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Preface

The 22nd Theory of Cryptography Conference (TCC 2024) was held during December
2–6, 2024, at Bocconi University in Milano, Italy. It was sponsored by the International
Association for Cryptologic Research (IACR). The general chair of the conference was
Emmanuela Orsini.

The conference received 172 submissions, of which the Program Committee (PC)
selected 68 for presentation, giving an acceptance rate of 39.5%. Each submission was
reviewed by at least three PC members in a single-blind process. The 50 PC members
(including PC chairs), all top researchers in our field, were helped by 185 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the tenth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2004: “Notions of Reducibility between
Cryptographic Primitives,” by Omer Reingold, Luca Trevisan, and Salil P. Vadhan. The
award committee recognized this paper “for providing a rigorous and systematic taxon-
omy of reductions in cryptography, and in particular coining fully black-box reductions
and motivating their use in barrier results.”

We are greatly indebted to the many people who were involved in making TCC 2024
a success. Thank you to all the authors who submitted papers to the conference and to the
PC members for their hard work, dedication, and diligence in reviewing and selecting
the papers.We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. Finally, thank you to the
general chair Emmanuela Orsini and her team at Bocconi University, as well as to the
TCC Steering Committee.

October 2024 Elette Boyle
Mohammad Mahmoody
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Quantum Pseudorandom Scramblers

Chuhan Lu1(B) , Minglong Qin2 , Fang Song1 , Penghui Yao2,3 ,
and Mingnan Zhao2

1 Computer Science Department, Portland State University, Portland, USA
{chuhan,fang.song}@pdx.edu

2 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

mlqin,zhao@smail.nju.edu.cn
3 Hefei National Laboratory, Hefei 230088, China

Abstract. Quantum pseudorandom state generators (PRSGs) have
stimulated exciting developments in recent years. A PRSG, on a fixed
initial (e.g., all-zero) state, produces an output state that is computa-
tionally indistinguishable from a Haar random state. However, pseudo-
randomness of the output state is not guaranteed on other initial states.
In fact, known PRSG constructions provably fail on some initial states.

In this work, we propose and construct quantum Pseudorandom State
Scramblers (PRSSs), which can produce a pseudorandom state on an
arbitrary initial state. In the information-theoretical setting, we obtain a
scrambler which maps an arbitrary initial state to a distribution of quan-
tum states that is close to Haar random in total variation distance. As a
result, our scrambler exhibits a dispersing property. Loosely, it can span
an ε-net of the state space. This significantly strengthens what standard
PRSGs can induce, as they may only concentrate on a small region of the
state space provided that the average output state approximates a Haar
random state.

Our PRSS construction develops a parallel extension of the famous
Kac’s walk, and we show that it mixes exponentially faster than the stan-
dard Kac’s walk. This constitutes the core of our proof. We also describe
a few applications of PRSSs. While our PRSS construction assumes a
post-quantum one-way function, PRSSs are potentially a weaker primi-
tive and can be separated from one-way functions in a relativized world
similar to standard PRSGs.

Keywords: Quantum pseudorandom states · Kac’s walk ·
Pseudorandom unitary operators

1 Introduction

Pseudorandomness is a fundamental concept in complexity theory and cryp-
tography, offering efficient approximation to true randomness against computa-
tionally bounded adversaries. Recently, Ji, Liu and Song [30] introduced quan-
tum pseudorandom state generators (PRSGs) as a family of quantum states
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15365, pp. 3–35, 2025.
https://doi.org/10.1007/978-3-031-78017-2_1
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{|φk〉}k∈K, which can be generated in polynomial time, and no computationally-
bounded quantum adversary can distinguish polynomially many copies of |φk〉
from polynomially many copies of a Haar random state. PRSGs can be considered
as a quantum counterpart to classical pseudorandom generators, and can be con-
structed assuming the existence of one-way functions that are hard for efficient
quantum adversaries [1,4,9,10,30]. What is surprising, PRSGs are proven weaker
than one-way functions in a relativized world [34,35]. Since one-way functions are
considered the minimal assumption in classical cryptography, this opens up the
possibility of basing quantum cryptography on weaker assumptions. There have
been exciting advances in recent years, realizing a host of cryptographic tasks
based on PRSGs [4–6,18,38]. In addition to cryptographic interest, pseudoran-
dom states have also inspired new developments for quantum gravity theory and
string theory [1,7,11,33,45].

Another fundamental quantum pseudorandom primitive, pseudorandom uni-
tary operators (PRUs), was also introduced in [30] as a quantum analogue of
pseudorandom functions. A PRU is a set of polynomially-time unitary oper-
ators that are computationally indistinguishable from Haar random unitaries.
PRUs clearly imply PRSGs and could further enrich the toolkit in cryptography
and physics [7,11,21,33,45]. Nonetheless, constructing a provably-secure PRU
remains an open problem, and progress has been slow (e.g., conjectured con-
structions in [30], a stateful simulation in [2], and on the negative side some
barriers such as impossibility of PRUs that are sparse or of real entries [26]). In
fact, even basic properties that are necessary for PRUs have not been achieved.
It is easy to see that a PRU gives a family of polynomial-sized quantum circuits
which can map an arbitrary pure state to a family of pseudorandom states. How-
ever, a PRSG can be viewed as a family of polynomial-sized quantum circuits
which map a specific initial state, typically |0n〉, to a family of pseudorandom
states. Indeed, all existing constructions of PRSGs necessitate a specific initial
state, and it can be shown that they fail to produce pseudorandom states for
certain initial states. This limitation has indeed caused a variety of technical
challenges in the cryptographic applications mentioned before that need to be
addressed in ad hoc ways. It hence becomes imperative to understand the fol-
lowing question and its consequences.

Can we construct a family of polynomial-sized quantum circuits which map
an arbitrary input (pure) state to pseudorandom states?

1.1 Our Contributions

In this work, we answer the question affirmatively as a steady step towards
bridging the gap between PRSGs and PRUs. We formally encapsulate the prop-
erty of “scrambling” an arbitrary input state in a novel quantum pseudorandom
primitive, termed a quantum pseudorandom state scrambler (PRSS), which iso-
metrically maps an arbitrary pure state to a pseudorandom state. We then con-
struct a PRSS based on any quantum-secure PRF. A central technical novelty
is to design a parallel version of Kac’s walk, which is a random walk on a unit
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sphere, and prove a mixing time exponentially faster than the standard Kac’s
walk [42]. Although Kac’s walk was introduced by Kac in [32] more than half
a century ago and has been studied by a large body of works since then, this
work, to our knowledge, is the first time to employ Kac’s walk to design quantum
pseudorandom objects.

Our construction also exhibits a notable dispersing property. Loosely speak-
ing, the output states of our scrambler constitute an ε-net on the sphere, and the
distribution closely approximates the Haar random distribution under the strong
Wasserstein distance, when sufficient randomness is supplied. Such a powerful
“randomizing” capability needs not be present even in PRUs.

Overview on the Construction and Analysis. Our construction is inspired by
Kac’s walk, originally a model for a Boltzmann gas [32]. This approach differs
from previous constructions for PRSGs. Let us consider an arbitrary unit-vector
v ∈ R

N . In one step of Kac’s walk, two distinct coordinates (i, j) and an angle

θ ∈ [0, 2π) are chosen uniformly at random. Then Rθ :=
(
cos θ − sin θ
sin θ cos θ

)
is

applied to rotate the two-dimensional subvector (vi, vj)T . It is proven that it
converges to the Haar measure on the unit sphere of RN in O(N logN) steps [42].
However, if we view the input vector as an n = logN -qubit state, then the factor
N in the mixing time is prohibitive for the purpose of an efficient (polynomial
in n) scrambler.

Can we parallelize Kac’s walk in hope of shaking off a factor of N? Notice
that in Kac’s walk, if any two consecutive steps overlap on the random choices
of coordinates, then they need to be executed in sequence. One might consider
conditioning on the event of “collision-free” in the coordinate choices, but this
occurs with negligibly small probability since we intend to compress Ω(N) steps
into one.

We design a parallel Kac’s walk that rapidly mixes in O(logN) time, an expo-
nential improvement over the original walk. In each step, instead of working with
an individual pair of coordinates, we randomly partition the N coordinates into
N/2 pairs, and then each pair is rotated by a random angle chosen independently.
Although the mixing time of Kac’s walk is not directly applicable, we show that
the specific path-coupling proof strategy of [42] can be extended here.

We then construct a quantum circuit to implement our parallel Kac’s walk. In
each step, we use a random permutation to realize the coordinate partition, and
employ a random function to compute a random rotation angle, under a careful
discretization, for each pair of coordinates. Finally, we obtain our pseudoran-
dom state scramblers by replacing the random permutations and functions with
quantum-secure pseudorandom permutations and functions, which exist based
on post-quantum one-way functions [47].

The discussion so far works with real Hilbert spaces. To construct a PRSS in
a complex Hilbert space, we further develop a parallel Kac’s walk on complex
Hilbert spaces. The construction starts likewise by randomly partitioning N
coordinates to N/2 pairs, and then applying random 2 × 2 unitary matrices
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independently to each pair. As unitary matrices have more degrees of freedom
than real orthogonal rotation matricies, the analysis of the mixing time is more
involved. The extension of Kac’s walk to a complex Hilbert space, as well as the
parallelization, has not been studied previously as far as we are aware. This may
be of independent interest. Due to space constraints, this paper focuses on the
real case. A comprehensive treatment of the complex case is provided in the full
version [36].

Applications. It is easy to see that PRSSs subsume standard PRSGs as well
as scalable PRSGs. We also demonstrate that PRSSs can be used to achieve a
black-box realization of a variant of PRSGs known as pseudorandom function-
like state generators (PRFSGs), which in turn enable a host of cryptographic
primitives such as IND-CPA SKE and EUF-CMA MAC [4,5]. A PRFSG takes
an additional classical input x (from a poly-size domain) and produces a pseu-
dorandom state. In the literature, a PRFSG (with logarithmic input length) can
be constructed from PRSGs by measuring a part of a pseudorandom state and
then post-selecting on x. This inevitably is error-prone and consumes multiple
copies, i.e., multiple invocations of a PRSG, to evaluate on a single x. Given our
PRSS (with a sufficiently long key), we can simply feed |x〉 as the initial state
to the PRSS, and hence only one, rather than polynomially-many, run of PRSS
suffices.

We observe that the argument by Kretschmer [34] also implies that PRSS is
strictly weaker than one-way functions relative to an oracle. Thus PRSSs may
further enhance the new cryptographic landscape without assuming one-way
functions. We demonstrate some use cases of PRSSs beyond what are already
possible from PRSGs. For starters, a PRSS enables efficient encryption of quan-
tum messages by effectively “scrambling” any initial state, and allowing multiple
copies of the same state to be encrypted under the same key. The fact that PRSS
provides a secure encryption also enables committing quantum states, thanks to
a new characterization of [21]. The commitment scheme can be further made
succinct, where the commitment message has smaller size than the size of the
message to be committed. Existing constructions rely on potentially stronger
assumptions than PRSSs.

Subsequent Work

A follow-up work [3] gave a construction that is indistinguishable from applying
the tensor product of a Haar random isometry when the input state is restricted
to one of three special families: (1) |ψ〉⊗q for a pure state |ψ〉 and polynomially-
bounded q; (2)

⊗q
i=1 |xi〉; and (3) ⊗q

i=1 |φi〉, where every φi is Haar random.
Their construction requires adding an ancilla system |0m〉, and the security loss
scales with 1/2m. As a result, it necessarily cannot preserve the input dimen-
sion and m is chosen to be a polynomial to obtain negligible security loss. This
also incurs poly overheads in the applications such as quantum encryption. In
other words, it only (unitarily) scrambles states |ψ〉 |0m〉 for a |ψ〉 chosen from
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one of the three families above and a polynomial m. More recently, several
independent works on constructing pseudorandom unitaries which are secure
against non-adaptive queries have been presented. Metger, Poremba, Sinha and
Yuen [37] proposed a construction using a composition of Clifford gates, pseudo-
random functions and pseudorandom permutations. Brakerski and Magrafta [8]
presented a construction for real-valued unitaries that look like Haar random on
any polynomial-sized set of orthogonal input states. Chen, Bouland, Brandao,
Docter, Hayden, and Xu [17] achieved similar results via products of exponenti-
ated sums of random permutations with random phases. It is not clear whether
these constructions are able to generate an ε-net and realize the dispersing prop-
erty (details in Sect. 5.4), a strong randomizing property achieved by our con-
struction.

1.2 Discussions and Open Questions

There is a rich history of studying Kac’s walk in probability and mathematical
physics [20,25,27,29,31,41]. Determining the total variation mixing time of Kac’s
walk is particularly challenging, and it is currently only known to be between
the order O(n4 log n) and O(n2) [43].

There has also been extensive efforts on approximations to Haar measures in
a statistical setting, known as state and unitary t-designs [19,44]. For instance,
a unitary t-design mimics a Haar random unitary up to the t-th moment. It
is known that a unitary t-design can be constructed by a quantum circuit of
size polynomially in t, composed of Haar random single or two-qubit gates [12,
22–24,40]. It is interesting to note that a path-coupling technique in [41] for
analyzing Kac’s walk also plays an essential role in the proofs of these unitary
design results. It is reasonable to anticipate improvements on the efficiency of
the unitary designs with new advances on Kac’s walk. However, it is worth
stressing that another critical component in their proofs involving spectral gaps
appears to inevitably incur a dependency on t, which is a serious limitation. For
instance, in order for the output state to approximate a Haar random state when
the number of copies can be an arbitrary polynomial, we would need to pick a
superpolynomial t in the unitary design. As far as we know, our PRSS is the first
to employ Kac’s walk directly in the construction of a quantum pseudorandom
object, and the exponential improvement on the mixing time of our parallel
walk enables flipping the quantifiers, i.e., a fixed poly-size construction that is
nonetheless pseudorandom against any polynomial-time distinguisher, a desired
feature towards PRUs.

Kac’s walk has also found applications in algorithm design. Recently, a fast
and memory-optimal dimension-reduction algorithm is proposed based on Kac’s
walk and its discrete variants [28]. We would like to invite more exploration of
Kac’s walk in theoretical computer science broadly.

We describe several interesting open problems emerged from our work.

1. Is it possible to simplify the quantum circuits for these primitives? Can we
replace random permutations by a sequence of parallel (pseudo) random local
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permutations? Can we use the same random rotation or even a fixed one
(e.g., Hadamard transform) in a single iteration? Recent advances on repeated
averages on graphs [39] and orthogonal repeated averaging [16,28] allude to
an affirmative answer.

2. We believe that PRSSs, potentially weaker than PRUs, are an important prim-
itive in its own right. Can we discover more applications of PRSSs and the
dispersing property, especially in cryptography as well as in quantum grav-
ity theory? For example, we envision a form of uncloneable knowledge tokens
from a PRSS that may enable novel quantum proof systems and delegated
computation.

3. Is our construction of PRSS capable of scrambling polynomial quantum
states? This appears to require strengthening the coupling technique in our
current analysis, and it might be useful to analyze other variants of Kac’s
walk.

4. How far are we from a PRU? Can we get it by strengthening our parallel
Kac’s walk approach or can we show that our construction is already a PRU?
By a simple hybrid argument, it suffices to prove that our parallel Kac’s walk
on SO(N) converges within polylog(N) time in terms of the L∞ Wasserstein
distance. Indeed, there has been a large body of work devoted to studying the
speed of the convergence with respect to different metrics [20,31,32,43]. One
of the most relevant works is Oliveira’s result [41] showing a tight conver-
gence time of order O(N2 logN) with respect to the stronger L2 Wasserstein
distance. Our parallelization achieves a quadratic speedup, which leads to an
Õ(2n)-time construction of PRU. Since the L∞ Wasserstein distance is a less
stringent metric than the L2 Wasserstein distance, there is hope of obtaining
an improved convergence rate. To our knowledge, the speed of convergence
of Kac’s walk with respect to L∞ Wasserstein distance has not been studied,
and hence developing new techniques to overcome the tightness of Oliveira’s
L2 result would be an exciting research direction.

Organization. Section 2 contains preliminary materials on basic notations and
cryptographic primitives. Section 3 describes definitions and properties of our
new primitives. Section 4 introduces the parallel Kac’s walk. Then Sect. 5 con-
structs PRSSs via implementing the parallel Kac’s walk and introduces the dis-
persing RSS. Section 6 describes applications of PRSSs. Some proofs are deferred
to the full version of this paper [36].

2 Preliminary

2.1 Basic Notation

For n ∈ N, [n] denotes {1, . . . , n}. For x ∈ {0, 1}n, we use xi to denote the i-th
bit of x and define val(x) =

∑n
i=1 2

−ixi. Suppose that x and y are bit strings of
finite length, we denote xy to be the concatenation of x and y. For finite sets X
and Y, we use X Y to denote the set of all functions {f : X → Y}. We use SX
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to denote the permutation group over elements in a finite set X . We often write
S2n instead of S{0,1}n to denote the permutation group over elements in {0, 1}n.

For any symbol x and n ∈ N, (xi)ni=1 represents (x1, . . . , xn). With a slight
abuse of notation, we let (xi)ni=1 ⊆ S represent xi ∈ S for all i ∈ [n]. For n ∈ N,
Sn
R

denotes the set of all unit vectors in R
n, Sn

C
denotes the set of all unit vectors

in C
n, SO(n) denotes the special orthogonal group of n×n real matrices, SU(n)

denotes the special unitary group of n × n complex matrices, O(n) denotes the
n×n orthogonal group and U(n) denotes the n×n unitary group. For a Hilbert
space H, we use S(H) to denote the set of pure quantum states in H and D(H)
to denote the set of density operators on H.

For an n-dimensional vector v and i ∈ [n], we use v[i] to denote the i-th
coordinate of v. For S ⊆ [n] and v ∈ C

n, define

‖v‖1 =
∑
i∈[n]

|v[i]| , ‖v‖1,S =
∑
i∈S

|v[i]| , ‖v‖2 =
√∑

i∈[n]

|v[i]|2.

For an n×n matrix M and p ∈ N, the p-norm of M is defined to be ‖M‖p =(
Tr
[(

M†M
)p/2
])1/p

, and ‖M‖∞ is defined to be the largest singular value of
M . The following fact will be used in our paper and is easy to prove by the
triangle inequality.

Fact 1. Given m,n ∈ N, U1, . . . , Um, V1, . . . , Vm ∈ O(n) (or U(n)), then

‖U1 . . . Um − V1 . . . Vm‖∞ ≤
m∑

i=1

‖Ui − Vi‖∞ .

Given two density operators ρ, σ ∈ D(H), the trace distance between ρ and
σ is TD(ρ, σ) = ‖ρ − σ‖1 .

Let V be a real or complex vector space, and ε > 0 be a positive real number.
For any S ⊆ V , a set of vectors N ⊆ S is said to be an ε-net of S if, for every
vector u ∈ S, there exists a vector v ∈ N such that ‖u − v‖2 ≤ ε.

We adopt the standard quantum circuit model. A quantum circuit with gates
drawn from a finite gate set can be encoded as a binary string. {Qλ : λ ∈ N}
is said to be a polynomial-time generated family1 if there exists a determinis-
tic Turing machine that, on any input λ ∈ N, outputs an encoding of Qλ in
polynomial-time in λ. A quantum polynomial-time algorithm is identified with a
polynomial-time generated circuit family. In cryptography it is conventionally to
model adversaries as non-uniform algorithms. We model a non-uniform quantum
polynomial-time algorithm as a family {Qλ, ρλ}λ, where {Qλ} is a polynomial-
time generated circuit family, and {ρλ} is a collection of advice states. Qλ acts
on ρλ besides the actual input state.

1 More precisely, each circuit should be written as Q1λ . Note that in a polynomial-time
generated family, then Qλ must have size polynomial in λ.



10 C. Lu et al.

2.2 Probability Theory

For two probability measures ν1 and ν2 defined on measurable space (Ω,F), the
total variation distance of ν1 and ν2 is defined as

‖ν1 − ν2‖TV = sup
A∈F

|ν1(A) − ν2(A)| .

Closeness in total variation distance is a strong promise. For example, when
applied to quantum states, it implies closeness in trace distance of the average
states.

Lemma 1. Let μ and ν be two arbitrary probability measures over S2n

R
(S2n

C
).

Then for all � ∈ N,
∥∥∥∥ E

|ψ〉∼μ

[
(|ψ〉〈ψ|)⊗�

]
− E

|ϕ〉∼ν

[
(|ϕ〉〈ϕ|)⊗�

]∥∥∥∥
1

≤ ‖μ − ν‖TV .

We denote the distribution of a random variable X by L(X). If L(X) = ν,
we write X ∼ ν. A coupling of two probability measures μ and ν is a joint
probability measure whose marginals are μ and ν. We use Γ (μ, ν) to denote the
set of all couplings of μ and ν. For p ≥ 1 The Wasserstein p-distance between
two probability measures μ and ν is

Wp(μ, ν) =
(

inf
γ∈Γ (μ,ν)

E
(x,y)∼γ

[‖x − y‖p
2]
)1/p

.

The Wasserstein ∞-distance is W∞(μ, ν) = limp→∞ Wp(μ, ν).

2.3 Cryptography

In this section, we will review various definitions and results in cryptography.
Throughout this work, λ denotes a security parameter.

Pseudorandom Functions and Pseudorandom Permutations.

Definition 1 (Quantum-Secure Pseudorandom Function). Let K,X and
Y be the key space, the domain and range, all implicitly depending on the security
parameter λ. A keyed family of functions {PRFk : X → Y}k∈K is a quantum-
secure pseudorandom function (QPRF) if the following two conditions hold:

1. Efficient generation. PRFk is polynomial-time computable on a classical
computer.

2. Pseudorandomness. For any polynomial-time quantum oracle algorithm A,
PRFk with a random k ← K is indistinguishable from a truly random function
f ← YX in the sense that:∣∣∣∣ Prk←K

[APRFk
(
1λ
)
= 1
]− Pr

f←YX

[Af
(
1λ
)
= 1
]∣∣∣∣ = negl(λ) .
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Definition 2 (Quantum-Secure Pseudorandom Permutation). Let K
be the key space, and X be both the domain and range, implicitly depending
on the security parameter λ. A keyed family of permutations {PRPk ∈ SX }k∈K
is a quantum-secure pseudorandom permutation (QPRP) if the following two
conditions hold:

1. (Efficient generation). PRPk and PRP−1
k are polynomial-time computable

on a classical computer.
2. (Pseudorandomness). For any polynomial-time quantum oracle algorithm

A, PRPk with a random k ← K is indistinguishable from a truly random
permutation σ ← SX in the sense that:

∣∣∣∣ Prk←K

[
APRPk,PRP−1

k

(
1λ
)
= 1
]

− Pr
σ←SX

[
Aσ,σ−1(

1λ
)
= 1
]∣∣∣∣ = negl(λ) .

We adopt the definition of a strong quantum-secure PRP in this paper. And
when referring to a quantum oracle algorithm having oracle access to a permu-
tation σ, we imply that it has oracle access to both σ and its inverse σ−1.

Under the assumption that post-quantum one-way functions exist, Zhandry
proved the existence of QPRFs [47]. QPRPs can be constructed from QPRFs
efficiently [46].

Given two QPRFs F and G, one independently samples Fk1 from F and Gk2

from G. A standard hybrid argument shows that Fk1 , Gk2 are computationally
indistinguishable from two independent random functions, as stated in the fol-
lowing lemma. The proof, detailed in the full version of this paper, can be readily
extended to the scenario when polynomially many pseudorandom primitives (or
random primitives) are given.

Lemma 2. Let keyed families of functions F : K1×X1 → Y1 and G : K2×X2 →
Y2 be QPRFs. Then we have for any polynomial-time quantum oracle algorithm
A,
∣∣∣∣∣ Pr
k1←K1,k2←K2

[AFk1 ,Gk2
(
1λ
)
= 1
]− Pr

f←YX1
1 ,g←YX2

2

[Af,g
(
1λ
)
= 1
]∣∣∣∣∣ = negl(λ) .

It also holds if X2 = Y2, G is a family of QPRPs and g ← YX2
2 is replaced by

g ← SX2 .

Quantum Pseudorandomness. The concept of quantum pseudorandom state
generators was originally introduced in [30].

Definition 3 (Quantum Pseudorandom State Generator). Let K be a
key space and H be a Hilbert space. K and H depend on the security parameter λ.
A pair of polynomial-time quantum algorithms (K,G) is a pseudorandom state
generator (PRSG) if the following holds:

– Key Generation. K(1λ) chooses a uniform k ∈ K and outputs it as the key.
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– State Generation. For all k ∈ K, G(1λ, k) outputs a quantum state |φk〉 ∈
S(H).

– Pseudorandomness. Any polynomially many copies of |φk〉 with the same
random k is computationally indistinguishable from the same number of copies
of a Haar random state. More precisely, for any n ∈ N, any efficient quantum
algorithm A and any � ∈ poly(λ),

∣∣∣∣ Prk←K

[
A
(
|φk〉⊗�

)
= 1
]

− Pr
|ψ〉←μ

[
A
(
|ψ〉⊗�

)
= 1
]∣∣∣∣ = negl(λ) ,

where μ is the Haar measure on S(H).

We call the keyed family of quantum states {φk}k∈K a pseudorandom quan-
tum state (PRS) in H.

PRSGs exist assuming the existence of QPRFs. Given any QPRF PRF : K ×
{0, 1}n → {0, 1}n (where K and N = 2n are implicitly functions of the security
parameter λ), [30] constructed a PRS {φk}k∈K, referred to (pseudo)random phase
states, as follows:

|φk〉 = 1√
N

∑
x∈{0,1}n

ω
PRFk(x)
N |x〉

for k ∈ K and ωN = ei
2π
N . Additionally, they conjectured the variant with binary

phase (i.e., replacing ωN with -1) remains a PRS, and this was later confirmed
in [9].

It is worth noting that both of these constructions rely on state generation
algorithms that require a specific initial state, typically the all-zero state |0〉⊗n.
If we were to use a different initial state, such as the equally weighted super-
position state |+〉⊗n, their state generation algorithms would fail to produce a
pseudorandom state. Therefore, the specific initial state is crucial for the success
of these constructions.

3 Pseudorandom State Scramblers

We describe our new primitive quantum Pseudorandom State Scramblers
(PRSS). A PRSS is capable of generating a pseudorandom state on an arbitrary
initial state, addressing the limitation of acting on one specific initial state.

Definition 4 (Pseudorandom State Scrambler). Let Hin and Hout be
Hilbert spaces of dimensions 2n and 2m respectively with n,m ∈ N and n ≤ m.
Let K = {0, 1}κ be a key space, and λ be a security parameter. A pseudorandom
state scrambler (PRSS) is an ensemble of isometric operators

Rn,m := {{Rn,m,λ
k : Hin → Hout}k∈K}λ,

satisfying:
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– Pseudorandomness. For any � = poly(λ), any |φ〉 ∈ S(Hin), and any non-
uniform poly-time quantum adversary A,

∣∣∣∣ Prk←K

[
A
(
|φk〉⊗�

)
= 1
]

− Pr
|ψ〉←μ

[
A
(
|ψ〉⊗�

)
= 1
]∣∣∣∣ = negl(λ) ,

where |φk〉 := Rn,m,λ
k |φ〉 and μ is the Haar measure on S(Hout).

– Uniformity. Rn,m can be uniformly computed in polynomial time. That is,
there is a deterministic Turing machine that, on input (1n, 1m, 1λ, 1κ), outputs
a quantum circuit Q in poly(n,m, λ, κ) time such that for all k ∈ K and
|φ〉 ∈ S(Hin)

Q |k〉|φ〉 = |k〉|φk〉 ,

where |φk〉 := Rn,m,λ
k |φ〉.

– Polynomially-bounded key length. κ = log |K| = poly(m,λ). As a result,
Rn,m can be computed efficiently in time poly(n,m, λ).

By strengthening the pseudorandomness condition in PRSS, we define ran-
dom state scramblers as follows. We also present a table (Table 1) that compares
our new primitives with other quantum (pseudo) random objects.

Definition 5 (Random State Scrambler). Let Hin and Hout be Hilbert
spaces of dimensions 2n and 2m respectively with n,m ∈ N and n ≤ m. Let
K = {0, 1}κ be a key space, and λ be a security parameter. A random state
scrambler (RSS) is an ensemble of isometric operators Rn,m := {Rn,m,λ}λ with
Rn,m,λ := {Rn,m,λ

k : Hin → Hout}k∈K satisfying:

– Statistical Pseudorandomness. For any � = poly(λ), and any |φ〉 ∈
S(Hin),

TD
(

E
k←K

[
|φk〉〈φk|⊗�

]
, E
|ψ〉∈μ

[
|ψ〉〈ψ|⊗�

])
= negl(λ) ,

where |φk〉 := Rn,m,λ
k |φ〉 and μ is the Haar measure on S(Hout).

– Uniformity. Rn,m can be uniformly computed in polynomial time. That is,
there is a deterministic Turing machine that, on input (1n, 1m, 1λ, 1κ), outputs
a quantum circuit Q in poly(n,m, λ, κ) time such that for all k ∈ K and
|φ〉 ∈ S(Hin)

Q |k〉|φ〉 = |k〉|φk〉 ,

where |φk〉 := Rn,m,λ
k |φ〉.
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Table 1. A collection of quantum random and pseudorandom objects.

Random Pseudorandom Main property

Haar unitary PRU {Uk} {Uk} ≈c Haar unitary
RSS PRSS {Rk} ∀ |φ〉 , {Rk |φ〉} ≈ Haar state

(trace distance or comp. indist.)
Haar state PRSG {Rk} for some fixed |φ〉 (e.g., |0〉)

{Rk |φ〉} ≈c Haar state

3.1 Properties of Pseudorandom State Scramblers

We discuss basic characteristics of the new primitives, as well as their relation-
ships with pseudorandom state generators and their siblings.

Unitary to Isometry. It is sufficient to construct PRSSs from H to H, since
we can construct PRSSs from H1 to H2 (n < m) in the following way. Let
Rm,m := {Rm,m,λ}λ be a PRSS with Rm,m,λ := {Rm,m,λ

k : H2 → H2}. For all
λ ∈ N and k ∈ K, we define Rn,m,λ

k = Rm,m,λ
k

(
1 ⊗ |0〉⊗(m−n)

)
where 1 is the

identity of H1. It is not hard to verify that Rn,m is a PRSS from H1 to H2. We
may write Rm instead of Rm,m when m = n.

Connections with Existing PRS Variants. Several definitions of quantum pseudo-
randomness on states with slight variations have been proposed and constructed
since the regular PRS has been introduced. Brakerski and Shmueli [10] intro-
duced scalable pseudorandom states (scalable PRSs) to eliminate the depen-
dence between the state size and the security parameter. This modification aids
in assuring the security when the state size n is much smaller than the security
parameter λ. Ananth, Qian and Yuen [5] introduced pseudorandom function-like
states (PRFSs), which extend PRSs by augmenting with classical inputs alongside
the secret key. Although the security is initially based on pre-selected classical
queries to the PRFS generator, the subsequent work [4] relaxes this to allow
adversaries making adaptive (classical or quantum) queries resulting in three
levels of security. The following theorem states that PRSSs subsume the original
PRSs and those variants. The proof is deferred to the full version of this paper.

Theorem 2. PRSGs, scalable PRSGs, and PRFSGs can be constructed via invok-
ing PRSSs in a black-box manner.

Oracle Separation from OWFs. According to [34, Theorem 2], PRUs exist relative
to a quantum oracle O, even when BQPO = QMAO, indicating the non-existence
of one-way functions. Since PRUs imply PRSSs, we obtain the same oracle sep-
aration result for PRSSs.

Theorem 3. There exists a quantum oracle O relative to which PRSSs exist,
but BQPO = QMAO.
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4 Parallel Kac’s Walk

In this section, we design a parallel version of the standard Kac’s walk on Sn
R

[42]
and demonstrate that it mixes exponentially faster with respect to the metrics
of our interest. We assume n = 2m for some m ∈ N throughout this section.

4.1 Parallel Kac’s Walk on Real Space

Before introducing our parallel Kac’s walk, we first review the standard one. The
standard Kac’s walk on vectors within a real Hilbert space is a Markov process.
At each discrete time t, we randomly select two coordinates (i, j) of the vector,
and then apply a two-dimensional rotation to the corresponding subvector with
an angle θ drawn randomly and uniformly. After a predetermined number of
steps, the Markov chain converges to a Haar distribution over the unit sphere.
It is proved in [42] that the mixing time of Kac’s walk on Sn

R
with respect to

the total variation distance is Θ(n log n). The formal definition of Kac’s walk is
given below.

Definition 6. Kac’s walk on Sn
R

is a discrete-time Markov chain {Xt ∈ Sn
R
}t≥0.

At each time t, two coordinates i(t), j(t) ∈ [n] and an angle θ(t) ∈ [0, 2π) are
chosen uniformly at random. Xt+1 is obtained by the following update rules:

(
Xt+1[i(t)]
Xt+1[j(t)]

)
=
[
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

](
Xt[i(t)]
Xt[j(t)]

)
,

Xt+1[k] = Xt[k] for k /∈
{

i(t), j(t)
}

.

We denote the Kac’s walk as G : [n] × [n] × [0, 2π) × Sn
R

→ Sn
R

such that

Xt+1 = G
(
i(t), j(t), θ(t),Xt

)
. (1)

In our parallel Kac’s walk, instead of randomly rotating one subvector, we
simultaneously rotate m subvectors. Here we give its formal definition.

Definition 7. The parallel Kac’s walk is a discrete-time Markov chain
{Xt ∈ Sn

R
}t≥0. At each step t, the parallel Kac’s walk first selects a random

perfect matching of the set {1, . . . , n}, denoted by

Pt =
{(

i
(t)
1 , j

(t)
1

)
, . . . ,

(
i(t)m , j(t)m

)}
,

where
⋃m

k=1

{
i
(t)
k , j

(t)
k

}
= {1, . . . , n}. Then m independent angles θ

(t)
1 , . . . , θ

(t)
m ∈

[0, 2π) are chosen uniformly at random. For every pair
(
i
(t)
k , j

(t)
k

)
in Pt, it sets

(
Xt+1[i

(t)
k ]

Xt+1[j
(t)
k ]

)
=

[
cos(θ(t)k ) − sin(θ(t)k )
sin(θ(t)k ) cos(θ(t)k )

](
Xt[i

(t)
k ]

Xt[j
(t)
k ]

)
.
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Let F : ([n] × [n])m × [0, 2π)m × Sn
R

→ Sn
R

denote the map associated with
the above random walk such that

Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m ,Xt

)
. (2)

In one step of the parallel Kac’s walk, we obtain m distinct coordinate pairs
by randomly sampling a perfect matching Pt of set [n]. For each pair, a rotation
angle is selected independently and uniformly at random. Recall the notation in
Definition 6. Let Xt,1 = Xt and Xt,k+1 = G

(
i
(t)
k , j

(t)
k , θ

(t)
k ,Xt,k

)
for 1 ≤ k ≤ m.

It is evident that

Xt,m+1 = Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m ,Xt

)
.

We can observe that taking one step of the parallel Kac’s walk can be viewed
as taking m = n/2 steps in the original Kac’s walk when there are no collisions
in the pairing step. All the subvectors being rotated in a single step of the parallel
Kac’s walk are distinct, and thus not independent. Consequently, the results for
the original Kac’s walk cannot be directly applied. Fortunately, by enhancing the
coupling technique for analyzing the mixing time of the standard Kac’s walk,
we are able to prove that the parallel Kac’s walk rapidly mixes in time O(log n)
with respect to two different metrics: (1) the Wasserstein 1-distance; and (2) the
total variation distance.

In the context of the Wasserstein 1-distance, after walking T steps, the differ-
ence between the output distribution of a parallel Kac’s walk and the normalized
Haar measure decays exponentially as T grows, which leads to a O(log n) mixing
time. Formally,

Theorem 4. Let {Xt ∈ Sn
R
}t≥0 be a Markov chain that evolves according to the

parallel Kac’s walk. Then, for sufficiently large n, c > 0, and T = 10(c+1) log n,

sup
X0∈Sn

R

W1(L(XT ) , μ) ≤ 1
2c log n

,

where μ is the normalized Haar measure on Sn
R
.

Furthermore, we get a stronger result regarding the total variation distance:

Theorem 5. Let {Xt ∈ Sn
R
}t≥0 be a Markov chain that evolves according to the

parallel Kac’s walk. Then, for sufficiently large n, c > 515 and T = c log n,

sup
X0∈Sn

R

‖L(XT ) − μ‖TV ≤ 1
2(c/515−1) log n−1

,

where μ is the normalized Haar measure on Sn
R
.

Notably, while the Wasserstein 1-distance is a weaker metric compared to
the total variation distance, Theorem 4 provides an adequate foundation for
constructing a PRSS. Additionally, the analysis of Theorem 5 further reveals a
dispersing property of our construction of RSS. The remainder of this section is
devoted to proving Theorem 4. The proof for Theorem 5, is deferred to the full
version of this paper.
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Fig. 1. Transformation of subcoordinates Xt[i, j] and Yt[i, j]

4.2 The Proportional Coupling

Our technique for proving the mixing time in Theorem 4 accommodates the
proportional coupling [42] that sufficiently reduces the distance between two
copies of Kac’s walk. At each time t in the proportional coupling (illustrated
in Fig. 1), an angle θ is chosen uniformly at random from [0, 2π) for rotating
the subvector (Xt[i],Xt[j]), where indices i and j are picked as in Definition
6. The angle θ′ is specifically selected for (Yt[i], Yt[j]) to make it collinear with
(Xt[i],Xt[j]), i.e., they share the same argument ϕ. Taking into account the
marginal distribution, both θ and θ′ are drawn from the uniform distribution
over the interval [0, 2π), validating the proportional coupling for two Kac’s walks.

Following a similar idea, we define the proportional coupling of two copies of
the parallel Kac’s walk, which couples each pair of indices from the randomly
sampled perfect matching using the proportional coupling.

Definition 8 (Proportional Coupling for the Parallel Kac’s Walk). We
define a coupling of two copies {Xt}t≥0 , {Yt}t≥0 of the parallel Kac’s walk in
the following way: Fix Xt, Yt ∈ Sn

R
.

1. Choose a perfect matching Pt =
{(

i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
and m angles

θ
(t)
1 , . . . , θ

(t)
m ∈ [0, 2π) uniformly at random, and set

Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m ,Xt

)
.

2. Sample m angles θ′(t)
1 , . . . , θ′(t)

m in the following manner: for every 1 ≤ k ≤ m,
(a) choose ϕk ∈ [0, 2π) uniformly at random among all angles that satisfy

Xt+1[i
(t)
k ] =

√
Xt[i

(t)
k ]2 + Xt[j

(t)
k ]2 cos(ϕk),

Xt+1[j
(t)
k ] =

√
Xt[i

(t)
k ]2 + Xt[j

(t)
k ]2 sin(ϕk),
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(b) and then choose θ′(t)
k ∈ [0, 2π) uniformly among the angles that satisfy

cos(θ′(t)
k ) · Yt[i

(t)
k ] − sin(θ′(t)

k ) · Yt[j
(t)
k ] =

√
Yt[i

(t)
k ]2 + Yt[j

(t)
k ]2 cos(ϕk),

sin(θ′(t)
k ) · Yt[i

(t)
k ] + cos(θ′(t)

k ) · Yt[j
(t)
k ] =

√
Yt[i

(t)
k ]2 + Yt[j

(t)
k ]2 sin(ϕk).

And set Yt+1 = F
(
Pt, θ

′(t)
1 , . . . , θ′(t)

m , Yt

)
.

In this coupling scheme, we enforce Xt and Yt to employ an identical ran-
dom matching (Pt in step 1) to generate all the m pairs of coordinates. And
then we sample m rotation angles for Xt and obtain Xt+1 by rotating the
m coordinate pairs by their corresponding angles. Next, in step 2, we deter-
mine the rotation angle for each coordinate pair of Yt. For the k-th pair, our
objective is to select a suitable angle θ′(t)

k such that the two-dimensional sub-
vector (Yt+1[i

(t)
k ], Yt+1[j

(t)
k ]) aligns collinearly with (Xt+1[i

(t)
k ],Xt+1[j

(t)
k ]). To

achieve this, we ensure that (Yt+1[i
(t)
k ], Yt+1[j

(t)
k ]) shares the same argument

ϕk as (Xt+1[i
(t)
k ],Xt+1[j

(t)
k ]). Typically, the values of angles ϕk and θ′(t)

k are
uniquely determined. However, in the scenario where either (Xt[i

(t)
k ],Xt[j

(t)
k ]) or

(Yt[i
(t)
k ], Yt[j

(t)
k ]) equals the zero vector, all angles satisfy the required conditions.

In such cases, we resort to uniform random selection for determining the angles.

Remark 1. This coupling forces Xt+1[i]Yt+1[i] ≥ 0 for all i ∈ [n] since the signs
are determined by the same arguments.

In each step of our coupling scheme, a quarter of the distance between vectors
Xt and Yt is reduced, which is formally shown in

Lemma 3. Let X0, Y0 ∈ Sn
R
. For t ≥ 0, we couple (Xt+1, Yt+1) conditioned on

(Xt, Yt) according to the proportional coupling defined in Definition 8. We define

At[i] = Xt[i]2, Bt[i] = Yt[i]2.

Then for any l ∈ N, we have

E

[
n∑

i=1

(Al[i] − Bl[i])
2

]
≤ 2 ·

(
1 − 1

4

)l

.

Proof. Fix Xt, Yt ∈ Sn
R
. Let (Xt+1, Yt+1) obtained from (Xt, Yt) by applying the

coupling defined in Definition 8. Recall that n = 2m. Let N = n!
2mm! be the

number of perfect matchings for [n]. To keep the notations short, the perfect

matching
{(

i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
at step t is denoted by

(−→
i(t),

−→
j(t)
)

.



Quantum Pseudorandom Scramblers 19

We have

E

[
n∑

i=1

(At+1[i] − Bt+1[i])
2

]

=
1
N

∑
(−→

i(t),
−−→
j(t)

)E

[
n∑

i=1

(At+1[i] − Bt+1[i])
2

∣∣∣∣∣Pt =
(−→

i(t),
−→
j(t)
)]

︸ ︷︷ ︸
(�)

. (3)

By the definition of the parallel Kac’s walk, we have

(�) =
m∑

k=1

E

[((
At[i

(t)
k ] + At[j

(t)
k ]

)
cos(ϕk)

2 −
(
Bt[i

(t)
k ] + Bt[j

(t)
k ]

)
cos(ϕk)

2
)2

]

+

m∑

k=1

E

[((
At[i

(t)
k ] + At[j

(t)
k ]

)
sin(ϕk)

2 −
(
Bt[i

(t)
k ] + Bt[j

(t)
k ]

)
sin(ϕk)

2
)2

]

=
3

4

m∑

k=1

((
At[i

(t)
k ] + At[j

(t)
k ]

)
−

(
Bt[i

(t)
k ] + Bt[j

(t)
k ]

))2

=
3

4

m∑

k=1

((
At[i

(t)
k ] − Bt[i

(t)
k ]

)2
+

(
At[j

(t)
k ] − Bt[j

(t)
k ]

)2
)

︸ ︷︷ ︸
(��)

+
3

4

m∑

k=1

2
(
At[i

(t)
k ] − Bt[i

(t)
k ]

) (
At[j

(t)
k ] − Bt[j

(t)
k ]

)

︸ ︷︷ ︸
(���)

, (4)

where the second equality is by E
[
cos(ϕk)4

]
= E
[
sin(ϕk)4

]
= 3/8.

As
{(

i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
is a perfect matching, we have

(��) =
3
4

n∑
i=1

(At[i] − Bt[i])
2
. (5)

Combining Eqs. (3), (4), and (5), we obtain

E

[
n∑

i=1

(At+1[i] − Bt+1[i])
2

]
=

3
4

n∑
i=1

(At[i] − Bt[i])
2 +

1
N

∑
(−→

i(t),
−−→
j(t)

)(� � �)

︸ ︷︷ ︸
(4�)

. (6)
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For the last term,

(4�) =
3
2N

∑
(−→

i(t),
−−→
j(t)

)
m∑

k=1

(
At[i

(t)
k ] − Bt[i

(t)
k ]
)(

At[j
(t)
k ] − Bt[j

(t)
k ]
)

=
3
2N

· (n − 2)!
2m−1(m − 1)!

∑
i<j

(At[i] − Bt[i]) (At[j] − Bt[j])

=
3 · m

2n(n − 1)

⎛
⎝
(

n∑
i=1

(At[i] − Bt[i])

)2

−
n∑

i=1

(At[i] − Bt[i])
2

⎞
⎠

= − 3
4(n − 1)

n∑
i=1

(At[i] − Bt[i])
2
. (7)

Combining Eqs. (6) and (7), we have

E

[
n∑

i=1

(Al[i] − Bl[i])
2

]
= E

[
E

[
n∑

i=1

(Al[i] − Bl[i])
2

∣∣∣∣∣Xl−1, Yl−1

]]

≤ 3
4
E

[
n∑

i=1

(Al−1[i] − Bl−1[i])
2

]

≤
(
3
4

)l n∑
i=1

(A0[i] − B0[i])
2 ≤ 2 ·

(
3
4

)l

.

��

4.3 Proof of the Mixing Time

Proof of Theorem 4. Let T = 10(c + 1) log n for c > 0. We couple two copies
{Xt}t≥0 and {Yt}t≥0 of the parallel Kac’s walk with starting points X0 = x ∈ Sn

R

and Y0 ∼ μ, by applying the proportional coupling. We have

W1(L(XT ) , μ) = W1(L(XT ) , L(YT )) ≤ E
[‖XT − YT ‖2

] ≤
(
E

[
‖XT − YT ‖42

])1/4
.

Then by Cauchy-Schwarz inequality, we have

W1(L(XT ) , μ) ≤
(
nE

[
‖XT − YT ‖44

])1/4

. (8)

Note that the proportional coupling forces XT [i]YT [i] ≥ 0 for all i ∈ [n].
Therefore, for all i ∈ [n]

|XT [i] − YT [i]| ≤ |XT [i] + YT [i]| .
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This gives us

‖XT − YT ‖44 =
n∑

i=1

(XT [i] − YT [i])
4 ≤

n∑
i=1

(
XT [i]2 − YT [i]2

)2
. (9)

Combining Eqs. (8) and (9), we have

W1(L(XT ) , μ) ≤
(

nE

[
n∑

i=1

(
XT [i]2 − YT [i]2

)2])1/4

(Lemma 3) ≤
(
2n
(
3
4

)T
)1/4

≤ 1
2c log n

.

��

5 Constructions of RSSs and PRSSs

In this section, we present a family of circuits that implements RSSs, specifically
realizing the parallel Kac’s walk on the real unit sphere. To obtain circuits for
PRSSs, one can simply replace the random primitives with their post-quantum
secured pseudorandom counterparts. Lastly, we discuss the dispersing property.

5.1 Simulating One Single Step

We begin by constructing a unitary gate that simulates a single step of the
parallel Kac’s walk on S2n

R
. In every step, we denote the corresponding permu-

tation by σ ∈ S2n . And we use the function f : {0, 1}n−1 → {0, 1}d to manage
the precision of the rotation angle that was originally chosen from the interval
[0, 2π), where d is the parameter controlling the precision of the rotation angle.
Specifically, for every σ and f , we define a unitary gate Kσ,f = Uσ−1WfUσ,
where

Uσ =
∑

x∈{0,1}n

|σ(x)〉〈x| , Wf =
∑

y∈{0,1}n−1

(
cos (θy) − sin (θy)
sin (θy) cos (θy)

)
⊗ |y〉〈y| , (10)

and θy = 2π · val(f(y)) is the rotation angle for every subvector(
σ−1(0y), σ−1(1y)

)
, y ∈ {0, 1}n−1. In Fig. 2, we show a quantum circuit that

realizes Kσ,f .
The circuit consists of:

1. Permutation: a unitary Uσ which transforms |x〉 to |σ(x)〉 for any x ∈ {0, 1}n.
This unitary can be implemented via making quires to oracles Oσ and Oσ−1 ,
and using n ancilla qubits: for any x ∈ {0, 1}n,

|x〉 |0〉 Oσ−→ |x〉 |σ(x)〉 SWAP−→ |σ(x)〉 |x〉 Oσ−1−→ |σ(x)〉 |0〉 .

We omit this detail in the above figure for the sake of conciseness.



22 C. Lu et al.

Fig. 2. Circuit diagram for the construction of the Kσ,f

2. Implementing rotation operator Wf :
(a) an oracle Of which queries f(x2, . . . , xn) and stores the d-bit result in the

ancilla qubits.
(b) d controlled-rotation gates. The i-th ancilla qubit controls R π

2i−1
gate

acting on the first qubit, where the gate Rθ denotes the rotation trans-

formation
(
cos θ − sin θ
sin θ cos θ

)
.

(c) an oracle Of again for uncomputing the ancilla qubits.
3. Inverse permutation: a unitary Uσ−1 .

Remark. The gate Kσ,f approximates one step of the parallel Kac’s walk. It
starts by partitioning the computational basis (indices) into 2n−1 pairs based
on a selected permutation σ. For each pair

(
σ−1(0y), σ−1(1y)

)
labeled by y ∈

{0, 1}n−1, the gate applies a rotation with an approximated angle θy indicated
by f to the corresponding two dimensional subvector.

Stepwise State Evolution. To gain insight into the functionality of Kσ,f , we
assume the initial state to be a pure state

|ϕ〉 =
∑

x∈{0,1}n

px |x〉 .

First, to pair up the indices by applying Uσ, the initial state is transformed
into
∑

x∈{0,1}n

px |σ(x)〉 ⊗ ∣∣0d
〉
=

∑
x′∈{0,1}n

pσ−1(x′) |x′〉 ⊗ ∣∣0d
〉

=
∑

y∈{0,1}n−1

(
pσ−1(0y) |0〉 + pσ−1(1y) |1〉)⊗ |y〉 ⊗ ∣∣0d

〉
.
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Then, to rotate each subvector, the oracle Of stores f(y) in the ancilla reg-
ister as control qubits, resulting in the state∑

y∈{0,1}n−1

(
pσ−1(0y) |0〉 + pσ−1(1y) |1〉)⊗ |y〉 ⊗ |f(y)〉 .

Next, a series of controlled-rotation gates are applied to the first qubit, rotat-
ing it by an angle of θy = 2π · val(f(y)). Therefore, we have the following state:

∑
y∈{0,1}n−1

(
p′

σ−1(0y) |0〉 + p′
σ−1(1y) |1〉

)
⊗ |y〉 ⊗ |f(y)〉

where

p′
σ−1(0y) = cos (θy) · pσ−1(0y) − sin (θy) · pσ−1(1y),

p′
σ−1(1y) = sin (θy) · pσ−1(1y) + cos (θy) · pσ−1(1y).

After reverting the ancilla qubits and applying the inverse permutation, we
obtain the output state

∑

y∈{0,1}n−1

(
p′

σ−1(0y)

∣∣σ−1(0y)
〉
+ p′

σ−1(1y)

∣∣σ−1(1y)
〉) ⊗

∣∣∣0d
〉
=

∑

x∈{0,1}n

p′
x |x〉 ⊗

∣∣∣0d
〉

.

5.2 Constructing RSS

We first define an ensemble RSGn of unitary operators that represents applying
Kσ,f for T -step with i.i.d. random selections of permutations and functions.
Then, we prove that such an ensemble forms an RSS.

Definition 9. Let n, T, d ∈ N, and H be a real Hilbert space with dimension 2n.
An ensemble of unitary operators RSGn :−

{
RSGn,λ

}
λ

with

RSGn,λ :−
{
RSGn,λ

(σi)T
i=1,(fi)T

i=1
: H → H

}
(σi)T

i=1⊆S2n ,(fi)T
i=1⊆{f :{0,1}n−1→{0,1}d}

is define as
RSGn,λ

(σi)T
i=1,(fi)T

i=1
= KσT ,fT

· · · Kσ2,f2Kσ1,f1

where Kσ,f = Uσ−1WfUσ is defined in (10).

Theorem 6. Let n ∈ N, d = log2λ + log2n and T = 10(λ + 1)n. The ensemble
of unitary operators RSGn defined in Definition 9 is an RSS.

To prove Theorem 6, we define a new ensemble of (infinitely many) unitary

operators R̃SG
n
:−
{
R̃SG

n,λ
}

λ

with

R̃SG
n,λ

:−
{
R̃SG

n,λ

(σi)T
i=1,(f̃i)T

i=1
: H → H

}
(σi)T

i=1⊆S2n ,(f̃i)T
i=1⊆{f :{0,1}n−1→[0,1)}
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and
R̃SG

n,λ

(σi)T
i=1,(f̃i)T

i=1
= K̃σT ,f̃T

· · · K̃σ2,f̃2
K̃σ1,f̃1

where K̃σ,f̃ = Uσ−1W̃f̃Uσ and W̃f̃ is defined to be

W̃f̃ =
∑

y∈{0,1}n−1

⎛
⎝cos

(
θ̃y

)
− sin

(
θ̃y

)
sin
(
θ̃y

)
cos
(
θ̃y

)
⎞
⎠⊗ |y〉〈y| , (11)

in which θ̃y = 2π · f̃(y) for y ∈ {0, 1}n−1.
RSGn and R̃SG

n
differ in the way the angles are chosen. In RSGn, the

angles are selected from the discrete set
{
2π · i

2d : i ∈ {0, 1, . . . , 2d − 1
}}

, while
in R̃SG

n
, the angles are chosen from the interval [0, 2π). For uniformly random σ

and f̃ , applying gate K̃σ,f̃ results in the selection of a random matching on the
computational basis, with each pair in the matching being rotated by a random
angle in [0, 2π) determined by the corresponding value of f̃ . This is exactly one
step of parallel Kac’s walk described in Sect. 4. R̃SG

n
serves as an intermediate

scrambler in the proof of Theorem 6. To analyse the difference between RSGn

and R̃SG
n
, we need the following lemma.

Lemma 4. Let σ ∈ S2n and f̃ : {0, 1}n−1 → [0, 1). Let f be the function satis-
fying for any y ∈ {0, 1}n−1, f(y) is the d digits after the binary point in f̃(y).
Then ∥∥∥Kσ,f − K̃σ,f̃

∥∥∥
∞

≤ 21−dπ,

where Kσ,f = Uσ−1WfUσ is defined in (10) and K̃σ,f̃ = Uσ−1W̃f̃Uσ is defined
in (11).

Proof.
∥∥∥Kσ,f − K̃σ,f̃

∥∥∥
∞

=
∥∥∥Uσ−1

(
Wf − W̃f̃

)
Uσ

∥∥∥
∞

=

∥∥∥∥∥∥
∑

y∈{0,1}n−1

(
cos θy − cos θ̃y −

(
sin θy − sin θ̃y

)
sin θy − sin θ̃y cos θy − cos θ̃y

)
⊗ |y〉〈y|

∥∥∥∥∥∥
∞

= max
y∈{0,1}n−1

{
2

∣∣∣∣∣sin
θy − θ̃y

2

∣∣∣∣∣
∥∥∥∥∥
(

− sin θy+θ̃y

2 − cos θy+θ̃y

2

cos θy+θ̃y

2 − sin θy+θ̃y

2

)∥∥∥∥∥
∞

}

≤ max
y∈{0,1}n−1

{∣∣∣θy − θ̃y

∣∣∣} ≤ 21−dπ.

��
Proof of Theorem 6. It is easy to see that the uniformity condition is satisfied. Let
κ denote the key length. Quantum circuit RSGn,λ applies RSGn,λ

(σi)T
i=1,(fi)T

i=1
after

reading (σi)Ti=1 and (fi)Ti=1. To implement RSGn,λ

(σi)T
i=1,(fi)T

i=1
, we need to realize
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each of the T = 10(λ + 1)n unitary gates K. Since each gate K can be imple-
mented in poly(n, λ, κ) time, the total construction time for RSGn,λ

(σi)T
i=1,(fi)T

i=1
is

also poly(n, λ, κ).
Thus, it suffices to prove the requirement of Statistical Pseudorandomness is

satisfied. Fix |η〉 ∈ S(H). Define three distributions:

– ν be the distribution of RSGn,λ

(σi)T
i=1,(fi)T

i=1
|η〉 with independent and uniformly

random permutations (σi)Ti=1 ⊆ S2n and random functions (fi)Ti=1 ⊆ {f :
{0, 1}n−1 → {0, 1}d}.

– ν̃ be the distribution of R̃SG
n,λ

(σi)T
i=1,(f̃i)T

i=1
|η〉 with independent and uniformly

random permutations (σi)Ti=1 ⊆ S2n , and random functions (f̃i)Ti=1 ⊆ {f :
{0, 1}n−1 → [0, 1)}.

– μ be the Haar measure on S2n

R
.

We first prove that the trace distance between ν and ν̃ is negligible. To this
end, we construct a coupling γ0 of ν and ν̃ by using the same permutation σt

and letting ft be the function satisfying ft(y) is the d digits after the binary
point in f̃t(y) for all y ∈ {0, 1}n−1. Therefore, for any (|φ〉 , |ϕ〉) ∼ γ0, we have

‖|φ〉 − |ϕ〉‖2 =
∥∥∥∥R̃SGn,λ

(σi)T
i=1,(f̃i)T

i=1
|η〉 − RSGn,λ

(σi)T
i=1,(fi)T

i=1
|η〉
∥∥∥∥
2

≤
∥∥∥∥R̃SGn,λ

(σi)T
i=1,(f̃i)T

i=1
− RSGn,λ

(σi)T
i=1,(fi)T

i=1

∥∥∥∥
∞

≤ 21−dπT =
20π(λ + 1)n
λlog λ · nlog n

,

where the last inequality is from Fact 1 and Lemma 4. Thus, for any l ∈
poly(λ, n)

∥∥∥∥ E
|φ〉∼ν

[
(|φ〉〈φ|)⊗l

]
− E

|ϕ〉∼ν̃

[
(|ϕ〉〈ϕ|)⊗l

]∥∥∥∥
1

≤ E
(|φ〉,|ϕ〉)∼γ0

[∥∥∥(|φ〉〈φ|)⊗l − (|ϕ〉〈ϕ|)⊗l
∥∥∥
1

]

≤ l E
(|φ〉,|ϕ〉)∼γ0

[‖|φ〉〈φ| − |ϕ〉〈ϕ|‖1]

≤ l

(
E

(|φ〉,|ϕ〉)∼γ0

[‖|φ〉 (〈φ| − 〈ϕ|)‖1] + E
(|φ〉,|ϕ〉)∼γ0

[‖(|φ〉 − |ϕ〉) 〈ϕ|‖1]
)

≤ 2l E
(|φ〉,|ϕ〉)∼γ0

[‖|φ〉 − |ϕ〉‖2] ≤ 40π(λ + 1)nl

λlog λ · nlog n
. (12)

As for the trace distance between ν̃ and μ, note that ν̃ is the output distri-
bution of T -step parallel Kac’s walk. Thus by Theorem 4, we have

W1(ν̃, μ) ≤ 1
2λn

.
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So there exists a coupling of ṽ and μ, denoted by γ1, that achieves

E
(|ϕ〉,|ψ〉)∼γ1

[‖|ϕ〉 − |ψ〉‖2] ≤ 3
2λn

.

Therefore, similar to Eq. (12), we have for any l ∈ poly(λ, n)
∥∥∥∥ E

|ϕ〉∼ν̃

[
(|ϕ〉〈ϕ|)⊗l

]
− E

|ψ〉∼μ

[
(|ψ〉〈ψ|)⊗l

]∥∥∥∥
1

≤ 2l E
(|ϕ〉,|ψ〉)∼γ1

[‖|ϕ〉 − |ψ〉‖2] ≤ 6l
2λn

.

(13)

Finally, by the triangle inequality, Eqs. (12) and (13), we have
∥∥∥∥ E

|φ〉∼ν

[
(|φ〉〈φ|)⊗l

]
− E

|ψ〉∼μ

[
(|ψ〉〈ψ|)⊗l

]∥∥∥∥
1

≤ 40π(λ + 1)nl

λlog λ · nlog n
+

6l
2λn

= negl(λ) .

This establishes the Statistical Pseudorandomness property. ��

5.3 Constructing PRSS

We construct a PRSS by replacing the random functions and permutations used
in RSS with QPRFs and QPRPs.

Definition 10. Let n, T ∈ N, H be a real Hilbert space with dimension 2n,
τ : K1×{0, 1}n → {0, 1}n be a QPRP with key space K1 and F : K2×{0, 1}n−1 →
{0, 1}d be a QPRF with key space K2. An ensemble of unitary operators SGn :−{
SGn,λ

}
λ

with SGn,λ :−
{
SGn,λ

k : H → H
}

k∈(K1×K2)
T

is defined as

SGn,λ
k = KτrT

,FsT
· · · Kτr2 ,Fs2

Kτr1 ,Fs1

for k = (r1, s1, r2, s2, . . . , rT , sT ) ∈ (K1 × K2)
T , where Kσ,f = Uσ−1WfUσ is

defined in (10).

Theorem 7. Let n ∈ N, d = log2λ + log2n and T = 10(λ + 1)n. The ensemble
of unitary operators SGn defined in Definition 10 is a PRSS.

Proof. Due to the efficiency of τ and F , the key length is bounded by 2T ·
poly(n, d) = poly(n, λ). Thus the condition of polynomial-bounded key length
is satisfied. To implement SGn,λ

k , we need to realize each of the T = 10(λ + 1)n
unitary gates K that make up SGn,λ

k . Since each K can be realized in poly(n, λ)
time (efficiency of τ and F ), the overall construction time for SGn,λ

k will be
poly(n, λ). Thus the uniformity is also satisfied.

We now prove the pseudorandomness property. To this end, we consider three
hybrids for an arbitrary |φ〉 ∈ S(H) and l ∈ poly(λ, n):

H1: |φk〉⊗l for |φk〉 = SGn,λ
k |φ〉 where k ← (K1 × K2)

T is chosen uniformly at
random.
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H2:
∣∣∣ϕ(σi)T

i=1,(fi)T
i=1

〉⊗l

for
∣∣∣ϕ(σi)T

i=1,(fi)T
i=1

〉
= RSGn,λ

(σi)T
i=1,(fi)T

i=1
|φ〉 with indepen-

dently and uniformly random permutations (σi)Ti=1 ⊆ S2n and random func-
tions (fi)Ti=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}. RSGn,λ

(σi)T
i=1,(fi)T

i=1
is defined in

Definition 9.
H3: |ψ〉⊗l for |ψ〉 chosen according to the Haar measure μ on S2n

R
.

We first prove that H1 and H2 are computationally indistinguishable. By
the quantum-secure property of τ and F , we know the following two situations
are computationally indistinguishable for any polynomial-time quantum oracle
algorithm A (see Lemma 2):

– given oracle access to τr1 , · · · , τrT
and Fs1 , · · · , FsT

where (ri)Ti=1 ⊆ K1 and
(si)Ti=1 ⊆ K2 are independently and uniformly random keys.

– given oracle access to independent and uniformly random permutations
(σi)Ti=1 ⊆ S2n and random functions (fi)Ti=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}.

Thus, we have for any polynomial-time quantum algorithm A,∣∣∣∣Pr
[
A
(
|φk〉⊗l

)
= 1
]

− Pr
[
A
(∣∣∣ϕ(σi)T

i=1,(fi)T
i=1

〉⊗l
)

= 1
]∣∣∣∣ = negl(λ) .

For H2 and H3, they are statistically indistinguishable since RSGn defined
in Definition 9 is an RSS by Theorem 6. Finally, by the triangle inequality we
establish H1 and H3 are computationally indistinguishable. This accomplishes
the proof. ��

5.4 The Dispersing Property

As mentioned before, our parallel Kac’s walk also mixes rapidly in terms of
total variation distance, which endows our scramblers with a unique dispersing
property. We first introduce the concept of dispersing random state scramblers
(DRSSs), which ensure the approximation of Haar randomness with respect to
Wasserstein distance.

Definition 11 (Dispersing Random State Scrambler). Let Hin and Hout

be Hilbert spaces of dimensions 2n and 2m respectively with n,m ∈ N and n ≤ m.
Let K = {0, 1}κ be a key space, and λ be a security parameter. A dispersing
random state scrambler (DRSS) is an ensemble of isometric operators Rn,m :=
{Rn,m,λ}λ with Rn,m,λ := {Rn,m,λ

k : Hin → Hout}k∈K satisfying:

– Sphere Coverage. There exist ε = negl(λ) such that for any |φ〉 ∈ S(Hin),
the family of states {Rn,m

k |φ〉}k∈K forms an ε-net of S(Hout).
– Wasserstein Approximation of Haar randomness. There exist δ, δ′ =

negl(λ) such that for any |φ〉 ∈ S(Hin),
• Let ν be the distribution of Rn,m

k |φ〉 with uniformly random k ← K, and
μ be the Haar measure on S(Hout). Then, there exists a distribution ν̃
such that

‖μ − ν̃‖TV ≤ δ, and W∞(ν, ν̃) ≤ δ′.



28 C. Lu et al.

– Uniformity. Rn,m can be uniformly computed in polynomial time. That is,
there is a deterministic Turing machine that, on input (1n, 1m, 1λ, 1κ), outputs
a quantum circuit Q in poly(n,m, λ, κ) time such that for all k ∈ K and
|φ〉 ∈ S(Hin)

Q |k〉|φ〉 = |k〉|φk〉 ,

where |φk〉 := Rn,m,λ
k |φ〉.

In particular, small Wasserstein distance implies small trace distance between
the average states drawn from the two distributions. The proof is deferred to the
full version.

Proposition 1. A DRSS is an RSS with the same parameters.

Moreover, we introduce a continuous version of random state scrambler,
where continuous randomness is allowed.

Definition 12 (Continuously Random State Scrambler). Let Hin and
Hout be Hilbert spaces of dimensions 2n and 2m respectively with n,m ∈ N and
n ≤ m. Let K be a (continuous) key space, and λ be a security parameter. A con-
tinuously random state scrambler (CRSS) is an ensemble of isometric operators
Rn,m := {Rn,m,λ}λ with Rn,m,λ := {Rn,m,λ

k : Hin → Hout}k∈K satisfying:

– Total-Variation Approximation of Haar randomness. Let |φ〉 ∈
S(Hin) be an arbitrary pure state. Let ν be the distribution of Rn,m,λ

k |φ〉
with uniformly random k ← K, and μ be the Haar measure on S(Hout). Then
there exists δ = negl(λ) such that the total variation distance between ν and
μ is at most δ, i.e., ‖ν − μ‖TV ≤ δ.

The following theorem proves that the RSS we construct over real space is
also a DRSS.

Theorem 8. Let n ∈ N, d = log2λ+ log2n and T = 515(λ+1)n. The ensemble
of unitary operators RSGn defined in Definition 9 is a DRSS.

To prove Theorem 8, recall the ensemble of unitary operators R̃SG
n

:−{
R̃SG

n,λ
}

λ

we define in Sect. 5.2. We have the following proposition for R̃SG
n
.

Proposition 2. For T = 515(λ + 1)n, the ensemble of unitary operator R̃SG
n

is a CRSS.

Proof. Note that a uniformly random R̃SG
n,λ

(σi)T
i=1,(f̃i)T

i=1
corresponds to a T -step

parallel Kac’s walk on S2n

R
. The proposition then follows from Theorem 5 and

the definition of the CRSS. ��
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Let |η〉 ∈ S(H) be an arbitrary real state. Set

N =
{
RSGn,λ

(σi)T
i=1,(fi)T

i=1
|η〉
}

andÑ =
{
R̃SG

n,λ

(σi)T
i=1,(f̃i)T

i=1
|η〉
}

. (14)

We need the following two lemmas. Both proofs are deferred to the full version
of this paper.

Lemma 5. Ñ = S2n

R
.

Lemma 6. There exists an ε = negl(λ) such that N is an ε-net for real vectors
in S(H), where N is defined in (14).

Proof of Theorem 8. It is easy to see that the uniformity condition is satisfied.
Combining with Lemma 6, it suffices to prove that there exists a good distribu-
tion ν̃ satisfying the requirement in Definition 11. Fix |η〉 ∈ S(H). Define three
distributions:
– ν be the distribution of RSGn,λ

(σi)T
i=1,(fi)T

i=1
|η〉 with independent and uniformly

random permutations (σi)Ti=1 ⊆ S2n and random functions (fi)Ti=1⊆ {f :
{0, 1}n−1 → {0, 1}d}.

– ν̃ be the distribution of R̃SG
n,λ

(σi)T
i=1,(f̃i)T

i=1
|η〉 with independent and uniformly

random permutations (σi)Ti=1 ⊆ S2n , and random functions (f̃i)Ti=1 ⊆ {f :
{0, 1}n−1 → [0, 1)}.

– μ be the Haar measure on S2n

R
.

Note that ν̃ is the output distribution of T -step parallel Kac’s walk. Thus by
Theorem 5, we have

‖ν̃ − μ‖TV ≤ 1
2λn−1

= negl(λ) . (15)

We are left to show the Wasserstein ∞-distance between ν and ν̃ is negligible. To
this end, we construct a coupling γ0 of ν and ν̃ by using the same permutation
σt and letting ft be the function satisfying ft(y) is the d digits after the binary
point in f̃t(y) for all y ∈ {0, 1}n−1. When (|v〉 , |u〉) ∼ γ0, we have

‖|u〉 − |v〉‖2 =
∥∥∥∥R̃SGn,λ

(σi)T
i=1,(f̃i)T

i=1
|η〉 − RSGn,λ

(σi)T
i=1,(fi)T

i=1
|η〉
∥∥∥∥
2

≤
∥∥∥∥R̃SGn,λ

(σi)T
i=1,(f̃i)T

i=1
− RSGn,λ

(σi)T
i=1,(fi)T

i=1

∥∥∥∥
∞

≤ 21−dπT =
1030π(λ + 1)n

λlog λnlog n
,

(16)

where the last inequality is from Fact 1 and Lemma 4. Therefore,

W∞(ν, ν̃) = lim
p→∞

(
inf

γ∈Γ (ν,ν̃)
E

(|v〉,|u〉)∼γ
[‖|v〉 − |u〉‖p

2]
)1/p

≤ lim
p→∞

(
E

(|v〉,|u〉)∼γ0

[‖|v〉 − |u〉‖p
2]
)1/p (Eq. (16))

≤ 1030π(λ + 1)n
λlog λnlog n

= negl(λ) .

(17)

This completes the proof. ��
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6 Applications

Since pseudorandom state scramblers subsume pseudorandom state generators
and its siblings in the literature, all applications enabled by PRSGs can also be
obtained from PRSSs. This includes for instance symmetric-key encryption and
commitment of classical messages as well as secure computation. In this section,
we showcase a few novel applications beyond what PRSGs are capable of.

6.1 Compact Quantum Encryption

Because PRSSs map any initial state to a pseudorandom output state, we can
readily employ them to encrypt quantum messages. Furthermore, it turns out
that PRSS-based quantum encryption schemes offer improvements in terms of
compactness, a point we discuss below.

We start by recalling the well-known Quantum One-Time Pad, which is the
quantum analogue of one-time pad and achieves perfect secrecy. Given an n-
qubit state |ψ〉, we sample a uniform 2n-bit key k = k1‖k2 with k1, k2 ∈ {0, 1}n

and encrypt |ψ〉 by

|ψk〉 = QOTPk|ψ〉 = Xk1Zk2 |ψ〉 ,

where X and Z are Pauli operators applied on each qubit of |ψ〉.
We can reduce the key length by using pseudorandom keys. For instance,

given a pseudorandom generator PRG : {0, 1}n → {0, 1}2n, we can expand a
uniform n-bit key under PRG and use PRG(k) as the key to QOTP. Namely we
encrypt by |ψk〉 = QOTPPRG(k)|ψ〉 . We refer to this scheme as prg-QOTP.

These two schemes are secure if the same key is never used more than once.
One can extend it to multi-time security with hybrid encryption, using in addi-
tion a post-quantum secure encryption for classical bits. For concreteness, we
use a post-quantum PRFk : {0, 1}n → {0, 1}2n. To encrypt |ψ〉, we sample a
uniformly random string r, and use PRFk(r) as the key to QOTP, i.e., we out-
put cipherstate (r, |ψk,r〉) where |ψk,r〉 = QOTPPRFk(r)|ψ〉 . We call this scheme
prf-QOTP.

Now suppose we have a PRSS ({Rn,m
k }) with key space K = {0, 1}κ, and

for simplicity we assume that n = m and we ignore them in the notation. We
can construct three encryption schemes, analogous to each of the schemes above
(Table 2).

– PRSS-enc: on random key k and state |ψ〉, output

|ψk〉 := Rk|ψ〉 .

– prg-PRSS-enc: given a PRG : {0, 1}n → K, on random key k and state |ψ〉,
output

|ψk〉 := RPRG(k)|ψ〉 .
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Table 2. Advantages of PRSS-based encryptions: maintaining single key instead of
linear number of keys or reducing the cipher size growth factor by half.

� copies of |ψ〉 (prg-)QOTP (prg-)PRSS-enc

� = 1 |ψk〉 = QOTPk or PRG(k)|ψ〉 |ψk〉 = PRSSk or PRG(k)|ψ〉
� > 1 (|ψk1〉 , . . . , |ψk�〉) (|ψk〉 , . . . , |ψk〉)

Comparison Need to exchange � indep. keys
k1, . . . , k�

Single key for any polynomial �

� copies of |ψ〉 prf-QOTP prf-PRSS-enc

� = 1
(
r, |ψk,r〉 = QOTPPRFk(r)|ψ〉) (r, |ψk,r〉) = PRSSPRFk(r)|ψ〉

� > 1
(
. . . ,

(
rj ,

∣∣ψk,rj

〉)
, . . .

)
(r, |ψk,r〉 , . . . , |ψk,r〉)

Comparison Cipher size grows by � factor Cipher size grows by 1
2
(� + 1)

– prf-PRSS-enc: given a PRF : {0, 1}n → K, the key is a random key k for the
PRF. On state |ψ〉, output (r, |ψk,r〉), where r ← {0, 1}n and

|ψk,r〉 = RPRFk(r)
|ψ〉 .

Advantages of PRSS-Based Quantum Encryption. One distinct benefit of PRSS-
enc over QOTP is that we can encrypt multiple copies of a state |ψ〉 using PRSS-
enc under the same key k. This follows from the multi-copy indistinguishability
in our PRSS definition. In contrast, QOTP needs independent keys to encrypt
each copy of |ψ〉. This considerably improves compactness, and it holds similarly
in the other two types of schemes.

A related concept called quantum private broadcasting has been investigated
by Broadbent, Gonzàlez-Guillén and Schuknecht [13]. They employ (symmetric)
t-designs to encrypt t copies of an n-qubit quantum message. While the key
length in their construction scales logarithmically with t, it grows exponentially
with n. Our PRSS-based scheme maintains a key size of poly(n).

We stress that this applies only to encrypting multiple copies of the same
input state. If we want to encrypt different states, then fresh keys in (prg-)PRSS-
enc or randomness in prf-PRSS-enc should be used.

6.2 Succinct Quantum State Commitment

Next we show how PRSS enables quantum commitment. Bit commitment is a
fundamental primitive in cryptography. A sender Alice commits to an input bit
b to a receiver Bob in the commit phase, which can be revealed later in the
open phase. This naturally extends to committing bit strings. Two properties
are essential.

– Hiding. Bob is not able to learn the message b before the open phase.
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– Binding. Alice cannot fool Bob to accept a different message b′ �= b in the
open phase.

We will focus on non-interactive commitment schemes where both commit
and open phases consist of a single message from the sender to the receiver. If
the protocol involves exchanging and processing quantum information, we call it
a quantum bit commitment (QBC) scheme. QBC has been extensively studied,
and it is shown that QBC can be constructed based on standard PRSGs [5,38].

In a similar vein, one can also consider committing to a quantum input state,
and this is called quantum state commitment (QSC). QSC has proven useful such
as in zero-knowledge proof systems for QMA [14,15].

Recently, Gunn, Ju, Ma and Zhandry give a systematic treatment on
QSC [21]. They propose a new characterization of binding termed swap-binding.
They show a striking hiding-binding duality theorem for (non-interactive) quan-
tum commitment: binding holds if the opening register held by the sender hides
the input state. This significantly simplifies proving binding. They then con-
struct binding commitment schemes which in addition are succinct, where the
register containing the commitment has a smaller size than the message state.2

Succinct QSC from PRSS. The succinct QSC schemes by [21] are based on post-
quantum one-way functions or the potentially weaker primitive of pseudoran-
dom unitary operators (PRU). We show below the viability of building succinct
commitment on PRSS. Specifically, we observed that a succinct PRSS implies a
succinct one-time quantum encryption, and it was shown in [21] that a succinct
one-time quantum encryption gives a succinct QSC scheme. Hence (succinct one-
time) PRSSs offer an alternate approach of realizing succinct one-time quantum
encryptions based on potentially weaker assumptions than one-way functions,
and could be weaker than the instantiation via PRUs in [21]. Meanwhile, one-
time quantum encryption does not seem to follow immediately from PRS or other
primitives implied by PRS.

Theorem 9. Assuming a succinct PRSS, i.e., |K| < 2n, there exists a succinct
QSC.

Proof. This follows from a generic claim in [21]. They show that any one-time
secure quantum encryption scheme with succinct keys, where the key is shorter
than the state to be encrypted, readily gives a succinct QSC. A PRSS is a secure
quantum encryption as discussed above. Succinctness translates if PRSS’s key
length is shorter than the size of the input state. This is stated below. We choose
not to fully spell out the syntax and definitions of the involved primitives for the
sake of clarity, and refer the readers to [21]. ��
Lemma 7. Assuming a succinct PRSS, i.e., |K| < 2n, there exists a succinct
one-time quantum encryption scheme.

2 Note that hiding is not required in these succinct schemes.



Quantum Pseudorandom Scramblers 33

How to instantiate a succinct PRSS? Our construction is not immediately
succinct, because the key length Ω(λ · n). We can remedy this by using a pseu-
dorandom generator to expand a key shorter than n into pseudorandom keys for
each iteration (QPRF and QPRP).
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Abstract. We explore a very simple distribution of unitaries: ran-
dom (binary) phase—Hadamard—random (binary) phase—random
computational-basis permutation. We show that this distribution is sta-
tistically indistinguishable from random Haar unitaries for any polyno-
mial set of orthogonal input states (in any basis) with polynomial mul-
tiplicity. This shows that even though real-valued unitaries cannot be
completely pseudorandom (Haug, Bharti, Koh, arXiv:2306.11677), we
can still obtain some pseudorandom properties without giving up on the
simplicity of a real-valued unitary.

Our analysis shows that an even simpler construction: applying a ran-
dom (binary) phase followed by a random computational-basis permuta-
tion, would suffice, assuming that the input is orthogonal and flat (that
is, has high min-entropy when measured in the computational basis).

Using quantum-secure one-way functions (which imply quantum-
secure pseudorandom functions and permutations), we obtain an efficient
cryptographic instantiation of the above.

1 Introduction

Pseudorandomness is one of the most fundamental notions in cryptography.
Prominent examples include pseudorandom generators (PRG) [11], pseudoran-
dom functions (PRF) [10], and pseudorandom permutations (PRP) [16], which
play a crucial role in various constructions in cryptography and beyond. Let us
consider the concept of PRP, which is quite analogous to the object at the focus
of this work. If we consider the class of all permutations {0, 1}n → {0, 1}n, a
random function from this class requires an exponential number of random bits
to specify, and requires an exponential-size circuit to evaluate (and invert). A
PRP is a distribution that can be sampled using a polynomial number of bits,
known as the seed.1 Furthermore, given the seed s, it is possible to evaluate and
invert the associated permutation πs in polynomial time. The crucial point is
that any polynomial time process cannot distinguish between an interaction with
1 In a formal definition, one has to address the subtlety of whether “efficiency” is

defined with respect to the input length n, or with respect to some “security param-
eter”. This distinction does not matter for our current discussion, and we will point
out when it does down the line.

For the most up-to-date version of this work, please refer to https://arxiv.org/2403.
16704.
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a permutation πs for a random seed s, and an interaction with a completely ran-
dom permutation. It has been established [10,11,16] that PRG, PRF and PRP
can all be constructed given the existence of one-way functions: the most basic
(classical) cryptographic primitive. Furthermore, this connection is true even if
we consider a quantum (polynomial-time) adversary [18,19].

In the context of quantum computing and quantum cryptography, Ji Liu
and Song [14] (henceforth JLS) proposed to study pseudorandomness of quan-
tum objects. In particular, the defined the notion of pseudorandom quantum
states (PRS) which are n-qubit states which are (indistinguishable from) Haar
random n-qubit states, even with arbitrary polynomial-time interaction with a
polynomial number of copies of the pseudorandom state. The notion of PRS has
been the subject of extensive study since [3–7,9,13].

Another object proposed by JLS is that of pseudorandom unitaries (PRU).
Similarly to PRP, these should allow to evaluate and invert a unitary given a seed
of polynomially many random bits, while being computationally indistinguish-
able from a random Haar unitary given arbitrary polynomial time interaction.
Contrary to PRS, JLS presented constructions of a PRU, but were unable to
prove their security. To date, it is still unknown how to construct PRU with a
security proof under any known cryptographic assumption.

Recently, some partial progress has been made towards a construction of
PRU. Namely, several works introduced families of unitaries with polynomial
seeds and efficient evaluation, but falling short on pdeudorandomness. Lu, Qin,
Song, Yao, and Zhao [15] introduced the notion of Pseudorandom State Scram-
blers (PRSS), which are unitaries that are only proven to act pseudorandomly on
an arbitrary single input state with arbitrary polynomial multiplicity. Namely,
any number of copies of the output on one particular input are pseudoran-
dom. Ananth, Gulati, Kaleoglu, and Lin [2] introduced the notion of Pseudoran-
dom Isometries (PRI), which are not unitary since their output is longer than
their input (and the security of the constructions hinges on this property). They
proved security of the PRI property for the case of a single input, a polynomial
number of Haar-random inputs, or for an inputs which are a subset of compu-
tational basis elements (all with arbitrary polynomial multiplicity). The works
of [2,15] mention a number of applications for the primitives that they defined,
including multi-copy security for quantum public-key encryption.

Interestingly, the constructions in [2,15] are real-valued. Namely, the unitary
family consists of unitaries with only real values.2 In contrast, Haug, Bharti, and
Koh [12] showed that full PRU security cannot be achieved in this way. This is
done by observing that if U is real valued, then U ⊗ U acts as identity on the
maximally entangled state, whereas this is very far from being the case if U is a
random unitary. Therefore, if we consider adversaries that are allowed to make
entangled queries to the unitary, then it is impossible to construct real-valued
pseudorandom unitaries. Indeed, very recently, and concurrently and indepen-
dently of our work, Metger, Poremba, Sinha, and Yuen [17] and Chen, Bouland,

2 In [15] there is an additional construction which uses complex unitaries, but for the
PRSS property, a real valued construction suffices.
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Brandão, Docter, Hayden, and Xu [8] showed that it is possible to construct
non-adaptive PRU that are pseudorandom with respect to any set of inputs
that cannot change adaptively throughout the querying process, even when those
inputs are entangled with each other and/or the environment. Indeed, their con-
struction is inherently complex-valued. The question, therefore, remains:

What pseudorandom properties can be shown for real-valued efficiently
computable unitaries?

In this work, we show that it is possible to achieve stronger security notions
than [2,15] using an extremely simple construction.

1.1 Our Results

We consider an extremely simple family of unitaries: UP UGH⊗nUF , where for
functions F,G : {0, 1}n → {±1}, the operators UF , UG are the unitaries |x〉 →
F (x)|x〉, |x〉 → G(x)|x〉, and for a permutation P : {0, 1}n → {0, 1}n, UP is
the unitary |x〉 → |P (x)〉. The functions F,G in our construction are quantum-
secure pseudorandom functions, and the permutation P is a quantum-secure
pseudorandom permutation. Using the security of F,G and P , we can replace
them with truly random counterparts f, g and π. We then analyze the output
of the construction information theoretically with f, g and π. We note that this
construction is in the spirit of, but simpler than, the PRU candidates considered
by [14].

We show that our family of unitaries acts as a PRU so long as the inputs are
(a mixture of) an orthogonal set of quantum states, with arbitrary polynomial
multiplicity each. This in particular shows that this construction is also a PRSS.
Our construction also generalizes the properties proven by [2] for PRI, without
increasing the output size and using a construction of comparable complexity.

Notably, our construction can be separated into two parts, each of which is
interesting in its own right. First, we show that H⊗nUf is a “state-flattener”,
in the sense that for any polynomial size set of input states, it holds that with
overwhelming probability over a truly random function f , the output states
are all “almost perfectly flat” in the computational basis. Namely, the square-
magnitude of each computational basis element is bounded by ε = O( n

2n ) (note
that 1/2n is the maximum possible flatness, and Haar random states are also
expected to have ∼ n

2n flatness). This property follows immediately from known
concentration bounds, but we believe that it was not explicitly pointed out in
this context. So, if we only want to approximate the flattening property of PRU,
it can be done almost trivially.

We then show that the second part of our construction, UπUg for random
π, g, acts as PRU for flat orthogonal inputs. Again, this is an extremely simple
construction that can be applied even as-is for a non-trivial set of input states
(e.g. some polynomial subset of a random basis for the given Hilbert space). The
technical crux of our paper is in the analysis of this component.
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1.2 Technical Overview

We provide an overview of the proof for our main information theoretic lemma.
That is, taking f, g, π to be random functions and a permutation, then our
construction is statistically indistinguishable from a Haar random unitary for
orthogonal inputs.

We use an (approximate) characterization of the output of querying a Haar
random unitary on orthogonal input states. For t copies of s different orthogonal
inputs, the output “target” state can be approximated by the density matrix

ρtarget =
∑

z,σ

|z〉〈σ(z)| , (1)

ignoring global normalization. The summation is over all z ∈ ({0, 1}n)st whose
st entries are unique elements in {0, 1}n, and over a set of permutations σ over
the set [st] (or, equivalently, over [t]s). Namely, the permutation σ takes a vec-
tor z ∈ ({0, 1}n)st and permutes its entries (the vector σ(z) has the same set of
entries as z, only in a different order). Specifically, the summation is only over
“block-preserving” permutations, which are permutations that only swap ele-
ments inside each t-tuples of elements. That is, a permutation is block-preserving
if it can be represented as a sequence of s permutations over [t].

We then prove that the output of our construction, with random functions
and permutation, is close to the state in Eq. (1), thereby showing that on our
set of input states, our construction is statistically indistinguishable from a Haar
random unitary.

In this overview we first explain how to prove the flatness property for the first
part of our construction, and then consider the second part of our construction.
The former is described in Sect. 1.2. For the latter, we first explain in Sect. 1.2
how to “clean up” the state by removing cross-terms and certain “asymmetric”
terms. This part is similar in spirit to what is done in previous works (although
we present a more general analysis that is based only on flatness and not on
specific properties of the input state). Then, we are left with the most technically
involved part which is to analyze bound the trace norm of the difference between
our state (call it ρsym) and the state ρtarget above. This is explained in Sect. 1.2.

Flattening. Recall that we consider the unitary distribution H⊗nUf , where f
is a random function (i.e. a random binary phase followed by Hadamard on all
qubits). We say that a vector is ε-flat if the square-absolute-value of each of its
(standard basis) coefficients is bounded by ε.

Given an input state of the form β =
∑

x βx|x〉, we consider γy =
〈y|H⊗nUf |β〉, which is the amplitude of the standard basis element |y〉 in
the vector H⊗nUf |β〉. This value can be expressed as an exponential sum
γy = 1

2n/2

∑
x f(x)(−1)x·yβx. We interpret each summand as a random variable

with zero mean, since f is a random function to {±1}. This means that we have
a sum of exponentially many independent zero-mean random variables, and fur-
thermore the �2 norm of the vector of summands is bounded since

∑
x |βx|2 = 1.
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This means that the sum is very strongly concentrated around 0, and indeed
using Hoeffding, the square-absolute-value will be at most cn

2n with all but an
exponentially small probability. By applying the union bound, we get that for
any a-priori polynomial-size set of input vectors, and for any coefficient γy of any
of these vectors, it holds with all but exponentially small probability that they
are all bounded by cn

2n in square-absolute-value. We note that since we consider
complex vectors, the actual analysis separates β into its real and imaginary part,
and analyze each separately.

From this point and on, we analyze the remainder of our construction under
the assumption that the input quantum states are cn

2n -flat.

Cross-Term Removal and Symmetrization. We consider the application
of (UπUg)⊗st on an input state consisting of s blocks, each of which contains
t copies of the same (flat) state, where the vectors in the different blocks are
orthogonal. Our goal is to show that, up to normalization, the output state can
be expressed as

ρsym =
∑

z,σ

νσ|z〉〈σ(z)| , (2)

where z is summed as in Eq. (1), σ ranges over all permutations of [st] (not only
block-preserving ones), and νσ is a term that will be explained below.

As mentioned above, the techniques here are fairly standard in the analysis of
pseudorandom states and other objects [3]. However, our analysis relies only on
the general notion of flatness and not on the specific expression for the coefficients
of the state.

We start by using the flatness of the states. Let Π� be the projector to the
vectors of length st of strings in {0, 1}n with unique entries, that is, no entry
reoccurs. Then our input state is close to its Π� projection, since the collision
probability in the standard basis of two entries is small due to flatness. Therefore,
we may consider an input state whose density matrix supported only over entries
|z〉〈z′|, where both z, z′ are unique st-tuples of elements from {0, 1}n.

We first apply U⊗st
g , which has the effect of zeroing out the coefficients of

|z〉〈z′| not of the form |z〉〈σ(z)|. This is the result of Eg [
∏

i g(zi)
∏

i g(z′
i)] being

zero for all z, z′ which do not have the same entry-histogram since we average
over random g’s.

Finally, applying U⊗st
π means that the coefficient of |z〉〈σ(z)| becomes inde-

pendent of z, and depends only on σ. This follows from taking the expectation
over π, which averages the coefficients |z〉〈σ(z)| for all unique entries z (since π
is a random permutation). We denote the coefficient corresponding to σ by νσ.

Bounding The Difference. The difference between Eq. (1) and Eq. (2) is
two-fold. First, the target state only sums over block-preserving permutations,
whereas the symmetrized state sums over all permutations. Second, the target
state gives the same weight to all terms |z〉〈σ(z)| that it ranges over, whereas
the symmetrized state may give different weights to different permutations.
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Our crucial observation here, is to notice that if it is possible to go from a
permutation σ to a permutation σ′ by performing block-preserving operations,
then σ and σ′ have the same coefficient νσ. This is the case since the input state
corresponds to s blocks where each block contains t identical states. Therefore,
the state of the system should be invariant under block-preserving permutations,
which is manifested in the corresponding terms νσ being equal. We may therefore
define congruence classes of permutations that differ only by block-preserving
operations, and associate the coefficients with the congruence class rather than
a specific permutation.

Consider for every congruence class of permutations p the operator Ap =∑
σ∈p

∑
z |z〉〈σ(z)|. Then we can rewrite ρsym =

∑
p νpAp. We note that the set

of all block-reserving permutations consists of a single congruence class. There-
fore, all block-preserving permutations receive the same weight, as required. The
remaining goal is to show that the classes that correspond to permutations that
are not block-preserving are (jointly) negligible in �1 weight.

We let k be the number of “crossings” of a congruence class. That is, the num-
ber of inputs whose output belongs to a different block. The crossing number,
in some sense, represents the amount of deviation from being block-preserving.
Denote by pk the set of congruence classes with k crossings. Note that there is a
single congruence class with zero crossings, and it corresponds to the aforemen-
tioned set of block-preserving permutations. Our goal therefore is to bound the
trace norm of

∑
k>1

∑
p∈pk

νpAp.3

The argument here contains three parts:

1. We show that for combinatorial reasons, ‖Ap‖ grows with poly(nst)k (up to
a global normalization factor). Essentially, we show that this norm is related
to the number of permutations in p (which due to symmetry is the same in
all p with the same k).

2. We show, again by a combinatorial argument, that the number of congruence
classes with the same k also grows as poly(nst)k.

3. Perhaps the most technically involved part is to show that νp decays, up to
a global normalization factor, with δk for a (negligible) factor δ = poly(nst)

2n .
This is achieved by noticing that νp contains an “inner product” term for
every crossing edge. This term would ideally correspond to an inner product
between two input vectors, and since these are orthogonal we would expect
this value to be 0. However, the inner product is “disturbed” because permu-
tations do not allow recurrence, which in turn creates dependence between
the would-be inner products. We therefore need to come up with a fairly
involved technical argument to show that whereas the value νp is not exactly
0, each of the would-be inner products contributes a δ factor, resulting in an
exponential decay.

Other factors cancel out perfectly, since they represent the same combina-
torial reality, and indeed when putting-together all of the above, we get sum of
3 We notice that k = 1 is not possible for reasons of symmetry and therefore it does

not appear in the sum, but we could have achieved our result even without this
minor optimization.
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the form
∑

k>1

(
poly(nst)

2n

)k

, which converges to a negligible value as required,
bearing in mind that s, t = poly(n).

1.3 Other Previous Works

Alagic, Majenz, and Russell [1] considered a stateful variant of PRU, where
the adversary is interacting with a stateful simulator whose internal state may
change and grow as the experiment proceeds. Even under this relaxed notion,
they were only able to construct PRU using a simulator in (quantum) PSPACE.
However, in this variant one can hope to achieve statistical (or even perfect)
security rather than just computational.

1.4 Future Directions

Contrary to the constructions in [15], ours is not scalable (a notion introduced
in [7]). That is, we consider adversaries whose running time is polynomial in the
input size of the unitary n. In contrast, in a scalable construction, one specifies
separately the parameters for the adversary’s complexity and for the input size.
Scalable constructions are usually more involved, and in particularly require
more computational depth, than non-scalable ones. It remains an open question
to find a scalable version of our construction, or to prove lower bounds in this
vein.

Our work shows a fairly strong notion of pseudorandomness for PRU that can
be achieved using a straightforward real-valued construction. One may further
wonder whether it is possible to get even closer to full-fledged PRU using con-
structions like ours (or even our construction as-is). For example, the negative
result of [12] does not seem to exclude real-valued PRU that are applicable to
tensor-product inputs. Namely, inputs that are not necessarily orthogonal, but
are not entangled with each other (recall that entangled queries stand at the
core of the [12] separation). We believe that answering some of these questions
may be within reach, but were hurried to report our current progress due to the
recent announcement of [17].

1.5 Paper Organization

Section 2 introduces notations, defines quantum-secure pseudorandom functions
and permutations, and references the notion of almost invariancy under Haar
random unitaries. Section 3 provides the security definition for non-adaptive
orthogonal-inputs pseudorandom unitaries, presents the main theorem, describes
the construction and reduce it to the information theoretic version. Section 4
contains the technical contributions. It starts with the main information the-
oretic lemma, continues with the analysis of the two steps of the construction
separately, and concludes with proving the main lemma and theorem.
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2 Preliminaries

2.1 Notation

We denote N = 2n and Nst =
(
N
st

)
(st)! = N(N − 1) · · · (N − st + 1). We denote

the trace norm of A by ‖A‖1 = Tr(
√

AA†), which is the sum of the singular
values.

Vectors, Functions, and Permutations. Let s, t ∈ N. Throughout our anal-
ysis we will consider vectors of bit-strings. Formally, an object of the form
y ∈ ({0, 1}n)st, which indicates a t-length vector of n-bit strings. We will denote
y = (y1, . . . , yst), where each coordinate in the vector is a bit-string yi ∈ {0, 1}n.
Let T be some set. We denote by U�

n,st the set of all length st vectors of unique
elements from {0, 1}n, that is, no entry reoccurs.

We will consider a number of types of operations on such vectors. For any
function f : {0, 1}n → D, where D is some domain, we let f(y) ∈ Dt denote the
pointwise application of f on each coordinate in y individually. For functions
with complex range α : {0, 1}n → C, we also define multiplicative notation,
where we use the notation αx = α(x), and αx =

∏
i αxi

. Note that the coefficients
of quantum states constitute such functions.

For the special case of a function on the coordinates which is a permutation,
we will denote it by π : {0, 1}n → {0, 1}n. We call such a permutation an
inner permutation since it permutes each element of y individually. We also
consider an outer permutation (or index permutation) σ ∈ Sst which permutes
[st] = {1, . . . , st}. We will abuse the notation and think of σ ∈ Sst also as
σ ∈ S[s]×[t] which takes a tuple input (j, i), j ∈ [s], i ∈ [t] and outputs the
tuple (j′, i′) s.t. j′ = 
σ(sj + i)/s� , i′ = σ(sj + i) mod t. An outer permutation
permutes the indices of the elements of y, i.e. z = σ(y) ∈ ({0, 1}n)st is such that
zj,i = yσ(j,i). We will also consider the subgroup Ss

t = St × · · · × St (s times) of
outer permutations.

2.2 Concentration Bounds

Theorem 2.1 (Hoeffding’s Inequality). Let Zx, x ∈ {0, 1}n, be independent
random variables with zero expectation such that ax ≤ Zx ≤ bx with probability
1. Then for all ε > 0,

Pr

⎡

⎣
∑

x∈{0,1}n

Zx ≥ ε

⎤

⎦ ≤ exp
( −2ε2∑

i(bi − ai)2

)
. (3)

2.3 Pseudorandomness

Zhandry proved that given quantum-secure one-way functions, we can construct
quantum-secure pseudorandom functions [18] and pseudorandom permutations
[19], which we use in our construction.
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Definition 2.2 (Quantum-Secure Pseudorandom Function). Let K be
a key space. A keyed family of functions {Fk : {0, 1}n → {±1}}k∈K is a
quantum-secure pseudorandom function (QPRF) if for any (non-uniform) quan-
tum polynomial-time (QPT) oracle algorithm A, Fk with a random k ← K is
indistinguishable from a truly random function f in the sense that

∣∣∣∣Pr
k

[AFk(1n) = 1] − Pr
f

[Af (1n) = 1]
∣∣∣∣ = negl(n).

In addition, Fk is polynomial-time computable on a classical computer.

Definition 2.3 (Quantum-Secure Pseudorandom Permutation). Let K
be a key space. A keyed family of permutations {Pk : {0, 1}n → {0, 1}n}k∈K is
a quantum-secure pseudorandom permutation (QPRP) if for any (non-uniform)
QPT oracle algorithm A, Pk with a random k ← K is indistinguishable from a
truly random permutation π in the sense that

∣∣∣∣Pr
k

[APk,P −1
k (1n) = 1] − Pr

π
[Aπ,π−1

(1n) = 1]
∣∣∣∣ = negl(n).

In addition, Pk is polynomial-time computable on a classical computer.

2.4 Almost Invariance Under Haar Unitaries

The following definition, claim and lemma are taken from [2].

Definition 2.4. Let n, q, � ∈ N. An (�+n · q)-qubit state ρ is ε-almost invariant
under q-fold Haar unitary if

TD
(

ρ, E
U←Haarn

[
(I� ⊗ U⊗q)ρ(I� ⊗ (U†)⊗q)

]) ≤ ε (4)

Claim 2.5. Let n, q, � ∈ N. Suppose Φ is a quantum channel that is a prob-
abilistic mixture of unitaries on (� + n · q) qubits. More precisely, Φ(ρ) :=

Ek←D
[
(I� ⊗ V ⊗q

k )ρ(I� ⊗ (V †
k )⊗q)

]
where D a distribution over {0, 1}∗, and Vk :

C
2n → C

2n

is a unitary for every k in the support of D.
Suppose for a (�+n · q)-qubit state ρ, Φ(ρ) is ε-almost invariant under q-fold

Haar unitary, where ε is a negligible function, then the following holds:

TD
(

Φ(ρ), E
U←Haarn

[
(I� ⊗ U⊗q)ρ(I� ⊗ (U†)⊗q)

]) ≤ ε (5)

Lemma 2.6. Let n, s, t ∈ N, and define

ρunis,t
:=

1
Nst

∑

z∈U�
n,st

σ∈Ss
t

|z〉〈σ(z)| , (6)

then for any � qubit state ρ�, ρ� ⊗ ρunis,t is O(s2t2/2n)-almost invariant under
st-fold Haar unitary (I� being applied on ρ�).
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This state is close to the output of applying a Haar random unitary on s
different orthogonal vectors with t copies of each.

3 Somewhat Pseudorandom Unitaries

Definition 3.1 (Non-adaptive Orthogonal-Inputs Pseudorandom Uni-
tary). We say that {Genn}n∈N is a non-adaptive orthogonal-inputs secure
pseudorandom unitary family if there exists a polynomial κ such that:

– For every k ∈ {0, 1}κ(n), Uk := Genn(k) is a QPT algorithm implementing a
unitary operation on n qubits.

– Fix s := s(n), t := t(n) polynomials in n. Let A be a set and let{|ψ(1,a)〉, . . . |ψ(s,a)〉} be orthogonal states and ρa be any �-qubit state for all
a ∈ A. Let pa be probabilities such that

∑
a inA pa = 1. There exists a suf-

ficiently large n ∈ N, such that for any (non-uniform) QPT distinguisher A
that makes queries of the form

ρin :=
∑

a∈A

pa

⎛

⎝ρa ⊗
⎛

⎝
⊗

j∈[s]

(|ψ(j,a)〉〈ψ(j,a)|)⊗t

⎞

⎠

⎞

⎠ (7)

to the st-tensor of the unitary Uk it holds that
∣∣∣∣ Pr

k←{0,1}κ

[
A

(
(I� ⊗ U⊗st

k )ρin(I� ⊗ U†
k

⊗st
)
)

= 1
]

− Pr
U←Haarn

[
A

(
(I� ⊗ U⊗st)ρin(I� ⊗ U†⊗st

)
)

= 1
] ∣∣∣∣ ≤ negl(n) (8)

Theorem 3.2. Assuming the existence of quantum secure one way functions,
there exists a family of non-adaptive orthogonal-inputs secure pseudorandom real
unitary.

From Definition 2.4, Claim 2.5, and Lemma 2.6, our goal will be to construct
a channel Φ such that its output for copies of orthogonal states looks like almost
invariant under st-fold Haar unitary.

The Construction. Let F,G : {0, 1}n → {±1} be QPRFs and P : {0, 1}n →
{0, 1}n be a QPRP. We define the unitary UF,G,P on n qubits as follows:

UF,G,P = UP UGH⊗nUF , (9)

where

UF =
∑

x∈{0,1}n

F (x)|x〉〈x|, UG =
∑

x∈{0,1}n

G(x)|x〉〈x|, UP =
∑

x∈{0,1}n

|P (x)〉〈x| .
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Invoking Cryptographic Assumptions. We move from pseudorandom
F,G, P to truly random f, g, π. The unitary in the random case is denoted by
Uf,g,π and defined similarly.

Claim 3.3. Let UF,G,P implicitly depend on a key k. Assuming the security of
F,G and P , it holds that
∣∣∣∣Pr

k

[
A

((
I� ⊗ UF,G,P

⊗st
)
ρin

(
I� ⊗ U†

F,G,P

⊗st
))

= 1
]

− Pr
f,g,π

[
A

((
I� ⊗ Uf,g,π

⊗st
)
ρin

(
I� ⊗ U†

f,g,π

⊗st
))

= 1
] ∣∣∣∣ ≤ negl(n) , (10)

where k = (kF , kG, kP ) is the key for the PRFs and PRP.

Proof. We define four hybrids. In the first one we query UF,G,P , in the sec-
ond Uf,G,P , in the third Uf,g,P , and in the forth Uf,g,π (all defined similarly to
UF,G,P ). Each two consecutive hybrids are indistinguishable by the security of
function replaced between the two hybrids.

4 Analysis

We now turn to analyze the application of Uf,g,π information theoretically. The
main lemma is:

Lemma 4.1. Let s, t be polynomials in n and let {|ψ(j)〉}j∈[s] be orthogonal
quantum states. Then
∥∥∥∥∥∥

E
f,g,π

⎡

⎣Uf,g,π
⊗st

⎛

⎝
⊗

j∈[s]

(|ψ(j)〉〈ψ(j)|)⊗t

⎞

⎠U†
f,g,π

⊗st

⎤

⎦ − ρunis,t

∥∥∥∥∥∥
1

≤ O(s6t4n2/N) .

(11)

Were the expectation is over sampling random functions f, g and a random per-
mutation π.

4.1 Achieving Flatness

The first two steps in the construction, namely adding a random binary phase
with Uf and performing H⊗n, achieve the goal of flattening the state with respect
to the standard basis.

Definition 4.2. A quantum state |α〉 =
∑

x αx|x〉, where |x〉 are the computa-
tional basis elements, is ε-flat if maxx |αx|2 ≤ ε.

Note that this is equivalent to the min-entropy of the computational-basis mea-
surement of |α〉 having min-entropy at least log(1/ε).
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Lemma 4.3. Let |β〉 =
∑

x∈{0,1}n βx|x〉 be a quantum state, c > 0, and let
f : {0, 1}n → {±1} be a random function. Then with probability at least 1 −
2 exp

(− (
c
4 − ln(2)

)
n
)

the state H⊗nUf |β〉 is c · n
2n -flat.

Proof. Denote |ξ〉 = H⊗nUf |β〉. Let |y〉 be a standard basis element, and look
at ξy = 〈y|ξ〉:

ξy = 〈y|H⊗nUf |β〉 =
1

2n/2

∑

x∈{0,1}n

(−1)x·y〈x|Uf |β〉 (12)

=
1

2n/2

∑

x∈{0,1}n

(−1)x·yf(x)〈x|β〉 (13)

=
1

2n/2

∑

x∈{0,1}n

(−1)x·yf(x)βx (14)

We analyze the real and imaginary parts ξy separately. Define the random
variables Zx to be �(2−n/2(−1)x·yf(x)βx). It follows that |Zx| ≤ 2−n/2|βx|.
Using Hoeffding’s inequality we get

Pr
[
|�(ξy)| ≥

√
ε/2

]
≤ exp

( −2 · (ε/2)∑
x |2 · 2−n/2βx|2

)
= exp

( −ε · 2n

4
∑

x |βx|2
)

= exp(−ε · 2n/4)

(15)

Where the second to last equality follows from |β〉 being a quantum state
and thus a unit vector. We get Pr

[
|�(ξy)| ≥ √

ε/2
]

≤ exp(−ε · 2n/4) similarly.
Using the bound on both the real part and imaginary part we get:

Pr
[|ξy| ≥ √

ε
] ≤ Pr

[|�(ξy)|2 + |�(ξy)|2 ≥ ε
]

(16)

≤ Pr
[|�(ξy)|2 ≥ ε/2 ∨ |�(ξy)|2 ≥ ε/2

]
(17)

≤ Pr
[
|�(ξy)| ≥

√
ε/2

]
+ Pr

[
|�(ξy)| ≥

√
ε/2

]
(18)

≤ 2 exp (−ε · 2n/4) (19)

Finally, we use the union bound over the 2n entries of |ξ〉 to get that with
probability at most 2 exp (−ε · 2n/4) · 2n there exists an entry |ξy| ≥ √

ε. Taking
ε = c · n

2n completes the lemma.

Using the union bound, an immediate corollary follows:

Corollary 4.4. Let {|β(j)〉}j∈[s] be quantum states, c > 0, and let f : {0, 1}n →
{±1} be a random function. Then with probability 1 − s · 2 exp

(− (
c
4 − ln(2)

)
n
)

all states H⊗nUf |β(j)〉 are c · n
2n -flat.



48 Z. Brakerski and N. Magrafta

4.2 Getting from Flat States to Random-Looking Ones

We now prove that applying a random binary phase and a random permutation
to t copies of s orthogonal flat vectors with is close in trace distance the almost
invariant state from Lemma 2.6. We prove the following lemma:

Lemma 4.5. Let g : {0, 1}n → {±1} be a random function and π : {0, 1}n →
{0, 1}n be a random (inner) permutation. Let {|α(j)〉}j∈[s] be a set of s arbitrary
orthogonal ε-flat vectors in C

{0,1}n

. Denote:

ρ := Eg,π

[
(UπUg)⊗st

(
⊗j∈[s]|α(j)〉〈α(j)|⊗t

)
(U†

gU†
π)⊗st

]
. (20)

Then,

‖ρ − ρunis,t
‖1 ≤ O((st)2ε + Ns6t4ε2) . (21)

Focusing on Unique States. Recall that gz =
∏

j,i g(zj,i). We notice that for
all z, z′ ∈ {0, 1}n·st it holds that Eg[gzg

∗
z′ ] is equal to 1 if and only if the binary

type of z and z′ (that is, the histogram of the entries modulus 2) are equal.
Otherwise, the expectation is equal to 0. Expressing ρ in the standard basis we
get

ρ = E
g,π

⎡

⎢⎢⎣
∑

z,z′∈{0,1}n·st

gzgz′
∏

j∈[s]
i∈[t]

α
(j)
z(j,i)α

∗(j)
z′(j,i)|π(z)〉〈π(z′)|

⎤

⎥⎥⎦ (22)

= E
π

⎡

⎢⎢⎣
∑

z,z′∈{0,1}n·st

E
g
[gzg

∗
z′ ]

∏

j∈[s]
i∈[t]

α
(j)
z(j,i)α

∗(j)
z′(j,i)|π(z)〉〈π(z′)|

⎤

⎥⎥⎦ (23)

= E
π

⎡

⎢⎢⎢⎣
∑

z∈{0,1}n·st

∑

z′∈{0,1}n·st

bintype(z′)=bintype(z)

∏

j∈[s]
i∈[t]

α
(j)
z(j,i)α

∗(j)
z′(j,i)|π(z)〉〈π(z′)|

⎤

⎥⎥⎥⎦ , (24)

where bintype(z) is the binary type of z.
Let Π� :=

∑
z∈U�

n,st
|z〉〈z| be the uniqueness projector, and let

ρ� :=
Π�ρΠ�

Tr[Π�ρ]
(25)

be the unique restrictions of ρ. We show that ρ is close to its unique restriction.

Claim. It holds that

‖ρ − ρ�‖1 ≤ O
(
(st)2ε

)
. (26)
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Proof. Notice that Π�ρ(I − Π�) = (I − Π�)ρΠ� = 0, as |π(z)〉 is in the unique
restriction if and only if 〈σ(π(z))| is in the unique restriction too (which occurs
if and only if the binary type/histogram has st entries of 1). It follows that
ρ = Π�ρΠ� + (I − Π�)ρ(I − Π�), and as Π�ρΠ� and (I − Π�)ρ(I − Π�) are
positive semi-definite, it is enough to show that

Tr[(I − Π�)ρ(I − Π�)] ≤ (st)2 · ε . (27)

We note that Π� is invariant under Ug, Uπ, therefore

Tr[(I − Π�)ρ(I − Π�)]

= Tr
[
(I − Π�)Eg,π

[
(UπUg)⊗st

(
⊗j∈[s]|α(j)〉〈α(j)|⊗t

)
(U†

gU†
π)⊗st

]]
(28)

= Eg,π

[
Tr

[
(UπUg)⊗st(I − Π�)

(
⊗j∈[s]|α(j)〉〈α(j)|⊗t

)
(U†

gU†
π)⊗st

]]
(29)

= Eg,π

[
Tr

[
(I − Π�)

(
⊗j∈[s]|α(j)〉〈α(j)|⊗t

)]]
(30)

= Tr
[
(I − Π�)

(
⊗j∈[s]|α(j)〉〈α(j)|⊗t

)]
, (31)

which is exactly the probability of measuring ⊗j∈[s]|α(j)〉〈α(j)|⊗t in the com-
putational basis, and obtaining an (st)-tuple that contains a repetition (i.e. an
element in {0, 1}n that appears more than once). Due to ε-flatness, the proba-
bility for this is bounded by (st)2 · ε. �

Recall that U�
n,st is the set of all st length vectors with unique entries from

{0, 1}n. From the definitions of Ug, Uπ and Claim 4.2, for c1 = Tr[Π�ρg,π] ≥
1

1−ε(st)2 we get

ρ� = c1 · E
π

⎡

⎢⎢⎣
∑

z∈U�
n,st

∑

σ∈Sst

∏

j∈[s]
i∈[t]

α
(j)
z(j,i)α

∗(j)
σ(z)(j,i)|π(z)〉〈σ(π(z))|

⎤

⎥⎥⎦ . (32)

Notice the sum over z′ changed to sum over σ ∈ Sst (an outer permutation which
permutes the positions of the entries) as for z with unique entries it holds that
bintype(z) = bintype(z′) if and only if there exists σ ∈ Sst s.t. z′ = σ(z).

For all (j, i) ∈ [s] × [t] we define α(j,i) = α(j) (since we implicitly think of
the index (j, i) as pointing to the j’th qubit group which consists of a t-tensor
of |α(j)〉〈α(j)|). Changing the order of summation by π−1. We get

ρ� = c1 ·
∑

σ∈Sst

∑

z∈U�
n,st

Eπ−1

⎡

⎢⎢⎣
∏

j∈[s]
i∈[t]

α
(j,i)
π−1(z)(j,i)α

∗(j,i)
σ(π−1(z))(j,i)

⎤

⎥⎥⎦

︸ ︷︷ ︸
denote νσ,z

|z〉〈σ(z)| . (33)
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As π−1 is also a random permutation, we get that νσ,z is independent of z,
i.e. νσ,z = νσ for all z ∈ U�

n,st. Making a change of variables x = π−1(z),

νσ = Ex∈U�
n,st

⎡

⎢⎢⎣
∏

j∈[s]
i∈[t]

α
(j,i)
x(j,i)α

∗(j,i)
σ(x)(j,i)

⎤

⎥⎥⎦ (34)

and

ρ� = c1 ·
∑

σ∈Sst

νσ

∑

z∈U�
n,st

|z〉〈σ(z)| . (35)

Using Orthogonality to Reach Closeness to an Almost Invariant State.
We consider the operator

A =
∑

σ∈Sst

νσ

∑

z∈U�
n,st

|z〉〈σ(z)| , (36)

and show that it is close in trace norm to to the same operator summing only
over σ ∈ Ss

t . For that, we define the following.

Definition 4.6. For any permutation σ ∈ Sst, we consider the associated
directed graph Gσ, whose vertex set is [s]×[t], and there is an edge (j, i) → (j′, i′)
if and only if σ((j, i)) = (j′, i′). For all j ∈ [s], we define the j-th vertex-block as
the set {(j, i)}i∈[t]. We sometimes completely associate σ with Gσ.

We associate each vertex with its outgoing edge. For any vertex v = (j, i) ∈
Gσ with the outgoing edge (j′, i′) = σ((i, j)), we denote jv = j, j′

v = j′, namely
the block-source and block-destination of v in the graph. We say that v is a
crossing vertex if jv �= j′

v, and otherwise v is non-crossing. We denote the set of
crossing vertices by cvσ, and will often omit the subscript when σ is clear from
the context. Likewise, we denote the set of non-crossing vertices by cvσ.

The block edge pattern of σ is the vector pσ ∈ N
[s]×[s], where pσ[j, j′] is the

number of crossing vertices from block j to block j′. We say that two permutations
are congruent (with respect to Ss

t ) if they have the same block edge pattern.
It follows that σ, σ′ are congruent, denoted σ ∼= σ′ if and only if there exist
σ1, σ2 ∈ Ss

t s.t. σ′ = σ1σσ2. We overload the notation and use p also to denote
the congruence class corresponding to this pattern.

The number of crossing and non-crossing vertices is thus |cv|, and |cv| respec-
tively (so, |cv|+ |cv| = st). We note that |cv|, |cv| only depend on the congruence
class p.
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Under the above definition, and denoting x(v) = x(j, i), we have that

νσ = Ex∈U�
n,st

⎡

⎢⎢⎣
∏

j∈[s]
i∈[t]

α
(j,i)
x(j,i)α

∗(j,i)
σ(x)(j,i)

⎤

⎥⎥⎦ = Ex∈U�
n,st

⎡

⎢⎢⎣
∏

j∈[s]
i∈[t]

α
(j,i)
x(j,i)

∏

j∈[s]
i∈[t]

α∗(j,i)
x(σ−1(j,i))

⎤

⎥⎥⎦

(37)

= Ex∈U�
n,st

⎡

⎢⎢⎣
∏

j∈[s]
i∈[t]

α
(j,i)
x(j,i)

∏

j∈[s]
i∈[t]

α∗σ((j,i))
x(j,i)

⎤

⎥⎥⎦ = Ex∈U�
n,st

⎡

⎢⎢⎣
∏

j∈[s]
i∈[t]

α
(jv)
x(v)α

∗(j′
v)

x(v)

⎤

⎥⎥⎦ (38)

= Ex∈U�
n,st

[
∏

v∈cv

∣∣∣α(jv)
x(v)

∣∣∣
2 ∏

v∈cv

α
(jv)
x(v)α

∗(j′
v)

x(v)

]
. (39)

Proposition 4.7. If σ ∼= σ′ then νσ = νσ′ .

Proof. Consider a permutation σ. Let us break the operand in the expectation
in Eq. (39) into blocks. Namely, for a fixed j consider

∏

v∈cv
jv=j

∣∣∣α(jv)
x(v)

∣∣∣
2 ∏

v∈cv
jv=j

α
(jv)
x(v)α

∗(j′
v)

x(v) . (40)

We notice that the expression above only depends on the number and block
identities of the neighbors of the elements in the j’th block. Multiplying over all
blocks we get νσ which remains invariant under (outer) permutations in Ss

t .

We can therefore denote νp which is the value corresponding to νσ for all
σ ∈ p. Define

Ap :=
∑

z∈U�
n,st

∑

σ∈p

|z〉〈σ(z)| =
∑

z∈U�
n,st

|z〉
∑

σ∈p

〈σ(z)| . (41)

Corollary 4.8. It holds that

A =
∑

p

νp
∑

z∈U�
n,st

∑

σ∈p

|z〉〈σ(z)| =
∑

p

νpAp , (42)

We separate the analysis to bounding the norm of Ap according to the cross-
ing number of p, counting the number of congruence classes with a certain cross-
ing number, and bounding νp according to the crossing number of p.

Lemma 4.9. Let p be with |cv| = k. It holds that

‖Ap‖1 ≤ Nst · tk (43)
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Proof. Partition the space z ∈ U�
n,st into parts that are invariant under “block-

permutations”, i.e. under Ss
t . By definition, each such set contains (t!)s different

z values (recall that all z(j, i) are unique), and the number of partitions is Nst

(t!)s .
For each partition P , define

Ap,P =
∑

z∈P

|z〉
∑

σ∈p

〈σ(z)| . (44)

For all z ∈ P , the vector
∑

σ∈p〈σ(z)| is the same, since the elements of P all
differ by a σ̃ ∈ Ss

t permutation, and p = pσ̃. Thus, Ap,P is a rank-1 matrix, and
the norm ‖Ap,P ‖1 is the product of the Euclidean norm of the two vectors. In
our case,

‖Ap,P ‖1 =
√

|P | ·
√

|p| (45)

= (t!)s/2 ·
√

|p| . (46)

Therefore, by the triangle inequality we have that

‖Ap‖1 ≤ Nst

(t!)s
· (t!)s/2 ·

√
|p| , (47)

Next, we bound the cardinality of p when interpreted as a congruence class
(namely, the number of permutations that have edge pattern p):

|p| ≤ (t!)s · t2k . (48)

We show this by over-counting the set of graphs with a given edge pattern and
|cv| = k. We first consider all of the crossing edges, of which there are k by defini-
tion. For each such edge, the edge pattern already specifies its source and destina-
tion blocks, so we need to choose its specific source and origin vertices within the
blocks. There are at most t2 options for each edge, and thus at most t2k options
in general. Then, for all of the other edges, it just remains to go over each of the
s blocks of vertices in the graph, and organize the internal edges in the block. We
note that any such arrangement can be completed into a permutation in St, by ori-
enting the outgoing and incoming edges of the block towards each other arbitrarily.
Therefore, the number of arrangements in each block is at most |St| = t!. It fol-
lows that across all blocks, the total number of internal arrangements in bounded
by (t!)s. The lemma follows from Eqs. 47 and 48.

Lemma 4.10. Denote

pk = {p : |cv| = k} (49)

the number of congruence classes with crossing number k. Then |pk| ≤ s2k.

Proof. We over-count the elements in pk. Each edge should be assigned to one
of

(
s
2

) ≤ s2 pairs of origin and destination blocks. Therefore, the total number
of edge patterns is at most s2k.
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We now bound

Lemma 4.11. Let p be with crossing numeber |cv|. It holds that

|νp| ≤ (Nst)−1((st)2ε2 N)|cv|/2 . (50)

Proof. Consider some σ ∈ p, and recall that

νσ = Ex∈U�
n,st

[
∏

v∈cv

∣∣∣α(jv)
x(v)

∣∣∣
2 ∏

v∈cv

α
(jv)
x(v)α

∗(j′
v)

x(v)

]
(51)

= (Nst)−1
∑

x∈U�
n,st

[
∏

v∈cv

∣∣∣α(jv)
x(v)

∣∣∣
2 ∏

v∈cv

α
(jv)
x(v)α

∗(j′
v)

x(v)

]
. (52)

It is possible to sum over the x elements as follows. Go over all v at arbitrary
order, and for each v, let x(v) run over all elements in {0, 1}n that were not
selected in the previous v’s, for each such value of x(v) continue to pick value
for the next v in the order.

In order to analyze this expression, we consider a more general expression as
follows:

τ =
∑

y1,...,ym

∏

i∈[m]

∣∣∣α(ji)
yi

∣∣∣
2

δ(αy1 , . . . , αym
)
∑

z1

M1(αz1) · · ·
∑

z�

M�(αz�
) , (53)

where the indices yi and zi run over all of {0, 1}n except for the preceding values
of the indices. That is, the y1, . . . , ym values are first chosen to be distinct, and
then each zi is chosen in order to be distinct from y1, . . . , ym and all preceding zi.

The function δ(·) can be an arbitrary polynomial, and the functions Mi are
monomials, where δ and Mi can act on the set of their operands and their
complex conjugates. We only consider setting where the total degree of Mi is
even. We note that we can always reorder the zi’s without effecting the total
value of the expression (maintaining the convention that “later” zi’s take all
values except those of yi’s and “previous” zi’s and).

We let di denote the total degree of Mi. We say that an index zi is loaded
if di ≥ 4, otherwise we say that it is free (by our convention this means that
di = 2). As a convention, we always order the summation so that the loaded
indices are enumerated on before the free ones. We let �′ denote the number of
loaded indices. Furthermore, in our setting, any free term i is going to be of the
form Mi(αzi

) = α
(j)
zi α∗(j′)

zi
, or its complex conjugate, for some j �= j′.

We define the magnitude of τ as follows, letting δ0 be the maximal value of
δ over all possible inputs that it can take:

Mag(τ) = δ0
∏

i∈[�′]

(εdi/2N) (54)

= δ0N
�′
ε(

∑
i di)/2 . (55)

We let d =
∑

i∈[�′] di denote the total degree of all loaded elements.
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We now recall that |α(j)〉, |α(j′)〉 are orthogonal for j �= j′, and therefore∑
z∈{0,1}n α

(j)
z α∗(j′)

z = 0. It therefore follows that if τ has any free indices, i.e.
by our convention if its � index is free, then we have that (up to complex conju-
gation)

∑

z�

M�(αz�
) =

∑

z�

α(j)
z�

α∗(j′)
z�

= 0 −
∑

i<�

α(j)
zi

α∗(j′)
zi

+ δ�(αy1 , . . . αym
) . (56)

where |δ�| ≤ ε · (st) from ε flatness.
Each term of the form α

(j)
zi α∗(j′)

zi
now “joins” Mi and so it either creates a

new loaded term, if zi was not previously loaded, decreasing the value of Mag by
ε2N , or adds 2 to the degree of a pre-existing loaded term if zi was previously
loaded, decreasing the value of Mag by ε. Furthermore, multiplying by δ� would
decrease the value of the “global” delta by a factor of ε · (st). Therefore, we can
write τ as a sum of � terms, each of which conforms with the general form of
Eq. (53), but with only � − 1 indices (rather than �), namely:

τ =
∑

i∈[�]

τi , (57)

and it holds that

Mag(τi) ≤ max{ε2 N, ε, ε · (st)}Mag(τ) ≤ (ε2 N(st)) · Mag(τ) . (58)

We can now prove the following inductive claim:

Claim. Let τ be with parameters m, �, �′ as above, and assume (ε2N(st)�) < 1
then it holds that

|τ | ≤ (ε2 N(st)�)
�−�′

2 · Mag(τ) . (59)

Proof. We prove this inductively over the value of � − �′. For the base case,

consider the setting where �′ = �. Notice that
∑

y1,...,ym

∏
i∈[m]

∣∣∣α(ji)
yi

∣∣∣
2

≤ 1.
Therefore, τ is a (sub) convex combination of elements of the form

δ(αy1 , . . . , αym
)
∑

z1

M1(αz1) · · ·
∑

z�

M�(αz�
) ,

that are each bounded in absolute value by δ0N
�′
εd/2, which we show below. It

follows that if τ has no free terms, then |τ | ≤ Mag(τ), where Mag(τ) is given by
Eq. (54).
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Indeed, each such element is a product of δ, times a product of �′ loaded sums.
The total number of summands over all the sums is at most N �′

(as l′ = l). Each
element in the sum is a product of di elements from α. By flatness, each element
of α has absolute value at most

√
ε, and therefore each element in the sum has

absolute value at most εdi/2. We get a value that is bounded by δ0N
�′
εd/2 as

required.
Now consider the case where � > �′. In this case, we can write τ =

∑
i∈[�] τi

as above. We notice that for each τi, we have �i = �− 1, and �′
i ≤ �′ +1, so �− �′

shrinks by at most 2. Therefore we get the bound

|τ | ≤
∑

i∈[�]

|τi| (60)

≤
∑

i

(ε2 N(st)�i)
�i−�′

i
2 · Mag(τi) (induction)

(61)

≤
∑

i

(ε2 N(st)�)
�−�′

2 −1 · Mag(τi) (li ≤ l, �i − �′
i ≥ � − �′ − 2)

(62)

≤ � · (ε2 N(st)�)
�−�′

2 −1 · (ε2 N(st)) · Mag(τ) (Eq. (58))

(63)

≤ (ε2 N(st)�)
�−�′

2 · Mag(τ) (64)

and the claim thus follows. �

Now, let us go back to our expression for νσ. We can write it as νσ =
(Nst)−1τ , where τ has the form as above, with δ = 1, � = |cv| ≤ st, and
�′ = 0, thus Mag(τ) = 1. Claim 4.2 therefore guarantees that

|τ | ≤ (ε2 N(st)2)|cv|/2 , (65)

and the bound for νσ thus follows.

