through public networks. In: ITC 2021. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (July 2021)

AMWB23. Attarian, R., Mohammadi, E., Wang, T., Beni, E.H.: MixFlow: assessing
mixnets anonymity with contrastive architectures and semantic network
information. Cryptology ePrint Archive, Report 2023/199 (2023)

BFT04. Berman, R., Fiat, A., Ta-Shma, A.: Provable unlinkability against traf-
fic analysis. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 266–280.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27809-
2 26

BKM+13. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: AnoA:
a framework for analyzing anonymous communication protocols. In: CSF
2013 Computer Security Foundations Symposium. IEEE Computer Soci-
ety Press (2013)

Bra84. Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol. In:
PODC (1984)

Can01. Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS. IEEE Computer Society Press (October
2001)

CBM15. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous mes-
saging system handling millions of users. In: 2015 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press (May 2015)

Cha81. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

https://doi.org/10.1007/978-3-031-22365-5_25
https://doi.org/10.1007/978-3-030-90456-2_7
https://doi.org/10.1007/978-3-030-90456-2_7
https://doi.org/10.1007/978-3-540-27809-2_26
https://doi.org/10.1007/978-3-540-27809-2_26

506 M. Ando et al.

Cha88. Chaum, D.: The dining cryptographers problem: unconditional sender and
recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

CL05. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 11

CR93. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with opti-
mal resilience. In: 25th ACM STOC. ACM Press (May 1993)

CS98. Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

DKM+06. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data,
ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 29

DMMK18. Das, D., Meiser, S., Mohammadi, E., Kate, A.: Anonymity trilemma:
strong anonymity, low bandwidth overhead, low latency - choose two. In:
2018 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press (May 2018)

DMNS06. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sen-
sitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 14

DMS04. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation
onion router. In: Proceedings of the 13th USENIX Security Symposium,
9-13 August 2004, San Diego, CA, USA (2004)

IKK05. Iwanik, J., Klonowski, M., Kuty�lowski, M.: Duo-onions and hydra-onions-
failure and adversary resistant onion protocols. Springer, In Communica-
tions and Multimedia Security (2005)

KBS+19. Kuhn, C., Beck, M., Schiffner, S., Jorswieck, E.A., Strufe, T.: On privacy
notions in anonymous communication. Proc. Priv. Enhancing Technol.
2019(2), 105–125 (2019)

KBS20. Kuhn, C., Beck, M., Strufe, T.: Breaking and (partially) fixing provably
secure onion routing. In: 2020 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press (May 2020)

KCDF17. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: horizon-
tally scaling strong anonymity. In: Proceedings of the 26th Symposium
on Operating Systems Principles, 28-31 October 2017, Shanghai, China.
ACM (2017)

KHRS21. Kuhn, C., Hofheinz, D., Rupp, A., Strufe, T.: Onion routing with replies.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091,
pp. 573–604. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92075-3 20

Lyn96. Lynch, N.A.: Distributed algorithms. Elsevier (1996)
MD05. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of tor. In: 2005 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press (May
2005)

MPRV09. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differ-
ential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
126–142. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03356-8 8

https://doi.org/10.1007/11535218_11
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-030-92075-3_20
https://doi.org/10.1007/978-3-030-92075-3_20
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/978-3-642-03356-8_8

Bruisable Onions: Anonymous Communication in the Asynchronous Model 507

MU05. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge University Press (2005)

PHE+17. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The
loopix anonymity system. In: USENIX Security 2017. USENIX Associ-
ation (August 2017)

Rop21. Ropek, L.: Someone is running hundreds of malicious servers on the Tor
network and might be de-anonymizing users (December 2021). https://
tinyurl.com/2p999e8e

RS93. Rackoff, C., Simon, D.R.: Cryptographic defense against traffic analysis.
In: 25th ACM STOC. ACM Press (May 1993)

SEV+15. Sun, Y., et al.: RAPTOR: routing attacks on privacy in Tor. In: USENIX
Security Symposium (2015)

TGL+17. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: Stadium:
a distributed metadata-private messaging system. In: SOSP 2017. ACM
(Oct 2017)

vdHLZZ15. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable
private messaging resistant to traffic analysis. In: SOSP 2015. ACM (Oct
2015)

WSJ+18. Wails, R., Sun, Y., Johnson, A., Chiang, M., Mittal, P.: Tempest: temporal
dynamics in anonymity systems. PoPETs 2018(3), 22–42 (2018)

https://tinyurl.com/2p999e8e
https://tinyurl.com/2p999e8e

Author Index

A
Anastos, Michael 413
Ando, Megumi 476
Arnon, Gal 125
Athamnah, Noor 319
Auerbach, Benedikt 413