Corollary 4.12. Let γ = ε2N(st)2, and assume t2s4γ < 1/4, then it holds that
∑

p:|cv|>0

‖νpAp‖1 ≤ 2t2 s4γ = 2t4 s6ε2 N (66)

Proof. We derive the bound in the following equation. We note that |cv| cannot
be equal to 1 since for every outgoing edge from a block there needs to be an
incoming edge. We also recall the notation of pk = {p : |cv| = k}, introduced in
Lemma 4.10 (namely, pk is a set whose elements are congruence classes p).
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∑

p:|cv|>0

‖νpAp‖1 =
st∑

k=2

∑

p∈pk

|νp| ‖Ap‖1 (67)

≤
st∑

k=2

∑

p∈pk

γk/2tk Lemmas 4.11 and 4.9 (68)

≤
st∑

k=2

γk/2tks2k
Lemma 4.10 (69)

=
st∑

k=2

(ts2
√

γ)k (70)

≤ (ts2
√

γ)2

1 − ts2
√

γ
(71)

≤ 2t2 s4γ (72)

and the lemma follows.

We can now prove Lemma 4.5

Proof (Proof of Lemma 4.5). Using the triangle inequality,

‖ρ − ρunis,t‖1 ≤ ‖ρ − ρ�‖1 +

∥∥∥∥∥∥
ρ� − c1 ·

∑
p:|cv|=0

νpAp

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
c1 ·

∑
p:|cv|=0

νpAp − ρunis,t

∥∥∥∥∥∥
1

.

(73)

We bound each term separately.

‖ρ� − c1 ·
∑

p:|cv|=0

νpAp‖1 = ‖c1 ·
∑

p:|cv|>0

νpAp‖1 (74)

≤ c1 ·
∑

p:|cv|>0

‖νpAp‖1 (75)

≤ c1 · 2t2 s4γ (76)

= c1 · 2ε2 Ns6t4 (77)

We note that there is one congruence class with zero crossing, which contains
the permutations σ ∈ Ss

t . Denote this congruence class by p0, so
∑

p:|cv|=0 Ap =
Ap0 . Recall that

ρunis,t
=

1
Nst

∑

z∈U�
n,st

σ∈Ss
t

|z〉〈σ(z)| =
1

Nst
Ap0 (78)

As Tr(ρ�) = 1, we have
∣∣1 − c1 · νp0N

st
∣∣ = |1 − Tr (c1 · νp0Ap0)| ≤ c1 · 2ε2 Ns6t4 . (79)
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It follows that

1 − c1 · 2ε2 Ns6t4

c1

1
Nst

≤ νp0 ≤ 1 + c1 · 2ε2 Ns6t4

c1

1
Nst

(80)

and so,
∥∥∥∥∥∥
c1 ·

∑

p:|cv|=0

νpAp − ρunis,t

∥∥∥∥∥∥
1

=
∥∥∥∥c1 · νp0Ap0 − 1

Nst
Ap0

∥∥∥∥
1

≤ c1 · 2ε2 Ns6t4 (81)

and it follows that

‖ρ� − ρunis,t
‖1 ≤ O(ε2 Ns6t4) (82)

4.3 Proving the Main Lemma and Theorem

We combine the results of Sects. 4.1 and 4.2 to prove the main lemma.

Proof (Proof of Lemma 4.1). Let s, t be polynomials in n and let {|ψ(j)〉}j∈[s]

be orthogonal quantum states. From corollary 4.4, choosing c = 8 we
get that ∀j∈[s]H

⊗nUf |ψ(j)〉 is 8n
N -flat with probability at least 1 − s ·

2 exp
(− (

8
4 − ln(2)

)
n
) ≥ 1 − 2−n = 1 − 1

N .
Assuming flatness of these states, we can now use lemma 4.5 and get that:
∥∥∥∥∥∥

E
f,g,π

⎡

⎣Uf,g,π
⊗st

⎛

⎝
⊗

j∈[s]

(|ψ(j)〉〈ψ(j)|)⊗t

⎞

⎠U†
f,g,π

⊗st

⎤

⎦ − ρunis,t

∥∥∥∥∥∥
1

≤ O

(
(st)28n

N
+ Ns6t4

(
9n

N

)2

+
1
N

)
= O

(
s6t4n2

N

)
. (83)

We conclude with a proof for theorem 3.2.

Proof (Proof of Theorem 3.2). Taking Genn(k) = Uk to be UF,G,P (where k is
split into keys for F,G and P ), we get that it is indeed a QPT algorithm on n
qubits. We now prove the security requirement.

Recall that ρin is promised to be of the form

ρin =
∑

a∈A

pa

⎛

⎝ρa ⊗
⎛

⎝
⊗

j∈[s]

(|ψ(j,a)〉〈ψ(j,a)|)⊗t

⎞

⎠

⎞

⎠ (84)

for orthogonal sets of states
{|ψ(1,a)〉, . . . , |ψ(s,a)〉}. Define the channel Φ to be

Φ(ρ) = E
f,g,π

[(
I� ⊗ Uf,g,π

⊗st
)
ρ
(
I� ⊗ U†

f,g,π

⊗st
)]

. (85)
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Performing Φ on ρin results in the state

Φ(ρin) =
∑

a∈A

pa

⎛

⎝ρa ⊗ E
f,g,π

⎡

⎣Uf,g,π
⊗st

⎛

⎝
⊗

j∈[s]

(|ψ(j,a)〉〈ψ(j,a)|)⊗t

⎞

⎠U†
f,g,π

⊗st

⎤

⎦

⎞

⎠ .

(86)

By Lemma 4.1 and the fact that
∑

a∈A pa = 1 we get that
∥∥∥∥∥Φ(ρin) −

∑

a∈A

pa(ρa ⊗ ρunis,t)

∥∥∥∥∥
1

≤ O

(
s6t4n2

N

)
. (87)

Together with Lemma 2.6, we get by the triangle inequality that Φ(ρin) is
an O(s6t4n2/N + s2t2/N) = O(s6t4n2/N) almost invariant state. Using Claim
2.5 we get

TD
(

Φ(ρin), E
U←Haarn

[
(I� ⊗ U⊗st)ρin(I� ⊗ (U†)⊗st)

]) ≤ O(s6t4n2/N) . (88)

By Claim 3.3 we have
∣∣∣∣Pr

k

[
A

((
I� ⊗ UF,G,P

⊗st
)
ρin

(
I� ⊗ U†

F,G,P

⊗st
))

= 1
]

− Pr
f,g,π

[
A

((
I� ⊗ Uf,g,π

⊗st
)
ρin

(
I� ⊗ U†

f,g,π

⊗st
))

= 1
] ∣∣∣∣ ≤ negl(n) . (89)

We finish by combining Eqs. 89 and 88 to get
∣∣∣∣Pr

k

[
A

((
I� ⊗ UF,G,P

⊗st
)
ρin

(
I� ⊗ U†

F,G,P

⊗st
))

= 1
]

− Pr
U←Haarn

[
A

(
(I� ⊗ U⊗st)ρin(I� ⊗ U†⊗st

)
)

= 1
] ∣∣∣∣

≤ negl(n) + O(s6t4n2/N) = negl(n) , (90)

as needed to satisfy the security Definition 3.1.
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Abstract. Non-malleable codes are fundamental objects at the inter-
section of cryptography and coding theory. These codes provide secu-
rity guarantees even in settings where error correction and detection are
impossible, and have found applications to several other cryptographic
tasks. One of the strongest and most well-studied adversarial tamper-
ing models is 2-split-state tampering. Here, a codeword is split into two
parts which are stored in physically distant servers, and the adversary
can then independently tamper with each part using arbitrary functions.
This model can be naturally extended to the secret sharing setting with
several parties by having the adversary independently tamper with each
share. Previous works on non-malleable coding and secret sharing in the
split-state tampering model only considered the encoding of classical
messages. Furthermore, until recent work by Aggarwal, Boddu, and Jain
(IEEE Trans. Inf. Theory 2024 & arXiv 2022), adversaries with quantum
capabilities and shared entanglement had not been considered, and it is
a priori not clear whether previous schemes remain secure in this model.

In this work, we introduce the notions of split-state non-malleable
codes and secret sharing schemes for quantum messages secure against
quantum adversaries with shared entanglement. Then, we present
explicit constructions of such schemes that achieve low-error non-
malleability. More precisely, for some constant c > 0, we construct
efficiently encodable and decodable split-state non-malleable codes and
secret sharing schemes for quantum messages preserving entanglement
with external systems and achieving security against quantum adver-
saries having shared entanglement with codeword length n, any message
length at most nc, and error ε = 2−nc

. In the easier setting of average-
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case non-malleability, we achieve efficient non-malleable coding with rate
close to 1/11.

1 Introduction

Non-Malleable Codes (NMCs), introduced in the work of Dziembowski, Pietrzak,
and Wichs [37], are now considered fundamental cryptographic primitives that
provide security guarantees even in adversarial settings where error correction
and detection are impossible. Informally, NMCs guarantee that an adversary
cannot change the encoding of a message into that of a related message. They
encode a classical message M into a codeword C in such a way that tampering
C into f(C) using an allowed tampering function f results in the decoder either
outputting the original message M or a message that is unrelated/independent
of M . Note that it is impossible to construct NMCs that protect against arbi-
trary tampering functions. This is because an adversary could simply apply the
decoder to C, recovering the message M , and then output the encoding of a
related message M + 1 as the tampered version of C. Therefore, previous work
on non-malleable coding has focused on constructing NMCs for restricted, but
still large and meaningful, classes of tampering functions.

One of the strongest and most studied tampering models is split-state tam-
pering, introduced by Liu and Lysyanskaya [53]. In the 2-state version of this
model (which is the hardest), we view a codeword C as being composed of two
parts, E1 and E2, and an adversary is allowed to independently tamper with
each part using an arbitrary tampering function. In other words, a split-state
tampering adversary consists of a pair of arbitrary functions (f, g), and a code-
word (E1, E2) is tampered to (f(E1), g(E2)) (see Fig. 1 for a diagram of this
model). The split-state model is meaningful because we can imagine that the
two parts of the codeword are stored in different physically isolated servers,
making communication between tampering adversaries infeasible.

Fig. 1. Classical split-state tampering model.

The notion of non-malleable secret sharing has also been widely studied as a
strengthening of non-malleable codes. Secret sharing, dating back to the work of
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Blakley [18] and Shamir [56], is a fundamental cryptographic primitive where a
dealer encodes a secret into p shares and distributes them among p parties. Each
secret sharing scheme has an associated monotone1 set Γ ⊆ 2[p], usually called
an access structure, whereby any set of parties T ∈ Γ , called authorized sets,
can reconstruct the secret from their shares, but any unauthorized set of parties
T �∈ Γ gains essentially no information about the secret. One of the most natural
and well-studied types of access structures are threshold access structures, where
a set of parties T is authorized if and only if |T | ≥ t for some threshold t.

Non-Malleable Secret Sharing (NMSS), generalizing non-malleable coding,
was introduced by Goyal and Kumar [42] and has received significant interest in
the past few years in the classical setting. NMSS schemes additionally guarantee
that an adversary who is allowed to tamper all the shares (according to some
restricted tampering model) cannot make an authorized set of parties recon-
struct a different but related secret. Non-malleable secret sharing is particularly
well-studied in the context of the split-state tampering model described above,
whereby an adversary can independently tamper with each share. Once again,
the motivation is that shares are being held in physically distant devices, making
communication between the several tampering adversaries infeasible.

The split-state and closely related tampering models for codes and secret
sharing schemes have witnessed a flurry of work in the past decade [3,4,6,7,10,
21,23,27–30,36,38,42,43,45,49–53], culminating in recent explicit constructions
of classical split-state NMCs of rate 1/3 [6] and constructions with a smaller
constant rate but also smaller error [52] (with a known upper bound on the
rate being 1/2 [30]). Split-state NMCs and NMSS schemes and related notions
have also found applications in other cryptographic tasks, such as non-malleable
commitments, secure message transmission, and non-malleable signatures [3,27,
42–44,57].

Split-State Tampering and Quantum Computing. Given the rapid development
of quantum technologies, it is natural to consider NMCs and NMSS schemes
in the quantum setting and examine how adversaries with quantum capabilities
affect previous assumptions made about tampering models. For instance, all
known NMCs are tailored to classical messages, but it is equally important to
design non-malleable coding schemes that allow us to encode quantum states as
well. Moreover, the possibility of attackers with quantum capabilities challenges
the independence assumption made in the split-state models described earlier.
Although servers holding different parts of the codeword (or different secret
shares) may be physically isolated from each other, the tampering adversaries
attacking each server may have pre-shared a large amount of entangled quantum
states. Access to such shared entanglement can provide non-trivial advantages
to these adversaries beyond what has been considered in the classical tampering
models. For example, in the Clauser-Horne-Shimony-Holt (CHSH) game [31],
non-communicating parties can use local measurements on both halves of an

1 A set Γ ⊆ 2[p] is monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ .
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EPR state to achieve a higher success probability than what is possible using
fully classical strategies. Therefore, it is not clear whether any of the existing
classical NMCs and NMSS schemes remain secure in the augmented split-state
tampering models where the adversary is allowed to make use of arbitrary shared
entanglement across multiple states (see Fig. 2 for a diagram of the split-state
tampering model for two states). The only exception to this are the recent work
of Aggarwal, Boddu, and Jain [2] and the concurrent work of Batra, Boddu, and
Jain [16]. The former constructs explicit NMCs for classical messages that are
secure in the 2-split-state tampering model, while the latter focuses on explicit
quantum-secure non-malleable randomness encoders (NMRE) with a higher rate
in the same tampering model, and uses these objects to construct non-malleable
codes in the 3-split-state model2 for quantum messages.

Fig. 2. Split-state tampering model with shared entanglement. This shared entangle-
ment is stored in registers W1 and W2.

The shortcomings of existing split-state non-malleable coding schemes in the
face of quantum messages and adversaries raise the following natural question:

Can we design efficient 2-split-state NMCs and split-state NMSS schemes
for quantum messages secure against quantum adversaries with shared

entanglement?

We resolve this question in the affirmative.

1.1 Our Contributions

Split-State Non-malleable Codes for Quantum Messages. As our first
contribution, we propose a definition of split-state non-malleability for quantum
messages against adversaries with shared entanglement. Our definition is a nat-
ural extension of the one considered for classical messages in the literature [37].

2 Meaning that the codeword is divided into three parts and the adversary tampers
each part independently. We note that constructing NMCs in the 3-split-state model
is considerably easier than in the 2-split-state model.



64 N. G. Boddu et al.

Here, we present it specifically for the 2-split-state case, which is our main setting
of interest.

Let σM be an arbitrary state in a message register M , and σMM̂ be its
canonical purification. We consider (2-split-state) coding schemes given by an
encoding Completely Positive Trace-Preserving (CPTP) map Enc : L(HM ) →
L(HE1 ⊗ HE2) and a decoding CPTP map Dec : L(HE1 ⊗ HE2) → L(HM ),
where L(H) is the space of all linear operators in the Hilbert space H.

The most basic property we require of this coding scheme (Enc,Dec) is cor-
rectness (which includes preserving entanglement with external systems), i.e.,

Dec(Enc(σMM̂ )) = σMM̂ ,

where we use the shorthand T to represent the CPTP map T ⊗ I whenever the
action of the identity operator I is clear from context.

Before we proceed to define split-state non-malleability, we describe the split-
state adversarial tampering model in the quantum setting. Let ρE1E2 = Enc(σM )
be the split-state encoding of message σM . A split-state tampering adversary A
is specified by two tampering maps3 U : L(HE1 ⊗ HW1) → L(HE1 ⊗ HW1) and
V : L(HE2 ⊗ HW2) → L(HE2 ⊗ HW2) along with a quantum state |ψ〉W1W2 that
captures the shared entanglement between the non-communicating tampering
adversaries. Finally, the decoding procedure Dec is applied to the tampered
codeword. Figure 2 presents a diagram of this tampering model. Let

η = Dec
(
(U ⊗ V )

(
Enc(σMM̂ ) ⊗ |ψ〉〈ψ|) (U† ⊗ V †)

)

be the final state after applying the split-state tampering adversary A followed
by the decoding procedure.

We are now ready to define split-state non-malleability of the coding scheme
(Enc,Dec).

Definition 1 (Non-Malleable Codes for Quantum Messages). We say
that the coding scheme (Enc,Dec) is a (worst-case) ε-non-malleable code for
quantum messages if for every split-state adversary A = (U, V, |ψ〉W1W2) and
every quantum message σM (with canonical purification σMM̂ ) it holds that

ηMM̂ ≈ε pAσMM̂ + (1 − pA)γA
M ⊗ σM̂ , (1)

where pA ∈ [0, 1] and γA
M depend only4 on the split-state adversary A, and ≈ε

denotes that the two states are ε-close in trace distance.
3 Tampering maps are assumed to be unitary without any loss of generality. This is

because, in the presence of unbounded arbitrary shared entanglement, tampering
with unitary maps is equivalent to tampering with CPTP maps. More precisely,
consider a tampering adversary that uses two CPTP maps Φ1 and Φ2 acting on reg-
isters E1W1 and E2W2, respectively. Then, the action of this adversary is equivalent
to another adversary who tampers using Stinespring isometry extensions U and V
of Φ1 and Φ2, respectively, which act on E1W1A1 and E2W2A2, respectively, where
A1 and A2 are unentangled ancilla registers set to |0〉 without loss of generality and
can be seen as part of the shared entanglement.

4 By this, we mean that pA can be computed and the state γA
M can be prepared

without the knowledge of the input message σMM̂ .
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If Eq. (1) is only guaranteed to hold when σM is the maximally mixed state,
then we say that (Enc,Dec) is an average-case ε-non-malleable code for quantum
messages.

Remark 1. Intuitively, our definition of average-case non-malleability for quan-
tum messages in Definition 1 is analogous to requiring that the average non-
malleability error of a given classical code is small when averaged over a uni-
formly random message. Later, in Lemma 5, we show that every average-case
non-malleable code for quantum messages is also a worst-case non-malleable
code, though with a larger error.

Definition 1 can be readily extended to encompass arbitrary classes of tam-
pering adversaries. However, for the sake of readability, we do not provide the
generalization here. In the context of split-state tampering, we present the fol-
lowing two results.

Our first result gives an explicit average-case 2-split-state NMC for quantum
messages with rate arbitrarily close to 1/11.

Theorem 1 (Average-Case 2-Split-State NMC for Quantum Messages
with Constant Rate). For any fixed constant δ > 0 there exist an integer
n0 > 0 and c ∈ (0, 1) such that the following holds: There exists a family of
coding schemes (Cn)n∈N where each Cn has codeword length n and message length
�( 1

11 − δ
)
n� such that Cn is average-case ε-non-malleable for quantum messages

with error ε = 2−nc

for all integers n ≥ n0. Furthermore, there exist encoding
and decoding procedures for the family (Cn)n∈N running in time poly(n).

Our second result, which builds on Theorem 1, gives an explicit construction
of a worst-case 2-split-state NMC for quantum messages.

Theorem 2 (Worst-case 2-split-state NMC for quantum messages).
There exist constants c ∈ (0, 1) and n0 ∈ N such that the following holds: There
exists a family of coding schemes (Cn)n∈N where each Cn has codeword length n
and message length �nc� such that Cn is ε-non-malleable for quantum messages
with error ε = 2−nc

for all integers n ≥ n0. Furthermore, there exist encoding
and decoding procedures for the family (Cn)n∈N running in time poly(n).

In fact, we show something stronger: The explicit code from Theorem 2 is
actually a 2-out-of-2 non-malleable secret sharing scheme for quantum messages
with share size n, any message of length at most nΩ(1), and error ε = 2−nΩ(1)

.
We refer the reader to the full version for more details on non-malleable secret
sharing [19].

Split-State Non-malleable Secret Sharing Schemes for Quantum Mes-
sages. The definition of threshold non-malleable secret sharing schemes for
quantum messages is a natural and simple extension of our definition of 2-split-
state non-malleable codes above, and it is analogous to the definition in the
classical setting [42].
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As our main result in this direction, which builds on Theorem 2, we construct
efficient split-state NMSS schemes for quantum messages realizing more general
threshold access structures with low privacy and non-malleability errors.

Theorem 3 (Split-State Threshold NMSS Schemes for Quantum Mes-
sages). There exist constants c, C > 0 and an integer n0 ∈ N such that the
following holds for any number of parties p and threshold t ≥ 3 such that
t ≤ p ≤ 2t − 1 and for any n ≥ n0: There exists a family of t-out-of-p
(εpriv = ε, εnm = ε)-non-malleable secret sharing schemes for quantum messages
with shares of size at most (pn)C , message length �nc�, and error ε = 2−nc

.
Furthermore, the sharing and reconstruction procedures of this scheme can be
computed in time polynomial in p and n.

Combined with our previously discussed 2-out-of-2 non-malleable secret shar-
ing scheme for quantum messages, Theorem 3 covers all remaining threshold
access structures for which secret sharing is possible in the quantum setting
(i.e., those which do not violate no-cloning) except 2-out-of-3. We leave con-
structing a 2-out-of-3 non-malleable secret sharing scheme for quantum mes-
sages as a very interesting open problem. Finally, an analogous realization of
the approach behind Theorem 3 using the same techniques allows us to obtain
classical threshold non-malleable secret sharing schemes secure against quantum
adversaries with shared entanglement.

See the full version for more details about our results on non-malleable secret
sharing, including formal statements and proofs. In this abridged conference ver-
sion, we provide only some informal discussion in the technical overview below.

1.2 Other Related Work

In this section, we discuss relevant prior work on classical NMCs and on quantum
non-malleability beyond what we covered above.

Classical NMCs. We discuss prior work on NMCs for classical messages and
secure against classical tampering adversaries. The first work on NMCs by
Dziembowski, Pietrzak, and Wichs [37] showed that, surprisingly, there exists
a (possibly inefficient) NMC against any family of at most 22

αn

tampering func-
tions, where α < 1 is an arbitrary constant, and n is the message length. The
best possible rate of (possibly inefficient) NMCs was studied by Cheraghchi
and Guruswami [30], who showed that split-state NMCs can have a rate of at
most 1/2. To complement the above, [37] constructed efficient NMCs in the bit-
wise tampering model, a strictly weaker model than split-state tampering, where
each bit of the codeword is tampered independently. As discussed before, this
spurred a deep line of work which recently culminated in explicit constructions
of constant-rate NMCs in the split-state model [6,7].

Several works have also studied NMCs against computationally-bounded
adversaries from various hardness assumptions and setups, such as a common
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reference string. Naturally, in such restricted settings, it is possible to achieve a
better rate while allowing the adversary to perform many adaptive tamperings
in a row. Computationally-restricted tampering models include polynomial-time
algorithms [40], split-state polynomial-time adversaries [1], bounded-depth cir-
cuits [12,13,24], low-degree polynomials [11], decision trees [13,14], and stream-
ing space-bounded algorithms [13,39]. Some other works have studied con-
structions of short NMCs based on conjectured properties of practical block
ciphers [22,41] or extractable hash functions [48].

Classical NMSS Schemes. The notion of non-malleable secret sharing first
appeared implicitly in the work of Aggarwal, Dziembowski, Kazana, and Obrem-
ski [5], where it was shown that every classical 2-split-state NMC is also a 2-
out-of-2 secret sharing scheme with statistical privacy. NMSS schemes for clas-
sical messages and secure against classical adversaries were then studied explic-
itly and in much greater generality by Goyal and Kumar [42,43], leading to
a long line of research on classical split-state non-malleable secret sharing, as
mentioned above. Classical NMSS schemes have also been studied in tamper-
ing models beyond split-state tampering. For example, the original works of
Goyal and Kumar [42,43] also consider a “joint” tampering model where, under
certain restrictions, tampering adversaries may tamper with subsets of multiple
shares, instead of only a single share. Stronger joint tampering models have been
considered in the computational [21] and information-theoretic settings [45]. In
an orthogonal direction, other notions of non-malleability where the adversary
learns the reconstruction of tampered secrets with respect to multiple authorized
subsets of parties have also been studied [3,21].

Other Notions of Quantum Non-malleability. Other notions of non-malleability
for quantum messages have been studied in the context of keyed coding schemes
by Ambainis, Bouda, and Winter [9] and Alagic and Majenz [8]. In the keyed
setting, quantum authentication schemes [25] also provide non-malleability, since
they allow one to detect tampering on the encoded quantum data.

We can view the setting studied in [8,9] for keyed coding schemes in the split-
state model as follows: Let σM be the quantum message, and R be the key shared
between the encoder and decoder. Let σM be encoded to ρZ = EncR(σM ). Then,
the adversary tampers ρZ → τZ , and the decoder outputs ηM = DecR(τZ). Since
the key R is available at both the encoder and decoder, we can view R as being
the second part of the codeword, with the register Z being the first part of the
codeword. Observe that in this model, the adversary is only allowed to tamper
with the first part of the codeword, while our split-state tampering model allows
the adversary to simultaneously but independently tamper with both parts of
the codeword. Alagic and Majenz [8] used unitary 2-designs in their protocol for
encoding and decoding. However, we note that their security definition involving
mutual information appears a priori different from our Definition 1.
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The question of whether one can even build split-state non-malleable cod-
ing schemes for quantum messages when there is no shared key and when the
split-state adversary can tamper with both registers (with or without shared
entanglement) remained open. In this work, we resolve this question in the affir-
mative.

Table 1 summarizes the main properties of known constructions of split-state
NMCs and related constructions of keyed quantum schemes.

Table 1. Comparison between the best known explicit constructions of 2-split-state
NMCs. Here, n denotes the codeword length.

Work by Rate Messages Adversary Shared key

[28] 1
poly(n)

classical classical No

[50] Ω
(

1
log n

)
classical classical No

[51] Ω
(

log log n
log n

)
classical classical No

[7] Ω(1) classical classical No

[52] Ω(1) classical classical No

[6] 1/3 classical classical No

[2] 1
poly(n)

classical quantumNo

[16] ≈ 1/5 (average-case) classical quantumNo

[8] Ω(1) quantum quantumYes

This work ≈ 1/11 (average-case) quantumquantumNo

This work 1
poly(n)

quantum quantumNo

Concurrent Work. An earlier version of this work containing our results on
NMCs for quantum messages was submitted to QCRYPT 2023 in April 2023
and presented there as a contributed talk. In work concurrent to and indepen-
dent of that version, Bergamaschi [17] introduces, among other things, a nat-
ural quantum analogue of the bitwise tampering model [37], where each qubit
of the encoding is tampered independently, and constructs high-rate codes in
this setting satisfying a restricted form of keyless authentication called tamper
detection, which is somewhat stronger than non-malleability. These contribu-
tions are incomparable to ours. First, we consider tampering adversaries with
access to shared entanglement, while Bergamaschi [17] only studies the weaker
setting where the various tampering adversaries are unentangled. In fact, tamper-
detection codes (where the receiver either recovers the original message or aborts
if they detect the adversary) are impossible to construct against adversaries with
access to shared entanglement. This is because such adversaries can replace the
quantum ciphertext with a fixed valid codeword. Second, the split-state tam-
pering adversaries we study are much more powerful than bitwise tampering
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adversaries. At a high level, both Bergamaschi’s and our approaches rely on
some combination of a non-malleable encoding of a classical key with an appro-
priate quantum encryption scheme. However, the two works differ significantly in
how this approach is concretely realized and in the techniques used to establish
the desired security properties.

As already discussed above, in another concurrent work Batra, Boddu, and
Jain [16] constructed a classical 2-split-state non-malleable randomness encoder
secure against quantum adversaries having shared entanglement with rate close
to 1/2. They use it to build constant-rate quantum secure 3-split-state NMCs for
quantum messages. Constructing 3-split-state NMCs is significantly easier than
constructing 2-split-state NMCs (the hardest setting in the split-state tampering
model) and the more general notion of split-state NMSS schemes for quantum
messages, which are the focus of our work.

1.3 Technical Overview

Split-State NMCs for Quantum Messages. We follow a high-level strategy
similar to that of Aggarwal, Agrawal, Gupta, Maji, Pandey, and Prabhakaran [1],
who used authenticated encryption to transform any (augmented) split-state
non-malleable code into a high-rate split-state non-malleable code resilient to
computationally-bounded tampering in the classical setting. The main challenge
we have to deal with, and which is not considered in [1], is that our tampering
adversaries have quantum capabilities and are allowed to a priori share arbitrary
entangled quantum states.

As a warm-up to our main construction, let us consider a simpler and nat-
ural approach that yields a 3-split-state non-malleable code for quantum mes-
sages. First, we observe that if we have a shared classical secret key R between
the encoder and decoder, then we can detect whether arbitrary tampering has
occurred by encoding the quantum message σM with a quantum authentication
scheme (AuthR,VerR) [15,25]. Therefore, a reasonable approach would be to first
encode the message using this quantum authentication scheme, then encode the
key R using an existing split-state non-malleable code for classical messages, and
lastly output the split-state encoding of R as part of the final codeword.

Fortunately, since R is a classical string, we can use the split-state non-
malleable code (cEnc, cDec) of Aggarwal, Boddu, and Jain [2], which protects
against quantum adversaries! Less fortunately, cEnc(R) yields a codeword with
two parts, call them R1 and R2, that cannot be stored together.

To elaborate on this approach, let’s define a quantum authentication scheme
as (AuthR,VerR), where AuthR is a quantum encoding procedure that takes a
quantum state σM and a classical secret key R and outputs an authenticated
state ψ = AuthR(σM ). The verification procedure VerR takes an authenticated
state ψ′ and the secret key R as input, and outputs either 1 (accept) or 0 (reject).
The overall encoding procedure Enc(σM ) for our 3-split-state non-malleable code
is as follows:

1. Sample a classical secret key R uniformly at random from an appropriate
keyspace.
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2. Compute the authenticated state ψ = AuthR(σM ) using the quantum authen-
tication scheme.

3. Compute the classical split-state encoding (R1, R2) = cEnc(R).
4. Output the 3-state codeword (ψ,R1, R2).

To decode a possibly tampered codeword (ψ′, R′
1, R

′
2), the decoding proce-

dure Dec works as follows:

1. Use the classical decoder cDec(R′
1, R

′
2) to obtain a candidate key R′.

2. Run the verification procedure VerR′(ψ′) to check the authenticity of the
quantum state ψ′ using the candidate key R′.

3. If the verification procedure outputs 1 (accept), then output Dec(ψ′, R′
1, R

′
2).

Otherwise, output a special symbol to indicate tampering.

This approach leverages the quantum authentication scheme to detect any
tampering of the quantum message, and the classical split-state non-malleable
code to protect the classical key R against tampering. Intuitively, if we consider
quantum adversaries without shared entanglement, the non-malleability of the
3-state coding scheme can be understood as follows: If the adversary attempts to
tampering with R1 and R2, then the properties of the classical split-state non-
malleable code (cEnc, cDec) guarantee that either the candidate key R′ remains
unchanged (R′ = R) or that it becomes independent of R. In the former case,
when the decoder Dec calls VerR(ψ′), the quantum authentication scheme will,
with high probability, detect whether ψ′ �= ψ, indicating tampering, and Dec will
abort the decoding process. In the latter case, the decoder calls VerR′(ψ′) with R′

being independent of R and, consequently, independent of ψ′ as well. Choosing
a quantum authentication scheme, such as Clifford-based authentication, it is
possible to show that VerR′(ψ′) will output a state independent of (and thus
unrelated to) the message σ with high probability.

Overall, this approach combines the strength of quantum authentication to
detect tampering with the quantum message and the non-malleability property
of the classical split-state code to protect the classical key R against tampering.
By leveraging these properties together, we obtain a 3-split-state non-malleable
code for quantum messages. Although the coding scheme above already gives
some non-malleability guarantees for quantum messages, it features some major
shortcomings. First, it requires dividing the codeword into three parts which
must be stored separately. Ideally, we would like to construct efficient coding
schemes that only need to be divided into two parts. Second, our argument
above only works against quantum adversaries without shared entanglement.
However, as we move to the more powerful setting with adversaries having shared
entanglement, we need to develop more sophisticated techniques to ensure non-
malleability.

Split-State Non-malleable Codes for Average-Case Quantum Messages. Perhaps
the most natural approach to building a split-state non-malleable code secure
against quantum adversaries with shared entanglement would be to take our
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3-state code above and merge two of the parts. More precisely, we could attempt
to analyze the code which outputs

(ψ,R1) and R2

as its two parts, where we recall that ψ is the authenticated state via the secret
key R and (R1, R2) = cEnc(R) is the classical split-state non-malleable encoding
of R.

This matches the approach taken in [1]. However, as already mentioned
above, they did not have to handle quantum adversaries with shared entangle-
ment. Although this is also essentially the approach we successfully undertake,
establishing non-malleability of this modified coding scheme is significantly more
involved than the intuitive argument laid out above, and also requires some small
further changes to the scheme. Indeed, one of the first difficulties arises due to
the use of trap flags5 in the authentication schemes, as we will discuss subse-
quently. We note that, unlike in an authentication scheme, the decoder need
not output ⊥ in a non-malleable code, since error detection is not required. We
therefore get rid of the trap flags used in the authentication scheme specified in
the 3-split argument above, and this is one of the first insights that allows our
analysis to work.

We first describe a sub-optimal version of our approach in the setting of
average-case non-malleability, and then discuss how its rate can be optimized.
Per Definition 1, this corresponds to the scenario where the message σM is
assumed to be a maximally mixed quantum state with canonical purification
σMM̂ . To construct our split-state non-malleable code for quantum messages, we
use random Clifford unitaries {(Cr, C

†
r )}r←R with underlying classical random-

ness R, along with the classical split-state coding scheme (cEnc, cDec) designed
in [2] as a quantum-secure non-malleable code for the classical string R.

Inspired by the 3-state approach above, we use (cEnc, cDec) to protect the
key R in a non-malleable manner, and then use the random Clifford CR to
protect the quantum message σM . This yields the following encoding procedure
Enc(σM ), where we use slightly different notation than the above to facilitate our
analysis (see also Fig. 4 for a diagram of our encoding and decoding procedures):

1. Sample a classical secret key R uniformly at random (independent of σMM̂ )
from an appropriate keyspace;

2. Compute the state (σ1)Z = CR(σM )C†
R;

3. Compute the split-state encoding cEnc(R) = (σ1)XY ;
4. Output the 2-part codeword ((σ1)ZX , (σ1)Y ).

5 Clifford-based quantum authentication schemes apply a random (secret) Clifford
operator to the message plus several additional “trap registers” initialized to |0〉.
Verifying whether tampering of the authenticated state occurred consists of checking
whether the trap registers all return to the |0〉 state after applying the inverse Clifford
operator. If this does not hold, then the verification procedure outputs the special
symbol ⊥, which we call the “trap flag”.
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The message σM = UM , along with its purification register M̂ , is thus
encoded into (σ1)M̂ZXY .

As our first observation, note that the register Z, which holds the Clifford-
protected message, may carry information about the classical key R, since
(σ1)Z = CR(σM )C†

R. Fortunately, since σM = UM , where UM is a maximally
mixed state, we have

(σ1)ZXY = (σ1)Z ⊗ (σ1)XY .

One may then expect that we can use the argument of [2] for classical mes-
sages to argue that the key R remains secure even if the adversary sees the regis-
ter Z when tampering one of the parts of cEnc(R). Unfortunately, the argument
of [2] does not go through in this scenario. Namely, for (cEnc, cDec) to protect
the key R in a non-malleable manner after adversarial tampering we need that

(σ1)M̂ZXY = (σ1)M̂Z ⊗ (σ1)XY .

However, it can be verified that the registers M̂Z are not independent of XY
in state σ1. To circumvent this issue, we use the transpose method (see Fact 5)
for state σMM̂ , and note that the application of the random Clifford gate CR

and the adversarial operations commute in σ1 (see Figs. 4 and 5). This allows
us to delay the operation CR on register M̂ (see Fig. 6). Crucially, we could not
have used the transpose method in the presence of flag registers as employed in
quantum authentication.

Carefully combining the above with arguments from [2], we conclude that
(cEnc, cDec) can protect the key R after adversarial tampering on state θ1 (which
corresponds to the state prior to applying the CR operation on register M̂ in
Fig. 6), since

(θ1)M̂ZXY = (θ1)M̂Z ⊗ (θ1)XY .

Let θ2 be the state obtained after adversarial tampering on θ1. By the prop-
erties of (cEnc, cDec), we are essentially guaranteed that either R′ = R or that
R′ is independent of R in θ2. However, this is not enough, and we observe that
(cEnc, cDec) actually guarantees something even stronger! More precisely, in
state θ2 we have either:

– R = R′ and R is independent of registers ZM̂ ;
– R is independent of R′ZM̂ .

In the case where R is independent of R′ZM̂ , applying the delayed operation
CR on register M̂ decouples the registers R′Z ⊗ M̂ , and so we are done. We are
thus left to analyze the case where R = R′ and R is independent of registers ZM̂ .
Here, we make use of the 2-design properties of the Clifford scheme (CR, C†

R).
Roughly speaking, first suppose that the adversary applied IZ on register Z.
Then, since the message was maximally mixed, we conclude that we get an EPR
state as the outcome of the tampering experiment (after the decoding procedure
is applied). Now, suppose that the adversary applied some P �= IZ on register
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Z. We make use of Clifford randomization and the twirl property to handle this
scenario. To elaborate, first note that the state

(I ⊗ P )(θ1)M̂Z(I ⊗ P †)

is in a subspace orthogonal to an EPR state in M̂Z. Consider the state after
applying the delayed operation CR on register M̂ and C†

R on register Z. Here,
Clifford randomization and the twirl property ensure that any state orthogonal
to an EPR state in registers M̂Z is exactly maximally mixed in a subspace (of
dimension 4|M̂ | − 1) orthogonal to this EPR state in registers M̂Z. As a result,
the outcome of the tampering experiment after the decoding procedure is applied
is close in trace distance to UM̂ ⊗UM . Our proof overall crucially uses interesting
properties of the Pauli and Clifford unitaries including Pauli twirl, Clifford twirl,
and Clifford randomization.

Improving the Rate from Sub-constant to Constant in the Average-Case Setting.
An important quantity associated with a (non-malleable code) is its rate—the
ratio between the size of a message and the size of its corresponding encoding.
Looking at the proposed approach we discussed above, we conclude that its rate
is sub-constant, i.e., the size of the encoding is a superlinear function of the
message size. The main reasons behind this are as follows: First, the classical
key R that we use to sample the Clifford operator CR is much longer than
the message σM (In fact |R| = O(|M |2)). Second, the rate of the underlying
non-malleable code for classical messages (cEnc, cDec) from [2] is already sub-
constant.

We now explain how our approach above can be modified to yield a constant-
rate average-case non-malleable code for quantum messages. First, instead of
using the whole Clifford group, we can use a shorter random key R to sample
a Clifford operator from a smaller subgroup with special properties that suffice
for our needs. A result of Cleve, Leung, Liu, and Wang [33] guarantees that this
can be done efficiently with a classical key R of length at most 5|M |. Second,
observe that we only care about obtaining a split-state non-malleable encoding
of a uniformly random classical key R. This means that we can replace the
classical split-state non-malleable code (cEnc, cDec) from [2] by a Non-Malleable
Randomness Encoder (NMRE), an object originally introduced by Kanukurthi,
Obbattu, and Sekar [47] and whose known constructions enjoy much better rates
than non-malleable codes. Batra, Boddu, and Jain [16] recently constructed a
classical NMRE secure against quantum adversaries having shared entanglement
with a rate close to 1/2.6 In contrast, as mentioned above, the NMC for classical
messages from [2] only has a sub-constant rate.
6 For the experienced reader, Batra, Boddu, and Jain [16] construct an explicit

quantum-secure 2-source non-malleable extractor nmExt with a large output length.
We can then sample classical bitstrings X and Y uniformly at random with appro-
priate lengths and set the classical key R to be R = nmExt(X, Y ); this is the
quantum-secure classical NMRE that we use in our optimized coding scheme.
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Using these two results in our previously described approach allows us to
improve the rate of our average-case NMC for quantum messages from sub-
constant to close to 1/11.

From Average-Case to Worst-Case NMCs for Quantum Messages. In the dis-
cussion above we assumed that the quantum message was maximally mixed.
However, we would like to show that our code is a worst-case NMC, i.e., it is
non-malleable for any fixed quantum message.

Consider an arbitrary quantum message ρM with canonical purification ρMM̂ .
Recall that σM̂M is the canonical purification of σM = UM . Using a quantum
rejection sampling argument, we obtain a measurement acting on register M̂ of σ
such that the state conditioned on “success” is exactly ρ. Moreover, this measure-
ment on the register M̂ commutes with Enc, Dec, and the adversarial operations,
and it succeeds with probability 2−|M |. If the error of the underlying average-case
NMC is ε, then this measurement allows us to argue non-malleability of the same
NMC for any message ρM (i.e., worst-case non-malleability) with larger error
ε′ = 2|M | · ε, and we can easily handle this blow-up in the error at the expense
of dropping the rate of the code from constant to sub-constant. Intuitively, this
happens because of the following: Suppose that there is a fixed message ρ for
which Equation (1) (with ρ in place of σ) holds only with error larger than ε′.
Therefore, when faced with a maximally mixed message σMM̂ , we can apply the
measurement above to M̂ and, if the measurement succeeds and the resulting
state is ρ, distinguish with advantage larger than ε′. Since the measurement
succeeds with probability at least 2−|M |, the overall distinguishing advantage is
larger than 2−|M | · ε′ = ε, which contradicts the average-case ε-non-malleability
of the NMC.

Threshold Split-State NMSS Schemes for Quantum Messages. At a
high level, in order to construct our threshold NMSS schemes for quantum mes-
sages, we combine our split-state NMC for quantum messages above with the
approach of Goyal and Kumar [42] used to construct NMSS schemes in the clas-
sical setting. However, as we will discuss, following this approach in the quantum
setting poses various challenges.

Roughly speaking, the approach of Goyal and Kumar [42] for building NMSS
schemes proceeds as follows for p parties and a threshold 3 ≤ t ≤ p. On input
a message m, first encode it with the split-state NMC to generate two states,
L and R. Now, apply a standard t-out-of-p secret sharing scheme to L (say,
Shamir’s secret sharing), yielding shares L1, . . . , Lp. Furthermore, apply a 2-
out-of-p leakage-resilient secret sharing scheme to R, yielding shares R1, . . . , Rp.
Intuitively, a secret sharing scheme is leakage-resilient if the input remains pri-
vate even when the adversary learns an unauthorized subset of shares plus
bounded side information from every other share. Finally, set the resulting i-
th share Si as Si = (Li, Ri) for each i ∈ [p].
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To argue the non-malleability of this construction, Goyal and Kumar showed
how to transform any tampering attack on the resulting secret sharing scheme
into an essentially-as-good tampering attack on the underlying 2-split-state
NMC. The main challenge in designing such a reduction is that the two tamper-
ing functions for the underlying NMC must act independently – we must tamper
L without knowledge of R, and vice versa. On the other hand, the i-th tamper-
ing function for the secret sharing scheme tampers (Li, Ri) into (L′

i, R
′
i), and so

potentially has access to some information from both L and R. For simplicity,
let L′ and R′ denote the tampered secrets reconstructed from (L′

1, . . . , L
′
t) and

(R′
1, R

′
2), respectively.

Showing that we can obtain R′ from R without knowing L is easy. This
follows because R′ is fully determined by R′

1 and R′
2, which in turn only depend

on L1 and L2. Since the Li’s are a t-out-of-p Shamir secret sharing of L with
threshold t ≥ 3, the two shares L1 and L2 are independent of L. However,
arguing that we can (up to small error) obtain L′ from L without knowledge of
R is a lot trickier. The previous argument clearly does not immediately work
since the t shares L′

1, . . . , L
′
t depend on R1, . . . , Rt, respectively, which determine

R. This is where the leakage-resilience property kicks in – if we see the L′
is as

bounded leakage on the Ris, then leakage-resilience guarantees that R is (close
to) independent of the leakages L′

1, . . . , L
′
t, and so is independent of L′.

Realizing This Approach in the Quantum Setting. We follow the same high-level
approach for a quantum message σM . To that end, we first replace the classical
split-state NMC by our NMC for quantum messages discussed previously. We use
additional key properties of our NMC: (1) The resulting left state L is quantum,
but the right state R is classical, and (2) we prove that it is actually a 2-out-of-2
split-state NMSS scheme, and so, in particular, learning only one of L and R
reveals nothing about σM . Since L is quantum, we now apply a standard t-out-
of-p (for p < 2t) secret sharing scheme for quantum messages, such as “quantum”
Shamir secret sharing [32], to get quantum shares (L1, . . . , Lp). And, since R is
classical, we secret-share it using a 2-out-of-p scheme satisfying a special leakage-
resilience property that we will determine later.

Establishing correctness and privacy of the resulting t-out-of-p secret sharing
scheme is not difficult using property (2) of our NMC above. It remains to prove
non-malleability. Arguing that R′ can be obtained from R without knowledge of
L still follows easily from the fact that R is shared using a 2-out-of-p scheme,
while L is shared using a t-out-of-p scheme with t ≥ 3. Here, it is crucial that R
is classical. Otherwise, a 2-out-of-p scheme would not exist when p ≥ 4, and this
means that we would not be able to, say, construct (p/2 + 1)-out-of-p split-state
NMSS schemes for quantum messages for any even p using this approach.

We also want to argue that L′ can be obtained from L without knowledge
of R. As before, we would like to see L′

1, . . . , L
′
p as leakages on the secret shares

R1, . . . , Rp, and then exploit the leakage-resilience of the scheme used to share
R to conclude that R is independent of L′

1, . . . , L
′
p, and hence of L′. However,

realizing this in our quantum setting requires stronger leakage-resilience prop-
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erties: First, the tamperings L′
1, . . . , L

′
p are now quantum states. Second, the

tampering functions in our setting share arbitrary entangled states. This means
that the i-th tampering function now sees (Li, Ri,Wi), where W1, . . . ,Wp are
quantum registers holding an arbitrary state. To overcome these barriers, we
introduce augmented leakage-resilient secret sharing schemes. This corresponds
to a setting where there are p local adversaries A1, . . . ,Ap sharing an arbitrary
entangled state spread across registers W1, . . . ,Wp, respectively, and each one
having access to a share R1, . . . , Rp. We require that R remains hidden even if
Ai knows the share Ri, local bounded quantum leakages (Leakj(Rj ,Wj))j∈[p]\{i}
from every other share, and also the entangled state Wi (hence the “augmented”
adjective). We prove that the 2-out-of-2 secret sharing scheme whereby R is
shared into X and Y sampled uniformly such that 〈X,Y 〉 = R is augmented
leakage-resilient with good parameters. This relies on the randomness extrac-
tion properties of the inner product function and the formalism of qpa-states7

from [20]. We can then extend this scheme to a 2-out-of-p augmented leakage-
resilient scheme for classical messages in a standard manner. Although notions
of leakage-resilience against quantum adversaries with shared entanglement have
been studied in other recent work [26], these do not cover augmented leakage-
resilience.

Besides the above, proving non-malleability requires dealing with additional
subtleties specific to the quantum setting. The original non-malleability argu-
ment in [42] proceeds by fixing the values of certain components (e.g., shares,
leakages). However, we cannot fully emulate this approach in the quantum set-
ting: The left state L is quantum, and so are the bounded leakages that show
up in the analysis. Therefore, we cannot fix them. Moreover, again because L is
quantum, it is modified after the tampering functions are applied, but we still
need to access the “original” L in the analysis. For this, with some work, we can
use the message’s canonical purification register M̂ to generate a new register L̂
which can be thought of as a coherent copy of the original left state L.

1.4 Open Problems

We list here some interesting directions for future research:

– Can we design (worst-case) split-state NMCs for quantum messages with
a constant rate? This is open even for classical messages against quantum
adversaries with shared entanglement. More ambitiously, can we construct
(worst-case) split-state NMSS schemes for quantum messages with a constant
rate?

– Can we construct 2-out-of-3 split-state non-malleable secret sharing schemes
for quantum messages?

– Can we design NMSS schemes for quantum messages that are secure against
joint tampering of shares?

– What can we achieve if we consider computationally-bounded adversaries
instead?

7 “qpa-state” stands for quantum purified adversary state.
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– Besides the direct application to tamper-proof distributed storage, can we find
additional applications of non-malleable codes and secret sharing schemes for
quantum messages, perhaps analogous to those found in the classical setting?

2 Preliminaries

This section collects basic notation and conventions alongside useful facts and
lemmas that we use in the proofs of our main results. In this work, facts denote
results already known from prior work, and lemmas denote auxiliary results that
we prove here.

2.1 Basic General Notation

All the logarithms are evaluated to the base 2. We denote sets by uppercase
calligraphic letters such as X and use uppercase roman letters such as X and
Y for both random variables and quantum registers. The distinction will be
clear from context. The set {1, . . . , n} may be written as [n], and we may also
more generally write [t, n] for the set {t, t + 1, . . . , n}. We denote the uniform
distribution over {0, 1}d by Ud. For a random variable X ∈ X , we use X to
denote both the random variable and its distribution, whenever it is clear from
context. We use x ← X to denote that x is drawn according to X, and, for
a finite set X , we use x ← X to denote that x is drawn uniformly at random
from X . For two random variables X,Y we use X ⊗ Y to denote their product
distribution. We call random variables X and Y copies of each other if and only
if Pr[X = Y ] = 1.

2.2 Quantum Information Theory

In this section we cover some important basic prerequisites from quantum infor-
mation theory alongside some useful lemmas and facts.

Conventions and Notation. Consider a finite-dimensional Hilbert space H
endowed with an inner-product 〈·, ·〉 (we only consider finite-dimensional Hilbert-
spaces). A quantum state (or a density matrix or a state) is a positive semi-
definite operator on H with trace value equal to 1. It is called pure if and only if
its rank is 1. Let |ψ〉 be a unit vector on H, that is 〈ψ,ψ〉 = 1. With some abuse
of notation, we use ψ to represent the state and also the density matrix |ψ〉〈ψ|
associated with |ψ〉. Given a quantum state ρ on H, the support of ρ, denoted
by supp(ρ), is the subspace of H spanned by all eigenvectors of ρ with non-zero
eigenvalues.

A quantum register A is associated with some Hilbert space HA. Define |A| :=
log (dim(HA)). For a sequence of registers A1, . . . , An and a set T ⊆ [n], we define
the projection according to T as AT = (Ai)i∈T . Let L(HA) represent the set of
all linear operators on the Hilbert space HA. For an operator O ∈ L(HA), we use
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OT to represent the transpose of O. For operators O,O′ ∈ L(HA), the notation
O ≤ O′ represents the Löwner order, that is, O′ − O is a positive semi-definite
operator. We denote by D(HA) the set of all quantum states on the Hilbert space
HA. The state ρ with subscript A indicates that ρA ∈ D(HA). If two registers
A,B are associated with the same Hilbert space, we shall represent the relation
by A ≡ B. For two states ρ and σ, we write ρ ≡ σ if they are identical as
states (potentially in different registers). Composition of two registers A and B,
denoted AB, is associated with the Hilbert space HA ⊗ HB . For two quantum
states ρ ∈ D(HA) and σ ∈ D(HB), ρ⊗σ ∈ D(HAB) represents the tensor product
(Kronecker product) of ρ and σ. The identity operator on HA is denoted IA. Let
UA denote the maximally mixed state in HA. Let ρAB ∈ D(HAB). Define

ρB
def= TrAρAB

def=
∑

i

(〈i|⊗IB)ρAB(|i〉 ⊗ IB),

where {|i〉}i is an orthonormal basis for the Hilbert space HA. The state ρB ∈
D(HB) is referred to as the marginal state of ρAB on the register B. Unless
otherwise stated, a missing register from subscript in a state represents partial
trace over that register. Given ρA ∈ D(HA), a purification of ρA is a pure state
ρAB ∈ D(HAB) such that TrBρAB = ρA. Purification of a quantum state is not
unique. Suppose A ≡ B. Given {|i〉A} and {|i〉B} as orthonormal bases over HA

and HB respectively, the canonical purification of a quantum state ρA is a pure
state ρAB

def= (ρ
1
2
A ⊗ IB) (

∑
i|i〉A|i〉B).

A quantum map E : L(HA) → L(HB) is a completely positive and trace pre-
serving (CPTP) linear map. A CPTP map E is described by the Kraus operators
{Mi : HA → HB}i such that E(ρ) =

∑
i MiρM†

i and
∑

i M†
i Mi = IA. A Hermi-

tian operator H : HA → HA is such that H = H†. A projector Π ∈ L(HA) is
a Hermitian operator such that Π2 = Π. A unitary operator VA : HA → HA is
such that V †

AVA = VAV †
A = IA. The set of all unitary operators on HA is denoted

by U(HA). An isometry V : HA → HB is such that V †V = IA. A POVM element
is an operator 0 ≤ M ≤ I. We use the shorthand M̄

def= I − M , where I is clear
from context. We use shorthand M to represent M ⊗ I, where I is clear from
context.

Registers, Quantum Maps, and Isometries. This section collects defini-
tions of certain registers and operations on them.

Definition 2 (Classical Register in a Pure State). Let X be a set. A
classical-quantum (c-q) state ρXE is of the form ρXE =

∑
x∈X p(x)|x〉〈x|⊗ρx

E,
where ρx

E are states.
Let ρXEA be a pure state. We call X a classical register in ρXEA if ρXE (or

ρXA) is a c-q state. Whenever it is clear from context, we identify the random
variable X with the register X via Pr[X = x] = p(x).

Definition 3 (Copy of a Classical Register). Let ρXX̂E be a pure state with
X being a classical register in ρXX̂E taking values in X . Similarly, let X̂ be a
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classical register in ρXX̂E taking values in X . Let ΠEq =
∑

x∈X |x〉〈x| ⊗ |x〉〈x|
be the equality projector acting on the registers XX̂. We call X and X̂ copies
of each other (in the computational basis) if Tr

(
ΠEqρXX̂

)
= 1.

Definition 4 (Conditioning). Let ρXE =
∑

x∈{0,1}n p(x)|x〉〈x|⊗ρx
E be a c-q

state. For an event S ⊆ {0, 1}n, define

Pr[S]ρ
def=

∑

x∈S
p(x) and (ρ|X ∈ S) def=

1
Pr[S]ρ

∑

x∈S
p(x)|x〉〈x|⊗ρx

E .

We sometimes shorthand (ρ|X ∈ S) as (ρ|S) when the register X is clear from
context.

Let ρAB be a state with |A| = n. We define (ρ|A ∈ S) def= (σ|S), where σAB is
the c-q state obtained by measuring the register A in ρAB in the computational
basis. In the case where S = {s} is a singleton set, we shorthand (ρ|A = s) def=
TrA(ρ|A = s).

Definition 5 (Safe Maps). We call an isometry V : HX ⊗ HA → HX ⊗ HB,
safe on X if and only if there is a collection of isometries Vx : HA → HB such
that for all states |ψ〉XA =

∑
x αx|x〉X |ψx〉A we have that

V |ψ〉XA =
∑

x

αx|x〉XVx|ψx〉A.

Definition 6 (Extension). Let ρXE =
∑

x∈X
p(x)|x〉〈x|⊗ρx

E be a c-q state. For

a function Z : X → Z, define the following extension of ρXE,

ρZXE
def=

∑

x∈X
p(x)|Z(x)〉〈Z(x)|⊗|x〉〈x|⊗ρx

E .

For a pure state ρXEA (with X classical and X ∈ X ) and a function Z :
X → Z, define ρZẐXEA to be a pure state extension of ρXEA generated via a
safe isometry V : HX → HX ⊗ HZ ⊗ HẐ (Z classical with copy Ẑ). We use
the notation MA(ρAB) to denote measurement in the computational basis on
register A in state ρAB .

All isometries considered in this paper are safe on classical registers that
they act on. Isometries applied by adversaries can be assumed without loss of
generality as safe on classical registers, by the adversary first making a (safe)
copy of classical registers and then proceeding as before. This does not reduce
the power of the adversary.

Norms, Trace Distance, and Divergences. This section collects definitions
of some important quantum information-theoretic quantities and related useful
properties.

Definition 7 (Schatten p-Norm). For p ≥ 1 and a matrix A, the Schatten
p-norm of A, denoted by ‖A‖p, is defined as ‖A‖p

def= (Tr(A†A)
p
2 )

1
p .
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Definition 8 (Trace Distance). The trace distance between two states ρ and
σ is given by ‖ρ − σ‖1. We write ρ ≈ε σ if ‖ρ − σ‖1 ≤ ε.

In the classical setting the trace distance corresponds to the statistical dis-
tance (a.k.a. total variation distance). We write X ≈ε Y for two random variables
X and Y if the statistical distance between their distributions is at most ε.

Definition 9 (Max-Divergence ([35], see also [46])). Given states ρ and σ
such that supp(ρ) ⊆ supp(σ), the max-divergence between ρ and σ, denoted by
Dmax(ρ‖σ), is defined as Dmax(ρ‖σ) = min{λ ∈ R : ρ ≤ 2λσ}.

For the facts stated below without citation, we refer the reader to standard
textbooks [54,58]. The following facts state some basic properties of trace dis-
tance.

Fact 1 (Data-Processing Inequality). Let ρ, σ be states and E be a CPTP
map. Then, ‖E(ρ) − E(σ)‖1 ≤ ‖ρ − σ‖1. This inequality is an equality whenever
E is a CPTP map corresponding to an isometry.

Pauli and Clifford Operators. We proceed to define Pauli operators and the
associated Pauli and Clifford groups.

Definition 10 (Pauli operators). The single-qubit Pauli operators are given
by

I =
(

1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

An n-qubit Pauli operator is given by the n-fold tensor product of single-
qubit Pauli operators. We denote the set of all |A|-qubit Pauli operators on HA

by P(HA), where |P(HA)| = 4|A|. Any linear operator L ∈ L(HA) can be written
as a linear combination of |A|-qubit Pauli operators with complex coefficients as
L =

∑
P∈P(HA) αP P . This is called the Pauli decomposition of a linear operator.

Definition 11 (Pauli Group). The single-qubit Pauli group is given by

{+P,−P, iP, −iP : P ∈ {I,X, Y, Z}}.
The Pauli group on |A|-qubits is the group generated by the operators

described above applied to each of |A|-qubits in the tensor product. We denote
the |A|-qubit Pauli group on HA by P̃(HA).

Definition 12 (Clifford Group). The Clifford group C(HA) is defined as the
group of unitaries that normalize the Pauli group P̃(HA), i.e.,

C(HA) = {V ∈ U(HA) : V P̃(HA)V † = P̃(HA)}.

The Clifford unitaries are the elements of the Clifford group.

We will also need to work with subgroups of the Clifford group with certain
special properties. The following fact describes these properties and guarantees
the existence of such subgroups.
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Fact 2 (Subgroup of the Clifford group [33]). There exists a subgroup
SC(HA) of the Clifford group C(HA) such that given any non-identity Pauli
operators P,Q ∈ P(HA) we have that

|{C ∈ SC(HA)|C†PC = Q}| =
|SC(HA)|

|P(HA)| − 1
and |SC(HA)| = 25|A| − 23|A|.

Informally, applying a random Clifford operator from SC(HA) (by conjuga-
tion) maps P to a Pauli operator chosen uniformly at random over all non-
identity Pauli operators. Furthermore, we have that P(HA) ⊂ SC(HA).

Additionally, there exists a procedure Samp which when given as input a uni-
formly random string R ← {0, 1}5|A| outputs in time poly(|A|) the classical
description Samp(R) of a Clifford operator CR ∈ SC(HA) with the following
property: Let USC(HA) denote the uniform distribution over the classical descrip-
tions of Clifford operators in SC(HA). Then, it holds that

Samp(R) ≈2−2 A| USC(HA), (2)

where we recall that ≈2−2|A| means that the statistical distance between the two
distributions is at most 2−2|A|.

Pauli Twirling and Related Facts. The analysis of our construction will require
the use of several facts related to Pauli twirling. We collect them below, beginning
with the usual version of the Pauli twirl.

Fact 3 (Pauli twirl [34]). Let ρ ∈ D(HA) be a state and P, P ′ ∈ P(HA) be
Pauli operators such that P �= P ′. Then,

∑

Q∈P(HA)

Q†PQρQ†P ′†Q = 0.

Fact 4 (Subgroup Clifford twirl [16]). Let ρ ∈ D(HA) be a state and P, P ′ ∈
P(HA) be Pauli operators such that P �= P ′. Let SC(HA) be the subgroup of
Clifford group as defined in Fact 2. Then,

∑

C∈SC(HA)

C†PCρC†P ′†C = 0.

As an immediate corollary, we conclude that for any normal operator M ∈
L(HA) such that M†M = MM† we have that

∑

C∈SC(HA)

C†PCMC†P ′†C = 0,

since M has an eigen-decomposition.
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The Transpose Method. The transpose method (see, e.g., [55]) is one of the
most important tools for manipulating maximally entangled states. Note that
the canonical purification of a maximally mixed state ρA = UA, denoted ρAÂ, is a
maximally entangled state. Roughly speaking, the transpose method corresponds
to the statement that some local action on one half of the maximally entangled
state (say register A) is equivalent to performing the transpose of the same action
on the other half of that state (register Â). We now state this formally.

Fact 5 (Transpose Method). Let ρAÂ be the canonical purification of ρA =
UA. For any M ∈ L(HA) it holds that

(M ⊗ IÂ)ρAÂ(M† ⊗ IÂ) = (IA ⊗ MT )ρAÂ(IA ⊗ (MT )†).

2.3 Quantum-Secure Randomness Extractors

Randomness extractors are key objects in our constructions of non-malleable
codes and secret sharing schemes. We introduce the relevant notions and auxil-
iary results here.

Definition 13 (Min-entropy). Given a state ρXE, the min-entropy of X con-
ditioned on E, denoted by Hmin(X‖E)ρ, is defined as

Hmin(X‖E)ρ = − inf
σE∈D(HE)

Dmax(ρXE‖IX ⊗ σE).

Roughly speaking, a 2-source non-malleable extractor nmExt takes as input
two (not necessarily) uniformly random and independent strings X and Y and
outputs a string R = nmExt(X,Y ) that is statistically close to uniform distri-
bution. It is called non-malleable because learning nmExt(f(X), g(Y )) for any
known tampering functions f and g (without fixed points) reveals essentially
nothing about R = nmExt(X,Y ), in the sense that R should still be close to
uniformly random given the tampered version nmExt(f(X), g(Y )). We may thus
see (X,Y ) as a form of split-state encoding of R. Since our split-state tampering
adversaries have quantum capabilities and access to shared quantum entangle-
ment, we cannot use an arbitrary classical 2-source non-malleable extractor to
generate R. Instead, we make use of an explicit quantum-secure 2-source non-
malleable extractor recently constructed by Batra, Boddu, and Jain [16], which
remains secure against such quantum adversaries and whose properties we detail
below.

Fact 6 (Quantum-Secure 2-Source Non-Malleable Extractor [16]). Con-
sider the split-state tampering experiment in Fig. 3 with a split-state tampering
adversary A = (U, V, |ψ〉W1W2). Based on this figure, define psame = Pr[(X,Y ) =
(X ′, Y ′)]ρ̂ and the conditioned quantum states

ρsame = (nmExt ⊗ nmExt)(ρ̂|(X,Y ) = (X ′, Y ′))

and
ρtamp = (nmExt ⊗ nmExt)(ρ̂|(X,Y ) �= (X ′, Y ′)).
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For any given constant δ > 0, there exists an explicit function nmExt :
{0, 1}n × {0, 1}δn → {0, 1}r with output length r = (1/2 − δ)n such that for
independent sources X ← {0, 1}n and Y ← {0, 1}δn and any such split-state
tampering adversary A = (U, V, |ψ〉W1W2) it holds that

1. ‖nmExt(X,Y )X − Ur ⊗ Un‖1 ≤ ε and ‖nmExt(X,Y )Y − Ur ⊗ Uδn‖1 ≤ ε,
2. psame‖ρsame

RW2
− Ur ⊗ ρsame

W2
‖1 + (1 − psame)‖ρtamp

RR′W2
− Ur ⊗ ρtamp

R′W2
‖1 ≤ ε,

with ε = 2−nΩδ(1)
. Furthermore, nmExt(x, y) can be computed in time poly(n).

Fig. 3. Split-state tampering experiment for quantum-secure 2-source non-malleable
extractors.

Intuitively, Item 1 in Fact 6 guarantees that R = nmExt(X,Y ) remains close
to uniformly random even when one of the input sources X and Y is revealed.
This property is usually called strong extraction. Item 2 spells out the non-
malleability guarantees of nmExt: If the tampering attack does not change X
and Y (i.e., (X ′, Y ′) = (X,Y )), then R should be close to uniformly random even
given one of the updated entangled states shared by the adversaries attacking
each source. On the other hand, if the tampering attack changed X and Y (i.e.,
(X ′, Y ′) �= (X,Y )), then R should be close to uniformly random even given the
additional output R′ = nmExt(X ′, Y ′) and one of the updated entangled states.

3 Split-State Non-malleable Codes for Quantum
Messages

In this section, we describe and analyze our split-state non-malleable coding
scheme for quantum messages. We begin by describing the encoding and decod-
ing procedures Enc and Dec. In the analysis, we first show that (Enc,Dec) is
an average-case non-malleable code with low error for quantum messages. This
yields Theorem 1. Then, to conclude the argument and obtain Theorem 2, we
show that every such average-case non-malleable code is also worst-case split-
state non-malleable at the price of a blow-up in the error as a function of the
input quantum message length.
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3.1 Our Candidate Coding Scheme for Quantum Messages

We proceed to describe our explicit candidate coding scheme for quantum mes-
sages. Suppose that we wish to encode a quantum state σM with canonical
purification σMM̂ . Let b = |M | denote the message length and fix an arbitrary
constant δ > 0. We will invoke the explicit quantum-secure 2-source ε-non-
malleable extractor nmExt : {0, 1}� × {0, 1}δ� → {0, 1}r guaranteed by Fact 6
with output length r satisfying

r = (1/2 − δ)� ≥ 5b (3)

and error ε = 2−�Ωδ(1)
, where Ωδ(·) hides constants which depend only on δ.

The encoding CPTP map Enc works as follows on input σM :

1. Sample classical bitstrings X ← {0, 1}� and Y ← {0, 1}δ�;
2. Compute the classical key R = nmExt(X,Y ) ∈ {0, 1}r;
3. Let SC(HM ) be the subgroup of the Clifford group described in Fact 2 and

Samp be the associated sampling procedure. Compute CR = Samp(R) and
the masked state ψZ = CRσMC†

R. Note that the constraint in Equation (3)
guarantees that R is long enough to sample such a Clifford operator as per
Fact 2.

4. Output registers X and (Y,Z) as the two parts of the split-state encoding.
Note that X and Y are classical strings while Z is a quantum state.

It is clear that Enc can be computed efficiently if nmExt is explicit. The
decoding procedure Dec is straightforward, and proceeds as follows on input
possibly tampered registers (X,Y ) → (X ′, Y ′) and ψZ → τZ :

1. Compute the candidate key R′ = nmExt(X ′, Y ′);
2. Let τZ denote the possibly tampered quantum state stored in register Z.

Then, compute the candidate message ηM = C†
R′τZCR′ where, as in the

encoding procedure Enc above, CR′ = Samp(R′) with Samp the sampling
procedure corresponding to the subgroup SC(HM ) of the Clifford group from
Fact 2;

3. Output ηM .

It is easy to check that this coding scheme (Enc,Dec) satisfies the basic correct-
ness property Dec(Enc(σMM̂ )) = σMM̂ .

3.2 Average-Case Non-malleability

In this section, we show that the coding scheme (Enc,Dec) described in Sect. 3.1
is average-case non-malleable with low-error. More precisely, we prove the fol-
lowing result.

Theorem 4 (Average-Case Non-Malleable Codes with Constant
Rate). For any fixed constant δ > 0, the coding scheme (Enc,Dec) described in
Sect. 3.1 with codewords of length n and message size b ≤ (

1
11 − δ

)
n is average-

case ε′-non-malleable with ε′ = 2−nΩδ(1)
. Moreover, both Enc and Dec can be

computed in time poly(n).
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The claim about the computational complexity of Enc and Dec in Theorem
4 can be easily verified from the description in Sect. 3.1, using the fact that the
codeword length n satisfies n = O(�). We prove the remainder of Theorem 4
via a sequence of lemmas, whose proofs mostly appear in the full version of this
work.

Throughout this proof we assume that CR, the Clifford operator sampled
from R via the sampling procedure Samp from Fact 2 used in Step 3 of Enc(σ)
in Sect. 3.1, is uniformly distributed over SC(HM ). Based on (2) in Fact 2, this
assumption will lead to an additive factor of 2−2b in the final non-malleability
error, which we add at the end of our argument.

For ease of readability, a detailed diagram of the complete split-state tamper-
ing experiment on (Enc,Dec) in Fig. 4. Taking into account the notation from
Fig. 4, in order to prove Theorem 4 it suffices to show that for any split-state
adversary A = (U, V, ψ) and σMM̂ maximally entangled it holds that

(σ3)M̂M ≈
ε′=2−nΩδ(1) pAσM̂M + (1 − pA)(UM̂ ⊗ γA

M ), (4)

where (pA, γA
M ) depend only on the split-state adversary A.

We begin by noting that in order to establish Eq. (4) we can equivalently con-
sider the modified tampering experiment described in Fig. 5, where the (trans-
posed) Clifford operator is applied to σM̂ instead. More precisely, we have the
following lemma.

Lemma 1. For any fixed split-state adversary A it holds that the states ρ, ρ1,
ρ2, and ρ3 in Fig. 5 are equal to σ, σ1, σ2,and σ3 in Fig. 4, respectively.

Proof. The desired statement follows if we show that σ1 and ρ1 are equal. This
is a direct consequence of the transpose method (Fact 5). ��

We can further note that delaying the generation of R and the application of
the corresponding Clifford operator CT

R on the M̂ register until the very end has
no effect on the final state. Therefore, we can focus on the modified tampering
experiment described in Fig. 6. We capture this formally in the next brief lemma
statement.

Lemma 2. For any fixed split-state adversary A it holds that the final state θ4
in Fig. 6 is equal to the final state ρ3 in Fig. 5.

In particular, combining Lemmas 1 and 2 implies that to establish Equation
(4) it suffices to show that for any split-state adversary A = (U, V, ψ) and θMM̂

maximally entangled it holds that

(θ4)M̂M ≈ε′ pAθM̂M + (1 − pA)(UM̂ ⊗ γA
M ), (5)

where (pA, γA
M ) depend only on the split-state adversary A. Here, the states

θ, θ1, θ2, θ3, θ4 correspond to the intermediate states of the modified tampering
experiment in Fig. 6.



86 N. G. Boddu et al.

We now set up some helpful definitions before proceeding to the next lemma.
We may write θ2 as

θ2 = (U ⊗ V )(θ1 ⊗ |ψ〉W1W2)(U ⊗ V )†.

Our analysis will proceed by cases, depending on whether the X and Y
registers are modified by the tampering experiment in Fig. 6 (i.e., XY �= X ′Y ′)
or not. To this end, we consider two different conditionings of θ2 based on these
two cases. More precisely, taking into account Definition 4, we define

θtamp
2 = θ2|(XY �= X ′Y ′) and θsame

2 = θ2|(XY = X ′Y ′).

Note that we may write θ2 = psameθ
same
2 + (1 − psame)θ

tamp
2 , where psame =

Pr[XY = X ′Y ′]θ2 is the probability that XY are not modified in the tampering
experiment from Fig. 6. Further taking into account that

θ3 = (nmExtXY ⊗ nmExtX′Y ′)θ2,

let
θtamp
3 = (nmExtXY ⊗ nmExtX′Y ′)θtamp

2

and
θsame
3 = (nmExtXY ⊗ nmExtX′Y ′)θsame

2 .

Let DRM̂ denote the controlled Clifford operator CT
R acting on register M̂ .

Similarly, let D̃R′Z denote the controlled Clifford operator C†
R′ acting on register

Z. We can then write

(θ4)M̂M = (DRẐ ⊗ D̃R′Z)(θ3)RR′ZM̂ (D†
RẐ

⊗ D̃†
R′Z).

Analogously to the previous cases, we define

(θtamp
4 )M̂M = (DRẐ ⊗ D̃R′Z)(θtamp

3 )RR′ZM̂ (D†
RẐ

⊗ D̃†
R′Z) (6)

and
(θsame

4 )M̂M = (DRẐ ⊗ D̃R′Z)(θsame
3 )RR′ZM̂ (D†

RẐ
⊗ D̃†

R′Z). (7)

Recall from Equation (5) that, based on Lemmas 1 and 2, our end goal is to
show that

(θ4)M̂M ≈ε′ pAθM̂M + (1 − pA)(UM̂ ⊗ γA
M )

for some quantity pA ∈ [0, 1] and state γA
M depending only on the split-state

adversary A. Towards establishing this, we begin by writing

(θ4)M̂M = psame(θsame
4 )M̂M + (1 − psame)(θ

tamp
4 )M̂M .

We will focus on each of the two terms on the right-hand side of this equation
separately. We invoke the two lemmas below, whose proofs we defer to later
dedicated sections.

The first lemma is relevant for handling θtamp
4 , and intuitively states that when

tampering occurs and X ′Y ′ �= XY the outcome of the tampering experiment is
close (in trace distance) to being an unentangled message.
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Lemma 3. We have that (1 − psame)
∥
∥(θtamp

4 )M̂M − UM̂ ⊗ (θtamp
4 )M

∥
∥
1

≤ ε.

Proof. See the full version. ��
The second lemma is relevant for handling θsame

4 , and intuitively states that
when X ′Y ′ = XY the outcome of the tampering experiment is close (in trace
distance) to being either the original message or a completely independent and
unentangled message.

Lemma 4. There exists a constant pepr ∈ [0, 1] depending only on the split-state
adversary A such that

psame · ∥
∥(θsame

4 )M̂M − (
pepr · θM̂M + (1 − pepr)(UM̂ ⊗ UM )

)∥∥
1

≤ ε + 2 · 4−b.

Proof. See the full version. ��
We now show how to wrap up the argument and establish Eq. (5) using

Lemmas 3 and 4. We have

(θ4)M̂M

= psame(θsame
4 )M̂M + (1 − psame)(θ

tamp
4 )M̂M

≈ε+2·4−b psame

(
peprθMM̂ + (1 − pepr)(UM̂ ⊗ UM )

)
+ (1 − psame)(θ

tamp
4 )M̂M (8)

≈ε psame

(
pepr · θMM̂ + (1 − pepr)(UM̂ ⊗ UM )

)
+ (1 − psame)(UM̂ ⊗ (θtamp

4 )M ),
(9)

where Eq. (8) follows from Lemma 4 and Equation (9) follows from Lemma 3.
Combining Eqs. (8) and (9) with a triangle inequality shows that

(θ4)M̂M

≈2(ε+4−b) psame
(
pepr · θMM̂ + (1 − pepr)(UM̂ ⊗ UM )

)

+ (1 − psame)(UM̂ ⊗ (θtamp
4 )M )

= psame · pepr · θMM̂

+ (1 − psame · pepr)

(
UM̂ ⊗

(
psame(1 − pepr)

1 − psame · pepr
· UM +

1 − psame

1 − psame · pepr
· (θtamp

4 )M

))
. (10)

Consider setting pA = psame · pepr and γA
M = psame(1−pepr)

1−psame·pepr
· UM + 1−psame

1−psame·pepr
·

(θtamp
4 )M in Equation (10). We claim that pA and γA

M depend only on the split-
state adversary A. This holds because:

– psame = Pr[XY = X ′Y ′]θ2 is a function of A and (X,Y ), which are sampled
independently of the message σM ;

– Lemma 4 guarantees that pepr is a function of A only;
– The state (θtamp

4 )M is a function of (θtamp
3 )ZX′Y ′ , and one can prepare the

latter by running an independent tampering experiment on registers XY Z =
Ul ⊗ Uδl ⊗ UZ .
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Therefore, we conclude that both pA and γA
M only depend on A. In this case,

we can write

(θ4)M̂M ≈2(ε+4−b) pA · θMM̂ + (1 − pA)
(
UM̂ ⊗ γA

M

)
.

By Lemmas 1 and 2, this implies that we have

(σ3)M̂M ≈2(ε+4−b) pA · σMM̂ + (1 − pA)
(
UM̂ ⊗ γA

M

)
(11)

in the original tampering experiment from Fig. 4.

Setting Parameters for Theorem 4. To conclude the proof of Theorem 4, it
remains to argue that, given any constant δ > 0, the coding scheme (Enc,Dec) is
average-case (ε′ = 2−nΩδ(1)

)-non-malleable for any message length b ≤ ( 1
11 −δ)n.

This is done by setting parameters in the construction above appropriately, which
can be found in the full version.

Fig. 4. Split-state tampering experiment.

Fig. 5. Split-state tampering experiment after applying the transpose method.
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Fig. 6. Split-state tampering experiment after applying the transpose method and
delaying both the generation of register R and the application of the corresponding
Clifford operator.

3.3 From Average-Case to Worst-Case Non-malleability

In this section, we show that every average-case non-malleable code is also worst-
case non-malleable with larger error, provided that the message length is not too
large. More precisely, we have the following.

Lemma 5. If (Enc,Dec) is an average-case ε-non-malleable code for quantum
messages of length b, then it is also a (worst-case) ε′-non-malleable code for
quantum messages of length b, where ε′ = 2b · ε.

Proof. See the full version. ��
Combining Theorem 4 with Lemma 5 immediately implies the following.

Theorem 5. There exists a constant c ∈ (0, 1) such that the following holds:
The coding scheme (Enc,Dec) described in Sect. 3.1 with codewords of length n

and any message length b ≤ nc is (worst-case) ε-non-malleable with ε = 2−nΩ(1)
.

Moreover, both Enc and Dec can be computed in time poly(n).
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Abstract. Common random string model is a popular model in classi-
cal cryptography. We study a quantum analogue of this model called the
common Haar state (CHS) model. In this model, every party participat-
ing in the cryptographic system receives many copies of one or more i.i.d
Haar random states.

We study feasibility and limitations of cryptographic primitives in this
model and its variants:

– We present a construction of pseudorandom function-like states with
security against computationally unbounded adversaries, as long as
the adversaries only receive (a priori) bounded number of copies. By
suitably instantiating the CHS model, we obtain a new approach to
construct pseudorandom function-like states in the plain model.

– We present separations between pseudorandom function-like states
(with super-logarithmic length) and quantum cryptographic primi-
tives, such as interactive key agreement and bit commitment, with
classical communication. To show these separations, we prove new
results on the indistinguishability of identical versus independent
Haar states against LOCC (local operations, classical communica-
tion) adversaries.

1 Introduction

In classical cryptography, the common random string and the common refer-
ence string models were primarily introduced to tackle cryptographic tasks that
were impossible to achieve in the plain model. In the common reference string
model, there is a trusted setup who produces a string that every party has
access to. In the common random string model, the common string available
to all the parties is sampled uniformly at random. Due to the lack of structure
required from the common random string model, it is in general the more desir-
able model of the two. There have been many constructions proposed over the
years in these two models, including non-interactive zero-knowledge [BFM19],
secure computation with universal composition [CF01,CLOS02] and two-round
secure computation [GS22,BL18].

It is a worthy pursuit to study similar models for quantum cryptographic
protocols. In the quantum world, there is an option to define models that are
intrinsically quantum in nature. For instance, we could define a model wherein
c© International Association for Cryptologic Research 2025
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a trusted setup produces a quantum state and every party participating in the
cryptographic system receives one or more copies of this quantum state. Indeed,
two works by Morimae, Nehoran and Yamakawa [MNY23] and Qian [Qia23]
consider this model, termed as the common reference quantum state model
(CRQS). They proposed a construction of unconditionally secure commitments
in this model. Quantum commitments is a foundational notion in quantum
cryptography. In recent years, quantum commitments have been extensively
studied [AQY22,MY21,AGQY22,MY23,BCQ23,Bra23] due to its implication to
secure computation [BCKM21,GLSV21]. The fact that information-theoretically
secure commitments are impossible in the plain model [LC97,May97,CLM23]
renders the contributions of [MNY23,Qia23] particularly interesting.

Common Haar State Model. While CRQS is a quantum analogue of the com-
mon reference string model, in a similar vein, we can ask if there is a quantum
analogue of the common random string model. We consider a novel model called
the common Haar state model (CHS). In this model, every party in the system
(including the adversary) receives many copies of many i.i.d Haar states. We
believe that the CHS model is more pragmatic than the CRQS model owing to
the fact that we do not require any structure from the common public state. This
raises the possibility of avoiding a trusted setup altogether and instead we could
rely upon naturally occuring physical processes to obtain the Haar states. This
model was also recently introduced in an independent and concurrent recent
work by Chen, Coladangelo and Sattath [CCS24] (henceforth, referred to as
CCS).

There are three reasons to study this model. Firstly, this model allows us
to bypass impossibility results in the plain model. For instance, as we will see
later, primitives that require computational assumptions in the plain model,
can instead be designed with information-theoretic security in the CHS model.
Second, perhaps a less intuitive reason, is that the constructions proposed in
this model can, in some cases, be adopted to obtain constructions in the plain
model by instantiating the Haar states either using state designs or pseudoran-
dom state generators (PRSGs) [JLS18]. This leads to a modular approach of
designing cryptographic primitives from PRS: first design the primitive in the
CHS model and then instantiate the common Haar state using PRS. Finally, this
model can be leveraged to demonstrate separations between different quantum
cryptographic primitives.

1.1 Our Results

We explore both feasibility results and black-box separations in the CHS model.

Feasibility Results.

Pseudorandom Function-like States with Statistical Security. We study the possi-
bility of designing pseudorandom function-like state generators (PRFSGs), intro-
duced by Ananth, Qian and Yuen [AQY22], with statistical security in the CHS
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model. Roughly speaking, a PRFSG is an efficient keyed quantum circuit that
can be used to produce many pseudorandom states. We refer the reader to
Appendix A of the full version [AGL24] for a detailed discussion on the different
notions of pseudorandomness in the quantum world.

We are interested in designing (λ,m, n, t)-PRFSGs in the setting when n ≥ λ
and m = Ω(log(λ)), where λ is the key length, m is the input length, n is the
output length (and also the number of the qubits in the common Haar state)
and t is the maximum number of queries that can be requested by the adversary.
However, in the CHS model, we can in fact achieve statistical security.

We show the following.

Theorem 1 (Informal). There is a statistically secure (λ,m, n, �)-PRFSG in
the CHS model, for m = λc, n ≥ λ and � = O

(
λ1−c

log(λ)1+ε

)
, for any constant

ε > 0 and for all c ∈ [0, 1).

CCS is the only other work that has studied pseudorandomness in the CHS
model. There are a few advantages of our result over CCS:

– Our theorem subsumes and generalizes the result of CCS who showed (λ, n, t)-
PRSGs exists in their model, where the output length is larger than the key
length, i.e., n > λ and moreover, when t = 1 with t being the number of
copies of the PRS state given to the adversary.

– Our construction, when restricted to the case of PRSGs, is slightly simpler
than CCS: in CCS, on a subset of qubits of the Haar state, a random Pauli
operator is applied whereas in our case a random Pauli Z operator is applied.
Our construction of PRFSG uses the seminal Goldreich-Goldwasser-Micali
approach [GGM86] to go from one-query security to many-query security.

– They propose novel sophisticated tools in their analysis whereas our analysis is
arguably more elementary using well known facts about symmetric subspaces.

– Finally, we can achieve arbitrary stretch whereas it is unclear whether this is
also achieved by CCS.

As a side contribution, the proof of our PRSG construction also simplifies the
proof of the quantum public-key construction of Coladangelo [Col23]; this is due
to the fact the core lemma proven in [Col23] is implied by the above theorem.

Interestingly, the above theorem has implications for computationally secure
pseudorandomness in the plain model. Specifically, we obtain the following corol-
lary by instantiating the CHS model using stretch PRSGs:

Corollary 1. Assuming (λ, n, �)-PRSGs, there exists (λ′,m, n, t)-PRFSGs,
where n > λ′ > λ, m = λc and � = O

(
λ1−c

log(λ)1+ε

)
, for any constant ε > 0

and c ∈ [0, 1).

Prior to our work, stretch PRFSGs for super-logarithmic input length, even in
the bounded query setting, was only known from one-way functions [AQY22].
This complements the work of [AQY22] who showed a construction of PRFSGs
for logarithmic input length from PRSGs.
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Interestingly, the state generators in both works (CCS and ours) only con-
sume one copy of a single Haar state. In this special case, it is interesting to
understand whether we can extend our result to the setting when the adversary
receives λ

log(λ) copies or more. We show this is not possible.

Theorem 2 (Informal). There does not exist a secure (λ,m, n, �)-PRFSG, for
any m ≥ 1, in the CHS model, where n = ω(log(λ)) and � = Ω

(
λ

log(λ)

)
.

CCS also proved a lower bound where they showed that unbounded copy pseu-
dorandom states do not exist. Their negative result is stronger in the sense that
they rule out PRSGs who use up many copies of the Haar states from the CHRS
and thus, their work gives a clean separation between 1-copy stretch PRS and
unbounded copy PRS which was not known before. On the other hand, for the
special case when the PRFSG takes only one copy of the Haar state, we believe
our result yields better parameters.

Commitments. In addition to pseudorandomness, we also study the possibility
of constructing other cryptographic primitives in the CHS model. We show the
following:

Theorem 3 (Informal). There is an unconditionally secure bit commitment
scheme in the CHS model.

Both our construction and the commitments scheme proposed by CCS are
different although they share strong similarities.

Black-Box Separations

LOCC Indistinguishability. We separate pseudorandom function-like states and
quantum cryptographic primitives with classical communication using a vari-
ant of the CHS model. At the heart of our separations is a novel result that
proves indistinguishability of identical versus independent Haar states against
LOCC (local operations, classical communication) adversaries. More precisely,
(A,B) is an LOCC adversary if A and B are quantum algorithms who can
communicate with each other via only classical communication channels. It
is important that A and B do not share any entanglement. Moreover, we
restrict our attention to LOCC distinguishers which are LOCC adversaries
of the form (A,B) where A does not output anything whereas B outputs
a single bit. We say that a LOCC distinguisher (A,B) can distinguish two
states ρAB and σAB with probability at most ε, referred to as ε-LOCC indis-
tinguishability, where A receives the register A and B receives the register B, if
|Pr [1 ← (A,B)(ρAB)] − Pr [1 ← (A,B)(σAB)] | = ε. Of particular interest is the
case when

ρAB = E
|ψ〉←Hn

[
(|ψ〉⊗t)A ⊗ (|ψ〉⊗t)B

]
, σAB = E

|ψ〉←Hn,
|φ〉←Hn

[
(|ψ〉⊗t)A ⊗ (|φ〉⊗t)B

]
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Here, Hn denotes the Haar distribution on n-qubit quantum states and t is
polynomial in n. A couple of works by Harrow [Har23] and Chen, Cotler, Huang
and Li [CCHL22] prove that the LOCC indistinguishability of ρAB and σAB is
negligible in n in the case when t = 1. In this work, we extend to the case when
t is arbitrary.

Theorem 4. ρAB and σAB (defined above) are ε-LOCC indistinguishable, where
ε = O

(
t2

2n

)
.

We also show that the above bound is tight by demonstrating an LOCC distin-
guisher whose distinguishing probability is Θ( t2

2n ).
Recently, Ananth, Kaleoglu and Yuen [AKY24] prove the indistinguishability

of ρAB and σAB in the dual setting, against non-local adversaries that can share
entanglement but cannot communicate.

The above theorem can easily be extended to the multi-party setting where
either all the parties get (many copies of) the same Haar state or they receive
i.i.d Haar states.

Separations. We use Theorem 4 to show that some quantum cryptographic prim-
itives with classical communication are impossible in the CHS model. Let us
develop some intuition towards proving such a statement. Suppose there are two
or more parties participating in a quantum cryptographic protocol with classical
communication in the CHS model. By definition, all the parties would receive
many, say t, copies of |ψ〉, where |ψ〉 is sampled from the Haar distribution. Since
the parties can only exchange classical messages, thanks to Theorem 4, without
affecting correctness or security we can modify the protocol wherein for each
party, say Pi, a Haar state |ψi〉 is sampled and t copies of |ψi〉 is given to Pi.
From this, we can extract a quantum cryptographic primitive in the plain model
since each party can sample a Haar state on its own. In conclusion, quantum
cryptographic primitives with classical communication in the CHS model can be
turned into their counterparts in the plain model.

This gives a natural recipe for proving impossibility results in the CHS model.
We apply this recipe to obtain impossibility results for interactive key agreements
and interactive commitments.

Theorem 5. Interactive quantum key agreement and interactive quantum com-
mitment protocols, with classical communication, are impossible in the CHS
model.

We extend the above theorem to separate interactive quantum key agree-
ment and interactive quantum commitments from pseudorandom function-like
state generators. The separations are obtained by considering a variant of
the CHS model where the adversary does not get access to many copies of
one Haar state but instead gets access to infinitely many input-less oracles1

1 We note that [Kre21] made similar use of infinitely many oracles to prove a separation
between pseudorandom states and one-way functions.
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{
{Gk,x}k,x∈{0,1}λ

}
λ∈N

such that each Gk,x produces a copy of a Haar state
|ψk,x〉. In this model, it is easy to construct pseudorandom function-like states.
However, an extension of Theorem 5 rules out the possibility of interactive quan-
tum key agreement and quantum commitments with classical communication in
this variant. Thus, we have the following.

Theorem 6. There does not exist a black-box reduction from interactive quan-
tum key agreement and quantum commitments with classical communication to
pseudorandom function-like states.

Prior work by Chung, Goldin and Gray [CGG24] extensively studies the separa-
tions between quantum cryptographic primitives with classical communication
and different quantum pseudorandomness notions. However, their framework did
not capture the above result.

Prior works by [ACC+22,CLM23,LLLL24] ruled out quantum key agree-
ments and non-interactive commitments with classical communication from post-
quantum one-way functions. However, their separation was either based on a
conjecture or in a restricted setting whereas our result is unconditional. This
makes our result incomparable with the results from [ACC+22,CLM23,LLLL24].
Our work follows a long line of recent works [HY20,ACC+22,AHY23,CLM23,
ACH+23,BGVV+23,BM+24,CM24] that make progress in understanding the
landscape of black-box separations in quantum cryptography.

2 Technical Overview

2.1 Pseudorandomness in the CHS Model

Warmup: Pseudorandom State Generators (PRSGs). As a warmup, we first
study 1-copy PRSG in the CHS model. Consider the following construction:
Gk(|ϑ〉) := (Zk ⊗ In−λ)|ϑ〉, where Zk = Zk1 ⊗ · · · ⊗ Zkλ , k = k1 · · · kλ ∈ {0, 1}λ

and In−λ is an identity operator on n − λ qubits. In other words, Gk applies a
random Pauli Z operator only on the first λ qubits and does not touch the rest.
Note that this construction already satisfies the stretch property (i.e. the output
length is larger than the key length).

Let us consider the case when the adversary receives just one copy of |ϑ〉
and is expected to distinguish Gk(|ϑ〉) versus an independent Haar state |ϕ〉.
Formally, we would like to argue that the following states are close.

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[Gk(|ϑ〉) ⊗ |ϑ〉〈ϑ|] and σ :=
I

2n
⊗ I

2n
.

By the properties of the symmetric subspace, the following holds:

E
|ϑ〉←Hn

[|ϑ〉〈ϑ|⊗2] ≈ε E
x,y←[2n],x1 �=y1

[
1

2
(|xy〉〈xy| + |xy〉〈yx| + |yx〉〈xy| + |yx〉〈yx|)

]
,
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where ε is negligible in n and the notation x1 (respectively, y1) denotes
the first λ bits of x (respectively, y). Now, applying a random Z oper-
ator on the first λ qubits tantamounts to measuring the first λ qubits
in the computational basis. Given the fact that x1 �= y1, this measure-
ment unentangles the last n qubits. Thus, the result is a state of the form
Ex,y←[2n],x1 �=y1

[
1
2 |x〉〈x| ⊗ |y〉〈y| + 1

2 |y〉〈y| ⊗ |x〉〈x|
]
. This state is in turn close

to I
2n ⊗ I

2n .

Generalizing to Many Copies of the CHS. Next, we to generalize the
above approach to even when polynomially many copies of the CHS are provided.
Formally, we would like to argue that the following two states are close.

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
Gk(|ϑ〉) ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ| ⊗ |ϑ〉〈ϑ|⊗t

]
,

where t is some polynomial of n. Note that, by the property of the Haar distri-
bution, we can simplify σ to

σ =
I

2n
⊗ E

T←[0:t]N
|T 〉〈T |,

where |T 〉 is a type state2 and N = 2n. Note that by the properties of the
symmetric subspace,

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t+1

]
≈ε E

T←[0:t+1]N

T is λ-prefix collision-free

|T 〉〈T |,

where ε is negligible in n and T is λ-prefix collision-free if T ∈ {0, 1}N and for any
x, y ∈ T 3 with x �= y implies x1 �= y1, where the notation x1 (respectively, y1)
denotes the first λ bits of x (respectively, y). Note that, any λ-prefix collision-free
type T ,

|T 〉 = 1√(
t+1

t

)
∑
x∈T

|x〉|T \ {x}〉.

Again, applying a random Z operator on the first λ qubits tantamounts to
measuring the first λ qubits in the computational basis. Given the fact that T
is λ-prefix collision-free, this measurement unentangles the first n qubits. Thus,
the result is a state of the form

E
T←[0:t+1]N

T is λ-prefix collision-free
x←T

[|x〉〈x| ⊗ |T \ {x}〉〈T \ {x}|] .

This state is in turn close to I
2n ⊗ ET←[0:t]N |T 〉〈T |.

2 We encourage readers unfamiliar with type states to refer to Definition 7.
3 Since T ∈ {0, 1}N , we can treat it as a set, in particular the set associated to T is

{i : T [i] = 1}.
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Generalizing to �-Copy PRSG. Finally, we generalize this �-copy PRSG.
Formally, we would like to argue that the following two states are close.

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
Gk(|ϑ〉)⊗� ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ|⊗� ⊗ |ϑ〉〈ϑ|⊗t

]
,

where �, t is some polynomial of n. Note that, by the property of the Haar
distribution, we can simplify σ to

σ = E
T1←[0:�]N

|T1〉〈T1| ⊗ E
T2←[0:t]N

|T2〉〈T2|,

where |T1〉, |T2〉 are type states and N = 2n. Note that, similar to the last case,
we can still write,

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t+�

]
≈ε E

T←[0:t+�]N

T is λ-prefix collision-free

|T 〉〈T |,

and any λ-prefix collision-free type T ,

|T 〉 = 1√(
t+�
�

)
∑

T1⊂T
|T1|=�

|T1〉|T \ T1〉.

Ideally, we would want the application of (Zk ⊗ In−λ)⊗� to unentangle |T1〉 from
|T \ T1〉. This is equivalent to measuring the first � registers in the type basis.
This is in general not true, not true. Hence, we settle for the next best thing,
which is finding a “dense-enough”4 subset of λ-prefix collision-free type such that
(Zk⊗In−λ)⊗� to unentangle |T1〉 from |T \T1〉. We find this subset to be “λ-prefix
�-fold collision-free” types.

We say that a λ-prefix collision-free type T is “λ-prefix �-fold collision-free”
if for all pairs of � sized subsets T1, T2 ⊂ T , ⊕x∈T1x = ⊕x∈T2x only if T1 = T2.
We start by noting that this subset is only “dense-enough” if � = O

(
λ

log(λ)1+ε

)
,

for any constant ε > 0.5
Next, we show that for these λ-prefix �-fold collision-free types states, apply-

ing a random (Zk ⊗ In−λ)⊗� is equivalent to measuring the first � registers in
the type basis. This is because (Zk ⊗ In−λ)⊗� on a type state |T1〉 is equivalent
to adding a phase of (−1)k·(⊕x∈T1x). Hence,

E
k

[
(Zk ⊗ In−λ)⊗� ⊗ Itn|T 〉〈T |(Zk ⊗ In−λ)⊗� ⊗ Itn

]

= E
k

⎡
⎢⎢⎣

1(
t+�
�

)
∑

T1,T2⊂T
|T1|=|T2|=�

(−1)k·(⊕x∈T1x
⊕

⊕y∈T2y)|T1〉|T \ T1〉〈T2|〈T \ T2|

⎤
⎥⎥⎦ ,

4 Here, by dense-enough, we mean when picking a random type from λ-prefix collision-
free, it lies in this subset with probability 1 − negl.

5 Later, in the impossibility result, we show that this is in fact the best we can hope
for as a larger subset would bypass the impossibility result.
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which for λ-prefix �-fold collision-free types states is non-zero only if T1 = T2,
giving us

E
k

[
(Zk ⊗ In−λ)

⊗� ⊗ Itn|T 〉〈T |(Zk ⊗ In−λ)
⊗� ⊗ Itn

]
= E

T1⊂T
|T1|=�

[|T1〉〈T1| ⊗ |T \ T1〉〈T \ T1|] .

Over expectation over all λ-prefix �-fold collision-free types states, this state is
close to ET1←[0:�]N |T1〉〈T1| ⊗ ET2←[0:t]N |T2〉〈T2|.

Limitations. To complement our result, we show that a t-copy PRSG is impos-
sible in the CHS model, for � = O

(
λ

log(λ)

)
(for a restricted class of PRSG

constructs which only takes one copy of the common Haar state). We show this
by showing that the rank of σ grows much faster than the rank of ρ, hence, a
simple distinguisher is a projector on the eigenspace of ρ. In particular, let G̃k(ϑ)
be the PRSG. Then define

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
G̃k(|ϑ〉)⊗� ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ|⊗� ⊗ |ϑ〉〈ϑ|⊗t

]

Now since G̃k(|ϑ〉) is a PRSG, its output is negligibly close to a pure state.
This means that the rank of ρ ≤ 2λ

(
2n+t+�−1

t+�

)
. In contrast, the rank of σ =(

2n+�−1
�

)(
2n+t−1

t

)
. Note that, for t = λ3 and � = λ/ log(λ), rank(ρ)/ rank(σ) =

negl. Hence, we can find a distinguisher. Here the distinguisher just projects
onto the eigenspace of ρ, ρ gets accepted with probability 1 but σ gets accepted
with probability negl, hence giving a disguisher. Since PRFSs imply PRSs (by
setting c = 0), achieving an �-query statistical PRFS in the CHS model for
� = Ω(λ/ log(λ)) is impossible.

Pseudorandom Function-like State Generators. Next we extend this idea
from PRSGs to achieve PRFSGs. We take inspiration from the seminal
Goldreich-Goldwasser-Micali approach [GGM86]. In particular, on the key K =
(k0

1, . . . , k
0
m, k1

1, . . . , k
1
m) ∈ {0, 1}2λ′m and the input x = (x1, . . . , xm) ∈ {0, 1}m,

define the PRFSG GK(x, |ϑ〉) as follows: GK(x, |ϑ〉) = (Z
⊕m

i=1 k
xi
i ⊗ In−λ′)|ϑ〉.

Formally, the following two states are close:

ρ := E

K←{0,1}2 mλ′

|ϑ〉←Hn

[
⊗q

i=1GK(xi, |ϑ〉)⊗�i ⊗ |ϑ〉〈ϑ|⊗t
]
,

and
σ := E

∀i∈[q],|ϕi〉←Hn

|ϑ〉←Hn

[
⊗q

i=1|ϕi〉〈ϕi|⊗�i ⊗ |ϑ〉〈ϑ|⊗t
]
,

for all x1, . . . ,xq ∈ {0, 1}m and �1, . . . , �q such that
∑q

i=1 �i = �, for � =

O
(

λ1−c

log(λ)1+ε

)
and m = λc, for any constant ε > 0 and c ∈ [0, 1).



Cryptography in the Common Haar State Model 103

Just as before, we can write σ as follows:

σ =
q⊗

i=1

E
Ti←[0:�i]N

|Ti〉〈Ti| ⊗ E
T̃←[0:t]N

|T̃ 〉〈T̃ |,

where Ti’s and T̃ are type states and N = 2n. Note that, similar to the last case,
we can still write,

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t+�

]
≈ε E

T←[0:t+�]N

T is λ-prefix �-fold collision-free

|T 〉〈T |,

and any λ-prefix �-fold collision-free type T ,

|T 〉 = 1√(
t+�
�

)
∑

T1⊂T
|T1|=�

|T1〉|T \ T1〉.

Now, after application of one layer of (Zk⊗In−λ)⊗�, we know that |T1〉 unentagles
from |T \ T1〉. We extend this idea to show that even for a tensor of type states,
applying (Zk ⊗ In−λ)⊗�̃i on parts of each type state still unentangles each of
them as long as all the type states are λ-prefix �-fold collision-free type and
their combined set is still λ-prefix �-fold collision-free. Formally, we show the
following: Let �̃1, . . . , �̃q ∈ N, and t1, . . . , tq ∈ N such that

∑q
i=1 �̃i = �̃ and∑q

i=1 ti = t. Then for any λ-prefix �̃-fold collision-free type T and any mutually
disjoint sets T1, . . . , Tq satisfying

⋃q
i=1 Ti = T and |Ti| = ti + �̃i for all i ∈ [q],

E
k←{0,1}n

[
q⊗

i=1

((
Zk ⊗ Im

)⊗�i ⊗ I⊗ti
n+m

)
|Ti〉〈Ti|

((
Zk ⊗ Im

)⊗�̃i ⊗ I⊗ti
n+m

)]

=
q⊗

i=1

E
Xi⊂Ti

|Xi|=�̃i

[|Xi〉〈Xi| ⊗ |Ti \ Xi〉〈Ti \ Xi|] .

Hence, applying each layer (Zkb
i ⊗ In−λ) unentagles all type states into two

halfs. Hence, by repeated application, we get

ρ ≈ε E
T←[0:t+�]N

T is λ-prefix �-fold collision-free

E
(T1,T2,...,Tq,T̂ )

[
q⊗

i=1

|Ti〉〈Ti| ⊗ |T̂ 〉〈T̂ |
]

,

where (T1, T2, . . . , Tq, T̂ ) are sampled as follows: for i = 1, 2, . . . , q, sample an �i-
subset from T \(

⋃i−1
j=1 Tj) uniformly and let T̂ := T \(

⋃q
j=1 Tj). Over expectation

over all λ-prefix �-fold collision-free types states, this state is close to σ.

2.2 Quantum Bit Commitments

With t-copy PRSG in hand, we construct a statistically-hiding, statistically-
binding commitment scheme in the CHS model. Our scheme draws inspira-
tion from the quantum commitment scheme introduced in [MY21,MNY23] that
builds quantum bit commitments from t-copy PRSG.
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In particular, to commit to b = 0, the committer creates a superposition
over all keys of the PRSG in the decommitment register and runs the PRSG
in superposition over this register. The committer sets this as the commitment
register. To commit to b = 1, the committer creates a maximally entangled state
over the commitment and the decommitment register. Formally,

|ψ0〉CiRi
:=

1√
2λ

∑
k∈{0,1}λ

Gk(|ϑ〉)Ci
|k||0n−λ〉Ri

and
|ψ1〉CiRi

:=
1√
2n

∑
j∈{0,1}n

|j〉Ci
|j〉Ri

,

where, (C1, . . . ,Cp) is the commitment register and (R1, . . . ,Rp) is the reveal
register.

To achieve hiding, our scheme relies on the pseudorandomness property of
the PRSG. In particular, the commitment is very close to one where the keys are
distinct for all (Ci,Ri), in this case, one copy of PRS is indistinguishable from a
maximally mixed state.6

Unlike the approach in [MY21], our construction is not of the canonical
form [Yan2]. To achieve binding, the receiver performs multiple SWAP tests.
In particular, we show that since the rank of the commitment registers is expo-
nentially separated, multiple SWAP tests can distinguish between the two.

2.3 Black-Box Separations

LOCC Indistinguishability. The notion of LOCC indistinguishability is well-
studied and is referred to as quantum data hiding by quantum information theo-
rists [BDF+99,DLT02,EW02,Gea02,HLS05,MWW09,CLMO13,PNC14,CH14,
CLM+14,HBAB19]. In this setting, there is a challenger, two (possibly entan-
gled and mixed) bipartite quantum states ρAB and σAB, and a computationally
unbounded, two-party distinguisher (Alice, Bob) who are spatially separated
and without pre-shared entanglement. The challenger picks a quantum state
from {ρAB, σAB} uniformly at random and sends register A to Alice and regis-
ter B to Bob respectively. The task of Alice and Bob is to distinguish whether
they are given ρAB or σAB by performing local operations and communicating
classically. We call such distinguishers LOCC adversaries.

We focus on the case where Alice and Bob each receive t = poly(λ) copies of
|ψ〉A and |φ〉B, where |ψ〉 and |φ〉 are either two identical or i.i.d. Haar states of
length n = ω(log(λ)). Explicitly, the two input states are

ρAB = E
|ψ〉←Hn

[
|ψ〉〈ψ|⊗t

A ⊗ |ψ〉〈ψ|⊗t
B

]
,

6 Note that this still needs multi-key security which is not trivial in the CHS model,
since all the PRS generators share the same Haar state for randomness. But we prove
that our construction satisfies multikey security.
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σAB = E
|ψ〉←Hn

[
|ψ〉〈ψ|⊗t

A

]
⊗ E

|φ〉←Hn

[
|φ〉〈φ|⊗t

B

]
.

Note that if global measurements are allowed, performing SWAP tests can easily
distinguish them. As one of our main technical contributions, we show that for
any LOCC adversary, the advantage of distinguishing ρAB from σAB is negligi-
ble in λ. Before we explain the proof, we compare our theorem with [Har23,
Theorem 8]. In short, the theorems are incomparable. Our setting is stronger in
the sense that the LOCC adversary both obtain polynomial copies of the input,
while [Har23, Theorem 8] studies the single-copy setting. However, [Har23, The-
orem 8] is more general since it holds for a family of input states, whereas the
input in our setting is fixed to ρAB and σAB, which are belong to the family.

Toward the proof, we start by using the following common technique in prov-
ing LOCC indistinguishability: the set of LOCC measurements is a (proper) sub-
set of the set of all positive partial transpose (PPT) measurements [CLM+14].
Hence, it is sufficient to upper bound the maximum distinguishing advan-
tage over two-outcome PPT measurements, i.e., {MAB, IAB − MAB} such that
0 � MAB � IAB and 0 � MΓB

AB � IAB, where MΓB

AB denote the partial transpose
of MAB with respect to B. Next, from the basic properties of partial transpose
and trace norm, we show that the distinguishing advantage is bounded by the
trace norm between ρΓB

AB and σΓB

AB.
The most technical part of the proof is to upper bound the quantity∥∥∥ρΓB

AB − σΓB

AB

∥∥∥
1
. We point out that the partial transpose of a density matrix might

not be a positive semidefinite matrix. Our first step is to expand ρAB and σAB

in the type basis as follows:

ρAB = E
T←[0:2t]d

[|T 〉〈T |AB] ,

σAB = E
SA←[0:t]d

[|SA〉〈SA|A] ⊗ E
SB←[0:t]d

[|SB〉〈SB |B] ,

where d := 2n. Next, we further conditioned on the events that (1) T, SA and SB

each have no repeated elements (2) SA and SB have no identical elements. From
the collision bound, doing so only incurs an additional error of O(t2/d) = negl(λ).
Therefore, we can now treat T, SA and SB as sets. It suffices to prove that∥∥∥ρ̃ΓB

AB − σ̃ΓB

AB

∥∥∥
1

is negligible in λ, where

ρ̃AB := E

T←([d]
2t)

[|T 〉〈T |AB] ,

σ̃AB := E

SA,SB←([d]
t ):

SA∩SB=∅

[|SA〉〈SA|A ⊗ |SB〉〈SB |B] .

Observe that the σ̃ΓB

AB = σ̃AB. To obtain a simpler expression of ρ̃ΓB

AB , we rely on
the following useful identity for bi-partitioning the type states:

|T 〉AB =
∑

X∈(T
t)

1√(
2t
t

) |T \ X〉A ⊗ |X〉B.
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Hence, the partial transpose of ρ̃AB can be written as

ρ̃ΓB

AB = E

T←([d]
2t)

⎡
⎢⎣ 1(

2t
t

)
∑

X,Y ∈(T
t)

|T \ X〉〈T \ Y |A ⊗ |Y 〉〈X|B

⎤
⎥⎦ .

If X = Y , then the term is the tensor product of two disjoint sets |T \ X〉〈T \
X|A ⊗ |X〉〈X|B. Such a term will be canceled out by the corresponding term in
σ̃ΓB

AB since they have equal coefficients. Therefore, the difference between them is
the following matrix with mismatched X and Y :

ρ̃ΓB

AB − σ̃ΓB

AB = E

T←([d]
2t)

⎡
⎢⎣ 1(

2t
t

)
∑

X,Y ∈(T
t):X �=Y

|T \ X〉〈T \ Y |A ⊗ |Y 〉〈X|B

⎤
⎥⎦ .

We continue to simplify it by applying a double-counting argument. Every
tuple of sets (T,X, Y ) uniquely determines a tuple of mutually disjoint sets
(C, I,X ′, Y ′) satisfying C = T \ (X ∪ Y ) (C for the complement of X ∪ Y ),
I = X∩Y (I for intersection), X ′ = X \I and Y ′ = Y \I. Hence, T \X = C�Y ′,
Y = I�Y ′, T \Y = C�X ′, and X = I�X ′ where � denotes the disjoint union. By
further classifying the summands according to s := |C| = |I| ∈ {0, 1, . . . , t − 1}
(note that then |X ′| = |Y ′| = t − s), we have

∥
∥
∥ρ̃

ΓB
AB − σ̃

ΓB
AB

∥
∥
∥
1

=
1

( d
2t

)(2t
t

)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

t−1∑

s=0

∑

C∈
(
[d]
s

)

∑

I∈
(
[d]\C

s

)

∑

X′,Y ′∈
(
[d]\(C�I)

t−s

)
:

X′∩Y ′=∅

|C � Y ′〉A|I � Y ′〉B〈C � X′|A〈I � X′|B

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1

≤ 1
( d
2t

)(2t
t

)

t−1∑

s=0

∑

C∈
(
[d]
s

)

∑

I∈
(
[d]\C

s

)

∥
∥
∥
∥
∥

∑

X′,Y ′∈
(
[d]\(C�I)

t−s

)
:

X′∩Y ′=∅

|C � Y ′〉A|I � Y ′〉B〈C � X′|A〈I � X′|B

︸ ︷︷ ︸

=:KC,I

∥
∥
∥
∥
∥
1

,

where the inequality follows from the triangle inequality. We observe that the
matrix KC,I has the same structure as the adjacency matrix of Kneser graphs.
Here, we recall the definition of Kneser graphs. For v, k ∈ N, the Kneser graph
K(v, k) is the graph whose vertices correspond to the k-element subsets of the
set [v], and two vertices are adjacent if and only if the two corresponding sets
are disjoint. Therefore, for every (C, I), the matrix KC,I is isospectral to the
adjacency matrix of the Kneser graph K(d−|C|−|I|, t−|I|). Finally, we employ
the well-studied spectral property of Kneser graphs as a black box to obtain an
O(t2/d) = negl(λ) upper bound for

∥∥∥ρ̃ΓB

AB − σ̃ΓB

AB

∥∥∥
1
.

Furthermore, we show the tightness of the theorem by constructing an opti-
mal LOCC distinguisher that achieves the same advantage. The strategy is sim-
ple: Alice and Bob each individually measure every copy of their input in the
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computational basis and obtain a total of 2t outcomes. Then, they output 1 if
there is any collision among these 2t outcomes.

Impossibility Results in the CHS Model. With the LOCC Haar indistinguisha-
bility theorem in hand, we investigate the limits of the CHS model when the
communication between the parties is classical. We show that the several impos-
sibility results of information-theoretically secure schemes in the plain model
can be generically lifted to the CHS model, even when the adversary does not
receive any common Haar state. We emphasize that there is no classical coun-
terpart in the CRS model. If the adversary is not given the CRS, then many
information-theoretically secure schemes do exist, such as key agreements.

As common in proving impossibilities, our approach is to convert schemes
in the CHS model to those in the plain model. The transform is simple: in the
new scheme, the parties each sample polynomially many copies of the Haar state
independently and run the original scheme. Crucially, despite the inconsistency
in their Haar states, the new scheme still satisfies completeness thanks to the
LOCC Haar indistinguishability. A caveat is that sampling Haar states is time-
inefficient. However, since the impossibilities in the plain model are still valid if
the (honest) algorithms in the scheme are time-inefficient, doing so is acceptable
for the sake of showing impossibilities.

Separation Results. We separate many important primitives from (λ, ω(log(λ)))-
PRSG. Since (λ, ω(log(λ)))-PRSGs do not exist in the CHS model, we need to
“strengthen” the oracle in order to prove separations. For every security param-
eter λ ∈ N, we define the oracle as {Gk}k∈{0,1}λ where each Gk is an isometry
that takes no input and outputs an i.i.d. Haar state |ψk〉.

Relative to this oracle, the implementation of the PRSG is straightforward:
the output on k of any length λ ∈ N is |ψk〉. The security directly follows
from the hardness of unstructured search. To prove the non-existence of QCCC
schemes, we employ a two step approach. First, showing that a scheme with
respect to this oracle can be transformed to schemes with respect to a much
weaker oracle. Second, showing that this much weaker oracle does not give much
extra power over the plain model. Formally: First, similar to the previous section,
we show that due to the LOCC indistinguishability, the parties can sample all
“large” quantum states on their own, and the correctness and security is only
“polynomially” affected7. This means that any scheme with respect this oracle
can be turned into a scheme with respect to an oracle with only short (constant
times logarithmic) Haar states. Second, for short (constant times logarithmic)
quantum states, we show that this oracle does not give much extra power since
an adversary can learn the oracle completely. This is because for short-enough
states, the adversary can run tomography on polynomial queries and learn the
state with up to inverse polynomial error. Hence, the adversary can simulate

7 Since the Haar indistinguishability has a factor of O(t2/d), as long as t2/d is inverse-
polynomial, we do not incur a lot of loss.
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both parties post-selecting on a transcript to learn any secret8. This means that
any scheme secure in the presence of this oracle can be transformed into another
scheme that is secure in the plain model.

Lastly, we observe that by considering a generalized oracle, namely
{Gk,x}k,x∈{0,1}λ , we can show that (classically accessible) PRFSGs with super-
logarithmic input length exist. We can extend the impossibility of QCCC com-
mitments to hold in the presence of the generalized oracle as well. Thus, we can
separate PRFS and QCCC commitments.

3 Preliminaries

We denote the security parameter by λ. We assume that the reader is familiar
with the fundamentals of quantum computing covered in [NC10].

3.1 Notation

– We use [n] to denote {1, . . . , n} and [0 : n] to denote {0, 1, . . . , n}.
– For any finite set T and any integer 0 ≤ k ≤ |T |, we denote by

(
T
k

)
the set of

all k-size subsets of T .
– For any finite set T , we use the notation x ← T to indicate that x is sampled

uniformly from T .
– We denote by St the symmetric group of degree t.
– For any set A and t ∈ N, we denote by At the t-fold Cartesian product of A.
– For σ ∈ St and v = (v1, . . . , vt), we define σ(v) := (vσ(1), . . . , vσ(t)).
– We denote by D(H) the set of density matrices in the Hilbert space H.
– Let ρAB ∈ D(HA ⊗ HB), by TrB(ρAB) ∈ D(HA) we denote the reduced

density matrix by taking partial trace over B.
– We denote by TD(ρ, ρ′) := 1

2‖ρ − ρ′‖1 the trace distance between quantum
states ρ, ρ′, where ‖X‖1 = Tr(

√
X†X) denotes the trace norm.

– For any matrices A,B, we write A � B to indicate that B − A is positive
semi-definite.

– For any Hermitian matrix O, the trace norm of O has the following variational
definition:

‖O‖1 = max
−I�M�I

Tr(MO).

Furthermore, if Tr(O) = 0 then ‖O‖1 = 2 · max0�M�I Tr(MO).
– We denote the Haar measure over n qubits by Hn.
– For any matrix MAB =

∑
i,j,k,� αijk�|i〉〈j|A ⊗ |k〉〈�|B on registers (A,B), by

MΓB

AB we denote its partial transpose with respect to register B, i.e., MΓB

AB =∑
i,j,k,� αijk�|i〉〈j|A ⊗ |�〉〈k|B.9

8 Note that since the adversary does not need to be efficient, as long as they have the
description of this oracle, they can post-select on the transcript.

9 Note that the (partial) transpose operation needs to be defined with respect to to
an orthogonal basis. Throughout this work, it is always defined with respect to to
the computational basis.



Cryptography in the Common Haar State Model 109

3.2 Common Haar State Model

The Common Haar State (CHS) model is related to the Common Reference
Quantum State (CRQS) model [MNY23]. In this model, all parties receive poly-
nomially many copies of a single quantum state sampled from the Haar distri-
bution. Recently, another work of Chen et al. [CCS24] studied a similar model
called the Common Haar Random State (CHRS) model. In the CHRS model,
every party receives polynomially many copies of polynomially many i.i.d. Haar
states.

We define another variant of the CHS model called the Keyed Common
Haar State Model. In this model, all parties (once the security parameter is set
to λ) have access to the oracle (called the Keyed Common Haar State Oracle)
Gλ := {Gk}k∈{0,1}λ as follows. For every k ∈ {0, 1}λ, the oracle Gk is a Haar
isometry that maps any state |ψ〉 to |ψ〉|ϑk〉, where |ϑk〉 is a Haar state of length
n(λ) = ω(log(λ)).

While the above variant is harder to instantiate (hence not useful for con-
structions), is a natural candidate for black-box separations as seen is Sect. 9.

Pseudorandom State (PRS) Generators in the CHS Model

Definition 1 (Statistically Secure (λ, n, �)-Pseudorandom State Gener-
ators in the CHS Model). We say that a QPT algorithm G is a statistically
secure (λ, n, �)-pseudorandom state generator (PRSG) in the CHS model if the
following holds:

– State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where
Gk denotes G(k, ·)) is a quantum channel such that for every n(λ)-qubit state
|ϑ〉,

Gk(|ϑ〉〈ϑ|) = |ϑk〉〈ϑk|,
for some n(λ)-qubit state |ϑk〉. We sometimes write Gk(|ϑ〉) for brevity.10

– �-copy Pseudorandomness: For any polynomial t(·) and any non-uniform,
unbounded adversary A = {Aλ}λ∈N, there exists a negligible function negl(·)
such that:∣∣∣∣∣ Pr

k←{0,1}λ

|ϑ〉←Hn(λ)

[
Aλ

(
Gk(|ϑ〉)⊗�(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)

)
= 1
]

− Pr
|ϕ〉←Hn(λ)
|ϑ〉←Hn(λ)

[
Aλ

(
|ϕ〉〈ϕ|⊗�(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)

)
= 1
] ∣∣∣∣∣ ≤ negl(λ).

10 More generally, the generation algorithm could take multiple copies of the common
Haar state as input or output a state of different size compared to the common Haar
state. Here, we focus on a restricted class of generators that only require a single
copy of the common Haar state as input, and the output of the generator matches
the size of the common Haar states.
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If G satisfies �-copy pseudorandomness for every polynomial �(·) then we drop �
from the notation and simply denote it to be a (λ, n)-PRSG.

We define a stronger definition below called multi-key �-copy PRS generators.
Looking ahead, our construction of PRS in Sect. 4.2 satisfies this definition.

Definition 2 (Multi-key Statistically Secure (λ, n, �)-Pseudorandom
State Generators in the CHS Model). We say that a QPT algorithm G
is a multi-key statistically secure (λ, n, �)-pseudorandom state generator in the
CHS model if the following holds:

– State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where
Gk denotes G(k, ·)) is a quantum channel such that for every n(λ)-qubit state
|ϑ〉,

Gk(|ϑ〉〈ϑ|) = |ϑk〉〈ϑk|,
for some n(λ)-qubit state |ϑk〉. We sometimes write Gk(|ϑ〉) for brevity.

– Multi-key �-copy Pseudorandomness: For any polynomial t(·), p(·) and
any non-uniform, unbounded adversary A = {Aλ}λ∈N, there exists a negligible
function negl(·) such that:
∣∣∣∣∣ Pr
k1,...,kp(λ)←{0,1}λ

|ϑ〉←Hn(λ)

⎡
⎣Aλ

⎛
⎝

p(λ)⊗
i=1

Gki
(|ϑ〉)⊗�(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)

⎞
⎠ = 1

⎤
⎦

− Pr
|ϕ1〉,...,|ϕp(λ)〉←Hn(λ)

|ϑ〉←Hn(λ)

⎡
⎣Aλ

⎛
⎝

p(λ)⊗
i=1

|ϕi〉〈ϕi|⊗�(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)

⎞
⎠ = 1

⎤
⎦
∣∣∣∣∣ ≤ negl(λ).

If G satisfies multi-key �-copy pseudorandomness for every polynomial �(·) then
we drop � from the notation and simply denote it to be a multi-key (λ, n)-PRSG.

Remark 1. Note that in the plain model, PRS implies multi-key PRS because
the pseudorandom state generator does not share randomness for different keys.
It is not clear whether this holds in the CHS model as the different executions
of the pseudorandom state generator share the same common Haar state.

Pseudorandom Function-like State (PRFS) Generators in the CHS
Model

Definition 3 (Statistical Selectively Secure (λ,m, n, �)-PRFS Genera-
tors). We say that a QPT algorithm G is a statistical selectively secure
(λ,m, n, �)-PRFS generator in the CHS model if the following holds:

– State Generation: For any λ ∈ N, k ∈ {0, 1}λ and x ∈ {0, 1}m(λ), where
m(λ) is the input length, the algorithm Gk,x (where Gk,x denotes G(k, x, ·))
is a quantum channel such that for every n(λ)-qubit state |ϑ〉,

Gk,x(|ϑ〉〈ϑ|) = |ϑk,x〉〈ϑk,x|,

for some n(λ)-qubit state |ϑk,x〉. We sometimes write Gk,x(|ϑ〉) or Gk(x, |ϑ〉)
for brevity.
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– �-query Selective Security: For any polynomial t(·), any non-uniform,
unbounded adversary A = {Aλ}λ∈N, and any tuple of (possibly repeated)
m(λ)-bit indices (x1, . . . , x�(λ)), there exists a negligible function negl(·) such
that for all λ ∈ N,

∣∣
∣
∣∣

Pr
k←{0,1}λ,|ϑ〉←Hn(λ)

⎡

⎣Aλ

⎛

⎝x1, . . . , x�(λ),

�(λ)⊗

i=1

G(k, xi, |ϑ〉) ⊗ |ϑ〉〈ϑ|⊗t(λ)

⎞

⎠ = 1

⎤

⎦

− Pr
∀x∈{0,1}m(λ), |ϕx〉←Hn(λ),

|ϑ〉←Hn(λ)

⎡

⎣Aλ

⎛

⎝x1, . . . , x�(λ),

�(λ)⊗

i=1

|ϕxi 〉〈ϕxi | ⊗ |ϑ〉〈ϑ|⊗t(λ)

⎞

⎠ = 1

⎤

⎦

∣
∣∣
∣∣

≤ negl(λ).

If G satisfies �-query selective security for every polynomial �(·), we drop � from
the notation and say that G is a (λ,m, n)-PRFS generator.

Quantum Commitments in the CHS Model

Definition 4 (Quantum Commitments in the CHS Model). A (non-
interactive) quantum commitment scheme in the CHS model is given by a tuple
of the committer C and receiver R parameterized by a polynomial p(·), both of
which are uniform QPT algorithms. Let |ϑ〉 be the n(λ)-qubit common Haar
state. The scheme is divided into two phases: the commit phase, and the reveal
phase as follows:

– Commit phase: C takes |ϑ〉⊗p(λ) and a bit b ∈ {0, 1} to commit as input,
generates a quantum state on registers C and R, and sends the register C to
R.

– Reveal phase: C sends b and the register R to R. R takes |ϑ〉⊗p(λ) and (b,C,R)
given by C as input, and outputs b if it accepts and otherwise outputs ⊥.

Definition 5 (Poly-Copy Statistical Hiding). A quantum commitment
scheme (C,R) in the CHS model satisfies poly-copy statistical hiding if for any
non-uniform, unbounded malicious receiver R∗ = {R∗

λ}λ∈N, and any polynomial
t(·), there exists a negligible function negl(·) such that
∣∣∣∣∣Pr
[
R∗

λ(|ϑ〉⊗t(λ),TrR(σCR)) = 1 : |ϑ〉←Hn(λ),

σCR←C,(|ϑ〉⊗p(λ),0)

]

− Pr
[
R∗

λ(|ϑ〉⊗t(λ),TrR(σCR)) = 1 : |ϑ〉←Hn(λ),

σCR←C,(|ϑ〉⊗p(λ),1)

]∣∣∣∣∣ ≤ negl(λ),

where C, is the commit phase of C.

Definition 6 (Statistical Sum-Binding). A quantum commitment scheme
(C,R) in the CHS model satisfies statistical sum-binding if the following holds.
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For any pair of non-uniform, unbounded malicious senders C∗
0 and C∗

1 that take
|ϑ〉⊗T (λ) for arbitrary large T (·) as input and work in the same way in the commit
phase, if we let pb to be the probability that R accepts the revealed bit b in the
interaction with C∗

b for b ∈ {0, 1}, then we have

p0 + p1 ≤ 1 + negl(λ).

3.3 Symmetric Subspaces, Type States, and Haar States

The proofs of facts and lemmas stated in this subsection can be found in [Har13].
Let v = (v1, . . . , vt) ∈ At for some finite set A. Let |A| = N . Define type(v) ∈ [0 :
t]N to be the type vector such that the ith entry of type(v) equals the number of
occurrences of i ∈ [N ] in v.11 In this work, by T ∈ [0 : t]N we implicitly assume
that

∑
i∈[N ] Ti = t. For T ∈ [0 : t]N , we denote by mset(T ) the multiset uniquely

determined by T . That is, the multiplicity of i ∈ mset(T ) equals Ti for all i ∈ [N ].
We write T ← [0 : t]N to mean sampling T uniformly from [0 : t]N conditioned
on
∑

i∈[N ] Ti = t. We write v ∈ T to mean v ∈ At satisfies type(v) = T .
In this work, we will focus on collision-free types T which satisfy Ti ∈ {0, 1}

for all i ∈ [N ]. A collision-free type T can be naturally treated as a set and we
write v ← T to mean sampling a uniform v conditioned on type(v) = T .

Definition 7 (Type States). Let T ∈ [0 : t]N , we define the type states:

|T 〉 :=

√∏
i∈[N ] Ti!

t!

∑
v∈T

|v〉.

If T is collision-free, then it can be simplified to

|T 〉 = 1√
t!

∑
v∈T

|v〉.

Furthermore, it has the following useful expression

|T 〉〈T | = 1
t!

∑
v,u∈T

|v〉〈u| = E
v←T

[∑
σ∈St

|v〉〈σ(v)|
]

. (1)

Lemma 1 (Average of Copies of Haar-Random States). For all N, t ∈ N,
we have

E
|ϑ〉←H(CN )

|ϑ〉〈ϑ|⊗t = E
T←[0:t]N

|T 〉〈T |.

11 We identify [0 : t]N as [0 : t]A.
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3.4 Quantum Black-Box Reductions

We recall the definition of fully black-box reductions [RTV04,BBF13] and their
quantum analogue. The definitions below are taken verbatim from [HY20].

Definition 8 (Quantum Primitives). A quantum primitive P is a pair
(FP ,RP), where FP is a set of quantum algorithms I, and RP is a relation
over pairs (I,A) of quantum algorithms I ∈ FP and A. A quantum algorithm
I implements P or is an implementation of P if I ∈ FP . If I ∈ FP is efficient,
then I is an efficient implementation of P. A quantum algorithm A P-breaks
I ∈ FP if (I,A) ∈ RP . A secure implementation of P is an implementation
I of P such that no efficient quantum algorithm P-breaks I. The primitive P
quantumly exists if there exists an efficient and secure implementation of P.

Definition 9 (Quantum Primitives Relative to Oracle). Let P =
(FP ,RP) be a quantum primitive, and O be a quantum oracle. An oracle quan-
tum algorithm I implements P relative to O or is an implementation of P rela-
tive to O if IO ∈ FP . If IO ∈ FP is efficient, then I is an efficient implementa-
tion of P relative to O. A quantum algorithm A P-breaks I ∈ FP relative to O
if (IO,AO) ∈ RP . A secure implementation of P is an implementation I of P
relative to O such that no efficient quantum algorithm P-breaks I relative to O.
The primitive P quantumly exists relative to O if there exists an efficient and
secure implementation of P relative to O.

Definition 10 (Quantum Fully Black-Box Reductions). A pair (C,S) of
efficient oracle quantum algorithms is a quantum fully-black-box reduction from
a quantum primitive P = (FP ,RP) to a quantum primitive Q = (FQ,RQ) if
the following two conditions are satisfied:

1. (Correctness.) For every implementation I ∈ FQ, we have CI ∈ FP .
2. (Security.) For every implementation I ∈ FQ and every quantum algorithm

A, if A P-breaks CI , then SA,I Q-breaks I.

4 Warmup: Statistical Stretch PRS Generators inthe
CHS Model

We present a construction of multi-key PRS generator with statistical security
in the CHS model.

Theorem 7. There exists a multi-key (λ, n, �)-statistical PRS generator in the
CHS model, where n ≥ λ and � = O(λ/ log(λ)1+ε) for any constant ε > 0.

The proof can be found in Sect. 4.2. Later, we prove the optimality of our con-
struction in Sect. 4.3. Specifically, we show that any (λ, n, �)-statistical PRS gen-
erator cannot simultaneously satisfy n = ω(log(λ)) and � = Ω(λ/ log(λ)).
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4.1 Useful Lemmas

At a high level, the proof follows the template of [AGQY22,AGKL23]: we do
the analysis in the symmetric subspace. First, we identify a nice property of
type vectors such that (1) a randomly sampled type satisfies this property with
overwhelming probability and (2) the PRS generation algorithm behaves well
on every type state having this property. We identify these type vectors as �-
fold collision-free types (which are a generalization of distinct types [AGQY22,
AGKL23]).

Definition 11 (�-Fold n-Prefix Collision-Free Types). Let n,m, t, � ∈ N

such that t ≥ � and T ∈ [0 : t]2
n+m

is a type vector. We say that T is �-fold n-
prefix collision-free if for all pairs of �-subsets12 S, T ⊆ mset(T ), the first n bits
of
⊕

x∈S x ∈ {0, 1}n+m is identical to that of
⊕

y∈T y ∈ {0, 1}n+m if and only if

S = T . We define I(�)
n,m(t) := {T ∈ [0 : t]2

n+m

: T is �-foldn-prefix collision-free}
as the set of all �-fold n-prefix collision-free type vectors.

When t > �, one can easily verify that �-fold n-prefix collision-freeness implies the
standard collision-freeness. Also note that when t > 2�, �-fold n-prefix collision-
freeness implies i-fold n-prefix collision-freeness for all i ≤ �.

Next, we show that a random type is �-fold n-prefix collision-free with high
probability.

Lemma 2. PrT←[0:t]2n+m [T ∈ I(�)
n,m(t)] = 1 − O(t2�/(2n − 2�)).

Proof. First, sampling T ← [0 : t]2
n+m

uniformly is O(t2/2n+m)-close to sam-
pling a uniform collision-free T from [0 : t]2

n+m

by the collision bound.
Furthermore, sampling a uniform collision-free T from [0 : t]2

n+m

is equivalent
to sampling t elements x1, x2, . . . , xt one by one from {0, 1}n+m conditioned on
them being distinct and setting T such that mset(T ) = {x1, . . . , xt}. Hence, it
suffices to show that sampling t elements x1, x2, . . . , xt one by one from {0, 1}n+m

conditioned on them being distinct results in an �-fold n-prefix collision-free set
with probability 1 − O(t2�/2n).
For any two distinct �-subsets of indices S �= T ⊆ [t], let BadS,T denote the
event that the first n bits of

⊕
i∈S xi is the same as that of

⊕
j∈T xj . Then the

following holds:

Pr
[
BadS,T : x1,x2,...,xt←{0,1}n+m

x1,x2,...,xt are distinct

]
= O(1/(2n − 2�)).

This is because we can first sample |S ∪ T | − 1 elements (in S ∪ T ) except one
with indices in S \ T . Then BadS,T occurs only if the first n bits of the last
sample is equal to the first n bits of the bitwise XOR of all other elements in S
with all elements in T , which happens with probability at most O(1/(2n − 2�)).

By a union bound, we have T ∈ I(�)
n,m(t) with probability at least 1 −

(O(t2/2n+m) +
(

t
�

)2 · O(1/(2n − 2�))) = 1 − O(t2�/(2n − 2�)). ��
12 Here we allow the subsets to contain duplicate elements.
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Finally, the following two lemmas show that applying random Pauli-Z on any
�-fold n-prefix collision-free type state is equivalent to a “classical” probabilistic
process13.

Lemma 3. For any v ∈ {0, 1}(n+m)(t+�) such that type(v) ∈ I(�)
n,m(t + �) and

σ ∈ St+�, define

Av,σ := E
k←{0,1}n

[((
Zk ⊗ Im

)⊗� ⊗ I⊗t
n+m

)
|v〉〈σ(v)|

((
Zk ⊗ Im

)⊗� ⊗ I⊗t
n+m

)]
.

Then Av,σ = |v〉〈σ(v)| if σ maps [�] to [�]; otherwise, Av,σ = 0.

Proof. Suppose v = (v1||w1, . . . , vt+�||wt+�) ∈ {0, 1}(n+m)(t+�) with vi ∈ {0, 1}n

and wi ∈ {0, 1}m for all i ∈ [t]. First, a direct calculation yields:
((

Zk ⊗ Im

)⊗� ⊗ I⊗t
n+m

)
|v〉〈σ(v)|

((
Zk ⊗ Im

)⊗� ⊗ I⊗t
n+m

)

= (−1)〈k,
⊕�

i=1(vi⊕vσ(i))〉|v〉〈σ(v)|.

Therefore, after averaging over k,

Av,σ = E
k←{0,1}n

[
(−1)〈k,

⊕�
i=1(vi⊕vσ(i))〉

]
|v〉〈σ(v)|

=

{
|v〉〈σ(v)| if

⊕�
i=1(vi ⊕ vσ(i)) = 0

0 otherwise.

Since type(v) ∈ I(�)
n,m(t + �), the condition

⊕�
i=1 vi =

⊕�
i=1 vσ(i) holds if and

only if the two sets {1, 2, . . . , �} and {σ(1), σ(2), . . . , σ(�)} are identical. ��

The following lemma lies at the technical heart of this section. It states that
the action of applying random Zk on �-fold n-prefix collision-free types T 14

has the following “classical” probabilistic interpretation: the output is identically
distributed to first uniformly sampling an �-subset X from T and then generating
|X〉〈X| ⊗ |T \ X〉〈T \ X|.

Lemma 4. For any T ∈ I(�)
n,m(t + �),

E
k←{0,1}n

[((
Zk ⊗ Im

)⊗� ⊗ I⊗t
n+m

)
|T 〉〈T |

((
Zk ⊗ Im

)⊗� ⊗ I⊗t
n+m

)]

= E
X←(T

�)
[|X〉〈X| ⊗ |T \ X〉〈T \ X|] .

13 We say that this is a “classical” probabilistic process because we can write the result-
ing density matrix as direct sum of matrices with classical descriptions with weights
chosen by a completely classical process. This means that we can simualte this
process by first doing a completely classical sampling process followed by a state
preparation.

14 Since T is collision-free, we will treat it as a set.
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Proof. We first use the expression in Eq. (1) on the left-hand side:

E
v←T

[
∑

σ∈St

E
k←{0,1}n

[((
Zk ⊗ Im

)⊗�

⊗ I⊗t
n+m

)
|v〉〈σ(v)|

((
Zk ⊗ Im

)⊗�

⊗ I⊗t
n+m

)]]

.

(2)

Then from the previous lemma (Lemma 3)

(2) = E
v←T

⎡
⎣ ∑

σ1∈S�,σ2∈St

|v〉〈σ1 ◦ σ2(v)|

⎤
⎦

= E
v←T

[ ∑
σ1∈S�

|v[1:�]〉〈σ1(v[1:�])| ⊗
∑

σ2∈St

|v[�+1:�+t]〉〈σ2(v[�+1:�+t])|
]

= E

[ ∑
σ1∈S�

|v1〉〈σ1(v1)| ⊗
∑

σ2∈St

|v2〉〈σ2(v2)| :
X←(T

�),
v1←X,

v2←T\X

]

= E
X←(T

�)
[|X〉〈X| ⊗ |T \ X〉〈T \ X|] .

For the first equality, we use Lemma 3 and decompose σ = σ1 ◦ σ2 for some
σ1, σ2 such that σ1(x) = x for all x ∈ {� + 1, � + 2, · · · , � + t} and σ2(y) = y for
all y ∈ {1, 2, · · · , �}. Since all �+1, �+2, · · · , �+ t are fixed points of σ1, we can
view it as an element in S�. Similarly, we view σ2(y) as an element in St. The
second equality follows by denoting the first � part of v by v[1:�] and the last
t part of v by v[�+1:�+t]. The third equality holds because sampling a tuple v
from T is equivalent to sampling an �-subset X from T followed by ordering to
elements in X and T \ X. ��

4.2 Construction

In this section, we assume that the length of the common Haar state satisfies
n = n(λ) ≥ λ for all λ ∈ N. We define the construction as follows: on input
k ∈ {0, 1}λ and a single copy of the common Haar state |ϑ〉,

Gk(|ϑ〉) := (Zk ⊗ In−λ)|ϑ〉.

Lemma 5 (�-Copy Pseudorandomness). Let G be as defined above. Let

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
Gk(|ϑ〉)⊗� ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ|⊗� ⊗ |ϑ〉〈ϑ|⊗t

]
.

Then TD (ρ, σ) = O
(

(�+t)2�

2λ

)
.
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Proof. We prove this via a hybrid argument:

Hybrid 1. Sample T ← [0 : �+t]2
n

. Sample k ← {0, 1}λ. Output ((Zk⊗In−λ)⊗�⊗
I⊗t
n )|T 〉.

Hybrid 2. Sample T ← [0 : � + t]2
n

uniformly conditioned on T ∈ I(�)
λ,n−λ(� + t).

Sample k ← {0, 1}λ. Output ((Zk ⊗ In−λ)⊗� ⊗ I⊗t
n )|T 〉.

Hybrid 3: Sample T ← [0 : � + t]2
n

uniformly conditioned on T ∈ I(�)
λ,n−λ(� + t).

Sample a uniform �-subset T1 from T . Output |T1〉 ⊗ |T \ T1〉.

Hybrid 4. Sample T ← [0 : � + t]2
n

. Sample a uniform �-subset T1 from T .15
Output |T1〉 ⊗ |T \ T1〉.

Hybrid 5. Sample a collision-free T from [0 : �+ t]2
n

. Sample a uniform �-subset
T1 from T . Output |T1〉 ⊗ |T \ T1〉.

Hybrid 6. Sample a uniform collision-free T1 from [0 : �]2
n

. Sample a uniform
collision-free T2 from [0 : t]2

n

conditioned on T1 and T2 have no common ele-
ments. Output |T1〉 ⊗ |T2〉.

Hybrid 7. Sample a uniform collision-free T1 from [0 : �]2
n

. Sample a uniform
collision-free T2 from [0 : t]2

n

. Output |T1〉 ⊗ |T2〉.

Hybrid 8. Sample T1 ← [0 : �]2
n

. Sample T2 ← [0 : t]2
n

. Output |T1〉 ⊗ |T2〉.

Indistinuishability of Hybrids.

– By Lemma 2, the trace distance between Hybrid 1 and Hybrid 2 is O((t +
�)2�/2λ).

– From Lemma 4, the output of Hybrid 2 is

E

T←[0:�+t]2
n
:

T∈I(�)
λ,n−λ(�+t)

E
T1←(T

�)
[|T1〉〈T1| ⊗ |T \ T1〉〈T \ T1|] .

Hence, Hybrid 2 is equivalent to Hybrid 3.
– Again by Lemma 2, the trace distance between Hybrid 3 and Hybrid 4 is

O((t + �)2�/2λ).
– The trace distance between Hybrid 4 and Hybrid 5 is O((t + �)2/2n) by the

collision bound.
– Hybrid 5 and Hybrid 6 are equivalent.
– The trace distance between Hybrid 6 and Hybrid 7 is O(t�/2n).

15 Since T might have collisions, T1 is allowed to contain duplicate elements.
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– Finally, the trace distance between Hybrid 7 and Hybrid 8 is O((t2 + �2)/2n)
by the collision bound.

This completes the proof. ��

In the following, we show that our construction also satisfies multi-key �-copy
pseudorandomness using Lemma 5.

Lemma 6 (Multi-key �-Copy Pseudorandomness). Let G be defined as
above. Let

ρ :=
p⊗

i=1

E
|ϕi〉←Hn

[
|ϕi〉〈ϕi|⊗�

]
⊗ E

|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t

]

and

σ := E
|ϑ〉←Hn

[
p⊗

i=1

E
ki←{0,1}λ

[
Gki

(|ϑ〉)⊗�
]
⊗ |ϑ〉〈ϑ|⊗t

]
.

Then TD (ρ, σ) = O
(

p·(p�+t)2�

2λ

)
.

The proof of Lemma 6 can be found in the full version [AGL24].
Proof of Theorem 7. Our construction is an efficiently-implementable uni-

tary channel and thus satisfies the state generation property. Pseudorandomness
follows from Lemma 6. ��

4.3 Optimality of Our PRSG Construction

In this section, if the PRS generation algorithm uses only one copy of the com-
mon Haar state, we show that �-copy statistical PRS and multi-key �-copy sta-
tistical PRS are impossible for � = Ω(λ/ log(λ)) and n = ω(log(λ)).

Theorem 8. Statistically secure (λ, n, �)-PRS is impossible in the CHS model
if (a) the generation algorithm uses only one copy of the common Haar state,
(b) n = ω(log(λ)), (c) � = Ω(λ/ log(λ)) and, (d) the length of the common Haar
state is n = ω(log(λ)).

The proof of Theorem 8 can be found in the full version [AGL24].

5 Statistical Stretch PRFS Generators in the CHS Model

In this section, we extend our techniques from Sect. 4.2 to construct an
(λ,m, n, �)-statistical PRFS in the CHS model, where m = λc, � =
λ1−c/ log(λ)1+ε, the length of the common Haar state is n ≥ λ1−c, for any
constant ε > 0 and c ∈ [0, 1). In the case when n > λ, the construction satisfies
stretch property. We prove the following theorem in the full version [AGL24].

Theorem 9. There exists an (λ,m, n, �)-statistical selectively secure PRFS gen-
erator in the CHS model where the length of the common Haar state is n(λ),
m(λ) = λc, � = O(λ1−c/ log(λ)1+ε) and n(λ) ≥ λ1−c, for any constant ε > 0
and for any c ∈ [0, 1).
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Note that since a PRS can be used to computationally instantiate CHS in
the plain model, the above result also gives us a way to get bounded-query long-
input PRFS from PRS in the plain model. In more detail, we can start with a
PRS that has stretch (i.e. n > λ) and then we can bootstrap into a PRFS for
large input length at the cost of a reduction in stretch.16

Corollary 2. Assuming the existence of (λ, n, �)-PRS, for n > λ and � =
O(λ1−c/ log(λ)1+ε), there exists a selectively secure (2λ,m, n, �)-PRFS gener-
ator with m(λ) = λc, for any constant ε > 0 and for any c ∈ [0, 1).

Furthermore, since PRFS imply PRS, achieving an �-query statistical PRFS
in the CHS model for � = Ω(λ/ log(λ)) is impossible from Theorem 8.

Corollary 3. (λ,m, n, �)-statistical PRFS is impossible in the CHS model if
(a) the generation algorithm uses only one copy of the common Haar state,
(b) � = Ω(λ/ log(λ)), (c) the length of the common Haar state is n and, (d)
n = ω(log(λ)).

5.1 Construction

We extend the techniques used in Sect. 4.2 to construct a statistical PRFS
in Fig. 1. The construction samples a uniform key for each position of the input
being zero or one. Applying this to the common Haar state gives us the output of
the PRFS. The details can be seen in Fig. 1. Thoughout this section, one should
think of m = λc and λ′ = λ1−c for some constant c ∈ [0, 1).

Fig. 1. PRFS in the CHS model

The main property of the construction that makes it a PRFS is its ability
to disentangles any type state in I(�)

λ′,n−λ′(� + t) into a probabilistic mixture of
disjoint subsets of the type.

16 Formally, let GPRS is a (λ, n, �)-PRS and G(k, x, |φ〉) is (λ, m, n, �)-statistical selec-
tively secure PRFS generator in the CHS model with n > λ, � = O(λ1−c/ log(λ)1+ε)
and m(λ) = λc, then for K = (k1, k2) ∈ {0, 1}λ × {0, 1}λ we can define
GPRFS(k, x) := G(k1, x, GPRS(k2)) as the (2λ, m, n, �)-PRFS generator.



120 P. Ananth et al.

6 Quantum Commitments in the CHS Model

In this section, we construct a commitment scheme that satisfies poly-copy statis-
tical hiding and statistical sum-biding in the CHS model. The scheme is inspired
by the quantum commitment scheme proposed in [MY21,MNY23]. In contrast
to the scheme in [MY21], our construction is not of the canonical form [Yan2]. To
achieve binding, similar to [MNY23], the receiver needs to perform several SWAP
tests. To achieve hiding, our scheme relies on the multi-key pseudorandomness
property in Lemma 6.

6.1 Construction

We assume that n(λ) ≥ λ+1 for all λ ∈ N. Our construction, parameterized by
the polynomial p = p(λ) := λ, is shown in Fig. 2. In the full version [AGL24], we
prove the following theorem:

Theorem 10. The construction in Fig. 2 is a quantum commitment in the CHS
model.

Fig. 2. Quantum commitment scheme in the CHS model
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7 LOCC Indistinguishability

In this section, we prove our main technical theorem for proving impossibilities
and separations in Sect. 8 and Sect. 9.

7.1 Definitions

Definition 12 (LOCC Adversaries). An LOCC adversary is a tuple (A,B),
where A and B are spatially separated, non-uniform, and computationally
unbounded quantum algorithms without pre-shared entanglement. In addition,
A and B can only perform local operations on their registers and communicate
classically.

Definition 13 (LOCC Indistinguishability). We say that two density
matrices (ρAB, σAB) are ε-LOCC indistinguishable if for any LOCC adversary
(A,B) with A taking as input register A and B taking as input register B, the
probability that B outputs 1 satisfies17

|Pr[(A,B)(ρAB) = 1] − Pr[(A,B)(σAB) = 1]| ≤ ε.

If ε(·) is negligible, then we simply say that (ρAB, σAB) are LOCC indistinguish-
able.

7.2 LOCC Haar Indistinguishability

We prove the following theorem in the full version [AGL24]:

Theorem 11 (LOCC Haar Indistinguishability). Let ρAB := E|ψ〉←Hn

|ψ〉〈ψ|⊗t
A ⊗ |ψ〉〈ψ|⊗t

B and σAB := E|ψ〉←Hn

[
|ψ〉〈ψ|⊗t

A

]
⊗ E

|φ〉←Hn

[
|φ〉〈φ|⊗t

B

]
. Then

ρAB and σAB are O(t2/2n)-LOCC indistinguishable.

7.3 An Optimal LOCC Haar Distinguisher

We present an (optimal) LOCC Haar distinguisher with advantage Ω(t2/2n) in
the full version [AGL24]. Hence, the upper bound in Theorem 11 is tight.

8 Impossibilities of QCCC Primitives in the CHS Model

In this section, we investigate the impossibility of statistically secure quantum-
computation classical-communication (QCCC) primitives in the CHS model. We
prove the following theorem in the full version [AGL24]:

Theorem 12. There does not exist primitive P in the CHS model where P ∈
{statistically secure QCCC key agreements, statistically hiding and statistically
binding QCCC interactive commitments}.
17 Since (A, B) are allowed to communicate and we do not care about communication

complexity, it is without loss of generality to assume that B outputs the bit.
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9 Quantum Black-Box Separation in the QCCC Model

9.1 The Separating Oracle

As is common in black-box impossibility results, we will define oracles relative
to which ω(log(λ))-PRSGs exist while QCCC key agreements and interactive
commitments do not. We define the oracle G := {{Gk}k∈{0,1}λ}λ∈N as follows.
For every λ ∈ N and k ∈ {0, 1}λ, the oracle Gk is a Haar isometry that maps
any state |ψ〉 to |ψ〉|ϑk〉, where |ϑk〉 is a Haar state of length n(λ) = ω(log(λ)).
The existence of ω(log(λ))-PRSGs relative to G can be proven easily.

9.2 Separating QCCC Key Agreements from (λ, ω(log(λ)))-PRSGs

In the full version [AGL24], we prove the following theorem:

Theorem 13. There does not exist a quantum fully black-box reduction (C,S)
from QCCC key agreements to (λ, ω(log(λ)))-PRSGs such that C only asks clas-
sical queries to the PRSG.

9.3 Separating QCCC Interactive Commitments
from (λ, ω(log(λ)))-PRSGs

In the full version [AGL24], we prove the following theorem:

Theorem 14. There does not exist a quantum fully black-box reduction (C,S)
from QCCC Interactive Commitments to (λ, ω(log(λ)))-PRSGs such that C only
asks classical queries to the PRSG.
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Abstract. A robust combiner combines many candidates for a crypto-
graphic primitive and generates a new candidate for the same primitive.
Its correctness and security hold as long as one of the original candidates
satisfies correctness and security. A universal construction is a closely
related notion to a robust combiner. A universal construction for a prim-
itive is an explicit construction of the primitive that is correct and secure
as long as the primitive exists. It is known that a universal construction
for a primitive can be constructed from a robust combiner for the prim-
itive in many cases.

Although robust combiners and universal constructions for classical
cryptography are widely studied, robust combiners and universal con-
structions for quantum cryptography have not been explored so far.
In this work, we define robust combiners and universal constructions
for several quantum cryptographic primitives including one-way state
generators, public-key quantum money, quantum bit commitments, and
unclonable encryption, and provide constructions of them.

On a different note, it was an open problem how to expand the plain-
text length of unclonable encryption. In one of our universal construc-
tions for unclonable encryption, we can expand the plaintext length,
which resolves the open problem.

1 Introduction

1.1 Background

The ultimate goal of theoretical cryptography is to construct interesting cryp-
tographic primitives unconditionally. Over the past years, many computational
assumptions have been proposed, and many interesting cryptographic primitives
have been constructed under the computational assumptions. However, none of
the computational assumptions are proven. Indeed, we do not even know how to
prove P �= NP while it is a necessary condition to construct interesting classical
cryptographic primitives unconditionally. Moreover, given many candidates for
a primitive, we cannot often decide which candidate is the most secure one. For
example, we can construct public-key encryption (PKE) from decisional Diffie-
Hellman (DDH) [DH76,ElG85] or learning with errors (LWE) [Reg05], but cur-
rently, we do not know which computational assumption is the weaker assumption.
c© International Association for Cryptologic Research 2025
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This causes the problem in the following realistic scenario. Suppose we have two
candidates for PKE, where one is based on DDH and the other is based on LWE,
and we want to decide more secure candidate to use. Unfortunately, in the current
knowledge, we cannot decide which candidate is the more secure one.

A robust cryptographic combiner [Her05,HKN+05] was introduced to resolve
this issue. Given many candidates for a primitive, a cryptographic combiner com-
bines these candidates and produces a new candidate for the same primitive.
The new candidate is correct and secure as long as at least one of the original
candidates satisfies correctness and security. For example, a robust PKE com-
biner takes two candidates for PKE, where one’s security relies on DDH and the
other’s security relies on LWE, and produces a new candidate for PKE. The new
candidate is correct and secure as long as the DDH or LWE assumption holds.
Robust combiner is a well-studied topic in classical cryptography. In fact, robust
combiners for many fundamental classical cryptographic primitives such as one-
way functions, public-key encryption, and functional encryption are shown to
exist [HKN+05,AJN+16,AJS17,ABJ+19,JMS20].

A closely related notion to a robust combiner is a universal construc-
tion [Lev85]. A universal construction for a primitive, say OWFs, is an explicit
construction of OWFs that is correct and secure as long as OWFs exist. The adver-
sary must be able to break all OWF candidates to break a universal construction.
In this sense, a universal construction for OWFs is the most secure one among
all possible OWF candidates. In classical cryptography, universal constructions
are well-studied topic and are known to exist for many fundamental primitives.
First, the pioneering work by Levin introduces a notion of universal construction
and shows how to construct a universal construction for OWFs [Lev85]. After
decades, Harnik, Kilian, Naor, Reingold, and Rosen [HKN+05] give a univer-
sal construction for PKE and they show how to construct a universal construc-
tion for a primitive using a robust combiner for the same primitive. Goldwasser
and Kalai cast questions about universal constructions for cryptographic primi-
tives related to obfuscation [GTK16]. The following sequence of works [AJN+16,
AJS17,ABJ+19] gives universal constructions for functional encryption under
some assumptions, and [JMS20] gives it unconditionally.

Although robust combiners and universal constructions are widely studied
topics in classical cryptography, those in the quantum world have not been stud-
ied so far, where each party can generate, process, and communicate quantum
information. It is well known that, even in the quantum world, information-
theoretical security is impossible to achieve for many interesting quantum cryp-
tographic primitives [LC97,May97,Aar18], and currently, many interesting quan-
tum cryptographic primitives are constructed under computational assumptions.
For example, public-key quantum money is one of the most interesting quan-
tum cryptographic primitives, and many candidate constructions are proposed
relying on computational assumptions [AC12,FGH+12,Kan18,Zha19,KSS22,
LMZ23,Zha23b]. However, none of them have been proven so far, and more-
over, we cannot even decide which assumptions are the weakest assumptions.
This inability leads to the problem that we cannot decide the most secure one
to use.
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If there exists a robust public-key quantum money combiner, then we can
combine them and produce a new candidate for public-key quantum money,
which is secure as long as at least one of the original candidates is secure. There-
fore, it is natural to ask the following first question:

Is it possible to construct robust combiners for fundamental quantum
cryptographic primitives?

On a different note, recent works show the possibility that quantum cryp-
tography exists even if classical cryptography does not. A pseudo-random
state generator (PRSG) is a quantum analog of a pseudo-random genera-
tor [JLS18], and Kretchmer shows the possibility that PRSGs exist even if
BQP = QMA [Kre21]. Many interesting quantum cryptographic primitives
are shown to be constructed from PRSGs [MY22b,MY22a,AQY22,AGQY22,
BCQ23]. Among them, one-way state generators (OWSGs) and quantum bit
commitments (equivalent to EFI [Yan22,BCQ23]) are considered to be candi-
dates for the necessary assumptions for the existence of quantum cryptography.
In the case of classical cryptography, many fundamental primitives have the
nice feature of the existence of universal constructions. It is natural to wonder
whether quantum cryptographic primitives have universal constructions or not.
In fact, some researchers believe that the existence of universal constructions is
a nice feature for fundamental cryptographic primitives [Zha23a]. Therefore, we
ask the following second question:

Is it possible to construct universal constructions for fundamental quantum
cryptographic primitives?

1.2 Our Results

We solve the two questions above affirmatively for several cryptographic primi-
tives. Our contributions to the field are as follows:

1. We formally define robust combiners and universal constructions for many
quantum cryptographic primitives including OWSGs, public-key quantum
money, quantum bit commitments, and unclonable encryption.

2. We construct a robust combiner and a universal construction for OWSGs
without any assumptions. A universal construction is secure as long as there
exist OWSGs. In other words, the adversary of a universal construction must
be able to break all OWSG candidates. In this sense, our construction for
OWSG is the most secure one among all possible OWSG candidates. Before
this work, the candidate constructions for OWSGs were based on OWFs,
average-case hardness of semi-classical quantum statistical difference [CX22]
or random quantum circuits [AQY22,BCQ23] 1.

1 As discussed in the previous works [AQY22,BCQ23], it is a folklore that a ran-
dom quantum circuit is PRSGs although there exists no theoretical evidence so far.
Since we can construct OWSGs from PRSGs [MY22b,MY22a], we can also construct
OWSGs based on random quantum circuits if a random quantum circuit is PRSGs.



Robust Combiners and Universal Constructions for Quantum Cryptography 129

3. We construct a robust combiner and a universal construction for public-key
quantum money without any assumptions. In particular, in this work, we
consider the public-key quantum money mini-scheme introduced in [AC12],
which can be generically upgraded into full-fledged public-key quantum
money by additionally using digital signatures. A universal construction for
a public-key quantum money mini-scheme satisfies security as long as a
public-key quantum money mini-scheme exists. In other words, the adver-
sary of a universal construction must be able to break all candidates for a
public-key quantum money mini-scheme. In this sense, our construction is
the most secure one among all possible public-key quantum money mini-
scheme candidates. Before this work, many candidate constructions are pro-
posed [AC12,FGH+12,Kan18,Zha19,KSS22,LMZ23,Zha23b].

4. We construct a robust combiner and a universal construction for quantum
bit commitment without any assumptions. Note that our results also imply
that we can construct a robust combiner and a universal construction for
EFI, oblivious transfer, and multi-party computation, which are equivalent
to quantum bit commitments [BCQ23]. In our robust combiner, given n-
candidates of quantum bit commitments, we can construct a new quantum
bit commitment that satisfies statistical binding and computational hiding at
least one of n-candidates satisfies computational hiding and computational
binding at the same time. A universal construction for quantum bit commit-
ment is secure as long as there exists a quantum bit commitment. In other
words, the adversary for a universal construction must be able to break all
candidates for quantum bit commitment. In this sense, our construction for
quantum bit commitment is the most secure one among all possible quan-
tum bit commitment candidates. Before this work, candidate constructions
of quantum bit commitments were based on OWFs, classical oracle [KQST23],
or random quantum circuits [AQY22,BCQ23] 2.

5. We construct robust combiners and universal constructions for various kinds
of unclonable encryption as follows:

– We construct robust combiners for (one-time) unclonable secret-key
encryption (SKE) and unclonable public-key encryption (PKE) without
any computational assumptions.

– By using robust combiners, we construct universal constructions for (one-
time) unclonable SKE and unclonable PKE without any computational
assumptions.

Although the previous work [AKL+22] gives a construction of one-time
unclonable SKE with unclonable IND-CPA security in the quantum random
oracle model (QROM), it was an open problem to construct it in the stan-
dard model. Our universal constructions for (one-time) unclonable SKE (resp.
PKE) is the first construction of (one-time) unclonable SKE (resp. PKE) that

2 It is a folklore that a random quantum circuit is PRSGs although there exists no
theoretical evidence so far. Since we can construct quantum bit commitments from
PRSGs [MY22b,AQY22], we can also construct quantum bit commitments based on
random quantum circuits if a random quantum circuit is PRSGs.
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achieves unclonable IND-CPA security in the standard model, where the secu-
rity relies on the existence of (one-time) unclonable SKE (resp. PKE) with
unclonable IND-CPA security.

6. We give another construction of universal construction for one-time unclon-
able SKE by additionally using the decomposable quantum randomized
encoding, which can be instantiated by OWFs [BY22]. Although this con-
struction additionally uses decomposable quantum randomized encoding, it
has the following nice three properties that the universal construction via a
robust combiner does not have:

– It was an open problem whether unclonable encryption with single-bit
plaintexts implies unclonable encryption with multi-bit plaintexts because
standard transformation via bit-wise encryption does not work as pointed
out in [AKL+22]. In our universal construction, we can expand the plain-
text length of one-time unclonable SKE by additionally using decompos-
able quantum randomized encoding. This resolves the open problem left
by [AKL+22]. Note that this result implies that reusable unclonable SKE
and unclonable PKE can expand plaintext length without any additional
assumptions because reusable unclonable SKE and unclonable PKE imply
decomposable quantum randomized encoding.

– A universal construction via a robust combiner needs to emulate all possi-
ble algorithms, and thus a huge constant is included in the running time.
Therefore, it may not be executed in a meaningful amount of time if we
want reasonable concrete security. On the other hand, universal construc-
tion via decomposable quantum randomized encoding does not emulate
all possible algorithms and thus avoids the “galactic inefficiency” tied to
such approaches.

– In a universal construction via a robust combiner, the security relies on the
existence of one-time unclonable SKE scheme Σ = (KeyGen,Enc,Dec),
where (KeyGen,Enc,Dec) are uniform QPT algorithms. On the other
hand, in a universal construction via decomposable quantum random-
ized encoding, the security still holds even if the underlying one-time
unclonable SKE (KeyGen,Enc,Dec) are non-uniform algorithms.

1.3 More on Related Work

Fundamental Quantum Cryptographic Primitives. Ji, Liu, and Song [JLS18]
introduce a notion of PRSGs, and show that it can be constructed from OWFs.
Morimae and Yamakawa [MY22b] introduce the notion of OWSGs, and show
how to construct them from PRSGs. In the first definition of OWSGs, the out-
put quantum states are restricted to pure states, and its definition is generalized
to mixed states by [MY22a]. In this work, we focus on the mixed-state version.

Bennett and Brassard [BB84] initiate the study of quantum bit commit-
ment. Unfortunately, it turns out that statistically secure quantum bit commit-
ments are impossible to achieve [LC97,May97]. Therefore, later works study a
quantum bit commitment with computational security [DMS00,CLS01,Yan22,
MY22b,MY22a,AQY22,AGQY22,BCQ23,HMY23]. It was shown that quantum
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bit commitments can be constructed from PRSGs by [MY22b,AQY22], and that
quantum bit commitments are equivalent to EFI, oblivious transfer, and multi-
party computation [GLSV21,BCKM21,Yan22,BCQ23].

Recently, Khurana and Tomer [KT23] showed that quantum bit commitments
can be constructed from OWSGs with pure state. Although their main result is
not a combiner for quantum bit commitment, they construct some sort of a com-
biner for quantum bit commitments as an intermediate tool for achieving their
result. In their construction, they construct a uniform quantum bit commitment
from a non-uniform one. At this step, they combine quantum bit commitments
in the following sense. In their construction, they combine (n + 1)-quantum bit
commitments and generate a new quantum bit commitment. Its hiding and bind-
ing property holds as long as one of the original candidates satisfies hiding and
binding at the same time and other n candidates also satisfy either hiding or
binding. Compared to their technique, our robust combiner does not need to
assume other n candidates satisfy hiding or binding. Therefore, our robust com-
biner can be applied in a more general setting than their technique. Though our
construction partially shares a similarity with theirs, we rely on additional ideas
to deal with candidate schemes that do not satisfy either binding or hiding.

Unclonable Encryption. Broadbent and Lord [BL20] introduced a notion of
unclonable encryption. They considered two security definitions for unclon-
able encryption. One is one-wayness against cloning attacks and they achieve
information-theoretic one-wayness by using BB84 states. The other is indistin-
guishability against cloning attacks (indistinguishable-secure unclonable encryp-
tion). However, they did not achieve it. They constructed indistinguishable-
secure unclonable encryption only in a very restricted model by using
PRFs. Ananth, Kaleoglu, Li, Liu, and Zhandry [AKL+22] proposed the first
indistinguishable-secure unclonable encryption in the QROM. Ananth and Kale-
oglu [AK21] construct unclonable PKE from unclonable encryption and PKE
with “classical” ciphertexts. Note that it is unclear how to apply their technique
for PKE with quantum ciphertexts. The technique of [HMNY21] can be used to
construct unclonable PKE from unclonable encryption and PKE with quantum
ciphertexts, which we use in this work.

Combiner for Classical Cryptography. It is known that robust combiners are
known to exist for many fundamental classical cryptographic primitives. Obliv-
ious transfer (OT) is an example of exceptions. It is an open problem how to
construct a robust combiner for classical OT and some black-box impossibilities
are known [HKN+05]. Interestingly, our result implies that a robust combiner
for quantum OT exists although a robust combiner for classical OT is still an
open problem.

2 Technical Overview

First of all, let us recall the definition of robust combiner. A robust combiner
for a primitive P is a deterministic classical polynomial-time Turing machine
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RobComb.MP that takes as input n-candidates {Σ[i]}i∈[n] for P , and produces
a new candidate Σ for P . Σ is correct and secure as long as at least one of
the candidates {Σ[i]}i∈[n] for P is correct and secure. Here, the point is that
{Σ[i]}i∈[n] are not promised to satisfy even correctness other than one of them.
In the following, we will explain the case where only two candidates Σ[1] and
Σ[2] are given for simplicity. Remark that the same argument goes through in
the general case, where n candidates {Σ[i]}i∈[n] are given.

2.1 Robust Combiner for One-Way State Generators and
Public- Key Quantum Money

In this section, we explain a robust combiner for OWSGs. A robust combiner for
public-key quantum money can be constructed by partially using the technique
by [HKN+05].

Definition of One-Way State Generators. OWSG is a quantum generaliza-
tion of OWFs and consists of a tuple of quantum polynomial-time algorithms
ΣOWSG := (KeyGen,StateGen,Vrfy). The KeyGen algorithm takes as input a secu-
rity parameter 1λ, and generates a classical key k, the StateGen algorithm takes
as input a classical key k and outputs a quantum state ψk, and the Vrfy algo-
rithm takes as input a classical key k and a quantum state ψk and outputs 1
indicating acceptance or 0 indicating rejection. We require that OWSG Σ satis-
fies correctness and security. The correctness guarantees that Vrfy(k, ψk) outputs
1 indicating acceptance with overwhelming probability, where k ← KeyGen(1λ)
and ψk ← StateGen(k). The security guarantees that no QPT adversaries given
polynomially many copies of ψk cannot generate k∗ such that 1 ← Vrfy(k∗, ψk),
where k ← KeyGen(1λ) and ψk ← StateGen(k).

Robust Combiner. First, we consider the simpler case, where given OWSG
candidates ΣOWSG[1] = (KeyGen[1],StateGen[1],Vrfy[1]) and ΣOWSG[2] =
(KeyGen[2],StateGen[2],Vrfy[2]) are promised to satisfy at least correctness. In
this case, we can construct a combiner for OWSGs in the same way as OWFs.
Namely, a combined protocol Comb.ΣOWSG = (KeyGen,StateGen,Vrfy) simply
runs Σ[1] and Σ[2] in parallel.

Does the same strategy work for the general setting, where original candidates
are not promised to satisfy correctness? Unfortunately, the simple parallel pro-
tocol works only when both ΣOWSG[1] and ΣOWSG[2] satisfy correctness because
Comb.ΣOWSG does not satisfy correctness otherwise. We observe that given an
OWSG candidate ΣOWSG, we can construct Σ∗

OWSG with the following properties:

– Σ∗
OWSG satisfies correctness regardless of ΣOWSG.

– Σ∗
OWSG satisfies security as long as ΣOWSG satisfies correctness and security.

Once we have obtained such a transformation, we can construct a robust
OWSG combiner RobComb.MOWSG as follows. Given two OWSGs candidates
ΣOWSG[1] and ΣOWSG[2], our robust OWSG combiner RobComb.MOWSG first
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transforms them into ΣOWSG[1]∗ and ΣOWSG[2]∗, respectively, and then outputs
Comb.ΣOWSG which runs ΣOWSG[1]∗ and ΣOWSG[2]∗ in parallel. Comb.ΣOWSG

satisfies correctness because ΣOWSG[1]∗ and ΣOWSG[2]∗ satisfies correctness no
matter what ΣOWSG[1] and ΣOWSG[2] are. Comb.ΣOWSG satisfies security as long
as either ΣOWSG[1] or ΣOWSG[2] satisfy correctness and security because either
ΣOWSG[1]∗ or ΣOWSG[2]∗ satisfies security as long as either ΣOWSG[1] or ΣOWSG[2]
satisfies correctness and security.

Transform Incorrect Candidate into Correct One. Now, we consider how to
obtain such a transformation. In the previous work [HKN+05], it was shown
that we can transform PKE ΣPKE into Σ∗

PKE that satisfies correctness regardless
of ΣPKE and satisfies security as long as ΣPKE satisfies correctness and secu-
rity. In the same way as [HKN+05], we can obtain such transformation for
OWSGs. However, in this work, we take a different approach because the tech-
nique by [HKN+05] does not work for unclonable encryption3.

First, we observe that without loss of generality, Vrfy(k, ψ) can be considered
working as follows: It appends |0〉〈0| to ψ, applies Uk to ψ ⊗|0〉〈0|, measures the
first qubit of Uk(ψ ⊗ |0〉〈0|)U†

k , and outputs the measurement outcome. Now,
we describe Σ∗

OWSG = (KeyGen∗,StateGen∗,Vrfy∗). KeyGen∗ is the same as the
original KeyGen. StateGen∗(k) first runs ψk ← StateGen(k), then measures the
first qubit of Uk(ψk⊗|0〉〈0|)U†

k in the computational basis, and obtains b. If b = 1,
StateGen∗(k) rewinds its register and outputs the register as ψ∗

k. Otherwise,
output ψ∗

k = ⊥, where ⊥ is a special symbol. Vrfy∗(k, ψ) first checks the form
of ψ. If ψ = ⊥, Vrfy∗(k, ψ) outputs 1. Otherwise, Vrfy∗(k, ψ) applies Uk to ψ,
then measures the first qubit of UkψU†

k , and finally outputs the measurement
outcome. We can see that Σ∗ satisfies correctness. If StateGen∗(k) outputs ψ∗

k =
⊥, then Vrfy∗ always outputs 1. On the other hand, if ψ∗ �= ⊥, then StateGen∗(k)
outputs ψ∗

k with the form U†
k(|1〉〈1|⊗ρ)Uk for some quantum state ρ. Therefore,

Vrfy∗(k, ψ∗
k) outputs 1 since Ukψ∗

kU†
k = |1〉〈1| ⊗ ρ. Moreover, we can see that

Σ∗ satisfies security as long as Σ satisfies correctness and security. As long as
Σ satisfies correctness, if we measure the first qubits of Uk(ψk ⊗ |0〉〈0|)U†

k in
the computational basis, then the measurement result is 1 with overwhelming
probability, where k ← KeyGen(1λ) and ψk ← StateGen(k). This indicates that
the measurement does not disturb the quantum state Uk(ψk ⊗ |0〉〈0|)U†

k from
gentle measurement lemma. Therefore, ψ∗

k is statistically close to ψk ⊗ |0〉〈0| as
long as Σ satisfies correctness. In particular, this implies that we can reduce the
security of Σ∗ to that of Σ as long as Σ satisfies correctness.

3 The technique we introduce here cannot be applied to public-key quantum money.
For public-key quantum money, we apply the technique introduced by [HKN+05] in
order to transform an incorrect candidate into a correct one. The idea of transfor-
mation is first checking the correctness of a public-key quantum money candidate
Σ = (Mint,Vrfy). If the candidate Σ satisfies the correctness, then we amplify the
correctness by parallel repetition. Otherwise, we use the scheme Σ∗ = (Mint∗,Vrfy∗),
where Vrfy∗ algorithm always outputs �. For details, please see the full version.
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2.2 Robust Combiner for Unclonable Encryption

In this section, we explain how to obtain a robust combiner for unclonable SKE.
As a corollary, we can obtain a robust combiner for unclonable PKE. This is
because we can construct unclonable PKE from unclonable SKE and PKE with
quantum ciphertexts [HMNY21,AK21], and a robust combiner for PKE with
quantum ciphertexts can be constructed in the same way as the classical cipher-
texts case [HKN+05].

Definition of Unclonable SKE. First of all, we explain the definition of unclonable
SKE. Unclonable SKE Σunclone is the same as standard SKE ΣSKE except that the
ciphertext of unclonable SKE is a quantum state and it satisfies unclonable IND-
CPA security in addition to standard IND-CPA security. In unclonable IND-CPA
security, the cloning adversary A with oracle Enc(sk, ·) first sends the challenge
plaintext (m0,m1), then receives a ciphertext CTb, where CTb ← Enc(sk,mb),
and finally generates a quantum state ρB,C over the B and C registers. The
adversary B (resp. C) receives the B register (resp. the C register) and the secret-
key sk, and outputs bB (resp. bC) which is a guess of b. The unclonable IND-CPA
security guarantees that for any QPT adversaries (A,B, C), we have

Pr[b = bB = bC ] ≤ 1
2
+ negl(λ).

Robust Combiner. First, we consider the simpler case, where given candidates
Σunclone[1] = (KeyGen[1],Enc[1],Dec[1]) and Σunclone[2] = (KeyGen[2],Enc[2],
Dec[2]) are promised to satisfy at least correctness. In that case, a com-
bined unclonable SKE scheme Comb.Σunclone = (KeyGen,Enc,Dec) simply runs
Σunclone[1] and Σunclone[2] by using X-OR secret sharing. In other words, for
encrypting bit b, Comb.Σunclone first samples r[1] and r[2] such that r[1] + r[2] =
b, and encrypts r[1] by using Σunclone[1] and r[2] by using Σunclone[2]. Clearly,
Comb.Σunclone satisfies correctness and security as long as both Σunclone[1] and
Σunclone[2] satisfy correctness and either Σunclone[1] or Σunclone[2] satisfies security.

Does the same strategy work for the general setting, where original candi-
dates are not promised to satisfy even correctness? Unfortunately, the simple
X-OR protocol above works only when both Σunclone[1] and Σunclone[2] satisfy
correctness because Comb.Σunclone does not satisfy correctness otherwise. Our
key observation is that given a candidate of unclonable SKE Σunclone we can
construct a new candidate Σ∗

unclone with the following properties:

– Σ∗
unclone satisfies correctness regardless of Σunclone.

– Σ∗
unclone satisfies security as long as Σ satisfies correctness and security.

Once we have obtained such a transformation, we can construct a robust
combiner for unclonable SKE as follows. Given two unclonable SKE candidates
Σunclone[1] and Σunclone[2], a robust combiner for unclonable SKE first trans-
forms Σunclone[1] and Σunclone[2] into Σunclone[1]∗ and Σunclone[2]∗, respectively,
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and then outputs Comb.Σunclone which runs Σunclone[1]∗ and Σunclone[2]∗ by using
X-OR secret sharing. Comb.Σunclone satisfies correctness because Σunclone[1]∗

and Σunclone[2]∗ satisfy correctness no matter what Σunclone[1] and Σunclone[2]
are. Moreover, Comb.Σunclone satisfies security as long as either Σunclone[1] or
Σunclone[2] satisfies correctness and security. This is because either Σ∗

unclone[1] or
Σunclone[2]∗ satisfies security as long as either Σunclone[1] or Σunclone[2] satisfies
correctness and security.
Transform Incorrect Candidate into Correct One. Now, we consider how to obtain
such a transformation. It is known that we can obtain such a transformation
for PKE [HKN+05]. In their technique, they use parallel repetition to amplify
correctness. We emphasize that we cannot apply their technique for unclonable
encryption because correctness amplification via parallel repetition does not work
for unclonable encryption. Therefore, we take a different approach, whose idea is
the same as OWSGs. Without loss of generality, we can assume that Dec(sk,CT)
first appends |0〉〈0| to CT, applies Usk to CT ⊗ |0〉〈0|, measures the first |m|-
bit of Usk(CT ⊗ |0〉〈0|)U†

sk, and outputs the measurement outcome. Now, we
describe Σ∗

unclone = (KeyGen∗,Enc∗,Dec∗). KeyGen∗ is the same as the original
KeyGen. Enc∗(sk,m) first runs CT ← Enc(sk,m), then measures the first |m|-bit
of Usk(CT⊗|0〉〈0|)U†

sk in the computational basis, obtains m∗, and checks whether
m = m∗. If m = m∗, Enc∗(sk,CT) rewinds its register and outputs the register
as the quantum ciphertext CT∗. Otherwise, output CT∗ = (⊥,m), where ⊥ is a
special symbol. Dec∗(sk,CT∗) first checks the form of CT∗, and outputs m if CT∗

is of the form (⊥,m). Otherwise, Dec∗(sk,CT∗) applies Usk to CT∗, and outputs
the measurement outcome of first |m|-qubits of UskCT

∗U†
sk. Clearly, the new con-

struction Σ∗
unclone satisfies correctness in the same reason as OWSG. Furthermore,

Σ∗
unclone satisfies security as long as Σunclone satisfies correctness and security. This

is because CT∗ is statistically close to CT⊗ |0〉〈0| as long as Σunclone satisfies cor-
rectness, and thus we can reduce the security of Σ∗

unclone to that of Σunclone.

2.3 Robust Combiner for Quantum Bit Commitment
Definition of Quantum Bit Commitment. In the following, we consider a robust
combiner for quantum bit commitment. In this work, we consider a canonical
quantum bit commitment. Any quantum bit commitment can be written in the
following canonical form [Yan22]. A canonical quantum bit commitment scheme
is a pair of unitaries (Q0, Q1) acting on the registers C called the commitment
register and R called the reveal register, and works as follows.

Commit Phase: A sender runs Qb|0〉C,R and sends the C to a receiver for
committing a bit b ∈ {0, 1}.

Reveal Phase: For revealing the committed bit b, the sender sends b and the
R register to the receiver. The receiver applies Q†

b to the C and R register
and measures both registers in the computational basis. The receiver accepts
if the measurement outcomes are all 0, and rejects otherwise.

We require that a canonical quantum bit commitment satisfies hiding and
binding. The computational (resp. statistical) hiding requires that no quan-
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tum polynomial-time (resp. unbounded) adversaries distinguish Q0|0〉C,R from
Q1|0〉C,R without touching the R register with non-negligible probability.

The binding requires that no adversaries can map an honestly generated
quantum bit commitment of 0 (i.e. Q0|0〉C,R) to that of 1 (i.e. Q1|0〉C,R) without
touching C registers. More formally, computational (resp. statistical) binding
requires that for any quantum polynomial-time (resp. unbounded) unitary UR,Z

acting on the R and Z register and any quantum state |τ〉Z on Z register, we have
∥
∥
∥(Q1|0〉〈0|Q†

1)C,R(IC ⊗ UR,Z)(Q0|0〉C,R|τ〉Z)
∥
∥
∥ ≤ negl(λ).

It was shown that we can change the flavor of quantum bit commit-
ment [Yan22,HMY23]. More formally, if we have a canonical quantum bit com-
mitment (Q0, Q1) that satisfies X-hiding and Y -binding, then we can construct
a canonical quantum bit commitment (Q̃0, Q̃1) that satisfies X-binding and Y -
hiding for X,Y ∈ {statistical, computational}.

Robust Combiner. First, let us clarify our final goal. Given two candidates of
canonical quantum bit commitments (Q0[1], Q1[1]) and (Q0[2], Q1[2]), our robust
combiner RobComb.MCommit generates a new candidate (Comb.Q0,Comb.Q1)
that satisfies hiding and binding as long as either (Q0[1], Q1[1]) or
(Q0[2], Q1[2]) satisfies hiding and binding. More formally, our robust combiner
RobComb.MCommit outputs (Comb.Q0,Comb.Q1) with the following properties:

– (Comb.Q0,Comb.Q1) satisfies statistical binding regardless of (Q0[1], Q1[1])
and (Q0[2], Q1[2]).

– (Comb.Q0,Comb.Q1) satisfies computational hiding as long as either
(Q0[1], Q1[1]) or (Q0[2], Q1[2]) satisfies computational hiding and computa-
tional binding.

To achieve this final goal, let us consider the following simpler goal first,
where both candidates (Q0[1], Q1[1]) and (Q0[2], Q1[2]) satisfy at least statistical
binding. More formally, given candidates (Q0[1], Q1[1]) and (Q0[2], Q1[2]), we
consider constructing a new candidate (Comb.Q0,Comb.Q1) with the following
properties:

– (Comb.Q0,Comb.Q1) satisfies statistical binding as long as both (Q0[1], Q1[1])
and (Q0[2], Q1[2]) satisfies statistical binding.

– (Comb.Q0,Comb.Q1) satisfies computational hiding as long as either
(Q0[1], Q1[1]) or (Q0[2], Q1[2]) satisfies computational hiding.

We can construct such (Comb.Q0,Comb.Q1) by simply using X-OR secret
sharing. More formally, for b ∈ {0, 1}, Comb.Qb first samples r[1] and r[2]
conditioned on r[1] + r[2] = b, and then commits r[1] by using (Q0[1], Q1[1])
and commits r[2] by using (Q0[2], Q1[2]). Our construction satisfies statisti-
cal binding as long as both (Q0[1], Q1[1]) and (Q0[2], Q1[2]) satisfy statisti-
cal binding. The intuitive reason is that the adversary of (Comb.Q0,Comb.Q1)
needs to change r[1] or r[2] after sending the commitment register to break



Robust Combiners and Universal Constructions for Quantum Cryptography 137

binding of (Comb.Q0,Comb.Q1), but the adversary cannot do this because
both (Q0[1], Q1[1]) and (Q0[2], Q1[2]) satisfy statistical binding. Further-
more, (Comb.Q0,Comb.Q1) satisfies computational hiding as long as either
(Q0[1], Q1[1]) or (Q0[2], Q1[2]) satisfies computational hiding. The intuitive rea-
son is that the adversary of (Comb.Q0,Comb.Q1) needs to obtain both r[1] and
r[2] from the commitment register of (Q0[1], Q1[1]) and (Q0[2], Q1[2]), but the
adversary cannot do this because either (Q0[1], Q1[1]) and (Q0[2], Q1[2]) satisfies
computational hiding.

Does the same strategy work for a robust quantum bit commitment combiner
RobComb.MCommit? Unfortunately, the simple X-OR protocol above works only
when both (Q0[1], Q1[1]) and (Q0[2], Q1[2]) satisfy statistical binding because
(Comb.Q0,Comb.Q1) does not satisfy statistical binding otherwise. Our key
observation is that, given a candidate of canonical quantum bit commitment
(Q0, Q1), we can construct a new candidate (Q∗

0, Q
∗
1) that satisfies at least sta-

tistical binding regardless of (Q0, Q1). More formally, we can construct (Q∗
0, Q

∗
1)

with the following properties:

– (Q∗
0, Q

∗
1) satisfies statistical binding regardless of (Q0, Q1).

– (Q∗
0, Q

∗
1) satisfies computational hiding if (Q0, Q1) satisfies computational

hiding and computational binding.

Once we have obtained such a transformation, we can construct a
robust quantum bit commitment combiner RobComb.MCommit. Given two can-
didates of canonical quantum bit commitment (Q0[1], Q1[1]) and (Q0[2], Q1[2]),
RobComb.MCommit first transforms (Q0[1], Q1[1]) and
(Q0[2], Q1[2]) into (Q0[1]∗, Q1[1]∗) and (Q0[2]∗, Q1[2]∗), respectively and then
outputs (Comb.Q0,Comb.Q1), which runs (Q0[1]∗, Q1[1]∗) and (Q0[2]∗, Q1[2]∗)
by using X-OR secret sharing. Clearly, (Comb.Q0,Comb.Q1) satisfies statisti-
cal binding. Moreover, (Comb.Q0,Comb.Q1) satisfies computational hiding as
long as either (Q0[1], Q1[1]) or (Q0[2], Q1[2]) satisfies computational hiding and
computational binding.

Transform Candidate Without Statistical Binding into One with Statistical Bind-
ing. Now, we consider how to obtain such a transformation. Our first observation
is that either (Q0, Q1) or (Q̃0, Q̃1), which is the flavor conversion of (Q0, Q1)
obtained by [HMY23], satisfies statistical binding in a possibly weak sense. To
see this let us denote ρb := TrR(Qb|0〉C,R). Then, there exists some constant f
such that

F (ρ0, ρ1) = f,

where F (ρ0, ρ1) is the fidelity between ρ0 and ρ1. If f is small, then (Q0, Q1)
satisfies statistical binding in a possibly weak sense from Uhlmann’s theorem. On
the other hand, if f is large, then (Q0, Q1) does not satisfy statistical binding,
but (Q̃0, Q̃1) satisfies statistical binding instead. This is because if f is large,
then (Q0, Q1) satisfies statistical hiding, and thus (Q̃0, Q̃1) satisfies statistical
binding. Therefore, either (Q0, Q1) or (Q̃0, Q̃1) satisfies statistical binding in a
possibly weak sense regardless of (Q0, Q1). Furthermore, we observe that such
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a possibly weak binding property can be amplified to a strong one by parallel
repetition.

Based on these observations, we construct our transformation. Given a candi-
date of canonical quantum bit commitment (Q0, Q1), our transformation outputs
a new candidate (Q∗

0, Q
∗
1) working as follows.

– If we write C and R to mean the commitment register and the reveal register
of (Q0, Q1), and write C̃ and R̃ to mean the commitment and the reveal regis-
ter of (Q̃0, Q̃1), then the commitment register C∗ of (Q∗

0, Q
∗
1) is (C⊗λ, C̃⊗λ),

and the reveal register R∗ of (Q∗
0, Q

∗
1) is (R⊗λ, R̃⊗λ).

– For b ∈ {0, 1}, Q∗
b works as follows:

Q∗
b := (Qb ⊗ Q̃b)⊗λ.

Note that we have

Q∗
b |0〉C∗,R∗ = (Qb|0〉C,R)⊗λ ⊗ (Q̃b|0〉˜C,˜R)⊗λ.

We can see that (Q∗
0, Q

∗
1) satisfies statistical binding regardless of (Q0, Q1).

If we write ρb := TrR(Qb|0〉C,R), there exists some constant 0 ≤ f ≤ 1 such that

F (ρ0, ρ1) = f.

If we write ρ̃b := Tr
˜R(Q̃b|0〉˜C,˜R), then we can show that

F (ρ̃0, ρ̃1) ≤ (1 − f)1/2

by using the technique by [HMY23]. Therefore, if we write ρ∗
b := TrR∗

(Q∗
b |0〉C∗,R∗), we have

F (ρ∗
0, ρ

∗
1)=F ((ρ0 ⊗ ρ̃0)

⊗λ, (ρ1 ⊗ ρ̃1)
⊗λ)≤F (ρ0, ρ1)

λF (ρ̃0, ρ̃1)
λ ≤ fλ(1 − f)λ/2 ≤ 2−λ/2.

This implies that (Q∗
0, Q

∗
1) satisfies statistical binding regardless of (Q0, Q1) from

Uhlmann’s Theorem.
Moreover, we can see that (Q∗

0, Q
∗
1) satisfies computational hiding as long

as (Q0, Q1) satisfies computational hiding and computational binding. The hid-
ing QPT adversary of (Q∗

0, Q
∗
1) needs to obtain b from ρ∗

b = (ρb ⊗ ρ̃b)⊗λ. For
that, the adversary needs to obtain b from ρb or ρ̃b. Because (Q0, Q1) satisfies
computational hiding, the QPT adversary cannot obtain b from ρb. Further-
more, (Q̃0, Q̃1) also satisfies computational hiding because (Q̃0, Q̃1) is a flavor
conversion of (Q0, Q1). Therefore, the QPT adversary cannot obtain b from ρ̃b.

2.4 Universal Construction and Universal Plaintext Expansion
for Unclonable Encryption

Once we have obtained a robust combiner for each primitive, we can construct
a universal construction for the primitive in a relatively straightforward man-
ner. A naive idea is to think of all descriptions of algorithms as candidates for
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the primitive and combine them via a robust combiner. The combined protocol
satisfies correctness and security as long as there exists the primitive since one
of the candidates satisfies correctness and security when the primitive exists.
Although this naive idea does not work as it is because we do not care about
efficiency and each candidate may not halt, we can resolve it by modifying the
idea. For details, please see the full version.

We give another universal construction for one-time unclonable SKE assum-
ing decomposable quantum randomized encoding whose construction is inspired
by [WW23]. Although we additionally use a decomposable quantum random-
ized encoding for this construction, we can expand the plaintext of one-time
unclonable SKE. Note that it was an open problem to expand the plaintext of
unclonable encryption since a standard transformation via bit-wise encryption
does not work as pointed out in [AKL+22].

First, let us recall the decomposable quantum randomized encoding ΣRE =
RE.(Enc,Dec) given in [BY22]. In their decomposable quantum randomized
encoding, RE.Enc takes as input a quantum circuit F , λ-length possibly quantum
input q and λ-length classical input x, and outputs ̂F (q, x). Let q[i] and x[i] be
the i-th qubit and bit of q and x, respectively. Decomposability guarantees that
̂F (q, x) can be separated into the offline encoding part F̂off and online encoding

parts
(

{labi(q[i])}i∈{1,··· ,λ}, {labi+λ(x[i])}i∈{1,··· ,λ}
)

as follows:

̂F (q, x) :=
(

F̂off , lab1(q[1]), · · · , labλ(q[λ]), labλ+1(x[1]), · · · , lab2λ(x[λ])
)

,

where F̂off does not depend on q and x, labi(q[i]) depends on only q[i] for
i ∈ [λ] and labi+λ(x[i]) depends on only x[i] for i ∈ [λ]. RE.Dec takes as input
̂F (q, x) and outputs F (q, x). The security roughly guarantees that for any quan-

tum circuits F1, F2 with the same size, and any quantum and classical inputs
({q1, x1}, {q2, x2}) such that F1(q1, x1) = F2(q2, x2), ̂F1(q1, x1) is computation-
ally indistinguishable from ̂F2(q2, x2).

Now, we describe our one-time unclonable SKE ΣUniv = (KeyGenUniv,
EncUniv,DecUniv):

KeyGenUniv(1λ): Our key generation algorithm KeyGenUniv(1λ) first samples x ←
{0, 1}λ. Then, it samples R[i] ← {0, 1}�(λ) for i ∈ [λ], and outputs sk :=
(x, {R[i]}i∈[λ]). Here, �(λ) is the size of online encoding of RE.Enc.

EncUniv(sk,m): Our encryption algorithm EncUniv(sk,m) first generates a quan-
tum circuit C[m] that outputs m for any inputs, where the quantum cir-
cuit is padded to an appropriate size, which we will specify later. Then,
EncUniv(sk,m) computes ̂C[m]off , which is the offline encoding of C[m]. Next,
it computes labi(0) for i ∈ [λ] and labλ+i(b) for i ∈ [λ] and b ∈ {0, 1}. Finally,
it samples S[i] ← {0, 1}λ, and computes Lab.CT[i, x[i]] = R[i] + labλ+i(x[i])
and Lab.CT[i, 1 − x[i]] = S[i] + labλ+i(1 − x[i]) for all i ∈ [λ]. The ciphertext
of EncUniv(sk,m) is

̂C[m]off , {labi(0)}i∈[λ], {Lab.CT[i, b]}i∈[λ],b∈{0,1}.



140 T. Hiroka et al.

DecUniv(sk,CT): Our decryption algorithm DecUniv(sk,CT) works as follows.
First, let sk = (x, {R[i]}i∈[λ]) and CT =

(
̂C[m]off , {labi(0)}i∈[λ], {Lab.

CT[i, b]}i∈[λ],b∈{0,1}
)

. DecUniv(sk,CT) first computes labλ+i(x[i]) = R[i]+Lab.

CT[i, x[i]] for all i ∈ [λ], and runs RE.Dec(̂C[m]off , {labi(0)}i∈[λ], {labi+λ

(x[i])}i∈[λ]).

Clearly, our encryption algorithm can encrypt arbitrary-length plaintext.
We can see that our construction satisfies correctness. More formally,
DecUniv(sk,CTm) outputs m with high probability if sk ← KeyGenUniv(1λ)
and CTm ← EncUniv(sk,m). From our construction, DecUniv(sk,CTm) out-
puts the output of RE.Dec(̂C[m]off , {labi(0)}i∈[λ], {labi+λ(x[i])}i∈[λ]), where
(

̂C[m]off , {labi(0)}i∈[λ], {labi+λ(x[i])}i∈[λ]

)

← RE.Enc(C, 0λ, x). From the cor-

rectness of decomposable quantum randomized encoding, RE.Dec(̂C[m]off ,
{labi(0)}i∈[λ], {labi+λ(x[i])}i∈[λ]) outputs C[m](0λ, x), which is equal to m.

Furthermore, our construction ΣUniv satisfies unclonable IND-CPA security as
long as the underlying decomposable quantum randomized encoding ΣRE satis-
fies security and there exists a one-time unclonable SKE for single-bit plaintexts.
To see this, we introduce some notations and observations. We write Σunclone =
Unclone.(KeyGen,Enc,Dec) to mean a one-time unclonable SKE for single-bit
plaintexts, which we assume to exist. Without loss of generality, we can assume
that the secret key sk generated by Unclone.KeyGen(1λ) is uniformly randomly
sampled and |sk| = |CT| = λ for all security parameters λ. Moreover, we can
assume that for a security parameter λ, Unclone.Dec(sk,CT) is a quantum algo-
rithm that runs some quantum circuit Unclone.Decλ on CT and sk, and outputs
its output. We introduce a quantum circuit Dλ[m0,m1] that takes as input CT
and sk, and runs the quantum circuit Unclone.Decλ on CT and sk, obtains b and
outputs mb. The size of C[m] is padded so that its size is equal to Dλ[m0,m1].

Now, we can see that our construction ΣUniv satisfies one-time unclonable
IND-CPA security. In the first step of the proof, we switch the following real
ciphertext for message mb

CTb =
(

̂C[mb]off , {labi(0)}i∈[λ], {Lab.CT[i, β]}i∈[λ],β∈{0,1}
)

to the following modified ciphertext

C̃Tb =
(

̂D[m0,m1]off , {labi(unclone.CTb[i])}i∈[λ], {Lab.CT[i, β]}i∈[λ],β∈{0,1}
)

,

where unclone.CTb ← Unclone.Enc(x, b) and unclone.CTb[i] is the i-th qubit of
unclone.CTb and x ← {0, 1}λ. This change does not affect the output of the
security experiment because ΣRE satisfies security and we have

D[m0,m1](unclone.CTb, x) = C[mb](0λ, x) = mb.

In the next step, we can reduce the security of our construction ΣUniv to that of
one-time unclonable SKE for single-bit plaintexts Σunclone. This is because the
adversary (A,B, C) of Σunclone can simulate the challenger of ΣUniv sicne (A,B, C)
can simulate C̃Tb by using unclone.CTb.
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3 Preliminaries

3.1 Notations

Here we introduce basic notations we will use in this paper. x ← X denotes select-
ing an element x from a finite set X uniformly at random, and y ← A(x) denotes
assigning to y the output of a quantum or probabilistic or deterministic algorithm
A on an input x. When we explicitly write that A uses randomness r, we write
y ← A(x; r). Let [n] := {1, · · · , n}. For x ∈ {0, 1}n and i ∈ [n], xi and x[i] are the
i-th bit value of x. For an n-qubit state ρ and i ∈ [n], we write ρi and ρ[i] to mean a
quantum state that traces out all states other than the i-th qubit of ρ. QPT stands
for quantum polynomial time. A function f : N → R is a negligible function if, for
any constant c, there exists λ0 ∈ N such that for any λ > λ0, f(λ) < 1/λc. We
write f(λ) ≤ negl(λ) to denote f(λ) being a negligible function.

For simplicity, we often write |0〉 to mean |0 · · · 0〉. For any two quantum
states ρ1 and ρ2, F (ρ1, ρ2) is the fidelity between them, and TD(ρ1, ρ2) is the
trace distance between them.

For a quantum algorithm A, and quantum states ρ and σ, we say that A
distinguishes ρ from σ with advantage Δ if

|Pr[1 ← A(ρ)] − Pr[1 ← A(σ)]| = Δ.

We say that ρ is c-computationally indistinguishable (resp. c-statistically indis-
tinguishable) from σ if no QPT algorithms (resp. unbounded algorithms) can
distinguish ρ from σ with advantage greater than c.

3.2 Cryptographic Tools

In this section, we introduce cryptographic tools which we will use.

Canonical Quantum Bit Commitment.

Definition 3.1 (Canonical Quantum Bit Commitment [Yan22]). A can-
didate for canonical quantum bit commitment is a set of uniform QPT unitaries
{Q0(λ), Q1(λ)}λ∈N acting on the register C and R. We consider the following
two properties.

Hiding. We say that a candidate for canonical quantum bit commitment
{Q0(λ), Q1(λ)}λ∈N satisfies c-statistical hiding (resp. c-computational hiding)
if TrR(Q0(λ)|0〉CR) is c-statistically indistinguishable (resp. c-computationally
indistinguishable) from TrR(Q1(λ)|0〉CR) for all sufficiently large λ ∈ N.

If a candidate for canonical quantum bit commitment satisfies negl(λ)-
statistical hiding (resp. negl(λ)-computational hiding), then we say that the can-
didate satisfies statistical hiding (resp. computational hiding).

Binding. We say that a candidate for canonical quantum bit commitment
{Q0(λ), Q1(λ)}λ∈N satisfies c-statistical binding (resp. c-computational binding)
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if for all sufficiently large security parameters λ ∈ N, any unbounded-time (resp.
QPT) unitary U over R and an additional register Z and any polynomial-size
|τ〉, it holds that

∥
∥
∥(〈0|Q†

1(λ))C,R(IC ⊗ UR,Z)((Q0(λ)|0〉C,R)|τ〉Z)
∥
∥
∥ ≤ c.

If a candidate for canonical quantum bit commitment satisfies negl(λ)-
statistical binding (resp. negl(λ)-computational binding), then we say that the
candidate satisfies statistical binding (resp. computational binding).

It was shown that we can convert the flavor of quantum bit commitment as
follows.

Lemma 3.1 (Converting Flavors:[HMY23]). Let {Q0(λ), Q1(λ)}λ∈N be a
candidate of canonical quantum bit commitment. Let {Q̃0(λ), Q̃1(λ)}λ∈N be a
candidate of canonical quantum bit commitment described as follows:

– The role of commitment and reveal registers are swapped from (Q0(λ), Q1(λ))
and the commitment register is augmented by an additional one-qubit register
which we denote D. In other words, if C and R are the commitment and
reveal registers of (Q0(λ), Q1(λ)), then the commitment and reveal registers
of (Q̃0(λ), Q̃1(λ)) are defined as C̃ := (R,D) and R̃ := C, where D is an
additional one-qubit register.

– For b ∈ {0, 1}, the unitary Q̃b(λ) is defined as follows:

Q̃b(λ) := (Q0(λ) ⊗ |0〉〈0|D + Q1(λ) ⊗ |1〉〈1|D)
(

IRC ⊗ Zb
DHD

)

.

The following holds for X,Y ∈ {statistical, computational}.

1. If {Q0(λ), Q1(λ)}λ∈N satisfies c-X hiding, then {Q̃0(λ), Q̃1(λ)}λ∈N satisfies√
c-X binding.

2. If {Q0(λ), Q1(λ)}λ∈N satisfies negl(λ)-Y binding, then {Q̃0(λ), Q̃1(λ)}λ∈N

satisfies negl(λ)-Y hiding.

Unclonable Encryption. In this work, we consider unclonable encryption with
unclonable IND-CPA security.

Definition 3.2 (Unclonable Secret-Key Encryption [BL20]). A candidate
for unclonable secret-key encryption for n(λ)-bit plaintexts is a set of algorithms
Σ := (KeyGen,Enc,Dec) such that:

KeyGen(1λ): It takes as input a security parameter 1λ, and outputs a classical
secret-key sk.

Enc(1λ, sk,m): It takes as input a security parameter 1λ, sk and m ∈ {0, 1}n(λ),
and outputs a quantum ciphertext CT.

Dec(1λ, sk,CT): It takes as input a security parameter 1λ, sk and CT, and outputs
m.

We say that a candidate Σ is an unclonable SKE scheme if it satisfies the follow-
ing efficiency, correctness, IND-CPA security, and unclonable IND-CPA secu-
rity.
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Efficiency. The algorithms (KeyGen,Enc,Dec) are uniform QPT algorithms.

Correctness. We have

Pr
[

m ← Dec(1λ, sk,CT) : sk ← KeyGen(1λ),CT ← Enc(1λ, sk,m)
]

≥ 1 − negl(λ).

Unclonable IND-CPA Security. We require that Σ satisfies standard IND-CPA
security. In addition to the standard IND-CPA security, we require that Σ satis-
fies the unclonable IND-CPA security defined below. Given an unclonable encryp-
tion Σ, we consider the unclonable IND-CPA security experiment Expunclone

Σ,(A,B,C)(λ)
against (A,B, C).

1. The challenger runs sk ← KeyGen(1λ).
2. A can query Enc(1λ, sk, ·) polynomially many times.
3. A sends (m0,m1) to the challenger.
4. The challenger samples b ← {0, 1}, runs CTb ← Enc(1λ, sk,mb), and sends

CTb to A.
5. A produces ρB,C and sends the corresponding registers to B and C.
6. B and C receive sk and output bB and bC.
7. The experiment outputs 1 indicating win if bB = bC = b, and otherwise 0.

We say that Σ is unclonable IND-CPA secure if for all sufficiently large security
parameters λ ∈ N, for all non-uniform QPT adversaries (A,B, C),

Pr
[

Expunclone
Σ,(A,B,C)(λ) = 1

]

≤ 1
2
+ negl(λ).

Decomposable Quantum Randomized Encoding.

Definition 3.3 (Decomposable Quantum Randomized Encoding
(DQRE) [BY22]). A DQRE scheme is a tuple of algorithms (Enc,Dec) such
that:

Enc(1λ, F, x): It takes 1λ with λ ∈ N, a general quantum circuit F and a possibly
quantum input x as inputs, and outputs ̂F (x).

Dec(1λ, ̂F (x)): It takes as input 1λ, and ̂F (x), and outputs F (x).

We require the following four properties:

Efficiency. (Enc,Dec) are uniform QPT algorithms.

Correctness. For all quantum states (x, q) and randomness r, it holds that
(F (x), q) = (Dec(1λ, F̂ (x; r)), q), where F̂ (x; r) is an output of Enc(1λ, F, x; r).
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Security. There exists a uniform QPT algorithm Sim such that for all quantum
states (x, q) and non-uniform QPT adversary A, there exists some negligible
function negl that satisfies,

|Pr
[

1 ← A(F̂ (x; r), q)
]

− Pr
[

1 ← A(Sim(1λ, |F |, F (x)), q)
]

| ≤ negl(λ),

where the state on the left-hand side is averaged over r and |F | is the size of the
general quantum circuit F .

Remark 3.1. In the security of the original paper [BY22], the simulator Sim
takes the topology of F as input. Without loss of generality, we can replace the
topology of F with the size of F because we can hide the topology of F by using
a universal quantum circuit.

Decomposability. There exists a quantum state e (called the resource state of
the encoding), and operation F̂off (called the offline part of the encoding) and
a collection of input encoding operations F̂1, · · · , F̂n such that for all inputs
x = (x1, · · · , xn),

F̂ (x; r) =
(

F̂off , F̂1, F̂2, · · · , F̂n

)

(x, r, e)

where the functions F̂off , F̂1, · · · , F̂n act on disjoint subsets of qubits from e, x
(but can depend on all bits of r), each F̂i acts on a single qubit xi and F̂off does
not act on any of the qubits of x.

Classical Labels. If xi is a classical bit, then F̂i(xi, r) is a classical string as well.

Theorem 3.1 ([BY22]). Decomposable quantum randomized encoding exists if
OWFs exist.

Proposition 3.1. Let Σ := (Enc,Dec) be a decomposable quantum randomized
encoding. Then, for any quantum circuits F0, F1 with the same size, for any
possibly quantum input x0 and x1 such that F0(x0) = F1(x1), F̂0(x0; r0) is com-
putationally indistinguishable from F̂1(x1; r1), where both quantum states are
averaged over the randomness r0 and r1.

This can be shown by a standard hybrid argument, and thus we omit the
proof.

4 Robust OWSGs Combiner

Based on the idea Sect. 2.1, we construct robust OWSGs combiner and construct
universal construction for OWSGs. For details, see the full version.
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5 Robust Combiner for Public-Key Quantum Money
Mini-Scheme

Based on the idea Sect. 2.1, we construct robust combiner for public key quantum
money mini-scheme and construct universal construction for it. For details, see
the full version.

6 Robust Canonical Quantum Bit Commitment
Combiner

Definition 6.1 (Robust Canonical Quantum Bit Commitment Com-
biner). A robust canonical quantum bit commitment combiner is a deterministic
classical polynomial-time Turing machine M with the following properties:

– M takes as input 1n and n-deterministic classical polynomial-time Turing
machine {Ti}i∈[n] that produces unitary, and outputs a deterministic classical
polynomial-time Turing machine T that produces unitary.

– Let (Qi,0(λ), Qi,1(λ)) be the unitary obtained by Ti(λ) and let (Q0(λ), Q1(λ))
be the unitary obtained by T (λ). If one of {{Qi,0(λ), Qi,1(λ)}λ∈N}i∈[n] satisfies
computational binding and computational hiding, then {Q0(λ), Q1(λ)}λ∈N is
a quantum bit commitment that satisfies statistical binding and computational
hiding.

In this section, we show the Theorem 6.1.

Theorem 6.1. There exists a robust canonical quantum bit commitment com-
biner.

First, let us introduce the following Proposition 6.1.

Proposition 6.1. Let Σ = {Q0(λ), Q1(λ)}λ∈N be a candidate of a canonical
quantum bit commitment. From Σ, we can construct a canonical quantum bit
commitment Σ∗ := {Q∗

0(λ), Q
∗
1(λ)}λ∈N such that:

1. Σ∗ satisfies statistical binding.
2. If Σ satisfies computational binding and computational hiding, then Σ∗ sat-

isfies computational hiding.

Proposition 6.1 directly follows from the following Lemma 6.1.

Lemma 6.1 (Amplifying Binding). Let {Q0(λ), Q1(λ)}λ∈N be a candidate
of canonical quantum bit commitment. Let {Q∗

0(λ), Q
∗
1(λ)}λ∈N be a candidate of

canonical quantum bit commitment described as follows:

– If C and R are the commitment and reveal registers of (Q0(λ), Q1(λ)), and
C̃ and R̃ are the commitment and reveal registers of (Q̃0(λ), Q̃1(λ)), which
is the flavor conversion of (Q0(λ), Q1(λ)) introduced in Lemma 3.1, then
the commitment and reveal registers of (Q∗

0(λ), Q
∗
1(λ)) are defined as C∗ :=

(

C⊗λ, C̃⊗λ
)

, and R∗ :=
(

R⊗λ, R̃⊗λ
)

.
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– For b ∈ {0, 1}, the unitary Q∗
b(λ) is defined as follows:

Q∗
b(λ) := (Qb(λ) ⊗ Q̃b(λ))⊗λ.

Then, the following is satisfied:
1. {Q∗

0(λ), Q
∗
1(λ)}λ∈N satisfies statistical binding.

2. If {Q0(λ), Q1(λ)}λ∈N satisfies computational hiding and computational
binding, then {Q∗

0(λ), Q
∗
1(λ)}λ∈N satisfies computational hiding.

Proof of Lemma 6.1. Below, we fix the security parameter λ, and write
(Q0, Q1), (Q̃0, Q̃1) and (Q∗

0, Q
∗
1) to mean (Q0(λ), Q1(λ)), (Q̃0(λ), Q̃1(λ)) and

(Q∗
0(λ), Q

∗
1(λ)), respectively.

Proof of the First Item. We define

ρb := TrR(Qb|0〉C,R) and ρ̃b := Tr
˜R(Q̃b|0〉˜C,˜R) and ρ∗

b := TrR∗(Q∗
b |0〉C∗,R∗).

From the construction of Q∗
0 and Q∗

1, we have

(ρb ⊗ ρ̃b)⊗λ := TrR∗(Q∗
b |0〉C∗,R∗).

Let 0 ≤ f ≤ 1 be some value such that

F (ρ0, ρ1) = f.

We have

TD(ρ0, ρ1) ≤
√

1 − F (ρ0, ρ1) ≤
√

1 − f.

In particular, this implies that (Q0, Q1) satisfies
√
1 − f -statistical hiding. From

Lemma 3.1, this implies that (Q̃0, Q̃1) satisfies (1 − f)1/4-statistical binding.
Furthermore, from Uhlmann’s theorem, we have

F (ρ̃0, ρ̃1) ≤ (1 − f)1/2.

Therefore, we have

F (ρ∗
0, ρ∗

1) = F
(
(ρ0 ⊗ ρ̃0)

⊗λ, (ρ1 ⊗ ρ̃1)
⊗λ

)
≤ F (ρ0, ρ1)

λF (ρ̃0, ρ̃1)
λ ≤ fλ(1 − f)λ/2 ≤ 2−λ/2,

which implies that (Q∗
0, Q

∗
1) satisfies statistical binding.

Proof of the Second Item. We prove that (Q∗
0, Q

∗
1) satisfies computational hiding

if (Q0, Q1) satisfies computational hiding and computational binding. Because
(Q̃0, Q̃1) is the flavor conversion of (Q0, Q1), (Q̃0, Q̃1) also satisfies computa-
tional hiding. Therefore, we can reduce the computational hiding of (Q∗

0, Q
∗
1) to

those of (Q0, Q1) and (Q̃0, Q̃1) by a standard hybrid argument. �
Proof of Theorem 6.1. Below, we consider some fixed constant n. For i ∈ [n], let
Ti be a deterministic classical Turing machine that takes as input 1λ, and outputs
(Qi,0(λ), Qi,1(λ)). Let Σi := {Qi,0(λ), Qi,1(λ)}λ∈N be a candidate of canonical
quantum bit commitment. Let Σ∗

i := {Q∗
i,0(λ), Q

∗
i,1(λ)}λ∈N be a candidate of

canonical quantum bit commitment such that:
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1. Σ∗
i satisfies statistical binding.

2. Σ∗
i satisfies computational hiding if Σi satisfies computational hiding and

computational binding.

Note that such a canonical quantum bit commitment is obtained from Propo-
sition 6.1.

A robust canonical quantum bit commitment combiner is a deterministic
classical polynomial-time Turing machine M that takes as input 1n and {Ti}i∈[n],
and outputs a deterministic classical polynomial-time Turing machine T that
works as follows. T takes as input 1λ and outputs the following QPT unitary
(Comb.Q0(λ),Comb.Q1(λ)):

– If C∗
i and R∗

i are the commitment register and the reveal register of
(Q∗

i,0(λ), Q
∗
i,1(λ)), then the commitment and reveal register of (Comb.Q0(λ),

Comb.Q1(λ)) are defined as C := {C∗
i }i∈[n] and R = ({R∗

i }i∈[n], {D∗
i }i∈[n]),

where D∗
i is an additional one-qubit register for i ∈ [n].

– For b ∈ {0, 1}, the unitary Comb.Qb is defined as follows:

Comb.Qb(λ) :=

⎛

⎝
∑

r∈{0,1}n

⊗

i∈[n]

(Q∗
i,ri

(λ) ⊗ |ri〉〈ri|D∗
i
)

⎞

⎠

·

⎛

⎝
⊗

i∈[n]

IC∗
i ,R∗

i
⊗ Xb

D∗
1

⊗

i∈{2,··· ,n}
CNOTD∗

1 ,D∗
i

⊗

i∈{2,··· ,n}
HD∗

i

⎞

⎠ .

Here, ri is the i-th bit of r and CNOTD∗
1 ,D∗

i
is a CNOT gate, where D∗

1 is a
target register and D∗

i is a control register. Note that we have

Comb.Qb(λ)|0〉C,R =
1

2(n−1)/2

∑

{r:
∑

i∈[n] ri=b}

⊗

i∈[n]

(Q∗
i,ri

(λ)|0〉C∗
i ,R∗

i
⊗ |ri〉D∗

i
).

We have the following Lemmata 6.2 and 6.3. Therefore, Theorem 6.1 holds.

Lemma 6.2. {Comb.Q0(λ),Comb.Q1(λ)}λ∈N satisfies statistical binding.

Intuitively, Comb, Qb(λ) randomly samples {r[i]}i∈[n] such that
∑

i∈[n] r[i] =
b, and commits each r[i] using Q∗

i,r[i]. In order to break the statistical binding of
{Comb.Q0(λ),Comb.Q1(λ)}λ∈N, the adversary needs to change one of {r[i]}i∈[n]

after sending the commitment register. However, the adversary cannot do this
because all of {Q∗

i,0, Q
∗
i,1}i∈[n] satisfy statistical binding. For details, please see

the full version.
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Lemma 6.3. If one of {Σi}i∈[n] satisfies computational hiding and computa-
tional binding, then {Comb.Q0(λ),Comb.Q1(λ)}λ∈N satisfies computational hid-
ing.

The adversary of (Comb.Q0,Comb.Q1) needs to obtain all of {r[i]}i∈[n] from
the commitment register of (Q0[1], Q1[1]) and {Q∗

i,0, Q
∗
i,1}i∈[n], but the adversary

cannot do this because one of {Q∗
i,0, Q

∗
i,1}i∈[n] satisfies computational hiding. For

details, please see the full version. �

6.1 Universal Construction

Definition 6.2. We say that a sequence of uniform QPT unitaries ΣUniv =
{Q0(λ), Q1(λ)}λ∈N is a universal construction of canonical quantum bit com-
mitment if ΣUniv is canonical quantum bit commitment as long as there exists
canonical quantum bit commitment.

Theorem 6.2. There exists a universal construction of canonical quantum bit
commitment.

We omit the proof. For details, please see the full version.

7 Robust Combiner for Unclonable Encryption

Definition 7.1 (Robust Combiner for Unclonable Secret-Key Encryp-
tion). A robust combiner for (one-time) unclonable secret-key encryption with
�(λ)-bit plaintexts is a deterministic classical polynomial-time Turing machine
M with the following properties:

– M takes as input 1n with n ∈ N and n-candidates (one-time) unclonable se-
cret-key encryption with �(λ)-bit plaintexts {Σi := (KeyGeni,Enci,Deci)}i∈[n]

promised that all candidates satisfies efficiency, and outputs a set of algo-
rithms Σ := (KeyGen,Enc,Dec).

– If all of {Σi}i∈[n] satisfies efficiency and at least one of {Σi}i∈[n] satisfies cor-
rectness, (one-time) IND-CPA security and (one-time) unclonable IND-CPA
security, then Σ is (one-time) unclonable secret-key encryption for �(λ)-bit
plaintexts that satisfies efficiency, correctness, (one-time) IND-CPA security
and (one-time) unclonable IND-CPA security.

In this section, we prove the following Theorem 7.1.

Theorem 7.1. There exists a robust combiner for (one-time) unclonable secret-
key encryption with �(λ)-bit plaintexts for all polynomial �.

As a corollary, we obtain the following Corollary 7.1.

Corollary 7.1. There exists a robust combiner for unclonable public-key
encryption with �(λ)-bit plaintexts for all polynomial �.
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Proof of Corollary 7.1. We give a rough sketch of the proof.
Corollary 7.1 follows from the following observations. We can trivially obtain

one-time unclonable SKE from unclonable PKE. From Theorem 7.1, we have
a robust combiner for one-time unclonable SKE. Furthermore, we can trivially
construct PKE with quantum ciphertexts from unclonable PKE. It is known
that there exists a robust PKE combiner [HKN+05], and we observe that we
can also construct a robust combiner for PKE with quantum ciphertexts in the
same way. Moreover, we can construct unclonable PKE from one-time unclon-
able SKE, and PKE with quantum ciphertexts. This is because we can con-
struct unclonable PKE from one-time SKE and receiver non-committing encryp-
tion with quantum ciphertexts 4 (For the detail, please see the full version),
and receiver non-committing encryption with quantum ciphertexts can be con-
structed from PKE with quantum ciphertexts in the same way as the classical
ciphertext case [CHK05,KNTY19].

By combining these observations, we can construct a robust combiner for
unclonable PKE as follows. Given candidates of unclonable PKE {Σi}i∈[n], we
first use a robust combiner for one-time unclonable SKE, and obtain a new
candidate of one-time unclonable SKE ΣSKE regarding each candidate Σi as a
one-time unclonable SKE scheme. Next, we use a robust combiner for PKE with
quantum ciphertexts and obtain a new candidate of PKE with quantum cipher-
texts ΣPKE regarding each candidate Σi as a (not necessarily unclonable) PKE
scheme. Then, we construct a receiver non-committing encryption with quan-
tum ciphertexts ΣNCE from ΣPKE. Finally, we construct unclonable PKE Σunclone

from one-time unclonable SKE ΣSKE and receiver non-committing encryption
with quantum ciphertexts ΣNCE. �

For proving Theorem 7.1, we introduce the following Lemma 7.1.

Lemma 7.1. Let Σ be a candidate for (one-time) unclonable secret-key encryp-
tion with �(λ)-bit plaintexts. From Σ, we can construct a (one-time) unclonable
secret-key encryption with �(λ)-bit plaintexts Σ∗ := (KeyGen∗,Enc∗,Dec∗) such
that:

1. Σ∗ is a uniform QPT algorithm, if Σ is a uniform QPT algorithm.
2. Σ∗ satisfies perfect correctness.
3. Σ∗ satisfies (one-time) IND-CPA security and (one-time) unclonable IND-

CPA security if Σ is a uniform QPT algorithm and satisfies correctness,
(one-time) IND-CPA security and (one-time) unclonable IND-CPA security.

We omit the proof. For details, please see the full version.

4 [AK21] shows that unclonable PKE can be constructed from one-time unclonable
SKE and PKE with classical ciphertexts. Note that it is unclear whether we can
construct unclonable PKE from one-time SKE and PKE with “quantum” ciphertexts
in the same way as [AK21]. This is because they use the existence of OWFs in their
proof although it is unclear whether PKE with quantum ciphertexts implies OWFs.
Therefore, we use the technique of [HMNY21] instead. (For the detail, please see the
full version).
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Proof of Theorem 7.1. Below, we consider a fixed constant n and a fixed poly-
nomial �. Let us describe some notations:

Notations.
– Let Σi be a candidate of (one-time) unclonable secret-key encryption with

�(λ)-length for i ∈ [n].
– For a candidate of (one-time) unclonable secret-key encryption with �(λ)-bit

plaintexts Σi, let Σ∗
i := (KeyGen∗

i ,Enc
∗
i ,Dec

∗
i ) be a candidate of (one-time)

unclonable secret-key encryption with �(λ)-bit plaintexts derived from Lemma
7.1, which satisfies:

• Σ∗
i is a uniform QPT algorithm, if Σi is a uniform QPT algorithm.

• Σ∗
i satisfies correctness.

• Σ∗
i satisfies (one-time) IND-CPA security and (one-time) unclonable IND-

CPA security if Σi is uniform QPT algorithm and satisfies correctness,
(one-time) IND-CPA security, and (one-time) unclonable IND-CPA secu-
rity.

Construction of Robust (One-Time) Unclonable Secret-Key Encryption. A
robust combiner for (one-time) unclonable secret-key encryption with �(λ)-
bit plaintexts is a deterministic classical polynomial-time Turing machine that
takes as input 1n and {Σi}i∈[n], and outputs the following set of algorithms
Σ = (KeyGen,Enc,Dec):
KeyGen(1λ):

– For all i ∈ [n], run sk∗
i ← KeyGen∗

i (1
λ).

– Output sk := {sk∗
i }i∈[n].

Enc(1λ, sk,m):
– For all i ∈ [n], sample ri ← {0, 1}�(λ) promised that

∑

i∈[n] ri = m, where
the �(λ) is the length of plaintext m.

– For all i ∈ [n], run CT∗
i ← Enc∗

i (1
λ, sk∗

i , ri) for all i ∈ [n].
– Output CT := {CT∗

i }i∈[n].
Dec(1λ, sk,CT):

– Run r∗
i ← Dec∗

i (1
λ, sk∗

i ,CT
∗
i ) for all i ∈ [n].

– Output
∑

i∈[n] r
∗
i .

Theorem 7.1 follows from the following Lemmata 7.2 to 7.5.
Lemma 7.2. If all of {Σi}i∈[n] satisfies efficiency, Σ satisfies efficiency.

Lemma 7.3. Σ satisfies correctness.

Lemma 7.4. If all of {Σi}i∈[n] satisfies efficiency and one of {Σi}i∈[n], satisfies
both correctness and (one-time) IND-CPA security, then Σ satisfies (one-time)
IND-CPA security.

Lemma 7.5. If all of {Σi}i∈[n] satisfies efficiency and one of {Σi}i∈[n], satisfies
both correctness and (one-time) unclonable IND-CPA security, then Σ satisfies
(one-time) unclonable IND-CPA security.

Lemmata 7.2 and 7.3 trivially follows, and thus we omit the proof. The proof
of Lemmata 7.4 and 7.5 follow from the standard hybrid argument, and thus we
omit the proof. �
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7.1 Universal Constructions

Definition 7.2. We say that a set of uniform QPT algorithms ΣUniv = (KeyGen,
Enc,Dec) is a universal construction of (one-time) unclonable SKE (resp. PKE)
if ΣUniv is (one-time) unclonable SKE (resp. PKE) as long as there exists (one-
time) unclonable SKE (resp. PKE).

Theorem 7.2. There exists a universal construction of (one-time) unclonable
SKE and unclonable PKE.

We omit the security proof. For details, please see the full version.

8 Universal Plaintext Extension for Unclonable
Encryption

In this section, we prove the following Theorem 8.1.

Theorem 8.1. Assume that there exists a decomposable quantum randomized
encoding and one-time unclonable SKE Σunclone = Unclone.(KeyGen,Enc,Dec)
where the size of the quantum circuit Unclone.Dec(1λ, ·, ·) is �(λ). Then, for all
polynomial n, there exists a polynomial p which depends on the polynomial n and
� and a set of uniform QPT algorithms Σ = (KeyGen,Enc,Dec) which depends
on the polynomial p such that Σ is a one-time unclonable secret-key encryption
for n(λ)-bit plaintexts.

Remark 8.1. Our construction is universal construction for one-time unclonable
SKE in the sense that our construction does not depend on the single-bit scheme
Σunclone that is assumed to exist except for the size of the decryption circuit of
Σunclone.

As corollaries, we obtain Corollaries 8.1 and 8.2.

Corollary 8.1. For all polynomial n, there exists a set of uniform QPT algo-
rithms Σ = (KeyGen,Enc,Dec) such that Σ is unclonable secret-key encryption
for n(λ)-bit plaintexts if there exists unclonable secret-key encryption for single-
bit plaintexts.

Corollary 8.2. For all polynomial n, there exists a set of uniform QPT algo-
rithms Σ = (KeyGen,Enc,Dec) such that Σ is unclonable public-key encryption
for n(λ)-bit plaintexts if there exists unclonable public-key encryption for single-
bit plaintexts.

Proof of Corollary 8.2. We give a rough sketch of the proof of Corollary 8.2.
Note that, in the same way, we can prove Corollary 8.1.

We can construct PKE with quantum ciphertexts and one-time unclonable
SKE with single-bit plaintexts from unclonable PKE for single-bit plaintexts.
We can construct decomposable quantum randomized encoding from PKE with
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quantum ciphertexts. Furthermore, from Theorem 8.1, we can construct one-time
unclonable SKE with n(λ)-bit plaintexts from decomposable quantum random-
ized encoding and one-time unclonable SKE with single-bit plaintexts.

On the other hand, we can construct receiver non-committing encryption
with quantum ciphertexts from PKE with quantum ciphertexts. By combining
the receiver non-committing encryption with quantum ciphertexts and one-time
unclonable SKE with n(λ)-bit plaintexts, we obtain unclonable PKE with n(λ)-
bit plaintexts (For the detail, please see the full version.). �
Proof of Theorem 8.1. First, let us describe notations and observations.

Notations and Observations.

– Let Cλ,p[m] be a quantum circuit of size p(λ) with λ-qubit quantum inputs
and λ-bit classical inputs such that it outputs m for any inputs, where p is a
polynomial which we specify later.

– Let ΣRE := RE.(Enc,Dec) be a decomposable quantum randomized encoding.
Given quantum circuit C and n1-length quantum input and n2-length classical
input q and x, the encoding Ĉ(q, x) can be separated as follows:

Ĉ(q, x, r, e) = (Ĉoff , Ĉ1, · · · , Ĉn1+n2)(q, x, r, e),

where r is uniformly ransom string and e is some quantum state. From decom-
posability, Ĉoff acts only on r and e, and Ĉi acts only on qi, r and e for i ∈ [n1],
and Ĉi acts only on xi and r for i ∈ {n1 +1, · · · , n1 + n2}. For any quantum
circuit C, we write lab[i, xi] = Ĉi(xi, ri) and lab[i,qi] = Ĉi(qi, r, e).

Construction. We give a construction of one-time unclonable secret-key encryp-
tion Σ := (KeyGen,Enc,Dec) with n(λ)-bit plaintexts by using decomposable
quantum randomized encoding. In the construction, we only use decomposable
quantum randomized encoding. The construction is secure as long as the under-
lying decomposable quantum randomized encoding is secure and there exists
one-time unclonable secret-key encryption for single-bit plaintexts.

KeyGen(1λ):
– Sample x ← {0, 1}λ.
– Sample R[i] ← {0, 1}�(λ) for all i ∈ [λ].
– Output sk :=

(

x, {R[i]}i∈[λ]

)

.
Enc(1λ, sk,m):

– Parse sk =
(

x, {R[i]}i∈[λ]

)

.
– Prepare the quantum circuit Cλ,p[m] that outputs m for any inputs.
– Compute Ĉλ,p[m]off .
– Compute {lab[i, 0]}i∈[λ], and {lab[i, b]}i∈{λ+1,··· ,2λ},b∈{0,1}.
– Sample S[i] ← {0, 1}�(λ) for all i ∈ [λ].
– Compute Lab.CT[i+ λ, x[i]] := R[i] + lab[i+ λ, x[i]] and Lab.CT[i+ λ, 1−

x[i]] := S[i] + lab[i + λ, 1 − x[i]] for all i ∈ [λ].
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– Output

CT :=
(

Ĉλ,p[m]off , {lab[i, 0]}i∈[λ], {Lab.CT[i, b]}i∈{λ+1,··· ,2λ},b∈{0,1}
)

.

Dec(1λ, sk,CT):
– Parse sk =

(

x, {R[i]}i∈[λ]

)

and

CT =
(

Ĉλ,p[m]off , {lab[i, 0]}i∈[λ], {Lab.CT[i, b]}i∈{λ+1,··· ,2λ},b∈{0,1}
)

.

– Compute lab[i + λ, x[i]] := Lab.CT[i + λ, x[i]] + R[i] for all i ∈ [λ].
– Compute

RE.Dec
(

Ĉλ,p[m]off , {lab[i, 0]}i∈[λ], {lab[i, x[i]]}i∈{λ+1,··· ,2λ}
)

and outputs its output.

Lemma 8.1. Σ satisfies efficiency if ΣRE is decomposable quantum randomized
encoding.

Lemma 8.2. Σ satisfies correctness if ΣRE is decomposable quantum random-
ized encoding.

Lemma 8.3. If ΣRE is decomposable quantum randomized encoding and there
exists one-time unclonable secret-key encryption with single-bit plaintexts, Σ sat-
isfies one-time IND-CPA security for some polynomial p.

Lemma 8.4. If ΣRE is decomposable quantum randomized encoding and there
exists one-time unclonable secret-key encryption with single-bit plaintexts, Σ sat-
isfies one-time unclonable IND-CPA security for some polynomial p.

Lemma 8.1 straightforwardly follows. We can see that Lemma 8.2 holds as fol-
lows. First, if sk ← KeyGen(1λ) and CT ← Enc(sk,m), Dec(sk,CT) outputs the
output of Cλ,p[m](0λ, x). From the definition of Cλ,p[m], Cλ,p[m](0λ, x) outputs
m for all x.

The proof of Lemma 8.3 is the same as Lemma 8.4, and thus we skip the
proof.

Proof of Lemma 8.4. By a standard argument, we can show the following Propo-
sition 8.1.

Proposition 8.1. If there exists one-time unclonable secret-key encryption for
single-bit plaintexts, then there exists a one-time unclonable secret-key encryp-
tion for single-bit plaintexts scheme Σunclone = Unclone.(KeyGen,Enc,Dec) such
that the following properties are satisfied:

1. Σunclone satisfies perfect correctness.
2. For all security parameters λ ∈ N and b ∈ {0, 1}, we have |skλ| = |CTλ,b| = λ,

where skλ ← Unclone.KeyGen(1λ) and CTλ,b ← Unclone.Enc(1λ, skλ, b).
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3. For all security parameters λ, Unclone.KeyGen(1λ) uniformly randomly sam-
ples skλ.

We can show the Proposition 8.1 by correctness amplification and stan-
dard padding argument. We omit the proof. For details, please see the full
version. We defineDλ[m0,m1] as a quantum circuit that takes as input λ-
qubit quantum inputs ρ and λ-bit classical bits x, runs the quantum circuit
b ← Unclone.Dec(1λ, x, ρ), and outputs mb. Now, we define p as a polynomial
large enough to run the circuit Dλ[m0,m1].

We describe the sequence of hybrids against the adversary (A,B, C).

Hyb0: This is the original one-time unclonable IND-CPA security experiment.
1. The challenger samples b ← {0, 1}.
2. The challenger samples x ← {0, 1}λ and R[i] ← {0, 1}�(λ) for all i ∈ [λ].
3. A sends (m0,m1) to the challenger.
4. The challenger computes Ĉλ,p[mb]off , {lab[i, 0]}i∈[λ], and

{lab[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}.
5. The challenger samples S[i] ← {0, 1}�(λ) for all i ∈ [λ], and computes

Lab.CT[i + λ, x[i]] := R[i] + lab[i + λ, x[i]]
Lab.CT[i + λ, 1 − x[i]] := S[i] + lab[i + λ, 1 − x[i]]

for all i ∈ [λ].
6. The challenger sends

CT :=
(

Ĉλ,p[m]off , {lab[i, 0]}i∈[λ], {Lab.CT[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}
)

.

to A.
7. A produces ρB,C and sends the corresponding registers to B and C.
8. B and C receives

(

x, {R[i]}i∈[λ]

)

, and outputs bB and bC .
9. The experiment outputs 1 if bB = bC = b, and otherwise 0.

Hyb1:
1. The challenger samples b ← {0, 1}.
2. The challenger samples x ← {0, 1}λ and R[i] ← {0, 1}�(λ) for all i ∈ [λ].
3. The adversary A sends (m0,m1) to the challenger.
4. The challenger computes unclone.CTb ← Unclone.Enc(1λ, x, b), where

unclone.CTb is the λ-length quantum states.
5. The challenger computes D̂λ[m0,m1]off , {lab[i, unclone.CTb[i]]}i∈[λ], and

{lab[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}.
6. The challenger samples S[i] ← {0, 1}�(λ) for all i ∈ [λ], and computes

Lab.CT[i + λ, x[i]] := R[i] + lab[i + λ, x[i]]
Lab.CT[i + λ, 1 − x[i]] := S[i] + lab[i + λ, 1 − x[i]]

for all i ∈ [λ].
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7. The challenger sends

CT :=
(

D̂λ[m0,m1]off , {lab[i, unclone.CTb[i]]}i∈[λ],

{Lab.CT[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}
)

to A.
8. A produces ρB,C and sends the corresponding registers to B and C.
9. B and C receives

(

x, {R[i]}i∈[λ]

)

, and outputs bB and bC .
10. The experiment outputs 1 if bB = bC = b, and otherwise 0.

Lemma 8.4 follows from the following Propositions 8.2 and 8.3.
Proposition 8.2. If ΣRE is decomposable quantum randomized encoding, then

|Pr[Hyb0 = 1] − Pr[Hyb1 = 1]| ≤ negl(λ).

The challenger in Hyb0 uses
(

Ĉλ,p[mb]off , {lab[i, 0]}i∈[λ],

{Lab.CT[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}

)

as a quantum ciphertext. In Hyb1, as a quan-

tum ciphertext, the challenger uses
(

D̂λ[m0,m1]off , {lab[i, unclone.CTb[i]]}i∈[λ],

{Lab.CT[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}

)

instead. Furthermore, we have Cλ,p[mb]

(0λ, x) = Dλ[m0,m1](unclone.CTb, x) = mb. Therefore, by Proposition 3.1, if we
can distinguish Hyb0 from Hyb1, then we can also break the security of decompos-
able quantum randomized encoding. For details, please see the full version.

Proposition 8.3. If there exists a one-time unclonable secret-key encryption
ΣUnclone with single-bit plaintexts, then

|Pr[Hyb1 = 1]| ≤ 1
2
+ negl(λ).

We give a rough sketch of Proposition 8.3. The adversary of (Ã, B̃, C̃) can
break the security of arbitrary unclonable SKE ΣUnclone with single-bit plain-
texts by using (A,B, C), which breaks the security of Hyb1. By receiving the
unclone.CTb from the

challenger of ΣUnclone, Ã generates
(

D̂λ[m0,m1]off , {lab[i, unclone.CTb[i]]}i∈[λ],

{Lab.CT[i, β]}i∈{λ+1,··· ,2λ},β∈{0,1}

)

, runs A on it, and passes the corresponding

register to B̃ and C̃. B̃ (resp. C̃) runs B (resp. C) on the corresponding regis-
ter, and outputs its output. From the construction of A, A perfectly simulates
the challenger of Hyb1. Therefore, (A,B, C) can break the security of arbitrary
unclonable SKE ΣUnclone with single-bit plaintexts. �

�
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Abstract. Can an adversary hack into our system and steal sensitive
data such as cryptographic keys? This question is as old as the Internet
and significant effort has been spent on designing mechanisms to pre-
vent and detect hacking attacks. Once quantum computers arrive, will
the situation remain the same or can we hope to live in a better world?

We first consider ubiquitous side-channel attacks, which aim to leak
side information on secret system components, studied in the leakage-
resilient cryptography literature. Classical leakage-resilient cryptography
must necessarily impose restrictions on the type of leakage one aims to
protect against, such as the popular bounded leakage model. Although
such leakage bounds are necessary, many real-world side-channel attacks
cannot be captured by bounded leakage. In this work, we design crypto-
graphic schemes that provide guarantees against arbitrary side-channel
attacks:

– Using techniques from unclonable quantum cryptography, we design
several basic leakage-resilient primitives, such as public- and private-
key encryption, pseudorandom functions, digital signatures and
quantum money schemes which remain secure under unbounded
adaptive classical leakage over unbounded number of rounds.

– What if the adversary simply breaks into our system to steal our
secret keys, rather than mounting only a side-channel attack? What
if the adversary can even tamper with the data arbitrarily, for exam-
ple to cover its tracks? We initiate the study of intrusion-detection
in the quantum setting, where one would like to detect if security has
been compromised even in the face of such attacks. We design cryp-
tographic schemes supporting intrusion-detection for a host of prim-
itives such as public- and private-key encryption, digital signature,
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functional encryption, program obfuscation and software protection.
Our schemes are based on techniques from cryptography with secure
key leasing and certified deletion.

Keywords: Quantum cryptography · Leakage resilience

1 Introduction

Securely storing sensitive data is a central problem in computer security. This
could mean that we would like to make any intrusion into the system harder to
realize, as well as detect if an intrusion did occur. This is a notoriously hard prob-
lem with significant resources spent on preventing and mitigating such attacks.
Indeed, in the classical setting all information can theoretically be copied, and
so we can only rely on heuristic countermeasures for such attacks. We study
this question in the quantum setting and show that the quantum world offers
security guarantees that are classically impossible.

We first consider side-channel (also known as leakage) attacks. Real-world
implementations of cryptographic schemes are often vulnerable to side-channel
attacks, which allow an adversary to obtain side information from secret compo-
nents such as a secret key. This can be achieved, for example, by measuring the
time elapsed or the electromagnetic radiation emitted during computations—
such simple practical attacks stretch back some decades [4,19,22] and have
proven catastrophic for textbook versions of several well known schemes. As
a response to this, leakage-resilient cryptography, the study of cryptographic
schemes resilient against many types of side-channel attacks, has received sig-
nificant interest. The survey of Kalai and Reyzin [17] is an excellent source for
many of the developments in this area.

Arguably the most well-studied leakage model is that of bounded leakage. In
this model, it is assumed that the adversary may not leak more than � bits of
leakage from a secret component, where � is some leakage bound that is smaller
than the secret length k. For example, in the setting of encryption, with a secret
key sk ∈ {0, 1}k, the adversary chooses an arbitrary function f : {0, 1}k →
{0, 1}�, where � < k represents the leakage bound, and learns the bounded
leakage f(sk).

Is a Leakage Bound Justified? Generally, the justification for a leakage bound is
that in the absence of one, the adversary can just leak the whole secret and no
security guarantees are possible. While the study of bounded leakage-resilient
cryptography has given rise to a beautiful and highly successful area of research,
it is quite often the case that real world side channels attacks do not adhere
to any a priori bounded leakage limit [13]. Moreover, even choosing a leakage
bound entails predicting adversarial capabilities, and these predictions may be
wildly incorrect.
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Leakage-Resilience in a Quantum World. What if we store the secret being
leaked on as a quantum state? Quantum information behaves in a fundamen-
tally different way compared to its classical counterpart. While classical schemes
can only tolerate a bounded amount of leakage, the same may not be true for
quantum schemes. This raises the following tantalizing question:

Is it possible to design cryptographic schemes based on the laws of
quantum mechanics which can tolerate arbitrary unbounded leakage?

We answer the above question in the affirmative by proposing a host of
cryptographic schemes resilient to unbounded classical leakage. Based on the
literature on side-channel attacks, our view is that leakage is the result of obser-
vations of quantities such as electromagnetic radiation, power consumption, time
elapsed, and temperature fluctuations. Hence, leakage or side-channel informa-
tion is indeed classical information. In fact, we further define the notion of LOCC
(local operations and classical communication) leakage where the adversary can
adaptively obtain unbounded classical leakage over an unbounded number of
rounds, and show that our schemes are also resilient against such attacks. There-
fore, we believe that our schemes can even be seen as leakage-proof rather than
just leakage-resilient.

We design a host of cryptographic schemes such as public- and private-key
encryption schemes, digital signatures, pseudorandom functions and quantum
money schemes which are resilient to LOCC leakage.

Intrusion-Detection in a Quantum World. What if an adversary, rather than
mounting a side-channel attack, simply breaks into our system? In this case, the
adversary can just obtain our whole secret state and, analogously to the classical
setting, all bets are now off. Even worse, what if the adversary can even tamper
with the stored data in an arbitrary manner (for example, to cover its tracks)?
Can we achieve meaningful security guarantees in the face of such attacks?

We refer to the above setting as intrusion-detection in the quantum world.
While intrusion-detection is fundamentally impossible in the classical setting
(since an adversary may just clone secret system components without causing
any changes to the system’s state), it has nonetheless been widely studied in
practice and is considered a highly desirable security goal. For example, tamper-
proof audit logs have been extensively studied which, under certain assumptions,
can detect if a machine has been broken into [6,25,26].

Surprisingly, based on principles of quantum mechanics, we are able to design
many primitives supporting intrusion-detection. More precisely, our schemes pro-
vide the following guarantee. Suppose that an adversary was able to arbitrarily
act on the secret, tampering it and obtaining sufficient information to break the
security of the primitive (e.g., break indistinguishability in the case of public-
key encryption). Then, a procedure called TestIntrusion outputs INTRUSION with
overwhelming probability, indicating that an attack occurred and security has
been compromised. TestIntrusion takes as input the residual secret (e.g., the
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residual secret key in the case of public-key encryption), and a classical public
verification key.1

We require that if the procedure TestIntrusion outputs NO INTRUSION, then,
with overwhelming probability, either there has been no attack, or any possible
attack was not successful in breaking the scheme’s security! All of our results
in this direction are obtained via a connection to cryptography with secure key
leasing [8–10] (also called cryptography with certified deletion).

1.1 Our Results

LOCC Leakage-Resilience. We design schemes for public-key encryption
(PKE), signatures, and pseudorandom functions (PRFs) that tolerate LOCC
leakage against polynomial adversaries. For all tasks mentioned here, we consider
an adversary that, over any polynomial number of rounds, adaptively specifies
an unbounded measurement which is applied to the secret quantum key, and
receives the (classical) measurement result and moves onto the next round of
leakage (where the measurement will now be applied to the post-measurement
state from the previous round). After the leakage phase is over, the adversary
participates in the respective security game (e.g., in the case of PKE, it receives
a challenge ciphertext and guesses the plaintext).

Theorem 1. Assuming the existence of post-quantum sub-exponentially secure
iO, one-way functions, and the quantum hardness of Learning with Errors (LWE)
[23], there exist LOCC-leakage-resilient schemes for public-key encryption, dig-
ital signatures, and PRFs.

We also introduce a new security notion for quantum money, called unbounded
leakage-resilient quantum banks. In most quantum money schemes (e.g., [2,29]),
the bank produces a banknote by sampling an unclonable quantum state through
a public procedure, and signs its serial number using a classical signature scheme,
where the secret key of the bank is simply the classical signing key sk of this
classical signature scheme. However, we note that a leakage on the secret key sk
of the bank would be catastrophic, as it would allow an adversary to produce
any number of banknotes. Thus, we introduce the notion of unbounded leakage-
resilient quantum banks. In this setting, the adversary obtains k banknotes along
with unbounded classical leakage on the secret (quantum) key of the bank, and
it still will not be able to create even a single extra banknote.

Theorem 2. Assuming existence of quantum lightning [29], relative to a classi-
cal oracle, there exists a quantum bank scheme with unbounded classical leakage-
resilience.

1 A copy of this public verification key could be stored offline or at multiple locations.
Note that the notion of intrusion-detection is meaningless in the absence of such a
public verification key, since in that case the adversary can simply swap our whole
system, including the verification key, with a fresh instance of the scheme.
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We similarly introduce the notion of chosen-message unbounded leakage-resilient
signature schemes with quantum signatures2.

Theorem 3. Assuming existence of quantum lightning [29], relative to a clas-
sical oracle, there exists a signature scheme that satisfies chosen-message
unbounded classical leakage-resilience.

Relationship Between Leakage-Resilience and Unclonability. We are able to con-
struct LOCC leakage-resilient schemes for various primitives using techniques
from unclonable cryptography. This leads us to wonder whether a more general
connection holds between unclonability (i.e., anti-piracy security) and LOCC
leakage-resilience in general.

We first show that in some cryptographic settings unclonability implies (non-
adaptive) unbounded leakage-resilience (Definition 4).

Theorem 4. Let X be a {public-key encryption, digital signature, PRF} scheme
that satisfies random-challenge anti-piracy security. Then, X also satisfies
random-challenge non-adaptive unbounded classical leakage-resilience.

While this might lead one to think that leakage-resilience in general is weaker
than and implied by unclonability, we show that this is not the case. In fact,
relative to a classical oracle, there exist schemes that satisfy unclonability (and
thus non-adaptive unbounded leakage-resilience) but not even 1-round LOCC
leakage-resilience (Definition 4).

Theorem 5 (informal). Relative to a classical oracle, there exists a {public-
key encryption, digital signature, PRF} scheme that satisfies anti-piracy security
but does not satisfy 1-round LOCC leakage-resilience.

We believe this supports our vision of LOCC leakage-resilience as a new
research direction, since, aside from modelling side-channels attacks in the most
general way and thus being an important security model, it is also not implied
by existing security notions.

We also show that LOCC leakage-resilience does not imply unclonability
either, which means that it might be possible to obtain leakage-resilience from
weaker assumptions.

Theorem 6. Assuming subexponentially secure iO, one-way functions and
qLWE, there exists a {public-key encryption, signature, PRF} scheme that sat-
isfies LOCC leakage-resilience but there exists a cloning (i.e. piracy) adversary
that wins the anti-piracy game with probability 1.

Intrusion-Detection. As pointed out in the introduction, we cannot have
resilience against the case where the adversary completely breaks into our sys-
tem, since the adversary can leak the whole quantum secret. Therefore, in that

2 Note that this notion is impossible with classical signatures since the adversary can
simply leak a classical signature.
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case, we aim to achieve intrusion-detection instead. More specifically, we design
cryptographic primitives with an intrusion-detection algorithm which can detect
whether useful information has been obtained on the secret key. These results
are obtained by establishing a connection to cryptographic schemes with publicly
verifiable secure leasing [9].

Theorem 7 (informal). Suppose that there exists a X ∈ [public-key encryp-
tion, digital signature, PRF, functional encryption, obfuscation, software pro-
tection] scheme with publicly verifiable secure leasing. Then, there exists an X
scheme with intrusion-detection.

We show that the other direction is also true: intrusion-detection implies
publicly verifiable secure key-leasing with quantum certificates for the primitives
listed above.

Based on the constructions from the secure leasing literature [9,20], we get
the following corollaries of our theorem above.

Corollary 1. Assuming post-quantum indistinguishability obfuscation and
(injective) one-way functions, there exists a public-key encryption, PRF, func-
tional encryption, differing-inputs obfuscation and software protection scheme
with intrusion-detection.

Corollary 2. Assuming post-quantum subexponentially secure indistinguishabil-
ity obfuscation, one-way functions, and quantum hardness of LWE, there exists
a digital signature scheme with intrusion-detection.

While iO is a strong assumption, we show that public-key quantum money is
implied by intrusion-detection. Thus, our assumption can be considered unavoid-
able until a breakthrough is achieved in the construction of public-key quantum
money, since it is a major open problem to construct it without iO.

Theorem 8. Suppose there exists a public-key encryption scheme with
intrusion-detection. Then, there exists a public-key quantum money scheme.

Our result can be similarly generalized to other primitives [15].

Constructions Based on BB84 States. We also construct (information-
theoretic) leakage-resilient secret sharing schemes and (computational) private
key encryption schemes that are secure in the unbounded leakage-resilience set-
ting, by proving an LOCC leakage (+ bounded quantum leakage) resilience result
for BB84 states.

Theorem 9 (informal). Assuming existence of public-key encryption, there
exist a secret key encryption scheme that satisfies LOCC leakage and constant
rate bounded quantum leakage on its secret key.

Theorem 10 (informal). For any monotone access structure Γ with no sin-
gletons, there exists an information theoretically secure secret sharing scheme
for Γ tolerating unentangled LOCC leakage and constant rate bounded quantum
leakage from the shares. On the other hand, there cannot exists a secret sharing
scheme that is even classically leakage-resilient against entangled leakage.
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We refer the reader to the full version [15] for formal statements, construc-
tions and the proofs.

2 Technical Overview

A common theme across several of our results is that they are based on techniques
from cryptography with unclonability (also called copy-protection or anti-piracy
security and secure key leasing (i.e., keys with certified deletion). The connection
between leakage-resilience and copy-protection is as follows. Suppose one can
obtain classical leakage on a quantum secret satisfying copy-protection security,
which is “functionally equivalent” to the secret itself (e.g., this leakage allows one
to decrypt in case the quantum secret is a secret key of an encryption scheme).
Since any classical information can be cloned, this gives us a way of essentially
obtaining multiple states having the same functionality as the original quantum
secret. Since we assumed the quantum secret was “unclonable”, we arrive at
a contradiction, which should yield leakage-resilience security. While this basic
observation is indeed our starting point, this is not enough due to new challenges
in the setting of leakage-resilience. We highlight some challenges, taking public-
key encryption as our running example.

Challenge 1: Adversary’s State Cannot be Cloned. In the context of public-key
encryption, the LOCC leakage game consists first of an adversary A adaptively
specifying a measurement to be applied to the key for multiple rounds. Then,
the adversary will try to decrypt the challenge ciphertext with the information
that it has obtained. The implicit assumption in the hypothetical reduction
(from leakage-resilience to unclonability) from the previous paragraph is that
there is a single measurement made by A which is sufficient to decrypt the
challenge ciphertext. However, in general the LOCC leakage game will have
multiple rounds of adaptive measurements, and the decryption of the challenge
ciphertext will utilize the final (quantum) internal state of A. In general, this
state cannot be cloned even though descriptions of the measurements chosen
by A are classical, and this holds true even if one started with multiple copies
of the initial state of A as non-uniform advice. This is because A can choose
the measurements in each round probabilistically and therefore the different
copies of A could choose a different measurement to be applied to the key.
However, only a single leakage measurement can be run since we only have a
single copy of the secret key during the reduction, and the measurements can
irreversibly change the state, resulting in an inability to answer multiple different
measurement/leakage requests from the two copies of A. This challenge becomes
particularly interesting in the computational setting, as we discuss later.

Challenge 2: One Adversary vs. Two Adversaries. In PKE with unclonable secret
keys [16], an adversary in possession of the decryption key Rdec splits it across
two adversaries in an arbitrary manner, and two challenge ciphertexts are then
sent to these adversaries. Afterwards, we require that the probability that both
adversaries can simultaneously correctly decrypt their ciphertexts is negligibly
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close to 1/2. This means that the adversaries’ baseline success probability in the
unclonable decryption game is 1/2 (since one of the adversaries can simply keep
the original decryption key Rdec and correctly distinguish its challenge ciphertext
with probability 1 and the other one can randomly guess with probability 1/2).
On the other hand, the guarantee in leakage-resilient PKE requires that the prob-
ability of correctly decrypting one ciphertext given the leakage is negligibly close
to 1/2. This means that the probability of correctly decrypting two ciphertexts,
as in the unclonable decryption game, should be close to 1/4, instead of close
to 1/2. This means that a direct reduction to the unclonable decryption game
cannot be obtained. We run into a similar issue while considering unclonable
PRFs as well.

The above challenges show that it is not possible to reduce leakage-resilience
to unclonability in all settings. In particular, while in the negligible security
regime unclonability does imply non-adaptive unbounded leakage-resilience, it
does not imply LOCC leakage-resilience (as we suspected in Challenge 1): we
show relative to a classical oracle that there exist schemes that are unclonable
but do not satisfy even 1-round LOCC leakage-resilience. Similarly, due to Chal-
lenge 2, we are not able to show that unclonability implies even non-adaptive
unbounded leakage-resilience in the constant security regime (such as CPA-style
security). Thus, we need new techniques to show leakage-resilience.

2.1 LOCC Leakage-Resilience Property for Coset States

We first start by discussing coset states [16,27], which form the basis of our
leakage-resilient schemes. We show a new LOCC leakage-resilience property for
such states and use it to prove that various existing unclonable secure primitives
[16,20] based on coset states are also LOCC leakage-resilient.

A coset state is the state defined as |As,s′〉 =
∑

a∈A(−1)〈a,s′〉|a + s〉 where
A ⊆ Fλ

2 is a subspace of dimension dim(A) = λ/2 and s, s′ ∈ Fλ
2 . Coset states,

when A, s, s′ as above are randomly sampled, satisfy an important security notion
called monogamy-of-entanglement (MoE) [16,27].

Monogamy-of-Entanglement Property of Coset States. In a monogamy-of-
entanglement game, the adversary is presented with a randomly sampled coset
state |As,s′〉 and is required to output two (possibly entangled) adversaries. Then,
these adversaries are given the description of A, and they are required to simul-
taneously output vectors v, w such that v ∈ A + s and w ∈ A⊥ + s′. Vidick
and Zhang [27] show that no (unbounded) adversary can win the game above
except with subexponentially small probability. Further, [16] also show a “com-
putational” MoE property: based on computational assumptions, the winning
probability of any (polynomial time) adversary in the game above is still negli-
gible even when it is presented at the beginning of the game with an obfuscated
program that allows it to query for membership in A+s and A⊥+s′. A variation
implicitly used in [16,20], which we formally prove secure in our paper, presents
the initial adversary with a tuple of coset states |Ai,si,s′

i
〉i∈[c(λ)] (along with the
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membership checking programs) and requires the created two adversaries to out-
put vectors in either Ai + si or A⊥

i + s′
i depending on the bits of the random

challenge strings r1 and r2 presented to them.

LOCC Leakage-Resilience Property for Coset States. Our first technical contri-
bution is to prove a new LOCC leakage-resilience property for coset states. Using
this result, we also prove that the coset state based copy-protection schemes of
[16,20] for public-key encryption, pseudorandom functions, and digital signatures
also satisfy LOCC leakage-resilience. Note that this is non-trivial: as discussed
above, unclonability does not imply LOCC leakage-resilience – there exists a
PKE scheme that satisfies copy-protection that is provably not even 1-round
LOCC leakage-resilient.