B
Baig, Mirza Ahad 413
Ben-David, Shany 125
Bobolz, Jan 90
Boudgoust, Katharina 35
Brandt, Nicholas 191
Brzuska, Chris 287

C
C. Oliveira, Igor 253
Chiesa, Alessandro 67, 158
Couteau, Geoffroy 287

D
Dall’Agnol, Marcel 158
Dodis, Yevgeniy 444

E
Egger, Christoph 287

F
Farshim, Pooya 90
Fenzi, Giacomo 67
Florentz – Konopnicki, Eden 319

G
Guan, Ziyi 158

H
Hirahara, Shuichi 253

J
Jost, Daniel 444

K
Klein, Ohad 383
Kohlweiss, Markulf 90
Komargodski, Ilan 383
Kwan, Matthew 413

L
Liu, Yanyi 222
Loss, Julian 353
Lu, Zhenjian 253
Lysyanskaya, Anna 476

M
Mu, Changrui 3

N
Noval, Miguel Cueto 413

P
Pascual-Perez, Guillermo 413
Pass, Rafael 222
Pietrzak, Krzysztof 413

Q
Quach, Willy 287

R
Rothblum, Ron D. 319

S
Shi, Kecheng 353
Simkin, Mark 35

© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15364, pp. 509–510, 2025.
https://doi.org/10.1007/978-3-031-78011-0

https://doi.org/10.1007/978-3-031-78011-0

510 Author Index

Spooner, Nicholas 158
Stern, Gilad 353

T
Takahashi, Akira 90

U
Upfal, Eli 476

V
Vasudevan, Prashant Nalini 3

Y
Yogev, Eylon 125, 158

Z
Zhu, Chenzhi 383

	 Preface
	 Organization
	 Contents – Part I
	Proofs I
	Instance-Hiding Interactive Proofs
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work
	1.4 Discussion and Open Problems

	2 Instance-Hiding Interactive Proofs
	3 Properties
	3.1 Closure Properties and Amplification
	3.2 Upper Bounds
	3.3 Implications for One-Way Functions
	3.4 Oracle Separation from SZK
	3.5 Instance-Hiding Delegation Schemes

	References

	The Power of NAPs:*8pt
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works
	1.3 Technical Overview

	2 Preliminaries
	2.1 -Protocols
	2.2 Distributed Point Functions ch2EC:GilIsh14
	2.3 Explainable Samplers ch2TCC:LuWat22

	3 Non-Adaptively Privately Programmable Functions (NAPs)
	3.1 Definitions
	3.2 Constructions
	3.3 The Sizes of NAP Keys

	4 Compressing OR-Proofs from NAPs
	4.1 Construction
	4.2 Extensions
	4.3 Examples

	5 Explainable Rejection Sampling
	5.1 Textbook Rejection Sampling
	5.2 From Rejection Sampling to Explainable Samplers
	5.3 Handling Finite Precision
	5.4 Explainable Samplers for Product Distributions and Permutations

	References

	zkSNARKs in the ROM with Unconditional UC-Security
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Techniques
	2.1 Unconditional UC-Security
	2.2 UC-Friendly Properties
	2.3 The Merkle Commitment Scheme is UC-Friendly
	2.4 The Micali Construction is UC-Secure
	2.5 The BCS Construction is UC-Secure
	2.6 Adaptive Corruptions and Strong UC-Friendly Properties

	References

	The Brave New World of Global Generic Groups and UC-Secure Zero-Overhead SNARKs
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Generic Bilinear Groups
	2.3 The UC Framework and Its Execution Model
	2.4 Weak NIZK Functionality

	3 The Global Observable Generic Group Functionality
	3.1 Warm-Up: The (strict) Global Generic Group Functionality
	3.2 The (Restricted) Observable Global Generic Group Functionality

	4 Switching to Symbolic Groups
	4.1 The Restricted Observable Global Symbolic Group Model with Perfect Session Separation
	4.2 Extending [func:gidealoggm]G-oSG with Support for Symbolic Analysis
	4.3 Extracting Discrete Logarithm Representations

	5 UC Security of Groth16
	6 Composition When Unobservability Is Required
	7 Conclusion and Future Work
	References

	Hamming Weight Proofs of Proximity with One-Sided Error
	1 Introduction
	1.1 Main Results
	1.2 Application: Perfect Completeness for PCPs and IOPs

	2 Techniques
	2.1 PCPP for Hamming Weight with Sublinear Proof Length
	2.2 SIQ-PCPP for Hamming Weight
	2.3 A SIQ-IOPP for Hamming Weight with Sublinear Proof Length
	2.4 A Lower Bound for IPPs and Semi-adaptive IOPPs
	2.5 Application: Perfect Completeness for PCPs and IOPs