We define a leakage-resilience game for coset states as follows. Consider an
adversary A. For any (unbounded) number of rounds, A adaptively specifies
measurements and obtains the measurement results on the secret state, starting
with the state initialized to the coset state tuple |Ai,si,s′

i
〉i∈[c(λ)]. After the leak-

age phase is over, A is also given the descriptions of the subspaces Ai. Then, A
is presented with a random challenge string r ← {0, 1}c(λ), and is required to
output vectors in Ai + si or A⊥

i + s′
i depending on the i-th challenge bit, (r)i.

We show that any unbounded LOCC adversary wins this game with subexpo-
nentially small probability.

Connections to the Monogamy-of-Entanglement Property. While the LOCC
leakage-resilience property might seem to be implied by the monogamy-of-
entanglement property in a straightforward manner, in reality this does not
immediately follow. Consider the following natural proposal for a reduction: in
the MoE game, the initial adversary directly simulates the leakage adversary A.
However, observe that in the MoE game we need to output two adversaries that
will need to answer the vector outputting challenges, while in LOCC leakage-
resilience there is only one such adversary. Therefore, we would need to create
two copies of the final internal quantum state of A to succeed in the MoE game.
This is not straightforward, as discussed above (Challenge 1). However, our proof
precisely manages to do this. Observe that during each round A takes as input
its previous internal state and the latest leakage measurement outcome, and it
produces a state for the next round and a choice of measurement circuit Ei. If we
have sufficiently many (i.e., exponentially many) copies of its previous state, then
by repeatedly running A on these copies we can obtain another copy of its next
state conditioned on it producing the exact same choice of circuit Ei. Note that
we want to obtain a copy conditioned on choosing the same leakage circuit Ei,
since we start with a single copy of the coset state tuple and so we can measure
it only once each round. We show that the multi-copy internal state generation
procedure described above succeeds in some finite amount of time, and so, since
we are working with unbounded adversaries, the reduction succeeds. See Sect. 4
for further details.
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Moving to the Computational Setting. While the above result is a step forward,
as we will later discuss all coset state-based constructions of [16,20] crucially
rely on the obfuscated membership checking programs for Ai + si and A⊥

i + s′
i

for their correctness, and hence they also rely on the computational MoE prop-
erty for their security. Therefore, analogous to MoE, we define a computational
LOCC leakage-resilience game where the now computationally-bounded adver-
sary A also receives at the beginning of the game the obfuscated programs that
allow it to query for membership in Ai + si and A⊥

i + s′
i. Note that our reduc-

tion above from LOCC leakage-resilience to MoE might take exponentially long
in general. Therefore, we are not able to utilize the same idea here to reduce
the computational LOCC leakage-resilience to computational MoE. However,
we show that the reduction of [16] from computational MoE to (information-
theoretic) MoE that utilizes subspace hiding obfuscation shO [29] generalizes to
the leakage-resilience setting. The argument mainly relies on using subspace hid-
ing obfuscation to implement the membership checking programs, which can then
be replaced with such programs for random superspaces of Ai by the security
guarantee of shO. This eventually allows us to remove the membership check-
ing programs, and hence the security reduces to the information-theoretic LOCC
leakage-resilience game. Therefore, we are able to obtain a computational LOCC
leakage-resilience property for coset states.

2.2 LOCC Leakage-Resilient PKE Using Coset States

We introduce the model of LOCC leakage-resilience for public-key encryption.
The adversary adaptively chooses leakage/measurement circuits Ei for multiple
rounds, and they are applied to the state of the key from the previous round
(starting with the honestly generated secret key). After A finishes the leakage
phase, it is presented with a challenge ciphertext that it needs to decrypt. Here,
we can define two variations: random challenge message and CPA-style security.
In the former, the challenge ciphertext is the encryption of a randomly sampled
message, and the adversary needs to output the full message to win the game.
We require that any adversary wins with at most negligible probability. In the
latter, the adversary outputs two messages m0,m1 and the challenge ciphertext
is the encryption of mb where b ← {0, 1}. The adversary wins if it can correctly
guess the bit b, and we require that any adversary wins with probability at most
1/2 + negl(λ), where λ is the security parameter.

Construction. Now, we move onto our construction. We show (via a new proof)
that the coset state-based construction of [16] of a public-key encryption scheme
with copy-protection also satisfies LOCC leakage-resilience. Let us first infor-
mally discuss this construction. We sample a tuple of coset states |Ai,si,s′

i
〉i∈[c],

and let this be the protected secret key. We also sample obfuscated programs
that allow one to query if v ∈ Ai + si and v ∈ A⊥

i + s′
i, as in the computational

LOCC leakage-resilience game. We set the public-key to be the tuple of these
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programs. To encrypt a message m, we sample a random string r and let the
ciphertext be (iO(P ), r) where iO is an indistinguishability obfuscator and P is
the following program: It takes as input vectors (vi)i∈[c], and it checks if these
vectors are in Ai + si or A⊥

i + s′
i according to the bit (r)i. If all vectors are in

the correct cosets, then P outputs m; otherwise, P outputs ⊥. It is easy to see
that we can indeed construct this program using the public-key defined above.

Proving Security. For the intuition behind the security, first imagine we used an
(ideal) classical oracle instead of iO. If an LOCC leakage adversary A is able to
correctly decrypt the challenge ciphertext, then A must be querying the oracle P
at a tuple of vectors that pass the checks corresponding to r as described above.
Hence, using this LOCC adversary and its queries, we can obtain vectors that
are in correct cosets with respect to r. Observe that the checks above correspond
exactly to the winning condition of the computational LOCC leakage-resilience
game for coset states which we proved secure. Therefore, we can win that game,
which is a contradiction. We conclude that the adversary cannot decrypt the
challenge ciphertext.

Now we go back to the actual scheme, where iO is only an indistinguishability
obfuscator. In this case, we first replace the ciphertext program with another one
that computes the canonical versions of the input vectors and compares them
to the canonical vectors of the cosets Ai + si or A⊥

i + s′
i according to (r)i. Since

this is a compute-and-compare (CC) program, we can further replace it with its
(distributionally) virtual black-box obfuscated version3 Finally, by using the CC
obfuscation security guarantee, we are able to extract vectors in the correct
cosets if the adversary is successfully decrypting the ciphertext. This allows us
to win the computational LOCC leakage-resilience game for the coset states,
a contradiction. We have thus established the LOCC leakage-resilience of the
public-key encryption scheme.

2.3 Leakage-Resilient Quantum Banks and Chosen-Message
Leakage-Resilient Signatures

We also obtain leakage-resilience results for quantum money and chosen-message
leakage-resilience security for signing keys. Let us first describe the setting for the
former. We consider a quantum money scheme where the secret key of the bank
is stored as a quantum state. An adversary obtains k banknotes and unbounded
leakage on the secret key of the bank. Then, it is required to produce k + 1
banknotes.

We also define chosen-message leakage-resilience security for a signature
scheme with quantum4 signatures. In this case, the adversary obtains unbounded
leakage on the signing key, and it outputs a forged signature for a message of its
choice. We require that any efficient adversary succeed with at most negligible

3 Such obfuscation for compute-and-compare can be constructed from LWE [28].
4 As discussed, this notion is not possible with classical signatures.
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probability. Our signature scheme and quantum bank scheme will be almost the
same: In our signature scheme, the signature on a message m will be a quantum
banknote and a classical signature on m. Then, it is easy to see that leakage-
resilience for the signature scheme follows similarly to leakage-resilience for our
quantum bank scheme. Therefore, in this section, we only discuss the latter.

Construction. Now we discuss our unbounded leakage-resilient quantum bank
scheme, obtained in a black-box way from a quantum lightning scheme [29],
which has a candidate construction relative to a classical oracle [7]. We set our
quantum secret key to be the subspace state5 |A〉 =

∑
v∈A|v〉 where A ⊆ Fλ

2 is
a random subspace of dimension λ/2. We also create two oracles O1,O2 such
that they accept a vector v and a quantum lightning bolt serial number sn, and
they verify v ∈ A or v ∈ A⊥ respectively and output Hi(sn) if v is correct,
where H1,H2 are random functions. Here, we can think of Hi(sn) as a classical
signature on sn. To generate a banknote, we create a quantum lightning bolt,
and then query the oracle O1 coherently on |A〉 and y to obtain H1(y). We then
rewind and similarly obtain H2(y) from O2. A full banknote is a lightning bolt
with some serial number y and the values H1(y),H2(y). To verify a banknote, we
simply verify the lightning bolt and the values H1(y),H2(y) using a verification
oracle for H1,H2.

Challenges. One might think that it is possible to obtain a chosen message
secure leakage-resilient signature scheme (and thus a leakage-resilient quantum
bank) in a black-box way using a random-challenge secure scheme and a prov-
able randomness construction, such as a quantum lightning bolt with exponential
security. However, such a scheme cannot be proven secure in a black-box way.
In the reduction to the random-challenge security, the adversary for the chosen-
message game will expect a serial number (which ensures the randomness) and
a lightning bolt, whereas we will only receive a random message from our chal-
lenger, and it is not possible to create a lightning bolt with a particular serial
number.

Proving Security. We briefly sketch our proof of unbounded leakage-resilience.
We first claim that any adversary A that wins with non-negligible probability has
non-negligible query weight on some v ∈ A for the oracle O1. Suppose otherwise.
Then, when O1 is replaced with an empty oracle, A still succeeds by the query
weight lemma [12]. However, we claim that this is a contradiction. We leak
once on the subspace state to obtain a classical leakage L, and we repeatedly
run A (with empty oracle instead of O1) to obtain many valid banknotes, in

5 Similarly to coset states, subspace states satisfy a property called direct product
hardness [11]: no efficient adversary, even given oracle access to the membership
checking program for A, can output v ∈ A, w ∈ A⊥ given a single copy of |A〉.
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particular valid signatures with respect to H1. By quantum lightning security,
all signatures will be on different serial numbers. Observe that we only used
a fixed polynomial size advice L for H1 and a verification oracle for it, but
we produced any number of input-output pairs for the random function H1, a
contradiction. Thus, A indeed has non-negligible query weight on some v ∈ A for
the oracle O1, and similarly for w ∈ A⊥ and the oracle O2. Thus, by leaking once
on the subspace state, simulating A twice on the same leakage L and measuring
a random query in both simulations, we obtain v ∈ A,w ∈ A⊥, a contradiction.

2.4 The Relationship Between Leakage-Resilience and Unclonability

Our discussion will be based on public-key encryption, but other primitives also
use similar ideas.

Random Challenge Unclonability =⇒ Unbounded Leakage-Resilience. The naive
reduction idea from leakage-resilience to unclonability, as discussed above, is as
follows: to clone a key, we first leak on it and clone the leakage (which is classi-
cal). This approach indeed works in the random-challenge unbounded leakage-
resilience setting. However, it does not work in the constant security regime, for
example in CPA-style security: the probability of two freeloaders succeeding will
be (1/2 + 1/p)2 ≈ 1/4, whereas the baseline is 1/2 in CPA-style security.

Unclonability 
=⇒ 1-Round LOCC Leakage-Resilience. We only showed that
random challenge unclonability implies unbounded leakage-resilience, rather
than LOCC leakage-resilience. One might wonder whether this is a weakness of
our proof techniques. We show that this is inherent: we prove that there exists
a scheme that satisfies both random-challenge and CPA-style unclonability, but
does not satisfy even 1-round LOCC leakage-resilience. We now describe this
scheme, which is based6 on equivocal collision-resistant hash functions, which
has a candidate construction relative to a classical oracle [7]. In the scheme, a
ciphertext will be of the form (r, F2(r) ⊕ F3(r) ⊕ m). We define the quantum
secret key to be a tuple of subspace states |Ai〉i∈[�]. We also define the oracles
O1,O2. The oracle O1 takes as input x, y, r and vectors (vi)i∈[�]. It first verifies
that x is a preimage (with respect to the hash function H) of y and starts with
0, and then verifies the vectors with respect to the subspaces Ai and the basis
y. If all checks pass, it outputs F2(r). The oracle O2 is similarly defined, but it
checks if the first bit of x is 1, and it outputs F3(r) at the end. Observe that,
intuitively, an adversary will need to query both oracles with correct inputs to
be able to decrypt a ciphertext.

A 1-round leakage adversary simply creates a superposition
∑

x:H(x)=y|x〉,
and chooses the leakage circuit to be measurements in the computational or
Hadamard basis (according to the i-th bit of y). Thus, the leakage gives the
adversary (v∗

i )i∈[�] such that v∗
i ∈ Ai if (y)i = 0 and v∗

i ∈ A⊥
i if (y)i = 1.

The adversary can then decrypt any ciphertext by equivocating (coherently) the

6 We give a concrete construction based on equivocal CRHFs. Using similar ideas, any
quantum lightning scheme based on classical oracles suffices.
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superposition state to first 0 and querying O1, then rewinding and repeating
for 1 and querying O2. It is easy to see using the correctness of the vectors v∗

i

that the adversary obtains F2(r), F3(r) with overwhelming probability and can
successfully decrypt.

However, we argue that the scheme is unclonable. We first note that the
main difference stems from the fact that in the LOCC leakage-resilience game it
was sufficient to construct a single successful decryptor, whereas here we need
to construct two to break security. As argued above, a freeloader will need to
query O1 and O2 at correct x, y, (vi)i∈[�]. With overwhelming probability, the
two freeloaders will query O1,O2 respectively at different y, since otherwise
we would have a collision7. Thus, we extract (vi)i∈� and (wi)i∈� from the two
freeloaders, and since they are correct with respect to y1 
= y2, there is i ∈ [�]
such that vi ∈ Ai and wi ∈ A⊥

i (or vice versa), a contradiction to direct product
hardness of the subspace state Ai. In the formal proof, to deal with extracting
simultaneously from entangled freeloaders, we use projective implementations
[3].

LOCC Leakage-Resilience 
=⇒ Unclonability. We obtain this result by show-
ing that a modified version of our LOCC leakage-resilient PKE scheme is still
LOCC leakage-resilient. In this case, the secret key of the scheme consists of k
independently sampled coset state tuples, and a ciphertext program accepts any
of them as valid. We show that this scheme is still LOCC leakage-resilient, while
it is trivially clonable: the cloning adversary gives one coset state tuple to one
freeloader and another one to the other freeloader.

2.5 Intrusion-Detection

We discuss how to construct an intrusion-detection scheme from any publicly
verifiable key leasing (i.e., certified key deletion) scheme for a primitive. As an
example, we will elaborate on public-key encryption.

We discuss how to construct public-key encryption schemes that support
intrusion-detection for arbitrary attacks on the decryption key Rdec. More pre-
cisely, the PKE scheme generates a public key pk, a test key tk (used to test
whether an intrusion occurred), and a (quantum) decryption key Rdec. An adver-
sary is given (pk, tk,Rdec), and it can arbitrarily act on the quantum part to pro-
duce a quantum state Radv and two challenge messages m0 and m1. Note that this
may change the state in register Rdec. Before the distinguishing game proceeds, a
intrusion-detection step is run and the adversary automatically loses if its pres-
ence is detected, i.e., if TestIntrusion(tk,Rdec) = INTRUSION. If no intrusion is
detected, we want to guarantee that it is not possible to distinguish between
Enc(pk,m0) and Enc(pk,m1) given (Rleak,m0,m1, tk, pk) with probability negli-
gibly close to the baseline 1

2 Pr[TestIntrusion(tk,Rdec) = NO INTRUSION].

7 Note that inputs x to O1 are required to start with 0, and inputs x to O2 are required
to start with 1. Thus, if we had the same y and valid x1, x2 for both oracles, we would
have H(x1) = H(x2) and (x1)1 = 0, (x2)1 = 1 (thus x1 �= x2).
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We construct PKE schemes with these guarantees by establishing a connec-
tion to secure key leasing [8–10,18]. We start with the notion of a PKE scheme
with secure key leasing, which features an additional deletion procedure that,
given the secret decryption key Rdec, produces a certificate cert which should
certify that this key was indeed deleted. Roughly speaking, this scheme satisfies
the property that an adversary which is able to produce a valid certificate cert
based on Rdec (validity of cert is checked by a Verify procedure using a certifi-
cate validation key cvk) cannot distinguish between the ciphertexts Enc(pk,m0)
and Enc(pk,m1) using the leftover state. PKE schemes with secure key leas-
ing have been recently constructed from any post-quantum PKE scheme [5]8 or
post-quantum indistinguishability obfuscation [9].

We show that we can construct a PKE scheme that supports intrusion-
detection from a PKE scheme with secure key leasing. Starting with a PKE
scheme with secure key leasing, we construct a TestIntrusion procedure which
essentially tries to produce a deletion certificate for the secret decryption key
Rdec, and outputs NO INTRUSION if it succeeds. Intuitively, we can argue
intrusion-detection security as follows: If an adversary has obtained information
that allows it to distinguish ciphertexts, then we should fail to produce a valid
deletion certificate using our leftover state. Otherwise, one can create a lessee
attacker against the key leasing security that simulates the intrusion adversary
on their key, produces a valid deletion certificate using the leftover state, and
still succeeds in distinguishing ciphertexts using the stolen state. However, the
major problem with this approach is reusability: even when there is no attack, we
destroy our key when we test for leakage, since we produce a deletion certificate.

Crucially, note that producing a valid deletion certificate using an undis-
turbed key succeeds with overwhelming probability. Therefore, using the gentle
measurement lemma [1], we are able to construct an algorithm for producing a
deletion certificate in such a way that we can rewind our algorithm afterwards.

Using similar techniques, we can also build digital signatures, PRFs,
functional encryption, and indistinguishability obfuscation schemes support-
ing intrusion-detection. More generally, we show that the notion of intrusion-
detection is equivalent to key leasing/certified deletion.

3 Preliminaries

We write QPT to mean quantum polynomial time. We refer the reader to [21]
for various cryptographic preliminaries, and to [15,24] for preliminaries on indis-
tinguishability obfuscation iO and puncturable pseudorandom functions (PRF).

3.1 Quantum Lightning

Definition 1 (Quantum Lightning [29]). A quantum lightning scheme con-
sists of the following algorithms.
8 This scheme unfortunanely lacks public verifiability, which is crucial for intrusion-

detection since the adversary gets the complete state of the honest party, including
the verification key.
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– Bolt(1λ): Samples a lightning bolt with a serial number.
– Ver(sn,R): Takes in a supposed bolt register R and a serial number sn. Out-

puts 1 if R is a valid bolt with serial number sn. Otherwise, outputs 0.

Correctness. We require that any honestly generated bolt passes the verification
with overwhelming probability.

Security. We require that for any QPT adversary B, when we run (sn,R1, R2) ←
B, b ← Ver(sn,R1) and b′ ← Ver(sn,R2), we have Pr[b = b′ = 1] ≤ negl(λ).

3.2 Equivocal Collision-Resistant Hash Functions

Definition 2 (Equivocal Collision-Resistant Hash Functions (CR-
HF) [7]). An equivocal collision-resistant hash function consists of the following
algorithms:

– Gen(crs): Takes as input a common reference string and outputs a hash value
y, a predicate p and a quantum inversion key Rkey.

– Equiv(Rkey, b): Takes as input a quantum inversion key Rkey and a bit b, and
outputs a pre-image x.

We require collision-resistance (in the usual way) and correctness for Equiv:

for b ∈ {0, 1}, Pr[Hcrs(x) = y ∧ p(x) = b :
y, p,Rkey ← Gen(crs)
x ← Equiv(Rkey, b)

].

Theorem 11 ([7]). There exists a candidate equivocal CRHF relative to a
classical oracle. More formally, there exists a dimension λ/2 affine ordered
partitioning P = (Ay)y∈{0,1}λ/2 of the space Fλ

2 such that the hash function
HP : Fλ

2 → {0, 1}λ/2 that maps a vector v ∈ Fλ
2 to the affine subspace (with

respect to P ) it is in, is an equivocal CRHF candidate relative to the classical
oracles OP ,O⊥

P defined as:

1. OP (x) = HP (x),
2. O⊥

P (x, y): Let A be the subspace associated with the affine space Ay ∈ P .
Output 1 if and only if x ∈ A⊥.

4 Coset States

In this section, we start by giving the definition of coset states [16,27] that we
utilize in our constructions and state the monogamy-of-entanglement property
they satisfy. Then, we prove an LOCC leakage-resilience theorem for coset states.
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Definition 3 ([16]). For a subspace A ⊆ Fn
2 and vectors s, s′ ∈ Fn

2 ,
we define |As,s′〉, the coset state associated with A, s, s′, to be |As,s′〉 =
∑

a∈A
1√
|A| (−1)〈s′,a〉|a + s〉.

We usually write A + s to denote both the coset A + s and the program that
takes as input a vector v ∈ Fn

2 and outputs 1 if and only if v ∈ A + s. The
distinction will be clear from the context. We will write CanA(v) to denote the
lexicographically smallest element in the coset A + v, and call it the canonical
element. Now we state the monogamy-of-entanglement (MoE ) properties coset
states satisfy.

Theorem 12 (Strong Monogamy-of-Entanglement Property for Coset
States [16]). Consider the following game between an adversary tuple
(A0,A1,A2) and the challenger.

MoE(λ,A)

1. Sample uniformly at random a subspace A of Fλ
2 of dimension λ

2 and two
elements s, s′ ← Fλ

2 .
2. Submit |As,s′〉 to A0.
3. A outputs two (possibly entangled) registers R1, R2.
4. For � ∈ {1, 2}, run v� ← A�(R�, A).
5. Output 1 if and only if v1 ∈ A + s and v2 ∈ A⊥ + s′.

Then, there exists a constant CMoE > 0 such that for any adversary tuple
(A0,A1,A2), Pr[MoE(λ,A) = 1] ≤ 2−λCMoE for all sufficiently large λ.

We show the security of a similar game which was used implicitly in previous
work [16,20]. Let CosetGen(1λ) be the algorithm that samples c(λ) = 3 ·λ	1/CMoE


independent cosets (Ai, si, s
′
i)i∈[c(λ)] of Fλ

2 of dimensions λ/2, and call its output
a coset tuple.

Theorem 13 (Strong Monogamy-of-Entanglement Property for Coset
States - Multiple Challange Version). Consider the following game between
an adversary tuple A = (A0,A1,A2) and the challenger.

MoE − MultiChal(λ,A)

1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. Submit
{|Ai,si,s′

i
〉}

i∈[c(λ)]
to A0.

3. A outputs two (possibly entangled) registers R1, R2.
4. Sample r1 ← {0, 1}c(λ) and r2 ← {0, 1}c(λ).
5. For � ∈ {1, 2}, run (v�,i)i∈[c(λ)] ← A�(R�, r�, (Ai)i∈[c(λ)]).
6. For � ∈ {1, 2} and all i ∈ [c(λ)], check if v�,i ∈ Ai + si if (r�)i = 0 and

if v�,i ∈ A⊥
i + s′

i if (r�)i = 1. Output 1 if and only if all the checks pass.
Otherwise, output 0.

Then, there exists a constant CMoE−MultChal > 0 such that for any adversary
tuple A = (A0,A1,A2), Pr[MoE − MultiChal(λ,A) = 1] ≤ 2−λCMoE−MultChal for all
sufficiently large λ.

Proof. See the full version [15].



176 A. Çakan et al.

4.1 LOCC Leakage-Resilience

In this section, we show an LOCC leakage-resilience property for coset states.
We start by defining an LOCC leakage adversary.

Definition 4 (LOCC Leakage Adversary). An LOCC leakage adversary is
a stateful quantum algorithm A that (adaptively) specifies9 quantum leakage
circuits for multiple rounds to leak on a secret quantum state. More formally,
we will consider the following experiment between A and a challenger, for a
distribution of quantum secret states and public parameters (denoted pp) induced
by a quantum algorithm Setup.

LEAKAGE − EXP(1λ)

1. The challenger executes R0, pp ← Setup(1λ) and submits pp to A.
2. For multiple rounds, A specifies a quantum leakage circuit Ei that takes input

a quantum register and outputs a classical string and an updated quantum reg-
ister. For each round, the challenger executes L,Ri ← Ei(Ri−1) and submits
the classical string L to A.

3. At the end of the leakage phase, the final state of the adversary A is output.

We will require that the leakage circuits specified by A are consistent in the
sense that the input size of Ei is the same as the size of the quantum register
Ri−1. In general, the leakage adversary A will continue to complete a challenge
in a cryptographic game with the state it has created and output at the end of
the leakage experiment above. Note that there is no bound10 on the number of
rounds leakage for an LOCC leakage adversary. If an adversary is allowed to
leak for only k-rounds, we call it a k-round LOCC leakage adversary.

We define an unbounded classical leakage adversary11 to be a pair of quantum
algorithms (E0,A) where A only obtains the single shot classical leakage L where
L,R′ ← E0(R0, pp).

Remark 1. It is easy to see that LOCC leakage-resilience is the strongest setting,
while (non-adaptive) unbounded classical leakage is the weakest, and for any k,
we have that (k + 1)-round LOCC leakage-resilience is stronger than k-round
LOCC leakage-resilience.

An equivalent way of defining LOCC leakage adversaries is as a pair of adver-
saries that execute an LOCC (local operations and classical communication pro-
tocol) - see the full version [15].
9 We assume that the adversary outputs the classical description of an appropriate

quantum circuit in a canonical representation.
10 In the computational setting, this will implicitly be any (not a-priori bounded) poly-

nomial.
11 We also call this non-adaptive unbounded classical leakage adversary, since the leak-

age circuit is not specified by A after getting the public parameters. However, we
note that this is still somewhat adaptive since the leakage circuit E0 does get the
public parameters.
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Now we move on the leakage-resilience property for coset states. In the LOCC
leakage game for coset states, the leakage adversary will obtain LOCC leakage
on a coset state tuple. After the leakage is completed, the adversary is presented
with a random challenge string r, and is required to produce vectors in correct
cosets depending on r.

Theorem 14 (LOCC Leakage Property for Coset States). Consider the
following game between an LOCC leakage adversary A (Definition 4) and the
challenger.

Coset − LOCC(λ,A)

1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. A obtains leakage on
{|Ai,si,s′

i
〉}

i∈[c(λ)]
.

3. The challenger samples r ← {0, 1}c(λ) and submits (Ai)i∈[c(λ)] and r to A.
4. A outputs (vi)i∈[c(λ)].
5. For all i ∈ [c(λ)], check if vi ∈ Ai + si if (r)i = 0 and if vi ∈ A⊥

i + s′
i if

(r)i = 1. Output 1 if and only if all the checks pass. Otherwise, output 0.

Then, there exists a constant CLOCC > 0 such that for any LOCC leakage
adversary A, Pr[Coset − LOCC(λ,A) = 1] ≤ 2−λCLOCC for all sufficiently large λ.

We will prove the above result through a reduction to MoE − MultiChal, which
we briefly sketch. In the reduction, since the adversary for MoE − MultiChal will
be in possession of the coset state tuple, it can simulate the leakage adversary
A to obtain its final state. However, the MoE adversary needs to produce two
registers that are capable of answering the challenges correctly simultaneously.
Hence, during the simulation of the LOCC leakage, we run A many times each
round to produce multiple copies of its state for the next round, culminating
in two copies of its final state, which then we output. While the probability
of obtaining another copy of the adversary’s state during a round might be
arbitrarily small, we show that on average this is not the case.

Proof. Suppose for a contradiction that there exists a g(n)-round LOCC leakage
adversary A that wins Coset − LOCC with probability 2−0.1λCMoE−MultChal . Without
loss of generality, assume that the size of the leakage circuits output by the
adversary each round is the same length and denote it as k(n). We will construct
an adversary A′ = (A′

0,A′
1,A′

2) that wins MoE − MultiChal with probability
2−0.3λCMoE−MultChal .

Let P denote the random variable that contains the transcript (i.e., the leak-
age circuit description and the classical leakage output by it) of the LOCC leak-
age experiment played by A during Coset − LOCC and let P−1 denote the same
but with the last leakage string removed. For some fixed value (�−1, Eg(n)) of
P−1, let ρ�−1,Eg(n)

denote the final state of A, i.e., its state right before it receives
the last leakage string �g(n) and the challenge string r, conditioned on P−1 =
(�−1, Eg(n)). Note that the final state of A does not depend on �g(n). Define deter-
ministic f(w) as f(w) = (Ai)i∈[c(λ)] where (Ai, si, s

′
i)i∈[c(λ)] = CosetGen(1λ;w)
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and similarly deterministic predicate P as the function that outputs 1 if and only
if the given vectors are in the correct cosets according to r. Then, the winning
probability of A can be written as

E(w,(�,Eg(n)))←(W,P)

[

Pr
r←{0,1}c(λ)

[P (A(ρ�−1,Eg(n)
, �g(n), f(w), r), w, r) = 1]

]

. (1)

If we had two copies of ρ�−1,Eg(n)
for the same coset state tuple

and transcript �−1, Eg(n), and ran the last step of A twice inde-
pendently on independent challenge strings r1, r2, we would have that
the probability of both copies winning simultaneously is E(w,(�,m))←(W,P)[

(
Prr1←{0,1}c(λ) [P (A(ρl−1,m, �g(n), f(w), r1), w, r1) = 1]

) · (
Prr2←{0,1}c(λ) [P (

A(ρl−1,m, �g(n), f(w), r2), w, r2) = 1]
)
]

= E(w,(�,m))←(W,P)

[(
Prr←{0,1}c(λ)

[P (A(ρl−1,m, �g(n), f(w), r), w, r) = 1]
)2

]
. Then, since we have (1)

> 2−0.1λCMoE−MultChal , we get that the expression above is > 2−0.2λCMoE−MultChal by
Jensen’s inequality.

We will construct an adversary A′
0 for MoE − MultiChal such that given only a

single copy of the coset state tuple, it produces two copies of ρ�−1,Eg(n)
with prob-

ability at least 1/2 (no matter which fixed value of the transcript we condition
on). Note that we produce two copies of ρ�−1,Eg(n)

for the same �−1, Eg(n), since
we only have one copy of the coset state tuple and executing a leakage round
modifies this state. Therefore, we can run a leakage circuit once each round,
hence we run it on a single choice of a leakage circuit Ei by A and receive only
a single leakage �i each round. A′

0 outputs ((ρ�−1,Eg(n)
, �g(n)), (ρ�−1,Eg(n)

, �g(n)))
as its bipartite state output. Finally, A′

1 and A′
2 both simulate A on the state

they receive, along with the subspace descriptions and the random challenge
string they receive from the challenger. Then, winning corresponds exactly
to Sect. 4.1, therefore we get that A′ wins MoE − MultiChal with probability
2−0.2λCMoE−MultChal · 1

2 > 2−λCMoE−MultChal , which is a contradiction by Theorem 13.
Now we will show how to construct such an adversary. First, note that the

final state (before receiving the final leakage string) ρ of the main adversary is
output together with a leakage circuit Eg(n), by running A on its previous state
ρg(n)−1 and the previous leakage string �g(n)−1. In turn, ρg(n)−1, Eg(n)−1 and so
on, all the way down to the initial state of A are sampled similarly. Consider
any input σ to A, i.e. a previous state and a leakage circuit description12. Let∑

x∈{0,1}k(n) px|x〉〈x| ⊗ τx denote the output of A(σ). Then, we claim that given
a(n) copies of σ and a fixed value x, we can produce d(n) extra copies of τx for any
d(n) with probability (1/2)1/g(n) averaged over x, where a(n) = 2k(n)+1·d2(n)

1−(1/2)(1/g(n))−1 .

Starting with d(n) = 1 for the last round, we can calculate the number of copies
needed all the way down to the first level. While grows large with every round,
the total number of copies of the initial state needed is bounded since we have
12 We bundle the leakage circuit description in the state σ.



Unbounded Leakage-Resilience and Intrusion-Detection 179

g(n) rounds. Therefore, we can construct a valid A′
0 as follows. For each round, it

first simulates A to obtain a leakage circuit E and a state. Then, it keeps running
A repeatedly until obtains the same leakage circuit E again, in which case it has
also obtained the required copy of the state. It repeats this procedure many times
to obtain sufficiently many copies for the next round. Finally, it runs E on the
coset state tuple to produce the leakage. Repeating this simulation until the last
round shows that we can obtain two copies of ρ�−1,Eg(n)

in a bounded amount
of time. Note that by above, the many copy preparation procedure succeeds
with probability (1/2)1/g(n) for each round, independently of succeeding in the
previous rounds since we made the claim above for any input σ. Hence, we will
obtain two copies of ρ�−1,Eg(n)

with probability 1/2 as desired.
Lastly, we prove our claim that a(n) copies of the input to A is sufficient

to produce d(n) extra copies of its output. While the desired output E that we
want for it to reoccur might have arbitrarily small probability, in which case it
would take arbitrarily long to obtain the same state again, this happens rarely.
More formally, define the set GOOD to be all E ∈ {0, 1}k(n) such that pE >
2−k(n)(1−(1/2)(1/g(n))−1) Then, a simple calculation shows that

∑
E∈GOOD pE >

(1/2)(1/g(n))−1. We have that the probability of getting the first outcome E again
d(n) many times in a(n) trials, averaged over all E, is at least

∑
E∈GOOD px(1 −

(1 − px)a(n)/d(n))(d(n)). A simple calculation shows that this value is at least
(1/2)1/g(n) as desired.

Finally, we can also define a computational version of Coset − LOCC, denoted
Coset − CompLOCC, where the adversary A receives obfuscated membership
checking programs iO(Ai + si), iO(A⊥

i + s′
i) for the cosets, along with the coset

states, at the beginning of the game.

Theorem 15. If we assume the existence of subexponentially-secure iO and
one-way functions, then there exists a constant CCompLOCC > 0 such that for
any QPT LOCC leakage adversary A we have that

Pr[Coset − CompLOCC(λ,A) = 1] ≤ 2−λCCompLOCC

for all sufficiently large λ.

We refer the reader to the full version [15] for the proof.

5 Public-Key Encryption with Key Protection

In this section, we introduce the concept of public-key encryption schemes with
key protection and define various security models for it. A public-key encryption
schemes with key protection is a PKE with quantum secret keys and classical
ciphertexts and classical public keys, where we require correctness and CPA
security as usual.

We now introduce the notion of LOCC leakage-resilience. Similar to anti-
piracy, we can define two variants: random challenge message and CPA style.
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Definition 5 (LOCC Leakage-Resilience for Public-Key Encryption).
Consider the following game between the challenger and an LOCC leakage adver-
sary A (Definition 4).

PKE − LOCC − CPA(λ,A)

1. Sample pk, sk ← PKE.Setup(1λ).
2. Sample Rkey ← PKE.QKeyGen(sk).
3. Submit pk to A.
4. A obtains leakage on Rkey.
5. A outputs two messages m0,m1.
6. Challenger samples b′ ← {0, 1} and ct ← PKE.Enc(pk,mb) and submits ct to

A.
7. A outputs a guess b′ ∈ {0, 1}.
8. The challenger outputs 1 if and only if b′ = b.

A public-key encryption scheme PKE with key protection is said to satisfy
CPA-style LOCC leakage-resilience if for any QPT LOCC adversary A,

Pr[PKE − LOCC − CPA(λ,A) = 1] ≤ 1
2

+ negl(λ).

We also define PKE − LOCC − Guess to be the same as PKE − LOCC − CPA
except that the adversary is given ct ← PKE.Enc(pk,m) where m is a uniformly
random message, and the adversary is required to output m in full. PKE is said to
satisfy random challenge message LOCC leakage-resilience if for all QPT LOCC
leakage adversaries A,

Pr[PKE − LOCC − Guess(λ,A) = 1] ≤ 1
|M| + negl(λ).

5.1 Coset State-Based Construction

In this section, we show that the anti-piracy secure public-key encryption scheme
of [16] based on coset states (Sect. 4) also satisfies CPA-style LOCC leakage-
resilience. For completeness, we first recall the construction of [16], slightly mod-
ified to match our notation and the parameters we require for LOCC leakage-
resilience.

Assume the existence of following schemes.

– iO, subexponentially secure indistinguishability obfuscation scheme,
– CCObf, compute-and-compare obfuscation scheme13 [28] for 2−λ0.5·CCompLOCC -

unpredictable distributions.
– Subexponentially-secure one-way functions.

PKE.Setup(1λ)

13 This is not needed for the construction but it is needed for the security proof.
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1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. Set sk = (Ai, si, s
′
i)i∈[c(λ)].

3. For i ∈ [c(λ)],
(a) Sample OP0

i ← iO(Ai + si).
(b) Sample OP1

i ← iO(A⊥
i + s′

i).
4. Set pk = (OP0

i ,OP
1
i )i∈[c(λ)].

5. Output (pk, sk).

PKE.QKeyGen(sk)

1. Parse (Ai, si, s
′
i)i∈[c(λ)] = sk.

2. Output
(|Ai,si,s′

i
〉)

i∈[c(λ)]
.

PKE.Enc(pk,m)

1. Parse (OP0
i ,OP

1
i )i∈[c(λ)] = pk.

2. Sample r ← {0, 1}c(λ).
3. Sample OPCt ← iO(PCt), where PCt is the following program.

PCt(u1, . . . , uc(λ))

Hardcoded: (OP0
i ,OP

1
i )i∈[c(λ)],m, r

(a) For i ∈ [c(λ)], check if OP0
i (ui) = 1 if (r)i = 0 and if OP1

i (ui) = 1 if
(r)i = 1.

(b) Output m if all the checks pass. Otherwise, output ⊥.

4. Output (OPCt, r).

PKE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[c(λ)]) = Rkey and (OPCt, r) = ct.
2. For indices i ∈ [c(λ)] such that (r)i = 1, apply H⊗λ to Ri.
3. Run the program OPCt coherently on (Ri)i∈[c(λ)].
4. Measure the output register and output the outcome.

Theorem 16 ([16]). PKE satisfies correctness and both CPA-style and random
challenge message anti-piracy security.

We claim that the construction is also LOCC-leakage-resilient.

Theorem 17. PKE satisfies CPA-style LOCC leakage-resilience.

When we instantiate the assumed building blocks with known constructions, we
get the following corollary.

Corollary 3. Assuming subexponentially secure iO, one-way functions and
polynomially hard qLWE, there exists a public-key encryption scheme that satis-
fies CPA-style LOCC leakage-resilience.
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Proof of Security. In this section, we give a proof sketch for Theorem 17 -
were refer the reader to [15] for the full proof. We prove security through a series
of hybrids, where we define Hyb0 to be PKE − LOCC − CPA(λ,A).

Hyb1: We now compute the challenge ciphertext, as follows, rather than as ct ←
PKE.Enc(pk,mb).

1. Sample r ← {0, 1}c(λ).
2. Parse (Ai, si, s

′
i) = sk.

3. Sample r ← {0, 1}c(λ).
4. For i ∈ [c(λ)], set gi = CanAi

if (r)i = 0 and set gi = Can(Ai)⊥ if (r)i = 1.
5. For i ∈ [c(λ)], compute yi = gi(si) if (r)i = 0 and yi = gi(s′

i) if (r)i = 1.
6. Set g to be the function g(v1, . . . , vc(λ)) = (g1(v1)|| . . . ||gc(λ)(vc(λ))).
7. Set y = y1|| . . . ||yc(λ).
8. Compute OCC ← CCObf.Obf(g, y,mb).
9. OPCt ← iO(PCt′).

PCt′(u1, . . . , uc(λ))
Hardcoded: OCC
(a) Output OCC(u1, . . . , uc(λ)).

10. Output (OPCt, r).

Hyb2: We again change the computation of the challenge ciphertext by replacing
lines 8 and 9 above with the following.

1. PSim ← CCObf.Sim(1λ, |g|, |y|, |m|)
2. OPCt ← iO(PCt′′).

PCt′′(u1, . . . , uc(λ))
Hardcoded: PSim
(a) Output PSim(u1, . . . , uc(λ)).

Claim. Hyb0 ≈ Hyb1.

Proof. Note that v ∈ Ai + si if and only if CanAi
(v) = CanAi

(si). Similarly
for A⊥

i + s′
i. Then, by correctness of the inner obfuscations (i.e., OP0

i ,OP
1
i ) in

PCt and the correctness of CCObf, we have that PCt and PCt′ have the same
functionality. The result follows from the security of the outer obfuscation.

Claim. Hyb1 ≈ Hyb2.

Proof. Suppose for a contradiction that there exists an adversary A such that
|Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| is non-negligible. Then, we can show using
compute-and-compare obfuscation security that there exists an adversary A′′

such that given the final state of the leakage adversary A and g, it outputs y

with probability at least 2−λ0.5·CCompLOCC .
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Then, we construct an adversary A′′′ for Coset − CompLOCC as follows.

A′′′

Simulate A to obtain the leakage on the key and the challenge messages m0,m1,
let ρ be the state of A at this point. Sample b ← {0, 1}. Then, compute the
description of g using the subspace descriptions (Ai, si, s

′
i) and r obtained from

the challenger. Finally, run A′′ on (ρ, b, r) and g, and output the vectors output
by it.

By above, we can see that A′′′ outputs vectors in the correct cosets with prob-
ability 2−λ0.5·CCompLOCC in the game Coset − CompLOCC, which is a contradiction
by Theorem 15.

Observe that in Hyb2, the challenge ciphertext is independent of b. Hence,
Pr[Hyb2 = 1] ≤ 1

2 and therefore Pr[PKE − LOCC − CPA(λ,A)] ≤ 1
2 + negl(λ) by

above.

6 Leakage-Resilient Quantum Bank

In this section, we introduce the notion of quantum banks (mints) with key
protection and unbounded classical leakage-resilience for such schemes. Then,
we give a construction relative to a classical oracle.

Definition 6 (Quantum Bank with Key Protection). A quantum bank
with key protection consists of the following QPT algorithms.

– Setup(1λ): Outputs a public classical banknote verification key vk and a secret
classical bank key sk.

– QKeyGen(sk): Takes as input the classical secret key sk, outputs a quantum
key register Rbank.

– GenBanknote(Rbank,m): Takes as input the quantum bank key, outputs a quan-
tum banknote.

– Ver(vk,Rbn): Takes as input the public verification key and a (supposed) ban-
knote Rbn, returns 1 if it is a valid banknote.

We require that the scheme satisfies correctness, that is, any honestly gen-
erated banknote passes verification with probability 1. We also require that each
invocation of GenBanknote only negligibly disturbs the key Rbank, thus ensuring
reusability for any polynomial number of times.

We define counterfeiting security the same as the previous work [2]: any QPT
adversary that obtains k banknotes cannot output k + 1 banknotes except with
negligible probability.

We now introduce the notion of LOCC leakage-resilience. We will require
that a leakage adversary that has k banknotes and obtains leakage on the secret
key of the bank will not be able to produce even a single extra banknote.
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Definition 7 (LOCC Leakage-Resilience for Quantum Banks). Let Bank
be a quantum bank scheme with key protection. Consider the following game
between the challenger and an LOCC leakage adversary A (Definition 4).

Bank − LOCC(λ,A)

1. Sample vk, sk ← Bank.Setup(1λ).
2. Sample Rbank ← Bank.QKeyGen(sk) and submit vk to A.
3. Banknote Query Phase:14 For multiple rounds, A queries for a banknote.

For each query, the challenger executes Rbn ← Bank.GenBanknote(sk) and
submits Rbn to the adversary. Let k be the number of queries made by the
adversary.

4. Leakage Phase: A obtains leakage on Rbank.
5. A outputs a (k + 1)-partite register (Ri)i∈[k+1].
6. The challenger tests Bank.Ver(pk,Ri) for i ∈ [k + 1]. It outputs 1 if all the

tests pass; otherwise, it outputs 0.

We say that the quantum bank scheme Bank with key protection satis-
fies LOCC leakage-resilience if for any QPT LOCC leakage adversary A,
Pr[Bank − LOCC(λ,A) = 1] ≤ negl(λ).

We also define the weaker notion of unbounded leakage-resilience by restricting
the adversary A to be an unbounded leakage adversary (Definition 4).

6.1 Unbounded Leakage-Resilient Scheme Based on Classical
Oracles

In this section, we give an unbounded leakage-resilient quantum bank scheme,
using in a black-box way a quantum lightning scheme [30], which has a candidate
construction relative to a classical oracle [7].

The construction of our chosen message secure leakage-resilient signature
scheme15 is almost the same as our quantum bank construction, with the dif-
ference being the signature scheme additionally has a classical signature on the
message.

Let QL be a quantum lightning scheme.

Bank.Setup(1λ)

1. Sample a subspace A ⊆ Fλ
2 of dimension λ/2.

2. Sample random functions16 H1,H2 with domain {0, 1}m(λ) and output space
{0, 1}p(λ).

3. Construct the following oracles.

14 Note that banknote queries being before the leakage phase is without loss of gener-
ality since there is no input for the banknote queries.

15 See the full version [15] for the construction and security proof.
16 If we insist on efficiency of the oracles, we can instead use PRFs.
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O1(v, sn)
Hardcoded: A,H1

(a) Check if v ∈ A.
(b) If so, output H1(sn). Otherwise, output ⊥.

O2(v, sn)
Hardcoded: A,H2

(a) Check if v ∈ A⊥.
(b) If so, output H2(sn). Otherwise, output ⊥.

O3(sn, y)
Hardcoded: H1

(a) Output 1 if H1(sn) = y, otherwise output 0.

O4(sn, y)
Hardcoded: H2

(a) Output 1 if H2(sn) = y, otherwise output 0.

4. Set vk = (O1,O2,O3,O4) and sk = A.
5. Output (vk, sk).

Bank.QKeyGen(sk)

1. Parse A = sk and output |A〉.

Bank.GenBanknote(Rkey)

1. Sample Rbolt, sn ← QL.Bolt(1λ).
2. Query O1 coherently on Rkey and sn and measure the result to obtain y1;

then rewind.
3. Query O2 coherently on Rkey and sn and measure the result to obtain y2;

then rewind.
4. Output Rbolt, sn, y1, y2.

Bank.Ver(vk,R)

1. Parse (Rbolt, sn, y1, y2) = R.
2. Verify QL.Ver(sn,Rbolt) = 1.
3. Check if O3(sn, y1) = 1 and O4(sn, y2) = 1.
4. Output 1 if all the checks pass; otherwise, output 0.

Theorem 18. Bank satisfies correctness, reusability and unbounded leakage-
resilience.

Correctness and reusability are easy to see by the correctness of the lightning
scheme and As Good As New Lemma [1]. We refer the reader to the full version
[15] for the leakage-resilience proof.
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7 Relationship Between Unclonability and Leakage-
Resilience

In this section, we show a public-key encryption scheme that satisfies anti-piracy
security (and hence unbounded leakage-resilience) but not even 1-round LOCC
leakage-resilience.

Theorem 19. Assuming equivocal CRHF Definition 2, relative to a classical
oracle, there exists a public-key encryption scheme that satisfies anti-piracy secu-
rity (both CPA-style and random-challenge) but there exists a 1-round LOCC
leakage adversary that wins the leakage-resilience game against it with over-
whelming probability.

We note by an argument similar to the proof of this theorem, the same result
can be obtained for signature schemes and PRFs.

We now give our construction, based on equivocal CRHF, which has a can-
didate construction relative to a classical oracle [7]. Let P be the partitioning,
HP be the associated hash function and OP ,O⊥

P be the associated oracles, all
as in Theorem 11. Set �(λ) = λ/2, the output length of the hash function HP .

PKE.Setup(1λ)

1. Sample subspaces Ai ⊆ Fλ
2 of dimension λ/2 for i ∈ [�]. Sample random

functions F1 : {0, 1}λ → {0, 1}2λ, F2 : {0, 1}2λ → {0, 1}m(λ), F3 : {0, 1}2λ →
{0, 1}m(λ).

2. Construct the following oracles.
O1(x, y, (vi)i∈[�], r)
Hardcoded: (Ai)i∈[�], F2,HP

(a) For i ∈ [�], check if vi ∈ Ai if (y)i = 0 and check if vi ∈ A⊥
i if

(y)i = 1.
(b) Check if (x)1 = 0.
(c) Check if HP (x) = y.
(d) If any of the checks above failed, output ⊥. Otherwise, output F2(r).

O2(x, y, (vi)i∈[�], r)
Hardcoded: (Ai)i∈[�], F3,HP

(a) For i ∈ [�], check if vi ∈ Ai if (y)i = 0 and check if vi ∈ A⊥
i if

(y)i = 1.
(b) Check if (x)1 = 1.
(c) Check if HP (x) = y.
(d) If any of the checks above failed, output ⊥. Otherwise, output F3(r).

O3(s)
Hardcoded: F1, F2, F3

(a) r = F1(s).
(b) Output r, F2(r), F3(r).
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3. Set pk = (O1,O2,O3,OP ,O⊥
P ) and sk = ((Ai)i∈[�]).

4. Output (pk, sk).

PKE.QKeyGen(sk)

1. Parse (Ai)i∈[�] = sk and output |Ai〉i∈[�].

PKE.Enc(pk,m)

1. Sample s ← {0, 1}λ.
2. Query O3(s) to get r, r2, r3.
3. Output r, r2 ⊕ r3 ⊕ m.

PKE.Dec(Rkey, ct)

1. Parse |Ai〉i∈[�] = Rkey.
2. Parse r, z = ct.
3. Execute ECRHF.GenOP ,O⊥

P to get |ψy〉, y.
4. Run EquivOP ,O⊥

P (|ψy〉, 0) to obtain x0. Query O1 coherently on x0, y,
|Ai〉i∈[�], r to obtain r2. Then, rewind the quantum states back to |ψy〉 and
|Ai〉i∈[�].

5. Run EquivOP ,O⊥
P (|ψy〉, 1) to obtain x1. Query O2 coherently on x1, y,

|Ai〉i∈[�], r to obtain r3. Then, rewind the quantum states back to |ψy〉 and
|Ai〉i∈[�].

6. Output z ⊕ r2 ⊕ r3.

Proof of Correctness and 1-Round LOCC Attack. Correctness with over-
whelming probability follows in a straightforward way from the correctness of the
equivocal CRHF and by As Good As New Lemma [1]. We give the following 1-
round LOCC attack. The adversary A executes ECRHF.GenOP ,O⊥

P to get |ψy〉, y.
Then, it chooses a measurement that measures each part (subspace state) of the
key (subspace state tuple) either in the computational basis (if (y)i = 0) or in the
Hadamard basis (if (y)i = 1). The resulting leakage consists of vectors (vi)i∈[�]

such that vi ∈ Ai if (y)i = 0 and vi ∈ A⊥
i if (y)i = 1. Then, A uses |ψy〉, y

and the vectors (vi)i∈[�] to simulate PKE.Dec from Step 4 onwards. It is easy
to see that this perfectly simulates PKE.Dec. Thus, A wins with overwhelming
probability.

Proof of Anti-piracy Security. In this section, we give a proof sketch that
PKE satisfies anti-piracy security. We refer the reader to the full version [15] for
the relevant definitions, notation and the full proof. We use projective and thresh-
old implementations along with their approximate versions [3,30] in our proof
to extract subspace vectors from entangled freeloaders. Throughout the proof,
for simplicity we will use (inefficient) threshold implementations – however, the
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same result follows with the efficient approximate versions [15]. Further, we in
fact prove that the scheme satisfies strong γ-anti-piracy [14,16] for any inverse
polynomial, which implies it also satisfies regular anti-piracy security [16].

Let γ be any inverse polynomial, and suppose there exists an anti-piracy
adversary that wins the strong γ-anti-piracy with non-negligible probability
1/q(λ). Let τ be the bipartite state output by the adversary A for the freeload-
ers. Throughout the proof, we will assume that the first parts of the challenge
ciphertexts are new random values (rather than outputs of F1) – since F1 is a
random function, this does not change the behavior of the freeloaders. Further,
we will implicitly assume that the freeloaders have access to a modified oracle
O′

3 that has the functions F2, F3 inside punctured at r∗
1 , r

∗
2 , the first part of

the challenge ciphertexts. It is easy to see that with overwhelming probability
this does not change the success probabilities of any decryptor/freeloader, since
with overwhelming probability these values r∗

1 , r
∗
2 will be outside the image set

of F1. Now, apply the tests TI1,D,1/2+γ ⊗TI2,D,1/2+γ to τ , and condition on both
parts accepting (which happens with probability 1/q(λ)) and let τ ′ denote the
conditioned post-measurement state. We note that, since TI are projective mea-
surements, we now know that each part � ∈ {1, 2} of τ ′ will again pass if it is
tested with TI�,D,1/2+γ , even if we condition on some non-negligible probability
event on the other side.

First, we claim that we can extract subspace vectors from the first freeloader,
τ ′[1].

Lemma 1. Define the test TI′1,D,1/2+γ to be the same as TI1,D,1/2+γ except that
the freeloader is now given access to an empty oracle instead of O1. Then, apply-
ing TI′1,D,1/2+γ to any state σ accepts with negligible probability.

Proof. Observe that in this case (i.e., with no access to O1), given the view of
the freeloader adversary, the value F2(r∗

1) is truly random. Thus, the ciphertext
m ⊕ F2(r∗

1) ⊕ F3(r∗
2) is a perfect one-time pad encryption, and no adversary can

succeed with probability 1/2 + γ.

Lemma 2. Define the test TI′′2,D,1/2+γ to be the same as TI2,D,1/2+γ except that
the freeloader is now given access to an empty oracle instead of O2. Then, apply-
ing TI′1,D,1/2+γ to any state σ accepts with negligible probability.

Proof. Follows from the same argument as above.

Corollary 4. Simulate the test ATI1,D,1/2+γ on τ ′[1] and measure a random
query to O1. Condition on obtaining an outcome x, y, (vi)i∈[�] such that (x)1 =
0,H(x) = y and for all i ∈ [�], vi ∈ Ai if (y)i = 0 and vi ∈ A⊥

i if (y)i = 1.
Next, simulate the test ATI1,D,1/2+γ on the second freeloader of the conditioned
state and measure a random query to O2. Then, with non-negligible probability,
we get values x′, y′, (wi)i∈[�] such that (x′)1 = 1,H(x′) = y′ and for all i ∈ [�],
wi ∈ Ai if (y′)i = 0 and wi ∈ A⊥

i if (y′)i = 1; and finally y 
= y′.

Proof. Since τ ′[1] passes TI1,D,1/2+γ with non-negligible probability but passes
TI′1,D,1/2+γ with negligible probability, we get the first part by the query weight
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lemma [12]. Now, as argued above, we know that even conditioned on such
an extraction (which happens with non-negligible probability) from the first
freeloader/register, the second part still passes TI2,D,1/2+γ with non-negligible
probability. However, by the above lemma we know that it passes TI′′2,D,1/2+γ

with negligible probability. Thus, we get second part again by [12]. Finally, we
argue the third part (y 
= y′) as follows. Observe that if y = y′, we have H(x) =
H(x′) but (x)1 = 0 and (x′)1 = 1, meaning that x 
= x′. Thus, this gives us a
collision for the hash function H, which is a contradiction.

Observe that the above gives us a way of breaking the direct product hardness
[11] of the subspace state at the index where y and y′ differ. Thus, we arrive at
a contradiction, concluding the security proof.
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Abstract. Hardness amplification is one of the important reduction
techniques in cryptography, and it has been extensively studied in the lit-
erature. The standard XOR lemma known in the literature evaluates the
hardness in terms of the probability of correct prediction; the hardness is
amplified from mildly hard (close to 1) to very hard 1/2+ε by inducing ε2

multiplicative decrease of the circuit size. Translating such a statement
in terms of the bit-security framework introduced by Micciancio-Walter
(EUROCRYPT 2018) and Watanabe-Yasunaga (ASIACRYPT 2021), it
may cause a bit-security loss of log(1/ε). To resolve this issue, we derive
a new variant of the XOR lemma in terms of the Rényi advantage, which
directly characterizes the bit security. In the course of proving this result,
we prove a new variant of the hardcore lemma in terms of the conditional
squared advantage; our proof uses a boosting algorithm that may out-
put the ⊥ symbol in addition to 0 and 1, which may be of independent
interest.

1 Introduction

In modern cryptography, cryptographic primitives are usually proposed with
security proofs. When proving the security of a primitive under some hardness
assumption, we show a reduction that solves a hard problem by assuming the
existence of an adversary attacking the primitive. If the reduction requires much
more computational cost than the assumed adversary, we need a stronger hard-
ness assumption to achieve a target level of security. Thus, tight reductions of
security proofs are desirable for the efficient use of cryptographic primitives.

A recent approach of concrete security reveals quantities related to security
reductions. Suppose we want to prove the security of primitive Q by assuming
the security of primitive P (or the hardness of some problem). Typically, we
show that for any adversary B of primitive Q with running time tB(n) and
advantage εB(n), there is an adversary A of primitive P such that the running
time tA(n) and the advantage εA(n) satisfy tA(n) ≤ φ(tB(n)) and εA(n) ≥
ψ(εB(n)) for some functions φ and ψ. Here, n is a security parameter, and a
reduction is a construction of A out of B. We may understand the tightness
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of the reduction by specifying two functions, φ and ψ. We prefer smaller tA(n)
and larger εA(n) for tight reductions. Thus, it is tempted to combine the two
quantities as tA(n)/εA(n) and achieve the value as small as tB(n)/εB(n) of
adversary B. Namely, we want the loss function

L(n) =
tA(n)
εA(n)

· εB(n)
tB(n)

to be as small as possible.
The above way of quantifying security loss has been used in cryptographic

literature. In [29], the quantity of tA(n)/εA(n) was used to define the security
of primitives. The same treatment has been employed in the literature [2,4,6,
33]. For search primitives such as one-way functions and signature schemes, the
advantage εA(n) is simply defined as the adversary’s success probability. For
decision primitives such as pseudorandom generators and encryption schemes,
it is usually defined as the gap between two probabilities, which we want to make
as small as possible. This treatment of defining advantages has been standard in
the cryptography community. In the literature listed above, the advantage εA(n)
was defined in this way for analyzing the quantity tA(n)/εA(n).

In [12], Goldreich noted that Levin suggested using another quantity
tA(n)/ε2A(n), called work, for decision primitives. The reason is that if the gap of
two probabilities is εA(n), we need to repeat the experiment (security game) for
O(1/εA(n)2) times to amplify it to a constant, say 2/3. This was also suggested
in [18]. However, the use of this quantity was not justified well at that time.

1.1 Bit Security

Micciancio and Walter [32] initiated a theoretical study for quantifying the secu-
rity level of primitives, referring to it as bit security. They proposed using another
notion of advantage, which we call conditional squared (CS) advantage, for eval-
uating the decision primitives. It is defined as

AdvCS
A (n) = Pr(Y �= ⊥)(2Pr(Y = U |Y �= ⊥) − 1)2,

where Y is the random variable representing the adversary A’s output and U is a
(randomly chosen) secret bit of the decision game. They defined the bit security
as the quantity of

min
A

log2
tA(n)

AdvCS
A (n)

.

Their notion elegantly resolved paradoxical situations in pseudorandom gen-
erators and approximate samplers (For the former case, we elaborate later in
this section). In [28], the notion of [32] was extended for capturing both com-
putational and statistical parameters. Watanabe and Yasunaga [39] defined bit
security with an operational meaning to justify formalizing the security level of
primitives. Roughly speaking, for a given adversary of a primitive, the bit secu-
rity in [39] is defined as the number of invocations of that adversary to break
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the primitive with probability close to 1; it was shown in [39] that the Rényi
advantage characterizes the number of invocations. Specifically, it is given by

AdvRenyi
A (n) = −2 ln

∑

a

√
Pr(Y = a|U = 0)Pr(Y = a|U = 1),

(See Appendix A for more explanations of the two frameworks [32,39].) The
follow-up work [40] demonstrated that the two advantages of [32,39] are essen-
tially equivalent;1 owing to this result, we can use the CS advantage and the
Rényi advantage almost interchangeably, and we will use both the advantages
in this paper as well.

1.2 Hardness Amplification

In this work, based on the recent advances in the notion of bit security (or the
quantity tA(n)/εA(n)), we focus on a basic problem of hardness amplification [14]
of Boolean functions. A Boolean function f : {0, 1}n → {0, 1} is said to be mildly
hard (unpredictable) if every polynomial-time algorithm fails to compute f on a δ-
fraction of input x ∈ {0, 1}n for a noticeable δ. The task of hardness amplification
is to convert f into another function f ′ so that f ′ is strongly hard in the sense
that every polynomial-time algorithm fails to compute f ′ on a (1/2− ε)-fraction
of input. The most well-known technique is Yao’s XOR lemma; f ′(x1, . . . , xk) =
f(x1)⊕· · ·⊕f(xk) for xi ∈ {0, 1}n. In cryptography, Yao’s XOR lemma (and its
variants) have been used for amplifying the security of pseudorandom generators
(PRGs) and pseudorandom functions (PRFs) [7,31,34]. In the framework of bit
security, hardness amplification is to reduce the advantage AdvA,f (n)(= 1/2−δ)
to AdvB,f ′(n)(= ε), where AdvA,f (n) is the advantage of adversary A predicting
f over random guessing.

In the two bit-security frameworks of [32,39], a decision game is formalized
such that an adversary tries to guess the secret bit u ∈ {0, 1} by playing the
game. Thus, we can write a decision game as G = (G0, G1), where a secret bit u
is initially chosen uniformly at random, and the adversary plays Gu for guessing
u. The hardness of predicting a Boolean function f : {0, 1}n → {0, 1} can be
captured by the game Gf as follows; first, x ∈ {0, 1}n and σ ∈ {0, 1} are chosen
uniformly at random. Then, the adversary receives (x, f(x)) when u = 0, and
(x, σ) when u = 1, and outputs a symbol in {0, 1,⊥}.2

When employing the framework of [39,40], the bit security of game Gf =
(G0, G1) against adversaries with computational cost s can be approximated as

BSs(Gf ) = log min
A with cost s

s

AdvRenyi
A,Gf

, (1)

1 Generally, the CS advantage is bounded above by the Rényi advantage. While the
CS advantage may take a much smaller value in some cases, the CS advantage can be
increased to the level of the Rényi advantage by modifying adversaries appropriately.

2 The symbol ⊥ indicates that the adversary gives up the prediction.
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where AdvRenyi
A,Gf

= D1/2(A0‖A1) is the Rényi advantage of A in game Gf ,
D1/2(·‖·) is the Rényi divergence of order 1/2, and Au is the output distribution
of A when playing Gu.

With the notions of bit security, hardness amplification is the task of con-
verting f into f ′ such that maxB AdvRenyi

B,Gf′ is much smaller than maxA AdvRenyi
A,Gf

,
where A and B are taken over adversaries with costs s and s′, respectively. We
want the following loss function

Lamp(n) =
s · maxB AdvRenyi

B,Gf′

s′ · maxA AdvRenyi
A,Gf

to be as small as possible. Ideally, we want to achieve Lamp(n) = O(1).

Balanced/Unbalanced Adversaries. The most efficient reductions of the
XOR lemma until now were given in [3,25] using boosting versions of hardcore
lemmas [23]. They guarantee s′ = Ω(ε2/ log(1/δ)) · s, where maxA Pr(A(x) =
f(x)) = 1 − δ and maxB Pr(B(x) = f ′(x)) = 1/2 + ε, where the maxima are
taken over algorithms with cost s and s′, respectively. Such a predictor A with
Pr(A(x) = f(x)) = 1 − δ can be easily converted to a distinguisher A′ with
the same cost such that AdvTV

A′,Gf
= dTV(A′

0, A
′
1) = (1 − δ) − 1/2 = 1/2 − δ,

where dTV(·, ·) is the total variation distance. For any adversary A of game
Gf = (G0, G1), it holds that

(
AdvTV

A,Gf

)2

≤ AdvRenyi
A,Gf

≤ O
(
AdvTV

A,Gf

)
.

Thus, if AdvRenyi
A,Gf

≈ (
AdvTV

A,Gf

)2 holds for every adversary A, the XOR lemma
in [3,25] gives

Lamp(n) = O
(

log(1/δ)
ε2

· ε2

(1/2 − δ)2

)
= O(log(1/δ)),

meaning that the reduction seems to be optimal. Indeed, as observed in [39],
AdvRenyi

A,Gf
≈ (

AdvTV
A,Gf

)2 holds for balanced adversaries, who output every value

with probability Ω(1). However, generally, we have AdvRenyi
A,Gf

= O
(
AdvTV

A,Gf

)
.

Thus, the reductions in [3,25] imply that

Lamp(n) = O
(

log(1/δ)
ε2

· ε

1/2 − δ

)
= O

(
log(1/δ)

ε

)
, (2)

which does not seem to be optimal.
It should be emphasized that the above-mentioned difference between the

balanced and unbalanced adversaries is crucial in the bit security frameworks
of [32,39]; the difference can be well explained by the following example first
posed in [32] and further elaborated in [40]. Let us consider the decision game
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to distinguish between the pseudorandom number generator (PRG) and the
true random number generator (TRG): the outcome (y, z) of PRG consists of
the image y = F (r) of a one-way permutation F over {0, 1}n and its hard-core
predicate z = h(r); the outcome (y, z) of TRG consists of y = F (r) and a random
bit z = σ that is independent of the seed r. For this game, we can consider the
following two possible attacks:

1. Linear test attack: For a prescribed binary vector v of length n + 1, the
adversary computes the inner product of v and (y, z); if the outcome is 0,
the adversary outputs 0 (PRG); and outputs 1 (TRG) otherwise. For such an
attack, the output distribution Au of the adversary A given u ∈ {0, 1} (u = 0
represent PRG and u = 1 represent TRG) are A0 = (1/2 + ε, 1/2 − ε) and
A1 = (1/2, 1/2) for some bias ε, where Au = (p0, p1) means that Pr[A = 0 |
u] = p0 and Pr[A = 1 | u] = p1.

2. Inversion attack: First, the adversary tries to invert the one-way permutation,
which will succeed with probability ε. If the inversion is unsuccessful, the
adversary outputs ⊥; if the inversion is successful and h(r) coincides with z,
then the adversary outputs 0 (PRG); otherwise (if the inversion is successful
but h(r) �= z), then the adversary outputs 1 (TRG). For such an attack,
the output distribution of the adversary A given u ∈ {0, 1} consists of A0 =
(ε, 0, 1 − ε) and A1 = (ε/2, ε/2, 1 − ε), where the third coordinate represents
the probability that Pr[A = ⊥ | u].

The standard advantage AdvTV, the CS advantage AdvCS, and the Rényi advan-
tage for the linear test attack and the inversion attack are summarized in Table 1.
Note that, in the inversion attack, the adversary outputs ⊥ with significant prob-
ability 1−ε, and it has a completely different nature compared to the linear test
attack. However, the standard advantages of the two attacks are almost the
same, and it does not capture the different nature of the attacks. One of the
notable features of the bit security in [32,39] is that the difference between these
attacks is reflected as different orders of the advantages. Thus, it is necessary to
extend the hardness amplification to the CS advantage or the Rényi advantage,
which involves several challenges mentioned in the next section.

Table 1. Advantages for the linear test attack and the inversion attack

Attacks AdvTV AdvCS AdvRenyi

Linear test attack (balanced)

A0 = (1/2 + ε, 1/2 − ε)

A1 = (1/2, 1/2)

ε ε2 Θ(ε2)

Inversion attack (unbalanced)

A0 = (ε, 0, 1 − ε)

A1 = (ε/2, ε/2, 1 − ε)

ε/2 ε/2 Θ(ε)
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1.3 Our Results

In this work, in order to evaluate the bit security of hardness amplification
directly, we derive a new variant of the XOR lemma in terms of the Rényi
advantage. Roughly, our XOR lemma (Theorem 1) claims that if a function is
mildly hard in the sense that Pr(A(x) = f(x)) ≤ 1 − δ for any adversary A of
size s, then the Rényi advantage of the XOR function f ′ satisfies AdvRenyi

B,Gf′ ≤ ε

for any adversary B of size s′ = Ω(ε/ ln(1/δ)) · s.3 This implies that the loss of
the reduction is

Lamp(n) = O
(

log(1/δ)
ε

· ε

1/2 − δ

)
= O (log(1/δ)) ,

which improves upon the loss in (2) by the factor of 1/ε for general adversaries.
To derive our XOR lemma for the Rényi advantage, we prove a new variant of

the hardcore lemma, originally proved by Impagliazzo [23]. Our hardcore lemma
is stated in terms of the CS advantage. Then, by using the connection between
the CS advantage and the Rényi advantage in [40], we prove the XOR lemma
via the hardcore lemma.

To prove our hardcore lemma, we analyze the performance of the boosting
algorithm such that weak learners may output the ⊥ symbol in addition to
0 and 1. Our main technical contribution in this paper is characterizing the
performance of the boosting algorithm with ⊥ in terms of the CS advantage.

Ideas and Techniques. Roughly, our hardcore lemma (Lemma 1) claims that
if a function is mildly hard in the sense that Pr(A(x) = f(x)) ≤ 1 − δ for any
adversary A of size s, then there exists a hardcore distribution H with density δ
such that the CS advantage of predicting f for inputs distributed according to
H satisfies AdvCS

B,f |H ≤ ε for any adversary B of size s′ = Ω(ε/ ln(1/δ)) ·s. Com-
pared to the standard hardcore lemma known in the literature, which involves the
decrease of circuit size by the factor of Ω(ε̃2/ ln(1/δ)) for the standard advan-
tage ε̃, the decrease of circuit size in our hardcore lemma is by the factor of
Ω(ε/ ln(1/δ)) for the CS advantage ε. For balanced adversaries, since the CS
advantage behaves as ε � ε̃2, our hardcore lemma is essentially the same as
the standard hardcore lemma; however, for unbalanced adversaries, since the CS
advantage behaves as ε � ε̃, our hardcore lemma improves the decrease of circuit
size upon the standard hardcore lemma.

A utility of the CS advantage in the context of the Goldreich-Levin (GL)
algorithm has been reported by Hast in [17]; he proposed a modified version of
the GL algorithm by taking into account adversaries that may output ⊥ when
predicting the hardcore bit and characterized the performance of such a GL
algorithm in terms of the CS advantage. His algorithm was used in [40] to prove

3 More precisely, this statement assumes that the cost of a weighted majority gate can
be ignored. Indeed, if s = ω(log(1/δ)/ε2), the cost is negligible; See Remark 1 for
discussion.
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the tightness of the GL theorem. In this work, we use the utility of outputting ⊥
in a hardcore lemma to provide a tight reduction of hardness amplification. Since
the performance of the GL algorithm can be improved by taking into account the
effect of ⊥, it is natural to seek a hardcore lemma that takes into account the
effect of ⊥ as well. However, such a hardcore lemma has not been proposed in
the literature. In fact, it is not immediately clear how ⊥ can be incorporated
into a hardcore lemma. In the case of the GL algorithm, the algorithm can
be interpreted as a list decoding of the Hadamard code. Then, it is natural
to consider ⊥ as an erasure of error correcting code. On the other hand, the
hardcore lemma is interpreted as the boosting algorithm in the learning theory.
Unlike the error correcting code, the role of ⊥ in the boosting is not so clear. In
fact, as we will discuss below, the usage of ⊥ in our boosting algorithm is subtle,
and the effect of ⊥ only shows up after a judicious analysis of the algorithm.

Readers might wonder why the XOR lemma is stated and proved in terms
of the Rényi advantage while the hardcore lemma is stated and proved in terms
of the CS advantage. When we prove the standard XOR lemma using the stan-
dard hardcore lemma, we decompose the uniform distribution of inputs into a
weighted sum of the “easy part” and the “hardcore part.” Since the probability
of correct prediction is an affine function of the distribution of inputs, it can also
be decomposed as the corresponding weighted sum of the probability of correct
prediction for the easy and the hardcore parts. A main obstacle to using such
a decomposition argument in our setting is that neither the CS advantage nor
the Rényi advantage are affine functions of input distributions. Fortunately, by
using the joint convexity of the Rényi divergence in a judicious manner, we can
go through the decomposition argument for the Rényi advantage; it is not clear
if a similar trick can be applied for the CS advantage, which is the reason why
we consider the XOR lemma for the Rényi advantage.

On the other hand, while the labeling of the adversary’s output symbols is
irrelevant to the Rényi advantage, the abort symbol ⊥ has a special meaning in
the CS advantage. Thus, the CS advantage is more suitable to be used when we
prove the hardcore lemma by using the boosting with ⊥.

Heuristically, a gist of the standard boosting algorithm (i.e., weak learn-
ers without ⊥) is to update the input distribution iteratively as follows: for a
given weak learner of the current round, we update the distribution of inputs
so that the probabilities of symbols correctly predicted by the current weak
learner are decreased, and the probabilities of symbols erroneously predicted by
the current weak learner are increased; we choose the multiplicative weight (for
decrease/increase) of the update so that the advantage of the weak learner of
the previous round is zero for the updated distribution. In our setting, weak
learners may output ⊥ in addition to the binary outputs. Then, a natural ques-
tion is whether we should increase or decrease the probabilities of symbols when
the current weak learner output ⊥. Perhaps surprisingly, our boosting algorithm
(Algorithm 1) neither increases nor decreases the probabilities of those symbols,4

4 Note that since there is a renormalization procedure, the updated probabilities of
those symbols may be changed.
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and an appropriate choice of the multiplicative weight provides the desired strong
learner. In fact, we will argue that our update rule is an approximate version of
the rule such that the CS advantage of the weak learner of the previous round
is zero for the updated distribution (Appendix C).

Future Perspectives. It has been known that the hardcore lemma and its
variants play a pivotal role in the construction of cryptographic primitives: for
instance, the construction of strong PRGs from weak ones [30] and the con-
structions of PRGs from one-way functions [16,38]. In order to discuss the bit
security of such constructions, we need to take into account unbalanced adver-
saries, as discussed above. Our hardcore lemma for the CS advantage may have
a potential use in that direction of research.

1.4 Related Work

The study of hardness amplification has a long history, and there are several
proofs of the XOR lemma; see [10] for a thorough review. As mentioned in
Sect. 1.3, in this paper, we prove our XOR lemma along the lines of the proof
by Impagliazzo using the hardcore lemma [23].

Another line of studies on hardness amplification is the direct-product con-
structions; it aims to construct strongly hard (search type) functions from weak
ones [11,13,26]. See [26] and the literature therein for recent related work. In this
work, we focus on amplifying the hardness of Boolean (decision type) functions.

In the original paper [23], Impagliazzo provided two proofs of the hardcore
lemma, a constructive one and one based on the min-max theorem.5 Later, it
was pointed out that the constructive proof can be interpreted as the boosting
algorithm in learning theory [25]. Based on such identification, there have been
several improvements and applications of the hardcore lemma [3,22,24,30,37].

In contrast to the standard hardcore lemma stated in terms of the probability
of correct prediction, our hardcore lemma is stated in terms of the CS advantage.
The main difficulty of handling the CS advantage is that it may not be affine
with respect to either the input distribution or (stochastic) circuit. Thus, it is
unclear if the min-max theorem is applicable to prove the hardcore lemma for
the CS advantage. To overcome this difficulty, we devise a modified version of
the boosting algorithm in [3,24] by considering that the adversary (weak learner
in the context of learning) may output ⊥ in addition to 0 and 1. In the context
of learning theory, by considering the asymmetry of weak learners’ confidence
for each output, we can improve the standard AdaBoost, which is known as
the confidence-rated AdaBoost or the infoBoosting [1,19,20,36]. Our boosting
algorithm is closely related in spirit to those algorithms in the sense that the
symbol ⊥ signifies that weak learners’ confidence is zero. Since the CS advantage
is a criterion initiated in cryptography, we believe it is an interesting contribution
to characterize the boosting algorithm with ⊥ in terms of the CS advantages of
weak learners; perhaps, it may have certain applications in learning theory.
5 The latter was attributed to Nisan.
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Exploring a single quantity for measuring the security of primitives dates back
to [21,29], where the time-success ratio was proposed. Micciancio and Walter [32]
revisited the notion of bit security, especially for decision primitives, and justified
the CS advantage. Watanabe and Yasunaga [39] introduced the Rényi advantage
to characterize an operational definition of bit security. The two advantages
turned out to be (essentially) equivalent when adversaries are allowed to output
⊥ [40]. Recently, Lee [27] introduced another notion of bit security that captures
search and decision games in a single framework.

1.5 Paper Organization

We present the formulation of the hardness amplification and the XOR lemma
for the Rényi advantage in Sect. 2. In Sect. 3, we present the hardcore lemma for
the CS advantage and its proof using the boosting algorithm with ⊥. Section 4
presents the proof of the XOR lemma by using the hardcore lemma. Other
than the fact of approximation as in (1), we do not use the knowledge of bit
security frameworks [32,39]. For readers’ convenience, we review the bit-security
frameworks in Appendix A.

2 Hardness Amplification for Rényi Advantage

For 0 ≤ ρ ≤ 1 and a function f : {0, 1}n → {0, 1}, ρ-hardness Hρ
avg(f) of function

f is the largest integer s such that any circuit C : {0, 1}n → {0, 1,⊥} of size at
most s satisfies

Pr
x∼Un

(
C(x) = f(x)

) ≤ ρ,

where Un is the uniform distribution on {0, 1}n. For a prescribed (typically small)
margin δ > 0, a function f is regarded as mildly hard if the value of H1−δ

avg (f) is
sufficiently large. By using the function f as a building block, we are interested
in constructing another function that is much harder than f itself. A typically
used construction is the so-called XOR construction: for a given integer k ≥ 2,
let f⊕k : {0, 1}nk → {0, 1} be the function defined by

f⊕k(x1, . . . , xk) := f(x1) ⊕ · · · ⊕ f(xk),

where x1, . . . , xk ∈ {0, 1}n. The standard XOR lemma of Yao claims that f⊕k is
hard in the sense that H1/2+ε

avg (f⊕k) is as large as ε2

ln(1/δ)H
1−δ
avg (f) for ε ≥ 2(1−δ)k;

this means that even though the circuit size is decreased by the factor of ε2

ln(1/δ) ,
we can guarantee that the adversary’s success probability of predicting the value
of function f⊕k is at most 1

2 + ε. More precisely, the following holds:

Proposition 1 (XOR lemma). For ε ≥ 2(1 − δ)k, it holds that

Pr
x1,...,xk∼Un

(
C(x1, . . . , xk) = f⊕k(x1, . . . , xk)

) ≤ 1
2

+ ε

for every circuit C of size at most s for s = Ω
(

ε2

ln(1/δ)

)
· H1−δ

avg (f).
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In order to discuss the bit security of the XOR function, let us consider the
distinguishing game between u = 0 instance (x1, . . . , xk, f⊕k(x1, . . . , xk)) and
u = 1 instance (x1, . . . , xk, σ), where σ is a random bit that is independent of
(x1, . . . , xk). Proposition 1 implies that (by the standard argument of converting
a distinguisher to a predictor), for every circuit of size at most s, the standard
distinguishing advantage (in terms of the total variation distance) is less than
ε. However, as discussed in [32,39] (see also [40] for more detail), the standard
advantage is not suitable for evaluating bit security. Thus, the above-mentioned
XOR lemma does not guarantee that the bit security is preserved during the
process of constructing f⊕k from f . To resolve this issue, we derive an alternative
version of the XOR lemma in terms of Rényi advantage

AdvRenyi
A,f⊕k = D1/2(A0‖A1) = −2 ln

∑

a

√
A0(a)A1(a),

where Au is the distribution of the output by adversary when the instance is u.
As we mentioned in Sect. 1 (see also Appendix A), the bit security can be approx-
imated by the Rényi advantage up to a constant. To that end, it is desirable to
derive a trade-off between the adversary’s Rényi advantage and the circuit size.
We use the weighted majority gate once in the reduction proof of the following
theorem. To avoid the effect of how the weighted majority gate is implemented,
we first assume that the weighted majority gate is available for free in the eval-
uation of the initial hardness H1−δ

avg (f); in Remark 1, we will provide an estimate
for the effect of implementing the weighted majority gate.

Theorem 1 (XOR lemma for Rényi advantage). For ε ≥ 2(1 − δ)k, it
holds that

AdvRenyi
A,f⊕k ≤ ε

for every circuit A of size s′ ≤ ε
48 ln(1/δ)H

1−δ
avg (f), where the initial hardness

H1−δ
avg (f) is evaluated under the assumption that the weighted majority gate is

available for free.

Remark 1. The assumption of the availability of the weighted majority gate
comes from the fact that it is used in the proof of the hardcore lemma of Lemma
1. As we discuss in Remark 2, the effect of implementing the weighted majority
gate can be estimated. More specifically, the statement of Theorem 1 holds for
circuit size s′ ≤ ε

64 ln(1/δ)H
1−δ
avg (f)− c

ε for some constant c. Thus, when the initial
hardness is H1−δ

avg (f) = ω(log(1/δ)/ε2), then the effect of the weighted majority
is negligible.

We shall discuss an implication of Theorem 1. For a given integer s, the bit
security against adversaries with cost s is evaluated as (1). In fact, in the setting
of this section, the initial hardness s = H1−δ

avg (f) means BSs(Gf ) = log s + O(1).
For the function f itself, since circuits of much smaller size s′ may have the same
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success probability 1 − δ, we cannot guarantee BSs′(Gf ) ≥ BSs(Gf ). However,
Theorem 1 implies that the XOR function f⊕k satisfies

BSs′(Gf⊕k) ≥ BSs(Gf ) − O(log ln(1/δ))

for s′ = ε
48 ln(1/δ)H

1−δ
avg (f). In this sense, the bit security is preserved in the

hardness amplification.

3 Hardcore Lemma for CS Advantage

We shall prove Theorem 1 along the lines of the proof by Impagliazzo using the
hardcore lemma [23]. To that end, we develop a new variant of the hardcore
lemma in this section.

By the definition of hardness, any circuit C of size s ≤ H1−δ
avg (f) must satisfy

Pr
x∼Un

(
C(x) = f(x)

) ≤ 1 − δ. (3)

This means that there exists a set HC ⊂ {0, 1}n of hard inputs such that |HC | ≥
δ2n and the circuit C fails to compute f(x) for every x ∈ HC ; however, the hard
sets may differ for different circuits. Impagliazzo’s hardcore lemma claims that
there exists a set of inputs that are universally hard for every circuit with a
smaller size. It is more convenient to consider probability distributions, rather
than sets, having density δ; a distribution P on {0, 1}n is said to have density
δ if P (x) ≤ 1

δ2n for every x ∈ {0, 1}n, or equivalently, the min-entropy satisfies
Hmin(P ) ≥ n− log(1/δ). The standard hardcore lemma is a statement as follows:

Proposition 2 (Hardcore lemma). There exists a hardcore distribution H
having density δ such that

Pr
x∼H

(
C(x) = f(x)

) ≤ 1
2

+ ε (4)

for every circuit C of size at most s for s = Ω
(

ε2

ln(1/δ)

)
· H1−δ

avg (f).

Since the standard hardcore lemma, Lemma 2, is insufficient to prove The-
orem 1, we derive the following variant of the hardcore lemma in terms of the
conditional squared (CS) advantage. For a given distribution P on {0, 1}n and
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a circuit C : {0, 1}n → {0, 1,⊥}, the CS advantage of predicting f is defined as6

AdvCS
C,f |P :=

4
(

Pr(C(x) = f(x)) − 1
2 Pr(C(x) �= ⊥)

)2

Pr(C(x) �= ⊥)
(5)

=

(
Pr(C(x) = f(x)) − Pr(C(x) = f(x))

)2

Pr(C(x) �= ⊥)
(6)

where the probability is with respect to x ∼ P and f(x) = f(x) ⊕ 1.

Lemma 1 (Hardcore lemma for CS advantage). There exists a hardcore
distribution H having density δ such that

AdvCS
C,f |H ≤ ε (7)

for every circuit C of size at most s′ := ε
8 ln(1/δ)H

1−δ
avg (f).

For a circuit that does not output ⊥, i.e., Pr(C(x) �= ⊥) = 1, we can rewrite
(5) as

Pr(C(x) = f(x)) =
1
2

+

√
AdvCS

C,f |P
2

.

For such a circuit, the bounds (4) and (7) are the same up to a constant (ε2 in
Proposition 2 corresponds to ε in Lemma 1). A main new feature of Lemma 1 is
that it can be applied to circuits that may output ⊥ with significant probability.

In contrast to the standard correct probability (the left-hand side of (4)),
the CS advantage is not affine with respect to either the input distribution or
(stochastic) circuit. Thus, it is unclear if the min-max theorem is applicable to
prove Lemma 1. Instead, we consider a modified version of the boosting algorithm
by taking into account the fact that the adversary (weak learner in the context
of learning) may output ⊥ in addition to 0 and 1.

To prove Lemma 1 via a contradiction, suppose that for each distribution P
having density δ, there exists a circuit CP of size at most s′ such that

AdvCS
CP ,f |P > ε. (8)

Starting from the uniform distribution P (1) and a circuit that satisfies (8) for
P (1), we are going to sequentially update distributions and corresponding circuits
that satisfy (8); then, by combining those circuits, we eventually construct a
circuit that violates the assumption (3) on the hardness of f . As we mentioned

6 More precisely, the CS advantage in (5) is for a predictor; on the other hand, when
we define the bit security, we consider the CS advantage for a distinguisher (cf. (27)).
The CS advantage for a predictor was first introduced in the context of the Goldreich-
Levin algorithm [17].
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Algorithm 1: Boosting
Input: The number T ∈ N of iteration and a circuit CP satisfying (8) for each

P with density δ
Output: A sequence of circuits CP (1) , . . . , CP (T )

1: Initialize P (1) as the uniform distribution on {0, 1}n;
2: Repeat Step 3 and Step 4 for 1 ≤ t ≤ T ;
3: For a circuit CP (t) that satisfies (8) for P (t), set γt = Δt

4αt
for

αt := Pr
x∼P (t)

(
CP (t)(x) �= ⊥)

,

Δt := Pr
x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)
,

and set

P̂ (t+1)(x) =
P (t)(x) exp

( − γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

})

ZP (t)
,

where f(x) = f(x) ⊕ 1 and

ZP (t) =
∑

x

P (t)(x) exp
( − γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

})

is the normalizer;
4: For the set Pδ of all distributions with density δ, set

P (t+1) = argmin
P∈Pδ

D(P‖P̂ (t+1)),

where D is the KL-divergence.

above, this procedure is essentially the same as the boosting algorithm in learning
theory, in which we construct a strong learner from weak learners. Our algorithm
for boosting is described in Algorithm 1. Perhaps surprisingly, the update rule
of Algorithm 1 does not alter the distribution when the output of a circuit is ⊥;
a rationale for the algorithm will be discussed in Appendix C.

The sequence of distributions generated by the algorithm satisfies the follow-
ing.

Lemma 2. The distributions P (1), . . . , P (T ) generated by Algorithm 1 satisfy

T∑

t=1

1
T

AdvCS

C
(t)
P ,f |P (t)

8

≤ Ex∼P

[ T∑

t=1

1
T

γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}]
+

D(P‖P (1))
T

(9)

for every P ∈ Pδ, where Pδ is the set of all distributions with density δ.
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Lemma 2 is a counterpart of technical results that appeared in the literature
for the boosting without ⊥ (e.g. [24, Theorem 1] or [3, Lemma 4.1]). Since
our boosting algorithm invokes circuits that may output ⊥, the performance is
evaluated in terms of the CS advantage instead of the standard advantage. A
main technical difficulty of proving Lemma 2 is connecting Algorithm 1 to the
CS advantage since the output ⊥ does not appear explicitly in the algorithm.
The following lemma is a crucial step in proving Lemma 2, which enables us
to evaluate the performance of Algorithm 1 in terms of the CS advantage. The
lemma will be proved in Sect. 3.1.

Lemma 3. For every 1 ≤ t ≤ T , the distributions P (t) and P̂ (t+1) in Algorithm
1 satisfy

D(P (t)‖P̂ (t+1)) ≤ 2γ2
t Pr

x∼P (t)

(
CP (t)(x) �= ⊥)

. (10)

Since we set γt = Δt

4αt
in Algorithm 1, note that the right-hand side of (10) is

Δ2
t

8αt
= 1

8Adv
CS

C
(t)
P ,f |P (t) . In this manner, the CS advantage shows up in the analysis

even though the output ⊥ does not appear in the algorithm explicitly. The details
of the proof of Lemma 2 are presented in Sect. 3.2.

Once we prove Lemma 2, we can prove the hardcore lemma for the CS advan-
tage (Lemma 1) via a contrapositive argument: we assume that for each distri-
bution P having density δ, there exists a circuit CP of size at most s′ satisfying
(8). This assumption enables us to find a weak learner in each iteration of Algo-
rithm 1, and we can construct a strong learner from a sequence of circuits found
by the algorithm. One key difference from the proof of the standard hardcore
lemma is that, instead of the standard majority, we take the weighted major-
ity to construct the strong learner from weak learners since reliabilities of weak
learners vary depending on the probability of output ⊥. The detailed proof of
Lemma 1 is provided in Sect. 3.3.

3.1 Proof of Lemma 3

From the update rule of Algorithm 1, we have

D(P (t)‖P̂ (t+1))

=
∑

x

P (t)(x)γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}
+ lnZP (t)

= γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)}
+ lnZP (t) . (11)
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Now, we evaluate ln ZP (t) as

ln ZP (t) = ln
∑

x

P (t)(x) exp
( − γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

})

≤ ln
∑

x

P (t)(x)
(
1 − γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}

+ 2γ2
t 1[CP (t)(x) �= ⊥]

)

= ln
(

1 − γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)}

+ 2γ2
t Pr

x∼P (t)

(
CP (t)(x) �= ⊥))

≤ −γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)}

+ 2γ2
t Pr

x∼P (t)

(
CP (t)(x) �= ⊥)

,

(12)

where the first inequality follows from7 e−θ ≤ 1−θ+2θ2 for θ ∈ [−1, 1] and that

exp
( − γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

})
= 1

when CP (t)(x) = ⊥; and the second inequality follows from ln(1 − θ) ≤ −θ for

θ < 1. By combining (11) and (12), we have the desired bound. ��

3.2 Proof of Lemma 2

By the cosine law of the KL-divergence, we have

7 By the Taylor approximation, we have

e−θ ≤ 1 − θ + sup
−1≤τ≤1

e−τ

2
θ2 ≤ 1 − θ +

e

2
θ2 ≤ 1 − θ + 2θ2

.
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D(P‖P (t)) − D(P‖P̂ (t+1))

=
∑

x

(
P (t)(x) − P (x)

)(
lnP (t)(x) − ln P̂ (t+1)(x)

) − D(P (t)‖P̂ (t+1))

=
∑

x

(
P (t)(x) − P (x)

)
γt

{
1[CP (t) (x) = f(x)] − 1[CP (t) (x) = f(x)]

}

− D(P (t)‖P̂ (t+1))

= γt
{

Pr
x∼P (t)

(
CP (t) (x) = f(x)

) − Pr
x∼P (t)

(
CP (t) (x) = f(x)

)}

− γtEx∼P

[{
1[CP (t) (x) = f(x)] − 1[CP (t) (x) = f(x)]

}]
− D(P (t)‖P̂ (t+1))

≥ γt
{

Pr
x∼P (t)

(
CP (t) (x) = f(x)

) − Pr
x∼P (t)

(
CP (t) (x) = f(x)

)}

− γtEx∼P

[{
1[CP (t) (x) = f(x)] − 1[CP (t) (x) = f(x)]

}]

− 2γ2
t Pr

x∼P (t)

(
CP (t) (x) �= ⊥)

, (13)

where, in the second equality, we used the fact that lnZP (t) does not depend on
x and

∑
x

(
P (t)(x) − P (x)

)
= 0 to eliminate lnZP (t) ; and we used Lemma 3 in

the final inequality. Here, we apply the Pythagorean inequality by noting that
Pδ is a closed convex set: it holds that (e.g., see [5, Theorem 3.1])

D(P‖P (t+1)) + D(P (t+1)‖P̂ (t+1)) ≤ D(P‖P̂ (t+1))

for any P ∈ Pδ, which implies

D(P‖P (t+1)) ≤ D(P‖P̂ (t+1)). (14)

Thus, (13) and (14) imply

D(P‖P (t)) − D(P‖P (t+1))

≥ γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)}

− γtEx∼P

[{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}]

− 2γ2
t Pr

x∼P (t)

(
CP (t)(x) �= ⊥)

.

By taking the summation of both sides for t = 1 through T , we have

D(P‖P (1)) − D(P‖P (T+1))

≥
T∑

t=1

γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)}

− Ex∼P

[ T∑

t=1

γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}]

−
T∑

t=1

2γ2
t Pr

x∼P (t)

(
CP (t)(x) �= ⊥)

. (15)
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Since D(P‖P (T+1)) ≥ 0, by substituting αt,Δt and γt = Δt

4αt
defined in Algo-

rithm 1, and by rearranging terms, we have

T∑

t=1

Δ2
t

8αt

≤ Ex∼P

[ T∑

t=1

γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}]
+ D(P‖P (1)).

Finally, by noting that AdvCS

C
(t)
P ,f |P (t) = Δ2

t

αt
and by dividing by T , we have (9). ��

3.3 Proof of Lemma 1

To prove via a contradiction, suppose that for each distribution P having density
δ, there exists a circuit CP of size at most s′ satisfying (8). We shall prove that
there exists a circuit C� of size at most s := H1−δ

avg (f) such that

Pr
x∼Un

(
C�(x) = f(x)

)
> 1 − δ. (16)

We construct C� as follows. For T =
⌈
8 ln(1/δ)

ε

⌉
, let CP (1) , . . . , CP (T ) be the

circuits obtained by Algorithm 1. For a given input x ∈ {0, 1}n, by invoking
the weighted majority oracle, C� outputs a ∈ {0, 1} if (the tie can be decided
arbitrarily)

T∑

t=1

1
T

γt

{
1[CP (t)(x) = a] − 1[CP (t)(x) = a]

}
> 0, (17)

where a = a ⊕ 1. Note that the size of C� is Ts′. Note also that C� makes an
error for input x, i.e., C�(x) = f(x) only if

T∑

t=1

1
T

γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

} ≤ 0. (18)

Let

E =
{

x ∈ {0, 1}n :
T∑

t=1

1
T

γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

} ≤ 0
}

.

be the set of all inputs such that C� may make an error. If we prove |E|
2n < δ,

we are done, i.e., (16) holds. To prove via a contradiction, assume that |E|
2n ≥ δ,

which implies that the uniform distribution PE on E has density δ. Since P (1) is
the uniform distribution, we have

D(PE‖P (1)) =
∑

x

PE(x) ln 2nPE(x) ≤
∑

x

PE(x) ln(1/δ) = ln(1/δ).
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By applying Lemma 2 for PE , by noting (8) for each CP (t) , and by noting that
(18) with probability 1 for x ∼ PE , we have

ε

8
< Ex∼PE

[ T∑

t=1

1
T

γt

{
1[CP (t)(x) = f(x)] − 1[CP (t)(x) = f(x)]

}]
+

D(PE‖P (1))
T

≤ D(PE‖P (1))
T

≤ ε

8
,

which is a contradiction. ��
Remark 2. Even though we did not take into account the precision of the weight
γt in the proof of Lemma 1, it can be evaluated as follows. Note that αt and Δt

in Algorithm 1 satisfy

ε <
Δ2

t

αt
≤ Δt

αt
≤ 1.

By setting τ = �log(1/ε)� so that 1
2τ ≤ ε, we divide the interval (1/2τ , 1] into

τ parts
(

1
2τ

,
1

2τ−1

]
,

(
1

2τ−1
,

1
2τ−2

]
, . . . ,

(
1
2
, 1

]
.

Then, each Δt

αt
satisfies

Δt

αt
∈

(
1

2
t
,

1
2
t−1

]

for some �t; if we set γt = 1
2�t+2 , then we have

Δt

8αt
≤ γt <

Δt

4αt
. (19)

If we use γt = 1
2�t+2 instead of γt = Δt

4αt
in Algorithm 1, the last two terms of

(15) is lower bounded as

T∑

t=1

γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

) − Pr
x∼P (t)

(
CP (t)(x) = f(x)

)}

−
T∑

t=1

2γ2
t Pr

x∼P (t)

(
CP (t)(x) �= ⊥)

=
T∑

t=1

Δ2
t

αt
γt

αt

Δt

(
1 − 2γt

αt

Δt

)

≥
T∑

t=1

Δ2
t

αt

1
8

(
1 − 2

8

)
=

T∑

t=1

3Δ2
t

32αt
,
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where the inequality follows from that the function g(θ) = θ(1 − 2θ) is lower
bounded by g(1/8) for 1/8 ≤ θ ≤ 1/4 and (19). Thus, even if we take into
account the precision of the weight γt, we have the same claim as Lemma 1
except that the factor 1

8 in s′ is replaced by 3
32 .

Furthermore, since each weight γt takes a value between 1/2τ+2 and 1/8, we
can implement the weighted majority by creating 2τ+2γt ≤ 1/ε copies of each
input and by using the majority.8 If we take into account the cost of the weighted
majority, the proof goes through as long as

Ts′ +
cT

ε
= T

(
s′ +

c

ε

)
≤ s

for some constant c.9 Thus, the claim of Lemma 1 still holds for every circuit of
size at most s′ = 3ε

32 ln(1/δ)H
1−δ
avg (f) − c

ε ; when the initial hardness is H1−δ
avg (f) =

ω(log(1/δ)/ε2), then the cost of the weighted majority is negligible.

4 Proof of Theorem 1

For notational simplicity, we prove the case of k = 2; general k ≥ 2 can be proved
similarly. Toward deriving a contradiction, suppose that there exists A with size
s′ ≤ ε

48 ln(1/δ)H
1−δ
avg (f) such that AdvRenyi

A,f⊕k > ε. By Lemma 1, there exists a
hardcore distribution H with density δ such that

AdvCS
C,f |H ≤ ε

6
(20)

for every circuit C of size s′ ≤ ε
48 ln(1/δ)H

1−δ
avg (f). Let G be the distribution

on {0, 1}n given by G(x) = 1/2n−δH(x)
1−δ . Then, the uniform distribution Un on

{0, 1}n can be decomposed as

Un(x) = (1 − δ)G(x) + δH(x). (21)

When (x1, x2) are distributed according to distribution Q, we denote the output
distribution of adversary A by AQ

u for u = 0, 1 (note that, when u = 1, σ is
generated independently of (x1, x2) ∼ Q). Then, the output distribution Au of
adversary A under the uniform distribution can be decomposed as

Au = (1 − δ)2AGG
u + (1 − δ)δAGH

u + δ(1 − δ)AHG
u + δ2AHH

u . (22)

8 Such a naive implementation of the weighted majority has been studied in the circuit
complexity [9].

9 It comes from the fact that the majority can be realized by a circuit of linear size of
inputs [41].
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By the joint convexity of the Rényi divergence of order 1/2 (e.g., see [8, Theorem
11]), we have

ε < AdvRenyi
A,f⊕k

= D1/2(A0‖A1)

≤ (1 − δ)2D1/2(AGG
0 ‖AGG

1 ) + (1 − δ)δD1/2(AGH
0 ‖AGH

1 )

+ δ(1 − δ)D1/2(AHG
0 ‖AHG

1 ) + δ2D1/2(AHH
0 ‖AHH

1 ).

Since (1 − δ)2 < ε
2 by the assumption and D1/2(AGG

0 ‖AGG
1 ) ≤ 1 (cf. [40, Propo-

sition 1]), we have

ε

2
< (1 − δ)δD1/2(AGH

0 ‖AGH
1 )

+ δ(1 − δ)D1/2(AHG
0 ‖AHG

1 ) + δ2D1/2(AHH
0 ‖AHH

1 ).

Since the summation of (1 − δ)δ, δ(1 − δ), and δ2 is less than 1, by
the averaging argument, at least one of D1/2(AGH

0 ‖AGH
1 ), D1/2(AHG

0 ‖AHG
1 ),

or D1/2(AHH
0 ‖AHH

1 ) is larger than ε
2 . For instance, suppose that

D1/2(AGH
0 ‖AGH

1 ) > ε
2 (other cases are similar). We can write

AGH
0 (a) = Pr

x∼G
y∼H

(
A(x, y, f(x) ⊕ f(y)) = a

)

= Ex∼G

[
Pr

y∼H

(
A(x, y, f(x) ⊕ f(y)) = a

)]

and

AGH
1 (a) = Pr

x∼G
y∼H

(
A(x, y, σ) = a

)

= Pr
x∼G
y∼H

(
A(x, y, f(x) ⊕ σ) = a

)
(23)

= Ex∼G

[
Pr

y∼H

(
A(x, y, f(x) ⊕ σ) = a

)]
,

where the identity (23) holds since σ being a random bit independent of (x, y)
implies that f(x)⊕σ is a random bit independent of (x, y). For each x ∈ {0, 1}n,
let us consider an adversary Ax for distinguishing between (y, f(y)) and (y, σ)
for y ∼ H; given input (y, z), Ax runs A(x, y, f(x) ⊕ z) (since we consider non-
uniform complexity, f(x) can be precomputed and provided to the circuit, and
the size of Ax is s′). By applying the joint convexity of the Rényi divergence of
order 1/2 once more, we have

ε

2
< D1/2(AGH

0 ‖AGH
1 ) (24)

≤ Ex∼G

[
D1/2(Ax

0‖Ax
1)

]
. (25)
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Thus, there exists x ∈ {0, 1}n such that

ε

2
< D1/2(Ax

0‖Ax
1).

By the same argument as [40, Theorem 3] (for completeness, we provide a proof
in Appendix B), there exists a predictor C : {0, 1}n → {0, 1,⊥} that invokes Ax

once and satisfies

AdvCS
C,f |H ≥ 1

3
D1/2(Ax

0‖Ax
1) >

ε

6
, (26)

which contradicts (20). ��
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A Bit-Security Frameworks

As we mentioned in Sect. 1, the bit security for decision game G was first intro-
duced in [32], and an operational framework was later introduced in [39]. For
readers’ convenience, in this appendix, we review the bit-security frameworks of
[32,39] and discuss their equivalence shown in [40]. Since the main focus of this
paper is decision games, we only present the formulation of the decision game
in the following; see [32,39] for the formulation of the search game.

Let U be the random variable describing the choice of a decision game; for
instance, in the indistinguishability game of pseudorandom number generator
(PRG) from the true random number generator (TRG), U = 0 corresponds to
the game played with PRG and U = 1 corresponds to the game played with
TRG. In the framework of [32], we consider an adversary A that outputs ⊥ in
addition to 0 and 1; the symbol ⊥ signifies that the adversary has difficulty
predicting the value of U and gives up the prediction. For the random variable
Y describing the adversary’s output, let

αA := Pr(Y �= ⊥),
βA := Pr(Y = U |Y �= ⊥),

and define the conditional squared (CS) advantage

AdvCS
A,G := αA(2βA − 1)2. (27)

Then, the bit security of [32] is defined as10

min
A

{
log2

(
sA

AdvCS
A,G

)}
, (28)

10 In [32], the authors first introduced an advantage using the Shannon entropy and
the mutual information; then, in order to justify the definition (28), they discussed
that that advantage is approximated by the CS advantage.
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where sA is the cost of the adversary.11

In the bit-security framework of [39], in order to define bit-security opera-
tionally, we consider an outer adversary B in addition to the inner adversary
A that plays the given security game. In the framework, the outer adversary B
seeks to increase the success probability of predicting U by invoking the inner
adversary A for NA,B times. Then, by integrating the outputs from the invoca-
tions of the inner adversary, the outer adversary outputs the predicted value Z.
Then, for a prescribed success probability 1 − μ (say 0.99), the bit security of
decision game G is defined as

BSμ
G := min

A,B

{
log2(NA,B · sA) : Pr(Z = U) ≥ 1 − μ

}
. (29)

Furthermore, it was shown in [39] that the bit security is characterized by the
Rényi advantage up to a constant, i.e.,

BSμ
G = min

A

{
log2 sA + log2

⌈
1

AdvRenyi
A,G

⌉}
+ O(1), (30)

where the Rényi advantage is given by the Rényi divergence

AdvRenyi
A,G := D1/2(A0‖A1)

for the distributions A0 and A1 of adversary for U = 0 and U = 1, respectively.
At first glance, the bit security defined in (28) and that in (30) (defined via

operational formula (29)) are different quantities. However, it was shown in [40]
that the two notions of bit security are equivalent in the following sense.

Proposition 3. For an arbitrary adversary A for a decision game G, it holds
that AdvCS

A,G ≤ 8AdvRenyi
A,G . On the other hand, for an arbitrary adversary A

satisfying AdvRenyi
A,G ≤ 1, there exists an adversary Ã having the same cost as A

such that AdvRenyi
A,G ≤ 12AdvCS

Ã,G
.

By using the conversion of two advantages in Proposition 3, we can argue that
the two notions of bit security coincide up to a constant; for more detail, see
[40, Section 4]. Since the two notions are equivalent, in the main body of the
paper, we focus on the bit security characterized by the Rényi advantage, (30).
However, the CS advantage adapted for predictors also plays an important role
when we prove the hardcore lemma in Sect. 3. From a technical perspective, it
seems that the CS advantage is more suitable for analyzing the performance
of algorithms; on the other hand, the Rényi advantage is more convenient for
analysis in a certain situation since it satisfies (joint) convexity with respect to
the distributions, which is used in the proof of Theorem 1.

Here, we should note that the standard advantage defined by the total vari-
ation distance between A0 and A1 is unsuitable for evaluating bit security.
Notably, as was pointed out in [32] (see also [40, Section 1.3] further discussion),
the standard advantage cannot resolve the paradoxical nature of the linear test
for the PRG.
11 In this paper, we focus on the circuit size.
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B Proof of (26)

In this appendix, we prove that there exists a predictor C : {0, 1}n → {0, 1,⊥}
that invokes Ax once and satisfies (26). We use the following technical lemma.

Lemma 4. For given distributions P and Q with P � Q, we have

D1/2(P‖Q) ≤ D(P‖Q) ≤
∑

x∈X+

(P (x) − Q(x))2

Q(x)
.

where X+ = {x : Q(x) > 0}, and D(P‖Q) =
∑

x P (x) log(P (x)/Q(x)) is the
KL-divergence.

Proof. The former inequality follows from the fact that the Rényi diver-
gence is monotonically non-decreasing with respect to α and D(P‖Q) =
limα→1 Dα(P‖Q). The latter inequality appears in the middle of the proof of
[15, Lemma 4.1]. ��

Note that, for y ∼ H, the distribution of the adversary Ax for u = 0 instance
(y, f(y)) and u = 1 instance (y, σ) are given by

Ax
0(a) = Pr

y∼H

(
Ax(y, f(y)) = a

)
,

Ax
1(a) = Pr

y∼H

(
Ax(y, σ) = a

)

for a ∈ {0, 1,⊥}. Note that the support of (y, f(y)) is included in the support of
(y, σ).12 Thus, if the adversary Ax outputs a symbol a with positive probability
under u = 0, then Ax must output a with positive probability under u = 1 as
well, i.e., Ax

0 � Ax
1 .

Let a� ∈ {0, 1,⊥} be such that Ax
1(a�) > 0 and

max
a∈{0,1,⊥}:

Ax
1 (a)>0

(Ax
0(a) − Ax

1(a))2

Ax
1(a)

=
(Ax

0(a�) − Ax
1(a�))2

Ax
1(a�)

.

Then, by Lemma 4, we have

D1/2(Ax
0‖Ax

1) ≤ 3
(Ax

0(a�) − Ax
1(a�))2

Ax
1(a�)

. (31)

We consider two cases separately.

When Ax
0(a�) ≥ Ax

1(a�) In this case, we consider the following predictor C. First,
we sample the uniform random bit σ. Second,

– If Ax(y, σ) = a�, then C outputs σ;
– If Ax(y, σ) �= a�, then C outputs ⊥.

12 Here, the support is the set of realizations that occur with positive probability.
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For this predictor, we have

Pr
y∼H

(
C(y) �= ⊥)

= Pr
y∼H

(
Ax(y, σ) = a�

)

= Ax
1(a�)

and

Pr
y∼H

(
C(y) = f(y)

)
=

1
2

Pr
y∼H

(
Ax(y, σ) = a�|σ = f(y)

)

=
1
2

Pr
y∼H

(
Ax(y, f(y)) = a�

)

=
Ax

0(a�)
2

,

which implies

Pr
y∼H

(
C(y) = f(y)

) − 1
2

Pr
y∼H

(
C(y) �= ⊥)

=
Ax

0(a�) − Ax
1(a�)

2
.

Thus, the CS advantage of C satisfies (cf. (5))

AdvCS
C,f |H =

(Ax
0(a�) − Ax

1(a�))2

Ax
1(a�)

≥ 1
3
D1/2(Ax

0‖Ax
1),

where the last inequality follows from (31).

When Ax
0(a�) < Ax

1(a�) In this case, we consider the following predictor. First,
we sample the uniform random bit σ. Second,

– If Ax(y, σ) = a�, then C outputs σ ⊕ 1;
– If Ax(y, σ) �= a�, then C outputs ⊥.

For this predictor, we have

Pr
y∼H

(
C(y) �= ⊥)

= Pr
y∼H

(
Ax(y, σ) = a�

)

= Ax
1(a�)

and

Pr
y∼H

(
C(y) = f(y)

)
= Pr

y∼H

(
σ = f(y) ⊕ 1, Ax(y, σ) = a�

)

= Pr
y∼H

(
Ax(y, σ) = a�

) − Pr
y∼H

(
σ = f(y), Ax(y, σ) = a�

)

= Ax
1(a�) − 1

2
Pr

y∼H

(
Ax(y, σ) = a�|σ = f(y)

)

= Ax
1(a�) − 1

2
Pr

y∼H

(
Ax(y, f(y)) = a�

)

= Ax
1(a�) − Ax

0(a�)
2

,
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which implies

Pr
y∼H

(
C(y) = f(y)

) − 1
2

Pr
y∼H

(
C(y) �= ⊥)

=
Ax

1(a�) − Ax
0(a�)

2
.

Thus, the CS advantage of C again satisfies

AdvCS
C,f |H =

(Ax
0(a�) − Ax

1(a�))2

Ax
1(a�)

≥ 1
3
D1/2(Ax

0‖Ax
1).

��

C Justification of Update Rule of Algorithm 1

Since we only discuss one iteration of the update, we omit the round number t.
For the convenience of notations, in this appendix, we assume that the outputs
of function f and circuits are ±1 or 0 with correspondence 0 ↔ +1, 1 ↔ −1,
and ⊥ ↔ 0.

Let us start with a review of the update rule of the standard boosting in our
terminology (e.g. see [35]). For given distribution P and circuit CP , the standard
boosting algorithm creates the updated distribution as

P̂γ(x) =
exp

( − γCP (x)f(x)
)

Z(γ)
(32)

for some γ ∈ R, where

Z(γ) =
∑

x

P (x) exp
( − γCP (x)f(x)

)

is the normalizer. The advantage of CP for x ∼ P can be written as

Pr
x∼P

(CP (x) = f(x)) − Pr
x∼P

(CP (x) = f(x) =
∑

x

P (x)CP (x)f(x),

where f(x) = −f(x). By denoting q+1 = Prx∼P (CP (x) = f(x)) and q−1 =
Prx∼P (CP (x) = f(x)), we can rewrite the normalizer Z(γ) as

Z(γ) = q+1e
−γ + q−1e

γ . (33)

Then, if we set γ∗ = 1
2 ln q+1

q−1
, then we have

dZ(γ)
dγ

∣∣∣∣
γ=γ∗

=
[ − q+1e

−γ + q−1e
γ
]∣∣∣∣

γ=γ∗
= 0.
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By noting these facts, we can compute the advantage of CP for x ∼ P̂γ as
∑

x

P̂γ(x)CP (x)f(x) =
1

Z(γ)

∑

x

P (x) exp
( − γCP (x)f(x)

)
CP (x)f(x)

= − 1
Z(γ)

dZ(γ)
dγ

.

Thus, if we set γ = γ∗ in the update rule, the advantage of CP for x ∼ P̂γ∗ is 0.
Let us denote Δ = q+1 − q−1. Then, we have

γ∗ =
1
2

ln(1 + Δ) − 1
2

ln(1 − Δ) � Δ

for small Δ. In fact, the approximate value Δ has been used in the update of
the standard boosting algorithm in the literature (e.g. [3,24]).

Next, let us consider the boosting with ⊥. We use the same notations as
above, and the update rule itself is also given by (32). However, note that CP

may also output 0 (corresponding to ⊥). Let q0 = Prx∼P (CP (x) = 0). Note that
the CS advantage of CP for x ∼ P can be written as

AdvCS
CP ,f |P =

(q+1 − q−1)2

1 − q0
.

The normalizer can be written as

Z(γ) =
∑

x

P (x) exp
( − γCP (x)f(x)

)

= q+1e
−γ + q−1e

γ + q0.

Thus, if we set γ∗ = 1
2 ln q+1

q−1
, then we again have

dZ(γ)
dγ

∣∣∣∣
γ=γ∗

=
[ − q+1e

−γ + q−1e
γ
]∣∣∣∣

γ=γ∗
= 0.

By denoting

α̂γ = Pr
x∼P̂γ

(CP (x) �= 0),

Δ̂γ = Pr
x∼P̂γ

(CP (x) = f(x)) − Pr
x∼P̂γ

(CP (x) = f(x)),

the CS advantage of CP for x ∼ P̂γ can be written as AdvCS
CP ,f |P̂γ

= Δ̂2
γ

α̂γ
. Note that

Δ̂γ =
∑

x

P̂γ(x)CP (x)f(x)

=
1

Z(γ)

∑

x

P (x) exp
( − γCP (x)f(x)

)
CP (x)f(x)

= − 1
Z(γ)

dZ(γ)
dγ

.
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Thus, if we set γ = γ∗ in the update rule, the CS advantage of CP for x ∼ P̂γ∗

satisfies AdvCS
CP ,f |P̂γ∗ = 0. By denoting α = 1 − q0 and Δ = q+1 − q−1, we have

γ∗ =
1
2

ln
(

1
2
(1 − q0) +

Δ

2

)
− 1

2
ln

(
1
2
(1 − q0) − Δ

2

)

=
1
2

ln
(

1 +
Δ

α

)
− 1

2
ln

(
1 − Δ

α

)

� Δ

α
.

for small Δ
α . Note that Δ

4α is the multiplicative weight used in Algorithm 1. Thus,
the update rule in Algorithm 1 can be regarded as an approximate version of
the rule such that the CS advantage of the current weak learner for the updated
distribution is zero.
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Abstract. We investigate the notion of bit-security for decisional cryp-
tographic properties, as originally proposed in (Micciancio & Walter,
Eurocrypt 2018), and its main variants and extensions, with the goal clar-
ifying the relation between different definitions, and facilitating their use.
Specific contributions of this paper include: (1) identifying the optimal
adversaries achieving the highest possible MW advantage, showing that
they are deterministic and have a very simple threshold structure; (2)
giving a simple proof that a competing definition proposed by (Watanabe
& Yasunaga, Asiacrypt 2021) is actually equivalent to the original MW
definition; and (3) developing tools for the use of the extended notion
of computational-statistical bit-security introduced in (Li, Micciancio,
Schultz & Sorrell, Crypto 2022), showing that it fully supports common
cryptographic proof techniques like hybrid arguments and probability
replacement theorems. On the technical side, our results are obtained by
introducing a new notion of “fuzzy” distinguisher (which we prove equiv-
alent to the “aborting” distinguishers of Micciancio and Walter), and a
tight connection between the MW advantage and the Le Cam metric, a
standard quantity used in statistics.

Keywords: Bit security · Computational security · Statistical
security · Le Cam distance

1 Introduction

The level of security provided by a cryptographic construction is customarily
measured in “bits”. The intuition is that breaking an application offering “n bits
of security” should have a cost1 comparable to mounting a key recovery attack
on an ideal cryptographic function with a key space of size 2n. Formalizing this
intuition is not entirely trivial, because cryptographic attacks often exhibit a
1 Various measures of cost have been considered, and the reader is referred to [2,

Appendix B] for a discussion. For simplicity, in this paper we identify the cost of an
attack with its running time.
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trade-off between the cost (e.g., the running time TA) of the attack, and its
success probability εA. For (verifiable) search problems, like forging digital sig-
natures, it is well established2 that bit security can be defined as the quantity
log2(TA/εA), minimized over all possible adversaries A. However, the situation
for decision problems (like indistinguishability of ciphertexts, zero knowledge,
pseudorandomness, etc.) is far less clear. We recall that in a decision game the
goal of the adversary is to distinguish between two distributions Xb for b ∈ {0, 1}.
So, a naive approach to measure security could be to mimic the definition for
search problems, and replace the quantity log2(TA/εA) with log2(TA/δA), where
δA = 2εA−1 is the advantage (over a random choice) of guessing the bit b. But it
is well known that this naive definition leads to paradoxical situations, where for
example [3] an algorithm G is deemed more secure (i.e., it is attributed a higher
level of bit security) as a pseudorandom generator than as a one-way function.
This is at odds with cryptographic intuition because pseudorandomness is a
stronger security requirement than one-wayness. (See [10] and references therein
for a detailed discussion of this and other problematic examples.)

During the last few years, several papers have investigated the problem of giv-
ing meaningful definitions of bit security [6,8,10,14,15], or using them to give a
tight security analysis of cryptographic primitives (e.g., see [1,8]). A satisfactory
definition of bit security for decision games was first proposed by Micciancio and
Walter in [10]. A key element of their definition is to consider attackers that may
output either a bit b ∈ {0, 1} (indicating a decision between X0 and X1) or a spe-
cial “don’t know” symbol ⊥. Interestingly, [10] shows that this simple extension
of traditional adversaries, together with an appropriate definition of advantage
(already used by [7] in a different context,) allows to resolve all the previously
mentioned paradoxes, and argues (by means of examples) that this is the right
definition of bit security.3 Since then, a number of alternative definitions have
appeared [6,8,14,15], with various motivations. Watanabe and Yasunaga [14]
proposed a competing framework to define bit security that directly admits what
they call an “operational interpretation”, and later argued [15] that it is actually
equivalent to the original MW definition [10]. A seemingly attractive feature of
their definition is that it only requires standard (non-aborting) adversaries with
output in {0, 1}. A variant of their definition that (similarly to [10]) interpolates
between search and decision problems is given in [6]. In a different and orthog-
onal direction, Li, Micciancio, Schultz and Sorrell [8] extend the MW definition
to encompass both computational and statistical security. Informally, statisti-

2 This is justified by the fact that one can repeat the attack O(1/ε) times to make the
success probability arbitrarily close to 1.

3 This is at least for search (key recovery) and decision problems. The work [10] also
proposes a more general definition based on information theory that interpolates
between search and decision problems (e.g., encompassing password recovery prob-
lems with a polynomially large set of secrets,) but the corresponding notion of bit
security for intermediate cases is largely unexplored. In this paper, we focus on the
special case of decision problems which is the most relevant to cryptography. For
search problems, the general bit-security definition of [10] reduces to log2 TA/εA,
which is standard, and is adopted in this paper too.
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cal security provides a strong measure of security even against computationally
unbounded adversaries. When achievable, statistical security has the advantage
of being easier to anaylze, and not requiring any computational assumptions.
In practice, when setting parameters and optimizing efficiency, it is common to
require lower levels of statistical bit security s, than computational bit secu-
rity c. For example, s = 80 is usually considered more than acceptable, while
computational security typically requires c ≥ 128 or even higher values to antic-
ipate possible improvements in the computational complexity of attacks. Li at
al. [8] define (c, s)-security as satisfied by a protocol that provides either c bits
of computational security, or s bits of statistical security against any possible
attack. We remark that a protocol can admit both attacks with running time
much less than 2c (as long as their advantage is less than 2−s) and (different)
attacks achieving advantage very close to 1 (as long as their running time is
higher than 2c). In other words, a (c, s)-secure protocol can achieve neither c-
bits of computational security nor s-bits of statistical security. Still, morally, it
provides an acceptable level of security wherever s-bit statistical security and c-
bit computational security are considered individually adequate. The advantage
of (c, s)-security is that it allows to seamlessly combine statistical and compu-
tational cryptographic primitives (something very common in practice) and still
be able to formally quantify the security level of an application. However, the
notion of (c, s)-security has not been further explored, and, despite its potential
usefulness, it has seen little adoption due to the lack of tools to simplify its usage.

Our Contributions and Techniques. In this work, we examine the bit security def-
initions of [8,10,14], proving structural results about optimal (statistical) adver-
saries, clarifying the relation between the MW and WY bit security definitions,
and then applying these results to the recent notion of (c, s)-bit security. Our
main contributions, described in more details in the next subsections, can be
summarized as follows:

– We characterize the MW adversaries achieving the optimal (statistical) bit-
security advantage. Specifically, we show that these adversaries may be
assumed to be deterministic (Corollary 1) and have a simple “threshold” struc-
ture (Theorems 3).

– We show (Theorem 4) that the WY notion of bit security is equivalent to the
original MW bit security definition. In other words, the definition put forward
in [14] is not a new security notion, but a different formulation of MW bit-
security which, potentially, may be more convenient in some settings. We
remark that a proof of this equivalence was already given in [15], but, as
we are going to describe, that proof contained a gap. We clarify the relation
between the two definitions by filling the gap and also giving a simpler proof
of the equivalence.

– Despite the fact that the WY definition only uses traditional (non-aborting)
adversaries, we show (Theorem 5) that the natural “maximum likelihood”
distinguisher can offshoot the correct bit security level by a large margin. So,
the advantages of using standard (non-aborting) adversaries in the character-
ization of bit security put forward in [14] are unclear.
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– We show that common proof techniques widely used in the analysis of cryp-
tographic protocols can be extended to work with the more general notion of
computational-statistical security from [8]. Specifically, we show that (c, s)-
security fully supports the use of hybrid arguments (Theorem 6) and proba-
bility substitution (Theorem 7).

On the technical side, many of our results rely on a new class of adversaries
that further extends the MW (aborting) adversaries, and that may be of inde-
pendent interest. Specifically, we make use of adversaries (for decision games)
that may output not just 0, 1 (representing a high confidence decision) or ⊥
(representing no confidence), but an arbitrary value σ ∈ [−1, 1], with the sign
σ/|σ| ∈ {−1, 1} representing the decision, and the magnitude |σ| ∈ [0, 1] the
confidence level that can vary continuously from 0 (no confidence) to 1 (perfect
confidence). Interestingly, we show (Theorem 1) that these “fuzzy” adversaries
still define precisely the same notion of bit security as the original MW “abort-
ing” adversaries. The robustness of the notion of bit security with respect to
such extensions further supports the use of [10] as the standard notion of bit
security. Still, our equivalent definition using fuzzy adversaries with output in
the continuous interval [−1, 1] supports the use of analytical techniques, and it
is useful to prove some of the results in this paper. We believe that the charac-
terization of bit security in terms of these more general fuzzy adversaries may
find other applications, and is of independent interest.

Related Work. As mentioned, our work directly builds on the bit security frame-
works of [10,14], so is directly related to these works. Our work is also tan-
gentially related to the bit security framework of [6], though this work mostly
focuses on generalizing (a variant of) the framework of [14] to non-decision
games, whereas we focus on decision games. Our work on the optimal adver-
sary for the MW advantage is additionally related to the notion of (binary)
hypothesis testing with an aborting option, see for example [4], though the mea-
sure optimized in that work does not appear to be related to the MW advantage.
The similarity between our work and binary hypothesis testing with a rejection
option is perhaps more obvious from [5, Section 4], where (in a slightly differ-
ent setting) optimality of threshold distinguishers was also highlighted. Still in
relation to hypothesis testing, we discuss the implications of [11] to the WY
formulation of bit security.

Paper Organization. The rest of this paper is organized as follows. In the rest of
this section we give a more detailed, still informal, description of our results and
techniques. Section 2 defines the notation and preliminary results used in this
paper. In Sect. 3 we formally define fuzzy adversaries, establish their equivalence
(in both the computational and statistical setting) with the aborting adver-
saries of [10], and then use them to investigate the structure of the (statistical)
MW adversaries achieving the optimal advantage. In Sect. 4, we explore the WY
bit security definition and its equivalence with the MW bit security. Finally,
in Sect. 5, we build our toolbox for the use of (c, s)-security in the analysis of
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cryptographic protocols, establishing the validity of hybrid arguments and prob-
ability replacement theorems. Section 6 concludes with some final remarks and
open problems.

1.1 The Micciancio-Walter Advantage

Consider the problem of distinguishing between two distributions X = (X0,X1)
over a set Ω. (Everything applies more generally to the case of more complex
decision games where an adversary interacts with one of two oracles.) Micciancio
and Walter (following [7]) define the advantage of an “aborting” adversary A :
Ω → {0, 1,⊥} as

advMW
X (A) =

(βA − β̄A)2

βA + β̄A
, (1)

where βA = Pr[A(xb) = b] and β̄A = Pr[A(xb) = 1 − b] are the probability that
A outputs the correct or incorrect bit, respectively, when b ∈ {0, 1} is chosen at
random and xb ← Xb. For traditional (non-aborting) adversaries with output in
{0, 1}, we have β + β̄ = 1, and it is well known (and quite intuitive) that the
best advantage is achieved by an adversary A(x) that on input a sample x ∈ Ω,
outputs the bit b ∈ {0, 1} for which Pr[Xb = x] is highest. Moreover, the resulting
optimal advantage equals precisely the square ΔSD(X0,X1)2 of the statistical
distance between the two distributions. This allows to easily compute the bit
security of X whenever the probability distributions are efficiently computable.
This is a common scenario in cryptography, where, for example X0 may be an
ideal probability distribution used in the theoretical analysis of a cryptographic
scheme (e.g., a discrete gaussian distribution in lattice-based cryptography) and
X1 is an approximate (more efficiently samplable) version of X0 used when
implementing the algorithm in practice (e.g. using floating point numbers). In
fact, this was precisely the motivation in [9,10].

However, once the adversary is allowed to output ⊥, it is no longer clear
how to determine an optimal adversarial strategy, even when the probability
distributions X0,X1 are efficiently computable. For example, while intuitively it
is clear that the adversary A(x) should output ⊥ (and express low confidence)
when the probabilities p0 = Pr{X0 = x} and p1 = Pr{X1 = x} are very close
to each other, it is unclear how close is “very close” or even how to measure
closeness, e.g., by |p0 −p1|, p0/p1, or some other function (of x) that depends on
the global properties of X0 and X1. One of our main goals is to characterize the
optimal aborting adversarial strategies, both to improve our understanding of
the MW bit security definition, and offer a simple tool for the computation of the
bit-security distance between specific distributions that may occur in practice.

To this end, we first show that one can equivalently phrase the study of
aborting adversaries in terms of the class of fuzzy adversaries A≈ := {Ã | Ã :
Ω → [−1, 1]}. These adversaries’ output y = A(x) represents not only a guess of
which distribution they are given (via y/|y| ∈ {±1}), but also a confidence level
|y| ∈ [0, 1]. One then measures the advantage of fuzzy adversaries with a “contin-
uous” analogue of (refeq:aborting-advantage) (Definition 6), which we write as
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advMW,≈
X (Ã). We prove equivalence (Theorem 10) by giving efficient, advantage-

preserving transformations between the two classes of adversaries. This shows
that, when maximized over the set of all possible adversaries, advMW(A) and
advMW,≈(A) are equivalent. Moreover, since the transformations between fuzzy
and aborting adversaries used in our proofs also preserve the adversary’s running
time, they also establish the equivalence between the corresponding notions of
computational (and, looking forward, computational-statistical) bit security.

We then prove a number of useful properties for aborting and fuzzy adver-
saries. For example, we show that the MW advantage is a convex function of
randomized aborting adversary. As a simple corollary, we derive that the opti-
mal advantage is always achieved by a deterministic aborting adversary (Corol-
lary 1), obtained by fixing the randomness of the probabilistic adversary. This
fact, while intuitively obvious4 and often considered a folk theorem, is not gener-
ally true, and we give an explicit counterexample demonstrating how it can fail.
(See Lemma 12.)

Next we dig deeper into the structure of the optimal fuzzy adversary
when probabilities are efficiently computable (or adversaries are computation-
ally unbounded.) We already established that optimal fuzzy adversaries may
be assumed to always declare (for any given input) either full confidence or
no confidence at all in their decision. Here we characterize when optimal fuzzy
adversaries have full confidence, i.e., output ±1 instead of 0. Specifically, we show
that the optimal adversary must have confidence 0 precisely when the quantity
|log Pr{X0 = x}/Pr{X1 = x}| is below a certain threshold τ ∈ [0, log 3], which is
a simple function of the adversary’s conditional success probability (Theorem 3).

1.2 Watanabe-Yasunaga Bit Security

We next investigate the optimal adversary for Watanabe-Yasunaga Bit Security.
On the technical side, our work here is less novel, as information theorists had
alrady identified [11] a natural choice of adversaries that fit our purposes. Before
discussing the precise results, we briefly provide some background. Watanabe-
Yasunaga Bit security (as originally defined in [14]) is specified in terms of an
“inner” adversary A that on input a sample x ← Xb, outputs either 0 or 1. This
adversary is run n times y1 = A(x1), . . . , yn = A(xn) on independent samples
xi ← Xb all chosen from the same unknown distribution. The number of samples
n is chosen large enough so that the value of the bit b can be determined with
very high probability μ ≈ 1 (say, μ ≥ 0.99) based on the output values y1, . . . , yn.
So, the total running time is given by n · TA, and [14] defines the bit security to
be log2(n ·TA), minimized over all inner adversaries A and number of repetitions
n such that μ ≥ 0.99. They also show that this quantity can be equivalently
estimated as log(TA/R1/2(A0, A1)) where R1/2 is the Renyi divergence of order
1/2, and Ab = A(Xb) ∈ {0, 1} is the Bernoulli random variable defined by the
output of the adversary on input a sample from Xb.

4 We believe that this is the case because we tend to give convexity for granted.
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At this point, it is natural to ask:

– What is the relation between the MW and WY bit security?
– What is the optimal adversary A(x) ∈ {0, 1} for the WY definition?

Notice that since the WY adversaries always output either 0 or 1, they are
potentially easier to use, as the attacker does not have to choose whether or not
to abort.

Regarding the first question, [14] proves only the inequality5 MW ≤ WY ,
showing that WY is a more conservative notion of bit security, and leaving a more
precise comparison as an open problem. In a follow-up paper [15] the same authors
claimed the equivalence between MW and WY (up to an additive constant), but
with a catch. Technically, they prove the equivalence between MW and WY bit
security for the same class of aborting adversaries (with output in {0, 1,⊥}) intro-
duced in [10]. Then, they claim equivalence with the original WY definition by
informally stating that the definition in [14] does not explicitly depend on the
size of the co-domain6 of the adversary A. However, the justification is incorrect
because the Renyi divergence R1/2(A(X0), A(X1)) implicitly depends on the size
of the co-domain of A. Despite this gap in the proof, we show that the main claim
of [15] (about the equivalence of MW and WY bit security) is correct, and in the
process we give a simpler and tighter proof of this fact. (Theorem 4.)

So, at this point, the WY notion of bit security can be considered an alter-
native characterization of the MW bit security, rather than a new definition,
and the question is whether this alternative characterization can help in eval-
uating the bit security of decision problems. One seemingly attractive feature
of the WY is that it uses standard adversaries A(x) which always output 0, 1.
This is because for these adversaries there is a particularly natural attack, that
on input a sample x outputs the bit b for which the probability Pr[Xb = x] is
highest. However, this does not seem to help in evaluating the bit security using
the WY characterization: we show (Theorem 5) that there exist distinguishing
games where this natural adversarial strategy yields bit security estimates that
are far from optimal.7

1.3 Computational/Statistical Bit Security

Finally, we investigate the definition of (c, s)-bit security proposed in [8], to
extend MW bit security to encompass both computational and statistical secu-
rity. Recall that the MW (computational) bit security of a problem is the largest
c such that T (A)/advMW

X (A) ≥ 2c for all adversaries A. Similarly, statistical secu-
rity can be defined as the largest s such that 1/advMW

X (A) ≥ 2s for all adversaries
5 Here and elsewhere we use MW and WY as a shorthand for the number of bits of

security as computed according to the respective definitions.
6 By co-domain we mean the set of possible outputs of the adversary, i.e., |{0, 1}| = 2

for traditional distinguishers and |{0, 1, ⊥}| for aborting adversaries.
7 Specifically, the estimates are twice as high as the optimal, correct value. Recall that

bit security (roughly) measures the exponent of the running time of the adversary.
So, a multiplicative factor in bit security estimation is quite large.
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A, where this time the running time of A is ignored. Li et al. [8] define a protocol
to be (c, s)-secure if for any adversary A

either
T (A)

advMW
X (A)

≥ 2c or
1

advMW
X (A)

≥ 2s.

As explained in the introduction, a protocol satisfying this definition seems to
provide an adequate level of security whenever computational security and sta-
tistical security are considered individually acceptable. Here we point out that
a protocol can offer neither c bits of computational security nor s bits of sta-
tistical security, and still be (c, s)-secure. Consider for example a protocol such
that there exist a very efficient adversary Ac with running time T (Ac) = 1 that
achieves MW advantage 2−s, and some other adversary As with very large run-
ning time T (As) ≥ 2c that achieves MW advantage ≈ 1. Then, the protocol
is neither computationally nor statistically secure because Ac breaks computa-
tional security (for s < c), and As breaks statistical security. So, (c, s)-security
is strictly weaker than both c-bits computational security, and s-bits of statis-
tical security. In fact, one should expect this to be the case in any application
that makes use of both computational and statistical security primitives, as an
adversary can choose to attack the application by trying to break either one or
the other type of primitives.

While (c, s)-bit security was introduced in [8] (and successfully used to ana-
lyze a practical protocol), this was done via direct manipulation of the defini-
tion. In this paper we establish a tight connection between the MW advantage
advMW

X (A) and a standard distance measure used in statistics: the (squared) Le
Cam distance Δ2

LC(A(X0), A(X1)) between the adversary’s output probability
distributions. Then, we use this connection to prove several useful properties of
the (c, s)-bit security which support two of the most common proof techniques
in cryptography:

– The “hybrid argument” (see Theorem 6 for the formal statement): consider
a sequence of distributions X0, . . . , Xk. If the game defined by any pair of
neighboring distributions (Xi−1,Xi) is (c, s)-secure, then the game defined
by the extremal distributions (X0,Xk) is also (c′, s′)-secure, for c′ ≈ c− log k
and s′ ≈ s − log k.

– The “distribution replacement” theorem (see Theorem 7 for the formal state-
ment): Consider a decision game (XY

0 ,XY
1 ) parameterized by a distribution

Y . If distinguishing between (Y, Y ′) is (c, s)-secure, and (XY
0 ,XY

1 ) is (c, s)-
secure, then (XY ′

0 ,XY ′
1 ) is also (c′, s′)-secure, for c′ ≈ c and s′ ≈ s.

Our results improve or extend previous work. For example, [10] had already
proved a hybrid theorem for computational bit security, and hybrid theo-
rems for statistical bit security are essentially a form of (pythagorean) triangle
inequality for the associated distance functions between distributions. The nov-
elty here is to establish the validity of hybrid arguments in the more general
computational-statistical setting, where each pair of neighboring distributions
(Xi−1,Xi) may be neither computationally nor statistically indistinguishable.
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Distribution replacement theorems for bit security were previously proved in
[10,16], but only for the setting where (XY

0 ,XY
1 ) are computationally close and

(Y, Y ′) are statistically close (either in the max-log or Hellinger distance.) Our
theorem allows both (XY

0 ,XY
1 ) and (Y, Y ′) to be close in the much weaker sense

of computational-statistical bit security.
Both types of techniques are cornerstones for the modular analysis of com-

plex cryptographic protocols that combine several cryptographic primitives. Our
results support the uniform use of computational-statistical bit-security to ana-
lyze both the final application and its building blocks, including neighboring
hybrids (Xi−1,Xi) and probability replacements (Y, Y ′). Moreover, they sup-
port the seamless combination of computational and statistical security primi-
tives, while at the same time offering tight security estimates, which, before our
work, could only be done either informally or using ad-hoc methods. The connec-
tion with the Le Cam metric, which underlies our proofs, is also of independent
interest, and may find other applications.

2 Preliminaries

We will make use of the following variant of the Cauchy-Schwarz inequality.

Lemma 1 (Bergström’s Inequality). For any real numbers a1, . . . , an, and
positive reals b1, . . . , bn, we have that

(
∑

i∈[n] ai)2
∑

i∈[n] bi
≤

∑

i∈[n]

a2
i

bi
.

Proof. Rearrange the Cauchy-Schwarz inequality to 〈c,d〉2
‖c‖2

2
≤ ‖d‖22 and let ci =√

bi, di = ai/
√

bi.

2.1 Distances Between Distributions

We use several similarity measures between (discrete) probability distributions
X0,X1. Below we write Xb(x) as a shorthand for Pr{Xb = x}.

– Statistical Distance: ΔSD(X0,X1) = 1
2

∑
x |X0[x] − X1[x]|,

– (Squared) Hellinger Distance: Δ2
H(X0,X1) = 1

2

∑
x(

√
X0[x] −

√
X1[x])2

– (Squared) Le Cam Distance: Δ2
LC(X0,X1) = 1

2

∑
x

(X0[x]−X1[x])
2

X0[x]+X1[x]

– Renyi Divergence of order 1/2: Δ1/2(X0,X1) = −2 ln
∑

x

√
X0[x]X1[x]

It is well known that ΔSD, ΔH and ΔLC are distance functions, i.e., they
satisfy the triangle inequality. They are also closely related as follows.

Lemma 2. ([12, Section 7].). For any two distributions X0,X1 we have

Δ2
H(X0,X1) ≤ ΔSD(X0,X1) ≤

√
2ΔH(X0,X1)

ΔH(X0,X1) ≤ ΔLC(X0,X1) ≤
√
2ΔH(X0,X1).
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In other words, ΔH and ΔLC are equivalent (up to a constant factor), while ΔSD

is polynomially related to them. As for the divergence Δ1/2, it easily follows from
the definitions that it can be expressed as a monotonically increasing function
of the Hellinger distance:

Δ1/2(X0,X1) = 2 ln
1

1 − Δ2
H(X0,X1)

.

Lemma 3. For any two distributions X0,X1 such that Δ1/2(X0,X1) < ∞, we
have

Δ2
H(X0,X1) ≤ 1

2
Δ1/2(X0,X1) ≤ Δ2

H(X0,X1)
1 − Δ2

H(X0,X1)
.

In particular, if Δ2
H(X0,X1) ≤ 1/2, then Δ2

H(X0,X1) ≤ 1
2Δ1/2(X0,X1) ≤

2Δ2
H(X0,X1).

Proof. Easily follows from the bounds 1 − (1/t) ≤ ln t ≤ t − 1 and relation
Δ1/2(X0,X1) = −2 ln(1 − Δ2

H(X0,X1)). See [15] for details.

2.2 Cryptographic Games

Cryptographic games are defined by one or more randomized, stateful programs
� used by an adversary A to carry out an attack A�. When running A�, the
adversary only has black-box access to �, which is used as an oracle. There are
two main categories of cryptographic games. In a search game, the final output of
A� is determined by � and indicates if the attack was successful. A decision game
� = (�0, �1) is a pair of oracles with identical interfaces, so that an adversary A
may interact with either of them A�0 , A�1 . This time it is A that produces an
output at the end of the interaction. We refer to the set of all possible outputs
of A as the co-domain of the adversary, and classify adversaries based on their
co-domain. We consider three main classes of adversaries: traditional adversaries
A ∈ A0,1 with co-domain {0, 1}, aborting adversaries A ∈ A⊥ with co-domain
{0, 1,⊥}, and fuzzy adversaries A ∈ A≈ with co-domain [−1, 1]. The goal of the
adversary is to determine if it is interacting with either �0 or �1. A’s advantage
in distinguishing between �0 and �1 is defined later on. We write A(�b) for the
random variable describing the final output of A at the end of the interaction,
and A(�) as an abbreviation for the pair of output distributions (A(�0), A(�1))
over the co-domain of A. We remark that the output distribution A(�b) is defined
over the internal randomness of both A and �b. We write A(�b; r) when we want
to make the randomness of A explicit.

In the simplest, prototypical example � = (�0, �1) is a pair of probability
distributions over a common set Ω. The only interaction between A and �b

is to receive a single sample x ← �b from Ω, upon which A(x) produces its
final output. In other words, the adversary A is just a (possibly randomized)
algorithm with input in Ω. For simplicity, the reader may keep this simple case
in mind throughout the paper, instead of arbitraty games. In any case, once a
game � and adversary A have been chosen, the output A(�) = (A(�0), A(�1))
is always a pair of probability distributions.
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Cryptographic protocols can be parameterized by other cryptographic prim-
itives or distributions used as building blocks. So, for example, we may write PY

for a cryptographic program that uses a probability distribution Y , and PY ′
for

the same program run with a different distribution Y ′. Similarly, security games
(�Y

0 , �Y
1 ) can be parameterized by Y .

We remark that the running time of an adversary A against a game � does
not include the time required to run � in the interaction A(�). In other words,
we only account for the time taken by A to write its oracle queries and read the
answers. We consider adversaries running in strict (e.g. polynomial) time, i.e.,
we assume that the running time of A in a run A(�b) does not depend on how �b

answers the oracle queries. In particular, A has the same running time in A(�0)
and A(�1). The running time of an adversary A is denoted by TA or T (A).

In some settings it is useful to define also a notion of running time for the
game �. However, it should be clear that the (total) running time of � in an
execution A(�) typically depends on the adversary A.8 The time taken to run �

in an execution A(�) is denoted TA
�

. Then, we can define the running time of a
game � relative to the running time of A as follows.

Definition 1. The (relative) running time of � is defined as the maximum

T� = sup
A

TA
�

TA

over all possible adversaries A.

For decision games (�0, �1) we always assume that �0 and �1 have the same
running time. Using this definition, the total running time to run A(�) (including
both the time for A and for �) can be bounded as

TA(�) = TA + TA
� ≤ TA · (1 + T�) .

In the asymptotic setting both the game �κ = (�κ,0, �κ,1) and adversary Aκ

are parametrized by a security parameter κ, and all quantities (e.g., Aκ’s advan-
tage in winning a decision game, its running time TAκ

, etc.) become functions
of κ. Notice that Aκ may depend arbitrarily on κ, i.e., we consider non-uniform
adversaries. Technically, A(κ, τκ) is an algorithm that takes as input the security
parameter κ and an advice string τκ that depends on the security parameter.
However, we will make only very limited use of non-uniformity: in most of our
results τκ is a very short (typically constant size, independently of κ) string. So,
the non-uniformity can be easily eliminated by running A(κ, τ) on all possible
value of τ , estimating A’s advantage, and then picking the best value of τ to
carry out the attack.

8 This is most obvious when � is a game where A may issue an arbitrary number of
calls to the game oracles.
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2.3 Bit Security

Consider an adversary A against a decision game � = (�0, �1), where A(�b) may
output 0, 1 or some other values. Throughout the paper we will use the following
definitions and notation:

(success probability) βA = Pr[A(�b) = b]
(failure probability) β̄A = Pr[A(�b) = 1 − b]
(output probability) αA = βA + β̄A

(distinguishing gap) δA = βA − β̄A

where all probabilities are computed over the random choice of b ← {0, 1}, and
the randomness of �b and A. Notice that αA equals the probability that the
output of A is in {0, 1}. So, for standard adversaries A ∈ A0,1 that always
output a bit A(�b) ∈ {0, 1}, we have αA = 1 and δA = 2βA − 1 = Pr{A(�1) =
1}−Pr{A(�0) = 1}. But we will use the definition of βA, β̄A, αA and δA also for
unrestricted adversaries that may output values outside of {0, 1}. It is well-known
that, in the case of probability distributions X = (X0,X1), the highest possible
distinguishing gap equals the statistical distance ΔSD(X0,X1) = maxA∈A0,1 δA

and it is achieved by a very simple adversary

AX
SD(x) =

{
0 if Pr[X0 = x] > Pr[X1 = x]
1 if Pr[X0 = x] < Pr[X1 = x] (2)

(When Pr[X0 = x] = Pr[X1 = x], the output of A can be chosen arbitrarily
without affecting the gap δ.) This is easily generalized to arbitrary decision
games � = (�0, �1), where

ΔSD(�0, �1) = max
A∈A0,1

δA. (3)

Since δA = βA−β̄A is the difference between two probabilities, and the maximum
over all A is non-negative, we always have ΔSD(�0, �1) ∈ [0, 1].

The MW Bit Security Measure. Micciancio and Walter [10] suggested to
use a more general class of adversaries A⊥, which output either 0, 1, or a special
“don’t know” symbol ⊥, and demonstrated that these adversaries, together with
an appropriate notion of advantage, allow to resolve several theoretical paradoxes
related to the definition of a cryptographically meaningful notion of “bit security”.
(The reader is referred to [10] for intuition and justification of this definition.)

Definition 2 (MW Advantage). For any (possibly randomized) MW distin-
guisher A ∈ A⊥ and decision game � = (�0, �1), the advantage of A is9

advMW
� (A) =

δ2A
αA

=
(βA − β̄A)2

βA + β̄A

9 This is syntactically different, but perfectly equivalent to the definition given in [10],
which defines the advantage as αA · (2β∗

A − 1)2, where β∗
A = βA/αA.
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The (squared) MW distance between two distributions is

Δ2
MW(�0, �1) = sup

A∈A⊥
advMW

� (A) ∈ [0, 1]. (4)

If we restrict our attention to “non-aborting” adversaries A ∈ A0,1, we have
αA = 1, and advMW

� (A) = δ2A is the square of the distinguishing gap. This
immediately gives the following inequality.

Lemma 4. For any decision game � = (�0, �1), we have

ΔSD(�0, �1) ≤ ΔMW(�0, �1).

Proof. Using (3) and the definition of ΔMW, we get

ΔSD(�0, �1) = sup
A∈A0,1

δA = sup
A∈A0,1

√

advMW
� (A) ≤ ΔMW(�0, �1)

where the inequality follows from taking the supremum over a larger set A ∈ A⊥.

It is also easy to see that the MW distance satisfies the data processing
inequality.

Lemma 5 (Data-Processing Inequality). For any decision game � =
(�0, �1) and game transformation10 Γ , we have that

ΔMW(Γ (�0), Γ (�1)) ≤ ΔMW(�0, �1).

Proof. For any aborting adversary A, define AΓ (�b) := A(Γ (�b)). It is straight-
forward to see that

Δ2
MW(Γ (�0), Γ (�1)) = sup

AΓ

advMW
� (AΓ ) ≤ sup

A
advMW

� (A) = Δ2
MW(�0, �1).

We will use the following construction from [10] to transform an aborting
adversary A ∈ A⊥ to one with only two possible output values. For any adversary
A ∈ A⊥, decision game � = (�0, �1), and value z ∈ {0, 1,⊥}, let b̂ = A

A(�)
SD (z) ∈

{0, 1} be the bit such that Pr{A(�b̂) = z} is highest. (This bit can be given as a
non-uniform advice, or estimated probabilistically by repeatedly running A(�b̂)
for b̂ ∈ {0, 1} with independent randomness.) Given b̂, let

Az(�b) = if (A(�b) = z) then b̂ else ⊥ (5)

be the modified adversary that first runs z′ ← A(�b), and then outputs b̂ if
z′ = z or ⊥ otherwise. Notice that Az differs from A just by a relabeling of its
output. So, it has the same running time T (Az) = T (A).

Lemma 6 ([10, Lemma 1]). For any pair decision game � = (�0, �1), aborting
adversary A ∈ A⊥, and value z ∈ {0, 1,⊥}, the modified adversary Az in (5)
has advantage

advMW
� (Az) =

(Pr{A(�0) = z} − Pr{A(�1) = z})2
2(Pr{A(�0) = z} + Pr{A(�1) = z}) .

10 A transformation is simply a game Γ (�b) with oracle access to �b. Applying Γ to a
game � defines a new game (Γ (�0), Γ (�1)).



Bit Security: Optimal Adversaries, Equivalence Results and a Toolbox 237

The WY Bit Security Measure. In [14], an alternative bit security measure
was introduced. The definition is parameterized by a “high enough” probability
threshold μ ≈ 1, but it can be shown that the precise value of μ has only a
marginal impact on the definition. An equivalent quantity (without the param-
eter μ) is also defined in terms of the Renyi divergence of order 1/2.

Definition 3. Let � = (�0, �1) be a decision game, μ ∈ [0, 1], and εA,Bk
:=

Prb[Bk(A(�b)k) = b], where A ∈ A0,1, k ∈ N, Bk : {0, 1}k → {0, 1}, and Xk

is the product distribution over {0, 1}k of k independent copies of X = A(�b).
Define

WYμ
�
(A) = min

k
min
Bk

{log2(k · TA) | εA,Bk
≥ 1 − μ}, WYμ

�
:= min

A∈A0,1
WYμ

�
(A).

(6)

WY�(A) := log2 T (A) + log2

⌈
1

Δ1/2(A(�0), A(�1))

⌉
, WY� := min

A∈A0,1
WY�(A).

(7)

We say that two bit security measures are equivalent if they differ by an
additive constant factor. While not highlighted as a formal statement, [14] shows
that all these measures are essentially equivalent.

Lemma 7 ([14, implicit]). For any distinguishing game � := (�0, �1), for any
constants μ ≤ μ′, one has that

∣
∣
∣WYμ

�
− WYμ′

�

∣
∣
∣ ≤ O(1). (8)

|WY� − WYμ
�
| ≤ O(1), (9)

Proof. The (stronger) bound

∀A ∈ A0,1 :
∣
∣
∣WYμ

�
(A) − WYμ′

�
(A)

∣
∣
∣ ≤ ln(ln(

1
4μ2

)) ≤ O(1) (10)

follows from simple algebraic manipulations of [14, Lemmas 4 and 6], which
bound the minimum k in (6) via

ln( 1
4μ )

Δ1/2(A(�0), A(�1))
≤ k ≤

⌈
ln( 1

4μ2 )

Δ1/2(A(�0), A(�1))

⌉

. (11)

Multiplying by TA and taking logarithms yields nearly matching upper and lower
bounds on WYμ

�
, which suffice to establish (10). One then gets the claimed result

by minimizing (10) over A.

Equivalence with the MW bit security is proved in [15], but technically only
for aborting adversaries, which we denote WY⊥

� = minA∈A⊥ WY�(A).

Lemma 8 ([15, Theorems 1 and 2]). For any distinguishing game � :=
(�0, �1), ∣

∣
∣WY⊥

� − MW�

∣
∣
∣ ≤ O(1).
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Note that the measure WY⊥
� is not a priori equal to WY�, as minimizing

over a larger set A⊥ may produce smaller values. So, Lemma 8 does not imply
that WY� and MW� are equivalent. Still, this is true, as we will show in Sect. 4.

Computational/Statistical Bit Security. Sometimes, in cryptography, one
can achieve a strong notion of security, where no adversary can break a cryp-
tographic function with high probability, regardless of the computational cost
incurred by the attack. In the MW bit-security framework, the number of bits
of statistical security of a decision game � can be defined as follows.

Definition 4. A distinguishing game � = (�0, �1) has s bits of statistical secu-
rity if for every adversary A, advMW

� (A) ≤ 2−s.

Contrast this with the definition of (computational) bit-security, where the
requirement is that advMW

� (A) ≤ T (A) · 2−c. It immediately follows from the
definition that any problem achieving s bits of statistical security, also offers s
bits of computational security. So, statistical bit-security is a strengthening of
computational bit-security. In particular, when combining computational and
statistical primitives within a single protocols, one can treat all of them has
achieving a given number c = s of computational security bits. However, this
is often undesirable in practice because one typically wants to use a higher
value of c than for s. In order to combine computational and statistical bit-
security analysis in an efficient manner, [8] proposes the following notion of
computational-statistical bit-security.

Definition 5 ([8]). A distinguishing game � is said to have (c, s)-bits of security
if for any adversary A ∈ A⊥,

advMW
� (A) ≤ max(T (A)2−c, 2−s),

i.e., either c ≤ log2
T (A)

advMW
�

(A)
, or s ≤ log2

1
advMW

�
(A)

.

The notions of computational and statistical security corresponds to the fol-
lowing special cases of (c, s)-security:

– A problem has c bits of computational security iff it is (c,∞)-bit secure
– A problem has s bits of computational security iff if is (∞, s)-bit secure.

Since any problem offering s bits of statistical security also offers s bits of
computational security, (c, s)-bit security is equivalent to (max(c, s), s)-bit secu-
rity. In other words, one can always assume c ≥ s. In particular, computational
security can be equivalently formulated as (c, c)-bit security, rather than (c,∞).
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(c, s)-security is easily defined for search problems as well: A search game �

has (c, s)-bits of security if any adversary A has success probability11 Pr{A(�)}
at most max(T (A)2−c, 2−s).

3 Structure and Properties of Optimal MW Adversaries

In this section we characterize the MW adversaries achieving optimal advantage,
and prove some useful properties about them. This is done by introducing an
alternative, more general, class of adversaries (which we call “fuzzy” adversaries,)
that still achieves the same optimal advantage (and bit security) of standard
MW adversaries. We use the added flexibility provided by fuzzy adversaries to
investigate optimal adversarial strategies.

MW adversaries are generalized as follows. Recall that the output of an MW
distinguisher is either a bit b ∈ {0, 1}, representing a high confidence decision
between the two distributions, or a special symbol ⊥ expressing no confidence.
We generalize this to distinguishers for which the output confidence level can
vary continuously from 0 (no confidence) to 1 (high confidence). For this type
of distinguishers, it is convenient to map the two values b ∈ {0, 1} to a sign

b̃ = (−1)b = (1 − 2b) = ±1 (12)

so that the output of A can be described by a single number σ ∈ [−1, 1], with
sign(σ) = σ/|σ| = b̃ ∈ {±1} representing the decision bit and |σ| ∈ [0, 1] the
confidence level.12 We also set ⊥̃ = 0, so that any MW distinguisher A with
output A(�b) = y ∈ {0, 1,⊥} can be represented by a fuzzy one Ã with output
Ã(�b) = ỹ ∈ {1,−1, 0} ⊂ [−1, 1]. Notice that this transformation preserves the
cost of the adversary T (Ã) = T (A) as the only difference between the two is the
symbol used to encode the final output. We write Ã⊥ = {Ã | A ∈ A⊥} for the
set of aborting adversaries with this alternative output representation.

Definition 6 (Fuzzy Distinguisher). A fuzzy distinguisher for a decision
game � = (�0, �1) is a (possibly randomized) adversary A with output in [−1, 1].
The advantage and bit-security of A in the game � are advMW

� (A) = δ̃2
A

α̃A
and

MW�(A) = log2(T (A)/advMW
� (A)) where

δ̃A = Eb[b̃ · A(�b)] and α̃A := Eb [|A(�b)|]
are the correlation (between the correct result and the output of A) and expected
confidence of A. The set of all possible fuzzy distinguishers is denoted A≈.

Note that Ã⊥ ⊂ A≈, so we can view aborting adversaries as a special case of
fuzzy adversaries. The following lemma shows that the definition of advantage
11 We recall that for a search problem, the output of A(�) is determined by the game

�.
12 When σ = 0, the confidence |σ| = 0 is zero, and the decision sign(σ) is irrelevant.

For concreteness, we define sign(0) = 0.
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given in Definition 6 respects this identification. This justifies the use of the
same notation advMW

� (A) and MW�(A) for the advantage and bit security of
both aborting A ∈ A⊥ and fuzzy adversaries A ∈ A≈.

Lemma 9. For any aborting adversary A ∈ A⊥ and corresponding fuzzy adver-
sary Ã ∈ A≈ we have δ̃Ã = δA, α̃Ã = αA, T (Ã) = T (A), advMW

� (Ã) = advMW
� (A)

and MW�(Ã) = MW�(A).

Proof. It is easy to check that ˜deltaÃ = δA and α̃Ã = αA by evaluating
the expectations over the set 0, 1,−1 of all possible values. It follows that
advMW

� (Ã) = δ̃2
Ã
/α̃Ã = δ2A/αA = advMW

� (A). Finally, A and Ã have the same
running time T (A) = T (Ã). So, we also have

MW�(Ã) = log2(T (Ã)/advMW
� (Ã)) = log2(T (A)/advMW

� (A)) = MW�(A).

3.1 Equivalence of Aborting and Fuzzy Adversaries

Using fuzzy adversaries, we may define the maximum (statistical) advantage in
attacking a decision game � as

(Δ≈
MW(�))2 = sup{advMW

� (A) | A ∈ A≈},

and similarly for bit security

MW≈(�) = inf{MW�(A) | A ∈ A≈}.

Since we are optimizing over a larger class of adversaries A≈ ⊃ A⊥, it imme-
diately follows from the definitions that ΔMW(�) ≤ Δ≈

MW(�) and MW(�) ≥
MW≈(�), and in principle these inequalities could be strict. But, as we will see,
this is not the case, i.e., aborting and fuzzy adversaries define precisely the same
notion of advantage and bit security for decision games. This is proved using the
following transformation.

Lemma 10. Let N : A≈ → A⊥ be the transformation13

N[A](�b; r) =

{
1−sign(A(�b;r))

2 with probability |A(�b; r)|
⊥ otherwise.

Then, for any decision game � = (�0, �1) and adversary A ∈ A≈, we have

advMW
� (A) = advMW

� (N[A]).

13 More precisely, N[A] is the aborting adversary that runs the fuzzy attack a ←
A(�b) ∈ [−1, 1], and then outputs (1 − sign(a))/2 with probability |a| and ⊥ with
probability 1−|a|. Note that the output of N[A] is always in {0, 1, ⊥}, i.e., N[A] ∈ A⊥
is a valid aborting adversary.
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Proof. We have that

δN[A] = Pr
b,r

[N[A](�b; r) = b] − Pr
b,r

[N[A](�b; r) = 1 − b]

= Eb

[

|A(�b)| · Pr
[
1 − sign(A(�b))

2
= b

]

−|A(�b)| · Pr
[
1 − sign(A(�b))

2
= 1 − b

]]

= Eb[|A(�b)| · (Pr[sign(A(�b)) = 1 − 2b] − Pr[sign(A(�b)) = −(1 − 2b)])]

= Eb[|A(�b)| · (Pr[sign(A(�b)) = (−1)b] − Pr[sign(A(�b)) = −(−1)b])]

= Eb[|A(�b)| · (Pr[(−1)b · sign(A(�b)) = 1] − Pr[(−1)b · sign(A(�b)) = −1])]

= Eb[|A(�b)| · E[(−1)b · sign(A(�b))]]

= Eb

[
(−1)b · A(�b)

]
= δA,

and
αN[A] = Pr

b,r
[N[A](�b; r) �= ⊥] = Eb,r[|A(�b; r)|] = αA.

It then follows that advMW
� (A) = δA

2

αA
= δN[A]

2

αN[A]
= advMW

� (N[A]), i.e. N preserves
the advantage.

Clearly, the transformation N also preserves the complexity of the adversary
T (N[A]) ≈ T [A], as the additional operations performed by N[A] have negligible
cost. It immediately follows that aborting and fuzzy adversaries are equivalent,
both for statistical and computational bit security.

Theorem 1. Aborting and Fuzzy MW adversaries are equivalent, i.e., they
define the same notions of advantage and bit security

Δ≈
MW(�) = ΔMW(�)

MW≈(�) = MW(�).

Proof. We need to show that ΔMW(�) ≥ Δ≈
MW(�) and MW(�) ≤ MW≈(�). For

any A ∈ A≈, the aborting adversary N[A] ∈ A⊥ satisfies

advMW
� (A) = advMW

� (N[A]) ≤ sup
A′

advMW
� (A′) = Δ2

MW(�0, �1).

Therefore, (Δ≈
MW(�))2 = supA advMW

� (A) ≤ Δ2
MW(�). A similar argument works

for bit security, using the fact that T (A) ≈ T (N(A)).

3.2 Convexity and Determinism

In general, cryptographic adversaries can use randomness. Using fuzzy adver-
saries it is easy to turn any randomized adversary into a deterministic one. In
the following lemma we give a simple transformation from (randomized) abort-
ing adversaries to deterministic fuzzy ones. For simplicity, we present the lemma
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for the simple problem of distinguishing between two probability distributions
X = (X0,X1). A more general statement for arbitrary games will be proved
later in this section.

Lemma 11. Let F : A⊥ → A≈ be the transformation

F[A](x) = Pr
r
[A(x; r) = 0] − Pr

r
[A(x; r) = 1]

mapping a (randomized) aborting adversary A to a deterministic fuzzy adversary
F[A] ∈ A≈. Then, for any decision problem X = (X0,X1) and adversary A ∈ A⊥
we have

advMW
� (A) ≤ advMW

X (F[A]).

In particular, the optimal advantage Δ2
MW(�) is achieved by a deterministic A ∈

A≈.

Proof. We first show that δF[A] = δA. We have that

δF[A] = Eb[b̃ · F[A](Xb)]

= Eb[(−1)b · (Pr
r
[A(Xb; r) = 0] − Pr

r
[A(Xb; r) = 1])]

=
1
2

(
E[(−1) · (Pr

r
[A(X1; r) = 0] − Pr

r
[A(X1; r) = 1])]

)

+
1
2

(
E[(+1) · (Pr

r
[A(X0; r) = 0] − Pr

r
[A(X0; r) = 1])]

)

=
E[Prr[A(X1; r) = 1]] + E[Prr[A(X0; r) = 0]]

2

− E[Prr[A(X1; r) = 0]] + E[Prr[A(X0; r) = 1]]
2

= Eb[Pr
r
[A(Xb; r) = b]] − Eb[Pr

r
[A(Xb; r) = 1 − b]]

= βA − β̄A = δA.

We next show that αF[A] ≤ αA. We have that

αF[A] = Eb[|F[A](Xb)|]
= Eb

[∣
∣
∣Pr

r
[A(Xb; r) = 0] − Pr

r
[A(Xb; r) = 1]

∣
∣
∣
]

≤ Eb

[
Pr
r
[A(Xb; r) = 0] + Pr

r
[A(Xb; r) = 1]

]
= αA.

It follows that advMW
X (A) = δA

2

αA
≤ δF[A]

2

αF[A]
= advMW

X (F[A]).

Notice that the result of the transformation F[A] is not in general an
efficient algorithm, because it requires the computation of the probabilities14

14 Naturally, one could approximate these probabilities in a relatively efficient manner
by repeatedly running A(x; ri) on a given input x and many independent random
ri. However, this would result in a randomized algorithm.
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Prr[A(x; r) = b] for b = 0, 1. So, Lemma 11 says little about the (computational)
bit security under deterministic attacks. Moreover, it says nothing about the
existence of deterministic aborting adversaries A ∈ A⊥ because F[A] is fuzzy.15

We would like to prove a similar result (for arbitrary decision games) that
produces deterministic aborting adversaries, and address the efficiency issue
(at least in the non-uniform setting). We will show that for any randomized
aborting adversary A there is a value of the randomness r such that the deter-
ministic adversary Ar(·) = A(·; r) is at least as good as A. But before doing
so, we observe that (perhaps contrary to intuition) this is not generally true for
arbitrary notions of advantage.

Lemma 12. There is a pair of efficiently samplable distributions X = (X0,X1),
randomized distinguisher A(x; r) and advantage function adv�

X such that
adv�

X (A) is strictly bigger than adv�
X (A(·; r)) for all r.

Proof. Let X0 and X1 be the uniform distributions over {0} and {0, 1, 2, 3}
respectively, and consider a randomized distinguisher A(x; r) using a single bit
of randomness r ∈ {0, 1} that works as follows: if x ≤ 2r then A(x; r) = 0, and
A(x; r) = ⊥ otherwise.

Consider the output of A(x; r) when x ← Xb for b ← {0, 1}. It is easy to
see that A(·; r) is correct precisely when b = 0. So, A has success probability
β = 1/2 regardless of the value of the randomness r. On the other hand, the
failure probability is β̄0 = 1/8 when r = 0 (for b = 1 and x = 0), β̄1 = 3/8 when
r = 1 (for b = 1 and x ∈ {0, 1, 2}) and β̄ = (β̄0 + β̄1)/2 = 1/4 when r is chosen
at random. Now define the advantage function16

adv�
X (A) =

∣
∣βA − sin(2πβ̄A)

∣
∣ · (βA − β̄A).

Using this function we can compute adv�
X (A) ≈ 0.125, adv�

X (A(·; 0)) ≈ 0.077
and adv�

X (A(·; 1)) ≈ 0.025. So, the advantage of the randomized adversary A is
strictly bigger than both A(·; 0) and A(·; 1).

We prove the existence of deterministic optimal aborting adversaries using
a convexity argument. For any adversaries A,B ∈ A⊥ and θ ∈ [0, 1], define the
convex combination C = θ · A + (1 − θ) · B as the (randomized) adversary that
runs A with probability θ and B with probability 1 − θ. Notice that the convex
combination is taken over the randomness, not the output of the adversaries,
so that the result is still an aborting adversary in A⊥.

15 Note that turning F[A] into an aborting adversary N[F[A]] using Lemma 10 does not
work, because the result of N is generally a randomized algorithm.

16 Similarly to the MW advantage (βA − β̄A)
2/(βA + β̄A) and statistical distance

(βA−β̄A), we define this function as a simple combination of βA and β̄A. We included
the (βA−β̄A) factor so that the advantage measure retains the appealing feature that
“trivial adversaries” (with βA = β̄A) have advantage 0. Our definition is otherwise
rather arbitrary.
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Theorem 2. For any decision game �, the advantage advMW
� (A) is a convex

function of A ∈ A⊥, i.e., for any two adversaries A,B ∈ A⊥ and θ ∈ (0, 1), the
convex combination C = θ · A + (1 − θ) · B ∈ A⊥ satisfies

advMW
� (C) ≤ θ · advMW

� (A) + (1 − θ) · advMW
� (B).

Proof. Using the definition of C, we see that

βC = Pr[C(�b) = b] = θ · Pr[A(�b) = b] + (1 − θ) · Pr[B(�b) = b]
= θ · βA + (1 − θ) · βB

and similarly for β̄C , αC and δC . Therefore, by Lemma 1,

advMW
� (C) =

δ2C
αC

=
(θ · δA + (1 − θ) · δB)2

θ · αA + (1 − θ) · αB

≤ θ · δ2A
αA

+ (1 − θ) · δ2B
αB

= θ · advMW
� (A) + (1 − θ) · advMW

� (B).

An immediate consequence of convexity is that optimal aborting adversaries
A ∈ A⊥ can be easily derandomized by fixing the value of the randomness that
achieves the highest advantage.

Corollary 1. For any decision game � and (randomized) adversary A(·; r),
there is a value of r such that the deterministic adversary Ar(·) = A(·; r) has
advantage at least advMW

� (Ar) ≥ advMW
� (A).

Proof. Any randomized adversary A ∈ A⊥ can be written as a convex combi-
nation A =

∑
r Pr[r] · Ar of deterministic adversaries Ar(·) = A(·; r) indexed by

the randomness r. It follows by Theorem 2 that

advMW
� (A) ≤

∑

r

Pr[r] · advMW
� (Ar) ≤ max

r
advMW

� (Ar). (13)

Choosing the value of r that achieves the maximum gives a deterministic adver-
sary Ar with an advantage which is at least as good as A.

Note that the deterministic adversary of Corollary 1 has the same running
time T (Ar) = T (A) as the original randomized adversary because we are just fix-
ing the randomness. So, Corollary 1 says that the optimal bit-security is achieved
by a deterministic adversary. However, this is only true in a non-uniform set-
ting, where the optimal randomness r can be hardwired in the code of A. In a
uniform setting, when considering probability ensembles over larger and larger
sets indexed by a security parameter κ, determinining the optimal value of r
can be computationally difficult. In particular, trying all possible values of r
and estimating which one is best is not computationally feasible because there
are exponentially (in κ) possible values of r, and, in any case, it would result
again in a randomized adversary. This is the only result in this paper that makes
essential use of the non-uniform model.
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3.3 Threshold Adversaries Are Optimal

In this subsection we focus on the simple problem of distinguishing between two
probability distributions X = (X0,X1) over a set Ω (as opposed to arbitrary
distinguishing games), in the statistical security setting, i.e., when the computa-
tional cost of the distinguisher is not taken into account. This problem reduces to
determining the highest possible advantage Δ2

MW(X ) = advMW
X (A) achieved by

a (computationally unbounded) adversary A. All our adversaries can be imple-
mented very efficiently given oracle access to the probabilities Pr{Xb = x}. So,
the results apply to the computational security setting as well when the proba-
bility distributions X0,X1 are efficiently computable.

In the case of traditional (non-aborting) adversaries, it is well known that
this problem admits a very simple, closed form optimal distinguisher

AX
SD(x) = sign(Pr{X0 = x} − Pr{X1 = x})

which, on input a sample x, outputs the bit b ∈ {0, 1} such that the probability
Pr{Xb = x} is highest. Note that the distinguisher AX

SD is efficient only when
the probabilities Pr{X0 = x},Pr{X1 = x} are efficiently computable. In this
subsection we explore if a similar, closed form optimal distinguisher can also be
described for the more general aborting A⊥ and fuzzy A≈ adversaries.

The next lemma shows that even for fuzzy distinguishers, the “sign” of the
output should be set to sign(A(x)) = sign(Pr{X0 = x} − Pr{X1 = x}) and the
only extra freedom afforded by fuzzy adversaries is the choice of the confidence
|A(x)|.
Lemma 13. For any A ∈ A≈ and X = (X0,X1), define the modified adversary

Â(x) = |A(x)| · sign(Pr{X0 = x} − Pr{X1 = x})
that on input x outputs the same confidence |A(x)| as A, and fixes the sign of
the output to match AX

SD(x). Then, this modified adversary satisfies advMW
X (Â) ≥

advMW
X (A).

Proof. It is straightforward to verify that
∣
∣
∣Â(x; r)

∣
∣
∣ ≤ |A(x; r)|. So, the expected

confidence of the modified adversary satisfies αÂ ≤ αA. We also have

|δA| = ∣
∣Eb;r[(−1)b · A(Xb; r)]

∣
∣

=

∣
∣
∣
∣
∣

∑

x

Er[A(x; r) · Pr{X0 = x} − Pr{X1 = x}
2

]

∣
∣
∣
∣
∣

≤
∑

x

Er[|A(x; r)| · |Pr{X0 = x} − Pr{X1 = x}|
2

]

=
∑

x

Er[Â(x; r) · Pr{X0 = x} − Pr{X1 = x}
2

]

=
∣
∣
∣Eb;r[(−1)b · Â(Xb; r)]

∣
∣
∣ = δÂ.

It follows that advMW
X (A) = δ2A/αA ≤ δ2

Â
/αÂ = advMW

X (Â).
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Notice that if A ∈ Ã⊥, then Â ∈ Ã⊥. So, when applied to aborting adver-
saries, Lemma 13 shows that the adversary achieving the optimal advantage
Δ2

MW(X ) must agree with AX
SD, except possibly for replacing the output with

⊥ when confidence is low.
At this point we are left with the problem of determining how a fuzzy adver-

sary should set the output confidence, and, as a special case, when an aborting
adversary should output ⊥. To this end, define the function

�X (x) = log
Pr{X0 = x}
Pr{X1 = x} = log Pr{X0 = x} − log Pr{X1 = x} (14)

and consider the class of adversaries that output ⊥ when |�X (x)| is below a given
threshold. Note that

∣
∣�(X0,X1)(x)

∣
∣ =

∣
∣�(X1,X0)(x)

∣
∣ is symmetric in the ordering of

the two distributions, and sign(�X (x)) = AX
SD(x) because log is a monotonically

increasing function.

Definition 7. We say that A ∈ A≈ is a threshold distinguisher between two
distributions X = (X0,X1) over a set Ω if there is a threshold τ ≥ 0 such that17

A(x) =
{
0 if |�X (x)| ≤ τ
sign(�X (x)) if |�X (x)| > τ

Theorem 3. Let X = (X0,X1) be a pair of probability distributions on a set Ω.
Then, the optimal advantage Δ2

MW(X ) is achieved by a threshold distinguisher
A. Moreover, the threshold

τ∗ = log
(

4
3 − 2β∗

A

− 1
)

is a simple function of the conditional success probability β∗
A = βA/αA. In par-

ticular, as β∗
A ∈ [1/2, 1], the threshold satisfies exp(τ) ∈ [1, 3].

Proof. Let A ∈ A≈ be an optimal fuzzy adversary, and assume without loss of
generality that αA, δA > 0, i.e., A is non-trivial. Now, fix any point x∗ in the
support of X0,X1, and define

α∗ =
Pr{X0 = x∗} + Pr{X1 = x∗}

2
> 0

δ∗ =
|Pr{X0 = x∗} − Pr{X1 = x∗}|

2
.

We will prove that

– δ∗
α∗ ≤ δA

2αA
if and only if |�X (x∗)| ≤ τ∗ (and similarly for ≥),

– if δ∗
α∗ ≤ δA

2αA
then |A(x∗)| = 1, and

– if δ∗
α∗ ≥ δA

2αA
then |A(x∗)| = 0.

17 The choice that A(x) = 0 when |�X (x)| = τ is somehow arbitrary. We will use a
threshold τ such that |�X (x)| = τ with probability 0.
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In particular, since |A(x∗)| = 0 and |A(x∗)| = 1 are mutually exclusive, it must
be |�X (x∗)| �= τ∗.

Note that the values α∗, δ∗ and τ∗ satisfy

δA

2αA
= β∗

A − 1
2
= 1 − 2

exp(τ∗) + 1
δ∗

α∗ =
exp(|�(x∗)|) − 1
exp(|�(x∗)|) + 1

= 1 − 2
exp(|�(x∗)|) + 1

.

Since τ �→ 1 − 2/(exp(τ) + 1) is is a monotonically increasing function, this
proves that |�X (x∗)| ≤ τ∗ if and only if (δ∗/α∗) ≤ δA/(2αA).

Now assume (δ∗/α∗) ≤ δA/(2αA) and (for contradiction) |A(x∗)| < 1. Con-
sider a modified adversary A∗ which is identical to A, except that |A∗(x∗)| =
|A(x∗)| + ε, for some ε < 1 − |A(x∗)|. Using the definition of δA and αA, we get
δA∗ = δA + ε · δ∗, and αA∗ = αA + ε · α∗. So, this modification increases the
advantage of A by

advMW
X (A∗) − advMW

X (A) =
(δA + ε · δ∗)2

αA + ε · α∗ − δ2A
αA

=
ε2(δ∗)2 + 2εδAα∗

A

(
δA

2αA
− δ∗

α∗

)

αA + εα∗

≥ ε2(δ∗)2

αA + εα∗ > 0.

This is a contradiction to the optimality of A.
Similarly, if (δ∗/α∗) ≥ δA/(2αA) and (for contradiction) |A(x∗)| > 0, we may

define a modified adversary A∗ that reduces the confidence |A∗(x∗)| = |A(x∗)|−ε
of A on x∗ by some ε < |A(x∗)|. This increases the advantage of A by

advMW
X (A∗) − advMW

X (A) =
(δA − ε · δ∗)2

αA − ε · α∗ − δ2A
αA

=
ε2(δ∗)2 − 2εδAα∗

A

(
δA

2αA
− δ∗

α∗

)

αA − εα∗

≥ ε2(δ∗)2

αA − εα∗ > 0,

again contradicting the optimality of A.

4 Equivalence of MW and WY Bit Security

In [15], it is claimed that for any decision game �, the quantities WY(�) and
MW(�) are equal up to an additive constant, i.e., the MW and WY notions of
bit-security are equivalent. However, [15] only proves the statement for a variant
of the WY security definition that uses aborting adversaries (i.e., the MW adver-
saries with output in {0, 1,⊥} introduced in [10]), rather than the traditional
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(non-aborting, inner) adversaries used in [14] to define WY security. To close
this gap, [15] informally states that changing the class of adversaries does not
affect the definition of WY(�), and justifies the assertion saying that the defini-
tion does not explicitly depend on the size of the co-domain18 of the adversary
A. However, this reasoning is incorrect because the quantity Δ1/2(A(�)) used
in the definition implicitly depends on the size of the co-domain of A. Still, the
equivalence claimed in [15] holds true, as shown in the following theorem which
gives a direct proof that WY� and MW� are equivalent.

The theorem makes use of the following technical lemma to modify an abort-
ing adversary in such a way that it uses only two of the output symbols in
{0, 1,⊥}.

Lemma 14. For any decision game � = (�0, �1), and aborting adversary A ∈
A⊥, there exists a modified adversary A′ ∈ A⊥ with output in {b̂,⊥} (for some
fixed b̂ ∈ {0, 1}) and similar running time T (A) = T (A′), such that

advMW
� (A′) ≥ 1

2 · advMW
� (A).

Proof. Let A′ = Az be the modified adversary from Lemma 6 with z the value
in {0, 1} that maximizes the advantage advMW

� (Az). For i ∈ {0, 1}, j ∈ {0, 1,⊥},
let pi,j = Pr{A(�i) = j}, so that βA = (p0,0 + p1,1)/2, β̄A = (p0,1 + p1,0)/2 and,
by Lemma 6,

advMW
� (Aj) =

(p0,j − p1,j)2

2(p0,j + p1,j)
.

We can then bound

advMW
� (A) =

(βA − β̄A)2

βA + β̄A

=
1
2
((p0,0 − p1,0) − (p0,1 − p1,1))2

(p0,0 + p1,0) + (p0,1 + p1,1)

≤ (p0,0 − p1,0)2

2(p0,0 + p1,0)
+

(p0,1 − p1,1)2

2(p0,1 + p1,1)

= advMW
� (A0) + advMW

� (A1)

≤ 2advMW
� (Az)

where the first inequality is Lemma 1, and the second one follows by our choice
of z.

We also need a variant of Lemma 14 which gives a tight connection between
the MW advantage and the (squared) Le Cam distance of the adversary output
probability distributions A(�). A similar statement was previously proved in
[15] under the condition that Δ1/2(A(�)) ≤ 1, and with worse multiplicative
constants.
18 Recall that the co-domain of A is the set of all possible outputs of A, e.g., {0, 1} or

{0, 1, ⊥}.
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Lemma 15. For any decision game � = (�0, �1) and aborting adversary A ∈
A⊥, there is a modified adversary A′ ∈ A⊥ with similar running time T (A) ≈
T (A′), such that

advMW
� (A) ≤ Δ2

LC(A(�)) ≤ 3advMW
� (A′).

Proof. The proof proceeds as in Lemma 14, using the same notation, except
that this time advMW

X (Az) is maximized over z ∈ {0, 1,⊥}. As in the proof of
Lemma 14, we still have

advMW
X (A) ≤ advMW

X (A0) + advMW
X (A1).

To prove the new lemma we notice that

Δ2
LC(A(X0), A(X1)) =

∑

j∈{0,1,⊥}

(p0,j − p1,j)2

2(p0,j + p1,j)
=

∑

j∈{0,1,⊥}
advMW

X (Aj)

which is at least advMW
X (A0) + advMW

X (A1) and at most 3advMW
X (Az).

Theorem 4. For any decision game �, WY(�) = MW(�) + Θ(1).

Proof. The inequality MW� ≤ WY� was already proved in [14]. Here we prove
WY� ≤ MW� +O(1). Note that by Lemma 15, Lemma 2 and Lemma 3, for any
adversary A, we have

advMW
� (A) ≤ Δ2

LC(A(�)) ≤ 2 · Δ2
H(A(�)) ≤ Δ1/2(A(�)).

So, by Lemma 14, for any adversary A there is an adversary A′ such that

MW�(A) = log2
T (A)

advMW
� (A)

≥ log2
T (A′)

2advMW
� (A′)

≥ log2
T (A′)

Δ1/2(Az(�))
− 1.

Note that A′ has co-domain {b,⊥} (rather than {0, 1}). But since Δ1/2 does not
give any special meaning to the symbols output by the adversary, we can view
A′ as a valid adversary for WY�. So, we get that MW�(A) ≥ WY�(A

′)−1. Since
A was arbitrary, this proves the theorem.

The previous theorem shows that one can use WY(�) as an alternative char-
acterization of MW(�). This is potentially interesting, as WY(�) only makes use
of traditional (non-aborting) adversaries, which are perhaps more intuitive and
easier to use. (This was indeed one of the motivations of [14].) In particular,
it is tempting to assume that, since the inner adversary of [14] always outputs
either 0 or 1 (i.e., it never aborts), the optimal WY advantage in distinguishing
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between two distributions X = (X0,X1) is achieved by the maximum likelihood
distinguisher AX

SD. Perhaps counterintuitively, the following theorem shows that
this is not the case, and even if [14] does not make use of aborts, the obvious
(inner) distinguishing strategy AX

SD is not optimal, and can in fact substantially
overestimate the number of bits of security by a factor19 close to 2.

Theorem 5. There exist (efficiently samplable, efficiently computable) distribu-
tions X = (X0,X1) such that

WYX (AX
SD) ≥ 2 · MW(X ) − O(1).

Proof. The choice of X below is from [13, Lemma 2], where it was used to show
the suboptimality of distinguishing a product distribution X ⊗n = (X⊗n

0 ,X⊗n
1 )

by first computing AX
SD “coordinate-wise” (sometimes called Scheffé’s test). Con-

sider the distributions X = (X0,X1) shown in following table, where ε ≤ 1/8:

0 1 2
X0 0.5 0.5 − ε ε
X1 0.5 − ε 0.5 + ε 0
AX

SD 0 1 0
AX

MW ⊥ ⊥ 0
AX

SD(X0) 0.5 + ε 0.5 − ε
AX

SD(X1) 0.5 − ε 0.5 + ε

The table also shows the optimal AX
SD distinguisher, its output distribution on

input X0 and X1, and a candidate20 MW distinguisher which we will use in
our proof. The intuition is clear: if the sample is 2, then it certainly comes
from distribution X0, but for the other samples the distinguisher does not have
enough confidence to make the call. This distinguisher succeeds with probability
β = ε/2, but it never fails. So, it achieves advantage (β − β̄)2/(β + β̄) = β =
ε/2. Since AMW runs in constant time, the decisional problem X has at most
log2(2/ε) = 1 + log2(1/ε) bits of security.

Let’s now estimate the advantage achieved by ASD as an inner distinguisher.
We first evaluate the Hellinger distance

Δ2
H(A

X
SD(X0), AX

SD(X1)) = 1 −
√

1 − 4ε2 ≤ 4ε2

where we have used the inequality 1−√
1 − x ≤ x, which is valid for all x ∈ [0, 1].

Finally, using Lemma 3, we bound

Δ1/2(AX
SD(X )) ≤ 4Δ2

H(A
X
SD(X )) ≤ 16ε2.

Since ASD also runs in constant time, the upper bound on bit security it gives is
log2(1/(16ε2)) = 2 log2(1/ε)− 4. In summary, if ε = 2−k (for any k ≥ 3), the bit
security is at most k+1, but the WY framework with non-aborting distinguisher
ASD only provides a very weak bound of 2k − 4
19 This is a doubling of the number of security bits k, so it corresponds to overestimating

the cost of the attack by an exponential factor 2k.
20 This is indeed the optimal MW distinguisher when ε ≤ 1/8. When ε ≥ 1/8, then

AX
SD becomes optimal.
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5 A Toolbox for Analysis of (c, s)-Bit Security

In this section we use the close relation between the MW and the Le
Cam distance (Lemma 15) to establish two fundamental tools for the use of
computational-statistical bit security in the analysis of complex cryptograhic
protocols: the hybrid proof technique, and the probability replacement theorem.

Theorem 6. Let X0, . . . , Xk be a sequence of cryptographic games. If for all
i = 1, . . . , k, Xi = (Xi−1,Xi) is (ci, si)-bit secure, then X = (X0,Xk) is (c, s)-
bit secure for

c = min
i
(ci) − 2 log2(

√
3k)

s = min
i
(si) − 2 log2(

√
3k)

Proof. Using Lemma 15 we get the upper bound
√

advMW
X (A) ≤ ΔLC(A(X0), A(Xk))

≤
∑

i

ΔLC(A(Xi), A(Xi+1))

≤
√
3

∑

i

max
zi

√
advMW

Xi
(Azi)

≤
√
3k

√
max

i
(T (Azi)2−ci , 2−si).

So, since T (A) ≈ T (Azi) for all i, the advantage advMW
X (A) is at most

3k2 max(T (A)2−mini ci , 2−mini si) = max(T (A)2−c, 2−s).

This proves that X is at least (c, s)-secure.

This may be seen as an extension of [10, Theorem 7], which is an analogous
result for (c, c)-bit security, though with slightly smaller21 loss of log2(2k2) =
2 log2(

√
2k) bits.

We next establish a distribution replacement theorem for (c, s)-bit security
for games �Y parameterized by a distribution Y . This was done in [10] under
the assumption that (Y0, Y1) is statistically ((∞, s)-bit) secure, and in [15] under
the assumption that (Y0, Y1) is computationally ((c, c)-bit) secure. We extend
this to a (c, s)-bit security assumption below.

21 One can recover the exact same loss (log2(2k
2) = 2 log2(

√
2k)) by giving a variant of

Lemma 15 with constant factor 2 rather than 3. This can be done by comparing
advMW

X (A) to Δ2
LC(X

′
0, X

′
1), where X ′

b ∈ [0, 1]2 is the first two coordinates of A(Xb) ∈
[0, 1]3. This is to say that one can exactly generalize [10, Theorem 7] by working
with (X ′

0, X
′
1) that are positive measures of total mass ≤ 1 rather than probability

measures of total mass = 1. We avoid doing this as the quantitative improvement is
small, at the cost of a large amount of conceptual overhead.
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Theorem 7. Let �,Y be decision games. If �Y0 is (c, s)-bit secure, and Y is
(c′, s′)-bit secure, then �Y1 is (c′′, s′′)-bit secure, where c′′ = min(c − 2, c′ − 3 −
log2(1+ T�)), and s′′ = min(s − 2, s′ − 3). In particular, if Y and �Y0 are (c, s)-
bit secure and22 T� = O(1), then �Y1 is almost (c, s)-bit secure, up to a small
additive constant term in bit security.

Proof. Let A be any adversary. By Lemma 15 and the triangle inequality (for
ΔLC), we have We compute
√

advMW
�Y1 (A) ≤ ΔLC(A(�Y1

0 ), A(�Y1
1 ))

≤ ΔLC(A(�Y1
0 ), A(�Y0

0 )) + ΔLC(A(�Y0
0 ), A(�Y0

1 )) + ΔLC(A(�Y0
1 ), A(�Y1

1 )).

We bound each term in the last sum separately. For the middle term, using the
upper bound in Lemma 15 and T (A) = T (Az), we get

ΔLC(A(�Y1
0 ), A(�Y0

0 )) ≤
√

3max
z

advMW
�Y0 (Az) ≤

√
3max(TA2−c, 2−s)

The other terms are bound constructing distinguishers A0, A1 against the game
Y as follows. AY

0 simulates the execution of A in the game �Y
0 and flips the

answer, i.e., it outputs 1 − a when A outputs a ∈ {0, 1}, and ⊥ otherwise. AY
1

simulates the execution of A in the game �Y
1 , and outputs the same result as A.

Then, we have

ΔLC(A(�Y1
0 ), A(�Y0

0 )) = ΔLC(A0(Y0), A0(Y1))

≤
√

3max
z

advMW
Y (Az

0)

≤
√

3max(T (A)(1 + T�)2−c′ , 2−s′)

and similarly for the last term ΔLC(A(�Y0
1 ), A(�Y0

1 )) using adversary A1. Com-
bining the three terms gives the bound in the theorem.

6 Conclusion and Open Problems

We developed a number of useful tools to evaluate the bit security of decisional
cryptographic properties, in the statistical and computational setting, or even
combinations of the two. These include a characterization of the structure of
the optimal statistical “aborting” adversaries to facilitate the use of approxi-
mate probability distributions (like uniform or discrete gaussians), and general
hybrid arguments and probability replacement theorems to combine subproto-
cols together and support modular security analysis. More tools may be added
to the toolbox in the future, but we believe that the results presented in this
22 Recall from Definition 1 that T� is the relative running time of �. So, T� = O(1) is

quite common, e.g., when oracle calls can be answered in linear time.



Bit Security: Optimal Adversaries, Equivalence Results and a Toolbox 253

paper already demonstrate that computational-statistical bit-security can be
quite usable and useful.

For all results in this paper we focused on decision problems, which are
the hardest case, but combining decisional primitives with search ones should
be fairly straightforward, as the definition of bit security for search problems is
standard. An interesting direction for future work is to explore the space between
search and decision problems. These include, for example, problems with small
(polynomially sized) search space, like password authenticated key exchange.
Two works [6,10] offer general definitions that interpolate between search and
decision problems, but the significance of those definitions for intermediate prob-
lems is unclear. Similarly to what was done in [10] for search and decision prob-
lems, it would be interesting to analyze a representative set of protocols falling
in-between search and decision primitives, possibly in conjunction with standard
search and decision primitives, to see if the bit-security estimates provided by
those definitions match the cryptographic intuition behind the informal notion
of bit-security.

Another interesting direction for further work is to make good use of the
definition of computational-statistical bit-security (proposed in [8] and studied in
this work) to formally analyze concrete protocols of practical interest, and make
provable (still tight) claims about their security.
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Abstract. The planted random subgraph detection conjecture of
Abram et al. (TCC 2023) asserts the pseudorandomness of a pair of
graphs (H, G), where G is an Erdős-Rényi random graph on n vertices,
and H is a random induced subgraph of G on k vertices. Assuming the
hardness of distinguishing these two distributions (with two leaked ver-
tices), Abram et al. construct communication-efficient, computationally
secure (1) 2-party private simultaneous messages (PSM) and (2) secret
sharing for forbidden graph structures.

We prove the low-degree hardness of detecting planted random sub-
graphs all the way up to k ≤ n1−Ω(1). This improves over Abram et al.’s
analysis for k ≤ n1/2−Ω(1). The hardness extends to r-uniform hyper-
graphs for constant r.

Our analysis is tight in the distinguisher’s degree, its advantage, and
in the number of leaked vertices. Extending the constructions of Abram
et al., we apply the conjecture towards (1) communication-optimal mul-
tiparty PSM protocols for random functions and (2) bit secret sharing
with share size (1 + ε) log n for any ε > 0 in which arbitrary minimal
coalitions of up to r parties can reconstruct and secrecy holds against all
unqualified subsets of up to � = o(ε log n)1/(r−1) parties.

1 Introduction

In the planted clique model [Jer92,Kuc95] one observes the union of an Erdős-
Rényi random graph G0 ∼ G(n, 1/2) and a randomly placed k = kn-clique H,
i.e., the graph G = G0 ∪ H. The goal of the planted clique detection task is
to distinguish between observing G from the planted clique model and G which
is simply an instance of G(n, 1/2). The planted clique conjecture states that
the planted clique instance remains pseudorandom whenever k ≤ n1/2−Ω(1) up
to n−Ω(1) distinguishing advantage. Conversely, multiple polynomial-time algo-
rithms can distinguish with high probability whenever k = Ω(

√
n). Research

on the planted clique conjecture has gone hand-in-hand with key develop-
ments in average-case complexity theory over the last decades, including spec-
tral and tensor algorithms [AKS98,FK08], lower bound techniques for restricted
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15365, pp. 255–275, 2025.
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classes including the sum-of-squares hierarchy [BHK+19], low-degree polyno-
mial methods [Hop18], statistical query methods [FGR+17] and MCMC meth-
ods [Jer92,GZ19,CMZ23], and the development of new average-case reductions
[BB20,HS24].

At this point, the conjectured hardness of the planted clique problem around
k ≈ √

n stands as a central conjecture in average-case complexity. But despite
its popularity, the cryptographic applications have been quite limited, with one
exception in the symmetric-key setting proposed by Juels and Peinado [JP97].
Recently Abram et al. [ABI+23] revisited the planted clique problem and showed
how it can be useful in the context of secret sharing and secure computation. The
authors specifically show that (slight variants of) the planted clique conjecture
can be used to construct a computationally secure scheme whose share size is
much smaller than the best existing information-theoretically secure scheme.

In order to obtain further improvements to the share size, Abram et al.
proposed a new intriguing conjecture similar to planted clique. They start by
defining the following general model (also introduced in [Hul22]).

Definition 1. (Planted (induced) subgraph model1) Fix H to be an arbitrary
unlabeled subgraph on k vertices. Then G is chosen to be a random n-vertex
graph where a copy of H is placed on k vertices chosen uniformly at random (as
an induced subgraph on the k vertices), and all edges without both endpoints on
the k vertices appear with probability 1/2.

When H is the k-clique, the planted subgraph model becomes exactly the
planted clique model. The clique is the most structured graph possible and it is
natural to wonder:

could the problem be significantly harder if a different graph H is planted?

Abram et al. suggest studying the planted random subgraph model in which
H is an instance of G(k, 1/2). An equivalent definition is the following.

Definition 2. (Planted random subgraph model) One observes a pair (H,G),
where G is a random n-vertex graph and H is a random k-subgraph of G with
the vertex labels removed.

Abram et al. make the following interesting conjecture.

Conjecture 1. (Planted Random Subgraph conjecture [ABI+23]) The planted
random subgraph problem is hard up to advantage n−Ω(1) provided k ≤ n1−Ω(1),
with high probability over H ∼ G(k, 1/2) as n grows to infinity.

This stands in contrast to the case that H is a k-clique where a computational
phase transition is expected to take place at the smaller value k ≈ n1/2.

1 A similar yet different model where one observes the union of a copy of H with an
instance of G(n, 1/2) has also been recently analyzed in the statistical inference lit-
erature [Hul22,MNWS+23,YZZ24]. For this work, we solely focus on the “induced”
variant, where H appears as an induced subgraph of G..
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Abram et al. confirm the planted random subgraph conjecture in the low-
degree analysis framework (to be described below) but only up to the “planted
clique threshold” k ≤ n1/2−Ω(1) (a result also independently proven by Huleihel
[Hul22]). Their work leaves open the regime n1/2−Ω(1) ≤ k ≤ n1−Ω(1), and
in particular the question of whether there is a larger window of hardness for
planted random subgraph than for planted clique.

Our main contribution is the confirmation of Conjecture 1 in the low-degree
framework. We prove that the planted random subgraph problem remains hard
for low-degree distinguishers of degree at most o((log n/ log log n)2) in the full
range k ≤ n1−Ω(1). The degree is best possible up to log log n factors, and
the analysis extends also to the case of hypergraphs. See Sect. 2 for the precise
theorem statement.

1.1 Secret Sharing and Leakage

For their intended cryptographic applications Abram et al. rely on a strength-
ening of the planted random subgraph conjecture which also allows for leaked
additional information about the embedding of H in G. It is easiest to motivate
these stronger conjectures through their intended application.

A (partial) access structure for k parties is a pair of set systems R,S over
{1, . . . , k}, where R is upward-closed, S is downward-closed, and R,S are dis-
joint. A bit secret sharing scheme consists of a randomized sharing algorithm
that maps the secret bit s ∈ {0, 1} into k shares so that sets in R can reconstruct
s from their shares with probability one, while sets in S cannot distinguish s = 0
or s = 1.

In a forbidden graph access structure, R is the edge-set of a graph and S is
the union of its complement {{u, v} �∈ R : u �= v ∈ [k]} and the set [k] of vertices.
Abram et al. propose the following secret sharing scheme for any such structure:

Construction 1. Forbidden graph secret sharing:

1. The dealer samples a random n-vertex graph G and remembers a secret k-
vertex subgraph H of it randomly embedded via φ : V (H) → V (G).

2. The dealer publishes the pair (Hs, G), where Hs is a k-vertex graph with
adjacency matrix

Hs(u, v) =

{
H(u, v) ⊕ s, if {u, v} ∈ R

a random bit, otherwise.
(1)

3. The share of party v is the value φ(v) ∈ [n].

If {u, v} ∈ R, the parties reconstruct by calculating

Hs(u, v) ⊕ G(φ(u), φ(v)) = H(u, v) ⊕ G(φ(u), φ(v)) ⊕ s = s. (2)

Secrecy requires that the joint distribution (Hs, G, φ(u), φ(v)) of the public
information and the shares is indistinguishable between s = 0 and s = 1 provided
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{u, v} ∈ S. In the absence of the “leakage” (φ(u), φ(v)) this is a consequence of
the planted random subgraph conjecture (Conjecture 1).

To handle the leakage, we consider the following generalization. Two parties
{u, v} ∈ S know the location of their edge H(u, v) = G(φ(u), φ(v)) in G, which
could potentially be useful to search for the “local structure of H” around their
edge. The new conjecture posits that if u and v have this additional information,
they still cannot distinguish whether H is planted. With an eye towards stronger
security we state it below for a general �.

Conjecture 2. (Planted random subgraph conjecture with �-vertex leakage)
With high probability over H ∼ G(k, 1/2), the following two distributions are
n−Ω(1)-indistinguishable in polynomial time for all subsets L = {u1, . . . , u�} ⊆
V (H) of size �:

1. (planted) (H,G, φ(u1), . . . , φ(u�)) where we choose uniformly at random an
injective function φ : [k] → [n] and embed H into G on the image of φ. The
remaining edges of G are sampled randomly.

2. (model) (H,G, φ(u1), . . . , φ(u�)) where we choose uniformly at random an
injective function φ : L → [n] and embed the subgraph of H on L into G on
the image of φ. The remaining edges of G are sampled randomly.

Assuming this conjecture with � = 2, given (φ(u), φ(v)) for {u, v} ∈ S, we
claim that both (H0, G) and (H1, G) are pseudorandom and hence indistinguish-
able: As {u, v} ∈ S, the (u, v)-th bits of H0 and H1 in (Hs, G) are independent
of all the others and cannot be used to distinguish. Once the (u, v)-th bits of H0

and H1 are removed, both (H0, G) and (H1, G) become identically distributed to
the planted (H,G) with its (u, v)-th bit removed. By the conjecture, this model
is indistinguishable from a uniformly random string.

The share size in this scheme is (1 + o(1)) log k. In contrast, the most com-
pact known forbidden graph scheme with perfect security has shares of size
exp Θ̃(

√
log k) [LVW17,ABF+19]. Statistical security requires shares of size

log k − O(1) when R is the complete graph [ABI+23]. It is not known if compu-
tational security is subject to the same limitation.

Under the �-vertex leakage assumption the secrecy holds not only against
pairs of parties that are not an edge in R, but also against all independent sets
up to size �, i.e.,

S = {I : I is an independent set of R and |I| ≤ �}.

By passing to r-hypergraphs instead of graphs, we naturally extend the con-
struction to R which is an arbitrary subset of at most r parties, with security
against all size-� independent sets of R (see Construction 3 below). The most
compact known perfectly secure forbidden r-hypergraph scheme has share size
exp Θ̃(

√
r log k) [LVW17] whereas our share size is still (1 + o(1)) log k.

It would be interesting to obtain a provable separation in share size between
the computationally secure Construction 3 and the best possible perfectly secure
construction for some access structure. In Sect. 4.1 we explain why this is chal-
lenging using available methods.
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1.2 Private Simultaneous Messages (PSM)

In a PSM, Alice and Bob are given inputs x, y to a public function F : [k]2 →
{0, 1}. They calculate messages φ(x), φ(y) which are securely forwarded to Carol.
Carol needs to output the value F (x, y) without learning any information about
x and y beyond this value.

Abram et al. propose the following PSM protocol. In a setup phase, F viewed
as a bipartite graph is randomly embedded into an otherwise random host graph
G via φ. The graph G is given to Carol and the embedding φ is given to Alice
and Bob. Carol outputs G(φ(x), φ(y)) which must equal F (x, y).

Abram et al. argue that this protocol is “secure” for a (1 − o(1))-fraction
of functions F under Conjecture 2 with leakage � = 2. Their security definition
appears to additionally assume that the choice of inputs (x, y) is independent of
the function F . In contrast, our security definition in Sect. 4.2 allows for Alice and
Bob to choose their inputs jointly from some distribution that depends on the
description of F . This is more natural for potential cryptographic applications;
Alice and Bob should not be expected to commit to their input before they
know which function they are computing. We extend our low-degree analysis to
support this stronger notion of security.

Messages in this protocol are of length log n = (1 + ε) log k. In contrast,
perfect security is known to require combined message length |φ(x)| + |φ(y)| ≥
(3 − o(1)) log k [FKN94,AHMS18] (but it is not known if statistical security is
subject to the same bound).

The r-hypergraph variant of the conjecture with leakage � = r gives PSM
security for r-party protocols also with message size log n = (1 + ε) log k
(Sect. 4.2). Even without a security requirement the message size must be at
least (1 − o(1)) log k for the protocol to be correct on most inputs.

1.3 Low-Degree Lower Bounds

We provide evidence for these conjectures in the form of lower bounds against
the low-degree polynomial computational model (see e.g., [KWB19] and refer-
ences therein). In this model, fixing a parameter D = Dn, the distinguishing
algorithm is allowed to compute an arbitrary degree-D polynomial function of
the bits of the input over the field R. The algorithm succeeds if the value of
the polynomial is noticeably different between the random and planted mod-
els. Degree-D polynomials serve as a proxy for nO(D) time computation since a
degree-D polynomial in poly(n) input bits can be evaluated by brute force in
time nO(D) (ignoring numerical issues).

Surprisingly, for noise-robust2 hypothesis testing problems it has been conjec-
tured that whenever all degree-D polynomials with D = O(log n) fail (formally,
no polynomial strongly separates the two distributions [COGHK+22, Sect. 7]),
then no polynomial-time distinguisher succeeds. This is now known as the “low-
degree conjecture” of Hopkins [Hop18]. Based on this heuristic, a provable failure
2 Noise-robustness means that the planted structure is resilient to small random per-

turbations [Hop18,HW21].
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of O(log n)-degree polynomials to strongly separate the two distributions pro-
vides a state-of-the-art prediction of the hard and easy regimes for the problem
of interest.

It should be noted that there exists a certain weakness in existing low-degree
hardness evidence for the planted clique problem, which also applies to our
lower bound for the planted random subgraph problem (and that of [ABI+23]).
Both planted clique and planted random subgraph technically do not satisfy
the noise-robust assumption of the low-degree conjecture because the planted
isomorphic copy of H in the graph G is not robust to small perturbations of
G (if 0.01 fraction of the edges of G are randomly flipped then the copy of
H will be destroyed). Noise-robustness is an important assumption; in fact, in a
handful of carefully chosen noise-free problems, low-degree methods are provably
weaker than other brittle polynomial-time methods such as Gaussian elimination
or lattice-basis reduction techniques [ZSWB22]. That being said, the existing
techniques do not appear applicable to graph settings such as planted clique or
the planted random subgraph model.

2 Our Result

Let H be an r-uniform hypergraph over vertex set [k] chosen uniformly at random
(i.e., each r-hyperedge between the vertices of [k] is included independently with
probability half). Let L ⊆ V (H) of size �. Let PH,L and QH,L be the following
distributions over r-uniform hypergraphs G with vertex set [n], where n ≥ k ≥ �:

1. In the planted distribution PH,L, an injective map φ : [k] → [n] is chosen
uniformly at random among all injective maps conditioned on φ(u) = u for
u ∈ L. The hyperedges of G are

G(u1, . . . , ur) =

{
H(φ−1(u1), . . . , φ−1(ur)), if φ−1(u1), . . . , φ−1(ur) exist
a random bit, otherwise.

2. In the null distribution QH,L, the hyperedges of G are

G(u1, . . . , ur) =

{
H(u1, . . . , ur), if u1, . . . , ur ∈ L

a random bit, otherwise.

Uniform r-hypergraphs on n vertices are represented by their adjacency maps(
[n]
r

) → {±1}, with −1 and 1 representing the presence and absence of a hyper-
edge, respectively.

In words, the hypergraph G ∼ PH,L drawn from the planted model has
the public hypergraph H embedded into a uniform choice of k vertices, and is
otherwise purely random. However, the location of L ⊆ V (H) is fixed and public
information. The hypergraph G ∼ QH,L drawn from the random model copies
the subgraph of H on L, but it does not use the part of H outside of L; all
remaining edges of the graph are chosen purely at random. Note that in both
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models, the marginal distribution of G is a uniformly random hypergraph, but
distinguishers know H and L.

In the case r = 2 of graphs, there is a slight difference between the distribu-
tions PH,L,QH,L and those described in the Introduction, namely that we have
imposed the condition φ(u) = u on the leaked vertices in L. This condition is
without loss of generality, and in particular, it does not affect the complexity of
distinguishing PH,L from QH,L.

Following the low-degree framework [KWB19], we consider the degree-D-
likelihood ratio LRD(H,L),

LRD(H,L) = sup
p∈R[G(u):u∈([n]

r )]
deg p≤D

Advp(H,L)

where

Advp(H,L) =
EPH,L

[p(G)] − EQH,L
[p(G)]√

VarQH,L
[p(G)]

.

Here p ∈ R[G(u) : u ∈ (
[n]
r

)
] denotes a multivariate polynomial in the quan-

tities G(u1, . . . , ur) for (u1, . . . , ur) ∈ (
[n]
r

)
with degree at most D. LRD(H,L)

measures the best advantage of a degree-D polynomial distinguisher that can
arbitrarily preprocess H and knows L. Whenever LRD(H,L) = o(1) then no
D-degree polynomial can achieve strong separation between PH,L and QH,L

[COGHK+22, Sect. 7].
To gain intuition on the performance of low-degree polynomials, let us start

with the simplest one, which is the bias of the edges of the hypergraph G:

p(G) =
∑

1≤u1<···<ur≤n

G(u1, . . . , ur).

Assume for simplicity that L = ∅. It holds by direct expansion,

EPH
[p(G)] =

∑
1≤u1<···<ur≤k

H(u1, . . . , ur)

EQH
[p(G)] = 0

VarQH
[p(G)] =

(
n
r

)
.

The likelihood ratio is

Advp(H) = Θ

(
EPH

[p(G)]
nr/2

)
.

As EPH
[p(G)] is a sum of the

(
k
r

)
hyperedge indicators for H, EPH

[p(G)] would
have value ±Θ(kr/2) for a typical choice of H, resulting in an advantage of
Θ((k/n)r/2) (after optimizing between p(G) or −p(G)). The advantage is o(1)
when k ≤ n1−Ω(1) and therefore the distinguisher fails in this regime. Yet, when
k = Θ(n) the calculation suggests the count distinguisher succeeds with Ωr(1)
probability which indeed can be confirmed by being a bit more careful in the
above analysis. Our main theorem shows that other low-degree polynomials can-
not substantially improve upon the edge-counting distinguisher.
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Theorem 1. Assume for some p ∈ N and constant ε > 0, the following bounds
hold on the size of H, k, the leakage number � and the degree D:

1. k ≤ (n − �)n−ε/24p2D2 + �
2. � ≤ min{k, ε1/(r−1)r(log n)1/(r−1)/40} and,
3. D ≤ ε3 (log n)r/(r−1)

/
(

r
r−1 log log n

)
.

Then for any L ⊆ [k] with |L| = �,

(
EHLRD(H,L)2p

)1/p ≤ 2( �
r−1)n−ε

1 − n−ε/2
+ exp

(
−Ω

(
r(ε log n)1+1/(r−1)

))
.

In particular, for p = 1, � = o((log n)1/(r−1)), and ε = Ω(1)

EHLRD(H,L)2 = n−ε+o(1).

The bound is tight in the following ways:

1. Degree: The bound on D is optimal (for constant ε) up to a factor of
O(log log n). A degree-O((r log n)r/(r−1)) distinguisher with high advantage
and time complexity 2O((r log n)1/(r−1)) exists. This is the algorithm that looks
for the presence of a subgraph in G that is identical to the one induced by
the first O(rr/(r−1)(log n)1/(r−1)) vertices in H.

2. Leakage: When
(

�
r−1

) ≥ log(2n) the distinguishing advantage is constant
(for any k > �). The distinguisher that looks for the existence of a vertex in
G whose adjacencies in L match those of an arbitrary vertex in H outside L
has constant advantage, degree

(
�

r−1

)
, and time complexity O(n

(
�

r−1

)
).

3. Advantage: The edge-counting distinguisher described above has advan-
tage (k/n)r/2 = n−εr/2. Our proof can show a matching lower bound in the
absence of leakage. When leakage is present, assuming � > r − 1, the linear
distinguisher

sign
∑
v �∈L

G(1, . . . , r − 1, v) = sign
∑
v �∈L

H(1, . . . , r − 1, v)

has squared advantage Ω((k − �)/(n − �)) = Ω(n−ε) which matches the the-
orem statement.

2.1 Our Proof

Abram et al. obtain their result as a consequence of a worst-case bound for
arbitrary planted H: They prove that for all graphs H with k ≤ n1/2−ε vertices,

LRD(H,L) ≤ o(1) .

As k = n1/2 is tight for clique their method cannot prove a better bound. In
contrast, we average the likelihood ratio over the choice of H, showing that
EH [LRD(H,L)2] is small all the way up to k ≤ n1−ε. By taking the expectation
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over H, we introduce extra cancellations that are necessary to obtain the stronger
bound.

By Markov’s inequality

PH [LRD(H,L)2 ≥ η] ≤ EH [LRD(H,L)2]
η

.

A vanishing expectation implies concentration, namely LRD(H,L) = o(1)
for a 1 − o(1) fraction of H.

The above calculation bounds the advantage for a fixed leakage set L. In order
to bound the advantage of an arbitrary set L for the cryptographic applications,
we also bound the higher moments of LRD(H,L). Using p = � log n and applying
Markov’s inequality with η = 4n−ε+o(1)

PH [LRD(H,L)2 ≥ η] ≤ EH [LRD(H,L)2p]
ηp

≤
(

n−ε+o(1)

η

)p

= 4−� log n ≤ 1
n
(
n
�

) .

Taking a union bound over the
(
k
�

)
choices for L, we can deduce the stronger

result that no leakage set L can attain advantage η:

PH

[
maxL⊆V (H)

|L|=�

LRD(H,L)2 ≥ 4n−ε+o(1)

]
≤ o(1) .

We summarize the final bound on the low-degree advantage for Conjecture 2 as
the following corollary, which includes the parameters.

Corollary 1. For all p ∈ N and η > 0,

PH

[
maxL⊆V (H)

|L|=�

LRD(H,L)2 ≥ η

]

≤
(

n

�

)
η−p

(
2( �

r−1)n−ε

1 − n−ε/2
+ exp

(
−Ω

(
r(ε log n)1+1/(r−1)

)))p

.

3 Proof of Theorem 1

Viewed as an
(
n
r

)
-dimensional vector, every G in the support of QH,L decomposes

as (G′, GL), where GL is the subgraph of G on L and G′ is the remaining part
(indexed by r-subsets that have at least one vertex in [n] \ L).

We start by claiming that without loss of generality, all polynomial distin-
guishers of interest are constant in the coordinates of GL. Indeed, in both the
planted PH,L and null distributions QH,L, the status of the hyperedges in L is
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always fixed. As fixing the L-indexed inputs can only lower the degree of the
distinguishing polynomial p, this assumption holds without loss of generality.

In the null G′ is simply uniformly random in {±1}([n]
r )\(L

r), i.e.,
QH,L(G′, GL) = Q(G′), where Q is the uniform distribution. Now, let us focus
on G′ for the planted PH,L. We can describe the distribution P ′

H,L of G′ as
follows:

1. Choose a random subset S′ of k − � vertices in [n] \ L.
2. Choose a random permutation π′ : S′ → [k] \ L. Extend π′ to a permutation

from S′ ∪ L to [k] by setting π′(u) = u for all u ∈ L.
3. Set

G′(u1, . . . , ur) =

{
H(π′(u1), . . . , π′(ur)), if u1, . . . , ur ∈ S′ ∪ L

a random bit, otherwise.

Using the above observations we have,

LRD(H,L) = sup
p∈R[G(u):u∈([n]

r )]
deg p≤D

EPH,L
[p(G)] − EQH,L

[p(G)]√
VarQH,L

[p(G)]

= sup
p∈R[G′(u):u∈([n]

r )\([�]r )]
deg p≤D

EP′
H,L

[p(G′)] − EQ[p(G′)]√
VarQ[p(G′)]

Since the null distribution Q is a product measure, by a standard linear
algebraic argument in the literature of the low-degree method (see [KWB19] or
[COGHK+22, Lemma 7.2]), the optimal degree-D polynomial takes an explicit
form. Using the expansion with respect to the Fourier-Walsh basis {χα(G′) =∏

e∈α G′
e, α ⊆ (

[n]
r

) \ (
[�]
r

)}, the explicit formula for the squared advantage is

LRD(H,L)2 =
∑

α⊆([n]
r )\(L

r)
1≤|α|≤D

L̂R(α|H,L)2 (3)

where

L̂R(α|H,L) = EQ
P ′

H,L(G′)
Q(G′)

χα(G′) = EP′
H,L

χα(G′).

Now we expand the square on the right-hand side of (3) and take the expectation
over H.

EHLRD(H,L)2 =
∑

α⊆([n]
r )\(L

r)
1≤|α|≤D

Eχα(G′)χα(G′′), (4)

where the right-hand expectation is now taken over both the choice of H and
the choice of two independent “replicas” G′, G′′ sampled from P ′

H . The joint
distribution of G′ and G′′ is determined by the independent choices of H, the
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subsets S′, S′′, and the permutations π′, π′′. Equation (4) gives a formula for
the second moment of the likelihood ratio with respect to the random variable
H, which we spend the rest of this section evaluating; higher moments will be
computed later.

We fix α ⊆ (
[n]
r

) \ (
L
r

)
and upper bound the expectation. Since we are

considering the expectation of a Fourier character, it will often be zero. Let
V (α) be the set of vertices in [n] spanned by α. If S′ ∪ L or S′′ ∪ L does
not entirely contain V (α) then the expectation is zero: if, say, e ∈ α′ is not
contained in S′ ∪ L, then G′(e) is independent of all other bits appearing in
Eχα(G′)χα(G′′) =

∏
e∈α G′(e)G′′(e) resulting in a value of zero. Therefore

E[χα(G′)χα(G′′)]
= E[χα(G′)χα(G′′) | S′ ∩ S′′ ⊇ V (α) \ L] · P[S′ ∩ S′′ ⊇ V (α) \ L]

= E[χα(G′)χα(G′′) | S′ ∩ S′′ ⊇ V (α) \ L] · P[S′ ⊇ V (α) \ L]2
(5)

by independence of S′ and S′′. As S′ is a random k-subset of [n] \ L,

P[S′ ⊇ V (α) \ L] =
(k − �)(k − � − 1) · · · (k − � − |V (α) \ L| + 1)
(n − �)(n − � − 1) · · · (n − � − |V (α) \ L| + 1)

≤
(

k − �

n − �

)|V (α)\L|
. (6)

Conditioned on both S′ and S′′ containing V (α) \ L,

χα(G′)χα(G′′) =
∏

(u1,...,ur)∈α

G′(u1, . . . , ur)G′′(u1, . . . , ur)

=
∏

(u1,...,ur)∈α

H(π′(u1), . . . , π′(ur))H(π′′(u1), . . . , π′′(ur)). (7)

As H consists of i.i.d. zero mean ±1 entries, this expression vanishes in expec-
tation unless every hyperedge in the collection

(ψ(u1), . . . , ψ(ur)) : (u1, . . . , ur) ∈ α,ψ ∈ {π′, π′′}
appears exactly twice, in which case the product equals to one. This is only
possible if π : S′ → S′′ given by π = (π′′)−1 ◦ π′ restricts to an automorphism of
α. In particular, π must fix the set V (α). As π outside L is a permutation which
is chosen uniformly at random, we conclude that (7) is upper bounded by,

P[π fixes V (α)] =
|V (α) \ L|!

(k − �)(k − � − 1) · · · (k − � − |V (α) \ L| + 1)

≤
( |V (α) \ L|

k − �

)|V (α)\L|
. (8)

Plugging (6) and (8) into (5) and then into (4) yields

ELRD(H,L)2 ≤
∑

α⊆([n]
r )\(L

r)
1≤|α|≤D

( |V (α) \ L| (k − �)
(n − �)2

)|V (α)\L|
. (9)
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This bound only depends on the hypergraph α through |V (α) \ L|. For v =
1, . . . , rD let

N(v,D) =
∣∣{α ⊆ (

[n]
r

) \ (
L
r

)
: |V (α) \ L| = v, 1 ≤ |α| ≤ D

}∣∣ . (10)

Grouping the terms on the right-hand side by the value of v = |V (α) \ L| gives

ELRD(H)2 ≤
rD∑
v=1

N(v,D) ·
(

v(k − �)
(n − �)2

)v

. (11)

To finish the proof we will demonstrate that this sum is dominated by the leading
term v = 1. We split this proof using the following two propositions.

In the first proposition, we bound the “low” vertex size part.

Proposition 1. Assume that e(k − �)/(n − �) ≤ n−ε. Then for every 0 < δ < ε
it holds for sufficiently large n,

�t	∑
v=1

N(v,D)
(

v(k − �)
(n − �)2

)v

≤ 2( �
r−1) · n−ε

1 − n−ε+δ
,

where

t := e−1(r − 1)(δ log n)1/(r−1) − � (12)

In the second proposition, we bound the “high” vertex size part.

Proposition 2. Assume that e(k−�)/(n−�) ≤ n−ε. Assume also that for some
δ > 0 for which 0 < δ < ε, it holds

1. � ≤ (r/9)(δ log n)1/(r−1)

and,
2. D ≤ εδ2(log n)r/(r−1)/

(
r

r−1 log log n
)
.

Then for t given in (12) if also δ < 1/4 it holds,

rD∑
v=�t	+1

N(v,D)
(

v(k − �)
(n − �)2

)v

≤ exp
(
−Ω(δ1/(r−1)εr(log n)r/(r−1))

)
.

Notice now that directly combining both the Propositions for δ = ε/4 directly
implies Theorem 1.

3.1 Proof of Proposition 1

Proof. For fixed v, the set V (α) \ L can be chosen in
(
n−�

v

)
ways. The subset α

can then include any of the hyperedges in V (α) of which there are at most
(
v+�

r

)
,



Low-Degree Security of the Planted Random Subgraph Problem 267

except those that at completely contained in L of which there are
(

�
r

)
, leading

to the bound:

N(v,D) ≤
(

n − �

v

)
· 2(v+�

r )−(�
r). (13)

Bounding N(v,D) by (13) and using the standard binomial coefficient bound(
a
b

) ≤ (ea/b)b, the left hand side is at most

t∑
v=1

(
e(k − �)
n − �

)v

2(v+�
r )−(�

r)

As e(k − �)/(n − �) ≤ n−ε = n−ε+δ · nδ, this is bounded by

t∑
v=1

n−(ε−δ)v · 2−δv log2 n+(v+�
r )−(�

r). (14)

Let f(v) = −δv log2 n +
(
v+�

r

) − (
�
r

)
, v ≥ 1. For all integer v ≥ 1,

f(v + 1) − f(v) = −δ log2 n +
(

v + �

r − 1

)
≤ −δ log n +

(
e(v + �)
r − 1

)r−1

.

By the definition of t, this is negative when 1 ≤ v ≤ t, so f(v) is maximized at
v = 1. Therefore (14) is at most

�t	∑
v=1

n−(ε−δ)v · 2−δ log n+(�+1
r )−(�

r) ≤ 2( �
r−1) · n−ε

1 − n−ε+δ

using the identity
(
�+1

r

) − (
�
r

)
=

(
�

r−1

)
and the geometric sum formula. ��

3.2 Proof of Proposition 2

Proof. When v is large, the bound (13) can be improved by taking into account
that at most D of the hyperedges can be chosen:

N(v,D) ≤
(

n − �

v

)
· D

((
v+�

r

) − (
�
r

)
D

)

≤ D

(
e(n − �)

v

)v

·
(

e
(
v+�

r

)
D

)D

≤
(

e(n − �)
v

)v

·
(

e(v + �)
r

)rD

· D

(
e

D

)D

.
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Under the assumption e(k−�)/(n−�) ≤ n−ε the summation of interest is at most

rD∑
v=t+1

(
e(k − �)
n − �

)v

·
(

e(v + �)
r

)rD

· D

(
e

D

)D

≤ rD2

(
e

D

)D

· n−εt

(
e(rD + �)

r

)rD

≤ rD2

(
e

D

)D

· n−εt
(
e(D + �)

)rD
.

As D ≤ εδ2(log n)r/(r−1)/( r
r−1 log log n) and � ≤ (r/9)(δ log n)1/(r−1), for suffi-

ciently large n,

D log
(
(D + �)/(εδ2)

) ≤ εδ2(log n)r/(r−1),

Hence, for sufficiently small constant 0 < δ < 1, for sufficiently large n it holds

D log (e(D + �))) ≤ εδ2(log n)r/(r−1),

Using also the elementary inequality D2(e/D)D ≤ 8 we conclude that the sum-
mation of interest is at most

8rn−εt exp
(
εδ2(log n)r/(r−1)

)
.

Plugging in the direct bound from the definition of t and the upper bound on
the leaked vertices,

t ≥ r

7
(δ log n)1/(r−1)

we conclude that the summation of interest is at most

8r exp
(

−ε
r − 1

e
δ1/(r−1)(log n)r/(r−1) + εδ2(log n)r/(r−1)

)
.

Choosing now δ < 1/4 concludes the result. ��

3.3 Extension to Higher Moments

Now we extend the calculation in Theorem 1 from p = 1 to higher p. The 2p-th
moment of LRD(H,L) is

EHLRD(H,L)2p = EH

( ∑
α⊆([n]

r )\(L
r)

1≤|α|≤D

EG′∼P′
H

G′′∼P′
H

χα(G′)χα(G′′)

)p

=
∑

α1,...,αp⊆([n]
r )\(L

r)
1≤|αi|≤D

E
p∏

i=1

χαi
(G′

i)χαi
(G′′

i )
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where the expectation is over H and also over the replicas G′
i, G

′′
i sampled inde-

pendently from P ′
H . Each G′

i is equivalently sampled as S′
i and π′

i (and likewise
G′′

i as S′′
i and π′′

i ).
Fix the Fourier characters α1, . . . , αp and let V (αi) be the set of vertices in

[n] spanned by αi. First, the expectation is only nonzero if all of the sets S′
i and

S′′
i contain V (αi) \ L. By (6) this occurs with probability at most

P [∀i ∈ [p]. S′
i ∩ S′′

i ⊇ V (αi) \ L] ≤
(

k − �

n − �

)2
∑p

i=1 |V (αi)\L|
. (15)

Conditioned on this event,
p∏

i=1

χαi
(G′

i)χαi
(G′′

i ) =
p∏

i=1

χπ′
i(αi)(H)χπ′′

i (αi)(H) .

When the expectation is taken over H, this is only nonzero if every hyperedge
appears an even number of times among the collection of edges

C := (ψi(u1), . . . , ψi(ur)) : i ∈ [p], (u1, . . . , ur) ∈ αi, ψi ∈ {π′
i, π

′′
i } .

In order for this to occur, every vertex in the image of the ψi must be in the
image of at least two ψi. Let us say that the collection of embeddings is a double
cover if this occurs. Then

EH,π′
i,π

′′
i

p∏
i=1

χπ′
i(αi)(H)χπ′′

i (αi)(H)

= Pπ′
i,π

′′
i
[C is an even collection]

≤ Pπ′
i,π

′′
i
[(π′

i, π
′′
i )i∈[p] is a double cover] . (16)

Let V =
∑p

i=1 |V (αi) \ L|. We claim

Pπ′
i,π

′′
i
[(π′

i, π
′′
i )i∈[p] is a double cover] ≤ (2V )2V

(k − �)(k − � − 1) · · · (k − � − V + 1)
.

(17)
This is based on the following surjection a.k.a union bound. The total number of
vertices mapped by all the permutations is 2V . We take any partition of the 2V
vertices such that every block of the partition has size at least two. There are
at most (2V )2V such partitions. We go through the vertices in some fixed order,
and for each vertex which is not the first member of its block of the partition,
we obtain a factor of ≈ 1

k−� for the probability that the vertex is mapped to the
same element as the other members of its block of the partition. Since the blocks
have size at least two (in order to be a double cover), we obtain at least V factors
of ≈ 1

k−� in this way. We upper bound ≈ 1
k−� by a rising factorial to obtain the

bound in (17).
If V ≤ k−�

2 , then (17) can simplified to

(2V )2V

(k − �)(k − � − 1) · · · (k − � − V + 1)
≤

(
8V 2

k − �

)V

. (18)
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On the other hand, if V ≥ k−�
2 , then the right-hand side is at least 1. Combining

these two possible cases, we conclude,

Pπ′
i,π

′′
i
[(π′

i, π
′′
i )i∈[p] is a double cover] ≤

(
8V 2

k − �

)V

. (19)

Now we return to the main calculation of EHLRD(H,L)2p. Combining (15),
(19),

EHLRD(H,L)2p =
∑

α1,...,αp⊆([n]
r )\(L

r)
1≤|αi|≤D

E
p∏

i=1

χαi
(G′

i)χαi
(G′′

i )

≤
∑

α1,...,αp⊆([n]
r )\(L

r)
1≤|αi|≤D

(
8V 2(k − �)
(n − �)2

)V

≤
∑

α1,...,αp⊆([n]
r )\(L

r)
1≤|αi|≤D

(
8p2D2(k − �)

(n − �)2

)∑p
i=1 |V (αi)\L|

(V ≤ pD)

=

( ∑
α⊆([n]

r )\(L
r)

1≤|α|≤D

(
8p2D2(k − �)

(n − �)2

)|V (α)\L|)p

The inner summation is nearly the combinatorial quantity we bounded in Eq.
(9) when computing EHLRD(H,L)2. The only difference is the factor 8p2D2

which may be larger than what we had before. This factor can be negated by
scaling down k−�

n−� . Using the same counting arguments as before with the slightly
stronger assumption on k, we conclude the desired moment bound.

4 Cryptographic Applications

4.1 Hypergraph Secret Sharing

The secret sharing scheme of Abram et al. was stated for forbidden graph access
structures. The construction extends to partial access structures (R,S) where R
is a collection of r-subsets and S consists of all independent sets of R of size at
most �.

Construction 2. Forbidden hypergraph secret sharing: Syntactically replace
“graph” by “r-uniform hypergraph” and (u, v) by (u1, . . . , ur) in Construction 1.

This scheme reconstructs all {u1, . . . , ur} ∈ R by (2).

Proposition 3. Assume (H,PH,L) and (H,QH,L) are (s, ε)-indistinguishable
for all L ⊆ V (H) with |L| = �. Then for every independent set I ⊆ R of size at
most �, shares of 0 and 1 are (s, 2ε)-indistinguishable by parties in I.
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Proof. Assume parties in I can 2ε-distinguish shares of 0 and 1 using distin-
guisher D. By the triangle inequality, D ε-distinguishes (Hs, G, φ(i) : i ∈ I)
from (H,G, φ(i) : i ∈ I) where

G(u1, . . . , ur) =

{
H(u1, . . . , ur), if u1, . . . , ur ∈ I

a random bit, otherwise.

for at least one value of s. Let D′ be the circuit that, on input (H ′, G, ui : i ∈ I),
outputs D(H ′ ⊕ sR,G, ui : i ∈ I). As R does not contain any hyperedges within
I, by (1), D′(PH,I) is identically distributed to D(Hs, G, φ(i) : i ∈ I). As H is
random, D′(QH,I) is identically distributed to D(H,G, φ(i) : i ∈ I). Therefore
D′ and D have the same advantage. ��

The class of access structures can be expanded to allow the reconstruction
set R to consist of arbitrary sets, as long as the size of all minimal sets is at most
r. This is accomplished by a reduction to size exactly r. Let R′ ⊆ [n + r − 1] be
the r-uniform hypergraph

R′ =
{
A ∪ {n + 1, . . . , n + r − |A|} : A ∈ R

}
.

Construction 3. Apply Construction 2 to R′ with the shares of parties n +
1, . . . , n + r − 1 made public.

If all sets in R′ can resconstruct in Construction 2 then all sets in R can
reconstruct in Construction 3. As for secrecy, if Construction 2 is secure against
all independent sets in R of size at most �, then Construction 3 is secure against
such sets of size at most � − r + 1.
Could Construction 2 give a provable separation between the minimum share
size of information-theoretic and computational secret sharing? We argue that
this is unlikely barring progress in information-theoretic secret sharing lower
bounds. The share size in Construction 2 is (1 + Ω(1))(log n). However, the
share size lower bounds of [KN90,BGK20] do not exceed log n for any known
n-party access structure.

In contrast, Csirmaz [Csi97] proved that there exists an n-party access
structure with share size Ω(n/ log n). Using Csirmaz’s method, Beimel [Bei23]
constructed total r-hypergraph access structures that require share size
Ω(n2−1/(r−1)/r) for every r ≥ 3.

We argue that Csirmaz’s method cannot prove a lower bound exceeding �
for any (partial) access structures in which secrecy is required to hold only for
sets of size up to �. Csirmaz showed that a scheme with share size s implies the
existence of a monotone submodular function f (the joint entropy of the shares
in A) from subsets of {1, . . . , n} to real numbers that satisfies the additional
constraints

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) + 1 if A,B ∈ S and A ∪ B ∈ R (20)
f(A) ≤ s for all A of size 1. (21)
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Proposition 4. Assuming all sets in S have size at most �, there exists a mono-
tone submodular function satisfying (20) and (21) with s = �.

As our scheme does not tolerate Ω(log n) bits of leakage, the best share size
lower bound that can be proved using Csirmaz’s relaxation of secret sharing is
� = o(log n). The proof of Proposition 4 is a natural generalization of [Csi97,
Theorem 3.5] to partial access structures.

Proof (Proposition 4). The function f(A) =
∑|A|

t=1 max{�−t+1, 0} is monotone,
submodular, satisfies (20) for every R ⊆ S, and (21) with s = �. ��

4.2 Multiparty PSM for Random Functions

Given a function F : [k]r → {±1}, the random hypergraph embedding of F is
the r-hypergraph F on rk vertices (x, i) : x ∈ [k], i ∈ [r] such that

F ((x1, 1), . . . , (xr, r)) = F (x1, . . . , xr).

All other potential hyperedges of F are sampled uniformly and independently
at random.

We describe the r-partite generalization of Abram et al.’s PSM protocol. Let
φ : [k] × [r] → [n] be a random injection and let G be the r-hypergraph on n
vertices given by

G(u1, . . . , ur) =

{
F (φ−1(u1), . . . , φ−1(ur)), if φ−1(u1), . . . , φ−1(ur) exist
a random bit, otherwise.

Construction 4. r-party PSM protocol for F :

In the setup phase, G is published and φ is privately given to the parties.
In the evaluation phase,

1. Party i is given input xi.
2. Party i forwards ui = φ(xi, i) to the evaluator.
3. The evaluator outputs G(u1, . . . , ur).

The protocol is clearly functional. A reasonable notion of security with
respect to random functions F should allow the parties’ input choices to depend
on F . An input selector is a randomized function I that, on input F , produces
inputs I(F ) = (x1, . . . , xr) for the r parties.

We say a protocol is (s′, s, ε) (simulation) secure against a random function
if for every input selector I there exists a size-s′ simulator S for which the
distributions

(F,G, φ(x1, 1), . . . , φ(xr, r)) and (F, S(F, F (x1, . . . , xr))) (22)

are (s, ε)-indistinguishable, where (x1, . . . , xr) is the output of I(F ).
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Proposition 5. Assume (H,G,L(H)) with G ∼ PH,L(H) versus G ∼ QH,L(H)

are (s, ε)-indistinguishable with parameters |V (H)| = kr, |V (G)| = n, and � = r.
Then Construction 4 is (O(

(
n
r

)
), s − O(

(
n
r

)
), ε)-secure.

We label the vertices of H by pairs (x, r) ∈ [k] × [r].

Proof. On input (F, y), the simulator S

1. chooses random u1, . . . , ur ∈ [n]
2. sets G(u1, . . . , ur) = y
3. samples all other possible hyperedges of G independently at random
4. outputs (G, u1, . . . , ur).

We describe a reduction R that, given a distinguisher D for (22), tells apart
(H,G,L(H)) with G ∼ PH,L(H) versus G ∼ QH,L(H) for some leakage function
L. On input (H,G, z1, . . . , zr),

1. set F to be the function F (x1, . . . , xr) = H((x1, 1), . . . , (xr, r))
2. output (F, π(G), π(z1), . . . , π(zr)) for a random permutation π on [n] (which

acts on G as a hypergraph isomorphism).

Let L be the leakage function that, on input H, runs I(F ) to obtain
(x1, . . . , xr), and outputs ((x1, 1), . . . , (xr, r)).

This reduction preserves distinguishing advantage as it maps the distribu-
tions (22) into the distributions (H,PH,L(H), L(H)) and (H,QH,L(H), L(H)),
respectively. It can be implemented in size O(

(
n
r

)
), giving the desired parame-

ters. ��
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Abstract. Sparse linear regression (SLR) is a well-studied problem in
statistics where one is given a design matrix X ∈ R

m×n and a response
vector y = Xθ∗ + w for a k-sparse vector θ∗ (that is, ‖θ∗‖0 ≤ k) and
small, arbitrary noise w, and the goal is to find a k-sparse ̂θ ∈ R

n that
minimizes the mean squared prediction error 1

m
‖X̂θ −Xθ∗‖2

2. While �1-
relaxation methods such as basis pursuit, Lasso, and the Dantzig selec-
tor solve SLR when the design matrix is well-conditioned, no general
algorithm is known, nor is there any formal evidence of hardness in an
average-case setting with respect to all efficient algorithms.

We give evidence of average-case hardness of SLR w.r.t. all effi-
cient algorithms assuming the worst-case hardness of lattice problems.
Specifically, we give an instance-by-instance reduction from a variant
of the bounded distance decoding (BDD) problem on lattices to SLR,
where the condition number of the lattice basis that defines the BDD
instance is directly related to the restricted eigenvalue condition of
the design matrix, which characterizes some of the classical statistical-
computational gaps for sparse linear regression. Also, by appealing to
worst-case to average-case reductions from the world of lattices, this
shows hardness for a distribution of SLR instances; while the design
matrices are ill-conditioned, the resulting SLR instances are in the iden-
tifiable regime.

Furthermore, for well-conditioned (essentially) isotropic Gaussian
design matrices, where Lasso is known to behave well in the identifiable
regime, we show hardness of outputting any good solution in the uniden-
tifiable regime where there are many solutions, assuming the worst-case
hardness of standard and well-studied lattice problems.

1 Introduction

We study the fundamental statistical problem of sparse linear regression where
one is given a design matrix X ∈ R

m×n and responses y ∈ R
m where

y = Xθ∗ + w

for a hidden parameter vector θ∗ ∈ R
n which is k-sparse, i.e., it has at most k

non-zero entries, and a small, arbitrary noise w ∈ R
m. The goal is to output a
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k-sparse vector ̂θ such that the (mean squared) prediction error

1
m

‖X̂θ − Xθ∗‖22

is as small as possible. Each row of X corresponds to a sample or a measurement,
and each column of X corresponds to a feature of the model θ∗.

Information-theoretically, it is possible to achieve prediction error

1
m

∥

∥

∥X̂θ − Xθ∗
∥

∥

∥

2

2
≤ 4 ‖w‖22

m
,

regardless of the design matrix X. Algorithmically, however, the prediction error
achieved by many efficient polynomial-time algorithms (such as �1-relaxation or
�1-regularization including basis pursuit and Lasso estimators [Tib96,CDS98] as
well as the Dantzig selector [CT07]) depends on the conditioning of the design
matrix X—specifically, the restricted-eigenvalue constant ζ(X), which essentially
lower bounds the smallest singular value of X restricted to nearly sparse vectors.
(See Definition 6 for a formal definition.) By adapting the analysis of [NRWY12]
(see Theorems 2 and 3), the thresholded Lasso estimator ̂θTL achieves prediction
error1

δ2Lasso :=
1
m

‖X̂θTL − Xθ∗‖22 ≤ O

( ‖w‖22 · k2

ζ(X)2 · m

)

.

In particular, when the design matrix X is well-conditioned, i.e., ζ(X) = Ω(1)
which, for example, happens when the rows are drawn from N (0, In×n) for
m = Ω(k log n), the �1-relaxation or �1-regularization algorithms achieve the
information-theoretically optimal prediction error (up to polynomial factors in
k). The smaller the restricted eigenvalue constant, the worse the prediction error
bound. We emphasize that without computational bounds, the achievable pre-
diction error does not depend on the characteristics of the design matrix X.

In several naturally occurring high-dimensional regression problems, the
design matrix X may be ill-conditioned as the features, or even the samples,
could be correlated. An important question then is to understand which design
matrices admit efficient sparse linear regression algorithms and which do not.
Stated differently, is Lasso (and friends) the best possible algorithm for sparse
linear regression? This is the central question of interest in this paper.

A handful of works have started to explore this question both from the algo-
rithmic front and the hardness front. On the algorithmic front, the recent work
of [KKMR21] showed an algorithm called pre-conditioned Lasso which achieves
low prediction error for certain ill-conditioned matrices where Lasso provably
fails. On the hardness front, [KKMR22,KKMR21] prove hardness against par-
ticular algorithms, namely preconditioned Lasso. In terms of hardness against
all efficient algorithms, [ZWJ14] construct a fixed design matrix XZWJ ∈ R

m×n

1 This bound assumes X satisfies a certain column-normalization condition (see Defi-
nition 4).
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such that solving the k-sparse linear regression problem with better prediction
error than Lasso for k ≈ n/4 on an arbitrary (worst-case) k-sparse ground truth
θ∗ implies that NP ⊆ P/poly.2 While an exciting initial foray into the land-
scape of hardness results for sparse linear regression, [ZWJ14] inspires many
more questions:

1. Most importantly, which design matrices X are hard for sparse linear regres-
sion? While [ZWJ14] gives us an example in the form of a single XZWJ, it does
not give us much insight into the hardness profile of a given design matrix.

2. The work of [ZWJ14] shows that finding k-sparse solutions for k ≈ n/4 (i.e.,
constant factor sparsity) is hard, but is it significantly easier to find much
sparser solutions, e.g. what happens with polynomial sparsity, logarithmic
sparsity or even constant sparsity? The problem certainly becomes easier,
but can we nevertheless show evidence of hardness?

3. A related question is that of fine-grained hardness: while [ZWJ14] shows evi-
dence against polynomial-time algorithms, could there be non-trivial algo-
rithms that solve sparse linear regression significantly faster than brute force
search, i.e., in time no(k)?

In this paper, we show hardness results for sparse linear regression that
address all of these questions. In a nutshell, and hiding some details, we show an
instance-by-instance reduction from (a variant of) the bounded distance decoding
problem on a lattice with a given basis B to sparse linear regression w.r.t. a design
matrix X that is essentially drawn from the Gaussian distribution N (0,Σ),
where Σ = Σ(B) is determined by B. In particular, this allows us to start from
conjectured hard instances of lattice problems and construct (nearly) Gaussian
design matrices (with a covariance matrix related to the lattice basis) for which
k-SLR is hard, partially addressing Question 1. Our main theorem (Theorem 1;
see also Remark 2) addresses Questions 2, handling a large range of sparsity
parameters k, and 3, by showing a fine-grained reduction.

As a secondary result, even for well-conditioned (essentially) isotropic Gaus-
sian design matrices, where Lasso is known to behave well in the identifiable
regime, we show hardness of outputting any good solution in the less standard
unidentifiable regime where there are many solutions, assuming the worst-case
hardness of standard and well-studied lattice problems.

1.1 Our Results

Binary Bounded Distance Decoding. Our source of hardness is lattice problems.
Given a matrix B ∈ R

d×d, the lattice generated by B is

L(B) = {Bz : z ∈ Z
d}.

2 They show slightly more, i.e., they construct a distribution over θ∗ for which sparse
linear regression is hard; however, to the best of our knowledge, this distribution is
not polynomial-time sampleable. Indeed, if this distribution were sampleable, their
result would show a worst-case to average-case reduction for NP which remains a
major open problem in complexity theory.
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A lattice has many possible bases: indeed, BU is a basis of L(B) whenever
U is a unimodular matrix, i.e., an integer matrix with determinant ±1. The
minimum distance λ1(B) of the lattice L(B) is the (Euclidean) length of the
shortest non-zero vector in L(B). Note that λ1(B) does not depend on B, only
on L(B).3

A canonical lattice problem is the bounded distance decoding (BDD): given
a basis B of a lattice, a target vector t ∈ R

d, and a parameter α < 1/2, find a
lattice vector v ∈ L(B) such that dist(t,v) ≤ α · λ1(B) given the promise that
such a vector exists (equivalently, that t is sufficiently close to the lattice). By
the bound on α, there is a unique such vector. The BDD problem has been very
well studied, especially in the last decade, and is widely believed to be hard, for
instance, forming the basis of a new generation of post-quantum cryptographic
algorithms recently standardized by [NIS]. Our hardness assumption is a variant
called binary BDD (see, e.g. [KF15]) which asks for a vector v ∈ B · {±1}d

that is close to the target t (as above), again under the promise that such a
vector exists. Equivalently, given a vector t = Bz + e where z ∈ {±1}d and
‖e‖ ≤ α · λ1(B), the problem is to find z.

Both BDD and binary BDD are believed to be hard for arbitrary lattice
bases B. Indeed, a canonical way to solve (binary as well as regular) BDD is
to employ Babai’s rounding algorithm [Bab86] which works as follows: compute
and output

round(B−1t) = round(z + B−1e) = z + round(B−1e) ,

namely, round each coordinate of B−1t to the nearest integer. This works as
long as each coordinate of B−1e is at most 1/2, which happens as long as e
is small and B has a good condition number. In particular, Babai succeeds if
α = O(1/κ(B)), where κ(B) = σmax(B)/σmin(B) is the condition number of B.
In other words, the condition number of B determines the performance of the
algorithm.

To be sure, there are algorithms for binary BDD that perform slightly bet-
ter than BDD: in particular, [KF15] show a 2O(d/ log log(1/α))-time algorithm for
binary BDD for a large range of α (see Theorem 7 of the full version [GVV24]).
In particular, for α = 1/poly(d), this becomes a 2O(d/ log log d)-time algorithm
for binary BDD, whereas the best run-time for BDD algorithms in this regime is
2Θ(d). More than that, [KF15] study binary BDD (and generalizations) in detail
and give evidence of hardness: they show reductions from variants of GapSVP and
UniqueSVP to (a slight generalization) of binary BDD, as well as a direct reduc-
tion from low-density subset sum to binary BDD [KF15, Theorem 14]. In fact,
[KF15] use this reduction and their 2O(d/ log log(1/α))-time algorithm for binary
BDD to give a state-of-the-art algorithm for low-density subset sum. Improv-

3 We actually use a slightly different definition of λ1(B) which is unimportant for this
exposition; we refer the reader to Sect. 2 for more details.



280 A. Gupte et al.

ing on this 2O(d/ log log(1/α)) run-time bound for binary BDD would consequently
give better algorithms for low-density subset sum.4

Our First Result. Our first result shows that for every lattice basis B, there
is a related covariance matrix Σ = Σ(B) such that if binary BDD is hard
given the basis B, then k-SLR is hard w.r.t. an essentially Gaussian design
matrix whose rows are i.i.d. N (0,Σ).5 The more precise statement follows. For
β ∈ [0, 2], we say that a k-SLR algorithm is a β-improvement of Lasso if on input
(X ∈ R

m×n,y ∈ R
m), the algorithm achieves prediction error δ2 where

δ2 = δ2Lasso · ζ(X)β · poly(k, log n) ≤ ‖w‖22
ζ(X)2−β · m

· poly(k, log n).

Note that β = 0 corresponds to Lasso itself, and β = 2 achieves the information-
theoretic bound (up to poly(k, log n) factors).

Theorem 1. There is a poly(m, k · 2d/k)-time randomized reduction from
BinaryBDD in d dimensions with parameter α ≤ 1/10 to k-SLR in dimension
n = k · 2d/k and m ≥ 17d samples that succeeds with probability 1 − e−Ω(m).
Moreover, the reduction maps a BinaryBDD instance w.r.t. lattice basis B to
design matrices X ∈ R

m×n where

– the distribution of each of the top m − k rows is i.i.d. N (0,Σ) where Σ =
G�

sparseB
�BGsparse for a fixed, instance-independent matrix Gsparse ∈ R

d×n;
– each of the bottom k rows is proportional to a fixed, instance-independent

vector that depends only on n and k; and
– if there is a k-SLR polynomial-time algorithm that is a β-improvement to

Lasso, then there is a poly(m, k · 2d/k)-time algorithm for BinaryBDD in d
dimensions with parameter

α ≤ 1
poly(d) · κ(B)2−β

w.r.t. lattice bases B.

The first qualitative take-away message from our theorem is: if you beat
Lasso6, you beat Babai. The performance of the plain Lasso algorithm is deter-
mined by the restricted eigenvalue constant; analogously, the performance of
4 We remark that the binary LWE (learning with errors) problem, where the LWE

secret is binary, is not a special case of binary BDD even though LWE is a special
case of BDD. Indeed, when writing a binary LWE instance as a BDD instance in
the canonical way, only a part of the coefficient vector of the closest lattice point is
binary. Thus, even though binary LWE is equivalent in hardness to LWE, [GKPV10,
BLP+13,Mic18], we do not know such a statement relating binary BDD and BDD
that preserves conditioning of the lattice basis.

5 The bottom k × n sub-matrix of X (call it X2) is a fixed, worst-case, matrix while
each of the top rows is drawn i.i.d. from N (0, Σ). There are two natural ways to
remove the “worst-case” nature of X2. We discuss them in Sect. 3.1.

6 More precisely, β-improve Lasso for β > 1.
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Babai’s rounding algorithm is bounded by the condition number of the basis
matrix. Our theorem says that if you come up with an algorithm that beats the
Lasso guarantee, in the sense of achieving prediction error 1

ζ(X)2−β for β > 1,
then you have at hand an algorithm that beats the BDD approximation fac-
tor achieved by Babai’s algorithm by a corresponding amount, namely solve
BDD to within a factor of 1

κ(B)2−β , whereas Babai’s algorithm itself achieves
an approximation factor of 1

κ(B) . When β = 2, the k-SLR algorithm achieves
the information-theoretic optimal prediction error (up to polynomial factors in
d and k) in which case it gives us a polynomial time binary BDD algorithm for
α that is inverse-polynomial in d.

To be sure, there are (recent) algorithms that solve sparse linear regres-
sion beating the RE constant bound, e.g. [KKMR21,KKMR23]. These algo-
rithms work by first pre-conditioning the design matrix and running the plain
Lasso w.r.t. the preconditioned matrix. Our reduction then says that for
BDD basis matrices which map to the easy k-SLR instances identified by
[KKMR21,KKMR23], you can beat Babai. However, that should not be sur-
prising, in general: there are basis matrices B which can be “pre-conditioned”,
e.g. using the Lenstra-Lenstra-Lovász basis reduction algorithm or its vari-
ants [LLL82,Sch87], thereby improving their condition number and conse-
quently the performance of Babai. Indeed, in our view, understanding the
relationship between the two types of preconditioning transformations—one
from the k-SLR world [KKMR21,KKMR23] and the other from the lattice
world [LLL82,Sch87]—is a fascinating open question.

On the other hand, there are also basis matrices whose condition number
cannot be improved in polynomial time. (If not, then running such a condition-
ing algorithm and then Babai would give efficient worst-case lattice algorithms,
which we believe do not exist.) Indeed, given what we know about the hard-
ness of worst-case lattice problems, our theorem identifies a large class of design
matrices where solving sparse linear regression is at least as hard.

Furthermore, our theorem shows the hardness of sparse linear regression for
a range of sparsity parameters, addressing Question 2. The sparser the instance,
the longer the run-time of the binary BDD algorithm guaranteed by the reduc-
tion. On one extreme, when k = Ω(d/ log d), the reduction runs in poly(d) time
and the sparsity k = n1−ε can be set to any polynomial function of n. On
the other extreme, when k is sufficiently super-constant and (say) β = 2, we get
slightly subexponential-time (in d) algorithms for binary BDD, beating the algo-
rithm of [KF15] for k = ω(log log d). Our reduction also addresses Question 3,
because gives us fine-grained hardness of k-SLR algorithms running in time no(k)

(see Remark 2).
In order to directly address our Question 1, we can combine our main reduc-

tion with known lattice reductions to generate an average-case hard instance
for k-SLR. In particular, we can reduce the average-case learning with errors
problem [Reg09], to (standard) BDD with bounded norm solutions, and then to
binary BDD using a gadget from [MP12] (see full version [GVV24]). In turn,
since the learning with errors problem has a reduction from worst-case lattice
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problems [Reg09,Pei09], this hardness result relies only on worst-case hardness
assumptions, despite being average-case over k-SLR instances. While the result-
ing distribution over sparse linear regression design matrices is degenerate and
ill-conditioned, the resulting k-SLR instance is still in the identifiable regime
and information-theoretically solvable. As far as the authors are aware, this is
the first average-case hardness result over k-SLR instances, and relies only on
worst-case lattice assumptions.

Finally, as a teaser to our techniques, we emphasize that lattice problems
are fundamentally about integrality, while sparse-linear regression has no inte-
grality constraint. To make our reduction go through, we convert an integrality
constraint in the lattice problem into a sparsity constraint by enforcing an addi-
tional linear constraint via a certain gadget matrix. See Sect. 3.2 for more details.

Our Second Result. Our second result, Theorem 6, shows the hardness of sparse
linear regression with a design matrix X whose rows are essentially drawn from
the spherical Gaussian N (0, In×n), as long as the number of samples is smaller
than k log d. Even though this puts us in the non-identifiable regime where there
may be many ̂θ consistent with (X,y), the problem of minimizing the mean
squared error7 is well-defined. More precisely, the top m − k rows of X are i.i.d.
N (0, In×n) and the bottom k rows are the same fixed matrix from Theorem 1.
This is a regime where Lasso would have solved the problem with a larger number
of samples, giving some evidence of the optimality of Lasso in terms of sample
complexity. The hardness assumption in this case is the continuous learning with
errors (CLWE) assumption which was recently shown to be as hard as standard
and long-studied worst-case short vector problems on lattices [BRST21,GVV22],
which are used as the basis for many post-quantum cryptographic primitives. We
state the result formally in Theorem 6 and prove it in Sect. 5.

1.2 Perspectives and Open Problems

We view our results as an initial foray into understanding the landscape of
average-case hardness of the sparse linear regression problem. One of our results
shows a distribution of average-case hard k-SLR instances (under worst-case
hardness of lattice problems). However, the design matrices that arise in this
distribution are very ill-conditioned; even though the k-SLR instances they define
are identifiable, the design matrices are singular and have RE constant 0. An
immediate open question arising from this result is whether one can come up
with a more robust average-case hard distribution for k-SLR.

More broadly, the connection to lattice problems that we exploit in our reduc-
tion inspires a fascinating array of open questions. To begin with, as we briefly
discussed above, the recent improvements to k-SLR [KKMR21,KKMR23] pro-
ceed via pre-conditioning the design matrix. Analogously, the famed LLL algo-
rithm of [LLL82] from the world of lattices is nothing but a pre-conditioning

7 In the unidentifiable regime, minimizing the prediction error is not information-
theoretically possible without some constraint on the noise.
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algorithm for lattice bases. This leads us to ask: is there a constructive way
to use (ideas from) lattice basis reduction to get improved k-SLR algorithms?
We mention here the results of [GKZ21,ZSWB22] for positive indications of
the effectiveness of lattice basis reduction in solving statistical problems. In the
lattice world, it is known that if one allows for arbitrary (potentially unbounded-
time) pre-processing of a given lattice basis, BDD can be solved with a poly-
nomial approximation factor [LLM06]. Is a similar statement true for k-SLR?
We believe an exploration of these questions and others is a fruitful avenue for
future research.

Concurrent Work. The concurrent work of [BDT24] shows hardness of achieving
non-trivial prediction error in sparse linear regression with Gaussian designs
in the improper setting (where the estimator need not be sparse) by reducing
from a slight variant of a standard sparse PCA problem. In their setting, they
deduce a sample complexity lower bound of (roughly) k2 for efficient algorithms,
where (roughly) k is possible information-theoretically, by assuming a (roughly)
k2 sample complexity lower bound on efficient algorithms for the sparse PCA
problem. (Their reduction produces instances in which the noise is standard
Gaussian. Our main theorem is written in terms of worst-case noise, but we show
a similar statement for independent Gaussian noise in the full version [GVV24].)