	3 Preliminaries
	3.1 Hamming Weight Problem and Hamming Distance
	3.2 Probabilistic Proof Systems
	3.3 Probabilistic Inequalities

	4 Finding Good Shifts
	5 Non-interactive Proofs for Hamming Weight with Sublinear Communication
	5.1 MA Proof of Proximity
	5.2 PCP for List-Hamming to PCPP for Hamming
	5.3 PCP of Proximity

	References

	Untangling the Security of Kilian's Protocol: Upper and Lower Bounds
	1 Introduction
	1.1 Our Results
	1.2 Discussion
	1.3 Related Work

	2 Techniques
	2.1 Kilian's Protocol
	2.2 Soundness Analysis of Kilian's Protocol
	2.3 Expected-Time Soundness Analysis of Kilian's Protocol
	2.4 Lower Bounds from the Schnorr Identification Scheme
	2.5 Knowledge Soundness Analysis of Kilian's Protocol
	2.6 Succinct Interactive Arguments with Adaptive Security

	3 Preliminaries
	3.1 Interactive Arguments
	3.2 Vector Commitments
	3.3 Probabilistically Checkable Proofs

	4 Kilian's Protocol
	References

	Kolmogorov and One-Way Functions
	Lower Bounds for Levin–Kolmogorov Complexity
	1 Introduction
	2 Contributions and Related Work
	3 Technical Overview
	4 Preliminaries
	5 Formal Results
	6 Proof of Lemma 1
	References

	On One-Way Functions, the Worst-Case Hardness of Time-Bounded Kolmogorov Complexity, and Computational Depth
	1 Introduction
	1.1 Our Results
	1.2 Perspective
	1.3 Proof Overview

	2 Preliminaries
	2.1 Promise Problems and ``Conditioned'' Problems
	2.2 One-Way Functions
	2.3 The OWF Class
	2.4 Time-Bounded Kolmogorov Complexity
	2.5 Distributions, Random Variables, and Entropy
	2.6 ``Nice'' Function Classes

	3 Our Results
	4 OWFs from Worst-Case Hardness of MKtP|Q
	5 Worst-Case Hardness of MKtP|Q from OWFs
	5.1 Conditionally-Secure Entropy-Preserving Pseudorandom Functions
	5.2 (Non-uniform) Worst-Case Hardness of MKtP|Q from (Non-uniform) OWFs
	5.3 Eliminating the Non-uniform Advice

	6 Rudich's Conjecture and Non-containment in coAM
	References

	One-Way Functions and pKt Complexity
	1 Introduction
	1.1 Context and Motivation
	1.2 Our Contributions
	1.3 Techniques
	1.4 Directions and Open Problems

	2 Preliminaries
	3 pKt: Probabilistic Levin Complexity
	4 One-Way Functions and Asymmetry of Information for pKt
	4.1 Equivalence of OWF and Average-Case Asymmetry of Information
	4.2 Asymmetry of Information from Circuit Lower Bounds
	4.3 Proof of Theorem 1

	5 One-Way Functions and Hardness of Approximating pKt
	5.1 Equivalence of OWF and Average-Case Hardness of Approximating pKt
	5.2 Hardness of Approximating pKt with Mild-One-Sided Error
	5.3 Proof of Theorem 2

	References

	On Bounded Storage Key Agreement and One-Way Functions
	1 Introduction
	1.1 Our Contributions
	1.2 Discussions
	1.3 Our Techniques
	1.4 Related Works
	1.5 Organization

	2 Preliminaries
	2.1 Information-Theoretic Tools

	3 Key Agreement in the Streaming Model
	3.1 Fully Streaming Model
	3.2 Unbounded Processing Model

	4 Constructing Key Agreement
	4.1 Consecutive PRFs
	4.2 SB-PRF Fully Streaming Key-Agreement
	4.3 PRF Unbounded Processing Key-Agreement
	4.4 Arbitrary Output Length and Everlasting Security

	5 Unbounded Processing: UP-KA Implies dOWFs
	5.1 Stream-First Key Agreement dOWF
	5.2 Sampling st Conditioned on q Copies of Itself
	5.3 dOWFs via Round Reduction
	5.4 Conclusion

	6 Fully Streaming: SM-KA Implies SB-dOWFs
	6.1 A Derandomization Lemma
	6.2 Stream-First Key Agreement SB-dOWF
	6.3 Conclusion

	7 SB-dOWFs Implies SB-PRFs
	References

	Rate-1 Zero-Knowledge Proofs from One-Way Functions
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Open Questions
	1.4 Organization