1.3 Road Map of Main Results

We prove Theorem 1 through a sequence of steps:

1. In Sect. 3, we state and prove our reduction from BinaryBDDd,α to k-SLR
(Theorem 4).

2. In Sect. 4.2, we give a bound on the restricted-eigenvalue constant ζ of the
instances produced by this reduction in terms of κ(B), the condition number
of the BinaryBDDd,α lattice instance B (Lemma 8).

3. In Sect. 4.3, using our reduction and the guarantees of Lasso in terms of ζ
(Theorem 3), we state how quantitative improvements to Lasso (in terms of
the dependence on ζ) give algorithms for BinaryBDDd,α with quantitatively
stronger parameters (Theorem 5).

For the second result (hardness of k-SLR in the non-identifiable regime even for
well-conditioned design matrices), we give the proof in Sect. 5.

2 Preliminaries

For n ∈ N, we use the notation [n] := {1, 2, · · · , n}. We use the standard defini-
tions of the �1, �2, and �∞ norms in R

n, as well as the �0 “norm” which is defined
as the sparsity, or number of non-zero entries of a vector v ∈ R

n. We use bold
notation to denote vectors and matrices. For a matrix A ∈ R

m×n and i ∈ [m],
we write coli(A) ∈ R

n to denote the ith column of A. We let In×n denote the
standard identity matrix in R

n. For v ∈ R
n, we use the notation round(v) ∈ Z

n
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to denote the point-wise rounding function applied to v ∈ R
n (with arbitrary

behavior at half integers). We use the standard definitions of the maximum and
minimum singular values of A for m ≥ n:

σmin(A) := min
v∈Rn

‖Av‖2
‖v‖2

, σmax(A) := max
v∈Rn

‖Av‖2
‖v‖2

.

We use the notation κ(A) to denote the condition number of A, defined as

κ(A) :=
σmax(A)
σmin(A)

.

We use the notation N (μ, σ2) to denote the univariate normal distribution with
mean μ and standard deviation σ. Similarly, we use the notation N (μ,Σ) to
denote the multivariate normal distribution with mean μ ∈ R

n and positive
semi-definite covariance matrix Σ ∈ R

n×n. We emphasize that we do not require
Σ to be positive definite.

2.1 Bounded Distance Decoding

We now define lattice quantities that will be useful for us.

Definition 1. For a full-rank matrix B ∈ R
d×d, the lattice L(B) generated by

basis B consists of the set all integer linear combinations of the columns of B.
As is standard, we define

λ1(B) := min
z∈Zd\{0}

‖Bz‖2 ,

which corresponds to the shortest distance between any two elements of L(B).
In this paper, since we consider a (±1) binary version of the bounded distance
decoding problem, we define the quantity

λ1,bin(B) := min
z1 �=z2∈{1,−1}d

‖Bz1 − Bz2‖2 .

Note that while λ1(B) is a basis-independent quantity for the lattice L(B),
λ1,bin(B) depends on the basis B.

Lemma 1. For any matrix B ∈ R
d×d, we have σmin(B) ≤ λ1(B) ≤ λ1,bin(B) ≤

2σmax(B).

Proof. It is immediate that λ1(B) ≤ λ1,bin(B). Let e ∈ Z
d be any standard basis

vector. We have

λ1,bin(B) = min
z1 �=z2∈{1,−1}d

‖B(z1 − z2)‖2 ≤ 2 ‖Be‖2 ≤ 2σmax(B) ‖e‖2 = 2σmax(B).

We also have

λ1(B) = min
z∈Zd\{0}

‖Bz‖2 ≥ min
z∈Zd\{0}

σmin(B) ‖z‖2 ≥ σmin(B),

since all z ∈ Z
d \ {0} satisfy ‖z‖2 ≥ 1.
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Definition 2 (BinaryBDDd,α). Let BinaryBDDd,α be the following worst-case
search problem in dimension d ∈ N with parameter α < 1/2. Given full rank
B ∈ R

d×d and t ∈ R
d, output z ∈ {−1, 1}d such that ‖Bz − t‖2 ≤ α · λ1,bin(B)

(if one exists). Equivalently, given (B,Bz + e) for ‖e‖2 ≤ α · λ1,bin(B), output
z ∈ {−1, 1}d.

Note that by definition of λ1,bin(B), the constraint α < 1/2 guarantees the
uniqueness of z ∈ {−1, 1}d. As an aside, the standard BDD problem instead uses
λ1(B) and allows outputting any z ∈ Z

d instead of z ∈ {−1, 1}d. Additionally,
note that we could easily consider full-rank B ∈ R

d1×d for d ≤ d1 ≤ O(d) and our
main results would all go through, and similarly for larger d1 with a slight change
in the parameter dependence. Furthermore, even though we write B ∈ R

d×d,
we will assume the entries of B have poly(d) bits of precision. (This is just
for simplicity and convenience; one can modify the corresponding algorithmic
statements so that they run in polynomial time in the description length of the
basis B.)

We note that there is a reduction from general BDD to BinaryBDD, at the
cost of making the instance degenerate (in the sense of having a non-trivial
kernel). See the full version [GVV24].

We now recall standard spectral bounds for random Gaussian matrices.

Lemma 2 (As in [RV10]). Let R ∈ R
m×d be such that Ri,j ∼i.i.d. N (0, 1). For

all t > 0, we have

Pr
[√

m −
√

d − t ≤ σmin(R) ≤ σmax(R) ≤ √
m +

√
d + t

]

≥ 1 − 2e−t2/2.

In particular, for m ≥ 16d, by setting t =
√

m/4, we have

Pr
[√

m

2
≤ σmin(R) ≤ σmax(R) ≤ 3

√
m

2

]

≥ 1 − 2e−m/32.

Throughout the paper, let χ2(m) denote the chi-squared distribution with m
degrees of freedom.

Lemma 3 (As in [LM00], Corollary of Lemma 1). Let X ∼ χ2(m), i.e.,
X is distributed according to the χ2 distribution with m degrees of freedom. For
any t ≥ 0, we have

Pr[X ≥ m + 2
√

tm + 2t] ≤ e−t.

In particular, setting t = m/4, we get

Pr[X ≥ 5m/2] ≤ e−m/4.

2.2 Sparse Linear Regression

We now define the problem of k-sparse linear regression (k-SLR for short), which,
for computational complexity simplicity, is phrased in terms of mean squared
error (as opposed to mean squared prediction error).
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Definition 3 (k-SLR). Given a design matrix X ∈ R
m×n, a target vector y ∈

R
m, and δ > 0, output a k-sparse ̂θ ∈ R

n such that

‖X̂θ − y‖22
m

≤ δ2,

assuming one exists.

We follow the convention of [NRWY12] of working with design matrices X
that are column-normalized :

Definition 4 (As in [NRWY12]). We say a matrix ˜X ∈ R
m×n is column-

normalized if for all i ∈ [n],
∥

∥

∥coli(˜X)
∥

∥

∥

2
≤ √

m.

Now, we show that a column-normalized ˜X also satisfies a spectral bound
with respect to sparse vectors.

Lemma 4. Suppose ˜X ∈ R
m×n is column-normalized. Then,

max
‖v‖2=1,
‖v‖0≤k

∥

∥

∥

˜Xv
∥

∥

∥

2
≤

√
km.

Proof. Let v be a vector such that ‖v‖2 = 1 and ‖v‖0 ≤ k. By the triangle
inequality and column normalization, we have

∥

∥

∥

˜Xv
∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

∑

i∈[n]

vi · coli(˜X)

∥

∥

∥

∥

∥

∥

2

≤
∑

i∈[n]

|vi| ·
∥

∥

∥coli(˜X)
∥

∥

∥

2
≤ √

m · ‖v‖1 ≤
√

km,

where the last inequality holds because ‖v‖1 ≤ √
k ‖v‖2 =

√
k.

To analyze the performance Lasso algorithm on the instances of k-SLR we
obtain from our reduction, we slightly modify the analysis of [NRWY12] to allow
for a more flexible definition of the restricted eigenvalue (RE) constant of a
matrix. First, we define the following cone.

Definition 5. Let S ⊆ [n] and ε > 0. We define Cε(S), the ε-cone for S ⊆ [n],
as follows:

Cε(S) := {Δ ∈ R
n : ‖ΔS̄‖1 ≤ (1 + ε)‖ΔS‖1}.

The notation S̄ denotes the complement of S, namely [n] \ S, and the notation
ΔI ∈ R

|I| denotes the restriction of Δ to coordinates in I ⊆ [n].

A standard definition (e.g., as in [NRWY12]) sets ε = 2, but we will use the flex-
ibility of setting ε close to 0. Now, we define the restricted eigenvalue condition.
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Definition 6. Suppose ˜X ∈ R
m×n is column-normalized. Then, we say ˜X sat-

isfies the (ε, ζ)-restricted eigenvalue (RE) condition for S ⊆ [n] if
∥

∥

∥

˜Xθ
∥

∥

∥

2

2

m · ‖θ‖22
≥ ζ

for all θ ∈ Cε(S).

Note that this restricted eigenvalue condition corresponds to a restricted form
of a strong convexity condition over the loss function

L(θ) := 1
2m

∥

∥

∥y − ˜Xθ
∥

∥

∥

2

2
.

Also note that the �1-regularization-based Lasso estimator does not output a
k-sparse solution. To obtain a k-sparse solution, we truncate ̂θλ to the k entries
of largest absolute value, to obtain the thresholded Lasso estimate ̂θTL. Lemma 9
of [ZWJ14] shows that

∥

∥

∥

̂θTL − θ∗
∥

∥

∥

2
≤ 5

∥

∥

∥

̂θλ − θ∗
∥

∥

∥

2
.

Now, we state a modified version of Corollary 1 of [NRWY12], which tells us
an error bound on the thresholded Lasso estimator, given our modified definition
of the restricted eigenvalue condition.

Theorem 2 (Modified Version of Corollary 1 of [NRWY12]). Let ε ∈
(0, 2], let ˜X ∈ R

m×n be column-normalized, and let ỹ = ˜Xθ∗ + w̃ for some
k-sparse vector θ∗ supported on S for S ⊆ [n], |S| = k. Suppose ˜X satisfies the
(ε, ζ)-restricted eigenvalue condition for S. As long as

λ ≥ 2 + ε

ε
·
∥

∥

∥

∥

1
m

˜X
�
w̃

∥

∥

∥

∥

∞
,

and λ > 0, then any Lasso solution ̂θλ with regularization parameter λ satisfies
the bound

∥

∥

∥

̂θλ − θ∗
∥

∥

∥

2

2
≤ O

(

λ2k

ζ2

)

.

While the bounds in the theorem statement above do not depend on column
normalization of ˜X (or corresponding normalization of w̃), our definition of the
restricted eigenvalue condition needs the matrix to be column-normalized (in
particular, so that the RE constant is scale invariant with respect to B). The ε
dependence in λ comes from modifying [NRWY12, Lemma 1], which needs the
bound on λ as above to guarantee that the optimal error ̂Δ := ̂θλ − θ∗ satisfies
̂Δ ∈ Cε(S).

Theorem 3. Let ε ∈ (0, 2], let ˜X ∈ R
m×n be column-normalized, and let

ỹ = ˜Xθ∗ + w̃ for some k-sparse vector θ∗ supported on S for S ⊆ [n], |S| = k.
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Suppose ˜X satisfies the (ε, ζ)-restricted eigenvalue condition for S. For an opti-
mally chosen positive regularization parameter, the thresholded Lasso solution
̂θTL with satisfies the prediction error bound

1
m

‖˜X̂θTL − ˜Xθ∗‖22 ≤ O

(

‖w̃‖22 · k2

ζ2 · ε2 · m

)

.

Proof. From Theorem 2, we know that for

λ ≥ 2 + ε

ε
·
∥

∥

∥

∥

1
m

˜X
�
w̃

∥

∥

∥

∥

∞
,

we have
∥

∥

∥

̂θλ − θ∗
∥

∥

∥

2
≤ O

(

λ
√

k

ζ

)

.

By [ZWJ14, Lemma 9], we therefore have

∥

∥

∥

̂θTL − θ∗
∥

∥

∥

2
≤ O

(

λ
√

k

ζ

)

.

Plugging in the optimal choice of λ yields

∥

∥

∥

̂θTL − θ∗
∥

∥

∥

2
≤ O

( √
k

ε · ζ
·
∥

∥

∥

∥

1
m

˜X
�
w̃

∥

∥

∥

∥

∞

)

.

Since ˜X is column-normalized, we know
∥

∥

∥

∥

1
m

˜X
�
w̃

∥

∥

∥

∥

∞
=

1
m

max
i∈[n]

∣

∣

∣

〈

coli(˜X), w̃
〉∣

∣

∣ ≤ 1
m

∥

∥

∥coli(˜X)
∥

∥

∥

2
‖w̃‖2 ≤ ‖w̃‖2√

m
,

where the first inequality is due to Cauchy-Schwarz, and the second inequality
is due to column normalization. Combining the two above inequalities, we have

∥

∥

∥

̂θTL − θ∗
∥

∥

∥

2
≤ O

(√
k · ‖w̃‖2

ε · ζ · √
m

)

.

Since ̂θTL − θ∗ is 2k-sparse, we can apply Lemma 4 to get
∥

∥

∥

˜X̂θTL − ˜Xθ∗
∥

∥

∥

2
≤ O

(

k · ‖w̃‖2
ε · ζ

)

.

Squaring and dividing by m gives the desired result.

Remark 1. We remark that Theorems 2 and 3 imply that in the noiseless setting
of k-SLR, that is, when y = Xθ∗, Lasso not only achieves prediction error 0 but
also recovers the ground truth θ∗ as long as the restricted eigenvalue constant is
strictly positive. In particular, this means that any reduction showing the NP-
hardness of noiseless sparse linear regression must produce instances with design
matrices with restricted eigenvalue 0 (unless P = NP).
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However, there is no reason information theoretically that the prediction error
should have dependence on the RE constant ζ. We now state a bound on the
prediction error of the optimal �0 predictor, which need not be computationally
efficient.

Proposition 1. Let X ∈ R
m×n, and let y = Xθ∗ + w for some k-sparse θ∗ ∈

R
n. The �0-predictor

̂θ ∈ argmin
‖θ‖0≤k

‖Xθ − y‖22
satisfies the prediction error bound

∥

∥

∥X̂θ − Xθ∗
∥

∥

∥

2

2

m
≤ 4 ‖w‖22

m
.

Proof. By definition of ̂θ and since θ∗ is k-sparse, we know
∥

∥

∥X̂θ − y
∥

∥

∥

2
≤ ‖Xθ∗ − y‖2 = ‖w‖2 .

By the triangle inequality,
∥

∥

∥X̂θ − Xθ∗
∥

∥

∥

2
≤

∥

∥

∥X̂θ − y
∥

∥

∥

2
+ ‖y − Xθ∗‖2 ≤ 2 ‖w‖2 .

The bound immediately follows by squaring and dividing by m.

Comparing Theorem 3 and Proposition 1 highlights a critical computational-
statistical gap: the prediction error for the Lasso algorithm depends quantita-
tively on the restricted eigenvalue condition of the design matrix, whereas the
information-theoretic minimizer has prediction error that is completely indepen-
dent of the restricted eigenvalue condition.

3 Reduction from Bounded Distance Decoding

Our main result in this section is a reduction from BinaryBDDd,α to k-SLR:

Theorem 4. Let d,m, n, k be integers such that k divides d, m ≥ 17d and
n = k · 2d/k. Then, there is a poly(n,m)-time reduction from BinaryBDDd,α

in dimension d with parameter α ≤ 1/10 to k-SLR in dimension n with m
samples. The reduction is randomized and succeeds with probability 1 − e−Ω(m).
Moreover, the reduction maps a BinaryBDDd,α instance (B, ·) to k-SLR instances
with design matrices X ∈ R

m×n and parameter δ = Θ(λ1,bin(B)) such that X
that can be decomposed as

X =
(

X1

X2

)

,

where the distribution of each row of X1 ∈ R
(m−k)×n is distributed as i.i.d.

N (0,G�
sparseB

�BGsparse) for a fixed, instance-independent matrix Gsparse ∈
R

d×n, and X2 ∈ R
k×n is proportional to a fixed, instance-independent matrix

that depends only on n and k.
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Remark 2. This reduction also gives us a fine-grained hardness result. Suppose
there is an algorithm for k-SLR in n dimensions with m samples that runs in
time poly(m, k) · (n/k)k

1−ε

. Then, the above reduction gives an algorithm for
BinaryBDDd,α in d dimensions that runs in time poly(d) · 2d/kε

.
[GV21] also prove a fine-grained hardness result for k-SLR from a lattice

problem, specifically the closest vector problem. However, the key difference is
that their result is in the unidentifiable regime, whereas ours is in the identifiable
regime, i.e. the k-SLR instances produced by the reduction from binary BDD
have a unique solution. Further, their fine-grained hardness results are for worst-
case covariates, whereas our hardness results produces covariates drawn from a
Gaussian (with a covariance matrix determined by the binary-BDD basis).

3.1 Interpretations

We now interpret the distribution of the design matrices X in the reduction
in Theorem 4. As stated, the sub-matrix X2 is phrased as a worst-case design
matrix, while X1 has i.i.d. N (0,G�

sparseB
�BGsparse) rows, where the covariance

matrix is tightly related to the BinaryBDDd,α instance B. (The definition of the
fixed, instance-independent gadget matrix Gsparse is given in Sect. 3.2.)

There are two natural ways to remove the “worst-case” nature of X2 in our
instances:

1. Our reduction still holds if the X2 part of our design matrix is removed, and
instead, one enforced an exact linear constraint on θ (specifically, Gpartiteθ =
1, where Gpartite is defined in Sect. 3.2). This corresponds to constraining
the k-sparse regression vector θ ∈ R

n to an affine subspace. Since many
of the techniques for sparse linear regression involve convex optimization,
intersecting the solution landscape with this affine subspace will preserve
convexity, so these algorithms would still work if the design matrix were just
X1 on its own, without the worst-case X2 sub-matrix.

2. Alternatively, one can interpret each row of X2 as a mean of a Gaussian dis-
tribution with a covariance matrix σ2In×n for very small σ > 0. By reorder-
ing the rows of X and entries of the target y, all rows of X can now be
drawn i.i.d. from a mixture of k + 1 Gaussians, with weight (m − k)/m on
N (0,G�

sparseB
�BGsparse) and weight 1/m on N (vi, σ

2In×n) for all i ∈ [k],
where vi is the ith row of X2 and σ > 0 is very small. Our reduction will
go through (with modified parameters) as long as we increase the number of
samples m to roughly O(m log(k)) so that each row of X2 is hit by a coupon
collector argument.

3.2 Proof of Theorem 4

Before proving Theorem 4, we introduce some notation and gadgets that will be
useful for us. For n, k ∈ N where n is a multiple of k, let Sn,k denote the set of k-
sparse, k-partite binary vectors v ∈ {0, 1}n. That is, for each i ∈ {0, · · · , k − 1},
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there exists a unique j ∈ [n/k] such that vin/k+j = 1, and all other entries of v
are 0.

Let Gsparse ∈ R
d×n be the following (rectangular) block diagonal matrix,

which will allow us to map binary vectors to binary sparse partite vectors. Each
of the k blocks H ∈ R

d/k×n/k are identical, with n/k = 2d/k, and has columns
consisting of all vectors {−1, 1}d/k, in some fixed order.

Lemma 5. The matrix Gsparse invertibly maps Sn,k to {−1, 1}d.

Proof. Observe that |Sn,k| = (n/k)k = 2d = |{−1, 1}d|, so it suffices to show
that Gsparse is surjective. Let z ∈ {−1, 1}d. Breaking z up into k contiguous
blocks of d/k coordinates, we can identify each block of z in {−1, 1}d/k with a
unique column in H. Let v ∈ Sn,k be defined so that for the ith block, vik+j = 1
if and only if the jth column of H is equal to the ith part of z. It then follows
that Gsparsev = z, as desired.

We now define a different gadget matrix, Gpartite ∈ R
k×n, that will help

enforce the regression vector to be partite and binary. The matrix Gpartite is
once again block diagonal with k identical blocks, where each block is now the
vector 1� ∈ R

1×n/k.

Lemma 6. For v ∈ R
n, we have v ∈ Sn,k if and only if Gpartitev = 1 and v is

k-sparse.

Proof. For the “only if” direction, observe that v ∈ Sn,k directly implies that v
is k-sparse and Gpartitev = 1, as each part of v sums to 1.

For the “if” direction, suppose Gpartitev = 1 and v is k-sparse. We need to
show that v is both partite and binary. To see that v is partite, observe that
the condition Gpartitev = 1 enforces the sum of the entrices of v in each of the k
blocks to be 1. Therefore, each block has at least one non-zero entry, as otherwise
that block would sum to 0. Since each of the k blocks has at least one non-zero
entry, by sparsity, each block has exactly one non-zero entry, as otherwise, v
would not be k-sparse. Since each block has exactly one non-zero entry that
sums to 1, that entry must be 1. Therefore, v ∈ Sn,k.

Now, we prove the main theorem of this section, Theorem 4.

Proof (Proof of Theorem 4). Let (B, t := Bz+e) be our BinaryBDDd,α instance,
where B ∈ R

d×d, z ∈ {−1, 1}d and ‖e‖2 ≤ α · λ1,bin(B). Let R ∈ R
m1×d be a

random matrix where each entry is drawn i.i.d. from N (0, 1). We assume we know
a value ̂λ1 such that ̂λ1 ∈ [λ1,bin(B), 2λ1,bin(B)). (By Lemma 1, doubling search
over ̂λ1 and taking the best BinaryBDD solution will take at most polynomial
time.)

Our design matrix X and target vector y for k-SLR will be defined as follows:

X =
(

X1

X2

)

=
(

RBGsparse

γGpartite

)

∈ R
(m1+k)×n, y =

(

Rt
γ1

)

∈ R
m1+k.
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Here, γ ∈ R is a scalar that will be set later. We define m1 so that m1 + k = m,
which implies that m1 = m − k ≥ m − d ≥ 16d. We define the scalar δ for the
k-SLR instance so that

δ2 =
3m1 · ̂λ2

1

100m
= Θ

(

λ1,bin(B)2
)

. (1)

Invoking the k-SLR solver on the instance (X,y) with parameter δ, our reduction
will get a solution ̂θ such that

∥

∥

∥X̂θ − y
∥

∥

∥

2

2

m
≤ δ2. (2)

Next, we round ̂θ to the nearest integer entrywise to get round(̂θ) ∈ Z
n, and we

output Gsparseround(̂θ) ∈ Z
d as the BinaryBDDd,α solution.

First, we show completeness, in the sense that there exists k-sparse ̂θ ∈ R
n

such that (2) is satisfied. Recall from Lemma 5 that there exists a unique θ∗ ∈
Sn,k such that Gsparseθ

∗ = z. We will show that setting ̂θ = θ∗ satisfies (2).
We have

Xθ∗ −y =
(

RBGsparse

γGpartite

)

θ∗ −
(

Rt
γ1

)

=
(

RBGsparseθ
∗ − Rt

γGpartiteθ
∗ − γ1

)

=
(

RBz − Rt
0

)

,

where the last equality holds by Lemma 6 and definition of θ∗. Continuing the
equality, we have

Xθ∗ − y =
(

RBz − R(Bz + e)
0

)

=
(−Re

0

)

,

which implies
∥

∥

∥X̂θ − y
∥

∥

∥

2

2
= ‖Re‖22. Since R was sampled independently of e,

observe that ‖Re‖22 ∼ ‖e‖22 · χ2(m1). By Lemma 3, it follows that

Pr
[

‖Re‖22 ≥ 5m1/2 · ‖e‖22
]

≤ e−m1/4.

Therefore, with probability at least 1 − e−m1/4, we have
∥

∥

∥X̂θ − y
∥

∥

∥

2

2

m
≤ 5m1 ‖e‖22

2m
≤ 5m1α

2 · ̂λ2
1

2m
< δ2,

since α ≤ 1/10, as desired, showing that (2) is satisfied.
We now show soundness, which we will prove by contradiction. Suppose that

Gsparseround(̂θ) = z′ for some z′ 
= z and (2) holds. Since (2) holds, in particular,

we know
∥

∥

∥γGpartite
̂θ − γ1

∥

∥

∥

2

2
≤ mδ2, or equivalently,

∥

∥

∥Gpartite
̂θ − 1

∥

∥

∥

2
≤ √

mδ/γ.
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Throughout, assume we set γ so that
√

mδ/γ < 1/2. Each part of ̂θ must have
exactly one non-zero entry, as ̂θ is k-sparse and cannot have any part with all
zero entries. Moreover, we know this non-zero entry must be in [1−√

mδ/γ, 1+√
mδ/γ], so by a choice of γ such that

√
mδ/γ < 1/2, this entry must round

to 1. Therefore, round(̂θ) ∈ Sn,k, and round(̂θ) and ̂θ have the same support.
This implies that z′ = Gsparseround(̂θ) ∈ {−1, 1}d and Gpartiteround(̂θ) = 1 by
Lemma 6. Moreover, since we can restrict to the support of ̂θ, we have
∥

∥

∥

̂θ − round(̂θ)
∥

∥

∥

2
=

∥

∥

∥Gpartite
̂θ − Gpartiteround(̂θ)

∥

∥

∥

2
=

∥

∥

∥Gpartite
̂θ − 1

∥

∥

∥

2
≤ √

mδ/γ.

Since ̂θ − round(̂θ) is also k-sparse and partite, it follows that
∥

∥

∥Gsparse

(

̂θ − round(̂θ)
)∥

∥

∥

2
≤ δ

√
dm

γ
√

k
,

as each column of any block of Gsparse has �2 norm exactly
√

d/k. Multiplying
on the left by B, we have
∥

∥

∥BGsparse
̂θ − Bz′

∥

∥

∥

2
≤ σmax(B) ·

∥

∥

∥Gsparse

(

̂θ − round(̂θ)
)∥

∥

∥

2
≤ σmax(B) · δ

√
dm

γ
√

k
.

(3)
On the other hand, by definition of λ1,bin(B), since z 
= z′ ∈ {−1, 1}d, we know

‖Bz − Bz′‖2 ≥ λ1,bin(B). (4)

By combining (3) and (4) by the triangle inequality, we have
∥

∥

∥BGsparse
̂θ − Bz

∥

∥

∥

2
≥ λ1,bin(B) − σmax(B) · δ

√
dm

γ
√

k
.

We now set

γ = max

(

3δ
√

m,
100 · σmax(B) · δ

√
dm√

k · ̂λ1

)

= Θ

(

σmax(B) · √dm√
k

)

, (5)

so that
∥

∥

∥BGsparse
̂θ − Bz

∥

∥

∥

2
≥ λ1,bin(B) −

̂λ1

100
≥ 49

50
λ1,bin(B).

(We remark that γ is efficiently computable because σmax(B) is efficiently com-
putable and we assume ̂λ1 is known.) By incorporating the error e and multipli-
cation on the left by R, we have
∥

∥

∥X̂θ − y
∥

∥

∥

2
≥

∥

∥

∥RBGsparse
̂θ − R (Bz + e)

∥

∥

∥

2
≥ σmin(R)

(

49
50

λ1,bin(B) − ‖e‖2
)

.

By combining this inequality with (2), we get a contradiction as long as

δ
√

m ≤ σmin(R)
(

49
50

λ1,bin(B) − ‖e‖2
)

. (6)
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By Lemma 2, we know σmin(R) ≥ √
m1/2 with probability at least 1−2e−m1/32,

and since we also know ‖e‖2 ≤ αλ1,bin(B), we have

σmin(R)
(

49
50

λ1,bin(B) − ‖e‖2
)

≥
√

m1

2

(

49
50

λ1,bin(B) − αλ1,bin(B)
)

= λ1,bin(B)
√

m1

(

49
100

− α

2

)

.

On the other hand, we know

δ
√

m =
̂λ1

√
3m1

10
√

m
· √

m ≤ 1
5

· λ1,bin(B)
√
3m1.

Combining these inequalities, we get a contradiction if
√
3
5

≤ 49
100

− α

2
,

which indeed holds if α ≤ 1/10.

4 Performance of Lasso on Our k-SLR Instances

4.1 Normalizing Our k-SLR Instances

First, we follow the convention of Negahban et al. [NRWY12] and normalize our
design matrices according to Definition 4.

Lemma 7. Let X ∈ R
m×n denote the design matrix we obtain in Theorem 4.

Let Z = Θ(σmax(B) · √

d/k) be a real number. Then, with probability at least
1 − e−Ω(m1), ˜X := 1

Z · X is column-normalized, and so

max
‖v‖2=1,
‖v‖0≤2k

‖Xv‖2 ≤ Θ
(

σmax(B)
√

dm
)

(7)

Proof. For our instance X, we have

‖coli(X)‖22 = ‖coli(X1)‖22 + ‖coli(X2)‖22 = ‖coli(X1)‖22 + γ2.

Moreover,

‖coli(X1)‖2 = ‖coli(RBGsparse)‖2 = ‖RBcoli(Gsparse)‖2
≤ σmax(R) · σmax(B) · ‖coli(Gsparse)‖2
= O

(√
m1 · σmax(B) ·

√

d/k
)

,

with probability at least 1 − e−Ω(m1) over R by Lemma 2. Since our setting of
γ (Eq. (5)) matches this up to constant factors, we have

‖coli(X)‖2 = O
(√

m · σmax(B) ·
√

d/k
)

.
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Therefore, we can set a normalization factor Z = Θ(σmax(B) · √d/k) such that

˜X :=
1
Z

· X

is column-normalized. In particular, note that ˜X is scale invariant with respect
to B. By Lemma 4, we get that

max
‖v‖2=1,
‖v‖0≤2k

‖Xv‖2 = Z · max
‖v‖2=1,
‖v‖0≤2k

∥

∥

∥

˜Xv
∥

∥

∥

2
≤ Z ·

√
2km = Θ

(

σmax(B)
√

dm
)

4.2 Restricted Eigenvalue Condition

Now, we prove the lower bound on the restricted eigenvalues of the (column-
normalized) design matrices of our k-SLR instances.

Lemma 8. Suppose d ≥ 3k. For a setting of ε = Θ(k/d), ˜X satisfies the (ζ, ε)-
restricted eigenvalue condition for all k-sparse, k-partite S ⊆ [n] for some

ζ = Θ

(

k

d4 · κ(B)2

)

,

with probability at least 1 − e−Ω(m).

Proof (Proof of Lemma 8). For simplicity, we will show that the unnormalized
design matrix X = Z · ˜X has the property that for all k-sparse, k-partite S ⊂ [n],
and for all θ ∈ Cε(S),

‖Xθ‖22
m · ‖θ‖22

≥ ζ ′.

We will then set ζ = ζ ′/Z2 to get the final bound.
Suppose for the sake of contradiction that there exists θ ∈ Cε(S) such that

‖Xθ‖22
m · ‖θ‖22

< ζ ′.

Without loss of generality, we can scale θ so that ‖θ‖1 = 1. In particular, observe
that ‖θ‖22 ≤ ‖θ‖21 = 1. We have

ζ ′ >
‖Xθ‖22

m · ‖θ‖22
=

‖RBGsparseθ‖22 + ‖Gpartiteθ‖22
m · ‖θ‖22

≥ 1
m

(

σmin(RB)2‖Gsparseθ‖22 + ‖Gpartiteθ‖22
)

.

If ‖Gpartiteθ‖22 ≥ ζ ′m, we have arrived at a contradiction. Otherwise, we will
show that ‖Gsparseθ‖22 ≥ ζ ′m/σmin(RB)2, which would also be a contradiction.
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Indeed, since Gsparseθ ∈ R
d, we know ‖Gsparseθ‖2

√
d ≥ ‖Gsparseθ‖1, so it suffices

to show that ‖Gsparseθ‖1 ≥ τ1, where we define

τ1 :=
√

ζ ′dm

σmin(RB)
.

Since θ ∈ Cε(S) for some k-partite k-sparse S ⊆ [n], we can write θ = θS + θS̄

such that ‖θS̄‖1 ≤ (1+ε)‖θS‖1. Let η(i) ∈ R be the ith nonzero entry of θS , and
let η̄(i) ∈ R

n/k be the ith part of θS̄ . Note that without loss of generality, we
can assume that all the entries of θS are non-negative, that is, for all i, η(i) ≥ 0.
If not, suppose η(i) < 0 for some i ∈ [k]. Because of the block diagonal structure
of Gsparse, we can simply negate the ith part of θ so that none of the norms
change.

By applying Lemma 9 to the �1 norm of the parts of θS and θS̄ , we know that
there is some part i ∈ [k] such that η(i) ≥ ε/k and ‖η̄(i)‖1 ≤ (1 + 10ε)η(i). We
will consider this part i, and we will write η, η̄ instead of η(i), η̄(i) for simplicity,
i.e.,

∑

j

|η̄j | = ‖η̄‖1 ≤ (1 + 10ε)η. (8)

We will provide a lower bound on ‖Gsparseθ‖1 considering only the ith part. Since
‖Gpartiteθ‖2 ≤ √

ζ ′m,

η +
∑

j

η̄j ≤
∣

∣

∣

∣

∣

∣

η +
∑

j

η̄j

∣

∣

∣

∣

∣

∣

≤ 1
γ

‖Gpartiteθ‖2 ≤
√

ζ ′m
γ

. (9)

Adding (8) and (9), we get an upper bound on the sum of the positive entries
in η̄:

∑

j

η̄j · 1[η̄j > 0] ≤
√

ζ ′m
2γ

+ 5εη. (10)

Let H ∈ {−1, 1}d/k×2d/k

be a block in Gsparse, i.e., whose columns are all of
the vectors in {−1, 1}d/k. Let h(j) denote the jth column of H. Without loss of
generality, we can choose the location of the η entry within the block so that it
corresponds to the column 1 ∈ R

d/k. To see this, if not, we can flip the sign of the
rows of H that correspond to −1 entries in the column corresponding to η. This
has the effect of permuting the columns of H and has no effect on ‖Gsparseθ‖1
or ‖Gpartiteθ‖2 as the entries just flip sign. We will use the convention that first
column of H is 1. By considering only part i, we have the inequality

‖Gsparseθ‖1 ≥
∥

∥

∥

∥

∥

∥

η1 +
2d/k
∑

j=2

η̄jh(j)

∥

∥

∥

∥

∥

∥

1

≥
d/k
∑


=1

⎛

⎝η +
2d/k
∑

j=2

η̄jh
(j)



⎞

⎠ =
ηd

k
+

2d/k
∑

j=2

η̄j

d/k
∑


=1

h
(j)

 .

(11)
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Since h(j) 
= 1 for all j ≥ 2, we know for all j ≥ 2,

d/k
∑


=1

h
(j)

 ≤ d

k
− 2,

as at least one entry in h(j) is −1. This bound is helpful only when η̄j < 0, as
this will let us lower bound ‖Gsparseθ‖1. Thankfully, (10) gives us a bound on
the sum of the positive η̄j contributions, in which case we use the trivial bound

d/k
∑


=1

h
(j)

 ≥ −d

k
.

Let J+, J− ⊆ [2d/k] \ {1} denote the set of columns j where η̄j ≥ 0 and η̄j < 0,
respectively. Combining the above bounds with (11), we have

‖Gsparseθ‖1 ≥ ηd

k
+

2d/k
∑

j=2

η̄j

d/k
∑


=1

=
ηd

k
+

∑

j∈J+

η̄j

d/k
∑


=1

h
(j)

 +

∑

j∈J−

η̄j

d/k
∑


=1

h
(j)

 (12)

≥ ηd

k
− d

k

∑

j∈J+

η̄j −
(

d

k
− 2

)

∣

∣

∣

∣

∣

∣

∑

j∈J−

η̄j

∣

∣

∣

∣

∣

∣

(13)

≥ ηd

k
− d

k

(√
ζ ′m
2γ

+ 5εη
)

−
(

d

k
− 2

) 2d/k
∑

j=2

|η̄j |

(14)

≥ ηd

k
− d

k

(√
ζ ′m
2γ

+ 5εη
)

−
(

d

k
− 2

)

(1 + 10ε)η,

(15)

where the penultimate inequality comes from (10), and the last inequality comes
from (8). We now bound the remaining terms. Setting

ε :=
k

50d
,

and assuming

γ ≥ 5d
√

ζ ′m
ηk

, (16)

we have the guarantee that
√

ζ ′m
2γ

+ 5εη ≤ ηk

10d
+

ηk

10d
=

ηk

5d
.

Furthermore, our setting of ε guarantees
(

d

k
− 2

)

(1 + 10ε) =
d

k
− 9

5
− 2k

5d
<

d

k
− 1.
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Plugging these into (15), we have

‖Gsparseθ‖1 ≥ ηd

k
− d

k

(√
ζ ′m
2γ

+ 5εη
)

−
(

d

k
− 2

)

(1 + 10ε)η

≥ ηd

k
− d

k
· ηk

5d
−

(

d

k
− 1

)

η

=
4
5
η ≥ 4ε

5k
=

2
125d

,

where the last inequality comes from our application of Lemma 9, which implies
η ≥ ε/k. Recall that we get a contradiction if

‖Gsparseθ‖1 ≥ τ1 :=
√

ζ ′dm

σmin(RB)
.

Therefore, setting ζ ′ so that
√

ζ ′dm

σmin(RB)
<

2
125d

arrives us at a contradiction. Since σmin(RB) ≥ σmin(R)σmin(B) ≥ √
m1/2 ·

σmin(B) with probability at least 1 − e−Ω(m1) by Lemma 2, it suffices to set

ζ ′ :=
1
2

· m1σmin(B)2

1252d3 m
= Θ

(

σmin(B)2

d3

)

.

Now, we justify our assumption on γ in (16). Recall that our reduction sets

γ = Θ

(

σmax(B)
√

dm√
k

)

.

By our setting of ζ ′ and since η ≥ ε/k = 1/(50d), we have

γ � σmin(B)
√

dm

k
≥ Θ

(

σmin(B)
√

m

kη
√

d

)

= Θ

(

d
√

ζ ′m
ηk

)

,

showing that (16) is indeed satisfied.
Finally, scaling by Z2, we have

ζ =
ζ ′

Z2
= Θ

(

k · σmin(B)2

d4 · σmax(B)2

)

,

as desired.

Lemma 9. Suppose xi, yi ∈ R≥0 for i ∈ [k], such that
∑k

i=1 xi +
∑k

i=1 yi = 1.
Further suppose that for some ε ∈ (0, 1/20),

∑k
i=1 yi ≤ (1 + ε)

∑k
i=1 xi. Then,

there is some i∗ ∈ [k] such that xi∗ ≥ ε/k and yi∗ ≤ (1 + 10ε)xi∗ .
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Proof. Since
∑k

i=1 xi +
∑k

i=1 yi = 1 and
∑k

i=1 yi ≤ (1 + ε)
∑k

i=1 xi, this implies
that

∑k
i=1 xi ≥ 1

2+ε ≥ 1
2 − ε, and

∑k
i=1 yi ≤ 1

2 + ε.
Suppose for contradiction that for all i ∈ [k], either xi < ε/k or yi > (1 +

10ε)xi. Let A be the set of all i ∈ [k] such that xi < ε/k, and let B = [k] \A. By
assumption, for all i ∈ B, we have that yi > (1+10ε)xi. Then, since

∑

i∈A xi ≤ ε,

∑

i∈B

yi > (1 + 10ε)
∑

i∈B

xi = (1 + 10ε)

⎛

⎝

∑

i∈[k]

xi −
∑

i∈A

xi

⎞

⎠

≥ (1 + 10ε)
(

1
2

− 2ε
)

=
1
2
+ 5ε − 2ε − 20ε2 ≥ 1

2
+ 2ε.

This is a contradiction, since we also know that
∑

i∈B yi ≤ ∑

i∈[k] yi ≤ 1
2 + ε.

4.3 Prediction Error Achieved by Lasso on Our Instances

We now apply Theorem 3 to our instance as generated in Theorem 4, to obtain a
bound on the prediction error achieved by Lasso on our instances. Note that this
is a mean squared prediction error bound as opposed to a mean squared error
bound. To translate Lasso into an algorithm for BinaryBDDd,α via the reduction
in Theorem 4, we can bound the mean-squared error by the triangle inequality
(see Corollary 1).

Lemma 10. Consider the instances (X,y, δ = Θ(λ1,bin(B)) of k-SLR instances
obtained in the reduction from a BinaryBDDd,α instance (B, ·) as in Theorem 4.
On these instances, the thresholded Lasso estimator θTL can achieve prediction
error bounded as

1
m

∥

∥

∥X̂θTL − Xθ∗
∥

∥

∥

2

2
≤ O

(

α2 · λ1,bin(B)2 · κ(B)4 · d10

k2

)

.

Proof. With the goal of applying Theorem 3, we first bound ‖w̃‖2. On our
instances, we have

w̃ = ỹ − ˜Xθ∗ =
1
Z

(

Re
0

)

.

Therefore,

‖w̃‖2 =
1
Z

‖Re‖2 ≤ 1
Z

σmax(R) ‖e‖2 ≤ O

(

α · λ1,bin(B)
√

m

Z

)

with probability at least 1−e−Ω(m) over R by Lemma 2. Since Z = Θ(σmax(B) ·
√

d/k), we have

‖w̃‖2 ≤ O

(

α · λ1,bin(B)
√

mk

σmax(B)
√

d

)

.
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With this bound on ‖w̃‖2, we can plug in Lemma 8, which says that for ε =
Θ(k/d), ˜X satisfies the (ζ, ε)-restricted eigenvalue condition for all k-sparse, k-
partite S ⊆ [n] for

ζ = Θ

(

k

d4 · κ(B)2

)

.

Plugging in ‖w̃‖2, ε, and ζ into Theorem 3, we get

1
m

‖˜X̂θTL − ˜Xθ∗‖22 ≤ O

(

‖w̃‖22 · k2

ζ2 · ε2 · m

)

≤ O

(

α2 · λ1,bin(B)2 · κ(B)4 · d9

k · σmax(B)2

)

.

Scaling up by Z2 = Θ(σmax(B)2 · d/k) to convert back to the unnormalized
version, we have

1
m

‖X̂θTL − Xθ∗‖22 ≤ O

(

α2 · λ1,bin(B)2 · κ(B)4 · d10

k2

)

,

as desired.

Corollary 1 (Lasso-based Algorithm for BinaryBDDd,α). Let d, k,m be
integers such that k divides d and m ≥ Ω(d). Let α be a real number such
that

α ≤ C · k

d5 · κ(B)2

for some universal constant C > 0. Then, running the reduction in Theorem 4
and reducing to Lasso as the k-SLR solver gives a poly(m, k ·2d/k)-time reduction
from BinaryBDDd,α that succeeds with probability at least 1 − e−Ω(m). Setting k
and m such that d = 10k and m = 100d, this becomes a poly(d) time reduction
from BinaryBDDd,α to Lasso that succeeds with probability at least 1− e−Ω(d) as
long as

α ≤ C ′ · 1
d4 · κ(B)2

,

for some universal constant C ′ > 0.

Proof. Let (X,y = Xθ∗ +w, δ) be the k-SLR instance obtained in the reduction
in Theorem 4. Then, if ̂θTL is the solution obtained via thresholded Lasso, since
‖Xθ∗ − y‖22/m = ‖Re‖22/m ≤ O(α2 · λ1,bin(B)) with probability at least 1 −
e−Ω(m), by triangle inequality, we have that

1
m

‖X̂θTL − y‖22 ≤ O

(

1
m

‖X̂θTL − Xθ∗‖22 +
1
m

‖Xθ∗ − y‖22
)

≤ O

(

α2 · λ1,bin(B)2 · κ(B)4 · d10

k2

)

+ O(α2 · λ1,bin(B)2).



Sparse Linear Regression and Lattice Problems 301

Theorem 4 needs a k-SLR solver with δ = Θ(λ1,bin(B)) by (1), so setting

α ≤ C · k

d5 · κ(B)2

for some universal constant C > 0 suffices for the correctness of the reduc-
tion. This gives us a Lasso-based algorithm for BinaryBDDd,α that runs in time
poly(m, k · 2d/k).

Remark 3. We briefly remark that the information-theoretic k-SLR solver (i.e.,
by the bound in Proposition 1) would solve our BDD instance for sufficiently
small constant α. In particular, if allowed oracle calls to an information-theoretic
k-SLR solver, there would be a poly(d)-time algorithm for BinaryBDDd,α for
sufficiently small constant α.

Finally, we state how a hypothetical improvement to Lasso gives a corre-
sponding parameter improvement to BinaryBDDd,α.

Theorem 5. Let d, k,m, n be integers such that k divides d, m ≥ Ω(d) and
n = k · 2d/k. Suppose there is a polynomial-time algorithm that takes k-SLR
instances (˜X, ỹ = ˜Xθ∗ + w̃) with design matrices ˜X ∈ R

m×n that satisfy the
(ζ, ε)-restricted eigenvalue condition for support(θ∗), and outputs a k-sparse vec-
tor ̂θ such that the prediction error is bounded as

1
m

‖˜X̂θ − ˜Xθ∗‖22 ≤ O

( ‖w̃‖22 · k2

ζ2−β · ε2 · m

)

for some constant β ∈ (0, 2]. Then there is an algorithm that runs in time
poly(m, k·2d/k) that solves BinaryBDDd,α with probability 1−e−Ω(m) on instances
(B, ·) as long as

α ≤ C · k1−β/2

d5−2β · κ(B)2−β
,

for some universal constant C > 0.

Proof (Proof of Theorem 5). The proof follows directly by modifying the expo-
nent on ζ in Lemma 10 and Corollary 1.

5 Reduction from CLWE

We now define the continuous learning with errors (CLWE) assumption as defined
by [BRST21], which holds assuming the quantum [BRST21] or classical [GVV22]
hardness of worst-case lattice problems for various parameter regimes. We define
S

m−1 to be the unit sphere in R
m, i.e., the set of all unit vectors in R

m according
to the �2 norm. We write v ∼ S

m−1 to denote sampling v from the uniform
distribution over the sphere. Furthermore, for a vector v ∈ R

n, by v (mod 1),
we mean the representative ṽ ∈ [−1/2, 1/2)n such that v− ṽ ∈ Z

n. Moreover, by
this choice of representative, note that we have |a (mod 1)| ≤ |a| for all a ∈ R.
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Definition 7 (CLWE Assumption [BRST21]). For a secret vector s ∼ γCLWE·
S

m−1 and error vector e ∼ N (0, β2In×n), we have the computational indistin-
guishability

(

A ∼ N (0, 1)m×n,b� := s�A + e� (mod 1)
)

≈
(

A ∼ N (0, 1)m×n,b� ∼ [−1/2, 1/2)m
)

,

up to constant advantage for algorithms running in time T .

This assumption is parameterized by m,n, γCLWE, β and T . For example, for the
parameter setting γCLWE = 2

√
m and β = 1/poly(m), there are no algorithms

known that run in time T = 2o(m) with n = 2o(m) samples.

Theorem 6. Suppose k = mε for some ε ∈ (0, 1). There is a poly(n,m)-time
reduction from CLWE in dimension m with n samples and parameters γCLWE =
2
√

m,β = o(1/
√

k) to k-SLR, for n = k · 2Θ(m/k·log m). If the k-SLR solver runs
in time T , the distinguisher for CLWE runs in time T + poly(n,m). Moreover,
the reduction generates design matrices X that can be decomposed as

X =
(

X1

X2

)

,

where the distribution of each row of X1 ∈ R
m×n is i.i.d. N (0, In×n), and X2 ∈

R
k×n is proportional to a fixed, instance-independent matrix that depends only

on n and k.

The interpretations of Sect. 3.1 also apply here as to how one could remove
the worst-case sub-matrix X2.

Proof. We first start with the CLWE assumption (see Definition 7), which says
that for secret vector s ∼ γCLWE · Sm−1 and error vector e ∼ N (0, β2In×n), we
have the indistinguishability

(

A ∼ N (0, 1)m×n,b� := s�A + e� (mod 1)
)

≈
(

A ∼ N (0, 1)m×n,b� ∼ [−1/2, 1/2)m
)

.

We construct our design matrix X ∈ R
(m+k)×n and target y ∈ R

m+k as

X :=
(

A
αGpartite

)

, y =
(

0
α1

)

,

with parameter

δ :=
1

100γCLWE

√
m + k

= Θ

(

1
γCLWE

√
m + k

)

.
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For a (k-sparse) k-SLR solution ̂θ ∈ R
n to the instance (X,y, δ), we compute

round(̂θ) ∈ Z
n and check if

∣

∣

∣b�round(̂θ) (mod 1)
∣

∣

∣ <
1
4
.

If so, we output 1 (indicating CLWE), and otherwise, we output 0 (indicating
null).

Soundness. To see that we have a distinguisher for CLWE, suppose ̂θ ∈ R
n is a

k-SLR solution, i.e.,
∥

∥

∥X̂θ − y
∥

∥

∥

2

2

m + k
≤ δ2. (17)

In particular, we know
∥

∥

∥αGpartite
̂θ − α1

∥

∥

∥

2

2
≤ (m + k)δ2 = 1

1002γ2
CLWE

, or equiva-
lently,

∥

∥

∥Gpartite
̂θ − 1

∥

∥

∥

2
≤ 1

100αγCLWE
.

Throughout, assume we set α so that 100αγCLWE > 2. Each part of ̂θ must
have exactly one non-zero entry, as ̂θ is k-sparse and cannot have any part
with all zero entries. Moreover, we know this non-zero entry must be in [1 −
1/(100αγCLWE), 1 + 1/(100αγCLWE)], so this entry must round to 1. Therefore,
round(̂θ) ∈ Sn,k, and round(̂θ) and ̂θ have the same support. By considering the
support of ̂θ, this implies

∥

∥

∥round(̂θ) − ̂θ
∥

∥

∥

2
=

∥

∥

∥Gpartite
̂θ − 1

∥

∥

∥

2
≤ 1

100αγCLWE
.

Moreover, we will set α = max(
√

n, 3/(100γCLWE)) so that
∥

∥

∥round(̂θ) − ̂θ
∥

∥

∥

2
<

1
100γCLWE

√
n

.

By (17), we also know
∥

∥

∥Âθ
∥

∥

∥

2
≤ δ

√
m + k ≤ 1

100γCLWE
.

First, suppose we are the non-null case, i.e., b� = s�A + e�. Since round(̂θ) ∈
Z

n, we then have
∣

∣

∣b�round(̂θ) (mod 1)
∣

∣

∣ =
∣

∣

∣s�Around(̂θ) + e�round(̂θ) (mod 1)
∣

∣

∣

≤
∣

∣

∣s�A(round(̂θ) − ̂θ)
∣

∣

∣ +
∣

∣

∣s�Âθ
∣

∣

∣ +
∣

∣

∣e�round(̂θ)
∣

∣

∣

≤ ∥

∥s�A
∥

∥

2
·
∥

∥

∥round(̂θ) − ̂θ
∥

∥

∥

2
+

1
100

+
∣

∣

∣e�round(̂θ)
∣

∣

∣ .



304 A. Gupte et al.

Since X and y are independent of e, and since round(̂θ) ∈ Sn,k, we know
e�round(̂θ) ∼ N (0, kβ2). By standard tails bounds on the Gaussian, we have
|e�round(̂θ)| ≤ O(β

√
k) with probability at least 99/100. Similarly, since s and

A are independent, we know s�A ∼ N (0, γCLWEIn×n), so by Lemma 3, we know
∥

∥s�A
∥

∥

2
≤ 10γCLWE

√
n with probability at least 1− e−Ω(n). Plugging these into

our previous bound, for β = o(1/
√

k),
∣

∣

∣b�round(̂θ) (mod 1)
∣

∣

∣ ≤ ∥

∥s�A
∥

∥

2
·
∥

∥

∥round(̂θ) − ̂θ
∥

∥

∥

2
+

1
100

+
∣

∣

∣e�round(̂θ)
∣

∣

∣

≤ 1
10

+
1
100

+ o(1) <
1
4
,

with probability at least 49
50 .

On the other hand, if we are in the null case, then b ∼ [−1/2, 1/2)m indepen-
dently of ̂θ, and consequently b�round(̂θ) (mod 1) ∼ [−1/2, 1/2), in which case
Pr

[∣

∣

∣b�round(̂θ) (mod 1)
∣

∣

∣ ≥ 1/4
]

= 1/2.
Therefore, we have a distinguisher for CLWE with Ω(1) advantage.

Completeness. As a warm-up, we compute the expected number of solutions
θ ∈ Sn,k. In particular, since θ ∈ Sn,k, we have Gpartiteθ = 1 by Lemma 6. It
therefore suffices to show

‖Aθ‖22
m + k

≤ δ2

for θ to be a solution. For simplicity, let δ′ = δ
√

m + k = 1
100γCLWE

= 1
200

√
m

.
Fix some θ ∈ Sn,k. The random variable Aθ ∈ R

m (over the randomness of A)
is distributed according to N (0, kIm×m). Therefore, ‖Aθ‖22 /k ∼ χ2(m). As a
result,

p := Pr
A

[

‖Aθ‖22 ≤ (δ′)2
]

= Pr
Z∼χ2(m)

[

Z ≤ (δ′)2

k

]

.

Using the CDF of the χ2(m) distribution and the lower incomplete gamma
function γ(·, ·), we have

p = Pr
Z∼χ2(m)

[

Z ≤ (δ′)2

k

]

=
1

Γ (m/2)
· γ

(

m

2
,
(δ′)2

2k

)

=
1

(m/2 − 1)!

(

(δ′)2

2k

)m/2

e−(δ′)2/2k·

∞
∑

j=0

(

(δ′)2

2k

)j

(m/2)(m/2 + 1) · · · (m/2 + j)

= (1 ± o(1)) · (δ′)m

(m/2 − 1)!(2k)m/2
· 2
m

,

=
(

δ′
√

mk

)m(1±o(1))
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because in our setting, (δ′)2/2k = o(1), so e−(δ′)2/2k = 1 − o(1) and the infinite
sum is dominated by its first term, and because δ′ = o(1) and

√
mk = ω(1).

Therefore, by linearity of expectation, the expected number of solutions X in
Sn,k satisfies

E[X] =
(n

k

)k

· p.

Setting n so that

p =
(n

k

)−k/10

gives

E[X] =
(n

k

)9k/10

, n = k · 2(10±o(1))m/k·log(√mk/δ′) = k · 2Θ(m/k·log(√mk·γCLWE)).

We turn this expected value bound into a 1 − o(1) bound on the existence of a
sparse solution in the full version [GVV24].8
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Abstract. In this work, we study the worst-case to average-case hard-
ness of the Learning with Errors problem (LWE) under an alterna-
tive measure of hardness − the maximum success probability achiev-
able by a probabilistic polynomial-time (PPT) algorithm. Previous works
by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert,
Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case
reductions from lattice problems to LWE, specifically from the approxi-
mate decision variant of the Shortest Vector Problem (GapSVP) and the
Bounded Distance Decoding (BDD) problem. These reductions, however,
are lossy in the sense that even the strongest assumption on the worst-
case hardness of GapSVP or BDD implies only mild hardness of LWE.
Our alternative perspective gives a much tighter reduction and strongly
relates the hardness of LWE to that of BDD. In particular, we show that
under a reasonable assumption about the success probability of solv-
ing BDD via a PPT algorithm, we obtain a nearly tight lower bound
on the highest possible success probability for solving LWE via a PPT
algorithm. Furthermore, we show a tight relationship between the best
achievable success probability by any PPT algorithm for decision-LWE
to that of search-LWE. Our results not only refine our understanding of
the computational complexity of LWE, but also provide a useful frame-
work for analyzing the practical security implications.

Keywords: LWE · BDD · success probability

1 Introduction

The Learning with Errors (LWE) problem has become one of the most impor-
tant computational problems in post-quantum cryptography and computational
complexity over the last two decades. Since Regev introduced this problem in
2005 [Reg09], the LWE problem has been used as the basis of a wide variety of
cryptographic primitives, as well as a tool for proving hardness results in learning
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theory [Reg06]. Formally, the LWE problem is defined as follows: The input con-
sists of a uniformly random matrix A ∼ Z

m×n
p and a vector b := As + e ∈ Z

m
p ,

where s ∈ Z
n
p is a secret vector chosen uniformly at random from Z

n
p and e ∈ Z

m
p

is an error vector of small magnitude sampled according to a Gaussian distribu-
tion. The goal is to output s. Here the positive integer p is called the modulus
and n is the dimension. In his seminal work, Regev related LWE to worst-case
lattice problems that form the foundation of lattice-based cryptography.

1.1 LWE and Computational Lattice Problems

Lattice Problems. A lattice L is a discrete additive subgroup of R
n that

consists of all integer linear combinations of m linearly independent vectors
B = {b1,b2, · · · ,bm} ⊂ R

n. Formally, it is defined as

L(B) :=

{
n∑

i=1

zibi | ∀i ∈ {1, ..., n}, zi ∈ Z

}
.

We call m the rank, n the dimension of the ambient space, and B a basis of the
lattice. A lattice can have many possible bases.

The two most important computational lattice problems are the Shortest
Vector Problem (SVP) and the Closest Vector Problem (CVP). In SVP, one is
given a basis for a lattice and asked to output a shortest non-zero lattice vector.
We denote the length of a shortest non-zero vector of a lattice L by λ1(L). In
the approximation variant of SVP, denoted by γ-SVP for some γ > 1, the goal
is to output a nonzero lattice vector whose length is at most γλ1(L). In CVP,
one is given a target vector and basis for a lattice and asked to output a closest
lattice vector to the target vector. Similarly, in its approximation variant γ-CVP,
the goal is to output a lattice vector whose distance from the target vector is at
most γ times the minimum distance between the target vector and the lattice.
There exists a polynomial-time reduction from SVP to CVP, which preserves the
dimension, rank, and approximation factor [GMSS99].

A closely related problem to CVP is the Bounded Distance Decoding (BDD)
problem, denoted by BDDα for some α < 1

2 . This is a promise problem in which
the goal is to solve CVP under the promise that the distance of the target from
the lattice is at most αλ1(L). Note that, by the triangle inequality, this promise
ensures that the closest vector to the target is unique. In our work, we only
consider length and distance in the standard Euclidean (�2) norm.

Computational lattice problems are crucial because of their association with
lattice-based cryptography. Specifically, the security of numerous cryptographic
systems such as [Ajt96,MR04,Reg06,MR09,Reg09,Gen09,BV14] relies on the
complexity of approximately solving lattice problems to within a polynomial fac-
tor. Aside from cryptosystem design, since the 1980s, solvers for lattice problems
have found applications in cryptanalytic tools [Sha85,Bri83,LO85], algorithmic
number theory [LLL82], and convex optimization [Kan87,FT87].
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Algorithms for Lattice Problems. Algorithms for CVP and SVP have been
designed and studied extensively for decades. Kannan proposed an enumera-
tion algorithm [Kan87] for CVP and hence for all lattice problems, with a time
complexity of nO(n) and space requirement of poly(n). Micciancio and Voul-
garis introduced a deterministic algorithm for CVP with a time complexity of
22n+o(n) and space requirement of 2n+o(n) [MV13]. A few years later, Aggar-
wal, Dadush, Regev, and Stephens-Davidowitz [ADRS14,ADRS15] presented
the current fastest known algorithm for SVP and CVP, which has a time and
space complexity of 2n+o(n). The best-known and proven runtime for an approx-
imation factor γ = nc is approximately 2n/(c+1) for constant c ≥ 0. For the
current state of the art, we refer the reader to [ALS20].

Hardness of Lattice Problems. Both γ-SVP and γ-CVP are known to be NP-
hard for nearly-polynomial approximation nc/ log log n for some constant c > 0
[vEB81,DKRS03,Din02,Kho05,HR18,Mic12]. Through a series of works, Aggar-
wal, Bennett, Golovnev, and Stephens-Davidowitz [BGS17,ASD18,ABGSD21],
demonstrated that approximating CVP and SVP to a factor γ slightly greater
than 1 is not achievable in time 2o(n) under variants of the Exponential Time
Hypothesis.

Worst-case to Average-case Reduction for LWE. The best known algorithm that
solves LWE for dimension n and modulus p runs in time pO(n/ log n) [BKW00].
The decision variant of LWE is the one most directly related to the security of
lattice-based cryptography. In decision-LWE, the goal is to distinguish between
an LWE instance as described above and a uniform sample from Z

m×(n+1)
p .

Regev [Reg09] gave a polynomial-time reduction from BDD to LWE. Addition-
ally, Regev gave a quantum polynomial-time reduction from a decision variant of
γ-SVP, known as GapSVPγ , to BDD for γ polynomial in the dimension of the lat-
tice. Peikert [Pei09] improved this result to a classical reduction from GapSVPγ

to LWE, albeit with the modulus p becoming exponential in the dimension n.
Later, Brakerski et al. [BLP+13] gave a reduction from LWE with dimension
n and modulus p exponential in n to LWE with dimension n2 and modulus
p polynomial in n, thus allowing the modulus to shrink from exponential to
polynomial.

Overall, these results give us a polynomial-time reduction from lattice prob-
lems (GapSVP, BDD) in dimension n to LWE in dimension n2 with modulus
p polynomial in n. This means that even if we assume that the currently best
known algorithms for BDD or GapSVP are the best possible, this reduction only
says that LWE in dimension n cannot be solved faster than in 2Ω(

√
n) time. This

is a much worse lower bound than one would expect based on the state-of-the-art
algorithms for LWE [BKW00]. This leads us to the following natural question.

Question 1. Is there a tight reduction from worst-case lattice problems (such as
BDD) to LWE that gives a tighter lower bound on the runtime for solving LWE?
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1.2 A Novel Perspective on Computational Hardness

In cryptography, security models often assume that all possible adversaries are
computationally bounded, based on the state-of-the-art capabilities of modern
computers. Often, when we declare that a cryptographic scheme is 256-bit secure,
we intuitively understand that the fastest algorithm for successfully breaking the
cryptosystem runs in 2256 units of time. What we typically require, however, is
that any algorithm that succeeds in attacking the cryptosystem with probability
more than 2−256 cannot do so in a “reasonable” amount of time.

Unpredictability Entropy. Motivated by this discrepancy, Aggarwal and Mau-
rer [AM11] proposed a different perspective on studying the complexity of a
computational search problem. They introduced the concept of unpredictability
entropy for a computational problem, defined as follows. If p is the maximum suc-
cess probability of a probabilistic polynomial-time (PPT) algorithm that solves
the problem, the unpredictability entropy of the problem is log2(

1
p ).

Two closely related properties of a search problem also studied in [AM11]
are witness compression and oracle complexity. A search problem P is said to
have witness compression w if there is a PPT reduction from P to another
search problem Q such that the problem Q has a solution/witness of length w.
The oracle complexity of the problem P is defined as the number of arbitrary
YES/NO questions needed to get a solution to the search problem, i.e. find a
witness.

It was shown in [AM11] that unpredictability entropy, witness compression,
and oracle complexity of a computational problem are equal, up to lower order
additive terms. Notice that these quantities are all indicative of the number of
bits in which the hardness of a computational problem can be captured.

The authors of [AM11] also gave a straightforward polynomial-time algo-
rithm for both SVP and CVP, that achieves a success probability of 2−n2/4−o(n2),
showing that both these problems have unpredictability entropy/witness com-
pression/oracle complexity n2/4 + o(n2). These algorithms are straightfor-
ward adaptations of the LLL algorithm and Babai’s nearest plane algo-
rithm [LLL82,Bab86]. If we replace [LLL82] with the slide reduction algo-
rithm [GN08,ALNSD20] with block length O(log n), this still runs in polyno-
mial time and reduces the search space, giving a success probability 2−Θ(n2/ log n).
Despite the various algorithmic techniques available for solving lattice problems,
none of these methods appear to improve this further if we are restricted to PPT
algorithms, even if we consider approximation variants of the lattice problems
with approximation factor γ polynomial in the lattice dimension n. Additionally,
the close relationship between BDDα and γ-SVP for 1

α and γ both polynomial in
n [LM09], suggests that it is unlikely for a polynomial-time algorithm for BDD
to do much better than current algorithms. With this in mind, it is reasonable
to conjecture the following.

Conjecture 1. For any constants c, c′ > 0, there exists κ = κ(c, c′) > 0 such that
no algorithm can solve BDD1/γ , γ-SVP, and γ-CVP on an arbitrary lattice for
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approximation factor γ = nc in time nc′
with success probability better than

2−n2/κ log n.

It is easy to see that any algorithm for solving LWE in polynomial time
for modulus p and dimension n has success probability at least p−n. This can
be obtained by guessing the secret s uniformly at random and then checking
whether b−As is small. We ask the following natural question, which is a novel
perspective on the worst-case to average-case reductions for LWE.

Question 2. Assuming Conjecture 1, is there a lower bound close to p−Ω(n) on
the success probability of solving LWE via a polynomial-time algorithm?

In this work, we answer this question in the affirmative. Since the security of
cryptosystems is based on the hardness of decision problems, we need to adapt
the question above and formulate the measure of hardness of a decision problem
in terms of the success probability of the best efficient (i.e. PPT) algorithm.

One-Sided Error PPT Algorithms. This question has been well studied par-
ticularly in the context of NP-hard problems, for which we expect any PPT
algorithm to be able to distinguish only with a small advantage. Some previ-
ous works, (such as [PP10], and the references therein) have explored the realm
of one-sided error probabilistic polynomial-time (OPP) algorithms for NP-hard
decision problems. This relies on the assumption that when the algorithm is pre-
sented with a NO instance, it consistently outputs NO, while for a YES instance,
the algorithm outputs YES with a small success probability α.

However, for decision problems like decision-LWE whose input is chosen
according to a distribution, we cannot hope to output NO with probability 1
even given a NO instance. This is because a NO instance for this problem is just
a random element from Z

m×(n+1)
q that will look like a YES instance with non-

zero probability. Thus, it is reasonable to adapt the notion of OPP algorithms
to have two parameters α, β such that α � β, and the algorithm outputs YES
with probability at least α, when given a YES instance, and with probability at
most β when given a NO instance. We call such an algorithm an (α, β)-solver
for decision LWE. Using this notation, we ask the following natural question.

Question 3. Assuming that there is no PPT algorithm that succeeds in solving
search-LWE with probability α, can we prove that there is no (α′, β′)-solver for
the corresponding decision-LWE problem with α′ ≈ α and β′ 	 α′.

We also answer this question in the affirmative.

1.3 Our Contributions

In this paper, we show that if no PPT algorithm can solve BDD on a lattice of
rank n with success probability greater than 2−O(n2)/ log n, then no PPT algo-
rithm can solve search-LWE in n dimensions with success probability greater
than 2−O(n2)/ log n. Here n is the dimension of the lattice even if we restrict the
secret to be a binary vector. Informally, our first main result is the following.
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Theorem 1. (informal) If no PPT algorithm can solve BDDγ for gap γ ∈ (0, 1
2 )

with success probability greater than 2−n2/κ log n −4 for some κ > 0, then no PPT
algorithm can solve search-LWE for binary secret and modulus p polynomial in
the dimension n with success probability 2−n2/κ log n.

Note that the above statement can easily be extended to having the secret chosen
uniformly at random from Z

n
p using a standard randomization of the secret. We

show this explicitly in Sect. 3.3.
We emphasize here that while our reductions are adaptations of similar reduc-

tions in the literature, adapting these reductions to our setting required great
care, since the number of oracle calls made in the reductions is crucial. In partic-
ular, for a reduction from problem P to problem Q that makes k calls to a solver
for problem Q, an upper bound of δ on the success probability for solving prob-
lem P in polynomial time would imply an upper bound of δ1/k on the success
probability for solving problem Q in polynomial time. So for our reductions, we
needed to adapt known reductions, which make polynomially many oracle calls,
into reductions that make only one call to the oracle and then guess successfully
with a small probability. These reductions with a single oracle call are known
as one-shot reductions. This approach enables us to obtain meaningful bounds
on the success probability of polynomial-time reductions. We also remark that
since Regev’s quantum reduction does not blow up the dimension, our results
do not have any novel implication in the quantum setting.

Our second main contribution is concretely relating the hardness of solving
decision-LWE to that of solving search-LWE using our new framework. In par-
ticular, we show that if no algorithm can solve search-LWE on a lattice of rank
n with modulus p in expected polynomial time with success probability close to
α, then there is no PPT algorithm that can solve decision-LWE for the same
dimension and modulus and answers correctly with probability close to α, out-
puts ⊥ with probability 1 − α, and answers incorrectly with the remaining tiny
probability. This relies on the assumption that β is large and close to 1, which
requires the oracle B to be correct with high probability when it does not output
⊥. Intuitively, this means that B admits defeat by outputting ⊥ far more often
than it guesses the answer incorrectly. Using this framework, we can informally
state our second main result as follows.

Theorem 2. (informal) If no algorithm can solve search-LWE for modulus p
polynomial in the dimension n with success probability α in expected polynomial
time, then no PPT algorithm can solve decision-LWE for the same modulus p
and dimension n that outputs a correct answer with probability α and outputs ⊥
with probability 1 − α.

To prove our second main result, we use a result by Levin [Lev12] This result
is an improvement of the original Goldreich-Levin Theorem in [GL89] which
gives a tight relationship between the success probability of finding a hard-core
bit and that of inverting the corresponding one-way function. In our work, we
rigorously prove Levin’s result and generalise it from binary {0, 1} to Zp for
all but a few values of p. This required considerable care and can easily find
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applications elsewhere, so we consider it to be a contribution of independent
interest.

Note that the statement of Theorem 2 is in terms of expected polynomial
time, which is a crucial aspect of the Goldreich-Levin Theorem used in our
reduction. Because the runtime is polynomial only in expectation, we cannot
directly combine this result with that of Theorem 1.

We remark here that while the techniques used to prove our second main
result are similar to those used in [MM11], we do not require that the probability
α of the decision-LWE oracle answering correctly is non-negligible. Instead, we
only require that α is sufficiently larger than the probability δ of answering
incorrectly. In particular, this means that both α and δ can be exponentially
small. In our work, we also explicitly quantify the loss in success probability for
each of our reductions.

1.4 Paper Organization

We give the notation and mathematical background needed for our results and
formally define the computational problems discussed throughout the paper in
Sect. 2. In Sect. 3, we prove our first main result, where we use techniques from
[Reg09] with new tweaks. In Sect. 4, we prove our second main result, where we
reduce the hardness of solving search-LWE to the hardness of solving decision-
LWE using our new framework [MW18]. We conclude with future directions and
open problems in Sect. 5.

2 Preliminaries

Let T := R /Z denote the additive group of real numbers modulo the integers,
i.e. the interval [0, 1) with addition modulo 1. R+ and Z+ denote the positive
real numbers and positive integers, respectively, which do not include zero. Let
p be any positive integer (not necessarily prime). Zp := Z /pZ denotes the ring
of integers {0, 1, . . . , p − 1} where addition and multiplication are performed
modulo p. We implicitly identify Zp with its natural embedding in Z whenever
relevant. For any n ∈ Z+, we denote [n] := {1, ..., n} to be all the integers
between 1 and n, inclusive. We use 〈·, ·〉 to denote the standard dot product,
so 〈x,y〉 = xTy for column vectors x,y where addition and multiplication are
performed according to the domain. We use lowercase boldface letters (such as
v), to denote vectors, uppercase boldface letters (such as B) to denote matrices,
and calligraphic uppercase boldface letters (such as A) to denote algorithms.
We use ‖·‖ = ‖·‖2 to denote the Euclidean norm. Throughout this paper, all
norms are assumed to be Euclidean unless specified otherwise. We say that an
algorithm is efficient if it runs in time polynomial in the size of the input, and
use the terms “efficient” and “polynomial-time” interchangeably throughout.

We will need the following standard lemma.
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Lemma 1. Let Y1, . . . , Yt be pairwise independent Bernoulli random variables
where Pr [Yi = 1] = p for 1 ≤ i ≤ t. Then for any c > 0,

Pr

[∣∣∣∣∣
t∑

i=1

Yi − tp

∣∣∣∣∣ ≤ ctp

]
≥ 1 − 1

c2tp
.

Proof. Let Y = Y1 + · · · + Yt. The expected value of Y is E[Y ] = tp and the
variance of Y is Var[Y ] = tp(1 − p). Then by the Chebyshev inequality, we have

Pr [|Y − tp| ≥ ctp] ≤ tp(1 − p)
c2t2p2

=
1 − p

c2tp
≤ 1

c2tp
.

�

2.1 Learning with Errors

Definition 1 (LWE Distribution). Let φ be a probability density function on
T, and s ∈ Z

n
p denote the unknown secret vector. The Learning with Errors

(LWE) distribution As,φ is the distribution over Z
n
p ×T obtained by choosing a ∈

Z
n
p uniformly at random and e ∈ T according to φ, then outputting (a, 1

p 〈a, s〉 +
e).

The standard Learning with Errors problem has both search and decision
variants, defined as follows.

Definition 2 (Search-LWE). The search variant of the Learning with Errors
problem, search-LWEn,p,φ, is defined as: given a polynomial number of samples
from the distribution As,φ, recover the secret s ∈ Z

n
p .

Definition 3 (Decision-LWE). The decision variant of the Learning with
Errors problem, decision-LWEn,p,φ, is defined as: given a polynomial number
of samples either from the distribution As,φ or independent and uniformly dis-
tributed samples from Z

n
p ×T, output

– YES if the samples are from the LWE distribution As,φ, or
– NO if the samples are uniformly random over Z

n
p ×T.

Definition 4 (Binary-LWE). The Binary Learning with Errors problem,
binLWEn,p,φ, is the search-LWEn,p,φ problem with the restriction that the secret
s is uniform over {0, 1}n.

2.2 Lattices

Definition 5 (Lattice). Let B = {b1, . . . ,bm} ⊆ R
n be a set of linearly inde-

pendent vectors. The lattice L = L(B) generated by B is the set of vectors
spanned by B over Z, i.e.

L(B) :=
{ m∑

i=1

zibi

∣∣∣∣ z = (z1, . . . , zn)T ∈ Z
n

}
⊂ R

n .
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The basis B is usually expressed as a matrix B whose columns are the vectors
of B and we write L(B) := L(B). Here m is the rank of the lattice as a free
Z-module, and n is the dimension of the ambient space.

Throughout this paper, we assume that the lattices are full-rank, meaning that
n = m.

Definition 6 (Determinant). The determinant of lattice L generated by B =
(b1, . . . ,bm) ∈ R

n×m is

det(L) :=
√

det(BTB).

Definition 7 (Dual Lattice). The dual lattice of L is

L∗ := {x ∈ R
n | ∀ v ∈ L, 〈v,x〉 ∈ Z}.

Given a basis matrix B ∈ R
n×m of a lattice L, we write B∗ to denote the

corresponding basis matrix for L∗. This satisfies (B∗)T B = Im.

Definition 8 (Successive Minima). For any k ∈ Z+, the k-th successive
minimum of L (in the Euclidean norm) is

λk(L) := inf{r ∈ R | B(0, r) contains k linearly independent vectors},

where B(0, r) denotes the ball of radius r centered at the origin. In particular,
λ1(L) is the length of any shortest nonzero vector in L.

Definition 9 (Unique Closest Lattice Vector). For any vector v ∈ R
n

whose distance from the lattice L is less than λ1(L)/2, there is a unique closest
lattice vector to v, which we denote by κL(v).

2.3 Probability and Gaussians

Throughout this paper, we frequently use the standard normal distribution over
the real numbers. We use the standard notation N(μ, σ2) to denote the normal
distribution with mean μ and variance σ2.

Definition 10 (Statistical Distance). Let φ1 and φ2 be probability measures
on the space (X,F), where X is the set of outcomes and F is the collection of
events. The statistical distance (a.k.a total variation distance) between φ1 and
φ2 is

Δ(φ1, φ2) := sup
A∈F

{|φ1(A) − φ2(A)|}.

In particular, when X = R
n,

Δ(φ1, φ2) =
1
2

∫
Rn

|φ1(x) − φ2(x)|dx.
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If X and Y are random variables with distributions φ1 and φ2, respectively,
we define Δ(X,Y ) := Δ(φ1, φ2). It is immediate that statistical distance satisfies
the triangle inequality. Another important property is that it does not increase
under the application of any (possibly random) function f [Vad12], i.e.

Δ(f(X), f(Y )) ≤ Δ(X,Y ). (∗)

This means that for any algorithm A, the success probability of A on X
differs from the success probability of A on Y by at most Δ(X,Y ).

Definition 11 (Gaussian Function). The Gaussian function of width s ∈ R+

is ρs : Rn → R, given by
ρs(x) := e−π‖x

s ‖2

.

For any countable subset A ⊆ R
n, we write ρs(A) :=

∑
x∈A ρs(x). Furthermore,

we denote ρ := ρ1. For any y ∈ R
n, we define ρs,y(x) := ρs(x − y).

Note that
∫
Rn ρs(x)dx = sn. Hence

νs :=
ρs

sn

is a probability density function on R
n, which we call a continuous Gaussian of

width s. Similarly, we write ν := ν1. Since a sample from νs can be generated
by taking n independent samples from the 1-dimensional Gaussian distribution,
we assume that we can sample efficiently from νs.

Definition 12 (Discrete Gaussian). For any countable subset A for which
ρs(A) converges, DA,s : A → R+ is the discrete Gaussian distribution on A
defined by

DA,s(x) :=
ρs(x)
ρs(A)

.

Definition 13 (Distribution Ψγ). For any γ ∈ R+, define the distribution
Ψγ : T → R+ by

Ψγ(r) :=
∑
k∈Z

1
γ

e−π( r−k
γ )2 .

In other words, if X is distributed according to Ψγ and Z ∼ N(0, γ2

2π ), then X
is the image of Z modulo 1.

An important property used in [Reg09] is the fact that Ψβ does not change
much under a small change in the parameter β. In [Reg09], it was shown that
the statistical distance between Ψβ and another distribution Ψα, such that β is
not too far from α is bounded by a scaling of the ratio β

α . For our reduction, we
need a much tighter bound, so we instead use the ratio between the probability
density functions corresponding to Ψα and Ψβ . Formally, we show the following.
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Lemma 2. Let α ∈ R+ and β := α(1+ε) for some ε > 0. Denote the probability
density functions of distributions Ψα and Ψβ by gα and gβ, respectively. Then
their ratio satisfies

gα(x)
gβ(x)

≤ 1 + ε =
β

α
.

for any x ∈ R.

Proof. Suppose X and X ′ are distributed according to Ψα and Ψβ , respectively.
By definition, X is the image of some Z with distribution N(0, α2

2π ) modulo 1,
and similarly, X ′ is the image of some Z ′ with distribution N(0, β2

2π ) modulo 1.
Then the ratio of the probability density functions fα and fβ is the same as
the ratio of the probability density functions of Z and Z ′ modulo 1. By this we
obtain

gα(x)
gβ(x)

=
1
αe−π( x

α )2

1
β e−π( x

β )2
=

β

α
e

−πx2 1
α2 +πx2 1

β2 =
α(1 + ε)

α
e

−πx2
(

1
α2 − 1

α2(1+ε)2

)

= (1 + ε)e−π x2

α2

(
1− 1

(1+ε)2

)
≤ 1 + ε.

The last inequality follows from the fact that f(x) := e
−πx2 1

α2

(
1− 1

(1+ε)2

)
is a

scaling of the Gaussian curve, so f(x) ≤ 1 for any value of x. �

Now we prove a multiplicative analog of (∗) for this ratio of probability
density functions.

Lemma 3. Let X and Y be continuous random variables in R with probability
density functions gX and gY , respectively. Suppose that for some fixed δ > 0,
their ratio satisfies

gX(x)
gY (x)

≤ δ

for all x. Then for any (invertible) function f : U → V and set S ⊆ V ,

Pr[f(X) ∈ S]
Pr[f(Y ) ∈ S]

≤ δ.

Proof. Consider the set T ∗ :=
{

u ∈ U | Pr[X=u]
Pr[Y =u] > 0

}
. This maximises the ratio

Pr[X∈T ]
Pr[Y ∈T ] over all T ⊆ U . This enables us to write

Pr[f(X) ∈ S]
Pr[f(Y ) ∈ S]

=
Pr[X ∈ f−1(S)]
Pr[Y ∈ f−1(S)]

≤ max
T⊆U

{
Pr[X ∈ T ]
Pr[Y ∈ T ]

}
=

Pr[X ∈ T ∗]
Pr[Y ∈ T ∗]

.

By definition of the probability density function, we have

Pr[X ∈ T ∗]
Pr[Y ∈ T ∗]

=

∫
T ∗ gX(x)dx∫
T ∗ gY (x)dx

≤ δ
∫

T ∗ gY (x)dx∫
T ∗ gY (x)dx

= δ.

�
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We remark that the statement can easily be extended to any randomised function
f . This means that for any algorithm A, the success probability of A on X differs
from the success probability of A on Y by at most a multiplicative factor of 1

δ .
We will use Lemmas 2 and 3 in Sect. 3.2 for the reduction from generised-LWE
to standard search-LWE.

2.4 The Smoothing Parameter

For any lattice L, one can show that ρt(L) converges for all t > 0. In particular,
the map s �→ ρ1/s(L \{0}) is a strictly decreasing continuous map on R+, that
satisfies lims→∞{ρ1/s(L \{0})} = 0 and
lims→0{ρ1/s(L \{0})} = ∞. This enables us to define the following parameter.

Definition 14 (Smoothing Parameter). Let L ⊂ R
n be a lattice and ε > 0.

The smoothing parameter of L with respect to ε is

ηε(L) := inf{s ∈ R+ | ρ 1
s
(L∗ \{0}) ≤ ε}.

By the above observation on the map s �→ ρ1/s(L \{0}), the infimum in the
definition above can be achieved with equality. In fact, s �→ ρ1/s(L \ {0}) is a
bijection from R+ to R+ with inverse ε �→ ηε(L).

Observe that, using the properties of the Gaussian function and the fact that
(p L)∗ = p−1 L∗, any scaling of the smoothing parameter can be rewritten as

p · ηε(L) = inf{ps ∈ R+ | ρ 1
s
(L∗ \{0}) ≤ ε}

= inf{s′ ∈ R+ | ρ p
s′

(L∗ \{0}) ≤ ε}
= inf{s′ ∈ R+ | ρ 1

s′
(p−1 L∗ \{0}) ≤ ε}

= ηε(p L).

The following upper and lower bounds on the smoothing parameter will be
used in our reduction.

Lemma 4. (Claim 2.13 from [Reg09]) For any n-dimensional lattice L and ε ∈
R+ we have

ηε(L) ≥
√

1
π

ln
(

1
ε

) · 1
λ1(L∗)

≥
√

1
π

ln
(

1
ε

) · λn(L)
n

.

Lemma 5. (Lemma 3.1 from [GPV08], adapted) For any n-dimensional lattice
L with basis B = {b1, ...,bn} and ε ∈ R+ we have

ηε(L) ≤ max
i∈[n]

{‖bi‖} ·
√

1
π

ln
(

2n

(
1 +

1
ε

))
.
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We remark that the original Lemma 3.1 in [GPV08] is tighter, as the maximum is
over the Gram-Schmidt orthogonolization of the basis vectors, b̃1, ..., b̃m, which
satisfy ‖b̃i‖ ≤ ‖bi‖ for all i ∈ [n]. The original statement takes the minimum of
this maximum norm over all possible bases B of the lattice.

The following is an elementary bound on the shortest vector length in the
dual lattice.

Lemma 6. (Theorem 3.2 from [Cai98], adapted) For any n-dimensional lattice
L with basis B = {b1, ...,bn},

1
λ1(L∗)

≤ max
i∈[n]

{‖bi‖}.

As in the previous lemma, the statement above is weaker than the original state-
ment in [Cai98], as it uses the weaker bound given by ‖b̃i‖ ≤ ‖bi‖ for all i ∈ [n],
instead of the smallest maximum length of the Gram-Schmidt orthogonolization
of the basis vectors taken over all possible bases of the lattice. For our purposes,
it suffices to take the weaker versions of these bounds stated in the lemmas
above.

2.5 Computational Lattice Problems

Definition 15 (SVP). Let γ ≥ 1. The γ-approximate Shortest Vector Problem
in the Euclidean norm, GapSVPγ , is the decision problem defined as: given an
instance (B, d) consisting of a basis matrix B of a rank-n lattice L and distance
parameter d > 0, output

– YES if λ1(L) ≤ d, or
– NO if λ1(L) ≥ γd.

Definition 16 (BDD). The Bounded Distance Decoding problem, BDDα,
parameterized by an approximation factor α ∈ (0, 1

2 ) is the search problem defined
as: given a basis matrix B of a rank-n lattice L and a target vector v ∈ R

n with
the promise that dist(v,L) < α · λ1(L), find a lattice vector closest to v, i.e. an
x ∈ L such that ‖v − x‖ < α · λ1(L).

Definition 17 (mod-BDD). Let p ∈ Z+ and α ∈ (0, 1
2 ). The Modulo-p

Bounded Distance Decoding problem, BDDα,p, is the search problem defined
as: given a basis matrix B of a rank-n lattice L and a target vector v ∈ R

n with
the promise that dist(v,L) < α · λ1(L), find the coefficient vector of a lattice
vector closest to v modulo p. i.e. if x ∈ L is closest to v, then the expected
output is B−1x (mod p) ∈ Z

n
p .

3 BDD to Search-LWE

We now formally state and prove our first main result.
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Theorem 3. (BDD → search-LWE) Let α = α(n) ∈ (0, 1) and γ ∈ (0, 1
2 ).

Suppose there exists a polynomial-time algorithm B that solves LWEn,2n,Ψα
with

probability q. Then there is a PPT algorithm A that, given oracle access to B
and a basis B for lattice L, solves any BDDγ instance (L,x) where

dist(L∗,x) ≤ αγ

maxi∈[n]{‖bi‖} ·
(

1
π

ln
(

2n

(
1 +

1
ε

)))− 1
2

with probability q(1 + δ)−3 − 6ε for some ε ∈ (0, 1
24 ) and constant δ > 3

4 .

In particular, using Conjecture 1, we assume that q = 2−n2/κ log n. Then
setting δ = 1 and ε = 1

96q, we obtain

q(1 + δ)−3 − 6ε =
1
8
q − 1

16
q = 2−4q = 2− n2

κ log n −4 = 2−O( n2
log n ).

So informally, this theorem says that if there is no efficient algorithm that solves
BDDγ with probability 2−O(n2/ log n), then there is no efficient algorithm for
LWEn,2n,Ψα

that succeeds with probability 2−O(n2/ log n).
The proof consists of two parts and uses techniques inspired by Regev’s orig-

inal reduction in [Reg09]. First we give a one-shot reduction from BDD to a gen-
eralised LWE problem in Sect. 3.1. Then we adapt Regev’s reduction from this
generalised LWE problem to search-LWEwith exponential modulus in Sect. 3.2,
using the multiplicative, rather than additive, difference in distributions. Lastly,
we reduce LWE with exponential modulus to binary LWE with polynomial mod-
ulus in Sect. 3.3.

3.1 BDD to Generalised LWE

Consider the following generalised version of LWE, as introduced by Regev
in [Reg09].

Definition 18 (Generalised LWE). The Generalised Learning with Errors
problem, denoted by LWEn,p,D, is defined as: given a polynomial number of
samples from the distribution As,φ with modulus p, where φ belongs to the family
of distributions D, recover the secret s ∈ Z

n
p .

Note that in the definition above, any algorithm for the problem may know
D, but is not given the specific distribution φ ∈ D. Furthermore in any instance
of the problem, the input samples all come from the same distribution φ. For
our proof, we are interested in the family of distributions

Ψ≤α := {Ψβ | 0 < β ≤ α}.

To obtain the desired bound on the success probability, we would like to
minimise the number of calls to the oracle for our target problem. In the chain
of reductions BDDγ → BDDγ,p → LWEn,p,Ψ≤α

in [Reg09], a total of n calls is
made to the algorithm for BDDγ,p, each of which calls the oracle for LWEn,p,Ψ≤α
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once. If we insist that the modulus is p = 2n, then we can simplify our analysis
by allowing the BDDγ algorithm to call the BDDγ,p oracle exactly once, so that
the total number of calls to the LWE oracle is exactly one.

In our one-shot reduction from BDDγ to BDDγ,p, we call the BDDγ,p oracle on
the given BDDγ instance to obtain a coefficient vector that ideally corresponds
to the closest lattice vector to the given target v. We then shift the target vector
v by this closest lattice vector and scale it down by p. Then we run Babai’s
nearest plane algorithm from [Bab86] on this shifted and scaled vector to find
the closest lattice vector to v within the specified distance. Intuitively, blowing
up the modulus to be exponential in the dimension n makes it easy for Babai’s
nearest plane algorithm to find the exact lattice point we are interested in. Now
we formalise this idea.

Lemma 7. (BDD → Modulo-BDD) Let n ∈ Z+, p = 2n, and γ ∈ (0, 1
2 ). Suppose

there is a polynomial time algorithm B that solves BDDγ,p with success probability
q. Then there exists a polynomial time algorithm A with oracle access to B that
solves BDDγ with success probability q.

Proof. Let (B,v) be the given instance of BDDγ . By definition, this defines a
lattice L = L(B) ⊂ R

n which satisfies dist(v,L) < γ · λ1(L). Consider the
following algorithm A:

Algorithm 1: BDD to Modulo-BDD Reduction
Input: BDDγ instance (B,v).
Output: Lattice vector x ∈ L.
Run B on (B,v) to get a vector z ∈ Z

n
p .

Compute v′ := 1
p (v − Bz).

Run Babai’s Algorithm on (B,v′) to get a vector Bz′ ∈ L.
Output the vector B(pz′ + z).

Since the oracle B and Babai’s Nearest Plane algorithm both run in time
polynomial in the dimension of the lattice n, this algorithm clearly runs in poly-
nomial time.

Now we prove correctness and show that if B answers correctly, then A
outputs a correct answer. If oracle B answers correctly, it outputs z = z ( mod p)
for some coefficient vector z = B−1x ∈ L, where x ∈ L is a closest lattice vector
to v. This means that

‖v − x‖ = ‖v − Bz‖ < γ · λ1(L).

The output of A is correct if and only if ‖v − B(pz′ + z)‖ < γ · λ1(L). Since
‖v − Bz‖ < γ · λ1(L), it is enough to show that z = pz′ + z. Babai’s nearest
plane algorithm from [Bab86] guarantees that the output Bz′ satisfies

‖v′ − Bz′‖ ≤ 2n · dist(L,v′).

Observe that since z = B−1x and x = Bz ∈ L is a lattice vector, z ∈ Z
n

must be an integer coefficient vector. By definition, z = z (mod p) ∈ Z
n
p is
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also a coefficient vector. Combining these two facts and observing that their
coordinates can only differ by a multiple of p, we obtain that 1

p (z − z) ∈ Z
n is

a coefficient vector. Hence B 1
p (z − z) ∈ L. By definition, dist(L,v′) ≤ ‖v′ − u‖

for any lattice vector u ∈ L. This yields the bound

‖v′−Bz′‖ ≤ 2n ·dist(L,v′) ≤ 2n

∥∥∥∥v′ − B
1
p
(z − z)

∥∥∥∥ = 2n · 1
p

‖v − Bz‖ < γ ·λ1(L),

where the last inequality above follows from the assumption that p = 2n. Thus,
the unique closest vector to v′ is in fact B 1

p (z− z). Therefore, z′ = 1
p (z− z), so

we obtain z = pz′ + z as desired. Since the oracle B is correct with probability
q and the algorithm A always answers correctly in this case, the overall success
probability of algorithm A is at least q. �

Note that in order for the reduction above to work, we need the modulus to
be exponential p = 2n. We will reduce this exponential modulus to a polynomial
one in Sect. 3.3. Before we proceed to the second reduction, we introduce the
following intermediate results.

Lemma 8. (Claim 3.8 from [Reg09]) Let L be a rank-n lattice, c ∈ R
n, and

ε > 0. For any r ≥ ηε(L),

ρr(L +c) ∈ (rn det(L∗)(1 − ε), rn det(L∗)(1 + ε)).

This bounds the Gaussian function of any lattice coset by the determinant of
the dual lattice. The following lemma bounds the statistical distance between
two relevant distributions.

Lemma 9. (Corollary 3.10 from [Reg09]) Let L be a rank-n lattice, w,v ∈ R
n

be vectors, and r, s ∈ R+. Define t :=
√

(r‖w‖)2 + s2. Suppose that for some

ε ∈ (0, 1
2 ), we have ηε(L) ≤ 1/

√
1
r2 +

(
1
s‖w‖)2. Define the random variable

X := 〈w,v〉 + e, where the distribution of v is v ∼ DL+u,r and e ∼ N
(
0, s2

2π

)
,

and let Φ denote the distribution of X modulo 1. Also let Z ∼ N
(
0, t2

2π

)
. Then

Δ(X,Z) ≤ 4ε, and hence Δ
(
Φ,Ψt

)
≤ 4ε.

Now we implement the second reduction. Our algorithm requires additional
data, namely samples from a discrete Gaussian. We generate these samples using
a subroutine from [BLP+13] as a black-box. In [BLP+13], the authors give an
efficient algorithm that, for any lattice and sufficiently large width, outputs a
sample from a discrete Gaussian distribution. Formally, they prove the following.

Lemma 10. (Theorem 2.3 from [BLP+13], adapted) There exists a PPT algo-
rithm DGS that, given a basis B of an n-dimensional lattice L = L(B), a vector
c ∈ R

n, and a parameter

r ≥ max
i∈[n]

{‖b̃i‖} ·
√

ln(2n + 4)
π

,

outputs a sample with distribution DL +c,r.
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Lemma 11. (Modulo-BDD → Generalised-LWE) Let ε = ε(n) ∈ (0, 1
24 ),

q = q(n), α = α(n) ∈ (0, 1), p = p(n) ∈ Z+, γ ∈ (0, 1
2 ), and k ∈ Z+ be a

constant. Suppose there is a polynomial time algorithm B that, given nk samples
from As,Ψ≤α

, solves LWEn,p,Ψ≤α
with success probability q. Then there is a PPT

algorithm A with oracle access to B that, given (B∗,x) corresponding to a lattice
L∗ = L(B∗) such that dist(L∗,x) ≤ αp

√
γ

r for some

r >
p√
γ

· max
i∈[n]

{‖bi‖} ·
√

1
π

ln
(

2n

(
1 +

1
ε

))
,

solves BDDγ,p with success probability q − 6ε.

Proof. Let (B∗,x) be the given BDDγ,p instance. By definition, this defines a
lattice L∗ = L(B∗) = (L(B))∗ which is the dual lattice of L = L(B). By
Lemma 6, the parameter r is bounded by

r ≥ p√
γλ1(L∗)

·
√

1
π

ln
(

2n

(
1 +

1
ε

))
≥ p√

γλ1(L∗)
·
√

1
π

ln
(

1
ε

)
≥ αp√

γλ1(L∗)
.

The last inequality here follows from the upper bound on ε and the assumption
that α < 1. Then for the given parameters, the distance between the given vector
and lattice is bounded by

dist(L∗,x) ≤ αp
√

γ

r
≤ αp

√
γ · √

γλ1(L∗)
αp

≤ γ · λ1(L∗).

Thus, (B∗,x) is a valid instance of BDDγ,p.
First we define a subroutine to efficiently sample from a discrete Gaussian

distribution. Note that since ε ∈ (0, 1
24 ) is a constant, we have 1

ε ≥ 2
n , so the

bound on r satisfies

r ≥ p√
γ

· max
i∈[n]

{‖bi‖} ·
√

1
π

ln
(

2n

(
1 +

1
ε

))
≥ max

i∈[n]
{‖bi‖} ·

√
1
π

ln (2n + 4).

This enables us to run the DGS algorithm from Lemma 10 on this r, the lattice
L, and vector c = 0 to generate samples with distribution DL,r.

The idea for algorithm A is to use x to generate a polynomial number of
samples from a distribution Φ that is a good approximation of As,Ψβ

, for s =
(B∗)−1κL∗(x) mod p and some β ≤ α. Recall that κL∗(x) denotes the unique
closest vector in the lattice L∗ to x. We call the oracle B on these generated
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samples to obtain the secret vector s with probability close to q. We formally
define algorithm A as follows.

Algorithm 2: Modulo-BDD to Generalised-LWE Reduction

Input: (B∗,x) such that dist(L∗,x) ≤ αp
√

γ

r .
Output: s ∈ Z

n
p .

for i ∈ {1, ..., nk} do
Run the DGS sampler to obtain a vector v ← DL,r.
Compute a := B−1v mod p.
Sample some noise e ← N

(
0, α2γ

2π

)
.

Define b := 1
p 〈x,v〉 + e mod 1.

Define sample Xi := (a, b).
end
Run B on X1, ...,Xnk ∼ Φ to get a vector s ∈ Z

n
p .

Output s.

Since this sampling process is efficient and repeated a polynomial number of
times, the overall algorithm is efficient.

Now we prove the correctness of algorithm A. We claim that if B succeeds,
A generates a good approximation of samples from As,Ψβ

. Specifically, we show
that the statistical distance between the distributions Φ and As,Ψβ

is ε′ for
some β ≤ α. Given a polynomial number of samples from As,Ψβ

, the oracle B
is guaranteed to find s with probability q. If the oracle succeeds, its output is
s = (B∗)−1κL∗(x) mod p, which is precisely the coefficient vector of the closest
lattice vector x ∈ L∗ modulo p. Hence it is a solution for the given BDDγ,p

instance. Since the samples input to B are from an approximate distribution
Φ that is ε′ away in statistical distance from the true distribution As,Ψβ

, then
by (∗) the success probability suffers a loss of ε′. Hence, the algorithm A will
succeed with probability q − ε′.

We prove our claim by analysing the distributions of a and b for any generated
sample Xi. First we show that the distribution of a ∈ Z

n
p is close to uniform.

Let Y denote the distribution of a produced in the algorithm. Fix a ∈ Z
n
p . Then

the probability that Y takes the value a is

Pr[Y = a] = Pr
v←DL,r

[v = Ba mod p] =
ρr(p L +Ba)

ρr(L)
=

ρ r
p

(
L + 1

pBa
)

ρr(L)
,

by definition of the discrete Gaussian. By Lemma 5, we have r > p
√

2 · ηε(L).
Then since ηε(L) < r, Lemma 8 implies

ρ r
p

(
L + 1

pBa
)

ρr(L)
∈

rn

pn det(L∗)(1 ± ε)

rn det(L∗)(1 ± ε)
=

1
pn

(
1 − 2ε

1 + ε
, 1 +

2ε

1 − ε

)
.
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Then the statistical distance between Y and the uniform distribution U over Zn
p

is bounded by

Δ(Y ,U) =
1
2

∑
a∈Zn

p

|Pr[Y = a] − Pr[U = a]|

≤ 1
2

(
ρpn

(
1
pn

(
1 +

2ε

1 − ε

)
− 1

pn

)

+ (1 − ρ)pn

(
1
pn

(
1 − 2ε

1 + ε

)
− 1

pn

))

≤ max
ρ∈[0,1]

{
ρ

ε

1 − ε
+ (1 − ρ)

ε

1 + ε

}

≤ ε

1 − ε
.

Here ρ ∈ [0, 1] is the fraction of values in Z
n
p for which Pr[Y] > Pr[U ]. Since

ε ∈ (0, 1
24 ), we have Δ(Y ,U) ≤ 2ε.

Now we show that the distribution of the second component b of the sample
Xi is close to the corresponding LWE distribution. We condition on a and con-
sider the marginal distribution of b. Define x′ := x − κL∗(x). By construction,
we have ‖x′‖ ≤ dist(L∗,x) ≤ αp

√
γ

r . Then we can write

1
p 〈x,v〉 + e = 1

p 〈κL∗(x),v〉 + 1
p 〈x′,v〉 + e. (∗∗)

Observe that since (B∗)T = B−1, we can write

〈κL∗(x),v〉 = κL∗(x)TBB−1v

= κL∗(x)T
(
(B∗)−1

)T
B−1v

=
(
(B∗)−1κL∗(x)

)T(B−1v)

=
〈
(B∗)−1κL∗(x),B−1v

〉
.

By construction, we have

〈κL∗(x),v〉 =
〈
(B∗)−1κL∗(x),B−1v

〉 ≡ 〈s,a〉 mod p,

so the first term in (∗∗) satisfies

1
p 〈κL∗(x),v〉 ≡ 1

p 〈a, s〉 mod 1.

It remains to consider the second term in the expression (∗∗). Note that
conditioned on a and since p is fixed, the distribution of v is the same as the
distribution Dp L +Ba,r. Let Z denote the distribution of 1

p 〈x′,v〉+e mod 1 for v

sampled from Dp L +Ba,r. By construction, e is sampled according to N
(
0, α2γ

2π

)
.
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Since
∥∥∥ 1

px
′
∥∥∥ ≤ α

√
γ

r , we obtain

1√
1
r2 +

(
1

α
√

γ

∥∥∥ 1
px

′
∥∥∥)2

≥ 1√
1
r2 + 1

r2

=
r√
2

> r
√

γ ≥ p · ηε(L) = ηε(p L).

Here the last equality follows from rewriting the scaled smoothing parameter
(see Subsect. 2.4 for the proof). Then by Lemma 9, Δ(Z,Ψβ) ≤ 4ε, for

β :=

√(
r

∥∥∥∥1
p
x′

∥∥∥∥
)2

+ (α
√

γ)2 ≤
√

α2γ + α2γ = α
√

2γ < α.

Therefore, by the triangle inequality, the statistical distance between Φ and
As,Ψβ

is ε′ = 2ε + 4ε = 6ε for some β ≤ α, as claimed. �

An immediate corollary of this one-shot reduction is the following bound on
the success probability of any polynomial-time algorithm for BDD.

Corollary 1. (BDD → Generalised-LWE) Suppose there exists an polynomial-
time algorithm A that solves LWEn,p,φ, where φ is an unknown distribution from
the family Ψ≤α, with success probability q = q(n). Then there is a polynomial-
time algorithm B that, given oracle access to A, solves BDDγ for gap γ ∈ (0, 1

2 )
with probability q − 6ε for some sufficiently small ε = ε(n) ∈ (0, 1

24 ).

Note that the additive loss in success probability can be written as a multi-
plicative factor:

q − ε′ = q

(
1 − ε′

q

)
= q

(
1 − 6ε

q

)
.

This probability only makes sense for 0 < q−6ε < 1, which holds if ε ∈ (
q−1
6 , q

6

)
.

To obtain a small loss, say q−ε′ = q
2 , we would need ε = q

12 . For our application,
we are interested in the regime where q = 2−O(n2/ log n), so taking an appropriate
ε such as this, we can obtain a constant multiplicative loss in success probability.

3.2 Generalised LWE to Standard LWE

In this section, we give a reduction from generalised LWE to LWE by adapting
Lemma 3.7 from [Reg09] to work with multiplicative, rather than additive, loss
in success probability. In Regev’s reduction, we iteratively choose some Gaussian
noise from a discrete interval to obtain some optimal noise that guarantees an
overwhelming success probability. Since we are concerned with polynomial-time
adversaries and the success probability itself, unlike the original reduction, we
only sample noise from the interval exactly once. Because we are limited to
a single Gaussian noise sample, choosing the interval and parameters requires
considerable care.
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Lemma 12. (Generalised-LWE → Search-LWE) Let α ∈ R+, p = p(n) ∈ Z+,
and ε > 3

4 be a constant parameter. Suppose there is an efficient algorithm B
that solves LWEn,p,Ψα

with success probability q. Then there is a PPT algorithm
A that, given oracle access to B, solves LWEn,p,Ψ≤α

with success probability at
least q

(1+ε)3 .

Proof. Suppose that A is given nk samples for some constant k ∈ Z+, distributed
according to As,Ψβ

, for some β ≤ α. For notational convenience, let
δ := (1 + ε)2 − 1 = ε2 + 2ε and define

Z :=
{
0, δα2, 2 · δα2, . . . , �δ�δα2

}
to be the set of integer multiples of δα2 between 0 and α2. Consider the following
algorithm A:

Algorithm 3: Generalised-LWE to Search-LWE Reduction
Input: Samples X1, ...,Xnk ∼ As,Ψβ

.
Output: Secret vector s ∈ Z

n
p .

Sample γ ← Z uniformly at random.
for i ∈ {1, ..., nk} do

Denote (a, b) := Xi.
Sample some noise e ← Ψ√

γ .
Define Yi := (a, b + e).

end
Run B on the generated samples Y1, ..., Ynk to get a vector s′ ∈ Z

n
p .

Output s′.

Since sampling and transforming nk samples is efficient, and the oracle B is
called once, A is efficient.

Now we prove correctness of A. The algorithm is given samples of the form
Xi = (a, b) = (a, 〈a, s〉+e), where e has distribution Ψβ for some unknown β ≤ α.
The algorithm knows the value of α, so it attempts to add noise from Ψ√

γ in such
a way as to obtain samples with noise distribution Ψα. In this way, it generates
samples of the form Yi = (a, b + e) = (a, 〈a, s〉 + e′ + e) where the noise e′ + e

has distribution Ψσ for σ :=
√

β2 + γ. The error between the noise distribution
Ψσ generated by A and the target distribution Ψα is determined by the given
error parameter ε. Let γ′ be the smallest element of Z satisfying γ′ ≥ α2 − β2.
Then by construction of Z, we have γ′ ≤ α2 − β2 + δα2 = (δ + 1)α2 − β2. By
definition, since ε > 3

4 , we have δ > 1. Together with the fact that 0 < β ≤ α,
this implies that 0 < α2 − β2 < (δ + 1)α2 − β2 < �δ�δα2. Hence, there exists
such an element γ′ in Z. There are |Z| = �δδα2

δα2 ≤ δ elements in Z, so the
element γ sampled by the algorithm is γ = γ′ with probability at least 1

δ . Let
σ′ :=

√
β2 + γ′ denote the noise distribution parameter for this special element

γ′. Consider the ratio of the probability generating functions corresponding to
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Ψα and Ψσ′ . Using Lemma 2 and the bounds on γ′, this is given by

gα(x)
gσ′(x)

≤ σ′

α
=

√
β2 + γ′

α

≤
√

β2 + (δ + 1)α2 − β2

α
=

α
√

1 + δ

α
=

√
(1 + ε)2 = 1 + ε.

Then by Lemma 3, applying any function to this ratio of probability distribution
functions cannot increase the ratio. This implies that the success probability of A
for noise distribution Ψα and the success probability of A for noise distribution
Ψσ′ have the ratio

Pr[A succeeds for Ψα]
Pr[A succeeds for Ψσ′ ]

=
q

Pr[A succeeds for γ = γ′]
≤ 1 + ε.

Hence, for this choice γ = γ′, we know that A successfully outputs s′ = s with
probability at least q

1+ε . Therefore the overall success probability of A is at least

Pr[A succeeds for γ = γ′] · Pr[γ = γ′] ≥ q · 1
1 + ε

· 1
δ

≥ q

(1 + ε)3
.

�
Assuming the success probability of solving LWEn,p,Ψα

is q = p−n/κ log n for
modulus p = 2n, and setting the error parameter to be ε = 1, we obtain the
following corollary.

Corollary 2. (Generalised-LWE → Search-LWE) Suppose there is no efficient
algorithm A for LWEn,2n,Ψ≤α

with success probability 2−n2/κ log n−3 for some
constant c > 0. Then there is no efficient algorithm B for LWEn,2n,Ψα

with
success probability 2−n2/κ log n.

3.3 Reducing the Modulus for Search-LWE

In [BLP+13], Brakerski et al. study the trade-off between the modulus and
dimension of decision-LWE instances. In particular, they give a reduction from
decision-LWE to decision-LWE that reduces the modulus arbitrarily while pre-
serving the dimension and incurring only a small loss in advantage. Their reduc-
tion can also be viewed as a search to search reduction that says the following.

Theorem 4. (Theorem 4.1. from [BLP+13], rephrased) Let n ∈ Z+ and α =
α(n) ∈ (0, 1) such that 1

α is bounded by a polynomial in n. Then for some prime
p = p(n) such that both p and p

α are nΘ(1), there is a polynomial-time, one-
shot reduction from LWEn,2n,Ψα

to binLWEn2,p,Ψα
that preserves the success

probability.

Using the trivial reduction from binLWE to LWE for the same dimension,
modulus, and noise distribution, this result allows us to reduce the modulus
from exponential to polynomial in n for LWE. For completeness, we include this
simple reduction below.
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Lemma 13. (binLWEn,p,φ → LWEn,p,φ) Suppose there exists an efficient algo-
rithm B that solves LWEn,p,φ with success probability q. Then there is a PPT
algorithm A that, given oracle access to B, solves binLWEn,p,φ with success prob-
ability q.

Proof. Let As,φ be the input distribution for the given binLWEn,p,φ samples,
where s ∈ {0, 1}n is a binary secret vector. Consider the following algorithm A:

Algorithm 4: binLWE to LWE Reduction
Input: Samples X1, ...,Xnk ∼ As,φ.
Output: Secret vector s ∈ Z

n
p .

Sample a vector r ← Z
n
p uniformly at random.

for i ∈ {1, ..., nk} do
Denote (a, b) := Xi.
Define Yi := (a, b + 〈a, r〉).

end
Run B on the generated samples Y1, ..., Ynk to get a vector s′ ∈ Z

n
p .

Output s′ − r.

This algorithm transforms a polynomial number of samples and the efficient
oracle B is called once, so A is efficient. Now we prove correctness. Observe that
each sample Xi has b = 〈a, s〉 + e for some noise e with distribution φ, so the
transformed samples have the form

Yi = (a, b + 〈a, r〉) = (a, 〈a, s〉 + 〈a, r〉 + e) = (a, 〈a, s + r〉 + e).

The oracle B succeeds in recovering the secret vector s′ = s+ r with probability
q, so with the same probability A outputs the secret binary vector s = s′ − r. �

4 Search-LWE to Decision-LWE

In this section, we show how to solve search-LWE given an oracle for decision-
LWE, under the condition that the oracle correctly responds YES far more often
than it incorrectly responds YES. The formal statement of our result is below.
Several proofs in this section have been omitted for lack of space, so we refer the
reader to the full version (available online) for details.

Theorem 5. (Search-LWE → Decision-LWE) Let n, p, k ∈ Z+ be such that
p > 10 is polynomial in n and k is a constant. Suppose that there exists an
efficient algorithm B for decision-LWEn,p,φ that,

– given nk LWE samples from As,φ, outputs YES with probability γ,
– given nk random samples from Z

n
p ×T, outputs YES with probability δ,

where γ > 5p2δ. Then there is an algorithm A for search-LWEn,p,φ with oracle
access to B that, given nk samples, runs in expected polynomial time and

– outputs a correct answer with probability 1
5p3 γ and
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– outputs ⊥ with probability 1 − 1
5p3 γ.

Note that here we do not make any assumptions on how large γ and δ, so
they need not be negligibly small. We prove this by making the following key
observation: If solving search-LWE is hard, then it is hard to determine the
secret vector s from a given polynomial number of LWE samples of the form
(a,b = 1

p 〈a, s〉+ e). Intuitively, this means that the function fφ = (A, 1
pAs+ e)

defined by these samples is hard to invert, so it can be viewed as a one-way
function. In their seminal work, Goldreich and Levin show how to construct a
hard-core predicate from any one-way function [GL89]. This tells us that if we
can find the inner product of s and a given vector r, then we can recover the
secret vector s.

Inspired by this connection, we define an intermediate problem we call the
Goldreich-Levin Learning with Errors (GL-LWE) problem. We reduce search-
LWE with polynomial modulus to GL-LWE, then reduce this problem to stan-
dard decision-LWE under a reasonable condition.

4.1 Search-LWE to GL-LWE

In [GL89], Goldreich and Levin showed that for any one-way function f ,
the function b(x, z) := 〈x, z〉 mod 2 is a hard-core predicate for the function
g(x, z) := (f(x), z). Levin later improved this result in [Lev12] and showed that
the success probability of finding the hard-core predicate is determined by the
success probability of inverting the one-way function f . For the formal state-
ment and full proof of Levin’s result, we refer the reader to the full version of
our paper.

We generalise Levin’s result from modulus 2 to modulus p > 10 using the
natural generalisation of a hard-core predicate for Zp, under a certain condition.
We refer the reader to the full version for our proof of this generalisation.

Lemma 14. Let n, p ∈ Z+ such that p > 10 is polynomial in n and let f : Zn
p →

Z
n
p be an injective one-way function. Suppose there is an efficient algorithm B

that, given y = f(x) for some x ∈ Z
n
p and random r ∈ Z

n
p , guesses 〈x, r〉 mod p

– correctly with probability αβ,
– incorrectly with probability α(1 − β), and
– outputs ⊥ with probability 1 − α,

where β > 1 − 1
5p . The probability is taken over the randomness of r, and the

randomness of the algorithm. Then there is an algorithm A that runs in expected
polynomial time, that given oracle access to B and y = f(x) for some x ∈ Z

n
p ,

finds x correctly with probability 1
5p2 αβ and outputs ⊥ with probability 1− 1

5p2 αβ.

Now we apply this result to our study of the hardness of LWE. First we define
an intermediate worst-case problem inspired by the Goldreich-Levin theorem.
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Definition 19 (Goldreich-Levin LWE). The Goldreich-Levin Learning with
Errors (GL-LWE) problem, denoted by GL-LWEn,p,φ is defined as: given a poly-
nomial number of samples from the distribution As,φ, where s ∈ Z

n
p is some fixed

secret, and a uniformly random vector r ∈ Z
n
p , find 〈s, r〉 mod p.

We use this to reduce (average-case) search-LWE to (average-case) decision-
LWE. First note that search-LWE trivially reduces to worst-case search-LWE:
given LWE samples for a uniformly random secret s, the reduction algorithm
simply runs its oracle for worst-case search-LWE on the given samples and suc-
ceeds in recovering s with the same probability. Now we interpret Lemma 14 as
a reduction from worst-case search-LWE to GL-LWE.

Corollary 3. (Search-LWE → GL-LWE) Let n, p, k ∈ Z+ such that p > 10 is
polynomial in n. Suppose that there is an efficient algorithm B for GL-LWEn,p,φ

that, given nk samples from As,φ for some fixed secret s ∈ Z
n
p , and a uniformly

random vector r ∈ Z
n
p , outputs a guess for 〈s, r〉 mod p

– correctly with probability α∗β∗,
– incorrectly with probability α∗(1 − β∗), and
– outputs ⊥ with probability 1 − α∗,

where β∗ > 1 − 1
5p . The probability is taken over the randomness of s, r, and the

randomness of the algorithm. Then there is an algorithm A for search-LWEn,p,φ

that runs in expected polynomial time and, given nk samples from As,φ for some
fixed secret s ∈ Z

n
p ,

– correctly outputs s with probability 1
5p2 αβ and

– outputs ⊥ with probability 1 − 1
5p2 αβ.

Proof. Consider the function fφ : Z
n
p → Z

n
p given by fφ(s) := (A, 1

pAs + e),
where the rows of A are uniformly random vectors sampled from Z

n
p and e is

sampled according to distribution φ. This can be used as an injective function,
because with high probability there is a unique s that satisfies the system of
equations determined by any given output (A,b) = (A, 1

pAs + e). Applying
Lemma 14 gives us the desired result. �

4.2 GL-LWE to Decision-LWE

Finally, we finish our chain of reductions by reducing our worst-case intermediate
problem to decision-LWE. In the following we show that if there is a (γ, δ)-solver
(with γ � δ) for decision-LWE, then there is an algorithm for GL-LWE that
Corollary 3 can be instantiated with to complete the reduction from search-LWE
to decision-LWE.

Lemma 15. (GL-LWE → Decision-LWE) Let k ∈ Z+ be a constant. Suppose
that there exists an efficient algorithm B for decision-LWEn,p,φ that,

– given nk LWE samples from As,φ for a uniformly random secret s,
outputs YES with probability γ,
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– given nk random samples from Z
n
p ×T, outputs YES with probability δ.

Then there is an algorithm A that, given oracle access to B and an instance of
GL-LWEn,p,φ consisting of nk samples from As,φ for a fixed secret s, outputs

– a correct answer with probability 1
pγ,

– a wrong answer with probability p−1
p δ, and

– ⊥ with probability 1 − 1
pγ − p−1

p δ.

For the proof of Lemma 15, we refer the reader to the full version. Now we
combine Corollary 3 and Lemma 15 to obtain our second main result.

Corollary 4. (Search-LWE → Decision-LWE) Let n, p, k ∈ Z+ be such that
p > 10 is polynomial in n and k is a constant. Suppose that there exists an
efficient algorithm B for decision-LWEn,p,φ that,

– given nk LWE samples from As,φ, outputs YES with probability γ,
– given nk random samples from Z

n
p ×T, outputs YES with probability δ,

where γ > 5p2δ. Then there is an algorithm A for search-LWEn,p,φ with oracle
access to B that, given nk samples, runs in expected polynomial time and

– outputs a correct answer with probability 1
5p3 γ and

– outputs ⊥ with probability 1 − 1
5p3 γ.

Proof. Set α := γ+(p−1)δ
p and β := γ

γ+(p−1)δ . Then we have αβ = 1
pγ and

α(1−β) = p−1
p δ. By the assumption that γ > 5p2δ, and since p > 10, we obtain

β =
γ

γ + (p − 1)δ
> 1 − p − 1

5p2 + p − 1
> 1 − 1

5p
.

Consider the following algorithm A: Given an instance of search-LWE,
first run the algorithm from Lemma 15 to solve the corresponding instance of
GL-LWE. Then run the algorithm from Corollary 3 to solve the corresponding
GL-LWE instance. Finally, run the trivial algorithm to solve the given average-
case search-LWE instance. By Corollary 3, for these values of α and β, this
algorithm A outputs a correct answer for the given instance of search-LWE with
probability

1
5p2

αβ =
1

5p3
γ,

and outputs ⊥ with the remaining probability. �

5 Conclusions and Future Directions

In this paper, we offer a new perspective on the computational complexity of
lattice problems by revisiting the notion of characterizing the hardness of a
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computational problem in terms of the maximum success probability achievable
by any probabilistic polynomial-time algorithm.

We show how characterising hardness in such a way enables us to obtain
a much tighter reduction from the worst-case BDD problem for lattices to the
average-case search-LWE problem, as well as a tight reduction from search-LWE
to decision-LWE. (See Sect. 1.3 for precise statements.)

We believe that our work should motivate quantifying the hardness of compu-
tational problems − especially those relevant to cryptography − using a similar
metric. We emphasize that such reductions will be very sensitive to the number
of calls made to the oracle, since the success probability will decrease exponen-
tially with the number of oracle calls. For the reductions in this work, our main
challenge was to ensure that our reductions make a single call to the oracle, even
if that meant the reduction succeeds with a relatively small probability.
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[FT87] Frank, A., Tardos,É.: An application of simultaneous diophantine approx-
imation in combinatorial optimization. Combinatorica, 7(1), 49–65 (1987)

[Gen09] Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC 2009, pp. 169–178, New York, NY, USA (2009). Association
for Computing Machinery

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC 1989, pp. 25–32, New York, NY, USA (1989). Asso-
ciation for Computing Machinery

[GMSS99] Goldreich, O., Micciancio, D., Safra, S., Seifert, J.-P.: Approximating
shortest lattice vectors is not harder than approximating closest lattice
vectors. Inf. Process. Lett. 71(2), 55–61 (1999)

[GN08] Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s
inequality. In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, pp. 207–216 (2008)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–
206, New York, NY, USA (2008). Association for Computing Machinery

[HR18] Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. CoRR, abs/1806.04087 (2018)

[Kan87] Kannan, R.: Minkowski’s convex body theorem and integer programming.
Math. Oper. Res. 12(3), 415–440 (1987)

[Kho05] Khot, S.: Hardness of approximating the shortest vector problem in lat-
tices. J. ACM 52(5), 789–808 (2005)

[Lev12] Levin, L.A.: Randomness and non-determinism. CoRR, abs/1211.0071
(2012)



336 D. Aggarwal et al.

[LLL82] Lenstra, A., Lenstra, H., László, L.: Factoring polynomials with rational
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Abstract. A succinct non-interactive argument (SNARG) for NP allows
a prover to convince a verifier that an NP statement x is true with a
proof whose size is sublinear in the length of the traditional NP wit-
ness. Moreover, a SNARG is adaptively sound if the adversary can
choose the statement it wants to prove after seeing the scheme param-
eters. Very recently, Waters and Wu (STOC 2024) showed how to con-
struct adaptively-sound SNARGs for NP in the plain model from falsi-
fiable assumptions (specifically, sub-exponentially secure indistinguisha-
bility obfuscation, sub-exponentially secure one-way functions, and poly-
nomial hardness of discrete log).

We consider the batch setting where the prover wants to prove a col-
lection of T statements x1, . . . , xT and its goal is to construct a proof
whose size is sublinear in both the size of a single witness and the num-
ber of instances T . In this setting, existing constructions either require
the size of the public parameters to scale linearly with T (and thus, can
only support an a priori bounded number of instances), or only provide
non-adaptive soundness, or have proof size that scales linearly with the
size of a single NP witness. In this work, we give two approaches for
batching adaptively-sound SNARGs for NP, and in particular, show that
under the same set of assumptions as those underlying the Waters-Wu
adaptively-sound SNARG, we can obtain an adaptively-sound SNARG
for batch NP where the size of the proof is poly(λ) and the size of the
CRS is poly(λ + |C|), where λ is a security parameter and |C| is the size
of the circuit that computes the associated NP relation.

Our first approach builds directly on top of the Waters-Wu construc-
tion and relies on indistinguishability obfuscation and a homomorphic
re-randomizable one-way function. Our second approach shows how to
combine ideas from the Waters-Wu SNARG with the chaining-based
approach by Garg, Sheridan, Waters, and Wu (TCC 2022) to obtain a
SNARG for batch NP.

1 Introduction

Succinct non-interactive arguments (SNARGs) for NP allow an efficient prover
to convince a verifier that an NP statement x (with associated witness w) is true
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15365, pp. 339–370, 2025.
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with a proof whose size scales with o(|x| + |w|). The main security requirement
is computational soundness which says that a computationally-bounded prover
should not be able to convince a verifier of a false statement. SNARGs were first
constructed in the random oracle model [31,34]. Many works have subsequently
shown how to construct SNARGs in the plain model assuming the prover and
the verifier have access to a common reference string (CRS).

Until recently, SNARGs for NP in the CRS model have either relied on
non-falsifiable cryptographic assumptions (c.f., [1,3–7,15,16,19,21,32] and the
references therein) or satisfied the weaker notion of non-adaptive soundness [37],
where soundness only holds against an adversary that declares its false statement
before seeing the CRS. In contrast, the standard or “adaptive” notion of sound-
ness allows the malicious prover to choose the statement after seeing the CRS.
Very recently, several works gave the first adaptively-sound SNARGs for NP
using indistinguishability obfuscation (iO) and either a sub-exponentially-secure
re-randomizable one-way function [40] or a sub-exponentially-secure lossy func-
tion [42].1 Moreover, in the designated-verifier model where a secret key is needed
to verify proofs, the work of [33] shows that the original Sahai-Waters scheme
(based on iO and one-way functions) [37] is also adaptively sound. In conjunc-
tion with constructions of iO from falsifiable cryptographic assumptions [24,25],
these works provide the first adaptively-sound SNARGs for NP from falsifiable
assumptions.

Batch Arguments. Existing constructions of adaptively-sound SNARGs for NP
focus on the single-statement setting where the prover constructs a proof for
a single statement. In many settings (e.g., incrementally verifiable computa-
tion [38] or proof-carrying data [11]), a prover might have a batch of T (possibly
correlated) statements x1, . . . , xT that it wants to prove to the verifier, and the
goal is to construct a single short proof (whose size is sublinear in T and in
the size of the associated NP relation) of all T statements. There are two main
approaches to constructing batch arguments:

– Using BARGs for NP: Non-interactive batch arguments (BARGs) for
NP [13,14,28,29] provide one possible approach. Namely, a BARG for NP
allows a prover to prepare a proof on T statements with a proof whose
size scales sublinearly (ideally, polylogarithmically) with the number of
statements T . Moreover, many recent works have shown how to construct
BARGs for NP from a broad range of cryptographic assumptions [12–
14,17,23,26,27,29,36,39]. However, in these existing constructions, the size
of the proof grows with the size of the circuit that decides a single statement,
and the goal is to amortize the proof size across the number of statements.
Allowing the proof size to grow with the size of the NP relation avoids black-
box separations that pertain to SNARGs for NP [20]. In this work, we are

1 A subsequent work [41] also shows how to construct an adaptively-sound SNARG
using iO and sub-exponentially-secure one-way functions without any additional
algebraic assumptions.
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interested in batching SNARG proofs, where the size of the proof is sublin-
ear in both the number of statements and size of the circuit computing the
NP relation; such arguments are said to be fully succinct [18]. The previous
work of [18] showed how to construct fully succinct BARGs for NP using
iO and one-way functions, but the construction only achieved non-adaptive
soundness.

– Using SNARGs for NP: Another approach to constructing a fully succinct
SNARG for a batch language is to view the batch statement (x1, . . . , xT ) as a
single NP statement for a product language (i.e., the statement (x1, . . . , xT )
is in the language if for each i ∈ [T ], there exists a valid witness wi for xi),
and then use a SNARG for NP to prove the product language. This approach
achieves adaptive soundness if we instantiate the underlying SNARG with an
adaptively-sound SNARG for NP [40,42]. However, the size of the CRS in
existing adaptively-sound SNARGs [40,42] grows polynomially with the size
of the NP relation circuit. Thus, if we directly apply an existing adaptively-
sound SNARG for NP to a batch language, the NP relation circuit would take
all T statements as input, and the size of the CRS scales polynomially with
T . This means the CRS is large and moreover, there is an a priori bound on
the number of statements that can be batched. In this work, our goal is to
support aggregating an arbitrary polynomial number of (adaptively-sound)
proofs on NP statements.