	2 Preliminaries
	2.1 Computational Indistinguishably
	2.2 Interactive Proofs
	2.3 Zero-Knowledge Proofs
	2.4 Pseudorandom Generator
	2.5 Commitment Scheme
	2.6 Multi-party Computation

	3 Succinct Zero-Knowledge Proofs
	3.1 Proof of Lemma 25

	4 Zero-Knowledge with Black-Box Use of the OWF
	4.1 Proof of Theorem 5

	References

	Consensus and Messaging
	Consensus in the Presence of Overlapping Faults and Total Omission
	1 Introduction
	1.1 Our Techniques
	1.2 Related Work

	2 Models, Definitions and Notations
	2.1 Network Model
	2.2 Adversary Model
	2.3 Definitions

	3 Byzantine Agreement with Overlapping Omission Faults
	4 Undead Uniform Consensus in the Total Omission Setting
	4.1 Very Weak Multicast
	4.2 Optimal Uniform Consensus

	5 Lower Bounds
	5.1 Total Send Corruption
	5.2 Total Omission Broadcast
	5.3 Consensus with Overlapping Faults

	A Standard Task Definitions
	A.1 Uniform Consensus
	A.2 Broadcast

	B Proofs of Protocols
	B.1 Proofs for Undead Weak Multicast
	B.2 Proofs for Very Weak Multicast
	B.3 Proofs for Total Omission Consensus

	C Undead Graded Multicast
	C.1 Definition
	C.2 Construction
	C.3 Security Proof

	D Lower Bound Proofs
	D.1 Total Send Corruption Uniform Consensus
	D.2 Total Omission Broadcast
	D.3 Generalizing Theorem 5

	References

	On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols
	1 Introduction
	1.1 Additional Related Work
	1.2 Open Problems

	2 Technical Overview
	2.1 Lower Bounds for Single-Round Commit-and-Reveal Protocols
	2.2 Extending to Multi-round Protocols
	2.3 Lower Bounds for Perfectly Fair Protocols

	3 Preliminaries
	3.1 Commit-and-Reveal Committee Election Protocols
	3.2 Minimax Theorem

	4 Upper and Lower Bounds of Single-Round Protocols
	4.1 Optimal Single-Round Leader Election
	4.2 Lower Bound for (n-1)-Corruption
	4.3 Lower Bounds for (n-k)-Corruption

	5 Lower Bounds for Multiple Rounds
	5.1 Lower Bounds for (n-k)-Corruption

	6 Lower Bounds for Perfect Fairness
	6.1 Impossibility of Single-Round Protocols
	6.2 Lower Bounds for Multi-round Protocols

	References

	The Cost of Maintaining Keys in Dynamic Groups with Applications to Multicast Encryption and Group Messaging
	1 Introduction
	1.1 Membership Changes in Multicast Encryption and Continuous Group-Key Agreement
	1.2 Our Contributions

	2 Preliminaries
	2.1 Definitions and Results from Combinatorics

	3 Lower Bounds in the Combinatorial Model
	3.1 The Combinatorial Model
	3.2 Lower Bound for Batched Replacements of Users

	4 Lower Bound for Batched Replacements in Multicast Encryption
	4.1 Multicast Encryption in the Symbolic Model
	4.2 Lower Bound on Batched Replacements

	References

	Compact Key Storage in the Standard Model
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Compact Key Storage
	2.1 Overview
	2.2 CKS Syntax
	2.3 Impossibility of Standard-Model CKS
	2.4 Weaker Standard Model CKS

	3 Trapdoor Key Derivation
	3.1 Defining TKDFs
	3.2 Symmetric TKDF
	3.3 A Standard-Model Symmetric-TKDF Construction

	4 Iterative CKS
	4.1 Syntax
	4.2 Security
	4.3 Constructing I-CKS from TKDF

	5 CKS from Iterative CKS
	References

	Bruisable Onions: Anonymous Communication in the Asynchronous Model
	1 Introduction
	1.1 Towards a Solution: A Discussion

	2 Preliminaries
	2.1 Modeling the Problem
	2.2 Definition of Anonymity
	2.3 Checkpoint Onions

	3 Bruisable Onion Encryption
	3.1 Correctness Definition
	3.2 Security Definition

	4 Tulip Onion Encryption Scheme
	4.1 Formal Description
	4.2 Proof of Security

	5 Our Onion Routing Protocol, t
	5.1 Choosing the Onion Parameters
	5.2 Routing Onions

	6 Provable Guarantees
	6.1 Proof of Message Delivery Rate

	7 Conclusion and Open Problems
	References

	Author Index