Why Not Compose? If we settle for non-adaptive soundness, the work of [18]
shows that we can construct a fully succinct SNARG for batch languages by
composing a standard (somewhere-extractable) BARG for NP with a SNARG
for NP. Namely, a proof on statements (x1, . . . , xT ) is a BARG proof that there
exists SNARG proofs π1, . . . , πT for the statements x1, . . . , xT . In this case, the
NP relation associated with the BARG is the SNARG verification circuit, which
is small by construction. Moreover, if the BARG is somewhere extractable [14]2

and the SNARG is non-adaptively sound, then it is straightforward to show that
the composed scheme satisfies non-adaptive soundness. While we can replace the
underlying SNARG in this composition with an adaptively-sound construction,
we are not able to prove adaptive soundness for the composition. The issue is
that if we rely on somewhere extractability for the BARG, then the reduction
needs to “know” the index of the false statement and program it into the CRS;
this is not possible when the statements are adaptively chosen.

Alternatively, we could consider a reduction algorithm that guesses the index
of the false statement. Since the index is computationally hidden from the mali-
cious prover, the hope would be that a prover that consistently chooses state-
ments (x1, . . . , xT ) that evades the guess (i.e., where the index of the false state-
2 A BARG is somewhere extractable if the CRS can be programmed on a (hid-

den) index i ∈ [T ]. Then, given a valid BARG proof π on a batch of state-
ments (x1, . . . , xT ), there is an efficient extraction algorithm that recovers a wit-
ness wi for xi. The special index i is computationally hidden by the CRS. Some-
where extractable BARGs can be constructed from most number-theoretic assump-
tions [12–14,17,23,26,27,29,36,39].
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ment is different from the guessed index) must be breaking index hiding of
the somewhere extractable BARG. The problem is that checking whether the
adversary successfully evaded the guess (and thus, broke index hiding) is not
an efficient procedure (it requires deciding the underlying NP statement). We
could handle this by complexity leveraging and relying on a super-polynomial
time reduction that is able to decide the underlying NP relation. However, if we
do so, then the size of the resulting BARG starts scaling with the size of the NP
relation, and the resulting construction is no longer succinct.

This Work. In this work, we show how to construct adaptively-sound SNARGs
for batch languages with almost no overhead compared to the single-statement
setting. Specifically, we show how to leverage the adaptively-sound SNARG for
NP from [40] to obtain an adaptively-sound SNARG for batch languages with
only polylogarithmic additive overhead in the number of statements T . We sum-
marize our instantiation in the following (informal) theorem:

Theorem 1 (Informal). Let λ be a security parameter. Assuming (1) the
polynomial hardness of computing discrete logs in a prime-order group, (2) the
existence of a sub-exponentially-secure indistinguishability obfuscation scheme
for Boolean circuits, and (3) the existence of a sub-exponentially-secure one-
way function, there exists an adaptively-sound SNARG for batch NP with the
following properties:

– Preprocessing SNARG: Let C : {0, 1}n × {0, 1}v → {0, 1} be the circuit
that computes the NP relation (where n is the statement size and v is the
witness size). The size of the common reference string for proving up to T ≤
2λ statements is poly(λ + |C|).

– Proof Size: A proof on a batch of T ≤ 2λ statements (x1, . . . , xT ) has size
poly(λ).

Additionally, the SNARG is perfect zero-knowledge.

The Gentry-Wichs Separation. The classic result of Gentry and Wichs [20] gives
a barrier for constructing adaptively-sound SNARGs for NP from falsifiable
assumptions where the running time of the reduction is insufficient to decide
the underlying NP language. Consequently, existing constructions of adaptively-
sound SNARGs for NP [33,40,42] all rely on complexity leveraging and super-
polynomial-time security reductions. In these constructions, the cost of the com-
plexity leveraging is incurred in the size of the CRS. In the setting of batch NP,
the time it takes to decide a batch of T statements (x1, . . . , xT ) is only a factor
of T greater than the time it takes to decide a single statement. As such, obtain-
ing an adaptively-sound SNARG for batch NP would only increase the running
time of the reduction algorithm by a factor of T . In this case, the size of the
CRS (or the proof) would only need to increase by a factor of log T . In contrast,
for a general NP relation where the statements and witnesses are a factor of T
longer, the reduction may have to run in time that is greater by a factor 2T to
decide the larger language, which would lead to a CRS that is larger by a factor
of poly(T ) rather than poly(log T ).
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1.1 Technical Overview

We begin by describing the Waters-Wu [40] adaptively-sound SNARG for NP
based on indistinguishability obfuscation (iO) and re-randomizable one-way
functions. Throughout, we consider the language of Boolean circuit satisfiability,
where the Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1} is fixed ahead of time
(i.e., as part of the CRS). A statement x ∈ {0, 1}n is true if there exists a witness
w ∈ {0, 1}v such that C(x,w) = 1.

Building Blocks. In addition to iO, the [40] construction requires a puncturable
pseudorandom function (PRF) [8,9,30], and a re-randomizable one-way function.
In a puncturable PRF F(k, ·), the holder of the secret key k can “puncture” the
key at an input point x∗ to create a punctured key k(x∗). The punctured key
k(x∗) can be used to evaluate F(k, x) on all points x �= x∗. However, the value
F(k, x∗) at the punctured point remains pseudorandom even given the punc-
tured key k(x∗). The final ingredient they require is a re-randomizable one-way
function (OWF) f . This is a OWF equipped with a statistical re-randomization
algorithm that takes as input a OWF challenge ybase and produces a fresh chal-
lenge y (sampled uniformly at random from the challenge space of the OWF).
Moreover, given the re-randomization randomness together with a solution to
the re-randomized statement, there is an efficient algorithm for recovering a solu-
tion to the original OWF challenge ybase. In other words, the re-randomization
can be viewed as a (perfect) random self-reducibility property on the OWF.

The Waters-Wu Construction. In the Waters-Wu construction, the CRS consists
of two obfuscated programs: (1) a “solution-generator” program GenSol used to
construct proofs; and (2) a “challenge-generator” program GenChall used to ver-
ify proofs. The solution-generator GenSol has the circuit C (for the NP relation)
together with three puncturable PRF keys ksel, k0, k1 hard-wired inside.

At a high level, in the Waters-Wu construction, the proof on a statement
x is a pair (b,F(kb, x)) where b ∈ {0, 1}. The solution-generator program takes
as input a bit b, statement x, and witness w, and checks that b �= F(ksel, x)
and that C(x,w) = 1. If so, it outputs the solution (b,F(kb, x)). The challenge-
generator program takes as input a bit b and statement x and outputs the
challenge yb = f(F(kb, x)).

The idea is that the solution-generator program only ever outputs one of the
two possible solutions associated with each statement x. Moreover, which one it
chooses is determined pseudorandomly by evaluating the selector PRF F(ksel, x).
We will sometimes refer to the challenge yb associated with b = F(ksel, x) as the
“on-path” challenge for x and the challenge yb associated with b = 1 − F(ksel, x)
as the “off-path” challenge for x.

In the Waters-Wu construction, the prover program is constructed so it only
provides solutions to the off-path challenge; the prover program never generates
a solution to an on-path challenge. Then, in the proof of adaptive soundness, [40]
show how to replace the on-path challenge statement for every statement with a
re-randomized statement of a one-way function. The hope is that if the malicious
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prover ever produces a proof for a false statement x that corresponds to the on-
path challenge, then it successfully breaks the one-way function. Finally, the [40]
analysis appeals to the fact that for a false statement x, the value of the selector
PRF F(ksel, x) is computationally unpredictable to the adversary; as such, with
probability 1/2, the prover will provide a solution to the on-path statement,
which completes the proof. We now give the formal description of the GenSol
and GenChall programs:3

GenSol(b, x, w)

– If C(x,w) = 0, output ⊥.
– If b = F(ksel, x), output ⊥.
– Output z = F(kb, x).

GenChall(b, x)

– Output y = f(F(kb, x)).

To construct a proof for a statement x and witness w, the prover simply runs
the (obfuscated) GenSol program on input (0, x, w) and input (1, x, w). GenSol
will output ⊥ on one of these inputs, and an OWF preimage z = F(kb, x) on the
other. The proof π = (b, z) consists of the bit b and the preimage z. To check
the proof π, the verifier simply runs the (obfuscated) GenChall program on input
(b, x). GenChall will output a OWF challenge y = f(F(kb, x)), and the verifier
checks that f(z) = y.

We now sketch the proof of soundness from [40]. As mentioned above, the
proof proceeds in a sequence of hybrid experiments. First, we argue that with
probability 1/2, the malicious prover will output an on-path solution as its proof;
this is because for a false statement x, it is unable to predict the value of F(ksel, x).
Next, we gradually replace the on-path challenge for every statement program
with a re-randomized one-way function challenge. This way, a solution to any
on-path challenge implies a solution to the original one-way function challenge.
Since the GenSol program never outputs an on-path solution, this does not affect
completeness. However, if the prover ever produces an on-path solution, then it
successfully inverts the one-way function and adaptive soundness follows. We
now sketch the sequence of hybrids:

– Hyb0: This is the real adaptive soundness game. The challenger outputs 1
only if the adversary A produces an accepting proof π = (b, z) for a false
statement x: namely, f(z) = y = GenChall(b, x).

– Hyb1: After the adversary A outputs its proof π = (b, z), the challenger
additionally checks that b = F(ksel, x), or in other words, that A output a
solution to the on-path challenge. This can only reduce A’s success probability
by a factor of 2, since the value of F(ksel, x) is computationally hidden from

3 Note that the original Waters-Wu construction did not require GenSol and GenChall
to take the bit b ∈ {0, 1} as input. Instead, GenSol computed b = F(ksel, x) and
outputted z = F(kb, x) while GenChall simply outputted f(F(k0, x)) and f(F(k1, x)).
The adaptation here is equivalent to the original Waters-Wu construction and the
updated syntax will be conducive when extending to batch arguments.
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the adversary for every false statement x (by puncturing security). Formally,
[40] show this by considering an exponential sequence of hybrids, one for
each false statement x∗. In Hyb

(x∗)
1 , the challenger punctures ksel at x∗ and

hard-wires the punctured key k
(x∗)
sel in GenSol instead of ksel:

GenSol(x
∗)(b, x, w)

• If C(x,w) = 0, output ⊥.
• If b = F(k(x∗)

sel , x), output ⊥.
• Output z = F(kb, x).

GenChall(b, x)

• Output y = f(F(kb, x)).

When x∗ is a false statement, GenSol(x
∗) still computes the same functionality

as GenSol: both immediately reject, since there does not exist a w such that
C(x∗, w) = 1. Thus, GenSol(x

∗) does not need to evaluate F(ksel, x∗). Now, by
puncturing security, the value of F(ksel, x∗) is pseudorandom even given k

(x∗)
sel .

Thus, if the adversary outputs a proof π = (b, z) for x∗, with probability
1/2 − negl(λ), it will be the case that F(ksel, x∗) = b.

– Hyb2: In this experiment, the challenger stops checking whether or not x is
false; observe that this can only increase the adversary’s success probability.
In addition, the challenger samples a random OWF challenge ybase ← f(r)
for uniform r along with a puncturable PRF key krerand that will be used
to re-randomize ybase. The challenger now modifies GenChall to output a re-
randomization of ybase on (b, x) whenever b = F(ksel, x). In other words, the
on-path challenges are now replaced by a re-randomized instance of ybase. To
argue that this is computationally indistinguishable from the previous hybrid,
the [40] reduction again steps through an exponential number of hybrids, one
for each statement x∗. Planting the re-randomized challenge is then an exer-
cise in punctured programming [37]. The key observation is that the GenSol
program never evaluates F(kb, x

∗) for b = F(ksel, x∗). We can then appeal to
punctured pseudorandomness of F(kb, x

∗) to conclude that the challenge yb

is computationally indistinguishable from a fresh one-way function challenge,
which is in turn statistically indistinguishable from a re-randomized instance.

In Hyb2, algorithm A can only succeed if it provides a solution to a re-
randomized one-way function instance. But this means that A also inverts the
original one-way function challenge, which completes the proof of adaptive secu-
rity. Observe that here, polynomial security of the one-way function already
suffices. Importantly, this final step is the only step in the analysis that relies on
one-wayness. Thus, the proof π remains succinct despite the use of an expo-
nential number of hybrids in the previous steps. The exponential sequence of
hybrids require blowing up the security parameters for the iO and puncturable
PRF schemes, but this only affects the length of the CRS and not the proof.

Our First Approach: Batching SNARGs Using Homomorphic One-Way Func-
tions. We now show how to extend the Waters-Wu scheme to the batch setting.
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Recall that in this setting, the prover has a collection of T statements x1, . . . , xT

and its goal is to prove that all T statements are true. If we directly modify
the GenSol and GenChall programs above to take in all T statements, then the
resulting CRS would have size that scales linearly with T , and moreover, the
scheme would only support an a priori bounded number of statements. Our goal
is to obtain a construction without this limitation.

As described above, the Waters-Wu construction uses a re-randomizable one-
way function. In [40], they show two instantiations of the re-randomizable one-
way function: the first is based on the hardness of discrete log while the second
is based on factoring. In this work, we will consider the construction based on
discrete log. To recall, let G be a group of prime-order p and let g be a generator
of G. The one-way function then f : Zp → G is then defined to be the mapping
z �→ gz. Our first observation is that this one-way function is homomorphic:

f(z1 + z2) = gz1+z2 = gz1 · gz2 = f(z1) · f(z2).

In the context of the Waters-Wu SNARG, the values z would correspond to the
preimages in the proof π. Suppose now that we have T proofs (b1, z1), . . . , (bT , zT )
on T different statements x1, . . . , xT . Then a natural approach to obtain a batch
proof on all T statements by computing z =

∑
i∈[T ] zi ∈ Zp. Then,

f(z) = f

⎛

⎝
∑

i∈[T ]

zi

⎞

⎠ =
∏

i∈[T ]

f(zi) =
∏

i∈[T ]

yi,bi
,

where yi,bi
= GenChall(bi, xi) is the challenge bit associated with state-

ment i. Now, if the verifier knew the bits b1, . . . , bT , it can compute yi,bi
=

GenChall(bi, xi) and then y =
∏

i∈[T ] yi,bi
∈ G. Then, the verification algorithm

would simply boil down to checking that y = f(z). In this case, the prover just
needs to provide the aggregated preimage z rather than the individual preimages
(z1, . . . , zT ).

The problem, of course, is that the verifier does not know the individual bits
bi ∈ {0, 1}. While the prover can certainly include the bits bi for each statement
as part of the proof, this means the size of the proof is now T +poly(λ), which no
longer meets our succinctness requirement. Note that if T = O(log λ), the verifier
can try all the possible values for b1, . . . , bT , but this approach does not work
for general T . We solve this problem by increasing the alphabet size. Namely,
instead having two challenges, suppose instead we had T + 1 challenges (i.e.,
the selection PRF F(ksel, ·) now outputs an element of the set [T + 1]). In this
setting, for each statement x, there is still a single “on-path” challenge (the index
determined by F(ksel, x) ∈ [T +1]) for which the GenSol program will not provide
a preimage and T off-path challenges for which the GenSol program will provide
preimages (if also given a valid witness for x). This means that for any batch of
T statements, there will exist some index j ∈ [T +1] for which j �= F(ksel, xi) for
all i ∈ [T ]. Since the same index j can now be shared across all T statements,
the prover only needs to communicate the single index (of length O(log T )) as
part of its proof. Concretely, we modify the programs in the CRS as follows:
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GenSol(j, x, w)

– If C(x,w) = 0, output ⊥.
– If j = F(ksel, x), output ⊥.
– Output z = F(kj , x).

GenChall(j, x)

– Output y = f(F(kj , x)).

Concretely, our scheme now operates as follows:

– Proof generation: To construct a proof on x1, . . . , xT (given witnesses
w1, . . . , wT ), the prover first finds an index j ∈ [T + 1] where

zi = GenSol(j, xi, wi) �= ⊥

for all i ∈ [T ]. Then it computes the aggregated proof z =
∑

i∈[T ] zi and
outputs the proof π = (j, z).

– Proof Verification: To verify the proof, the verifier computes the challenge

yi = GenChall(j, xi)

for each i ∈ [T ] and then computes the aggregated challenge y =
∏

i∈[T ] yi.
Finally, the verifier checks that gz = y.

As written, the GenSol and GenChall programs would require us to hard-wire T+1
puncturable PRF keys k1, . . . , kT+1 into the GenSol and GenChall programs (to
derive the T+1 possible challenges). Consequently, the size of the CRS now grows
with T , which is no better than directly applying [40] to the batch language. To
get around this, we derive the keys kj for j ∈ [T +1] from another (puncturable)
PRF. The modified programs are defined as follows:

GenSol(j, x, w)

– If C(x,w) = 0, output ⊥.
– If j = F(ksel, x), output ⊥.
– Compute kj ← F(k, j).
– Output z = F(kj , x).

GenChall(j, x)

– Compute kj ← F(k, j).
– Output y = f(F(kj , x)).

In the soundness proof, when we modify GenChall to output a re-randomized
one-way function challenge as the on-path challenge for each statement x∗ (i.e.,
the transition from Hyb1 to Hyb2 in the above description), we proceed in two
steps. First, we puncture the key-derivation PRF key k at the on-path index j∗ =
F(ksel, x∗) and hard-wire the punctured keys k

(x∗)
j∗ and k(j∗) into the GenSol and

GenChall programs. As in the Waters-Wu analysis, the GenSol program never
computes F(kj∗ , x∗), so its value remains pseudorandom. We give the formal
description and analysis of this scheme in Sect. 4.
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Observe that the size of the programs in the CRS is poly(λ + |C| + log T ).
Thus, setting T = 2λ allows us to support any a priori unbounded polynomial
number of statements. This gives the first adaptively-sound SNARG for batch
NP (that supports an unbounded number of statements) with full succinctness
from standard falsifiable assumptions.

Our Second Approach: Batching by Chaining Using Re-randomizable PRGs.
Thus far, we have demonstrated how to extend the Waters-Wu SNARG to sup-
port batching by relying on the homomorphic structure of the one-way function.
In this work, we also give a second approach to support batching that does not
assume any homomorphic properties on the output SNARG. Instead, our con-
struction relies on a re-randomizable pseudorandom generator (PRG), which we
define more precisely below.

Here, we follow a similar template as the general aggregation approach from
[18]. The work of [18] constructs a non-adaptively-sound SNARG for batch NP
by adapting the non-adaptively-sound SNARG for NP by Sahai and Waters [37].
Specifically, they describe a “chaining” approach where the prover program (in
the CRS) takes as input a hash digest dig of the statements (x1, . . . , xT ), a proof
πi−1 on the first i − 1 statements, the next statement xi and associated witness
wi, together with an opening of xi with respect to the digest dig. The prover
checks that πi−1 is a valid proof on the digest dig, that dig opens to xi at position
i, and that wi is a valid witness for xi. If all of these properties hold, then the
program outputs a proof for the first i statements (with respect to the digest
dig).

To prove non-adaptive soundness, the idea in [18] is to first identify the index
i ∈ [T ] of a false statement, and use punctured programming to argue that there
does not exist any accepting proofs on the first i statements. This step relies
on the fact that there are no witnesses for the false statement xi. Then, they
show that if there does not exist an accepting proof for index i, there also does
not exist an accepting proof for index i + 1. This proceeds until the final hybrid
where they argue that there does not exist any proof for index T , at which point
non-adaptive soundness holds.

Unlike the single-statement setting, in the chaining approach, it is no longer
sufficient to argue that an accepting proof of a false statement is computationally
hard to find. This is because the obfuscated prover program (i.e., the analog of
GenSol) is first checking the proof on the first i − 1 statements when deciding
whether to generate a proof for the first i statements or not. If there exists a
valid proof on the first i−1 statements, then this program does not output ⊥ on
inputs with index i (e.g., consider the setting where statement xi is true). As a
result, we cannot argue that there does not exist a proof on the first i statements.
In contrast, if we can argue that there are no accepting proofs on the first i − 1
statements, then we can leverage iO security to argue that there are also no
accepting proofs on the first i statements (since the obfuscated prover program
never accepts a proof on the first i−1 statements, it would never output a proof
for the first i statements). In the Waters-Wu approach, they showed that if an
adversary could construct a proof of a false statement, then the adversary can
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also invert the one-way function. Notably, this is a computational property, and
the previous analysis can only rule out an adversary finding an accepting proof
efficiently. Consequently, this is insufficient to implement the chaining approach
from [18] as proofs of false statements do exist (but are hard to find). The work
of [18] leverages an (expanding) pseduorandom generator to check the proofs
instead of using a one-way function precisely to move to a hybrid where proofs on
false statements no longer exist.

In Sect. 6, we show how to use a similar chaining strategy together with the
Waters-Wu approach to obtain an adaptively-sound SNARG for batch NP. For
the reasons outlined above, our approach requires a way to rule out the exis-
tence of proofs on false statements. For this reason, we rely on the stronger
notion of a re-randomizable PRG instead of a re-randomizable OWF. In a re-
randomizable PRG G : {0, 1}λ → {0, 1}t, there is an algorithm that takes a string
ybase ∈ {0, 1}t and re-randomizes it to a new string y ∈ {0, 1}t with the following
properties:

– If ybase is the in the image of the PRG (i.e., ybase = PRG(s) for some s ∈
{0, 1}λ), then the re-randomized value y is distributed according to G(s) for
a fresh seed s r← {0, 1}λ.

– If ybase is not in the image of the PRG, then the re-randomized value y is
distributed according to a random value y r← {0, 1}t \{

PRG(s) : s ∈ {0, 1}λ
}
.

We can construct a re-randomizable PRF from the decisional Diffie-Hellman
(DDH) assumption. In particular, we work over a group G of prime order p and
generator g, and define the public parameters to be (g, h) where h r← G. Then,
we define the generator G : Zp → G×G as the mapping x �→ (gx, hx). Pseudoran-
domness follows directly from the DDH assumption, and the re-randomization
follows via the DDH random self-reduction.

In our construction, we replace the GenSol program with a proof aggregation
program AggProof, which only outputs a proof for a digest dig and index i if it is
given a valid proof on dig and index i−1, a valid statement-witness pair (xi, wi),
and dig opens to statement xi at index i. The GenChall program is replaced by
a proof verification program Verify, which will only accept a proof (j, z) for the
digest dig and index i if G(z) = G(F(kj , (dig, i))). Importantly, we have replaced
the re-randomizable one-way function f with the re-randomizable PRG. If we
instantiate this template with the adaptively-sound construction with T + 1
challenges, the CRS will consist of obfuscations of the following programs:

AggProof(j, dig, i, x, w, σ, zi−1)

– If C(x, w) = 0, output ⊥.
– If σ does not open dig to x at index

i, output ⊥.
– If i �= 1 and Verify(j, dig, i −

1, zi−1) = 0, output ⊥.
– If j = F(ksel, (dig, i)), output ⊥.
– Compute kj ← F(k, j).
– Output z = F(kj , (dig, i)).

Verify(j, dig, i, zi)

– Compute kj ← F(k, j).
– If G(zi) = G(F(kj , (dig, i))), output

1.
– Output 0.
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First, observe that AggProof never outputs a proof for (dig, i∗) if xi∗ is false
(and dig is statistically binding on location i∗). Thus, in the adaptive soundness
argument, the challenger can switch from checking that xi∗ is false to check-
ing that j = F(ksel, (dig, i∗)). The soundness proof then proceeds in a sequence
of hybrids for every t = i∗, i∗ + 1, . . . , T . In Hybt, the challenger defines the
programs as follows:

AggProofi∗,t(j, dig, i, x, w, σ, zi−1)

– If C(x, w) = 0, output ⊥.
– If σ does not open dig to x at index

i, output ⊥.
– If i �= 1 and Verifyi∗,t(j, dig, i −

1, zi−1) = 0, output ⊥.
– If j = F(ksel, (dig, i)), output ⊥.
– Compute kj ← F(k, j).
– Output z = F(kj , (dig, i)).

Verifyi∗,t(j, dig, i, zi)

– If i∗ ≤ i ≤ t and j =
F(ksel, (dig, i

∗)): output ⊥.
– Compute kj ← F(k, j).
– If G(zi) = G(F(kj , (dig, i))), output

1.
– Output 0.

In the final step, to move from Hybt−1 to Hybt, we appeal to pseudoran-
domness of the PRG to switch all of the re-randomized instances which are
on-path challenges for (·, t) into random strings. At this point, since the PRG
is expanding, there no longer exist on-path proofs for any statement at index t.
This statistical guarantee in turn allows us to argue that there no longer exist
proofs for any subsequent index. We provide the full details in Sect. 6.

While this construction does not achieve better properties than our above
approach relying on homomorphism, we believe that it provides an alternative
view for constructing adaptively-sound SNARGs for batch NP. Moreover, we
believe the techniques are of independent interest, and may be more amenable
to generalizing beyond batch NP (e.g., to monotone-policy batch NP [10,35]).

The homomorphic aggregation approach critically assumes that the proofs
themselves are algebraic objects and satisfy some homomorphism. While initial
constructions such as [40,42] have this property, it is not true of all adaptively-
sound SNARGs (e.g., the very recent work [41]). The chaining approach does
not rely on any assumption about the structure of the proofs themselves, and
thus, could plausibly be based on unstructured assumptions (similar to how [41]
constructs the SNARG).

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. We write
poly(λ) to denote a fixed polynomial in the security parameter λ. We say a
function f(λ) is negligible in λ if f(λ) = o(λ−c) for all constants c ∈ N and
denote this by writing f(λ) = negl(λ). When x, y ∈ {0, 1}n, we will view x
and y as both bit strings of length n as well as the binary representation of
an integer between 0 and 2n − 1. We write “x ≤ y” to refer to the comparison
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of the integer representations of x and y. We say an algorithm is efficient if it
runs in probabilistic polynomial time in the length of its input. For a function
f : X → Y, we write Im(f) to denote the image of f .

Our construction will rely on sub-exponential hardness assumptions, so we
will formulate some of our security definitions using (t, ε)-notation. Generally,
we say that a primitive is (t, ε)-secure if, for all adversaries A running in time at
most t(λ) ·poly(λ), there exists λA ∈ N such that for all λ ≥ λA, the adversary’s
advantage is bounded by ε(λ). We say a primitive is polynomially secure if it is
(1, negl(λ))-secure for some negligible function negl(·). We now recall the main
cryptographic primitives we use in this work.

Definition 1 (Indistinguishability Obfuscation [2]). An indistinguishabil-
ity obfuscator for Boolean circuits is an efficient algorithm iO(·, ·, ·) with the
following properties:

– Correctness. For any security parameter λ ∈ N, circuit size parameter s ∈
N, Boolean circuit C of size at most s, and input x,

Pr[Ĉ(x) = C(x) : Ĉ ← iO(1λ, 1s, C)] = 1.

– Security. For a security parameter λ and a bit b ∈ {0, 1}, we define the
program indistinguishability game between an adversary A and a challenger
as follows:

• On input security parameter 1λ, A outputs a size parameter 1s and two
Boolean circuits C0, C1 of size at most s.

• If there exists an input x such that C0(x) �= C1(x), then the challenger
halts with output ⊥. Otherwise, the challenger replies with iO(1λ, 1s, Cb).

• A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.
We say that iO is (t, ε)-secure if for all adversaries A running in time at
most t(λ) ·poly(λ), there exists λA ∈ N such that for all λ ≥ λA, we have that

iOAdvA(λ) := |Pr[b′ = 1 : b = 1] − Pr[b′ = 1 : b = 0]| ≤ ε(λ).

Definition 2 (Puncturable PRF [8,9,30]). A puncturable pseudorandom
function consists of a tuple of efficient algorithms ΠPPRF = (Setup,Eval,
Puncture) with the following syntax:

– Setup(1λ, 1�in , 1�out) → k: On input security parameter 1λ, input length 1�in ,
and output length 1�out , the randomized setup algorithm outputs a key k. We
assume that the key k contains an implicit description of �in and �out.

– Eval(k, x) → y: On input key k and point x ∈ {0, 1}�
in, the deterministic

evaluation algorithm outputs a value y ∈ {0, 1}�
out.

– Puncture(k, x∗) → k(x∗): On input key k and point x∗ ∈ {0, 1}�
in, the punctur-

ing algorithm outputs a punctured key k(x∗). We assume that the punctured
key k(x∗) also contains an implicit description of �in and �out.

We require that ΠPPRF satisfy the following properties:
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– Punctured correctness. For all λ, �in, �out ∈ N, and all distinct points x �=
x∗ ∈ {0, 1}�

in,

Pr
[

Eval(k, x) = Eval(k(x∗), x) :
k ← Setup(1λ, 1�in , 1�out)
k(x∗) ← Puncture(k, x∗)

]

= 1.

– Puncturing Security. For a security parameter λ and a bit b ∈ {0, 1}, we
define the (selective) puncturing security game between an adversary A and
a challenger as follows:

• On input security parameter 1λ, A outputs the input length 1�in , the output
length 1�out , and commits to a point x∗ ∈ {0, 1}�

in.
• The challenger samples k ← Setup(1λ, 1�in , 1�out) and gives the punctured

key k(x∗) ← Puncture(k, x∗) to A.
• If b = 0, the challenger sends y∗ ← Eval(k, x∗) to A. If b = 1, then it

sends y∗ r← {0, 1}�
out to A.

• A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.
We say that ΠPPRF satisfes (t, ε)-puncturing security if for all adversaries A
running in time at most t(λ) · poly(λ), there exists λA ∈ N such that for all
λ ≥ λA, it holds that

PPRFAdvA(λ) := |Pr[b′ = 1 : b = 1] − Pr[b′ = 1 : b = 0]| ≤ ε(λ).

Definition 3 (Somewhere Extractable Hash Family [14,22]). A some-
where extractable hash family consists of a tuple of efficient algorithms ΠSEH =
(Setup,SetupTD,Hash,Open,Verify,Extract) with the following syntax:

– Setup(1λ, 1�) → hk: On input security parameter 1λ and block size 1�, the
setup algorithm outputs hash key hk.

– SetupTD(1λ, 1�, i) → (hk, td): On input security parameter 1λ, block size 1�,
and index i ∈ [2λ], the setup algorithm outputs hash key hk and trapdoor td.

– Hash(hk, (x1, . . . , xt)) → dig: On input hash key hk and ordered list of inputs
x1, . . . , xt ∈ {0, 1}�, the hash algorithm outputs a hash value dig.

– Open(hk, (x1, . . . , xt), i) → σ: On input hash key hk, ordered list of inputs
x1, . . . , xt ∈ {0, 1}�, and index i ∈ [t], the opening algorithm outputs an open-
ing σ.

– Verify(hk, dig, i, x, σ) → 0/1: On input hash key hk, hash value dig, index i,
string x ∈ {0, 1}�, and opening σ, the verification algorithm outputs a bit.

We require that ΠSEH satisfy the following properties:

– Opening Completeness. For any λ, �, t ∈ N with t ≤ 2λ, any i ∈ [t], and
any x1, . . . , xt ∈ {0, 1}�,

Pr

⎡

⎣Verify(hk, dig, i, xi, σ) = 1 :
hk ← Setup(1λ, 1�)
dig = Hash(hk, (x1, . . . , xt))
σ = Open(hk, (x1, . . . , xt), i)

⎤

⎦ = 1.

– Succinctness. There exists a fixed polynomial p such that the lengths of the
hash values dig output by Hash and the lengths of the openings σ output by
Open in the completeness experiment satisfy |dig|, |σ| = p(λ, �).
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– Index hiding. For a security parameter λ and a bit b ∈ {0, 1}, we define
the index-hiding security game between an adversary A and a challenger as
follows:

• On input security parameter 1λ, algorithm A outputs the block length 1�

and an index i ∈ [2λ].
• If b = 0, the challenger samples hk ← Setup(1λ, 1�). If b = 1, it samples

(hk, td) ← SetupTD(1λ, 1�, i) The challenger sends hk to A.
• A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSEH satisfies (t, ε)-index-hiding security if for all adversaries A
running in time t(λ) · poly(λ), there exists λA ∈ N such that for all λ ≥ λA,

SEHAdvA(λ) := |Pr[b′ = 1 : b = 1] − Pr[b′ = 1 : b = 0]| ≤ ε(λ).

– Extraction Correctness. For any λ, �, t ∈ N with t ≤ 2λ, any i ∈ [t], any
x1, . . . , xt ∈ {0, 1}�,

Pr
[

xi �= Extract(td, dig, i) : (hk, td) ← SetupTD(1λ, 1�, i)
dig = Hash(hk, (x1, . . . , xt))

]

= 0.

– Statistically Binding. For any λ, �, t ∈ N with t ≤ 2λ, any i ∈ [t],

Pr
[∃dig, x, σ : x �= Extract(td, dig, i)

∧ Verify(hk, dig, i, x, σ) = 1 : (hk, td) ← SetupTD(1λ, 1�, i)
]

= 0.

2.1 Batch Arguments for NP

Definition 4 (Circuit Satisfiability). We define the Boolean circuit satisfia-
bility language LSAT as follows:

LSAT = {(C, x) | ∃w ∈ {0, 1}v s.t. C(x,w) = 1}

where C is a Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1} and x ∈ {0, 1}n is a
statement.

Definition 5 (Non-interactive Batch Argument for NP). A non-
interactive batch argument (BARG) for the Boolean circuit satisfiability language
LSAT is a tuple of efficient algorithms ΠBARG = (Setup,P,V) with the following
syntax:

– Setup(1λ, T, C) → crs: On input security parameter 1λ, batch size T , and
Boolean circuit C, the setup algorithm outputs a common reference string
crs.

– P(crs, (x1, . . . , xT ), (w1, . . . , wT )) → π: On input common reference string crs,
statements x1, . . . , xT , and witnesses w1, . . . , wT , the prover algorithm outputs
a proof π.

– V(crs, (x1, . . . , xT ), π) → b: On input common reference string crs, statements
x1, . . . , xT , and proof π, the verifier algorithm outputs a bit b ∈ {0, 1}.
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We require that ΠBARG satisfy the following properties:

– Completeness. For any security parameter λ ∈ N, polynomials n =
n(λ), v = v(λ), T = T (λ), Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1} of
poly(λ) size, and statements x1, . . . , xT ∈ {0, 1}n and witnesses w1, . . . , wT ∈
{0, 1}v such that C(xi, wi) = 1 for all i ∈ [T ], it holds that

Pr
[

V(crs, (x1, . . . , xT ), π) = 1 : crs ← Setup(1λ, T, C)
π ← P(crs, (x1, . . . , xT ), (w1, . . . , wT ))

]

= 1.

– Succinctness. There exists a universal polynomial p such that in the com-
pleteness experiment above, we have that |π| = p(λ, log T, |C|). We say the
proof is fully succinct if we have that |π| = p(λ, log T, log |C|).4

– Adaptive Soundness. For a security parameter λ, we define the adaptive
soundness game between an adversary A and a challenger as follows:

• On input security parameter 1λ, A starts by outputting a Boolean circuit
C : {0, 1}n × {0, 1}v → {0, 1} and a number of instances T .

• The challenger replies with crs ← Setup(1λ, T, C).
• A outputs statements x1, . . . , xT ∈ {0, 1}n and a proof π.
• The output of the experiment is b = 1 if there exists some i ∈ [T ] such that

(C, xi) /∈ LSAT and Verify(crs, (x1, . . . , xT ), π) = 1 and b = 0 otherwise.
We say that ΠBARG is adaptively sound if for all efficient adversaries A, there
exists a negligible function negl(·) such that for all λ ∈ N, Pr[b = 1] ≤ negl(λ)
in the adaptive soundness game.

Remark 1 (Supporting Arbitrary Batch Size). In our definition, the Setup algo-
rithm needs to take the batch size T as input (in binary). Note that this restric-
tion can be generically removed using a standard “powers-of-two” construction,
where we generate a CRS for every value of T = 2i for i ∈ [λ]. This is still
efficient as the size of each CRS depends only polylogarithmically on the batch
size, and padding to the next power of two only incurs constant overhead.

Definition 6 (Perfect Zero-knowledge). A BARG ΠBARG = (Setup,P,V) for
the Boolean circuit satisfiability language LSAT satisfies perfect zero-knowledge
if there exists an efficient simulator S = (S0,S1) such that for any Boolean
circuit C : {0, 1}n × {0, 1}v → {0, 1} and any statements X = (x1, . . . , xT ) and
witnesses W = (w1, . . . , wT ) such that C(xi, wi) = 1 for all i ∈ [T ], the following
distributions are identical:
{

(crs,X, π) : crs ← Setup(1λ, T, C)
π ← P(crs,X,W )

}

≡
{

(crs,X, π) : (crs, st) ← S0(1λ, T, C)
π ← S1(st,X)

}

.

2.2 Discrete Log Assumptions

Notation. For a positive integer p > 1, we write Zp to denote the set of inte-
gers {0, . . . , p − 1}. We write Z

∗
p to denote the multiplicative group of integers

modulo p.
4 This is the notion of succinctness that our constructions achieve.
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Definition 7 (Prime-Order Group Generator). Let λ be a security parame-
ter. A prime-order group generator is an efficient algorithm GroupGen that takes
as input security parameter 1λ and outputs the description G = (G, p, g) of a
group G of prime order p = 2Θ(λ) and generated by g ∈ G. Moreover, we require
that the group operation in G be efficiently computable.

Definition 8 (Discrete Log Assumption). Let GroupGen be a prime-order
group generator. We say that the discrete log assumption holds with respect to
GroupGen if for all efficient adversaries A, there exists a negligible function
negl(λ) such that for all λ ∈ N,

Pr[A(1λ,G, gx) = x : G = (G, p, g) ← GroupGen(1λ), x r← Zp] ≤ negl(λ).

Definition 9 (Decisional Diffie-Hellman Assumption). For a security
parameter λ, a bit b ∈ {0, 1}, and a prime-order group generator GroupGen, we
define the decisional Diffie-Hellman (DDH) security game between an adversary
A and a challenger as follows:

– The challenger starts by sampling G = (G, g, p) ← GroupGen(1λ) and x, y r←
Z

∗
p.

– If b = 0, the challenger computes z = xy ∈ Z
∗
p. If b = 1, the challenger

samples z r← Z
∗
p.

– The challenger then sends (G, gx, gy, gz) to A.
– A outputs a bit b′, which is the output of the experiment.

We say that the DDH assumption holds with respect to GroupGen if for all
efficient adversaries A, there exists λA ∈ N such that for all security parameters
λ ≥ λA, it holds that

DDHAdvA(λ) := |Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| ≤ ε(λ)

in the DDH security game.

3 Homomorphic Re-randomizable OWFs

In this section, we introduce the notion of a homomorphic re-randomizable OWF,
which is one of the main building blocks we use in our construction of an adaptive
fully succinct BARG in Sect. 4. Then, in Sect. 3.1, we show how to construct a
homomorphic re-randomizable OWF from discrete log.

Definition 10 (Homomorphic Re-randomizable OWF). A homomorphic
re-randomizable OWF is a tuple of efficient algorithms ΠOWF = (Setup,Eval,
Rerandomize, InHom,OutHom,RecoverSolution) with the following syntax:

– Setup(1λ, 1m) → crs : On input security parameter 1λ and rerandomization
parameter 1m, the setup algorithm outputs a common reference string crs. We
assume that the crs contains an implicit description of the input space Z and
the output space Y of Eval(crs, ·).
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– Eval(crs, z) → y : On input the common reference string crs and a preimage
z ∈ Z, the deterministic evaluation algorithm outputs challenge y ∈ Y.

– Rerandomize(crs, y) → y′ : On input the common reference string crs and a
challenge y ∈ Y, the randomization algorithm outputs a new challenge y′ ∈ Y.

– RecoverSolution(crs, z′, r) → z : On input the common reference string crs, a
preimage z′ ∈ Z, and randomness r, the solution recovery algorithm outputs
a new preimage z ∈ Z.

– InHom(crs, (z1, . . . , z�)) → z: On input the common reference string crs and
preimages z1, . . . , z� ∈ Z, the input homomorphism algorithm outputs a new
preimage z ∈ Z.

– OutHom(crs, (y1, . . . , y�)) → y: On input the common reference string crs and
challenges y1, . . . , y� ∈ Y, the output homomorphism algorithm outputs a new
challenge y ∈ Y.

We require that ΠOWF satisfy the following properties:

– Homomorphism. For all λ,m ∈ N, all crs in the support of Setup(1λ, 1m),
all z1, . . . , z� ∈ Z, we have that

Pr[Eval(crs, InHom(crs, (z1, . . . , z�))) = OutHom(crs, (y1, . . . , y�))] = 1,

where yi = Eval(crs, zi) for all i ∈ [�]. Further, InHom has a corre-
sponding inversion algorithm InHom−1 such that for all crs in the sup-
port of Setup(1λ, 1m), for all preimages z, z′ ∈ Z and challenges y, y′ ∈
Im(Eval(crs, ·)) such that

Eval(crs, z) = OutHom(crs, (y, y′)) and Eval(crs, z′) = y′,

we have that
Eval(crs, InHom−1(crs, (z, z′))) = y.

– One-wayness. For a security parameter λ, a rerandomization parameter m,
and a bit b ∈ {0, 1}, we define the one-wayness security game between an
adversary A and a challenger as follows:

• The challenger samples crs ← Setup(1λ, 1m). The challenger samples z r←
Z and computes y ← Eval(crs, z).

• The challenger then sends (crs, y) to A.
• Algorithm A sends a preimage z′ to the challenger.
• The challenger outputs a bit b′ ∈ {0, 1} where b′ = 1 if and only if
Eval(crs, z′) = y.

We say that ΠOWF is (t, ε)-one-way if for all polynomials m = m(λ) and all
adversaries A running in time at most t(λ) ·poly(λ), there exists λA ∈ N such
that for all security parameters λ ≥ λA, it holds that

PRGAdvA(λ) := Pr[b′ = 1] ≤ ε(λ)

in the one-wayness security game.
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– Rerandomization Correctness. For all λ ∈ N, all polynomials m =
m(λ), all crs in the support of Setup(1λ, 1m), all preimages z′ ∈ Z, all
y ∈ Im(Eval(crs, ·)), and all randomness r such that

Eval(crs, z′) = Rerandomize(crs, y; r)

we have that
Eval(crs,RecoverSolution(crs, z′, r)) = y.

– Rerandomization Security. For a security parameter λ, a rerandomization
parameter m, and a bit b ∈ {0, 1}, we define the rerandomization security
game between an adversary A and a challenger as follows:

• The challenger samples crs ← Setup(1λ, 1m), zbase
r← Z, and ybase ←

Eval(crs, zbase)
• If b = 0, the challenger samples z∗ r← Z, y∗ ← Eval(crs, z∗). If b = 1, the

challenger samples y∗ ← Rerandomize(crs, ybase).
• The challenger then sends (crs, ybase, y∗) to A.
• A outputs a bit b′, which is the output of the experiment.

We say that ΠOWF satisfies (t, ε)-rerandomization security if for all polyno-
mials m = m(λ) and all adversaries A running in time at most t(λ) ·poly(λ),
there exists λA ∈ N such that for all security parameters λ ≥ λA, it holds that

RerandAdvA(λ) := |Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| ≤ ε(λ)

in the rerandomization security game.
– Succinctness. There exists a polynomial p such that for all λ,m ∈ N and all

crs in the support of Setup(1λ, 1m), it holds that the input length of Eval(crs, ·)
is |z| ≤ p(λ + log m).

3.1 Constructing Homomorphic Re-randomizable OWFs

In this section, we show that the construction of a re-randomizable OWF from
discrete log [40, Construction 5.3] is a homomorphic re-randomizable OWF.
Though we do not formalize it in this work, the second construction of a re-
randomizable OWF in [40] based on computing modular square roots (i.e., the
function f(z) = z2 mod N where N = pq is an RSA modulus) is also homomor-
phic, as f(z0z1) = (z0z1)2 = z2

0z2
1 = f(z0)f(z1) mod N . We start by recalling

the discrete-log-based construction from [40], with the addition of the InHom and
OutHom algorithms for the homomorphism property. For simplicity, we describe
the scheme with additive blinding rather than multiplicative blinding:

Construction 1 (Homomorphic Re-randomizable OWF). Let GroupGen
be a prime-order group generator. We construct a homomorphic re-randomizable
OWF ΠOWF = (Setup,Eval,Rerandomize, InHom,OutHom,RecoverSolution) as
follows:

– Setup(1λ, 1m) : On input the security parameter 1λ and rerandomization
parameter 1m, the setup algorithm samples G = (G, p, g) ← GroupGen(1λ)
and outputs crs = G. The domain of the OWF is Z = Zp and the range is
Y = G.
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– Eval(crs, z) → y : On input the common reference string crs and a preimage
z ∈ Zp, the evaluation algorithm outputs gz ∈ G.

– Rerandomize(crs, y) → y′ : On input the common reference string crs and a
challenge y ∈ G, the randomization algorithm samples r r← Zp and outputs
y · gr ∈ G.

– RecoverSolution(crs, z′, r) → z : On input the common reference string crs, a
preimage z′ ∈ Zp, and randomness r ∈ Zp, the solution recovery algorithm
outputs z′ − r ∈ Zp.

– InHom(crs, (z1, . . . , z�)) → z: On input common reference string crs and OWF
preimages z1, . . . , z� ∈ Zp, the input homomorphism outputs

∑
i∈[�] zi ∈ Zp.

– OutHom(crs, (y1, . . . , y�)) → y: On input common reference string crs and
challenges y1, . . . , y� ∈ G, the output homomorphism outputs

∏
i∈[�] yi ∈ G.

We refer to [40, §5.1] for the proofs of the one-wayness, re-randomization cor-
rectness, re-randomization security, and succinctness properties. Here, we show
the homomorphism property.

Theorem 2 (Homomorphism). Construction 1 satisfies homomorphism.

Proof. For any crs = (G, p, g) in the support of GroupGen(1λ), and any
z1, . . . , z� ∈ Zp, we have that

Eval(crs, InHom(crs, {zi}i∈[�])

= g
∑

i∈[�] zi =
∏

i∈[�]

gzi = OutHom(crs, {Eval(crs, zi)}i∈[�]).

Define InHom−1(crs, z, z′) = z − z′. Then, for any z, z′ ∈ Z
∗
p and y, y′ ∈ G, if

gz = Eval(crs, z) = OutHom(crs, y, y′) = yy′ and gz′
= Eval(crs, z′) = y′,

then

Eval(crs, InHom−1(crs, z, z′)) = gz−z′
=

yy′

y′ = y.�

4 SNARG for Batch NP from Homomorphic
Re-Randomizable OWFs

In this section, we show how to construct a fully succinct SNARG for batch
NP using iO together with a homomorphic re-randomizable OWF. Our con-
struction follows a similar template as the construction from [40].

Construction 2 (Adaptive Batch Argument for NP). Let λ be a security
parameter. We construct a BARG scheme that supports NP languages with an
arbitrary polynomial number T = T (λ) < 2λ of instances of length n = n(λ).
Our construction will leverage sub-exponential hardness of the below primitives
(except for one-wayness of ΠOWF). Our construction relies on the following prim-
itives:
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– Let iO be an indistinguishability obfuscator for Boolean circuits.
– Let ΠPPRF = (F.Setup,F.Eval,F.Puncture) be a puncturable PRF. For a key k

and an input x, we will write F(k, x) to denote F.Eval(k, x).
– Let

ΠOWF = (OWF.Setup,OWF.Eval,OWF.Rerandomize,OWF.RecoverSolution,
OWF.InHom,OWF.OutHom) be a homomorphic re-randomizable one-way
function. For parameters crsf and an input x, we will write f(x) to denote
OWF.Eval(crsf , x).

We will describe how to define the polynomials λobf , λPRF, and m in the
security analysis. We construct a fully succinct non-interactive batch argument
ΠBARG = (Gen,P,V) for NP as follows:

– Setup(1λ, T, C) → crs: On input security parameter 1λ, batch size T , and
Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1}, the setup algorithm does the
following:

• Sample OWF parameters crsf ← OWF.Setup(1λ, 1m).
• Let t = log(T + 1). Let ρ be the input length of f(·). Let τ be the number

of bits of randomness the F.Setup(1λPRF , 1n+t, 1ρ) algorithm takes.
• Sample a “selector” PPRF key ksel ← F.Setup(1λPRF , 1n+t, 1t).
• Sample a “key generator” PPRF key k ← F.Setup(1λPRF , 1t, 1τ ).
• Define the GenSol program with the circuit C and PPRF keys k, ksel hard-

coded:

GenSol[C, k, ksel]

Inputs: index i, selection symbol j, statement xi, witness wi

1. If C(xi, wi) = 0, output ⊥.
2. If j = F(ksel, (xi, i)), output ⊥.
3. Compute kj ← F.Setup(1λPRF , 1n+t, 1ρ;F(k, j)).
4. Output zi = F(kj , (xi, i)).

• Define the GenChall program with the OWF parameters crsf and PPRF
key k hardcoded:

GenChall[crsf , k]

Inputs: index i, selection symbol j, statement xi

1. Compute kj ← F.Setup(1λPRF , 1n+t, 1ρ;F(k, j)).
2. Output f(F(kj , (xi, i))).

• Let s = s(λ, n, |C|) be the maximum size of the GenChall and GenSol
programs as well as those appearing in the security analysis.

• Construct the obfuscated programs

ObfGenChall ← iO(1λobf , 1s,GenChall[crsf , k])

and
ObfGenSol ← iO(1λobf , 1s,GenSol[C, k, ksel]).
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• Output crs = (crsf ,ObfGenChall,ObfGenSol).
– P(crs, (x1, . . . , xT ), (w1, . . . , wT )) → π = (j, z):

• Set i = 1, j = 1.
• While i ≤ T :

• Compute zi ← ObfGenSol(i, j, xi, wi).
• If zi = ⊥, set i = 1, j = j + 1.
• Else, set i = i + 1.

• Compute z = OWF.InHom(crsf , z1, . . . , zT ).
• Output (j, z).

– V(crs, (x1, . . . , xT ), π = (j, z)) → 0/1:
• For i ∈ [T ]: compute yi ← ObfGenChall(i, j, xi).
• Compute y = OWF.OutHom(crsf , y1, . . . , yT ).
• Output 1 if and only if f(z) = y.

Theorem 3 (Completeness). Suppose iO is correct and ΠOWF satisfies homo-
morphism. Then Construction 2 is complete.

Proof. Take any security parameter λ ∈ N, any Boolean circuit C : {0, 1}n ×
{0, 1}v → {0, 1}, any T ≤ 2λ, and any statements (x1, . . . , xT ) and witnesses
(w1, . . . , wT ) such that C(xi, wi) = 1 for all i ∈ [T ]. Let

crs = (crsf ,ObfGenSol,ObfGenChall) ← Setup(1λ, C, T )

and π = (j, z) ← P(crs, (x1, . . . , xT ), (w1, . . . , wT )). Consider the output of
V(crs, (x1, . . . , xT ), π):

– By construction, ObfGenSol is an obfuscation of the program GenSol[C, k, ksel],
where

ksel ← F.Setup(1λPRF , 1n+t, 1t) and k ← F.Setup(1λPRF , 1t, 1τ ).

Algorithm P obtains (j, z1), . . . , (j, zT ) by evaluating ObfGenSol on inputs
(i, j, xi, wi). By correctness of iO and the definition of GenSol, this means
that zi = F(kj , (xi, i)) for all i ∈ [T ]. Note that an index j ∈ [T + 1] always
exists, because for each index i, there is just a single index ji = F(ksel, (xi, i))
where the GenSol program outputs ⊥. Since there are at most T instances,
there are at most T indices j ∈ [T + 1] that fail, or equivalently, there must
exist at least one index j ∈ [T + 1] where j �= F(ksel, (xi, i)) for all i ∈ [T ].

– By construction, ObfGenChall is an obfuscation of the program
GenChall[crsf , k] where crsf ← OWF.Setup(1λ, 1m). Algorithm V computes
the instance yi ← ObfGenChall(i, j, xi). By correctness of iO and the defini-
tion of GenChall, this means that yi = f(F(kj , (xi, i))) = f(zi) for all i ∈ [T ].

– Finally, algorithm P computes z = OWF.InHom(crsf , z1, . . . , zT ) and algo-
rithm V computes y = OWF.OutHom(crsf , y1, . . . , yT ). By homomorphism of
ΠOWF, we have that

Pr[f(OWF.InHom(crsf , z1, . . . , zT )) = OWF.OutHom(crsf , f(z1), . . . , f(zT )]
= 1 = Pr[f(z) = y].
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Thus V outputs 1 with probability 1.

Theorem 4 (Succinctness). Suppose ΠOWF is succinct. Then Construction 2
is succinct.

Proof. A proof (j, z) in Construction 2 consists of a selection symbol j ∈ [T +1]
and a OWF preimage z. Since ΠOWF is succinct, there is a fixed polynomial p such
that |z| ≤ p(λ + log m). Since m(λ, n) in Construction 2 is a fixed polynomial in
the security parameter λ and the statement length n and the statement length is
always upper-bounded by the circuit size, it follows that |π| ≤ poly(λ+log |C|)+
log T .

Theorem 5 (Adaptive Soundness). Suppose iO is (1, 2−λ
εobf
obf )-secure, ΠPPRF

satisfies punctured correctness and (1, 2−λ
εPRF
PRF )-puncturing security, and ΠOWF

satisfies rerandomization correctness, (1, negl(λ))-one-wayness, and (1, 2−mεm )-
rerandomization security for constants εobf , εPRF, εm ∈ (0, 1) and security param-
eters λobf = (λ+n)1/εobf , λPRF = (λ+n)1/εPRF ,m = (λ+n)1/εm . Then Construc-
tion 2 is adaptively sound.

Proof. We refer to the full version for a proof of adaptive soundness.

Theorem 6 (Perfect Zero-Knowledge). Suppose iO is correct. Then Con-
struction 2 satisfies perfect zero-knowledge.

Proof. We construct the simulator as follows:

– S0(1λ, T, C): On input the security parameter λ, a batch size T , and a Boolean
circuit C : {0, 1}n×{0, 1}v → {0, 1}, the simulator samples the common refer-
ence string crs ← Setup(1λ, T, C) exactly as in the real scheme. Let crsf , ksel, k
be the underlying OWF parameters and PPRF keys sampled in Setup. The
simulator outputs the crs along with the state st = (crsf , ksel, k).

– S1(st, (x1, . . . , xT )): On input the state st = (crsf , ksel, k) and statements
(x1, . . . , xT ), the simulator computes ji ← F(ksel, (xi, i)) and selects the
smallest j ∈ [T + 1] such that j �= ji for all i ∈ [T ]. It then computes
kj ← F.Setup(1λPRF , 1n+t, 1ρ;F(k, j)) and zi ← F(kj , (xi, i)) for all i. The sim-
ulator outputs π = (j,OWF.InHom(crsf , z1, . . . , zT )).

Take any Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1}, batch size T ,
and statements x1, . . . , xT and witnesses w1, . . . , wT such that C(xi, wi) = 1
for all i ∈ [T ]. First, observe that the common reference string crs out-
put by S0(1λ, T, C) is distributed identically to Setup(1λ, T, C). It now suf-
fices to consider the proof. By construction, the proof π = (j, z) output by
P(crs, (x1, . . . , xT ), (w1, . . . , wT )) is obtained by evaluating ObfGenSol on inputs
(i, j, xi, wi). By correctness of iO and the definition of GenSol and P, this
means that j is the smallest value in [T + 1] such that j �= F(ksel, (xi, i))
for all i ∈ [T ] and that zi = F(kj , (xi, i)) for all i. P then computes z =
OWF.InHom(crsf , z1, . . . , zT ). Thus the proof output by S1(st, (x1, . . . , xT )) is
distributed identically to π.
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5 Re-randomizable PRGs

In this section, we introduce the notion of a re-randomizable PRG, which is one of
the main building blocks we use in our construction of an adaptive fully succinct
BARG in Sect. 6. Then, in Sect. 5.1, we show how to construct a re-randomizable
PRG from DDH.

Definition 11 (Re-randomizable PRG). A re-randomizable PRG is a tuple
of efficient algorithms ΠRPRG = (Setup,Eval,Rerandomize) with the following
syntax:

– Setup(1λ, 1m) → crs : On input security parameter 1λ and re-randomization
parameter 1m, the setup algorithm outputs a common reference string crs. We
assume that the crs contains an implicit description of the input and output
lengths of Eval(crs, ·).

– Eval(crs, z) → y : On input common reference string crs and seed z, the
deterministic evaluation algorithm outputs an instance y.

– Rerandomize(crs, y) → y′ : On input common reference string crs and instance
y, the randomization algorithm outputs a new instance y′.

We require that ΠRPRG satisfy the following properties:

– Expansion. For all λ,m ∈ N and all crs in the support of Setup(1λ, 1m), it
holds that the output length of Eval(crs, ·) is at least λ bits longer than the
input length (i.e., |y| ≥ λ + |z|).

– Pseudorandomness. For a security parameter λ, a re-randomization
parameter m, and a bit b ∈ {0, 1}, we define the pseudorandomness secu-
rity game between an adversary A and a challenger as follows:

• The challenger samples crs ← Setup(1λ, 1m).
• If b = 0, the challenger samples z uniformly and computes y ←

Eval(crs, z). If b = 1, the challenger samples y uniformly.
• The challenger then sends (crs, y) to A.
• A outputs a bit b′, which is the output of the experiment.

We say that ΠRPRG is (t, ε)-pseudorandom if for all polynomials m = m(λ)
and all adversaries A running in time at most t(λ) · poly(λ), there exists
λA ∈ N such that for all security parameters λ ≥ λA, it holds that

PRGAdvA(λ) := |Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| ≤ ε(λ)

in the pseudorandomness security game.
– Re-randomization correctness. For all crs in the support of Setup(1λ, 1m),

all y, and all y′ in the support of Rerandomize(crs, y), we have either that y, y′

are both in Im(Eval(crs, ·)) or both not in Im(Eval(crs, ·)).
– Re-randomization security. For a security parameter λ, a re-

randomization parameter m, and a bit b ∈ {0, 1}, we define the re-
randomization security game between an adversary A and a challenger as
follows:
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• The challenger samples crs ← Setup(1λ, 1m) and ybase ← Eval(crs, zbase)
for uniform zbase.

• If b = 0, the challenger samples y∗ ← Eval(crs, z∗) for uniform z∗. If
b = 1, the challenger samples y∗ ← Rerandomize(crs, ybase).

• The challenger then sends (crs, ybase, y∗) to A.
• A outputs a bit b′, which is the output of the experiment.

We say that ΠRPRG satisfies (t, ε)-re-randomization security if for all polyno-
mials m = m(λ) and all adversaries A running in time at most t(λ) ·poly(λ),
there exists λA ∈ N such that for all security parameters λ ≥ λA, it holds that

RerandAdvA(λ) := |Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| ≤ ε(λ)

in the re-randomization security game.
– Succinctness. There exists a polynomial p such that for all λ,m ∈ N and all

crs in the support of Setup(1λ, 1m), it holds that the input length of Eval(crs, ·)
is |z| ≤ p(λ + log m).

5.1 Constructing Re-randomizable PRGs

In this section, we show how to construct a re-randomizable PRG from the deci-
sional Diffie-Hellman assumption.

Construction 3 (Re-randomizable PRG). Let GroupGen be a prime-order
group generator. We construct a re-randomizable PRG ΠRPRG = (Setup,Eval,
Rerandomize) as follows:

– Setup(1λ, 1m) : On input security parameter 1λ and rerandomization param-
eter 1m, the setup algorithm samples G = (G, p, g) ← GroupGen(1λ), samples
x r← Z

∗
p and outputs crs = (G, p, g, h = gx).

– Eval(crs, z) : On input common reference string crs = (G, p, g, h) and seed z,
the evaluation algorithm parses z ∈ Z

∗
p and outputs (gz, hz).

– Rerandomize(crs, y) : On input common reference string crs and instance y =
(y1, y2), the rerandomization algorithm samples r r← Z

∗
p and outputs (yr

1, y
r
2).

Theorem 7 (Expansion). Construction 3 satisfes expansion.

Proof. For (G, p, g) ← GroupGen(1λ), we have that p is a λ-bit prime, so a seed
z ∈ Z

∗
p has length λ, while an instance y = (gz, hz) consists of two group elements

and thus has length at least 2λ.

Theorem 8 (Pseudorandomness). Suppose the decisional Diffie-Hellman
assumption holds with respect to GroupGen. Then Construction 3 satisfies pseu-
dorandomness.

Proof. Let A be an efficient adversary for the pseudorandomness game against
Construction 3. We use A to construct an adversary B for the DDH problem.
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Algorithm B
Inputs: ((G, p, g), gα, gβ , gγ) from challenger
1. Let crs = (G, p, g, h) where h = gα and y = (gβ , gγ).
2. Run b′ ← A(crs, y).
3. Send b′ to challenger.

Note that if b = 0 (i.e., γ = αβ for uniform α, β), then gγ = gαβ = hβ so
y = (gβ , hβ) = Eval(crs, β). If b = 1 (i.e., γ is independently uniform), then
y = (gβ , gγ) is uniform. Thus

PRGAdvA(λ) = DDHAdvB(λ) ≤ negl(λ).�
Theorem 9 (Re-randomization Correctness). Construction 3 satisfies re-
randomization correctness.

Proof. Take any λ,m ∈ N, any common reference string crs = (G, p, g, h = gx)
in the support of Setup(1λ, 1m), any y, and any y′ in the support of
Rerandomize(crs, y).

– If y = (y1, y2) = Eval(crs, z) for some z ∈ Z
∗
p, then y1 = gz and y2 = hz. We

have that for some r ∈ Z
∗
p, y′ = (yr

1, y
r
2) = (grz, hrz) = Eval(crs, rz) where

rz ∈ Z
∗
p.

– If y′ = (y′
1, y

′
2) = Eval(crs, z) for some z ∈ Z

∗
p, then y′

1 = gz and y′
2 =

hz. We have that for some r ∈ Z
∗
p, y = (y′r−1

1 , y′r−1

2 ) = (gr−1z, hr−1z) =
Eval(crs, r−1z) where r−1z ∈ Z

∗
p.

Thus, either y, y′ are both in Im(Eval(crs, ·)) or both not in Im(Eval(crs, ·)).
Theorem 10 (Re-randomization Security). Construction 3 satisfies perfect
re-randomizable security. Namely, for all polynomials m = m(λ) and all adver-
saries A, RerandAdvA(λ) = 0.

Proof. Take any polynomial m = m(λ). Let crs = (G, p, g, h = gx) ←
Setup(1λ, 1m). By construction of Eval, we have that a fresh instance y =
(gz∗

, hz∗
) is uniformly distributed over the set {(gz, hz) | z ∈ Z

∗
p}. By con-

struction of Rerandomize, we have that a rerandomized instance y′ = (yr
1, y

r
2) =

(grz, hrz) is still uniformly distributed over the set {(gz, hz) | z ∈ Z
∗
p}, since rz

is uniformly distributed over Z
∗
p.

6 SNARG for Batch NP from Re-randomizable PRGs

Construction 4. (Adaptive Batch Argument for NP). Let λ be a security
parameter. We construct a BARG scheme that supports NP languages with an
arbitrary polynomial number T = T (λ) < 2λ of instances of length n = n(λ).
Our construction will leverage sub-exponential hardness of the below primitives
(except for pseudorandomness of ΠRPRG). Our construction relies on the follow-
ing primitives:
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– Let iO be an indistinguishability obfuscator for Boolean circuits.
– Let ΠSEH = (H.Setup,H.Hash,H.Open,H.Verify,H.Extract) be a somewhere

extractable hash family.
– Let ΠPPRF = (F.Setup,F.Eval,F.Puncture) be a puncturable PRF. For a key k

and an input x, we will write F(k, x) to denote F.Eval(k, x).
– Let ΠRPRG = (G.Setup,G.Eval,G.Rerandomize) be a re-randomizable PRG. For

parameters crsG and a seed z, we write G(crsG, z) to denote G.Eval(crsG, z).

We will describe how to define the polynomials λSEH, λobf , λPRF, and m in the
security analysis. We construct a fully succinct non-interactive batch argument
ΠBARG = (Gen,P,V) for NP as follows:

– Setup(1λ, T, C) → crs: On input security parameter 1λ, batch size T , and
Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1}, the setup algorithm does the
following:

• Sample PRG parameters crsG ← G.Setup(1λ, 1m).
• Sample an SEH hash key hk ← H.Setup(1λSEH , 1n).
• Let t = log(T + 1). Let n′ be the output length of H.Hash(hk, ·). Let ρ be

the input length of G(crs, ·). Let τ be the number of bits of randomness
the F.Setup(1λPRF , 1n′+t, 1ρ) algorithm takes.

• Sample a “selector” PPRF key ksel ← F.Setup(1λPRF , 1n+t, 1t).
• Sample a “key generator” PPRF key k ← F.Setup(1λPRF , 1t, 1τ ).
• Define the Verify program with the PRG parameters crsG and PPRF key k

hardcoded:

Verify[crsG, k]

Inputs: index i, selection symbol j, hash value dig, proof zi

1. Compute kj ← F.Setup(1λPRF , 1n′+t, 1ρ;F(k, j)).
2. If G(crsG, zi) = G(crsG,F(kj , (dig, i))), output 1.
3. Output 0.

• Define the AggProof program (which has the code for Verify replicated
inside) with the circuit C, PRG parameters crsG, SEH hash key hk, and
PPRF keys ksel, k hardcoded:

AggProof[C, crsG, hk, ksel, k]

Inputs: index i, selection symbol j, hash value dig, statement
xi, witness wi, opening σi, prior proof zi−1

1. If C(xi, wi) = 0, output ⊥.
2. If H.Verify(hk, dig, xi, i, σi) = 0, output ⊥.
3. If j = F(ksel, (xi, i)), output ⊥.
4. If i �= 1 and Verify(i − 1, j, dig, zi−1) = 0, output ⊥.
5. Compute kj ← F.Setup(1λPRF , 1n′+t, 1ρ;F(k, j)).
6. Output zi = F(kj , (dig, i)).
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• Let s = s(λ, n, |C|) be the maximum size of the AggProof and Verify
programs as well as those appearing in the security analysis.

• Construct the obfuscated programs

ObfAggProof ← iO(1λobf , 1s,AggProof[C, crsG, hk, ksel, k])

and
ObfVerify ← iO(1λobf , 1s,Verify[crsG, k]).

• Output crs = (hk, crsG,ObfAggProof,ObfVerify).
– P(crs, (x1, . . . , xT ), (w1, . . . , wT )) → π = (j, z):

• Compute dig ← H.Hash(hk, (x1, . . . , xT )).
• Set i = 1, j = 1 and z0 = ∅.
• While i ≤ T :

∗ Compute σi ← H.Open(hk, (x1, . . . , xT ), i).
∗ Compute zi ← ObfAggProof(i, j, dig, xi, wi, σi, zi−1).
∗ If zi = ⊥, set i = 1, j = j + 1.
∗ Else, set i = i + 1.

• Output (j, zT ).
– V(crs, (x1, . . . , xT ), π = (j, zT )) → 0/1:

• Compute dig ← H.Hash(hk, (x1, . . . , xT )).
• Output ObfVerify(T, j, dig, zT ).

Theorem 11. (Completeness). Suppose iO is correct and ΠSEH satisfies
opening completness. Then Construction 4 is complete.

Proof. Take any security parameter λ ∈ N, any Boolean circuit C : {0, 1}n ×
{0, 1}v → {0, 1}, any T ≤ 2λ, and any statements (x1, . . . , xT ) and witnesses
(w1, . . . , wT ) such that C(xi, wi) = 1 for all i ∈ [T ]. Let

crs = (hk, crsG,ObfAggProof,ObfVerify) ← Setup(1λ, C, T )

and π = (j, zT ) ← P(crs, (x1, . . . , xT ), (w1, . . . , wT )). Consider the output of
V(crs, (x1, . . . , xT ), π):

– By construction, ObfAggProof is an obfuscation of the aggregation program
AggProof[C, crsG, hk, ksel, k], where

crsG ← G.Setup(1λ, 1m)

hk ← H.Setup(1λSEH , 1n)

ksel ← F.Setup(1λPRF , 1n+t, 1t)

k ← F.Setup(1λPRF , 1t, 1τ ).

Algorithm P obtains (j, zT ) by computing dig = H.Hash(hk, (x1, . . . , xT ))
(along with openings σi to xi for all i) and evaluating ObfAggProof on inputs
(i, j, dig, xi, wi, σi, zi−1) to obtain intermediate proofs zi−1. By correctness of
iO and the definition of GenSol, this means that zi = F(kj , (dig, i)) if i = 1
or Verify(i − 1, j, dig, zi−1) = 1.
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– We then see by induction that zi = F(kj , (dig, i)) for all i ∈ [T ], since Verify(i−
1, j, dig, zi−1) outputs 1 if G(crsG, zi−1) = G(crsG,F(kj , (dig, i − 1)), which
follows from the fact that zi−1 = F(kj , (dig, i − 1)).

– By construction, ObfVerify is an obfuscation of the program Verify[crsG, k].
The verification algorithn V computes dig = H.Hash(hk, (x1, . . . , xT )) and
outputs b ← ObfVerify(T, j, dig, zT ). By correctness of iO and the definition
of Verify, we know b = 1 if G(crsG, zT ) = G(crsG,F(kj , (dig, T )), which follows
from the fact that zT = F(kj , (dig, T )).

Theorem 12 (Succinctness). Suppose ΠSEH and ΠRPRG are succinct. Then
Construction 4 is succinct.

Proof. A proof (j, zT ) in Construction 4 consists of a selection symbol j ∈ [T +1]
and PRG seed zT . Since ΠRPRG is succinct, there is a fixed polynomial p such
that |z| ≤ p(λ + log m). In Construction 4, m(λ, n′) is a fixed polynomial in
the security parameter λ and n′, which is the output length of H.Hash(hk, ·) for
hk ← H.Setup(1λSEH , 1n) where λSEH is a fixed polynomial in the witness length
v and λ. By succinctness of ΠSEH, we have that n′ is a fixed polynomial in λ, n,
and v. The statement length and witness length are always upper-bounded by
the circuit size, so it follows that |π| ≤ poly(λ + log |C|) + log T .

Theorem 13. (Adaptive Soundness). Suppose iO is (1, 2−λ
εobf
obf )-secure,

ΠSEH satisfies statistical binding and (2λ
εSEH
SEH , negl(λSEH)-index hiding secu-

rity, ΠPPRF satisfies punctured correctness and (1, 2−λ
εPRF
PRF )-puncturing secu-

rity, and ΠRPRG expands by λ bits and satisfies (1, negl(λ))-pseudorandomness
and (1, 2−mεm )-rerandomization security for constants (εSEH, εobf , εPRF, εm) ∈
(0, 1) and security parameters λSEH = (v + ω(log λ))1/εSEH , λobf = (λ +
n′)1/εobf , λPRF = (λ + n′)1/εPRF ,m = (λ + n′)1/εm where n′ is the length of
H.Hash(H.Setup(1λSEH , 1n), ·). Then Construction 4 satisfies adaptive soundness.

Proof. We refer to the full version for a proof of adaptive soundness.

Theorem 14 (Perfect Zero-Knowledge). Suppose iO is correct. Then Con-
struction 4 satisfies perfect zero-knowledge.

Proof. We construct the simulator as follows:

– S0(1λ, T, C): On input security parameter 1λ, batch size T , and Boolean
circuit C : {0, 1}n × {0, 1}v → {0, 1}, the simulator samples the common
reference string crs ← Setup(1λ, T, C) exactly as in the real scheme. Let
hk, crsG, ksel, k be the underlying hash key, PRG parameters and PPRF
keys sampled in Setup. The simulator outputs the crs along with the state
st = (hk, crsG, ksel, k).

– S1(st, (x1, . . . , xT )): On input the state st = (hk, crsG, ksel, k) and statements
(x1, . . . , xT ), the simulator computes ji ← F(ksel, (xi, i)) and selects the
smallest j ∈ [T + 1] such that j �= ji for all i ∈ [T ]. It then computes
kj ← F.Setup(1λPRF , 1n+t, 1λ;F(k, j)) and zT ← F(kj , (dig, T )). The simulator
outputs π = (j, zT ).



368 L. Devadas et al.

Take any Boolean circuit C : {0, 1}n × {0, 1}v → {0, 1}, batch size T ,
and statements x1, . . . , xT and witnesses w1, . . . , wT such that C(xi, wi) = 1
for all i ∈ [T ]. First, observe that the common reference string crs out-
put by S0(1λ, T, C) is distributed identically to Setup(1λ, T, C). It now suf-
fices to consider the proof. By construction, the proof π = (j, zT ) output by
P(crs, (x1, . . . , xT ), (w1, . . . , wT )) is obtained by evaluating ObfGenSol on inputs
(i, j, dig, xi, wi, σi, zi+1). By correctness of iO and the definition of GenSol and
P, this means that j is the smallest value in [T + 1] such that j �= F(ksel, (xi, i))
for all i ∈ [T ] and that zT = F(kj , (dig, T )). Thus the proof π = (j, zT ) output by
S1(st, (x1, . . . , xT )) is distributed identically to P(crs, (x1, . . . , xT ), (w1, . . . , wT )).
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Abstract. A sequence of recent works, concluding with Mu et al. (Euro-
crypt, 2024) has shown that every problem Π admitting a non-interactive
statistical zero-knowledge proof (NISZK) has an efficient zero-knowledge
batch verification protocol. Namely, an NISZK protocol for proving that
x1, . . . , xk ∈ Π with communication that only scales poly-logarithmically
with k. A caveat of this line of work is that the prover runs in exponential-
time, whereas for NP problems it is natural to hope to obtain a doubly-
efficient proof – that is, a prover that runs in polynomial-time given the
k NP witnesses.

In this work we show that every problem in NISZK ∩ UP has a
doubly-efficient interactive statistical zero-knowledge proof with commu-
nication poly(n, log(k)) and poly(log(k), log(n)) rounds. The prover runs
in time poly(n, k) given access to the k UP witnesses. Here n denotes the
length of each individual input, and UP is the subclass of NP relations
in which YES instances have unique witnesses.

This result yields doubly-efficient statistical zero-knowledge batch
verification protocols for a variety of concrete and central cryptographic
problems from the literature.

1 Introduction

Suppose that a server, holding a long list of RSA public-keys N1, . . . , Nk together
with their factorizations, wants to convince an auditor that the public-keys are
well formed. That is, that each Ni is a product of exactly two distinct primes.
One option is to reveal all of the factorizations but this option is simultaneously
extremely bad from a security perspective (as it reveals the clients’ secret keys)
and is highly inefficient if k is very large.

Efficient zero-knowledge proofs are protocols that allow short and easy-to-
verify proofs of complex statements, in such a way that reveals nothing beyond
the fact that the statement being proved is true. To solve the above problem
one might employ a general purpose zero-knowledge proof from the literature.
However, such proofs rely on unproven assumptions and provide only a compu-
tational soundness guarantee.
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In this work, we are interested in statistical zero-knowledge proofs for batch
verification. These are zero-knowledge proofs, in which both soundness and zero-
knowledge hold information theoretically (and against unbounded adversaries)
such that the communication required to prove the correctness of k statements
scales sub-linearly (ideally, merely poly-logarithmically) with k. The information
theoretic nature of such proofs also means that typically they do not involve
expensive cryptographic operations, and can be highly efficient.

Returning to the above question on batch verification of prime products,
a protocol due to Gennaro et al. [GMR98] gives a (non-interactive) statistical
zero-knowledge proof that N is a product of two distinct primes. Running this
protocol separately on all of the alleged RSA moduli N1, . . . , Nk, we could indeed
prove in statistical zero-knowledge that all of them are prime products, alas with
communication that scales linearly with k.

An alternative approach from a recent sequence of works [KRV21,KRR+20,
MNRV24] has shown that every problem that has a non-interactive statistical
zero-knowledge proof also has such a zero-knowledge proof for batch verification,
in which the communication only scales poly-logarithmically with k. Unfortu-
nately, these protocols have a prover that runs in exponential-time, whereas, for
our example above, we would like for our server, who knows all of the factoriza-
tions, to run in polynomial-time. We refer to such proof-systems, in which the
prover runs in polynomial-time given the NP witness, as doubly-efficient proofs.1

The question of doubly-efficient statistical zero-knowledge batch verification
for prime products is interesting in its own right, but the same question is fasci-
nating for a variety of cryptographic problems such as checking that a long list
of public-keys/signatures/ciphertexts are all well-formed. This raises the natural
question, posed already by Kaslasi et al. [KRR+20]:

Does every problem in SZK ∩ NP have a doubly-efficient statistical
zero-knowledge batch verification proof: namely, a statistical zero-knowledge
proof that x1, . . . , xk ∈ Π with communication that scales poly-logarithmically

in k and an honest-prover that runs in polynomial-time given the k NP
witnesses?

A source of hope, especially for our prime product example, are results by
Reingold, Rothblum and Rothblum [RRR21,RRR18,RR20], which give doubly-
efficient batch verification protocols for any problem in UP – the class of NP
problems in which YES instances have unique witnesses. This shows that a rich
class of problems in NP have batch verification protocols (indeed, the prime
product problem is in UP, the witness is just the prime factorization). Unfor-
tunately, the UP batch verification protocols in the foregoing works are not
zero-knowledge (assuming UP � BPP) and, as a matter of fact, even explicitly
reveal some of the witnesses to the verifier.

1 Doubly-efficient proofs are also studied in the context of problems in P (rather than
NP) in which case we require the prover to run in polynomial-time, without any
additional auxiliary information. See the recent survey by Goldreich [Gol18].
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1.1 Our Results

Our main result is a doubly-efficient statistical zero-knowledge batch proof for
any problem in NISZK ∩ UP. Recall that by [MNRV24] such problems have a
statistical zero-knowledge batch verification proof in which the honest prover is
inefficient, and on the other hand, by [RR20], the same set of problems have
a different doubly-efficient interactive proof, which is not zero-knowledge. Our
main result shows how to combine these two protocols to obtain the best-of-
both-worlds:

Theorem 1. Let k = k(n) such that k(n) ≤ 2n0.01
. Every problem Π ∈ NISZK∩

UP has a public-coin SZK protocol for verifying k instances x1, . . . , xk, each of
length n, with the following parameters:

– Communication complexity: poly(n, log(k)).
– Number of rounds: polylog(n, k).
– Verifier runtime: Õ(k) · poly(n).
– The honest prover, given also the k unique witnesses, runs in time poly(n, k).

We emphasize that in contrast to general purpose results for succinct argu-
ments (a la [Kil92]), the batching protocol of Theorem 1 does not rely on any
unproven assumptions and yields the strong guarantees of statistical soundness
and zero-knowledge.

Combining Theorem 1 with existing NISZK protocols from the literature, we
immediately derive doubly-efficient statistical zero-knowledge batch verification
protocols for several important problems. In particular, using the NISZK for
prime products of [GMR98] we obtain a batch verification protocol for prime
products (as well as variants such as quasi-safe prime products), which in par-
ticular yields an efficient method for batch verification of signature verification
keys in the [GMR98] undeniable signature scheme. Using the fact that quadratic
residuosity (of Blum Integers) as well as quadratic non-residuosity is in NISZK
[BDSMP91], we similarly obtain such batch verification protocols for these prob-
lems.2

We remark that in contrast to the result of [MNRV24], our batching protocol
is interactive. Obtaining a doubly-efficient NISZK batching protocol for NISZK∩
UP remains open. We elaborate on this in Sect. 1.3.

1.2 Technical Overview

Our starting point is the batch verification protocol for UP of Rothblum and
Rothblum [RR20]. As noted above, this protocol meets all the requirements of
2 For batch verification of QR, there is a simple reduction from k instances to 1 by

taking a random modular subset product of the given integers. However, this only
works in case we use the same modulus for each instance whereas our protocol works
even when using different moduli. Also, we note that [BDSMP91] only give an NISZK
for QNR. However, in case N is a Blum integer, QR reduces to QNR by multiplying
the input by −1 (mod N) (since −1 is a QNR modulo a Blum integer).
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Theorem 1, except that it is blatantly not statistical zero-knowledge (assuming
NISZK ∩ UP � BPP) as it explicitly reveals some of the witnesses. Our goal is
to transform the protocol to be statistical zero-knowledge, while preserving its
complexity.

As the UP batching protocol of [RR20] is public-coin, a natural approach to
convert it to be zero-knowledge is to utilize the “commit-and-prove” framework
of Ben-Or et al. [BOGG+90]. This framework transforms public-coin protocols
into zero-knowledge ones by letting the prover commit to her messages rather
than sending them in the clear. Subsequently, the prover proves, using an addi-
tional zero-knowledge proof, that if she were to open the commitments, the
original verifier would have accepted.

Trying to utilize this framework to our purposes we first run into the following
problem: to attain a protocol that is simultaneously statistical zero-knowledge
and statistically sound, we need commitments that are both statistically hiding
and statistically binding. While such commitments do not exist per se, following
[BMO90,IOS97,NV06,OV08] we can use an elegant relaxation of such commit-
ments, called instance-dependent commitments.

An instance-dependent commitment scheme is a commitment scheme asso-
ciated with an instance x of a promise problem Π. If x is a YES instance, the
commitment is required to be hiding, and if x is a NO instance, then it should be
binding. The above sequence of works utilized the fact that we only need bind-
ing to hold for NO instances, and hiding to hold for YES instances, and so such
commitments suffice for implementing zero-knowledge proofs and in particular
for implementing the commitments in the framework of [BOGG+90]. In particu-
lar, Nguyen and Vadhan [NV06] used (a suitable variant of) instance dependent
commitments to show that any problem in SZK∩NP has a doubly-efficient SZK
proof.

Ong and Vadhan [OV08] (building on [NV06]) constructed instance-
dependent commitment schemes for any problem in SZK. Thus, we would like
to start with the UP batching protocol of [RR20] and compile it to be zero-
knowledge by utilizing the commit-and-prove approach, while using an instance
dependent commitment. For a given input x1, . . . , xk, since each of the individual
parts xi is an instance of our problem Π, which is in SZK (in fact NISZK), it has
a corresponding instance dependent commitment. Using a standard combiner3

for commitments we could then obtain a single instance dependent commitment
for the batch verification problem. Alas, the length of commitments (and decom-
mitments) obtained in this way scales linearly with k, which we cannot afford.

A better approach is to utilize the main result of Mu et al. [MNRV24], which
gives a statistical zero-knowledge batch verification protocol for Π. Using their
protocol, in combination with the instance dependent commitment character-
ization of [NV06,OV08] we obtain a direct instance-dependent commitment
scheme for the batch problem Π⊗k = {(x1, . . . , xk) : ∀i, xi ∈ Π}. But what

3 Here we need a combiner between k commitments, which needs to be hiding if all of
them are hiding, and binding if at least one of them is binding. A suitable combiner
in this setting is to simply commit separately using each commitment scheme.
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are the lengths of commitments and decommitments in the resulting scheme?
We observe that the main technical result of [MNRV24] can be interpreted as a
reduction of k instances of an NISZK problem to a single instance of the Image
Density problem [DSDCPY98]. In Image Density, the instances are circuits such
that YES instances correspond to circuits that generate a distribution that is
statistically close to uniform, whereas NO instances are circuits that generate a
distribution with a relatively small support. While the size of the circuit gen-
erated by the [MNRV24] reduction scales (quasi-)linearly with k, the size of its
input and output only grows poly-logarithmically in k. Our next observation is
that the instance dependent commitment of [NV06] for Image Density has the
feature that the lengths of the commitment and decommitment correspond only
to the input and output length of the circuit rather than its size. Equipped with
the above observation we obtain an instance-dependent commitment scheme for
our batch verification problem with communication complexity poly(n, log(k)).

The above suffices for the “commit phase” of the transformation of Ben-Or et
al. [BOGG+90] but for the “prove phase” we still need to run a zero-knowledge
proof demonstrating that “had the prover opened the commitments, the verifier
would have accepted”. The näıve approach might be to use one of the classical
zero-knowledge proofs for NP, such as the original proof due to Goldreich et
al. [GMW91], while relying on the instance dependent commitment described
above. Here however, we run into a major problem: the [GMW91] protocol, as
well as all other zero-knowledge protocols in the literature, make non-blackbox
use of the underlying circuit on which we prove correctness. In our case, this
circuit incorporates the commitment’s verification circuit, which includes the
circuit C produced by the [MNRV24] reduction. As mentioned above, the circuit
C has size poly(n, k). Therefore, this approach would result in an unacceptable
communication complexity of poly(n, k).

To overcome this issue, we build on the recent work of Hazay et al. [HVW23],
which used the “MPC-in-the-head” framework of Ishai et al. [IKOS09] in order
to compile public-coin interactive protocols to be zero-knowledge while using the
commitment scheme as a blackbox. We emphasize that while all zero-knowledge
proofs in the literature need an explicit description of the circuit, there is no a
priori need to make a non blackbox use of the underlying commitment. Indeed,
Hazay et al. show how to compile several public-coin interactive proofs from the
literature to be zero-knowledge in such a blackbox way.

We proceed to describe the transformation in more detail. Recall that the
MPC-in-the-head paradigm offers a general transformation from Secure Multi-
party Computation (MPC) protocols to zero-knowledge protocols. The high-level
structure is as follows:

– Let Π ∈ NP be a promise problem with a corresponding witness relation
RΠ(x,w). We start with an MPC protocol for a functionality f that corre-
sponds to verifying that the players’ inputs form an additive secret sharing
of a valid witness of RΠ (for some fixed x).
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– The prover, “in-her-head” secret shares the witness amongst virtual parties
and emulates the execution of the MPC protocol. Subsequently, she commits
to the resulting views of the parties.

– The verifier selects a small subset of the views she wishes the prover to reveal.
– The prover decommits to these views.
– The verifier accepts only if the views are consistent (with one another and

the protocol description) and are accepting.

We utilize the MPC-in-the-head paradigm to compile the [RR20] protocol to
be zero-knowledge using the instance dependent commitment as a blackbox. The
idea is to adjust our protocol so that the prover does not commit directly to her
messages (as in [BOGG+90]). Rather, she commits to � additive secret shares
of each of her messages, for some small parameter �. Then, the prover proceeds
with an “MPC-in-the-head” proof, where she gives each simulated party a secret
share of her messages. The computed functionality corresponds to the verification
predicate used by the verifier in the UP batching protocol of [RR20].

This approach was inspired by the work of Hazay et al. [HVW23], and
it only relies on black-box access to the circuit that verifies decommitments.
Hence, since the circuit that verifies decommitments has input and output sizes
poly(n, log(k)), our objective of achieving communication complexity at most
poly(n, log(k)) remains feasible.

A final remaining problem is that the communication complexity of the MPC-
in-the-head proof depends on the running time of the verifier for the UP batching
protocol [RR20] (since the parties run an MPC protocol that emulates this com-
putation). Unfortunately, this verifier has running time k ·poly(n, log(k)), which
is prohibitively large (and is inherent since the verifier has to, at the very least,
read its input). We solve this last issue by analyzing more closely the verifier of
the [RR20] UP batching protocol. We observe that the verifier in their protocol
consists of two main phases:

– A “preprocessing step” which depends only on the input and verifier’s coin
tosses. We emphasize that this step does not depend on the prover’s messages
and in particular can happen before the interaction begins. The verifier needs
to only keep an internal state of size poly(n, log(k)) at the end of this step.

– An interactive step, in which the prover and verifier interact. The key point
is that this step can be implemented in poly(n, log(k)) time.

To capitalize on this observation, we let both the verifier and the prover
independently execute the preprocessing step. We then utilize the “MPC-in-the-
head” proof only for the second step, which is computable in time poly(n, log k),
thereby obtaining communication complexity poly(n, log k).

1.3 Open Questions

We highlight several natural follow-up questions that we leave open:
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1. Generalizing to SZK: The key question left open by the line of work on
batch verification of statistical zero-knowledge proofs is a general batch ver-
ification protocol that works for all of SZK, rather than just NISZK. Given
such a result, it seems possible that our techniques, in combination with the
UP batching protocol of [RR20], could yield a doubly-efficient SZK batch
protocol for SZK ∩ UP.

2. Generalizing to NP: Our result is limited to UP languages, where we inherit
this limitation from [RR20]. The work of Bitansky et al. [BKP+23] indicates
that a general doubly-efficient batch verification protocol for NP is somewhat
unlikely, as it would lead to (unconditional) statistical witness indistinguish-
able proofs for NP. However, this barrier becomes meaningless (i.e., a non-
issue) when considering languages in SZK∩NP. Thus, there is no fundamental
barrier that we are aware of in generalizing our results from NISZK ∩ UP to
NISZK ∩ NP (or even SZK ∩ NP for that matter).

3. Non-interactive: Our protocol is designed to handle problems that have
non-interactive proof-systems (namely, NISZK and UP). Unfortunately how-
ever, in contrast to the protocols that we start off with, our batch verification
protocol is highly interactive. This is due to two reasons: first, the UP batch-
ing protocol of [RR20] which we use is highly interactive and second, the
instance dependent commitment of [NV06] that we use is interactive. Thus,
making our batch-verification protocol be non-interactive seems to require
using fundamentally different techniques.

1.4 Organization

Preliminaries are in Sect. 2. The proof of the main result (namely, Theorem 1)
is in Sect. 3. Some proofs are deferred to Appendices A to C.

2 Preliminaries

A promise problem Π consists of two disjoint sets of strings Π = (ΠY ,ΠN ). The
set ΠY is called the set of YES instances and the set ΠN is called the set of NO
instances.

Definition 1. The statistical distance between two random variables X,Y on a
finite universe U , denoted by Δ (X,Y ), is defined as:

Δ(X,Y ) = maxS⊆U (X (S) − Y (S)) =
1
2

∑

u∈U

|X(u) − Y (u)| .

2.1 Interactive Proofs and Zero-Knowledge

We use viewV (P (x) , V (x)) to refer to the view of the verifier in an execution
of an interactive protocol with prover P and verifier V on common input x. The
view includes the input x, all messages sent by P to V in the protocol, and the
verifier’s random coin tosses. We say that the view is accepting if, at the end of
the corresponding interaction, the verifier accepts.
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Definition 2 (Interactive proof). Let c = c(n) ∈ [0, 1] and s = s(n) ∈ [0, 1]
. An interactive proof with completeness error c and soundness error s for a
promise problem Π, consists of a probabilistic polynomial-time verifier V and a
computationally unbounded prover P such that following properties hold:

– Completeness: For any x ∈ ΠY :

Pr
[
viewV (P (x) , V (x)) is accepting

] ≥ 1 − c(|x|).

– Soundness: For any (computationally unbounded) cheating prover P ∗ and
any x ∈ ΠN :

Pr
[
viewV (P ∗ (x) , V (x)) is accepting

] ≤ s(|x|).

We denote this proof system by (P, V ).

An interactive proof (P, V ) is public-coin if all the messages sent by the
verifier are independent random strings (with a fixed length that is independent
of the interaction). Let Π = (ΠY ,ΠN ) ∈ NP, with a corresponding witness
relation RΠ(x,w).

Definition 3 (Doubly-Efficient Interactive Proof). Let Π be a promise
problem. A doubly-efficient interactive proof for the relation RΠ is an
interactive-proof (P, V ) for Π in which the prover strategy P can be implemented
in probabilistic polynomial-time given any NP witness w ∈ {w′ : (x,w′) ∈ RΠ}
as an auxiliary input.

Zero-Knowledge. For the SZK definition, we allow the malicious verifier to have
access to an auxiliary input a ∈ {0, 1}∗. Accordingly, we also provide the simu-
lator with the same auxiliary input a.

Definition 4 (SZK). Let z = z(n) ∈ [0, 1]. An interactive-proof (P, V ) for
Π is a statistical zero-knowledge proof (SZK), with zero-knowledge error z, if
for every probabilistic polynomial-time verifier V ∗ there exists a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x ∈ ΠY

and a ∈ {0, 1}∗:

Δ (viewV ∗ (P (x) , V ∗(x, a)) , Sim(x, a)) ≤ z(|x|).

If the completeness, soundness, and zero-knowledge errors are all negligible
in |x|, we say that the interactive proof is an SZK proof. We also use SZK to
denote the class of promise problems having SZK proofs.

Non-Interactive Statistical Zero-Knowledge. Next, we define the non-interactive
variant of statistical zero-knowledge, denoted NISZK. As usual in this setting,
we give the prover and verifier access to a uniformly generated common random
string (CRS).
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Definition 5 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈
[0, 1]. A non-interactive statistical zero-knowledge proof (NISZK) with complete-
ness error c, soundness error s and zero-knowledge error z for a promise prob-
lem Π, consists of a probabilistic polynomial-time verifier V , a computationally
unbounded prover P and a polynomial � = �(n) (the length of the CRS) such
that the following properties hold:

– Completeness: For any x ∈ ΠY :

Pr
r←{0,1}�(|x|)

[
V (x, r, P (x, r)) accepts

] ≥ 1 − c(|x|).

– Soundness: For any x ∈ ΠN :

Pr
r←{0,1}�(|x|)

[∃π∗ s.t. V (x, r, π∗) accepts
] ≤ s(|x|).

– Zero-Knowledge: There exists a probabilistic polynomial-time algorithm
Sim (called the simulator) such that for any x ∈ ΠY :

Δ
((

U�, P (x,U�)
)
, Sim(x)

)
≤ z(|x|),

where U� denotes a random variable distributed uniformly over {0, 1}�(|x|).

Unless stated otherwise, we assume that c(·), s(·) and z(·) are negligible in |x|.
We use NISZK to denote the class of promise problems having such an NISZK
protocol.

2.2 Instance-Dependent Commitments for NISZK

Next, we recall the notion of instance-dependent commitments and revisit
their construction for NISZK [NV06].4 An instance-dependent commitment
[BMO90,IOS97,NV06,OV08], for a promise problem Π, is a commitment scheme
associated with an instance x ∈ {0, 1}∗. Unlike standard commitment schemes,
an instance-dependent commitment scheme requires the hiding property to hold
only when x is a YES instance, and the binding property to hold only when x
is a NO instance. We now provide a formal definition (the following definitions
of instance-dependent commitments and their security are based on [OV08])

Definition 6 (Instance-dependent commitments). An instance-
dependent commitment scheme is a family of protocols {Comx}x∈{0,1}∗ with
the following properties:

4 The later work of Ong and Vadhan [OV08] constructs instance-dependent commit-
ments for all of SZK. However, their construction is more complex and the simpler
construction of instance-dependent commitments for NISZK, due to [NV06], suffices
for our results.
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– Scheme Comx proceeds in two stages: a commit stage and a reveal stage. In
both stages, the sender and receiver receive instance x as common input, and
hence we denote the sender and receiver as Sx and Rx, respectively, and write
Comx = (Sx, Rx).

– At the beginning of the commit stage, sender Sx receives a private input b ∈
{0, 1}, which denotes the bit that Sx is supposed to commit to. At the end of
the commit stage, both sender Sx and receiver Rx output a commitment c.

– In the reveal stage, sender Sx sends a pair (b, d), where d is the decommitment
string for bit b. Receiver Rx accepts or rejects based on x, b, d, and c.

– The sender Sx and receiver Rx algorithms are computable in polynomial time
(in |x|), given x as auxiliary input.

– For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both sender
Sx and receiver Rx follow their prescribed strategy.

The instance-dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ is
public coin if for every x ∈ {0, 1}∗, all messages sent by Rx are independent
random coins.

To simplify notation, we write Comx or (Sx, Rx) to denote the instance-
dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ . The hiding and
binding properties of standard commitments extend in a natural way to their
instance-dependent analogs.

Definition 7 (Hiding of instance-dependent Commitments). Let ε =
ε(n) ∈ [0, 1]. The instance-dependent commitment scheme Comx = (Sx, Rx)
is ε-statistically hiding on I ⊆ {0, 1}∗ if for every R∗, and every x ∈ I,

Δ (viewR∗ (Sx(0), R∗) , viewR∗ (Sx(1), R∗)) ≤ ε(|x|),

where random variable viewR∗(Sx(b), R∗) denotes the view of R∗ in the commit
stage after interacting with Sx(b). For a problem Π = (ΠY ,ΠN ), an instance-
dependent commitment scheme Comx for Π is ε-statistically hiding on the YES
instances if Comx is ε-statistically hiding on ΠY .

Definition 8 (Binding of instance-dependent Commitments). Let ε =
ε(n) ∈ [0, 1]. The instance-dependent commitment scheme Comx = (Sx, Rx)
is ε-statistically binding on I ⊆ {0, 1}∗ if for every S∗, and for all x ∈ I,
the malicious sender S∗ succeeds in the following game with probability at most
ε(|x|):
1. The sender S∗ interacts with Rx in the commit stage obtaining commitment

c.
2. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage,

Rx(0, d0, c) = Rx(1, d1, c) = accept.

For a problem Π = (ΠY ,ΠN ), an instance-dependent commitment scheme
Comx for Π is ε-statistically binding on the NO instances if Comx is ε-
statistically binding on ΠN .
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Remark 1. We defined instance-dependent commitment schemes as bit commit-
ments. However, they can be extended to string commitments with the same
round complexity by executing multiple bit commitments in parallel.

We revisit the instance-dependent commitment scheme for all of NISZK,
given in [NV06]. This scheme is for the NISZK-complete promise problem Image
Density5 [DSDCPY98,GSV99]. Since Image Density is NISZK-complete, this
commitment scheme can be adapted to suit any NISZK promise problem. We
first define the Image Density problem.

Definition 9. Let ε = ε(n) ∈ [0, 1]. The ε-Image Density problem (IDε), is
defined as follows:

IDε,Y = {C : Δ (Uμ, C) ≤ ε} ,

IDε,N = {C : |Supp(C)| ≤ ε · 2μ} ,

where C is a circuit of size n with η input bits and μ output bits. We highlight
that we use the unconventional symbols η and μ, as n and m will be used later
for alternative purposes.

That is, YES instances of Image Density have an output distribution that is
statistically close to uniform, and NO instances of Image Density have an output
distribution with a small support. The next lemma, due to [NV06], shows that
Image Density has an instance-dependent commitment.

Lemma 1 ([NV06]). Let ε = ε(n) ∈ [0, 1] and let n, η, μ denote the size, the
input length, and the output length of an IDε circuit, respectively. The prob-
lem IDε has an instance-dependent commitment scheme that is 2ε-statistically
hiding on the YES instances and (poly(μ) · ε)-statistically binding on the NO
instances. Furthermore, the number of bits sent between the sender and the
receiver during the commit and reveal phases is poly(η, μ), the receiver runs in
time n·poly(η, μ, log n), and the commitment scheme is public coin and constant-
round.

We emphasize that the poly in the furthermore clause above is a fixed poly-
nomial and in particular does not depend on the size of the circuit. While the
furthermore clause of Lemma 1 follows from the construction of Nguyen and
Vadhan [NV06], it is not explicitly stated therein. Hence, to give precise bounds
on the communication complexity, we provide a proof of Lemma 1 in Appendix
B.

5 The commitment scheme, as presented in [NV06], was for a different promise problem
known as EA. However, it involved a preprocessing step intended to transform an
EA instance into an Image Density instance. Since we will work directly with Image
Density instances, we skip this preprocessing step.
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2.3 Batch Protocols

We introduce the concept of batch problems and review known batching results
for UP and for NISZK [RR20,MNRV24].

Given a promise problem Π, we define the promise problem Π⊗k that consists
of k equal-sized instances of Π. We denote by n the size of each instance.

Definition 10. For a given promise problem Π and an integer k, the problem
Π⊗k = (Π⊗k

Y ,Π⊗k
N ) is defined as follows:

Π⊗k
Y = {(x1, . . . , xk) : ∀i ∈ [k], xi ∈ ΠY , |x1| = . . . = |xk|} , and

Π⊗k
N =

{
(x1, . . . , xk) ∈ (ΠY ∪ ΠN )k : ∃j ∈ [k], xj ∈ ΠN , |x1| = . . . = |xk|

}
.

2.3.1 Batching for NISZK
We introduce a lemma from [MNRV24]. We note that this lemma is not directly
mentioned in [MNRV24], but can be deduced by examining the proofs of
[MNRV24, Theorem 1.1] and [MNRV24, Lemma 3.9]. We analyze these proofs
to establish this lemma in Appendix A.

Lemma 2 ([MNRV24]). Let Π ∈ NISZK and k = k(n) such that k(n) ≤ 2n0.01
.

Then, Π⊗k has a randomized Karp reduction to IDε with the following properties:

– The reduction is computable in time k · poly(n, log k) and uses poly(n, log k)
random coins.

– The reduction never errs on NO instances and errs only with probability neg-
ligible in n and k on YES instances.

– ε is negligible in both n and k.
– The IDε circuit produced by the reduction has size k ·poly(n, log k), with input

and output sizes poly(n, log k).

2.3.2 Doubly Efficient Batching for UP
Next we present the batch verification result for UP, due to [RR20].

Theorem 2 ([RR20, Corollary 5]). For every promise problem Π ∈ UP, there
exists a public-coin interactive proof, with perfect completeness and soundness
error 1

2 , for verifying that k instances x1, . . . , xk, each of length n, are all in Π.
The complexity of the protocol is as follows:

– Communication complexity: poly(n, log(k)).
– Number of rounds: polylog(n, k).
– Verifier runtime: Õ(n · k) + poly(n, log(k)).
– The honest prover, given the k unique witnesses, runs in time poly(n, k).

Furthermore, before the interaction begins, the verifier runs a pre-processing
step on inputs x1, . . . , xk and the public coins to be sent to the prover. The pre-
processing time is Õ(n ·k), and its output is a string pp of length poly(n, log(k)).
Following the interaction, the verifier runs in time poly(n, log(k)) on inputs pp
and the prover messages and decides whether to accept or reject.
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Remark 2. The results in [RR20] are stated for languages, but readily extend to
the setting of promise problems. More importantly, the “furthermore” part of
Theorem 2 is not explicitly stated in [RR20], but can be inferred by inspecting
their protocol, see Appendix C for details.

2.4 Secure Multiparty Computation

Our protocol relies on the MPC-in-the-head framework of Ishai et al. [IKOS09].
In this section we provide the relevant background following [IKOS09]. Since it
suffices for our purposes, we consider semi-honest MPC protocols, with perfect
security, for functionalities of a particular form.

Let � be the number of players, which will be denoted by P1, ..., P�. We will
be interested in computations in which all players share a public input x, and
each player Pi holds a local private input wi. We consider protocols that securely
realize an �-party functionality f , where f maps the joint input (x,w1, . . . , w�)
to a single output bit b.

A protocol Π is specified via its next message function. That is, the function
Π (i, x, wi, ri, (m1, . . . ,mj)) returns the set of � messages sent by Pi in round
j + 1 given the public input x, its local input wi, its random input ri, and the
messages m1, . . . ,mj it received in the first j rounds. The output of Π may also
indicate that the protocol should terminate, in which case Π returns the local
output of Pi. The view of Pi, denoted by viewi, includes wi, ri, and the messages
received by Pi during the execution of Π. Note that the messages sent by an
uncorrupted player Pi as well as its local output can be inferred from viewi and
x by invoking the next message function of Π. It will be useful to define the
following natural notion of consistency between views.

Definition 11 (Consistent views). We say that two views viewi and viewj

are consistent (for the protocol Π and the public input x) if the outgoing mes-
sages implicit in (viewi, x) are identical to the incoming messages reported in
viewj and vice versa.

The following lemma asserts that an �-tuple of views corresponds to some
honest execution of Π if and only if every pair of views is consistent.

Lemma 3 ([IKOS09, Lemma 2.3]). Let Π be an �-party protocol as above
and x be a public input. Let view1, . . . , view� be an �-tuple of (possibly incorrect)
views. Then all pairs of views (viewi, viewj) are consistent for Π and x if and
only if there exists an honest execution of Π with public input x (and some choice
of private inputs wi and random inputs ri) in which viewi is the view of Pi for
every 1 ≤ i ≤ �.

In the semi-honest model, one may break the security requirements into the
following correctness and privacy requirements.

Definition 12 (Correctness). We say that the protocol Π realizes a deter-
ministic �-party functionality f (x,w1, . . . , w�) with perfect correctness if for all
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inputs x,w1, . . . , w�, the probability that the output of some player is different
from the output of f is 0, where the probability is over the independent choices
of the random inputs r1, . . . , r�.

Definition 13 (t-Privacy). Let 1 ≤ t < �. We say that Π realizes f with
perfect t-privacy if there is a probabilistic polynomial-time simulator Sim such
that for any inputs x,w1, . . . , w� and every set of corrupted players T ⊆ [�],
where |T | ≤ t, the joint view viewT (x,w1, . . . , w�) of players in T is distributed
identically to Sim

(
T, x, (wi)i∈T , fT (x,w1, . . . , w�)

)
.

We now define a notion of efficiency for protocols that securely realize func-
tionalities computable by circuits.

Definition 14 (Efficiency). Let f be an �-party functionality computed by a
circuit C of size s, and let Π realize f . We say that Π is C-efficient if every
player Pi runs in time poly (|x|, |wi|, �, s), during the entire execution of Π.

In our batch proof, we utilize an MPC protocol as part of the MPC-in-
the-head paradigm. As an example, we will instantiate our batch proof with
the renowned BGW MPC protocol [BGW88] to demonstrate that our proof is
realizable.

Theorem 3 ([BGW88, Theorem 1], see also [AL17]). For every function
f computable by a circuit C, there exists a C-efficient MPC protocol Π with 5
players, that realizes f with perfect correctness and perfect 2-privacy.

3 Doubly Efficient Zero-Knowledge Batching
for NISZK ∩ UP

In this section, we prove Theorem 1 by showing a doubly-efficient statistical zero-
knowledge batch proof for problems in NISZK∩UP. We begin by combining the
results of [MNRV24] and [NV06], to show that batch instances of NISZK have an
instance-dependent commitment scheme with communication complexity that
scales poly-logarithmically with k.

Lemma 4. Let Π ∈ NISZK and k = k(n) such that k(n) ≤ 2n0.01
. Then, Π⊗k

has an instance-dependent commitment scheme that is ε-statistically hiding on
the YES instances and ε-statistically binding on the NO instances, with ε being
negligible in n and in k. The number of bits sent between the sender and the
receiver during the commit and reveal phases is poly(n, log k). Furthermore, the
commitment scheme is public-coin and constant-round, and the receiver runs in
time k · poly(n, log k).

We recall that an instance (x1, . . . , xk) ∈ Π⊗k is considered a YES instance
if each xi is a YES instance of Π, and is considered a NO instance if at least
one the xi is a NO instance of Π.
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Proof. The lemma follows by composing the commitment scheme for Image Den-
sity of Lemma 1 with the randomized Karp reduction from Π⊗k to Image Density
of Lemma 2.

Thus, on common input (x1, . . . , xk), the sender and the receiver reduce
(x1, . . . , xk) to an IDε circuit C. This only requires the sender to send the ran-
domness that was used for the reduction, which is of size poly(n, log k), to the
receiver. Then, the sender and the receiver use C as the common input for
the commitment scheme of Lemma 1 and proceed with the commit and reveal
phases as per usual. The commitment scheme is ε-statistically hiding on the YES
instances since the reduction of Lemma 2 fails only with negligible probability
when the sender is honest. The commitment scheme is ε-statistically binding on
the NO instances since the reduction of Lemma 2 never fails on NO instances.

Remark 3. Our main protocol involves commitments to multiple bits. We could
in principle improve the efficiency of the protocol by reducing (x1, . . . , xk) to
an IDε instance just once rather than with each commitment, but we avoid this
optimization for the sake of simplicity.

We now have everything we need to construct the doubly-efficient SZK batch
proof for NISZK ∩ UP, thereby establishing Theorem 1.

3.1 Proof of Theorem 1

We first present the protocol and then prove why it meets all the requirements
of Theorem 1.

Consider the UP batching protocol (PUP, VUP), promised by Theorem 2. In
this protocol, the verifier VUP runs in two phases. In the preprocessing phase,
the verifier runs on inputs x1, . . . , xk and the public coins to be sent to the
prover, and produces a string pp of length poly(n, log k) (we emphasize that in
this phase there is no interaction). In the online phase, the verifier interacts
with the prover and decides whether to accept based only on pp and the prover’s
messages. In this phase, the verifier runs in time poly(n, log k). Denote the verifier
messages by α = (α1, . . . , αr), where αi is the verifier’s message in round i, and
similarly denote the prover’s messages by β = (β1, . . . , βr). Let CVUP be a size
poly(n, log k) circuit that computes the verifier’s decision predicate. That is,
CVUP operates on inputs pp and the prover’s messages and determines whether
to accept.

Let f be the following function, that takes as input a string pp, and � additive
shares of β (the value of � will be determined later):

f
(
pp, β1, . . . , β�

)
= CVUP

(
pp, β1 ⊕ . . . ⊕ β�

)
,

where ⊕ denotes the bitwise exclusive-or operation:

βi ⊕ βj =
(
βi
1 ⊕ βj

1, . . . , β
i
r ⊕ βj

r

)
.
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Let Π be an �-player CVUP -efficient6 MPC protocol, with a constant � = 5, that
realizes f with perfect correctness and perfect (semi-honest) 2-privacy, i.e., the
protocol of Theorem 3. The public input is pp, and βi is the private input of
player Pi. Upon completion of Π, the local output of all players should match
the output of f .

Using the MPC protocol from above, together with the protocol of Theorem
2, We now describe the zero-knowledge batch verification protocol in Fig. 1,
where the commitment scheme that is used throughout the protocol is the one
of Lemma 4.

We analyze the protocol to verify that it fulfills all the requirements of The-
orem 1.

Completeness. Suppose x1, . . . , xk ∈ ΠY . The perfect completeness of the under-
lying UP batching protocol and the perfect correctness of Π ensure that the
shares βi that P commits to during Step 1 would lead player Pi, running on
public input pp and private input βi, to output 1 with probability 1. The views
that P commits to are consistent with their respective players’ inputs and with
each other, so V would accept if P successfully revealed all the required commit-
ments. Since the commitment scheme of Lemma 4 has correctness as long as the
sender and the receiver follow their prescribed strategies, perfect completeness
of our protocol follows.

Soundness. Suppose at least one of x1, . . . , xk is in ΠN and fix a (computation-
ally unbounded) cheating prover P ∗. Without loss of generality, let us assume
that P ∗ is deterministic. By Lemma 4, the commitment scheme used through-
out the protocol is statistically binding, with binding error negligible in both
n and k. We delay addressing the binding error for now, by first analyzing the
soundness for a modified protocol (P ′, V ′), which we will now describe.

In this modified protocol, commitments are not used and the prover P ′ sends
all her messages openly. Accordingly, the verifier V ′ does not verify decommit-
ments on Step 6a, but only ensures that the messages sent in Step 5 are consistent
with the previous messages sent by P ′.

The prover P ′ simulates the adversary P ∗ and acts as an intermediary
between P ∗ and V ′. Since P ∗ is the adversary for the unmodified protocol, she
is expected to use commitments, whereas V ′ does not. Thus, the prover P ′ will
manipulate the communication as follows. The prover P ′ will act as the receiver
of the commitments and decommitments made by P ∗. After each commitment
is done, P ′ uses its unbounded computational power to extract the message from
the commitment. If the commitment is invalid or if it can be opened ambigu-
ously, a default message is selected instead. After extracting the message, P ′

sends it in the clear to V ′. Whenever P ′ receives a message from V ′, she feeds it

6 We slightly abuse notation here since CVUP does not compute the functionality f
(Note that f has � + 1 inputs while CVUP only has two). This abuse of notation is
justified since the sizes of CVUP and the closely related circuit that computes f differ
only by a multiplicative factor of poly(�), and � is constant.
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Fig. 1. Doubly-efficient SZK batching protocol for NISZK ∩ UP

to P ∗. This describes the modifications in (P ′, V ′). We move on to analyze the
soundness of the modified protocol.

Recall CVUP , a circuit that operates on inputs pp and the prover’s mes-
sages and computes the VUP verifier’s decision predicate. Given the soundness
of the underlying UP batching protocol of Theorem 2, the messages β that P ′

sends during Step 1, would make the verifier VUP reject with probability at
least 1

2 . That is, Pr
[
CVUP

(
pp, β

)
= 0

] ≥ 1
2 . Assume we are in the case where

CVUP

(
pp, β

)
= 0. Therefore, since the MPC protocol Π has perfect correctness,
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an honest execution of Π with public input pp and private inputs βi results in
all players outputting 0, in which case V ′ rejects on Step 6d with probability 1.

An honest execution of the MPC protocol Π with different inputs will lead
V ′ to reject in Steps 6b or 6c with probability at least 1

� . If the execution is not
honest, by Lemma 3, there exists a pair of inconsistent views, and V ′ selects it
with probability at least 1

(�
2)

, causing V ′ to reject in Step 6d.

Considering Pr
[
CVUP

(
pp, β

)
= 0

] ≥ 1
2 , we get soundness error 1 − 1

2(�
2)

for

(P ′, V ′). We now factor in the binding error. If for some verifier coins of V ′

together with some receiver coins of P ′, V ′ rejects after interacting with P ′ and
all the commitments that P ′ simulates are binding, then the same coins, when
used by the verifier V , cause V to reject after interacting with P ∗. Thus, a
union bound yields a statistical soundness error of 1 − 1

2(�
2)

+ δ(n, k), where δ is

negligible in both n and k.
Taking � to be a constant, we have obtained a constant soundness error for

the protocol. Later, we will reduce the error to be negligible by (sequential)
repetition (see Remark 4).

Zero Knowledge. Let V ∗ be a probabilistic polynomial-time verifier. Since the
MPC protocol Π is perfectly (semi-honest) 2-private, it has a simulator SimMPC.
Using V ∗ and SimMPC, we construct a simulator SimZK for our protocol in
Fig. 2. The commitment scheme that is used throughout the simulation is the
instance-dependent commitment of Lemma 4. We note that the simulator SimZK

only utilizes V ∗ in a black-box manner, and recall that black-box zero-knowledge
implies auxiliary input zero-knowledge [GO94].

The zero-knowledge analysis closely follows that of [GMW91,IKOS09], and
we outline it here for the sake of completeness. Suppose x1, . . . , xk ∈ ΠY . By
Lemma 4, the commitment scheme used throughout the simulation will be sta-
tistically hiding, with hiding error negligible in both n and k. To demonstrate
that the output distribution of the simulator is statistically close to that of real
verifier views, we examine several hybrid distributions, wherein the simulator is
given the witnesses to x1, . . . , xk:

1. Distributions A0, . . . , At: In distribution Ai, during the first i attempts, the
simulator SimZK acts like the honest prover in Step 1, committing to shares
of the prover’s messages instead of committing to random shares. In the rest
of the steps, the simulator proceeds as usual. In the remaining attempts, the
simulator follows its standard strategy during all steps.
Since any number of secret shares smaller than � distributes uniformly and
independently, and because the commitments hide all shares except the two
shares that are revealed, the statistical distance between each Ai, Ai + 1 is
negligible in n and k.

2. Distributions B0, . . . , Bt: In all of these distributions, the simulator behaves
like the honest prover in Step 1, committing to shares of the prover’s mes-
sages instead of committing to random shares. In distribution Bi, during
the first i attempts, instead of utilizing the MPC simulator SimMPC, the
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Fig. 2. Simulator for the protocol of Theorem 1

simulator SimZK executes the MPC protocol Π to obtain the views of the
two randomly selected players. Then, the simulator chooses the views of the
remaining players arbitrarily and proceeds as usual. In the other attempts,
the simulator follows its standard strategy during all steps except for Step 1
(in which it mimics the honest prover).
Note that B0 = At. The statistical distance between each Bi, Bi +1 is exactly
zero due to the perfect 2-privacy of the MPC protocol Π.

3. Distribution C: In this distribution, the simulator behaves like in distribution
Bt, but instead of generating random views for the players that are not in
{i, j}, it assigns them the views computed when executing the MPC protocol
Π. The statistical distance between Bt, C is negligible in n and k since the
commitments to the views of the players not in {i, j} are never revealed, and
the commitment scheme is statistically hiding.

The only difference between distribution C and that of real verifier views is
that C can output ⊥ when all attempts fail. In the sampling of the distribution
C, each attempt succeeds with a probability of at least 1

(�
2)

. Given that attempts

are independent, the simulator succeeds on at least one attempt with all but
negligible probability in n and k. Therefore, the statistical distance between C
and that of real views is negligible in n and k.

Since A0 is the output distribution of the simulator SimZK, we deduce that
the statistical distance between the output distribution of SimZK and that of
real verifier views is negligible in n and k, as required.
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Complexity. We begin with analyzing the communication complexity of the pro-
tocol. The commitment scheme of Lemma 4 increases the communication com-
plexity by a multiplicative factor of only poly(n, log k) per committed bit, both
for the commit and the reveal phases. Hence, for the sake of analysis, we can
conveniently overlook this overhead.

– Step 1: The verifier’s messages and prover’s messages during Step 1 of the
protocol have length poly(n, log k) by Theorem 2.

– The remaining steps: The circuit CVUP has size poly(n, log k), and the MPC
protocol Π is CVUP -efficient. Therefore, the overall size of the MPC players’
views is � · poly(n, log(k), �) = poly(n, log(k), �), and this term dominates the
communication complexity of the remaining steps.

Since our parameter � is a constant, the total communication complexity is
poly(n, log k).

We proceed to analyze the round complexity of the protocol. The commit-
ment scheme of Lemma 4 is constant-round. Therefore, in Step 1, The protocol
inherits its round complexity polylog(n, k) from the underlying UP batching
protocol of Theorem 2. During the remaining steps, the protocol proceeds with
an additional constant number of rounds, resulting in a total round complexity
of polylog(n, k).

The verifier’s runtime is k ·poly(n, log(k)) due to the efficiency of the verifier
of Theorem 2, the efficiency of the receiver of Lemma 4, and the CVUP-efficiency
of the MPC protocol Π.

The prover runs in time poly(n, k) given the k unique witnesses, since the
protocol of Lemma 2 is doubly-efficient, and because the MPC protocol Π is
CVUP-efficient.

Lastly, the protocol inherits its public-coin nature from the underlying UP
batching protocol of Theorem 2 and the commitment scheme of Lemma 4.

Remark 4. In our analysis, we only achieved a constant soundness error. Our
zero-knowledge simulator only makes black-box use of the verifier, so by sequen-
tial composition (see [GO94]), we can repeat our proof poly(log(n), log(k)) times
to get a negligible soundness error while preserving zero-knowledge and main-
taining the complexity of the proof as previously stated.
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A Proof of Lemma 2

Before we prove Lemma 2, we revisit the relevant definitions and results that
appear in [MNRV24]. We start with some basic definitions of probability theory.
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Definition 15. Let X be a random variable distributed over a universe U , and
for every x ∈ U , denote by px = Pr[X = x]. We recall the following notions of
entropy of X:

– H0(X) = log (|{x : px �= 0}|).
– H1(X) = −∑

x∈U px log (px).
– H2(X) = − log(cp(X)).7

We also define the following smoothed notion of entropy version utilized in
[MNRV24].

Definition 16 (Smooth Entropy [RW04]). For any ε ≥ 0, the ε-smooth H2

entropy of a random variable X is defined as follows:

Hε
2(X) = max

Y ∈Bε(X)
H2(Y ),

where Bε(X) is the set of all distributions within statistical distance ε of X.

We recall the definition of the Smooth Entropy Approximation problem consid-
ered in [MNRV24].

Definition 17. Let ε = ε(n) ∈ [0, 1]. The ε-Smooth Entropy Approximation
problem (SEAε), is defined as follows:

SEAε,Y = {(C, k) : Hε
2(C) ≥ k + 1} ,

SEAε,N = {(C, k) : H0(C) ≤ k − 1} ,

where C is a circuit with η input bits, μ ≤ 3η output bits, and 0 < k ≤ μ.

That is, YES instances of SEAε are close to a distribution that has high H2

entropy, and NO instances of SEAε have low H0 entropy (i.e., a small support).
We now introduce a lemma based on the work [MNRV24]. While this lemma
is not stated explicitly in [MNRV24], it follows immediately from the proof of
[MNRV24, Theorem 1.1].

Lemma 5 ([MNRV24, See Proof of Theorem 1.1]). Let Π ∈ NISZK and
k = k(n) such that k(n) ≤ 2n0.01

. Then, Π⊗k has a randomized Karp reduction
to SEAε with the following properties:

– The reduction is computable in time k · poly(n, log k) and uses poly(n, log k)
random coins.

– The reduction never errs on NO instances and errs only with probability neg-
ligible in n and k on YES instances.

– ε is negligible in both n and k.
7 Recall that the collision probability of a distribution X is defined as cp(X) =

Pr
x,x′←X

[x = x′].
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– The SEAε circuit C generated by the reduction has size k ·poly(n, log k), with
input and output sizes poly(n, log k).

Remark 5. The fact that the running time of the reduction and the size of the
SEAε circuit C are both k · poly(n, log k) does not follow from the proof of
[MNRV24, Theorem 1.1], but rather it can be inferred from the reduction that
establishes [MNRV24, Theorem 5.1].

We now have all the necessary details from [MNRV24] to establish Lemma
2. The reduction from Π⊗k to IDε′ operates as follows (note that we use ε′ for
the ID circuits and ε for the SEA circuits since these two parameters will be
different). It first efficiently reduces the tuple (x1, . . . , xk) to an SEAε instance
using the reduction described in Lemma 5. Subsequently, it reduces the SEAε

instance to an IDε′ circuit Ĉ.
We now present the reduction from SEAε to IDε′ . This is a deterministic

Karp reduction, and its analysis closely follows [MNRV24, Lemma 3.9]. Denote
by (C, κ) the SEAε instance. The circuit C has η input bits and μ output bits.
Let Hμ,κ = {h : {0, 1}μ → {0, 1}κ} be a pairwise-independent family of hash
functions as in [MNRV24, Lemma 2.9]. Each hash function from this family is
described by O(max(μ, κ)) = O(μ) bits. Construct the circuit C ′ that corre-
sponds to r = 20(log2 n + log2 k) copies of C evaluated independently. Its input
length is η′ = η · r, and its output length is μ′ = μ · r. Similarly, let κ′ = κ · r.
The reduction, on input (C, κ), outputs a circuit Ĉ that works as follows:

– It takes as input a description h of a hash function in Hμ′,κ′ and an x ∈
{0, 1}η′

.
– It outputs

(
h, h

(
C ′ (x)

))
.

The output length of Ĉ is μ̂ = O(μ′)+κ′ < O(max(η′, μ′)). Its input length is
also O(max(η′, μ′)). Suppose (C, κ) is a YES instance of SEAε. That is, Hε

2 (C) ≥
κ + 1, and thus Hε′

2 (C ′) ≥ κ′ + r, where ε′ = ε · r. This implies that there is
a distribution Y that is at most ε′-far from C ′ that has cp(Y ) ≤ 2−(κ′+r).
Let H denote the random variable corresponding to a uniformly random h ∈
Hμ′,κ′ . By the leftover hash lemma (see [MNRV24, Lemma 2.10] for the exact
formulation), the statistical distance between (H,H(Y )) and (H,Uκ′) is at most
2(−r)/2. Thus, the distance between (H,H(C ′)) and (H,Uκ′) is at most ε′ +
2(−r)/2 = ε · 20

(
log2 n + log2 k

)
+ 2−10(log2 n+log2 k). Since ε is negligible in n

and k, Δ
(
Ĉ, Uμ̂

)
is also negligible in both n and k.

On the other hand, suppose (C, κ) is a NO instance of SEAε, that is, H0 (C) ≤
κ − 1. This means that C has support of size at most 2κ−1, and C ′ has support
of size at most 2κ′−r. This implies that the support size of (H,H (C ′)) is at most
|Hμ′,κ′ | ·2κ′−r ≤ 2−r ·2μ̂. Therefore,

∣∣∣Supp
(
Ĉ

)∣∣∣ ·2−μ̂ = 2−r is negligible in both
n and k.

Since the hash functions have a succinct description and are efficiently com-
putable, the running time of the reduction and the size of the circuit Ĉ are
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both k · poly(n, log k), and Ĉ has input and output lengths O(max(η′, μ′)) =
poly(n, log k), as required. This completes the analysis of the reduction from
SEAε to IDε′ . By combining the reduction of Lemma 5 with the reduction from
SEAε to IDε′ , we have proved Lemma 2.

B Proof of Lemma 1

We prove Lemma 1 by first presenting the instance-dependent commitment
scheme of [NV06], and then demonstrating that it satisfies the conditions of
Lemma 1.

The commitment scheme makes use of interactive hashing [NOVY98,
DHRS07], specifically employing an information-theoretically secure protocol
from [DHRS07]. We begin by defining interactive hashing.

Interactive Hashing. In an interactive hashing protocol, two players are partic-
ipating, A and B. Player A receives an input W , while B has no input. Upon
executing the protocol, both A and B output a pair (W0,W1), such that one of
W0,W1 equals W . Informally, the protocol is secure for A if, when W is uniformly
distributed, even a computationally unbounded B cannot determine which one
of (W0,W1) equals W . The protocol is secure for B if, for any sufficiently sparse
set S, even a computationally unbounded A cannot force both W0 and W1 to
reside in S. We now provide the formal definitions, based on [NV06].

Definition 18 (Interactive Hashing). A protocol (A,B) is called an inter-
active hashing protocol if it is an efficient two-party protocol with the following
properties:

– Inputs: A has an input string W ∈ {0, 1}μ and B has no input.
– Outputs: A and B output two distinct values W0,W1 ∈ {0, 1}μ (in lexico-

graphic order) such that one of W0,W1 equals W .

Definition 19. Let D denote the distribution of the index d ∈ {0, 1} such that
the string Wd corresponds to the input of A in the interactive hashing protocol.
An interactive hashing protocol is secure for A if for every unbounded B∗ the dis-
tributions {viewB∗ (A(W ), B∗) ,D} and {viewB∗ (A(W ), B∗) , U1} are identical
when W ≡ Uμ.

An interactive hashing protocol is (δ, ρ)-secure for B if for every S ⊆ {0, 1}μ

of density at most δ and every computationally unbounded strategy A∗, it holds
that Pr [W0,W1 ∈ S] < ρ.

We will rely on an interactive hashing protocol due to Ding et al. [DHRS07].

Lemma 6 ([NV06, Theorem 4.3], based on [DHRS07]). For every 0 < δ <
1, there exists a constant-round public-coin interactive hashing protocol (A,B)
that is secure for A and (δ,poly(μ) · δ)-secure for B.

Using Lemma 6, we now present in Fig. 3 the construction of the instance-
dependent commitment for IDε. We proceed to analyze the construction to show
that it satisfies Lemma 1. (Although our focus is on the communication com-
plexity, for completeness we provide a full analysis).
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Fig. 3. Instance-dependent commitment scheme for IDε

Complexity. During the commit phase, the sender samples a random output
x from the circuit C and engages in an interactive hashing protocol with the
receiver on input x. Since both of the parties in the interactive hashing protocol
are efficient and C has output size μ, the number of exchanged bits is poly (μ).
Subsequently, the sender sends one additional bit to the receiver. During the
reveal phase, the sender sends the revealed bit along with the input r to C that
was used to generate x. The circuit C has input size η, thus poly (η, μ) bits are
exchanged in both the commit and the reveal phases.

During the commit phase, the receiver runs in time poly(η, μ), due to the
interactive hashing protocol of [DHRS07] being efficient. During the reveal phase,
the receiver runs in time |C| · poly(η, μ, log(|C|)) to evaluate the circuit C on
input r. Hence, the receiver has runtime |C| ·poly(η, μ, log(|C|)) in both phases.

Also note that the commitment scheme is constant-round and public-coin
since the interactive hashing protocol of [DHRS07] is constant-round and public-
coin.

Correctness. Given any input circuit and bit b, if the sender and the receiver fol-
low their prescribed strategies, then the receiver always accepts. This is ensured
by the underlying interactive hashing protocol of Lemma 6 which guarantees
that one of the output strings (x0, x1) will be equal to the input x.

Hiding Error. In case C is a YES instance of IDε, then Δ (C,Uμ) ≤ ε. For every
receiver R∗, we denote by B∗ the interactive hashing strategy induced by R∗.
Additionally, we denote by d ∈ {0, 1} the index of the interactive hashing output
that equals the input (to A). For a random variable X and an index b ∈ {0, 1},
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we write as a shorthand v(X, b) � (viewB∗ (A (X) , B∗) , b). We then have:

Δ (viewR∗ (S(0), R∗) , viewR∗ (S(1), R∗)) = Δ (v(C, d ⊕ 0), v(C, d ⊕ 1))
≤ Δ (v(C, d), v(Uμ, d))

+ Δ (v(Uμ, d), v(Uμ, d ⊕ 1))
+ Δ (v(Uμ, d ⊕ 1), v(C, d ⊕ 1)))

≤ Δ (C,Uμ) + 0 + Δ (C,Uμ)
≤ 2ε.

Therefore, the hiding error Δ
(
viewR∗ (S(0), R∗) , viewR∗ (S(1), R∗)

)
is at

most 2ε.

Binding Error. In case C is a NO instance of IDε, the density of Supp (C) is
at most ε. Let S∗ be a malicious sender participating in the game defining the
binding property. The sender S∗ can succeed only if both x0, x1 are in the support
of C. Because we chose the parameter δ for the interactive hashing protocol to
match the density of Supp (C), by the (δ,poly(μ) · δ)-security of the interactive
hashing we have Pr [x0, x1 ∈ Supp (C)] < poly(μ) ·δ. Since δ = ε, the probability
of violating the binding condition is at most poly(μ) · ε.

C More Details on Theorem 2

The [RR20] batching proof (similarly to many interactive proofs in the literature,
such as the sumcheck and [GKR15] protocols) is “holographic”. This means that
the verifier runs in time poly(n, log(k)) given oracle access to the low degree
extension (LDE) of the input (x1, . . . , xk) (see [GR17] for a formal treatment).
Moreover, the locations of the oracle queries (to the LDE) of the input only
depend on the verifier’s internal randomness. Thus, to see that the furthermore
part of Theorem 2 holds, observe that the verifier can compute these values
during its pre-processing step (i.e., prior to its interaction with the prover).

To see that the [RR20] protocol is indeed holographic we briefly recall the
construction. Their protocol (building on an idea from [RRR18]) is recursive,
where in each step we reduce the task of batch proving k instances, to batch
proving k/2 related instances. The reduction relies on an interactive proof of
proximity (IPP) which is developed in the same work (improving on a prior
result of [RVW13]). The reduction step proceeds by running an IPP whose input
is a list of the k witnesses concatenated with an LDE of the k instances. The IPP
verifier queries some points from this LDE (which is why we view the protocol
as holographic) and needs to additionally query some points of the witnesses.
The parameters are set so that the verifier only needs to query at most k/2 of
the witnesses, so rather than actually performing these queries, we recursively
check these via an additional batch verification protocol.8

8 To facilitate the recursion, we need to rely on a protocol that does batch verification
and additionally checks some (small-depth) predicate on the k witnesses.
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Abstract. A monotone policy batch NP language LR,P is parameter-
ized by a monotone policy P : {0, 1}k → {0, 1} and an NP relation R. A
statement (x1, . . . , xk) is a yes instance if there exists w1, . . . , wk where
P (R(x1, w1), . . . , R(xk, wk)) = 1. For example, we might say that an
instance (x1, . . . , xk) is a yes instance if a majority of the statements are
true. A monotone policy batch argument (BARG) for NP allows a prover
to prove that (x1, . . . , xk) ∈ LR,P with a proof of size poly(λ, |R|, log k),
where λ is the security parameter, |R| is the size of the Boolean circuit
that computes R, and k is the number of instances. Recently, Brakerski,
Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) gave the first
monotone policy BARG for NP from the learning with errors (LWE)
assumption.

In this work, we describe a generic approach for constructing mono-
tone policy BARGs from any BARG for NP together with an additively
homomorphic encryption scheme. This yields the first constructions of
monotone policy BARGs from the k-Lin assumption in prime-order pair-
ing groups as well as the (subexponential) DDH assumption in pairing-
free groups. Central to our construction is a notion of a zero-fixing hash
function, which is a relaxed version of a predicate-extractable hash func-
tion from the work of Brakerski et al. Our relaxation enables a direct
realization of zero-fixing hash functions from BARGs for NP and addi-
tively homomorphic encryption, whereas the previous notion relied on
leveled homomorphic encryption, and by extension, the LWE assump-
tion.

As an application, we also show how to combine a monotone policy
BARG with a puncturable signature scheme to obtain a monotone policy
aggregate signature scheme. Our work yields the first (statically-secure)
monotone policy aggregate signatures that supports general monotone
Boolean circuits from standard pairing-based assumptions. Previously,
this was only known from LWE.

1 Introduction

A non-interactive batch argument (BARG) for NP allows a prover to convince
a verifier that a collection of k statements x1, . . . , xk is true with a proof whose
size scales sublinearly with k. Beyond the immediate application to amortizing
c© International Association for Cryptologic Research 2025
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the communication cost of NP verification, batch arguments for NP also play a
key role in constructing delegation for RAM programs (also known as a succinct
non-interactive argument (SNARG) for P) [KVZ21,CJJ21b,KLVW23] and incre-
mentally verifiable computation [DGKV22,PP22]. These objects have received
extensive study recently, and to date, we have constructions from most stan-
dard algebraic assumptions in cryptography such as the learning with errors
(LWE) assumption [CJJ21b], the k-Lin assumption on groups with bilinear
maps [WW22], the (sub-exponential) decisional Diffie-Hellman (DDH) assump-
tion in pairing-free groups [CGJ+23], or combinations of quadratic residuosity
and (sub-exponential) DDH in pairing-free groups [CJJ21a,HJKS22].

Beyond batch NP and P. The recent successes in constructing succinct argu-
ments for batch NP and for P from standard cryptographic assumptions has
motivated the study of other (sub)-classes of NP for which we can build suc-
cinct non-interactive arguments from standard (falsifiable) assumptions. Very
recently, Brakerski, Brodsky, Kalai, Lombardi, and Paneth [BBK+23] showed
how to construct SNARGs for monotone policy batch NP. At a high level, the
monotone policy batch NP language LR,P is defined with respect to an NP rela-
tion R together with a monotone policy P : {0, 1}k → {0, 1} as follows:

LR,P = {(x1, . . . , xk) | ∃(w1, . . . , wk) : P (R(x1, w1), . . . ,R(xk, wk)) = 1} .

In words, an instance (x1, . . . , xk) is true as long as an acceptable subset of the
statements are true (as determined by the policy P ). Such “monotone policy
batch arguments” capture policies like majority, general thresholds, and more.
The standard batch argument corresponds to the special case where the policy
P is a simple conjunction.

Brakerski et al. [BBK+23] provided two constructions of monotone pol-
icy BARGs for NP. The first construction only relies on standard (somewhere
extractable) BARGs and collision-resistant hash functions, but could only sup-
port monotone policies of logarithmic depth (i.e., monotone NC1). To extend to
monotone policies of arbitrary polynomial depth, they combine standard BARGs
with a new notion of a predicate-extractable hash function, which they then
build from the LWE assumption (specifically, they rely on leveled homomorphic
encryption). This yields a monotone policy batch argument for arbitrary mono-
tone policies from the LWE assumption. Due to the current reliance on leveled
homomorphic encryption to construct the predicate-extractable hash function,
instantiations of monotone policy BARGs for arbitrary-depth policies rely on
the LWE assumption.

1.1 Our Results

Our main result in this work is showing how to construct BARGs for mono-
tone policies by combining a (standard) BARG with an additively homomor-
phic encryption scheme (which can in turn be built from most number-theoretic
assumptions [Gam84,Pai99,Reg05]). Combined with the recent progress on
constructing BARGs from pairing-based groups [WW22] and pairing-free
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groups [CGJ+23], we obtain the first monotone policy BARGs for NP from the
k-Lin assumption over pairing groups and from the (sub-exponentially) DDH
assumption in pairing-free groups. We provide an overview of our techniques in
Sect. 1.2 and summarize our main results in the following theorem:

Theorem 1 (Informal). Assuming any of (1) the plain LWE assumption, (2)
the k-Lin assumption over pairing groups for any constant k ∈ N, or (3) the (sub-
exponential) DDH assumption in pairing-free groups, there exists a monotone
policy BARG for all polynomial-size monotone circuit policies. The monotone
policy BARG satisfies non-adaptive soundness and the proof size is poly(λ +
|C| + log |P |), where |C| denotes the size of the Boolean circuit computing the
NP relation, and |P | is the size of the monotone policy.

Monotone Policy Aggregate Signatures. A key difference between Theorem 1
and the previous LWE-based construction [BBK+23] is that we obtain a non-
adaptively-sound BARG for monotone circuit policies whereas the [BBK+23]
construction satisfied a stronger “somewhere extractability” notion. That is, in
[BBK+23], the common reference string (CRS) can be sampled in a trapdoor
mode and the trapdoor can be used to recover a witness for some xi given a valid
proof on statements (x1, . . . , xk). While extractability is often useful to have in
a cryptographic primitive, it is not always essential.

As an illustrative example, we show how to use monotone policy BARGs
in conjunction with (puncturable) signatures [GVW19] to construct a mono-
tone policy aggregate multi-signature scheme. In an aggregate multi-signature
scheme, there is a set of k signers, each with a signing/verification key-pair
(ski, vki). Given a policy P and a set of signatures σi for i ∈ S (where σi verifies
with respect to vki) on a common message m, if the set S satisfies the policy
P , then it is possible to aggregate {σi}i∈S into a single short signature whose
size is sublinear in |S|. For instance, P might encode a “threshold” policy that
accepts all sets of size at least t. Crucially, static security of our monotone policy
aggregate signature scheme only relies on non-adaptive soundness of the mono-
tone policy BARG and security of the puncturable signature scheme. There
is no need for an explicit extraction requirement. Very briefly, a puncturable
signature scheme allows one to sample a “punctured” verification key vk (and
associated signing key) for some message m∗. The punctured verification key is
computationally indistinguishable from a normal verification key, but has the
property that there does not exist any signatures on the punctured message m∗

with respect to the punctured key. As shown in [GVW19], puncturable (or “all-
but-one signatures”) can be constructed from many standard number-theoretic
assumptions. We summarize this result in the following theorem:

Theorem 2 (Informal). Assuming the existence of a non-adaptively sound
monotone BARG and a puncturable signature scheme, there exists a monotone
policy aggregate multi-signature scheme. The scheme satisfies static unforgeabil-
ity and the size of the aggregate signature is poly(λ+ log |P |), where |P | denotes
the size of the circuit computing the monotone policy.
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Theorem 2 shows that in combination with puncturable signatures, sound-
ness alone is sufficient for building aggregate signatures for general monotone
policies. Notably, Theorem 2 also provides the first monotone policy aggre-
gate signature from pairing-based assumptions (in the plain model). Previous
work have shown how to build vanilla aggregate signatures using (vanilla) non-
interactive batch arguments [WW22,DGKV22]. In an independent and con-
current work, [BCJP24] also show how to construct a monotone policy aggre-
gate multi-signature. Their work provides two constructions of monotone policy
aggregate (multi)-signatures. The first scheme supports monotone policies that
can be implemented by a read-once, bounded-space Turing machine and is also
adaptively secure. This scheme relies on somewhere extractable BARGs and a
verifiable private information retrieval scheme [BKP22], and can be instantiated
from standard pairing-based or lattice-based assumptions. The second scheme
supports policies implemented by an arbitrary monotone Boolean circuit, but
achieves a weaker security definition (closer to static security) and also relies on
fully homomorphic encryption (which to date, is not known from pairing-based
assumptions). Theorem 2 gives a statically-secure monotone policy aggregate
signature scheme that supports all monotone Boolean circuits, and does not
rely on fully homomorphic encryption. This enables a new instantiation from
pairings.

Soundness vs. Extraction. While Theorem 2 shows that extraction is unnecessary
for all applications of monotone policy BARGs, our proof strategy for arguing
soundness can nonetheless be extended to achieve a notion of extractability
(see the full version [NWW23, Section 8]). The notion we achieve is similar to
the somewhere extractability notion from [BBK+23], where for every monotone
policy P , they define a notion of a “necessary set” associated with P (i.e., a set
with the property that for every satisfying input (x1, . . . , xn) to P , there exists
i ∈ S where xi = 1). The somewhere extractability notion from [BBK+23]
programs S into the common reference string, and asserts that whenever the
prover comes up with an accepting proof for statements (x1, . . . , xk) for an NP
relation R and policy P , then the extractor will output wi for i ∈ S where
R(xi, wi) = 1. Our construction satisfies a looser variant of this property where
the success probability of the extractor is smaller by a factor of 1/k. We refer
to this notion as semi-somewhere extractability. While our construction does
achieve this notion of extraction with essentially no modification (see the full
version [NWW23, Section 8]), we choose to focus on the simpler notion of non-
adaptive soundness in the core part of this paper. Our rationale is twofold:

– First, there is a lack of consensus on what the “right” notion of extraction
is when it comes to the setting of monotone policy BARGs. Notably, the
recent and concurrent work of [BCJP24] that builds monotone policy aggre-
gate signatures highlighted the inadequacy of the somewhere extractability
notion from [BBK+23] for their particular application to constructing mono-
tone policy aggregate signatures. Indeed, the work of [BCJP24] propose two
different and seemingly incomparable notions of extraction for their applica-
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tion. This illustrates that the most useful or desirable notion of extraction for
monotone policy BARGs may be application-dependent.

– Second, while it is straightforward to show that our construction satisfies
some notion of extractability, proving this property does not appear to confer
additional capabilities. For the main application to statically-secure aggregate
signatures, we showed above that non-adaptive soundness already suffices.
There is no need for extraction if this is the end goal. The main advantage of
having some kind of extractability definition is we can apply this construc-
tion to compile any digital signature scheme into a monotone policy aggregate
signature scheme, as opposed to restricting ourselves to puncturable signa-
tures (and we show this in the full version of this paper [NWW23]). While
there is a qualitative benefit to this, we do not view it as strong evidence
that semi-somewhere extractability is a clearly more powerful or more useful
notion than non-adaptive soundness.

A New Application: general-policy BARGs for NP ∩ coNP. We also highlight
a simple application of BARGs for monotone policy batch NP to constructing
a BARG that supports arbitrary policies over languages in NP ∩ coNP. Our
observation essentially follows the similar strategy of extending monotone closure
of SZK to non-monotone closure [Vad06]. Specifically, for a language X ∈ NP ∩
coNP and an arbitrary policy P : {0, 1}k → {0, 1}, we define the language

LX ,P = {(x1, . . . , xk) | P (b1, . . . , bk) = 1 where bi = 1 {xi ∈ X}} ,

where 1 {xi ∈ X} is the indicator function that outputs 1 if xi ∈ X and 0 oth-
erwise. Importantly, in this context, we allow P to be any arbitrary (possibly
non-monotone) Boolean circuit. It is not difficult to see that a BARG for mono-
tone policy batch NP immediately implies a BARG for LX ,P . Namely, we first
re-express the circuit P on k inputs b1, . . . , bk as a new monotone circuit P ′

on 2k inputs corresponding to the original input bits b1, . . . , bk as well as their
negations b̄1, . . . , b̄k. We can then apply a BARG for monotone policy batch NP
on the set of 2k inputs with the policy P ′. For this transformation to work, it is
important that for each statement xi, the prover can either provide a proof of
membership xi ∈ X (which sets bi = 1) or a proof of non-membership xi /∈ X
(which sets b̄i = 1).

1.2 Technical Overview

The starting point of our BARG construction is the “canonical protocol” from
[BBK+23, §2.1]. We recall this below. In our description, we will consider the
NP relation of Boolean circuit satisfiability.

– Given a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, a monotone policy
P : {0, 1}k → {0, 1}, statements x1, . . . , xk ∈ {0, 1}n, witnesses w1, . . . , wk ∈
{0, 1}h, the prover first computes bi ← C(xi, wi) for all i ∈ [k].
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– The prover then evaluates the circuit P (b1, . . . , bk). The prover commits to all
of the wire values in P (b1, . . . , bk) using a succinct commitment com that sup-
ports local openings. We index the input wires with the integers 1, . . . , k, the
output wire by s (where s is the number of wires in P ), and the intermediate
wires with k + 1, . . . , s − 1.

– The prover uses a batch argument to prove the following statements with
respect to the commitment com:

• Input wires: For every input wire j ∈ [k], it proves that there exists
a local opening of com to a value bj ∈ {0, 1} at index j, and moreover,
bj = C(xj , wj).

• Gate computation: For every gate g in P with input wires jl, jr and
output wire j, it proves that there exists a local opening of com to wire
values bjl , bjr , bi ∈ {0, 1} at indices jl, jr, j ∈ [s], respectively, and more-
over, bj = g(bjl , bjr).

• Output wire: It proves that there exists a local opening to the value 1
at index s for com.

The proof consists of the commitment com together with the batch argument
π.

When the policy circuit P has logarithmic depth, the authors of [BBK+23]
describe a simple inductive argument to argue the security of this construction
by relying on somewhere extractability of the underlying BARG. Somewhere
extractability says that the common reference string of the BARG can be pro-
grammed at a small number of (hidden) indices i1, . . . , i�. Given a valid proof π
for (x1, . . . , xn) along with a trapdoor, one can extract witnesses for xi1 , . . . , xi�

.
However, when P has super-logarithmic depth, the basic inductive argument no
longer suffices (specifically, the security loss of the reduction decays exponentially
in the depth of P ).

Predicate-Extractable Hash Functions for Bit-Fixing Constraints. To construct
monotone policy BARGs for policies P of arbitrary depth, the authors of
[BBK+23] replace the Merkle hash of the wire values with a more sophisticated
“predicate-extractable” hash function for bit-fixing constraints.1

A predicate-extractable hash function for bit-fixing predicates is a hash func-
tion where the hash key can be programmed in one of two computationally
indistinguishable modes: (1) a normal mode and (2) a bit-fixing mode. In bit-
fixing mode, the setup algorithm takes as input a set of indices S ⊆ [n] along
with a collection of bits {(i, yi)}i∈S , where n is the input length. It outputs a
hash key hk and an extraction trapdoor td. The correctness requirement says
that if dig = Hash(hk,x) for an input x where xi = yi for all i ∈ S, then
Extract(td, dig) = Matching. Alternatively, if dig is a digest for an input x where
xi �= yi for some i ∈ S, then Extract(td, dig) should output (NotMatching, i∗)
where i∗ ∈ S is an index where xi∗ �= yi∗ . Essentially, the extractor is decid-
ing whether dig corresponds to the hash of an input that is consistent with
1 This is conceptually similar to the notion of function-binding hash functions intro-

duced concurrently in [FWW23].
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{(i, yi)}i∈S . If the hash is declared inconsistent, the extractor outputs one of the
inconsistent indices. Finally, the hash function supports succinct local openings
to individual bits of an input. The two key security properties are as follows:

– For a hash digest dig where Extract(td, dig) = Matching, then it should be
computationally difficult to construct an opening for dig to a value xi �= yi

for any i ∈ S.
– For a hash digest dig where Extract(td, dig) = (NotMatching, i∗), then it should

be computationally difficult for the adversary to open index i∗ to the value
yi∗ .

In the monotone BARG construction, the prover takes the Boolean circuit C,
the policy P , the statements (x1, . . . , xk) and the witnesses (w1, . . . , wk), and
computes bi ← C(xi, wi) and P (b1, . . . , bk). Let (b1, . . . , bs) be the complete set
of wire values in P (b1, . . . , bk), arranged in topological order. The prover hashes
the wire values (b1, . . . , bs) using the predicate-extractable hash function. In fact,
the prover computes two independent hashes dig1, dig2 of the wire values, and
the BARG will check validity of the openings against both hashes. To argue
non-adaptive soundness, the authors of [BBK+23] first define the zero-set J
associated with a circuit C, policy P , and statement (x1, . . . , xk):

– For each i ∈ [k], let β∗
i = 1 if there exists wi such that C(xi, wi) = 1 and let

β∗
i = 0 otherwise.

– Let β∗
1 , . . . , β∗

s = P (β∗
1 , . . . , β∗

k) be the wire values in P (β∗
1 , . . . , β∗

s ), where the
wires are ordered topologically.

– Let J = {i ∈ [k] : β∗
i = 0}. For a layer index t, define Jt ⊆ J to just contain

the indices of wires in layer t of P .

The proof of non-adaptive soundness now proceeds as follows:2

– Take any circuit C, monotone policy P , and statements x1, . . . , xk. The invari-
ant they use roughly says the following: if hk0, hk1 are programmed to bind
to the all-zeroes string on the zero-sets Ji, Ji−1 for layers i and i−1 of P , and
the digest associated with the upper layer is NotMatching, then the digest
associated with the lower layer is also NotMatching.

– To establish this invariant, the proof critically relies on BARG security and
security of the predicate-extractable hash function. Namely, if the extractor
declares an index j ∈ Ji in the upper layer to be NotMatching and the BARG
is set to be extracting on wire j, then that means the adversary must have
opened one of the input wires j′ (to the gate computing wire j) to a 1 where
j′ ∈ Ji−1 (since the policy P is monotone). Security of the hash function then
says that the extractor must declare the digest associated with the lower layer
to be NotMatching.

2 With a suitable strengthening of the notion of predicate-extractable hash functions,
the authors of [BBK+23] also show how to obtain a somewhere extractable monotone
policy BARG. In this work, we focus on achieving the core notion of non-adaptive
soundness.
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– To complete the proof, they argue that the output layer must be NotMatching
(by programming the BARG to be extracting on the output wire). By prop-
agating the invariant to the input wires, they conclude that the input layer
must be NotMatching (when one of the hash keys is programmed to bind on
the input layer). In this case, programming the BARG to be extracting on
the wire identified by the NotMatching input (output by the extractor for the
hash function) yields a contradiction (in this case, the BARG extractor would
need to output a witness for a false NP statement).

The authors of [BBK+23] then show how to construct a predicate-extractable
hash function for bit-fixing predicates using the learning with errors (LWE)
assumption. Their construction specifically relies on leveled homomorphic
encryption (similar to the construction of somewhere statistically binding hash
functions [HW15]). In conjunction with BARGs for NP based on LWE [CJJ21b],
this yields a monotone policy BARG for NP from LWE.

This Work: Zero-Fixing Hash Functions. The starting point of our work is a
relaxation of a predicate-extractable hash function for bit-fixing predicates we
call a zero-fixing hash function. Like the predicate-extractable hash function, the
zero-fixing hash function supports succinct local openings and moreover, the hash
key for a zero-fixing hash function can be sampled in one of two computationally-
indistinguishable modes: (1) a normal mode and (2) a zero-fixing mode. In zero-
fixing mode, the setup algorithm takes as input a set S ⊆ [n] of indices (that
should be zero) and outputs a hash key hk along with a trapdoor td. There
is also an extract algorithm Extract that takes as input the hash key hk and a
digest dig, and outputs either Matching or NotMatching. The key distinction with
predicate-extractable hash functions is that Extract only outputs the flag; it does
not output an index when it declares a digest NotMatching. Correspondingly, the
zero-fixing security requirement only imposes a requirement for matching digests:

– Zero-fixing: Suppose (hk, td) are sampled in zero-fixing mode for a set S.
Then, for any digest dig where Extract(td, dig) outputs Matching, it should be
hard to find an opening to an index i ∈ S to the value 1.

While this distinction of having the extractor output a mismatching index j or
not might seem like a small difference, it has two significant implications:

– Simpler to construct: By only requiring the zero-fixing hash function
declare whether a digest is Matching or NotMatching, we significantly simplify
the construction of the hash function. Whereas computing and propagating
an index of a “mismatching bit” (as in [BBK+23]) relies heavily on (leveled)
homomorphic encryption, checking whether there exists a mismatching index
or not can be realized from simpler tools. As we show in this work (and
describe later on), we can construct zero-fixing hash functions generically
from BARGs for NP together with any additively homomorphic encryption
scheme (Section 5). If we prefer to avoid non-black-box techniques altogether,
we also describe a direct algebraic construction using composite-order pairing
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groups (the full version [NWW23, Section 6]). This is the critical distinction
that allows us to obtain monotone policy BARGs from group-based assump-
tions (which give additively homomorphic encryption [Gam84] but not leveled
homomorphic encryption).

– Sufficient for monotone policy BARGs: A second important fact is that
our notion of zero-fixing hash function still suffices to build monotone pol-
icy BARGs. As noted in the preceding sketch, the soundness analysis from
[BBK+23] critically relied on the hash function extractor outputting an index
of a mismatching bit. This is so that when the BARG is programmed to bind
on the wire associated with the mismatching index, the NotMatching invari-
ant propagates from the output layer to the input layer. In our setting, the
zero-fixing extractor only outputs Matching or NotMatching, and in the case
where the extractor outputs NotMatching, we cannot definitively declare an
index to be “mismatching.” This requires a new proof strategy as well as
imposing additional security requirements on the zero-fixing hash function.
We describe these properties as well as our new proof strategy in more detail
below.

Monotone Policy BARGs from Zero-Fixing Hash Functions. Our main construc-
tion is similar to the canonical protocol from [BBK+23] sketched above, except
the prover commits to all of the wires of the policy circuit P using two zero-
fixing hash functions (with hash keys hk1 and hk2). Our security analysis takes a
different bottom-up approach rather than the previous top-down approach. The
bottom-up approach is more natural when using our zero-fixing hash function.
Here, we provide a sketch of our non-adaptive soundness analysis.

To argue non-adaptive soundness, fix a Boolean circuit C, a monotone policy
P (assumed to be a layered Boolean circuit), and a false statement (x1, . . . , xk).
Similar to [BBK+23], we define the zero-set J associated with C, P , and
(x1, . . . , xk). The zero-set J contains the indices of the wires with value 0 in the
computation P (β∗

1 , . . . , β∗
k) where β∗

i = 1 if there exists wi where C(xi, wi) = 1
and 0 otherwise. Since P is monotone, for all w1, . . . , wk, the wire values of
P (C(x1, w1), . . . , C(xk, wk)) on the set J will be zero. As before, let Ji ⊂ J be
the subset of wires in layer i of P .

Our soundness argument proceeds layer-by-layer, starting from the input
layer (i.e., layer 1) and progressing to the output layer (i.e., layer d, where d is
the depth of P ). Our goal establishes the following invariant: if the hash keys
hk1 and hk2 are zero-fixing on Ji and Ji+1 and the digest associated with the
lower layer (i.e., layer i) is Matching, then the digest associated with the upper
layer (i.e., layer i+1) is also Matching. We provide a sketch of this step. For ease
of exposition, suppose hk1 is zero-fixing on Ji and the digest dig1 is Matching.
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The goal is to show that hk2 is zero-fixing on Ji+1, then the digest dig2 is also
Matching:3

– Initially, we set hk2 to be binding on the empty set. We require in this case
that dig2 is always Matching. We refer to this property as an extractor validity
property on the zero-fixing hash function.

– We now iteratively build up hk2. Let Ji+1[1] be the first element of Ji+1. We
set hk2 to be binding on the set {Ji+1[1]}. Our goal is to argue that dig2 is
still Matching. While it might seem like this property should follow assuming
a basic index hiding property on the zero-fixing hash function (i.e., that the
hash key hk hides which set it is binding on), this is insufficient. The reason
is that when hk2 is binding on ∅, the adversary might output a Matching
digest dig2, but if hk2 is binding on {Ji+1[1]}, the output digest dig2 might be
NotMatching. We cannot use such an adversary to construct an index hiding
distinguisher, because in the index hiding security game, the distinguisher
does not have the extraction trapdoor. As such, an attempted reduction algo-
rithm cannot efficiently decide whether the adversary was successful or not.
Indeed, this is a fundamental issue since knowledge of the extraction trapdoor
would trivially break index hiding.

– To advance the proof, we introduce a stronger notion of index hiding secu-
rity for zero-fixing hash functions, which essentially requires that no efficient
adversary can output a digest dig that causes the output of Extract to differ
depending on whether the hash key is binding on a set S or a set S \ {i}.4 Of
course, this is only meaningful when the digest is computed over an input that
is 0 on index i.5 Thus, we require this stronger index hiding with extracted
guess property to hold only for digests dig where the adversary can provide
an opening to index 0 for the target index i. We define this property formally
in Definition 6.

– To leverage the index hiding with extracted guess property, we need to enforce
the fact that dig2 opens to a 0 on index Ji+1[1]. We ensure this by appealing
to the somewhere extractability of the BARG along with zero-fixing security
of the hash function. Specifically, suppose that the BARG is binding on wire

3 This step is straightforward if we had a predicate-extractable hash function where
the extractor outputs a mismatching index. Namely, if the upper layer digest is
NotMatching, then the extractor outputs an index j ∈ Ji+1 that is mismatching
(i.e., cannot be opened to a 0). This means the efficient adversary can only open
wire j to the value 1. Now, if the BARG is extracting on the statement associated
with wire j, then we either (1) obtain the opening of some index j′ ∈ Ji to a 1,
which breaks security of the hash function (since the lower layer digest is Matching);
or (2) the value of wire j is inconsistent with the input wires associated with the
gate computing wire j, which breaks security of the BARG.

4 This type of property where the output of the extractor does not change for different
choices of the CRS is often referred to as a “no-signaling” extraction property [PR17,
KPY19,GZ21,KVZ21,CJJ21b].

5 Otherwise, an honest digest on the input that is 1 at index i (and 0 everywhere else)
would be declared Matching if the hash key was zero-fixing on a set S that contains
i and NotMatching if the hash key was zero-fixing on the set S \ {i}.
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Ji+1[1]. The BARG extractor then produces openings to the wire Ji+1[1]
with respect to dig2 as well as opening to the wires jl, jr with respect to dig1
(corresponding to the input wires for the gate computing Ji+1[1]). Since dig1
is zero-fixing on Ji and dig1 is also Matching, if either jl, jr ∈ Ji, then the
extracted openings must be openings to 0 (otherwise, we break zero-fixing of
the hash function). But by monotonicity of P , this means the value of the
output wire Ji+1[1] must also be 0, and thus the BARG extractor produces an
opening to 0 for wire Ji+1[1]. Now, by the index hiding with extracted guess
property, we conclude that programming hk2 to zero-fix on set {Ji+1[1]} will
still cause dig2 to be Matching (except with a negligible loss in probability).

– We can now iteratively apply the argument and build up hk2 until it is binding
on all of Ji+1.

To complete the proof, we consider the input and output layers for P :

– Handling the input layers: The base case in our analysis is to show that
if hk1 is binding on J1 (the input layer), then it is Matching. This follows
using the same layer-wise strategy sketched above for proving our invariance,
except for each index J1[i], we rely on the fact that the associated statement
xi is false (i.e., no witness exists) to argue that the only valid opening for
dig1 on index i is 0. Otherwise, we either break somewhere extractability of
the BARG (i.e., extracting an invalid witness for index i) or the index hiding
with extracted guess property.

– Output layer: Starting from the input layer, we now iteratively apply our
basic invariant to argue that when the hash keys are binding to Jd (the output
layer), the associated digests are also Matching. Now, if we have a valid proof,
and the BARG is set to extract on the output layer, then the BARG extractor
outputs an opening of the output wire to 1 with respect to the hash digests.
However, since the output wire is contained in Jd (since the statement is
false), and the digest is matching, this breaks zero-fixing security of the hash
function.

Thus, the above analysis suffices to show non-adaptive soundness of our construc-
tion. The critical security requirement we require on our zero-fixing hash function
is the strengthened index hiding with extracted guess property. This property
allows us to complete the proof via an iterative approach without needing to rely
on the extractor outputting a mismatching index as in previous work [BBK+23].
As we discuss below, this is an easier property to realize than full-fledged index
extraction. We refer to Section 3 for the formal definition of zero-fixing hash
functions and Section 4 for our construction of monotone policy BARGs.

Constructing Zero-Fixing Hash Functions. Our second contribution in this work
is a generic construction of zero-fixing hash functions from vanilla BARGs
together with an additively homomorphic encryption scheme. We start with a
basic construction that captures the key ideas underlying our construction and
refer to Section 5 for the formal description and analysis:
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– Let n ∈ N be the input length. For ease of exposition, we assume that
n = 2k is a power-of-two. Suppose we want to zero-fix on a (possibly-
empty) set S ⊆ [n]. The setup algorithm first samples a public/secret key-
pair (pk, sk) for an additively homomorphic encryption scheme. For each
i ∈ [n], the setup algorithm construct an encryption cti ← Enc(pk, 1) of
1 if i ∈ S and an encryption of cti ← Enc(pk, 0) of 0 if i /∈ S. It also
constructs an encryption ctzero ← Enc(pk, 0) of 0. Finally, it constructs a
commitment comhk to the ciphertexts (ct1, . . . , ctn). The hash key is then
hk = (pk, ctzero, ct1, . . . , ctn, comhk), and the extraction trapdoor is the decryp-
tion key sk.

– To hash an input x ∈ {0, 1}n, the user constructs a complete binary tree
where each of the n leaves is associated with a ciphertext. If xi = 1, then the
user associates leaf i with cti, and if xi = 0, then the user associates leaf i
with ctzero. The value of each internal node in the binary tree is defined to be
the sum of the ciphertexts associated with its two children. By construction,
the value of the root node is an encryption of the sum of the values associated
with the n leaf nodes. We refer to the tree of ciphertexts as the “ciphertext-
evaluation tree.” The digest dig then consists of the ciphertext ctroot associated
with the root node along with a commitment comct to all of the ciphertexts
in the ciphertext-evaluation tree.

– A local opening for index i∗ and value bi∗ ∈ {0, 1} for the digest dig =
(ctroot, comct) is a BARG proof. The BARG statements correspond to the
indices of the nodes in the ciphertext-evaluation tree. The associated rela-
tion is parameterized by the target index i∗, the root ciphertext ctroot, the
encryption ctzero of 0 from the hash key, and the commitment to the input
ciphertexts comhk. The BARG relation then checks the following:

• Leaf nodes: For each leaf node i, comct opens to either ctzero or cti at
index i. For the particular index i∗, it checks that comct opens to ctzero if
bi∗ = 0 and comct opens to cti∗ if bi∗ = 1. Since the BARG relation only
has comhk and not cti itself, the prover provides cti as part of its witness
along with a proof of opening for cti with respect to comhk. The proof of
opening ensures that the correct cti is provided.

• Internal nodes: For an internal node i (with children indexed jl, jr),
the BARG checks that comct opens to ciphertexts cti, ctjl , ctjr where cti
is the sum of ciphertexts ctjl and ctjr .

• Root node: For the root node, the BARG checks that comct opens to
ctroot.

– To test whether a digest dig = (ctroot, comct) is matching or not, the Extract
algorithm outputs Matching if ctroot decrypts to 0 and NotMatching otherwise.

By definition, the ciphertext ctroot in any (honestly-generated) hash digest is the
sum of the ciphertexts associated with the leaves of the ciphertext-evaluation
tree. On an input x, if xi = 0, then the associated ciphertext is an encryption of
0 and does not contribute to the sum. If xi = 1, then the ciphertext associated
with the leaf is an encryption of 1 if i ∈ S and encryption of 0 otherwise. Thus,
the sum is only incremented if xi = 1 for some i ∈ S. This is precisely when
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Extract outputs NotMatching (i.e., the digest is for an input x where xi = 1 for
i ∈ S).

To argue that it is hard to open a Matching, but possibly-malformed digest to
a 1 at an index i ∈ S, we appeal to soundness of the BARG. In this case, the root
ciphertext ctroot in dig decrypts to a non-zero value, and yet the user constructed
a valid BARG proof of opening for an index i ∈ S. The key observation is that
the structure of the BARG used in the above construction is very similar to the
structure of the canonical protocol from [BBK+23] described at the beginning of
Section 1.2 for demonstrating correct evaluation of a monotone circuit. Moreover,
because the ciphertext-evaluation tree is perfectly balanced, it has depth log n,
where n = poly(λ) is the input length. As such, we are able to adapt the proof
strategy for arguing soundness of the monotone policy BARGs for log-depth
circuits to directly argue zero-fixing security of our hash function. Specifically,
we rely on BARG security to ensure that if the adversary uses an encryption of
1 as one of the leaves to the ciphertext (which it must if it opens an index i ∈ S
to a 1), then the root ciphertext necessarily is an encryption of a non-zero value.
We provide the full details in the full version [NWW23, Section 5].

While the core construction described here satisfies zero-fixing security, we
need to augment the construction to satisfy the additional security requirements
we impose on a zero-fixing hash function. We summarize these here, and defer to
the technical sections (see Section 5 and the full version of this paper [NWW23])
for the full details:

– Extractor validity: Recall that this property says that when the hash func-
tion is zero-fixing on the empty set, it should be hard for an adversary to
come up with a “valid” digest that is NotMatching. To satisfy this property,
we simply include a BARG proof of validity to the digest, where the BARG
proof of validity simply checks that the ciphertext-evaluation tree was cor-
rectly constructed. When the hash key is binding to the empty set, all of the
ciphertexts cti are an encryption of 0, so the root of a properly computed
ciphertext-evaluation tree will also be an encryption of 0. We provide the
details in the full version [NWW23, Section 5].

– Index hiding with extracted guess: Recall that this property says that the
adversary cannot produce a digest dig where the extractor output disagrees
depending on whether the hash key is zero-fixing on a set S or a set S \ {i}
(provided that the adversary provides an opening to 0 for index i). The only
difference between the hash keys in these two cases is cti in the CRS changes
from an encryption of 0 to an encryption of 1, which we could in principle
show using semantic security. However, the reduction algorithm would have
no way of checking whether a digest dig output by the adversary is Matching or
NotMatching (since it does not and cannot know the decryption key). Thus, to
argue this we adopt a Naor-Yung type of strategy [NY90] and encrypt twice.
Namely, we introduce two parallel copies of the scheme (i.e., two independent
public keys and two independent sets of ciphertexts). The digest now consists
of two ciphertexts ct

(0)
root, ct

(1)
root for the roots of the two ciphertext-evaluation

trees. The same BARG would validate both roots. The key idea now is we can
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switch ct
(0)
i from an encryption of 0 (i.e., zero-fixing at S\{i}) to an encryption

of 1 (i.e., zero-fixing at S) while being able to decrypt (i.e., extract) for the
parallel encryption scheme. We can leverage soundness of the BARG to argue
that for a valid digest/opening, both ct

(0)
root and ct

(1)
root encrypt identical values.

This allows us to leverage semantic security to switch the ciphertexts for one
scheme while being able to detect whether the output of Extract changed or
not (using knowledge of the secret key for the parallel scheme). We provide
the full details in the full version [NWW23, Section 5].

Taken together, we obtain a zero-fixing hash function from any standard BARG
together with an additively-homomorphic encryption scheme. By instantiat-
ing with BARGs from the k-Lin assumption over pairing groups [WW22] or
the (sub-exponential) DDH assumption over pairing-free groups [CGJ+23], we
obtain zero-fixing hash functions from the same underlying assumptions. In con-
junction with our generic construction from above, this yields Theorem 1.

An Algebraic Construction of Zero-Fixing Hash Functions. As another contri-
bution, we also describe an algebraic approach to construct zero-fixing hash
functions directly from (composite-order) bilinear maps. This construction has
the advantage that it only makes black-box use of cryptography. We give a brief
sketch of the construction here, but defer the details to the full version [NWW23,
Section 6]. The basic version is an adaptation of the Catalano-Fiore vector com-
mitment [CF13]:

– Let G = (G, GT , N, g, e) be a composite-order bilinear group of order
N , generator g, and an efficiently-computable non-degenerate bilinear map
e : G × G → GT . In the actual construction, we will require that N be a
product of six primes. In the description here, we will just describe the basic
scheme that operates primarily in just two subgroups. Let g1 and g2 be gen-
erators of two orthogonal subgroups of G.

– To sample a hash key for a set S ⊆ [n], the setup algorithm samples exponents
αi, βi

r← ZN . If i ∈ S, it sets Ai ← (g1g2)αi and if i /∈ S, it sets Ai ← gαi
1 .

It sets Bi ← gβi

1 and for i �= j, it computes the cross term Ci,j ← g
αiβj

1 . The
hash key then contains Ai, Bi for i ∈ [n] and Ci,j for all i �= j.

– The hash of an input x ∈ {0, 1}n is then dig =
∏

i∈[n] A
xi
i . The opening to

an index i is V =
∏

j �=i C
xj

j,i . To verify an opening to a bit b at index i, the
verifier checks

e(dig, Bi) = e(Ai, Bi)b · e(g1, V ).

– To check whether a digest dig is Matching or not, the extraction algorithm
output Matching if e(dig, g2) = 1 and NotMatching otherwise.

The basic principle is to move the “encoding elements” Ai for i ∈ S to have a
component in the span of g2. The components Ai for i /∈ S are only in the span of
g1. Then, any digest that includes an index i ∈ S will contain a non-zero element
in the span of g2, and thus, be declared NotMatching. Arguing the security of
this scheme is more delicate and will require introducing a number of additional
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randomizing components (and subgroups). We refer to the full version [NWW23,
Section 6] for the details.

Constructing Monotone Policy Aggregate Multi-Signatures. Our final contribu-
tion is a construction of monotone policy aggregate multi-signatures. While
previous construction of aggregate signatures relied on extractable BARGs
[WW22,DGKV22], a similar implication is possible by combining a non-
adaptively-sound BARG together with a “puncturable signature” scheme (also
called an all-but-one signature scheme) [GVW19]. We sketch our construction
below, and provide the full details in the full version [NWW23, Section 7].

In a puncturable signature scheme, it is possible to puncture a verification key
on a message m∗. The property is that there does not exist signatures on m∗

that verify with respect to the punctured verification key. Moreover, a punctured
verification key is computationally indistinguishable from an honestly-generated
verification key, even if the adversary is able to see signatures on arbitrary mes-
sages m �= m∗. Goyal, Vusirikala, and Waters [GVW19] showed how to con-
struct puncturable signatures from most standard number-theoretic assumptions
(e.g., RSA, pairing-based assumptions, and LWE). We can use a non-adaptively-
sound monotone policy BARG together with a puncturable signature scheme to
construct a (statically-secure)6 aggregate multi-signature scheme for any policy
computed by a monotone Boolean circuit. We provide a sketch below:

– Setup: Consider a scheme with k signers. Each signer i ∈ [k] has a signing
key ski and a verification key vki for the punctured signature scheme. The
public parameters of the aggregation scheme contain the common reference
string for a monotone policy BARG.

– Signing: To sign a message m, each user signs with their individual signing
key.

– Aggregation: Given a set of signatures {σi}i∈S on the same message m and
a (monotone) aggregation policy P , a user can aggregate the signatures by
giving a monotone policy BARG proof for the policy P with respect to the
natural relation R[m] = {(vk, σ) : Verify(vk,m, σ)}. The aggregate signature
is simply the BARG proof for the statements (vk1, . . . , vkk) with the witness
(σ1, . . . , σk).

– Verification: To verify an aggregate multi-signature with respect to a policy
P , the verifier just checks the BARG proof.

Note that one could also construct an aggregate multi-signature by sending the
set S where P (S) = 1 and then use a vanilla BARG to prove knowledge of
a signature σi for every i ∈ S. However, this approach would require commu-
nicating the set S as part of the aggregate signature. Using monotone policy
BARGs, the aggregate signature only consists of the BARG proof, and thus has
size, poly(λ, log |P |). It is straightforward to prove static security of the above

6 In the static security model, we require that the adversary declare the set of corrupted
verification keys, its challenge message, and the aggregation policy at the beginning
of the security game.
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multi-signature scheme just assuming non-adaptive-soundness on the underlying
BARG. We sketch the reduction below:

– In the static security game, the adversary has to pre-commit to the message
m∗ it wants to forge on, the set of verification keys (vk∗

1, . . . , vk
∗
k) it wants

to use (which can be a mix of honest verification keys chosen by the chal-
lenger and verification keys chosen adversarially), and the aggregation policy
P before seeing the aggregation parameters.

– Let S ⊆ [k] be the set of indices i where the chosen key vk∗
i is uncor-

rupted (i.e., chosen by the challenger). The admissibility requirement is that
P (b1, . . . , bk) = 0 where bi = 0 if i ∈ S and bi = 1 otherwise; this is saying
that the adversary cannot satisfy the policy P just by providing signatures
under keys it controls.

– In the security reduction, we first puncture the honest users’ verification keys
vki on the challenge message m∗. This means that there does not exist valid
signatures on the challenge message m∗ with respect to the honest users’
verification keys vki

– Consider the relation R[m∗] used for verification. By definition of the set S
and the fact that the honest verification keys are punctured at m∗, the state-
ment (vk∗

1, . . . , vk
∗
k) is false for the policy P with respect to the relation R[m∗].

By non-adaptive soundness of the monotone policy BARG, the probability
that the adversary can produce a valid aggregate signature (i.e., a valid proof
on a false statement) is negligible.

Observe that in the above sketch, the verification time is linear in k. How-
ever, using a RAM delegation scheme, we can achieve fast verification. We refer
to the full version [NWW23, Remark 7.8] for additional details.

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. For n ∈ N,
we write [n] to denote the set {1, . . . , n}. For a, b ∈ N we write [a, b] to denote
the set {a, a + 1, . . . , b}. We write poly(λ) to denote a function that is bounded
by a fixed polynomial in λ, and negl(λ) to denote a function that is o(λ−c) for
all c ∈ N. For a finite set S, we write x r← S to denote that x is a uniformly
random element of S. For a distribution D we write x ← D to denote that x is
a random draw from D.

We say an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. A non-uniform algorithm A consists of a pair of
algorithms (A1,A2) where A1 is a (possibly-unbounded) algorithm that takes
as input 1λ and outputs an advice string ρλ of poly(λ) size. Algorithm A2 is an
efficient algorithm. The output of A on an input x ∈ {0, 1}λ is defined as first
computing the advice string ρλ ← A1(1λ) and then outputting A2(x, ρλ). We
say two ensembles of distributions D1 = {D1,λ}λ∈N

and D2 = {D2,λ}λ∈N
are

computationally indistinguishable if no efficient adversary can distinguish them
with non-negligible probability. We say they are statistically indistinguishable if
their statistical distance is bounded by negl(λ).
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2.1 Batch Arguments for NP

In this section, we recall the notion of a non-interactive batch argument (BARG)
for NP, the special case of a BARG for index languages and the notion of a
BARG for monotone policy batch NP [BBK+23].

Batch Arguments for NP. We begin with the notion of a somewhere extractable
batch argument for NP. Our presentation is adapted from [CJJ21b,WW22].
Here, we provide a more general syntax where the batch arguments supports
extraction on up to � indices.

Definition 1 (Boolean Circuit Satisfiability). We define the circuit satis-
fiability language LCSAT as

LCSAT =
{

(C, x)
∣
∣
∣

C : {0, 1}n × {0, 1}h → {0, 1}, x ∈ {0, 1}n

∃w ∈ {0, 1}∗ : C(x,w) = 1

}

.

Definition 2 (Non-Interactive Batch Argument). A somewhere
extractable non-interactive batch argument (BARG) for Boolean circuit satis-
fiability is a tuple of efficient algorithms ΠBARG = (Gen,Prove,Verify,TrapGen,
Extract) with the following syntax:

– Gen(1λ, 1k, 1n, 1s, 1�) → (crs, vk): On input the security parameter λ ∈ N, the
number of instances k ∈ N, the instance length n ∈ N, a bound on the size
of the Boolean circuit s ∈ N, and a bound on the size of the extraction set
� ∈ N, the generator algorithm outputs a common reference string crs and a
verification key vk.

– Prove(crs, C, (x1, . . . , xk), (w1, . . . , wk)) → π: On input the common refer-
ence string crs, a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements
x1, . . . , xk ∈ {0, 1}k, and witnesses w1, . . . , wk ∈ {0, 1}h, the prove algorithm
outputs a proof π.

– Verify(vk, C, (x1, . . . , xk), π) → b: On input the verification key vk, a Boolean
circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements x1, . . . , xk ∈ {0, 1}n and a
proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

– TrapGen(1λ, 1k, 1n, 1s, 1�, S) → (crs, vk, td): On input the security parameter
λ ∈ N, the number of instances k ∈ N, the instance size n ∈ N, a bound on
the size of the Boolean circuit s ∈ N, a bound on the size of the extraction set
� ∈ N, and a set S ⊆ [k] of size at most �, the trapdoor generator algorithm
outputs a common reference string crs, a verification key vk and an extraction
trapdoor td.

– Extract(td, C, (x1, . . . , xk), π, i) → w. On input the trapdoor td, a Boolean
circuit C : {0, 1}n × {0, 1}h → {0, 1}, a collection of statements x1, . . . , xk ∈
{0, 1}n, a proof π and an index i ∈ [k], the extraction algorithm outputs a
witness w.

For notational convenience, when � = 1, we omit the final input 1� and instead,
write Gen(1λ, 1k, 1n, 1s) to denote Gen(1λ, 1k, 1n, 1s, 11). Similarly, we write
TrapGen(1λ, 1k, 1n, 1s, i) to denote TrapGen(1λ, 1k, 1n, 1s, 11, {i}). Finally, we
require that ΠBARG satisfy the following properties:



416 S. Nassar et al.

– Completeness: For all λ, k, n, s, � ∈ N, all Boolean circuits C : {0, 1}n ×
{0, 1}h → {0, 1} of size at most s, all statements x = (x1, . . . , xk) ∈ {0, 1}kn

and witnesses w = (w1, . . . , wk) ∈ {0, 1}kh where C(xi, wi) = 1 for all i ∈ [k],

Pr
[

Verify(vk, C, (x1, . . . , xk), π) = 1 : (crs, vk) ← Gen(1λ, 1k, 1n, 1s, 1�)
π ← Prove(crs, C, x, w)

]

= 1

– Set hiding: For an adversary A and a bit b ∈ {0, 1}, define the set hiding
experiment ExptSHA(λ, b) as follows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

number of instances 1k, the instance size 1n, the bound on the circuit size
1s, the bound on the size of the extraction set 1�, and a set S ⊆ [k] of size
at most �.

2. If b = 0, the challenger gives (crs, vk) ← Gen(1λ, 1k, 1n, 1s, 1�) to A. If
b = 1, the challenger samples (crs, vk, td) ← TrapGen(1λ, 1k, 1n, 1s, 1�, S)
and gives (crs, vk) to A.

3. Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-
ment.

Then, ΠBARG satisfies set hiding if for every efficient adversary A, there exists
a negligible function negl(·) such that

|Pr[ExptSHA(λ, 0) = 1] − Pr[ExptSHA(λ, 1) = 1]| = negl(λ).

When � = 1, we might refer to this property as index hiding.
– Somewhere extractable in trapdoor mode: For an adversary A, define

the somewhere extractable security game as follows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

number of instances 1k, the instance size 1n, the bound on the circuit
size 1s, a bound on the size of the extraction set 1�, and a nonempty set
S ⊆ [k] of size at most �.

2. The challenger samples (crs, vk, td) ← TrapGen(1λ, 1k, 1n, 1s, 1�, S) and
gives (crs, vk) to A.

3. Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} of
size at most s, statements x1, . . . , xm ∈ {0, 1}n, and a proof π.

4. The output of the game is b = 1 if Verify(vk, C, (x1, . . . , xm), π) = 1
and there exists an index i ∈ S for which C(xi, wi) �= 1 where wi ←
Extract(td, C, (x1, . . . , xk), π, i). Otherwise, the output is b = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary
A, there exists a negligible function negl(·) such that Pr[b = 1] = negl(λ) in
the somewhere extractable game.

– Succinctness: There exists a fixed polynomial poly(·) such that for all
λ, k, n, s, � ∈ N, all crs in the support of Gen(1λ, 1k, 1n, 1s, 1�), and all Boolean
circuits C : {0, 1}n×{0, 1}h → {0, 1} of size at most s, the following properties
hold:

• Succinct proofs: The proof π output by Prove(crs, C, ·, ·) satisfies |π| ≤
poly(λ + log k + s + �).

• Succinct CRS: |crs| ≤ poly(λ + k + n + �) + poly(λ + log k + s + �).
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• Succinct verification key: |vk| ≤ poly(λ + log k + s + �).

Fact 3 (BARGs for NP [CJJ21b,WW22,KLVW23,CGJ+23]). Assuming any
of (1) the plain LWE assumption, (2) the k-Lin assumption over pairing groups
for any constant k ∈ N, or (3) the (sub-exponential) DDH assumption in pairing-
free groups, there exists a non-interactive batch argument for NP.

Set Hiding with Extraction. For our main construction (Section 5), we require
a slight strengthening of the somewhere extractability property from Definition
2. Our stronger set-hiding property essentially says that if the extraction key
is programmed to extract either on S0 ⊆ [k] or S1 ⊆ [k], then the extracted
witness on “common indices” i∗ ∈ S0 ∩ S1 is computationally indistinguishable
in the two cases. This type of property is often referred to as a “no-signaling”
extraction property [PR17,KPY19,GZ21,KVZ21,CJJ21b] (see the full version
of this paper [NWW23]).

Index BARGs. An index BARG [CJJ21b] is a batch argument for the batch index
language where the instance is always the tuple (1, . . . , k). Since the statements
are the integers, they have a succinct description, so we can impose a stronger
requirement on the running time of the Verify algorithm. We define this below:

Definition 3 (Index BARG [CJJ21b]). An index BARG is a special case of
a BARG where the instances (x1, . . . , xk) are restricted to the integers (1, . . . , k).
In this setting, the Gen algorithm to the index BARG does not separately take
in the instance length n as a separate input. Moreover, instead of providing
x1, . . . , xk as input to the Prove, Verify, and Extract algorithms, we just give
the single index k (in binary). Moreover, we require the additional succinctness
property on the running time of Verify:

– Succinct verification time: There exists a fixed polynomial poly(·) such
that for all λ, k, n, s, � ∈ N, all (crs, vk) in the support of Gen(1λ, 1k, 1n, 1s, 1�)
and all Boolean circuits C : {0, 1}n × {0, 1}h → {0, 1} of size at most s, the
running time of Verify(vk, C, k, ·) is bounded by poly(λ + log k + s + �).

Monotone Policy BARG. Next, we recall the notion of a SNARG for monotone
policy BatchNP [BBK+23], which we refer to more succinctly as a “monotone
policy BARG.” In this work, we just focus on the simplest notion of non-adaptive
soundness.

Definition 4 (Monotone Policy BatchNP). A Boolean circuit P : {0, 1}k →
{0, 1} is a monotone Boolean policy if P is a Boolean circuit comprised entirely
of and and or gates. Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit
and P : {0, 1}k → {0, 1} be a monotone Boolean policy. We define the monotone
policy BatchNP language LMP-CSAT to be

LMP-CSAT =
{

(C,P, x1, . . . , xk)
∣
∣
∣

∃w1, . . . , wk ∈ {0, 1}h :
P

(
C(x1, w1), . . . , C(xk, wk)

)
= 1

}

.
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Definition 5 (Monotone Policy BARG [BBK+23, adapted]). A monotone
policy BARG is a tuple ΠMP-BARG = (Gen,Prove,Verify) of efficient algorithms
with the following syntax:

– Gen(1λ, 1n, 1sc , 1sp) → crs: On input the security parameter λ ∈ N, the
instance size n ∈ N, a bound on the size of the Boolean circuit sc ∈ N,
and a bound on the size of the policy sp ∈ N, the generator algorithm outputs
a common reference string crs.

– Prove(crs, C, P, (x1, . . . , xk), (w1, . . . , wk)) → π: On input the common refer-
ence string crs, a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, a monotone
Boolean policy P : {0, 1}k → {0, 1}, statements x1, . . . , xk ∈ {0, 1}n, and wit-
nesses w1, . . . , wk ∈ {0, 1}h, the prove algorithm outputs a proof π.

– Verify(crs, C, P, (x1, . . . , xk), π) → b: On input the common reference string
crs, a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, a monotone Boolean
policy P : {0, 1}k → {0, 1}, statements x1, . . . , xk ∈ {0, 1}n, and a proof π,
the verification algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠMP-BARG should satisfy the following properties:

– Completeness: For all λ, n, sc, sp ∈ N, Boolean circuits C : {0, 1}n ×
{0, 1}h → {0, 1} of size at most sc, monotone Boolean policies P : {0, 1}k →
{0, 1} of size at most sp, statements x = (x1, . . . , xk) ∈ {0, 1}kn and witnesses
w = (w1, . . . , wk) ∈ {0, 1}kh where P (C(x1, w1), . . . , C(xk, wk)) = 1, it holds
that

Pr
[

Verify(crs, C, P, (x1, . . . , xk), π) = 1 : crs ← Gen(1λ, 1n, 1sc , 1sp)
π ← Prove(crs, C, P, x, w)

]

= 1.

– Non-adaptive soundness: For any adversary A, define the non-adaptive
soundness game as follows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

instance size 1n, the bound on the size of the NP relation 1sc , the bound on
the size of the policy 1sp , a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}
of size at most sc, a monotone Boolean circuit P : {0, 1}k → {0, 1} of size
at most sp, and statements x1, . . . , xk ∈ {0, 1}n.

2. The challenger samples crs ← Gen(1λ, 1n, 1sc , 1sp) and gives it to A.
3. Algorithm A outputs a proof π.
4. The output of the game is b = 1 if Verify(crs, C, P, (x1, . . . , xk), π) = 1

and (C,P, (x1, . . . , xk)) /∈ LMP-CSAT.
We say that ΠMP-BARG is non-adaptively sound if for every efficient adversary
A, there exists a negligible function negl(·) such that Pr[b = 1] = negl(λ) in
the non-adaptive soundness game.

– Succinctness: There exists a fixed polynomial poly(·) such that for all
λ, n, sc, sp ∈ N, all crs in the support of Gen(1λ, 1n, 1sc , 1sp), all Boolean cir-
cuits C : {0, 1}n × {0, 1}h → {0, 1} of size at most sc, and all monotone
Boolean policies P : {0, 1}k → {0, 1} of size |P | ≤ sp, the following properties
hold:
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• Slightly succinct proofs: The proof π output by Prove(crs, C, P, ·, ·)
satisfies |π| ≤ poly(λ + sc + log sp).

• Succinct proofs: The proof π output by Prove(crs, C, P, ·, ·) satisfies
|π| ≤ poly(λ + sc + log |P |).

We provide additional discussion about monotone policy BARGs in the full
version of this paper [NWW23].

3 Zero-Fixing Hash Functions

In this section, we formally introduce the notion of a zero-fixing hash function.
As we show in Section 4, we can combine a zero-fixing hash function with a
vanilla BARG to obtain a monotone policy BARG. Recall from Section 1.2 that
a zero-fixing hash function is a keyed hash function that supports succinct local
openings. Moreover, the hash key is associated with a set of indices S ⊆ [n],
where n is the input length. Moreover, there is a trapdoor td associated with the
hash key hk that can be used to decide whether a hash digest dig is Matching or
NotMatching on the set S. The zero-fixing security requirement then says that
if the extractor outputs Matching for a digest dig, it must be computationally
hard to open dig to a 1 on any index i ∈ S.

As discussed in Section 1.2, our zero-fixing hash function is similar to the
predicate-extractable hash function for bit-fixing predicates from [BBK+23]. A
key distinction is that when the extraction algorithm outputs NotMatching, the
predicate-extractable hash function also outputs an index i ∈ [n] where it is
computationally infeasible to open the digest to a 1. In contrast, with our zero-
fixing hash function, the extraction algorithm only outputs a single Matching or
NotMatching flag. At the same time, we require our zero-fixing hash functions
to satisfy additional security requirements that were not required in [BBK+23].
These additional security properties are necessary for our construction of mono-
tone policy BARGs (Section 4). We now give the formal definition:

Definition 6 (Zero-Fixing Hash Function). A zero-fixing hash function is
a tuple of polynomial-time algorithms ΠH = (Setup,Hash,ProveOpen,VerOpen,
Extract,ValidateDigest) with the following syntax:

– Setup(1λ, 1n, S) → (hk, vk, td): On input a security parameter λ, an input
length n, and a set S ⊆ [n], the setup algorithm outputs a hash key hk, a
verification key vk and a trapdoor td. We implicitly assume that hk includes
λ and n.

– Hash(hk, x) → dig: On input a hash key hk and a string x ∈ {0, 1}n, the hash
algorithm outputs a digest dig. This algorithm is deterministic.

– ValidateDigest(vk, dig) → b: On input a hash key vk and a digest dig, the digest
validation algorithm outputs a bit b ∈ {0, 1}. This algorithm is deterministic.

– ProveOpen(hk, x, i) → σ: On input a hash key hk, a string x ∈ {0, 1}n and an
index i ∈ [n], the prove algorithm outputs an opening σ.
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– VerOpen(vk, dig, i, b, σ) → b′: On input a hash key vk, a digest dig, an index
i ∈ [n], a bit b ∈ {0, 1} and an opening σ, the verification algorithm outputs
a bit b′ ∈ {0, 1}. The verification algorithm is deterministic.

– Extract(td, dig) → m: On input a trapdoor td and a digest dig, the extraction
algorithm outputs a value m ∈ {Matching,NotMatching}. This algorithm is
deterministic.

We require ΠH satisfy the following efficiency and correctness properties:

– Succinctness: There exists a universal polynomial poly(·) such that for all
parameters λ, n ∈ N, all (hk, vk, td) in the support of Setup(1λ, 1n, ·), all inputs
x ∈ {0, 1}n and all indices i ∈ [n], the following properties hold:

• Succinct verification key: |vk| ≤ poly(λ + log n).
• Succinct digest: The digest dig output by Hash(hk, x) satisfies |dig| ≤
poly(λ + log n).

• Succinct openings: The opening σ output by ProveOpen(hk, x, i) satis-
fies |σ| ≤ poly(λ + log n).

• Succinct verification: The running time of VerOpen(vk, ·) is poly(λ +
log n).

– Correctness: For all λ, n ∈ N, every x ∈ {0, 1}n, and every i ∈ [n], the
following properties hold:

• Opening correctness:

Pr

⎡

⎣VerOpen(vk, dig, i, xi, σ) = 1 :
(hk, vk, td) ← Setup(1λ, 1n, ∅)

dig ← Hash(hk, x)
σ ← ProveOpen(hk, x, i)

⎤

⎦ = 1.

• Digest correctness:

Pr
[

ValidateDigest(vk, dig) = 1 : (hk, vk, td) ← Setup(1λ, 1n, ∅)
dig ← Hash(hk, x)

]

= 1.

We additionally require the following security properties:

– Set hiding: For a bit b ∈ {0, 1} and an adversary A, we define the set hiding
game ExptSHA(λ, b) as follows:
1. On input 1λ, the adversary A outputs 1n and a set S ⊆ [n].
2. If b = 0, the challenger samples (hk, vk, td) ← Setup(1λ, 1n, ∅) and if

b = 1, the challenger samples (hk, vk, td) ← Setup(1λ, 1n, S). It gives
(hk, vk) to A.

3. Algorithm A outputs a bit b′ which is the output of the experiment.
The hash function satisfies set binding if for all efficient adversaries A, there
exists a negligible function negl(·) such that

|Pr[ExptSHA(λ, 0) = 1] − Pr[ExptSHA(λ, 1) = 1]| = negl(λ).

– One-Sided Index hiding with extracted guess: For an adversary A
and a bit b ∈ {0, 1}, we define the index hiding with extracted guess game
ExptIHEA(λ, b) as follows:
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1. On input 1λ, algorithm A outputs 1n, a set S ⊆ [n], and an index i∗ ∈ S.
2. If b = 0, the challenger samples (hk, vk, td) ← Setup(1λ, 1n, S\{i∗}). Oth-

erwise, it samples (hk, vk, td) ← Setup(1λ, 1n, S). The challenger sends
(hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening σ.
4. The output of the experiment is 1 if VerOpen(hk, dig, i∗, 0, σ) = 1 and

Extract(td, dig) outputs Matching. Otherwise, the output is 0.
The hash function satisfies index hiding with extracted guess if for all efficient
adversaries A, there exists a negligible function negl(·) such that

Pr[ExptIHEA(λ, 1) = 1] ≥ Pr[ExptIHEA(λ, 0) = 1] − negl(λ).

– Zero fixing: For an adversary A, we define the adaptive zero-fixing game
ExptZFA(λ) as follows:
1. On input 1λ, algorithm A outputs 1n and a set S ⊆ [n].
2. The challenger samples (hk, vk, td) ← Setup(1λ, 1n, S) and gives (hk, vk)

to A.
3. Algorithm A outputs a digest dig, an index i ∈ S and an opening σ.
4. The output of the experiment is 1 if VerOpen(hk, dig, i, 1, σ) = 1 and

Extract(td, dig) outputs Matching. Otherwise, the output is 0.
The hash function satisfies zero-fixing if for all efficient adversaries A, there
exists a negligible function negl(·) such that Pr[ExptZFA(λ) = 1] = negl(λ).

– Extractor validity: For an adversary A, we define the extractor validity
game ExptEVA(λ) as follows:
1. On input 1λ, the adversary A outputs 1n.
2. The challenger samples (hk, vk, td) ← Setup(1λ, 1n, ∅) and sends (hk, vk)

to the adversary.
3. Algorithm A outputs a digest dig.
4. The output of the experiment is 1 if ValidateDigest(hk, dig) = 1 and

Extract(td, dig) outputs NotMatching. Otherwise, the output is 0.
The hash function satisfies the extractor validity property if for every efficient
adversary A, there exists a negligible function negl(·) such that

Pr[ExptEVA(λ) = 1] = negl(λ).

4 Constructing Monotone Policy BARGs

In this section, we describe how to construct monotone policy BARGs from a
standard batch argument for NP together with a zero-fixing hash function. We
start by defining the conventions we use for describing Boolean circuits.

Definition 7 (Monotone Circuit Wire Indexing). Let P : {0, 1}k → {0, 1}
be a monotone Boolean circuit consisting exclusively of and and or gates with
fan-in two. Let s be the size of P (i.e., the number of wires in P ). A topological
indexing of the wires of C is an assignment of an index i ∈ [s] to each wire in
P with the following properties:
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– Input wire: For i ∈ [k], the ith input to P is associated with the index i.
– Output wire: The output wire is associated with the index s.
– Intermediate wires: The intermediate wires are associated with an index

i ∈ {k + 1, . . . , s − 1} with the property that the value of index i is completely
determined by the values of the wires with indices ji,1, ji,2 ∈ {1, . . . , i − 1}.

Every monotone circuit P has a canonical topological indexing that can be com-
puted efficiently (e.g., by applying a deterministic topological sort to the wires of
P ).

Definition 8 (Layered Monotone Circuit). Let P : {0, 1}k → {0, 1} be a
(monotone) Boolean circuit of size s. We denote by LP (i) the layer of the wire
i and define it as follows:

– If i ∈ [k] (i.e., an input wire), then LP (i) = 1.
– If i > k then LP (i) = 1 + max{LP (ji,1), LP (ji,2)}, where ji,1, ji,2 are the

indices of the input wires to the gate that computes the value of wire i.

The depth of the circuit is defined to be the layer associated with the output wire:
d = LP (s). A circuit is layered if for every i ∈ {k + 1, . . . , s}, it holds that
LP (ji,1) = LP (ji,2). For a layer index � ∈ [d], we define layer�(P ) = {i ∈ [s] :
LP (i) = �} to be the set of wire indices in layer � of the circuit.

Remark 1 (Layered Monotone Circuit). Every monotone circuit P : {0, 1}k →
{0, 1} of size s can be converted into a layered monotone circuit of size poly(s).
Thus, without loss of generality, we exclusively consider layered monotone cir-
cuits in the remainder of this work.

4.1 Monotone Policy BARG Construction

We now describe our construction of a monotone policy BARG for NP.

Construction 4 (Monotone Policy BARG). Let Π ′
BARG = (Gen′,Prove′,

Verify′,TrapGen′,Extract′) be a somewhere extractable BARG for Boolean circuit
satisfiability. Let ΠH = (H.Setup,H.Hash,H.ProveOpen,H.VerOpen,H.Extract,
H.ValidateDigest) be a zero-fixing hash function. We construct a monotone policy
BARG ΠMP-BARG = (Gen,Prove,Verify) as follows:

– Gen(1λ, 1n, 1sc , 1sp): On input the security parameter λ, the input length n,
the bound on the size of the Boolean circuit sc, and the bound on the size of
the monotone policy sp, the setup algorithm proceeds as follows:

• Sample two hash keys

(hk0, vk0, td0) ← H.Setup(1λ, 1sp , ∅)

(hk1, vk1, td1) ← H.Setup(1λ, 1sp , ∅).
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• Let s′ be a bound on the size of the circuit that computes the relation
R[C, k, sp, vk0, vk1, dig0, dig1] from Fig. 1 when instantiated with an arbi-
trary Boolean circuit C of size at most sc, an input length k ≤ sp and
digests dig0, dig1 associated with the hash and verification keys (hk0, vk0)
and (hk1, vk1). Let n′ = 3 · �log sp + 1 be the bound on the statement
length. Sample (crsBARG, vkBARG) ← Gen′(1λ, 1sp , 1n′

, 1s′
).7

It outputs crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1).
– Prove(crs, C, P, (x1, . . . , xk), (w1, . . . , wk)): On input crs = (crsBARG, vkBARG,

hk0, hk1, vk0, vk1), a circuit C : {0, 1}n ×{0, 1}h → {0, 1}, a monotone layered
Boolean policy circuit P : {0, 1}k → {0, 1}, statements x1, . . . , xk ∈ {0, 1}n,
and witnesses w1, . . . , wk ∈ {0, 1}h, the prove algorithm does the following:

• Let s be the size of P . Index the wires of P under a canonical topo-
logical ordering (Definition 7). For each wire i ∈ {k + 1, . . . , s}, let
gi ∈ {and,or} be its type. Let ji,1, ji,2 ∈ {1, . . . , i − 1} be the indices of
the input wires to the gate i.

• For each i ∈ [s], let βi ∈ {0, 1} be the value of wire i in the evaluation of
P on input (C(x1, w1), . . . , C(xk, wk)). For i ∈ {s + 1, . . . , sp}, let βi = 0.
(This corresponds to “padding” the sp − s unused slots).

• Compute the digest dig0 ← H.Hash(hk0, (β1, . . . , βsp
)) and the digest

dig1 ← H.Hash(hk1, (β1, . . . , βsp
)).

• For each i ∈ [s] and each b ∈ {0, 1}, compute

σ
(b)
i ← H.ProveOpen(hkb, (β1, . . . , βsp

), i).

• Let Caug be the circuit that computes R[C, k, s, vk0, vk1, dig0, dig1] shown
in Fig. 1.

• For each i ∈ [sp], construct the statement x̂i and witness ŵi as follows:
∗ If i ∈ [k], let x̂i = (i, xi) and ŵi =

(
βi, σ

(0)
i , σ

(1)
i , wi

)
.

∗ If i ∈ [k + 1, s], let x̂i = (i, (gi, ji,1, ji,2)) and

ŵi =
(
βi, σ

(0)
i , σ

(1)
i ,

(
βji,1 , σ

(0)
ji,1

, σ
(1)
ji,1

, βji,2 , σ
(0)
ji,2

, σ
(1)
ji,2

))
.

∗ If i > s, let x̂i = ⊥ and ŵi = ⊥.
Essentially, there is an instance x̂i associated with each wire i of P .

• Compute the BARG proof

πBARG ← Prove′(crsBARG, Caug, (x̂1, . . . , x̂sp
), (ŵ1, . . . , ŵsp

))

and output π = (dig0, dig1, πBARG).
– Verify(crs, C, P, (x1, . . . , xk), π): On input a common reference string crs =
(crsBARG, vkBARG, hk0, hk1, vk0, vk1), a Boolean circuit C : {0, 1}n × {0, 1}h →
{0, 1}, a layered monotone Boolean policy P : {0, 1}k → {0, 1}, statements
x1, . . . , xk ∈ {0, 1}n, and a proof π = (dig0, dig1, πBARG), the verification
algorithm does the following:

7 Recall that when the bound on the extraction set parameter � is not given, it defaults
to the value 1.
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• If H.ValidateDigest(vk0, dig0) = 0 or H.ValidateDigest(vk1, dig1) = 0, then
output 0.

• Let s be the size of P . Index the wires of P under a canonical topological
ordering (Definition 7). For each wire i ∈ {k + 1, . . . , s}, let ji,1, ji,2 ∈
{1, . . . , i − 1} be the indices of the input wires of the gate gi ∈ {and,or}
that computes wire i. For each i ∈ [sp], construct the statement x̂i as
follows:

∗ If i ∈ [k], let x̂i = (i, xi).
∗ If i ∈ {k + 1, . . . , s}, let x̂i = (i, (gi, ji,1, ji,2)).
∗ If i > s, let x̂i = ⊥.

• Let Caug be the circuit that computes R[C, k, s, vk0, vk1, dig0, dig1] from
Fig. 1.

• Output Verify′(vkBARG, Caug, (x̂1, . . . , x̂sp
), πBARG).

We defer the formal correctness and security proofs to the full version of this
paper [NWW23].

Fig. 1. The relation R[C, k, s, vk0, vk1, dig0, dig1].
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5 Generic Construction of Zero-Fixing Hash Functions

In this section, we show how to construct a zero-fixing hash function by com-
bining an index BARG (Definition 3), an additively homomorphic encryption
scheme with bounded support , and a vector encryption scheme with succinct
local openings .

Binary Tree Indexing. In the following construction, we will work with complete
binary trees. We will use the following procedure to associate a unique index
with each node in the binary tree:

Definition 9 (Binary Tree Indexing). Let T be a complete binary tree with
n = 2k leaves. Then T contains exactly 2n − 1 nodes. We associate a unique
index i ∈ [2n − 1] via the following procedure:

– First, associate the value v = 1 to the root node.
– If v is the value associated with a node, then associate values 2v and 2v + 1

with its left and right child. Recursively apply this process to assign a value
to every node in the tree.

– The index i associated with a node is defined to be 2n−v, where v is the value
associated with the node.

By design, Definition 9 has the following properties:

– The leaf nodes are indexed 1 through n and the root node is indexed 2n − 1.
– The index of every non-leaf node is greater than the index of its children.
– Given the index of any non-leaf node, we can efficiently compute the indices

of its left and right child.

Construction 5 (Zero-Fixing Hash Function). Our construction will rely
on the following building blocks:

– Let Π ′
BARG = (Gen′,Prove′,Verify′,TrapGen′,Extract′) be a somewhere

extractable index BARG (Definition 3).
– Let ΠHE = (HE.Gen,HE.Enc,HE.Dec,HE.Add) be an additively homomorphic

encryption scheme with bounded support . Let �ct(λ, n) be a bound on the
length of the ciphertexts output by either HE.Enc(pk, ·) or HE.Add(pk, ·, ·) for
any (sk, pk) in the support of HE.Gen(1λ, 1n).

– Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a vector commitment
scheme with succinct local openings .

We construct a zero-fixing hash ΠH = (Setup,Hash,ProveOpen,VerOpen,Extract,
ValidateDigest). In the following description, we assume without loss of general-
ity that the bound on the input length n ∈ N is a power of two (i.e., n = 2k for
some integer k ∈ N). Next, we define the following NP relation which we will be
using in our construction:

We describe our construction below:
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Fig. 2. The index relation R
[
crsCom,

{
pkb, com

(b)
hk , comb, ct

(b)
zero, ct

(b)
root

}
b∈{0,1}, i∗, y

]
.

– Setup(1λ, 1n, S): On input a security parameter λ, the input length n = 2k,
and a set S ⊆ [n], the setup algorithm starts by sampling the following:

• Sample two key pairs: (sk0, pk0) ← HE.Gen(1λ, 1n) and (sk1, pk1) ←
HE.Gen(1λ, 1n).

• Sample the CRS for the commitment scheme with block length �ct(λ, n)
and up to 2n − 1 blocks: crsCom ← Com.Setup(1λ, 1�ct(λ,n), 2n − 1).

• Sample the CRS for a BARG: (crsBARG, vkBARG) ← Gen′(1λ, 12n−1, 1s, 13),
where s is a bound on the size of the circuit computing the index relation
from Fig. 2. Here, the CRS is extractable on up to 3 positions. Note
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that since ΠBARG is an index BARG, Gen′ does not separately take the
statement length as input (Definition 3).

Next, for each b ∈ {0, 1}, construct an encryption of 0: ct
(b)
zero ←

HE.Enc(pkb, 0). Next, for each i ∈ S and b ∈ {0, 1}, construct the hash key
ciphertexts as follows:

• If i ∈ S, compute ct
(b)
i ← HE.Enc(pkb, 1).

• If i /∈ S, compute ct
(b)
i ← HE.Enc(pkb, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts asso-
ciated with the hash key. Specifically, for each b ∈ {0, 1}, it computes

(
com

(b)
hk , σ

(b)
hk,1, . . . , σ

(b)
hk,n

)
← Com.Commit

(
crsCom, (ct(b)1 , . . . , ct(b)n )

)
.

Finally, the setup algorithm constructs the hash key hk, the verification key
vk, and the trapdoor td as follows:

hk =
(
crsCom, crsBARG,

{
pkb, ct

(b)
zero, ct

(b)
1 , . . . , ct(b)n , σ

(b)
hk,1, . . . , σ

(b)
hk,n

}
b∈{0,1}

)

(5.1)

vk =
(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
(5.2)

td = (sk0, sk1). (5.3)

– Hash(hk, x): On input a hash key hk (parsed as in Eq. (5.1)) and a string
x ∈ {0, 1}n, the hashing algorithm proceeds as follows:

• Construct two complete binary trees T0, T1, each with n leaves. For each
tree Tb, we assign a ciphertext v

(b)
i to each node i ∈ [2s − 1] in the tree

as follows (where the nodes are indexed using Definition 9):
∗ If i ∈ [n], let v

(b)
i ← ct

(b)
zero if xi = 0 and v

(b)
i ← ct

(b)
i if xi = 1.

∗ For each internal node i ∈ [n + 1, 2n − 1], compute the ciphertext
v
(b)
i ← HE.Add

(
pkb, v

(b)
il

, v
(b)
ir

)
, where il and ir are the indices associ-

ated with the left and right child of node i under the canonical tree
indexing scheme (Definition 9).

• For b ∈ {0, 1}, construct commitments

(comb, σ
(b)
1 , . . . , σ

(b)
2n−1) ← Com.Commit(crsCom, (v(b)

1 , . . . , v
(b)
2n−1))

to the ciphertexts associated with Tb.
• For b ∈ {0, 1}, let ct

(b)
root = v

(b)
2n−1 (i.e., the ciphertext associated with the

root of Tb). Let C⊥ be the circuit that computes the following instantiation
of the relation from Fig. 2:

R
[
crsCom,

{
pkb, com

(b)
hk , comb, ct

(b)
zero, ct

(b)
root

}
b∈{0,1},⊥,⊥

]
.

• For each i ∈ [2n − 1], let τi =
(
v
(0)
i , v

(1)
i , σ

(0)
i , σ

(1)
i

)
be the opening for the

ciphertexts associated with node i in T0 and T1. Then, for each i ∈ [2s−1],
define the auxiliary witness w̃i to be
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∗ If i ∈ [n] then w̃i =
(
ct

(0)
i , ct

(1)
i , σ

(0)
hk,i, σ

(1)
hk,i

)
.

∗ If i ∈ [n+ 1, 2n − 1] then w̃i = (τil , τir) where il, ir are the indices of
the left and right child of node i, respectively.

Finally, let wi = (τi, w̃i) for each i ∈ [2n − 1]. Compute the BARG proof
πdig ← Prove′(crsBARG, C⊥, 2n − 1, (w1, . . . , w2n−1)).

• Output the digest

dig =
(
ct

(0)
root, ct

(1)
root, com0, com1, πdig

)
.

– ProveOpen(hk, x, i∗): On input a hash key hk (parsed as in Eq. (5.1)), a string
x ∈ {0, 1}n and an index i∗ ∈ [n], the opening algorithm proceeds as follows:

• Let Ci∗,xi∗ be the circuit that computes the following instantiation of the
relation from Fig. 2:

R
[
crsCom,

{
pkb, com

(b)
hk , comb, ct

(b)
zero, ct

(b)
root

}
b∈{0,1}, i

∗, xi∗
]
.

• Compute the witnesses wi for each i ∈ [2n − 1] using the same procedure
as in the Hash algorithm.

• Output the opening σ ← Prove′(crsBARG, Ci∗,xi∗ , 2n − 1, (w1, . . . , w2n−1))
– VerOpen(vk, dig, i, b, σ): On input the verification key vk (parsed accord-

ing to Eq. (5.2)), a digest dig =
(
ct

(0)
root, ct

(1)
root, com0, com1, πdig

)
, an index

i∗ ∈ [n], a bit b ∈ {0, 1} and an opening σ, the verification algorithm out-
puts Verify′(vkBARG, Ci∗,b, 2n − 1, σ) where Ci∗,b is the circuit computing the
following relation from Fig. 2:

R
[
crsCom,

{
pkb, com

(b)
hk , comb, ct

(b)
zero, ct

(b)
root

}
b∈{0,1}, i

∗, b
]
.

– Extract(td, dig): On input a trapdoor td = (sk0, sk1) and a digest dig =
(
ct

(0)
root, ct

(1)
root, com0, com1, πdig

)
, the extraction algorithm outputs Matching if

HE.Dec(sk0, ct
(0)
root) = 0. Otherwise, the algorithm outputs NotMatching.

– ValidateDigest(vk, dig): On input the verification key vk (parsed according
to Eq. (5.2)) and a digest dig =

(
ct

(0)
root, ct

(1)
root, com0, com1, πdig

)
, the digest-

validation algorithm outputs Verify′(vkBARG, C⊥, 2n− 1, πdig) where C⊥ is the
circuit computing the following relation from Fig. 2:

R
[
crsCom,

{
pkb, com

(b)
hk , comb, ct

(b)
zero, ct

(b)
root

}
b∈{0,1},⊥,⊥

]
.

Correctness and Security Analysis. Due to space limitations, we defer the cor-
rectness and security analysis of Construction 5 to the full version of this
paper [NWW23].

Corollary 1 (Zero-Fixing Hash Functions). Assuming any of (1) the plain
LWE assumption, (2) the k-Lin assumption over pairing groups for any constant
k, or (3) the (sub-exponential) DDH assumption in pairing-free groups, there
exists a zero-fixing hash function.
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Theorem 1 now follows in conjunction with our generic construction (Construc-
tion 4). Due to space limitations, we defer the security analysis of Construction
4 to the full version of this paper [NWW23].
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Abstract. Succinctness and zero-knowledge are two fundamental prop-
erties in the study of cryptographic proof systems. Several recent works
have formalized the connections between these two notions by show-
ing how to realize non-interactive zero-knowledge (NIZK) arguments
from succinct non-interactive arguments. Specifically, Champion and Wu
(CRYPTO 2023) as well as Bitansky, Kamath, Paneth, Rothblum, and
Vasudevan (ePrint 2023) recently showed how to construct a NIZK argu-
ment for NP from a (somewhere-sound) non-interactive batch argument
(BARG) and a dual-mode commitment scheme (and in the case of the
Champion-Wu construction, a local pseudorandom generator). The main
open question is whether a BARG suffices for a NIZK (just assuming one-
way functions).

In this work, we first show that an adaptively-sound BARG for NP
together with an one-way function imply a computational NIZK argu-
ment for NP. We then show that the weaker notion of somewhere sound-
ness achieved by existing BARGs from standard algebraic assumptions
are also adaptively sound if we assume sub-exponential security. This
transformation may also be of independent interest. Taken together, we
obtain a NIZK argument for NP from one-way functions and a sub-
exponentially-secure somewhere-sound BARG for NP.

If we instead assume plain public-key encryption, we show that a
standard polynomially-secure somewhere-sound batch argument for NP
suffices for the same implication. As a corollary, this means a somewhere-
sound BARG can be used to generically upgrade any semantically-secure
public-key encryption scheme into one secure against chosen-ciphertext
attacks. More broadly, our results demonstrate that constructing non-
interactive batch arguments for NP is essentially no easier than con-
structing NIZK arguments for NP.

1 Introduction

A non-interactive argument system for an NP relation R allows a
(computationally-bounded) prover to convince a verifier that a statement x ∈
{0, 1}∗ is true (i.e., that x ∈ L) with a single message π (which is referred to
as a “proof”). The argument system is succinct if the size of the proof π is sub-
linear in the size of the circuit computing R and is zero-knowledge [21] if the
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15365, pp. 431–463, 2025.
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proof π reveals nothing more about x other than the fact that x is true. Both
succinctness and zero-knowledge are fundamental properties of proof systems,
and their combination in the form of zero-knowledge succinct non-interactive
arguments (zkSNARGs) have found extensive applications to verifiable com-
putation, authentication schemes, and privacy-preserving digital currencies. A
recent line of works [3,11,26] have studied the formal relationship between suc-
cinctness and zero-knowledge. Since a succinct argument is not long enough
to encode a traditional NP witness, it intuitively must lose some information
about the witness associated with the statement. Thus, it is not surprising that
succinct argument systems give rise to zero-knowledge arguments. Such a con-
nection was first formalized by Kitagawa, Matsuda, and Yamakawa [26], who
showed that a succinct non-interactive argument for NP can be used in con-
junction with one-way functions to construct a non-interactive zero-knowledge
(NIZK) argument.

Batch Arguments. The construction in [26] uses adaptively-sound SNARGs for
NP as its starting point. However, constructing adaptively-sound SNARGs for
NP in the plain model is challenging, and currently, all existing constructions
from falsifiable assumptions rely on indistinguishability obfuscation [40–42]. The
question then is whether argument systems satisfying weaker notions of suc-
cinctness could still imply zero-knowledge. This was studied recently in two
works [3,11], which established a similar implication starting from the weaker
notion of a non-interactive batch argument (BARG). Batch arguments allow
a prover to amortize the communication cost of NP verification; namely, the
prover can convince the verifier of a collection of t NP statements (x1, . . . , xt)
with a proof of size poly(λ, s) · o(t), where s is the size of the circuit computing
the associated NP relation and λ is a security parameter. Unlike the case of
SNARGs, a recent line of works have shown how to construct batch arguments
for NP from a broad range of standard number-theoretic assumptions [8,12–
14,16,18,23–25,33,39]. The work of Champion and Wu [11] showed how to
obtain a computational NIZK argument from a somewhere-sound1 BARG for NP
in conjunction with a dual-mode commitment scheme and a (sub-exponentially-
secure) local pseudorandom generator (PRG). The work of Bitansky, Kamath,
Paneth, Rothblum, and Vasudevan [3] showed how to obtain a statistical NIZK
argument from a somewhere-sound BARG for NP with a dual-mode commitment
scheme.2 In light of these works, a natural question is whether we can construct
NIZK arguments solely from BARGs (and one-way functions).

1 A BARG satisfies somewhere soundness if the common reference string (CRS) can
be programmed at a specific index i, and adaptive soundness is guaranteed with
respect to the ith statements xi. Moreover, the CRS (computationally) hides the
special index i.

2 In an independent update that was concurrent to this work, the most recent revision
of their work [4] also show how to construct computational NIZK arguments from
batch arguments and one-way functions. We discuss the concurrent work at the end
of this section.
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This Work. In this work, we first show how to construct a computational NIZK
argument for NP from any one-way function together with a (polynomially-
secure) adaptively-sound BARG for NP. Adaptive soundness is the most “natural”
security notion for a BARG and can often be more convenient to use in construc-
tions. However, most BARG constructions based on standard algebraic assump-
tions (e.g., [12,14,16,39]) only satisfy a weaker notion of “somewhere sound-
ness” where the adversary has to pre-commit to the index of the false instance.
As an additional contribution (of independent interest), we show in Sect. 5
that using complexity leveraging, any sub-exponentially-secure somewhere-sound
BARG can also be used to obtain an adaptively-sound BARG. Thus, existing
somewhere-sound BARGs based on standard algebraic assumptions also sat-
isfy adaptive soundness at the expense of making a stronger sub-exponential
hardness assumption. We believe this fact could also be useful in other appli-
cations of BARGs. In combination, we obtain a NIZK argument for NP from
one-way functions and either (1) an adaptively-sound BARG for NP; or (2) a sub-
exponentially-secure somewhere-sound BARG for NP (Corollary 1). Compared
with [3,11], our construction only requires BARGs and one-way functions. The
previous works [3,11] additionally relied on a dual-mode commitment scheme
(and in the case of [11], also a local pseudorandom generator).

If we additionally assume vanilla public-key encryption, then we can obtain a
computational NIZK for NP from a polynomially-secure somewhere-sound BARG
for NP (Corollary 2). Namely, the use of public-key encryption allows us to relax
the adaptive soundness requirement on the BARG to somewhere soundness. Like
previous works, our constructions do not need extractability (although most
existing BARGs support some type of extraction). We summarize our main
results in the following informal theorem:

Theorem 1 (Informal). There exists a NIZK for NP assuming the existence
of either
– a one-way function and an adaptively-sound BARG for NP; or
– a public-key encryption scheme and a somewhere-sound BARG for NP.

Moreover, adaptively-sound BARGs for NP can be constructed from sub-
exponentially-secure somewhere-sound BARGs for NP.

Broadly speaking, our results demonstrate that constructing BARGs for NP
is no easier than constructing (computational) NIZK arguments. Indeed, exist-
ing algebraic constructions of BARGs [12,14,16,39] are based on ideas and tech-
niques that were previously used to build NIZK arguments.

An Implication to CCA-Security. Combined with classic results [32,36] on con-
structing public-key encryption with security against chosen-ciphertext attacks
(CCA-security) from semantically-secure public-key encryption and (designated-
verifier) NIZK arguments, our results show that BARGs for NP can be used
to upgrade any semantically-secure public-key encryption scheme into a CCA-
secure one. In this setting of upgrading the security of public-key encryption,
we only require polynomial hardness of the BARG for NP (since we are given
the semantically-secure public-key encryption to start).
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Concurrent Work. In a recent and concurrent update3 to their original work
(December 2023) [4], Bitansky, Kamath, Paneth, Rothblum, and Vasudevan
independently showed how to construct a computational NIZK argument for NP
from a somewhere-sound non-interactive batch argument for NP and a one-way
function. Notably, their construction only relies on polynomial-hardness of the
underlying batch argument. The techniques in the two works are very different.
We use a BARG to directly construct a hidden-bits generator (similar to [11,26]),
which implies a NIZK via existing transformations [26,34]. On the other hand, [4]
starts with a direct construction of a NIZK argument from a BARG which sat-
isfies distributional zero-knowledge and has inverse polynomial zero-knowledge
error. To obtain a full-fledged NIZK for NP with negligible zero-knowledge error,
[4] takes a gate-by-gate approach followed by a privacy-amplification step (using
multiparty computation techniques).

In another independent and concurrent work [30], Matsuda shows how to use
a BARG to generically upgrade any CPA-secure public-key encryption scheme
into a CCA-secure scheme. As noted above, such a transformation follows as
an immediate corollary of Theorem 1. However, the approach from [30] can be
instantiated with any BARG with proof size tε ·poly(λ, s), where t is the number
of instances, s is the circuit size, and any constant 0 < ε < 1. Our construction
will rely on a BARG with proof size tε ·poly(λ, s) for sufficiently small constant ε.
Many existing BARG constructions [12,14,16,18,23–25,39] achieve succinctness
poly(λ, s, log t), which satisfy both sets of requirements.

1.1 Technical Overview

Our construction follows the approach from [11,26] of using an (adaptively-
sound) SNARG [26] or a (somewhere-sound) BARG [11] to construct a hidden-
bits generator [34]. In conjunction with a NIZK in the ideal hidden bits
model [17], this yields a NIZK in the common reference string (CRS) model.
We start with a brief description of the hidden-bits model and the [11] construc-
tion, which is the starting point of this work.

The Hidden-Bits Model. The hidden-bits model [17] is an idealized model for
constructing unconditional NIZK proofs. In this model, a trusted party samples
a uniform random sequence of bits r1, . . . , rm

r← {0, 1}. The trusted party gives
r = r1r2 · · · rm to the prover. To construct a proof for the statement x, the prover
chooses a subset of indices I ⊆ [m] and a proof string π. The trusted party then
gives the bits rI := {ri}i∈I and the proof string π to the verifier. The work [17]

3 The original version of their work (May 2023) [5] showed how to construct a statisti-
cal NIZK argument with a non-uniform prover from somewhere-sound BARGs and
lossy public-key encryption. In a subsequent revision (June 2023) [3], they improved
their result to obtain a statistical NIZK argument with a uniform prover from
somewhere-sound BARGs and lossy public-key encryption. In the most recent revi-
sion (December 2023) [4], they additionally showed how to obtain a computational
NIZK argument from somewhere-sound BARGs. These works also show additional
implications between batch arguments and (statistical) witness indistinguishability.
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shows how to construct a NIZK for NP with statistical soundness and perfect
zero-knowledge in the hidden-bits model.

Hidden-Bits Generators. Many works have shown how to leverage cryptographic
tools to transform a NIZK in the hidden-bits model into a NIZK in the CRS
model [2,9–11,17,20,26,28,34,37,38]. Similar to previous work [11,26], we use
the abstraction based on the hidden-bits generators introduced by Quach, Roth-
blum, and Wichs [34]. Our presentation here is adapted from that in [11]. A
hidden-bits generator allows a prover to generate a sequence of (pseudoran-
dom) bits r = r1r2 · · · rm and selectively reveal a subset of the bits rI := {ri}i∈I

for some I ⊆ [m] to the verifier. Specifically, a hidden-bits generator consists of
four algorithms (Setup,GenBits,Prove,Verify) with the following properties:

– The Setup algorithm takes the security parameter λ and the hidden-bits string
length m, and outputs a common reference string crs for the hidden-bits
generator.

– The GenBits algorithm takes the common reference string crs and outputs a
hidden-bits string r ∈ {0, 1}m and a generator state st.

– The Prove algorithm takes the generator state st, a subset of indices I ⊆ [m],
and outputs a proof π for the subset of bits rI := {xi}i∈I .

– The Verify algorithm takes the common reference string crs, a subset of indices
I ⊆ [m], a subset of bits rI = {xi}i∈I , the opening π, and decides whether to
accept or reject.

The correctness and security properties for a hidden-bits generator are
defined as follows:

– Correctness: Correctness says that the verification algorithm accepts the
proof output by Prove. Namely, if we sample crs ← Setup(1λ, 1m) and (r, st) ←
GenBits(crs), then for all I ⊆ [m], Verify(crs, I, rI ,Prove(st, I)) = 1.

– Binding: The binding property says that the set of valid hidden-bits strings
(of length m) constitutes a sparse subset of the set of all m-bit strings. Namely,
for every common reference string crs in the support of Setup, there exists
a sparse subset Vcrs ⊂ {0, 1}m where |Vcrs| ≤ 2mγ ·poly(λ) for some constant
γ < 1. Moreover, an efficient adversary can only come up with valid proofs π
for sequences rI ∈ {0, 1}|I| where rI = r′

I for some r′ ∈ Vcrs.
– Hiding: The hiding property says that the unrevealed bits are pseudoran-

dom. Specifically, for any set I ⊆ [m] and sampling r ← GenBits(crs), the
distribution of the unrevealed bits rĪ (where Ī = [m] \ I) is computationally
indistinguishable from uniform given the common reference string crs, the
revealed bits rI , and the proof π.

The Champion-Wu Hidden-Bits Generator. Building on the work of [26], Cham-
pion and Wu [11] recently showed how to construct a hidden-bits generator from
a batch argument for NP, a (leakage-resilient) local PRG (i.e., a PRG where each
output bit depends on a small number of bits of the seed, and the output remains
pseudorandom when adversaries obtain some leakage on the PRG seed), and a
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dual-mode commitment scheme. In a dual-mode commitment [15], the CRS can
be sampled in one of two computationally indistinguishable modes. One mode
yields equivocable (or statistically hiding) commitments while the other yields
extractable (or statistically binding) commitments. A dual-mode commitment
can be built from a lossy public-key encryption scheme [1]. We provide a basic
outline of the [11] construction below:

– The common reference string consists of a CRS for a dual-mode commitment
scheme and a CRS for a somewhere-sound BARG for NP.

– To sample a hidden-bits string, the prover samples a seed s ∈ {0, 1}n for the
leakage-resilient local PRG.4 The hidden-bits string r ∈ {0, 1}m is the output
of r := PRG(s). To open to a subset I ⊆ [m], the prover does the following:

• Commit to the PRG seed s using the dual-mode commitment. Let σ be
the resulting commitment.

• The prover constructs a BARG proof π that for each output index i ∈ I,
the output bit ri is consistent with the ith bit of PRG(s), where s is the
seed associated with the commitment σ.

The proof consists of the commitment σ together with the BARG proof π.
– To check the opening, the verifier simply checks the BARG proof π (with

respect to the committed seed σ).

To argue binding and hiding security, the analysis in [11] proceeds as follows:

– Binding: To argue binding, [11] programs the CRS for the dual-mode com-
mitment to be extracting. If the local PRG has super-linear stretch, then
the image of the PRG is a sparse subset of {0, 1}m. Moreover, somewhere-
soundness of the BARG ensures that the prover can only open to bit-strings
that are consistent with some seed (specifically, the seed s associated with
the commitment σ). In the security proof, this latter step relies on the reduc-
tion being able efficiently extract the PRG seed s from the commitment σ.
Namely, if there is an index i where ri does not match the ith bit of PRG(s),
then the instance associated with the ith output bit ri in the BARG must be
false. This is sufficient to setup a reduction to somewhere soundness of the
BARG.

– Hiding: To argue that the scheme is hiding, [11] first switches the dual-
mode commitments to be equivocating (i.e., in this case, the commitment σ
completely hides the seed s). Then, it treats the BARG proof π as “leakage”
on the PRG seed s. As long as π is much shorter than s, they can appeal to
leakage-resilience of the local PRG to argue that the unrevealed bits remain
pseudorandom. Since the length of π scales with the size of the circuit that
computes each bit of the PRG output, [11] requires that each output bit of
the PRG be computed by a circuit that is significantly shorter than the length
of the PRG seed. This is why they require the PRG to have small locality.

4 Technically, the construction in [11] composes an arbitrary (sub-exponentially-
secure) local PRG with a randomness extractor. Using the Gentry-Wichs leakage-
simulation lemma [19] and assuming sub-exponential hardness of the local PRG,
this yields a leakage-resilient local PRG. For ease of exposition, we describe their
blueprint assuming a leakage-resilient local PRG.
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Our Approach. In this work, we make two key modifications to the previous
construction of [11] that eliminates the need for both the dual-mode commitment
as well as the local PRG. We describe these two techniques below:

– Removing locality by committing to internal wires. As noted above,
the [11] approach assumed a local PRG because they needed to ensure that the
size of the circuit computing the PRG is much smaller than the length of the
PRG seed. They do this because each instance of the BARG is associated with
one of the output bits of the PRG. In this work, we take a different approach.
Instead of just committing to the bits of the PRG seed s (as in [11]), we instead
commit to all of the wires in the circuit computing PRG(s). The BARG is
then used to check not only the validity of rI where r := PRG(s), but all of the
internal gates in the computation of PRG(s). In this setting, each statement
in the BARG only needs to check correct computation of an individual gate
(with respect to the committed wire values). The size of the circuit depends
only on the security parameter for the commitment scheme (which can be set
independently of the seed length of the PRG). As such, we no longer need to
assume locality of the PRG. In particular, we construct the leakage-resilient
PRG from a leakage-resilient weak pseudorandom function (PRF), which can
in turn be based solely on (polynomial-hard) one-way functions [22,35].

– One-time dual-mode commitments. A closer examination of the [11] con-
struction shows that one-time equivocation suffices for the security analysis.5
Specifically, one-time equivocation for a (bit) commitment scheme means that
it is possible to jointly sample a common reference string along with a single
commitment c̃ and openings σ̃0, σ̃1 of c̃ to the bits 0 and 1, respectively. One-
time equivocable (bit) commitments follow from the classic bit-commitment
scheme of Naor [31], which is based on one-way functions.

Using these techniques, we now obtain the following two instantiations (which
correspond to the two main implications in Theorem 1):

– A construction based on one-way functions. While Naor’s dual-mode
bit-commitment scheme is either statistically binding or one-time equivoca-
ble, it does not support an efficient extracting mode (i.e., we do not have
an efficient extraction algorithm that takes as input an extraction trapdoor
and a commitment and outputs the committed value). Note that lack of
extraction is not surprising since an extractable commitment would imply a
public-key encryption scheme. In this work, we provide an alternative proof
of binding that relies on adaptive soundness of the BARG (as opposed to
somewhere soundness). We then show that using complexity leveraging, any
sub-exponentially-secure somewhere-sound BARG is also adaptively sound.
While simple, this latter transformation may also be of independent interest;
we describe this in Sect. 5. Taken together, this yields a hidden-bits genera-
tor from any sub-exponentially-secure somewhere-sound BARG for NP, and

5 As shown in [26,34], this suffices for single-theorem zero-knowledge, which can be
boosted to multi-theorem zero-knowledge using the classic transformation of [17].
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correspondingly, a NIZK for NP from the same assumption. We describe this
construction in Sect. 3.

– A construction based on public-key encryption. By composing Naor’s
bit commitment scheme with a public-key encryption scheme, we also show
how to construct a one-time dual-mode commitment with an efficient (trap-
door) extraction algorithm as well as a one-time equivocation mode. Similar
ideas were used in a number of works studying CCA-secure encryption [27]
and designated-verifier NIZKs [29]. Combined with the blueprint above, we
obtain a hidden-bits generator from any polynomially-secure somewhere-
sound BARG for NP and a semantically-secure public-key encryption scheme.
This yields a NIZK for NP from the same set of assumptions. We describe
this construction in Sect. 4.

2 Preliminaries

We write λ to denote the security parameter. For a positive integer n ∈ N,
we write [n] to denote the set {1, . . . , n}. We write poly(λ) to denote a fixed
function that is O(λc) for some c ∈ N and negl(λ) to denote a function that is
o(λ−c) for all c ∈ N. We say an event occurs with overwhelming probability if its
complement occurs with negligible probability. We say an algorithm is efficient
if it runs in probabilistic polynomial time in the length of its input. For a finite
set S, we write x r← S to denote a uniform random draw from S. When D is
a probability distribution, we write x ← D to denote a sample from D. We say
that two ensembles of distributions D1 := {D1,λ}λ∈N

and D2 := {D2,λ}λ∈N
are

computationally indistinguishable if no efficient adversary can distinguish them
except with negl(λ) probability. We say they are statistically indistinguishable if
their statistical distance is negligible. Throughout this work, we consider security
against non-uniform adversaries.

Basic Cryptographic Primitives. We now recall the definitions of some standard
cryptographic primitives.

Definition 1 (Public-Key Encryption). A public-key bit-encryption scheme
with message space M = {Mλ}λ∈N

is a triple of efficient algorithms ΠPKE =
(Setup,Encrypt,Decrypt) with the following properties:

– Setup(1λ) → (pk, sk): On input the security parameter λ ∈ N, the setup algo-
rithm outputs a public key pk and secret key sk.

– Encrypt(pk,m) → ct: On input the public key pk and a message m ∈ M, the
encryption algorithm outputs a ciphertext ct.

– Decrypt(sk, ct) → m: On input the secret key sk and a ciphertext ct, the
decryption algorithm outputs a message m ∈ M.

We require ΠPKE to satisfy the following properties:

– Correctness: For all λ ∈ N and all messages m ∈ M,

Pr
[
Decrypt(sk, ct) = m : (pk, sk) ← Setup(1λ)

ct ← Encrypt(pk,m)

]
= 1.
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– Semantic security: For a security parameter λ and a bit β ∈ {0, 1}, we
define the semantic security game between an adversary A and a challenger
as follows:
1. The challenger samples a key pair (pk, sk) ← Setup(1λ) and gives (1λ, pk)

to A.
2. Algorithm A outputs two message m0,m1 ∈ Mλ. The challenger replies

with ctβ ← Encrypt(pk,mβ).
3. Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-

ment.
Then ΠPKE satisfies semantic security if for all efficient adversaries A, there
exists a negligible function negl(·) such that for all λ ∈ N,

|Pr [b′ = 1 | β = 0] − Pr [b′ = 1 | β = 1]| = negl(λ).

Leakage-Resilient Weak PRF. We now introduce the definition of a leakage-
resilient weak pseudorandom function (PRF). First, recall that the weak PRF
security game asserts that the PRF evaluations on random inputs are pseu-
dorandom. We say a weak PRF is leakage-resilient if this pseudorandomness
property holds even if the adversary gets arbitrary leakage on the PRF key.
In this work, we consider a definition where the adversary is first allowed to
request (an arbitrary polynomial number of) random evaluations of the weak
PRF before specifying its leakage function. We give the formal definition below.
Our definition is adapted from that of [22].

Definition 2 (Leakage-Resilient Weak Pseudorandom Function [22,
adapted]). Let Y be a finite set. A leakage-resilient weak pseudorandom function
with output space Y is a pair of efficient algorithms ΠLRwPRF = (Setup,Eval) with
the following syntax:

– Setup(1λ, 1�) → k: On input the security parameter λ ∈ N and a leakage
parameter 	 ∈ N, the setup algorithm outputs a key k. We assume that k
implicitly contains the security parameter 1λ, the leakage parameter 1�, and
defines the domain X of the PRF. Let κ = κ(λ, 	) be the bit-length of the key
k output by Setup(1λ, 1�).

– Eval(k, x) → y: On input a key k (which specifies the domain X of the PRF)
and an input x ∈ X , the evaluation algorithm outputs a value y ∈ Y. The
evaluation algorithm is deterministic.

For a security parameter λ and bit β ∈ {0, 1}, we define the leakage-resilient
weak pseudorandomness game between an adversary A and a challenger as fol-
lows:

1. Pre-challenge evaluation queries: On input the security parameter 1λ,
algorithm A starts by outputting the leakage parameter 1� and the number
of pre-challenge queries 1s it would like to make. The challenger samples
a key k ← Setup(1λ, 1�). Let X be the domain of the PRF associated with
k. The challenger samples inputs x1, . . . , xs

r← X and replies to A with
{(xi,Eval(k, xi))}i∈[s].
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2. Leakage query: Algorithm A now outputs a Boolean circuit leak : {0, 1}κ(λ,�)

→ {0, 1}�. The challenger responds with leak(k) to A.
3. Challenge queries: Algorithm A then outputs the number of challenge

queries 1t it would like to make.
– If β = 0, the challenger samples x′

i
r← X , yi ← Eval(k, x′

i) for each i ∈ [t].
– If β = 1, the challenger samples x′

i
r← X , yi

r← Y for each i ∈ [t].
The challenger gives {(x′

i, yi)}i∈[t] to A.
4. Output: Algorithm A outputs a bit b′ ∈ {0, 1}.
Finally, we say ΠLRwPRF satisfies leakage-resilient weak pseudorandomness if
for all efficient adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N,

|Pr [b′ = 1 | β = 0] − Pr [b′ = 1 | β = 1]| = negl(λ).

The work of [35] show how to construct a leakage-resilient weak PRF from one-
way functions where the size of the key scales with 	 ·poly(λ) and 	 is the leakage
parameter. Technically, [35] show how to construct a leakage-resilient symmetric
encryption scheme, but their construction implicitly uses a leakage-resilient weak
PRF. For completeness, we provide the details and analysis of their construction
(adapted to the setting of leakage-resilient weak PRFs) in the full version of this
paper [7]. Below, we state the main conclusion:

Theorem 2 (Leakage-Resilient Weak PRF from One-Way Functions
[35, adapted]). Let λ be a security parameter and 	 be a leakage parameter.
Suppose ρ ≥ O(λ + log 	). Assuming the existence of one-way functions, there
exists a leakage-resilient weak PRF with domain {0, 1}ρ, range {0, 1}, and key
length (	 + λ)λ.

One-Time Dual-Mode Bit Commitment. Next, we recall the notion of a one-time
dual-mode bit commitment scheme. This is a bit commitment scheme where the
common reference string can be sampled in one of two computationally indis-
tinguishable modes: binding mode and equivocable mode. When the CRS is in
binding mode, the commitment scheme is statistically binding. When the CRS
is sampled in equivocable mode, the CRS sampling algorithm outputs an equiv-
ocable commitment c̃ together with two openings σ̃0, σ̃1 of c̃ to the bits 0 and 1,
respectively. In other words, the special commitment c̃ is an equivocable com-
mitment that can be efficiently opened to a 0 and a 1. We now give the formal
definition. Naor’s classic bit commitment scheme [31] based on one-way functions
is a one-time dual-mode bit commitment scheme.

Definition 3 (One-Time Dual-Mode Bit Commitment). A one-time
dual-mode bit commitment is a tuple of efficient algorithms ΠBC = (SetupBind,
SetupEquivocate,Commit,Verify) with the following syntax:

– SetupBind(1λ) → crs: On input the security parameter λ, the setup algorithm
for the binding mode outputs a common reference string crs.
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– SetupEquivocate(1λ) → (crs, c̃, σ̃0, σ̃1): On input the security parameter λ, the
setup algorithm for the equivocating mode outputs a common reference string
crs along with a commitment c̃ and openings σ̃0, σ̃1.

– Commit(crs, b) → (c, σ): On input the common reference string crs and a bit
b ∈ {0, 1}, the commit algorithm outputs a commitment c and an opening σ.

– Verify(crs, c, b, σ) → {0, 1}: On input the common reference string crs, a com-
mitment c, a bit b ∈ {0, 1}, and an opening σ, the verification algorithm
outputs a bit b′ ∈ {0, 1}.
We require ΠBC to satisfy the following properties:

– Correctness: For all security parameters λ ∈ N, all common reference
strings crs in the support of either SetupBind(1λ) or SetupEquivocate(1λ),
and all bits b ∈ {0, 1},

Pr [Verify(crs, c, b, σ) = 1 : (c, σ) ← Commit(crs, b)] = 1.

– Mode indistinguishability: For a security parameter λ ∈ N and a bit
β ∈ {0, 1}, we define the mode indistinguishability game between an adversary
A and a challenger as follows:
1. If β = 0, the challenger samples crs ← SetupBind(1λ). If β = 1, the

challenger samples (crs, c̃, σ̃0, σ̃1) ← SetupEquivocate(1λ). The challenger
gives (1λ, crs) to A.

2. Algorithm A outputs a bit b ∈ {0, 1}. The challenger gives c, σ to A, where
(c, σ) are computed as follows:

• If β = 0, (c, σ) ← Commit(crs, b).
• If β = 1, (c, σ) ← (c̃, σ̃b).

3. Algorithm A outputs a bit b′ ∈ {0, 1}.
The bit commitment scheme satisfies mode indistinguishability if for all effi-
cient adversaries A, there exists a negligible function negl(·) such that for all
λ ∈ N,

|Pr [b′ = 1 | β = 0] − Pr [b′ = 1 | β = 1]| = negl(λ).

– Statistical binding in binding mode: For all security parameters λ ∈ N

and all (not necessarily efficient) adversaries A,

Pr
[
Verify(crs, c, 0, σ0) = 1
= Verify(crs, c, 1, σ1)

:
crs ← SetupBind(1λ)

(c, σ0, σ1) ← A(1λ, crs)

]
= negl(λ).

Theorem 3 (Bit Commitment from One-Way Functions [31, adapted]).
Assuming the existence of one-way functions, there exists a one-time dual-mode
bit commitment scheme.

2.1 Cryptographic Proof Systems

In this section, we recall the definition of a non-interactive zero-knowledge
(NIZK) argument for NP as well as that of a non-interactive batch argument
(BARG) for NP. We will often consider the language of Boolean circuit satisfia-
bility, which we recall below:
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Definition 4 (Boolean Circuit Satisfiability). The language LSAT of
Boolean circuit satisfiability consists of pairs (C,x) of circuits C : {0, 1}n ×
{0, 1}h → {0, 1} and inputs x ∈ {0, 1}n such that there exists w ∈ {0, 1}h

where C(x,w) = 1:

LSAT =
{

(C,x) :
C : {0, 1}n × {0, 1}h → {0, 1},x ∈ {0, 1}n

∃w ∈ {0, 1}h : C(x,w) = 1

}
.

Non-interactive Zero-Knowledge. We now recall the notion of a non-interactive
zero-knowledge argument [6,21] for an arbitrary NP language.

Definition 5 (NIZK Argument for NP). A non-interactive zero-knowledge
argument for an NP relation R (with associated language L) is a tuple of efficient
algorithms ΠNIZK = (Setup,Prove,Verify) with the following syntax:

– Setup(1λ) → crs: On input the security parameter λ ∈ N, the setup algorithm
outputs a common reference string crs.

– Prove(crs,x,w) → π: On input the common reference string crs, a statement
x, and a witness w, the prove algorithm outputs a proof π.

– Verify(crs,x, π) → b: On input the common reference string crs, a statement
x, and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.
Moreover, ΠNIZK should satisfy the following properties:

– Completeness: For all λ ∈ N and all (x,w) ∈ R,

Pr
[
Verify(crs,x, π) = 1 : crs ← Setup(1λ);

π ← Prove(crs,x,w)

]
= 1.

– Adaptive computational soundness: For all efficient adversaries A, there
exists a negligible function negl(·) such that for all λ ∈ N,

Pr
[
x /∈ L ∧ Verify(crs,x, π) = 1 :

crs ← Setup(1λ)
(x, π) ← A(1λ, crs)

]
= negl(λ).

– Adaptive multi-theorem computational zero-knowledge: For every
efficient adversary A, there exists an efficient simulator S = (S1,S2) and
a negligible function negl(·) such that for all λ ∈ N and sampling crs ←
Setup(1λ) and (c̃rs, stS) ← S1(1λ), we have that

∣∣∣Pr
[
AO0(crs,·,·)(1λ, crs) = 1

]
− Pr

[
AO1(stS ,·,·)(1λ, c̃rs) = 1

]∣∣∣ = negl(λ),

and where the oracles O0 and O1 are defined as follows:
• O0(crs,x,w): On input the common reference string crs, a statement x,

and a witness w, the oracle outputs ⊥ if (x,w) /∈ R. If (x,w) ∈ R, it
outputs Prove(crs,x,w).

• O1(stS ,x,w): On input the simulator state stS , a statement x and a
witness w, the oracle outputs ⊥ if (x,w) /∈ R. If (x,w) ∈ R, it outputs
S2(stS ,x).
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Non-interactive Batch Arguments. Next, we recall the definition of a non-
interactive batch argument for the language of Boolean circuit satisfiability. We
start by defining the standard notion of adaptive (computational) soundness,
and then follow it with a relaxation called somewhere soundness [14,25].

Definition 6 (Batch Argument for NP [14, adapted]). A non-interactive
batch argument (BARG) for Boolean circuit satisfiability is a tuple of three effi-
cient algorithms ΠBARG = (Setup,Prove,Verify) with the following syntax:

– Setup(1λ, 1T , 1s) → crs: On input the security parameter λ ∈ N, a bound on
the number of instances T ∈ N, and a bound on the circuit size s ∈ N, the
setup algorithm outputs a common reference string crs.

– Prove(crs, C, (x1, . . . ,xt), (w1, . . . ,wt)) → π: On input the common refer-
ence string crs, a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements
x1, . . . ,xt ∈ {0, 1}n, and witnesses w1, . . . ,wt ∈ {0, 1}h, the prove algorithm
outputs a proof π.

– Verify(crs, C, (x1, . . . ,xt), π) → b: On input the common reference string crs,
the Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements x1, . . . ,xt ∈
{0, 1}n and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.
Moreover, ΠBARG should satisfy the following properties:

– Completeness: For all λ, T, s ∈ N, all Boolean circuits C : {0, 1}n ×
{0, 1}h → {0, 1} of size at most s, all t ≤ T , all statements x1, . . . ,xt ∈
{0, 1}n, and all witnesses w1, . . . ,wt ∈ {0, 1}h where C(xi,wi) = 1 for all
i ∈ [t],

Pr

[
Verify(crs, C, (x1, . . . ,xt), π) = 1 :

crs ← Setup(1λ, 1T , 1s);
π ← Prove(crs, C, (x1, . . . ,xt), (w1, . . . ,wt))

]
= 1.

– Succinct proof size: There exists a polynomial poly(·) such that for all
λ, T, s ∈ N, all crs in the support of Setup(1λ, 1T , 1s), and all Boolean cir-
cuits C : {0, 1}n × {0, 1}h → {0, 1} of size at most s, all t ≤ T , all state-
ments x1, . . . ,xt ∈ {0, 1}n, and all witnesses w1, . . . ,wt ∈ {0, 1}h, the
size of the proof π output by Prove(crs, C, (x1, . . . ,xt), (w1, . . . ,wt)) satisfies
|π| ≤ poly(λ + log t + s).

– Adaptive soundness: For a security parameter λ, we define the adaptive
security game between an adversary A and a challenger as follows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

bound on the number of instances 1T and the bound on the circuit size 1s.
2. The challenger samples a common reference string crs ← Setup(1λ, 1T , 1s)

and gives crs to A.
3. Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} of

size at most s, statements (x1, . . . ,xt) where xi ∈ {0, 1}n for all i ∈ [t]
and where t ≤ T , and a proof π.

4. The output of the experiment is 1 if Verify(crs, C, (x1, . . . ,xt), π) = 1 and
for some i ∈ [t], (C,xi) /∈ LSAT. Otherwise, the output is 0.
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Then ΠBARG satisfies adaptive security if for all efficient adversaries A, there
exists a negligible function negl(·) such that for all λ ∈ N, Pr[b = 1] = negl(λ)
in the adaptive security game.

Definition 7 (Somewhere-Sound Batch Argument for NP [14, adapted]).
A somewhere-sound non-interactive batch argument (BARG) for Boolean cir-
cuit satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup,Prove,
Verify). The Prove and Verify algorithms are defined exactly as in Definition 6,
while the Setup algorithm now takes an additional index parameter:
– Setup(1λ, 1T , 1s, i) → crs: On input the security parameter λ ∈ N, a bound on

the number of instances T ∈ N, a bound on the circuit size s ∈ N, and an
index i ∈ [T ], the setup algorithm outputs a common reference string crs.

Moreover, the adaptive soundness property from Definition 6 is replaced by
the following index hiding and somewhere soundness properties:
– Index hiding: For a security parameter λ and a bit β ∈ {0, 1}, we define

the index-hiding game between an adversary A and a challenger as follows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

bound on the number of instances 1T , the bound on the circuit size 1s,
and a pair of indices i0, i1 ∈ [T ].

2. The challenger then proceeds to sample a common reference string crs ←
Setup(1λ, 1T , 1s, iβ) and gives crs to A.

3. Algorithm A outputs a bit b′ ∈ {0, 1}.
Then ΠBARG satisfies index hiding if for all efficient adversaries A, there
exists a negligible function negl(·) such that for all λ ∈ N,

|Pr [b′ = 1 | β = 0] − Pr [b′ = 1 | β = 1]| = negl(λ).

We say ΠBARG satisfies sub-exponential index hiding security if there exists
some constant c > 1 such that for all adversaries A running in time 2λ1/c ·
poly(λ), there exists a negligible function negl(·) such that for all λ ∈ N,

|Pr [b′ = 1 | β = 0] − Pr [b′ = 1 | β = 1]| = negl(λ).

– Somewhere soundness: For a security parameter λ, we define the
somewhere-soundness game between an adversary A and a challenger as fol-
lows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

bound on the number of instances 1T , the bound on the circuit size 1s,
and the index i∗ ∈ [T ].

2. The challenger then proceeds to sample a common reference string crs ←
Setup(1λ, 1T , 1s, i∗) and gives crs to A.

3. Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} of
size at most s, statements (x1, . . . ,xt) where xi ∈ {0, 1}n for all i ∈ [t]
and t ≤ T , and a proof π.

4. The output of the experiment is b = 1 if it is the case that i∗ ≤ t,
Verify(crs, C, (x1, . . . ,xt), π) = 1, and (C,x∗

i ) /∈ LSAT. Otherwise, the out-
put is b = 0.

Then ΠBARG satisfies somewhere-soundness if for all efficient adversaries A,
Pr[b = 1] = negl(λ) in the somewhere-soundness game.
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Constructions of BARGs. A number of recent works have established the exis-
tence of BARGs for NP from standard number-theoretic assumptions including
the learning with errors (LWE) assumption [14,16], the k-Lin assumption over
groups with bilinear maps [39], and (sub-exponential) hardness of decisional
Diffie-Hellman (DDH) over pairing-free groups [12].

Soundness Definitions. Somewhere soundness is a relaxation of adaptive sound-
ness where the adversary has the ability to choose the statements based on the
CRS, but it is required to pre-commit to the index of a false statement. In Sect. 5
(Theorem 20), we show that using complexity leveraging, any somewhere-sound
BARG which satisfies sub-exponential index hiding implies an adaptively-sound
BARG. Namely, if index hiding security of the somewhere-sound BARG holds
against an adversary that is able to decide the underlying NP language, then
somewhere soundness implies adaptive soundness by a simple guessing argu-
ment. As a security notion, adaptive soundness is sometimes more convenient to
work with compared to somewhere soundness. As such, we use adaptive sound-
ness in our one-way function based construction in Sect. 3, which yields a con-
struction based on sub-exponentially secure somewhere-sound BARGs. For our
construction based on public-key encryption (Sect. 4), somewhere soundness suf-
fices for our security analysis and we avoid the need for complexity leveraging.
This yields a construction based only on polynomial hardness, but additionally
relies on public-key encryption.

2.2 Hidden-Bits Generator

In this section, we recall the notion of a hidden-bits generator with subset-
dependent proofs from [26,34]. For a bitstring r ∈ {0, 1}n and a set of indices
I ⊆ [n], we write rI ∈ {0, 1}|I| to denote the substring corresponding to the bits
of r indexed by I. Our presentation here is adapted from the work of [11].

Definition 8 (Hidden-Bits Generator [26, Definition 11]). A hidden-bits
generator with subset-dependent proofs is a tuple of efficient algorithms ΠHBG =
(Setup,GenBits,Prove,Verify) with the following syntax:

– Setup(1λ, 1m) → crs: On input the security parameter λ, and the output length
m, the setup algorithm outputs a common reference string crs.

– GenBits(crs) → (r, st): On input the the common reference string crs, the
generator algorithm outputs a string r ∈ {0, 1}m and a state st.

– Prove(st, I) → π: On input the state st and a subset I ⊆ [m], the prove
algorithm outputs a proof π.

– Verify(crs, I, rI , π) → b: On input a common reference string crs, a subset
I ⊆ [m], a string rI ∈ {0, 1}|I|, and a proof π, the verification algorithm
outputs a bit b ∈ {0, 1}.
We require ΠHBG to satisfy the following properties:
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– Correctness: For all λ,m ∈ N and all subsets I ⊆ [m], we have

Pr

⎡
⎣Verify(crs, I, rI , π) = 1 :

crs ← Setup(1λ, 1m);
(r, st) ← GenBits(crs);

π ← Prove(st, I)

⎤
⎦ = 1.

– Somewhat computational binding: For every crs in the support of the
algorithm Setup(1λ, 1m), there exists a set Vcrs with the following properties:
(i) Output sparsity. There exists a universal constant γ < 1 and a fixed

polynomial p(·) such that for every polynomial m = m(λ), there exists
λm ∈ N such that for all λ ≥ λm and every crs in the support of
Setup(1λ, 1m), |Vcrs| ≤ 2mγ ·p(λ)

(ii) Computational binding. For a security parameter λ, we define the
computational binding game between an adversary A and a challenger as
follows:
(a) On input the security parameter 1λ, algorithm A starts by outputting

the output length 1m.
(b) The challenger samples crs ← Setup(1λ, 1m) and gives crs to A.
(c) Algorithm A outputs a tuple (I, rI , π).
(d) The output of the experiment is b = 1 if it holds that rI /∈ Vcrs

I and
Verify(crs, I, rI , π) = 1, where Vcrs

I := {rI : r ∈ Vcrs}. Otherwise, the
output is b = 0.

We say the ΠHBG is computationally binding if for all efficient adversaries
A, there exists a negligible function negl(·) such that for all λ ∈ N, Pr[b =
1] = negl(λ) in the computational binding security game.

– Computational hiding: For a security parameter λ and bit β ∈ {0, 1}, we
define the computational hiding game between an adversary A and a chal-
lenger as follows:
1. On input the security parameter 1λ, algorithm A starts by outputting the

output length 1m and a subset I ⊆ [m].
2. The challenger samples crs ← Setup(1λ, 1m), (r, st) ← GenBits(crs), π ←

Prove(st, I) and r′ r← {0, 1}m.
• If β = 0, the challenger gives (crs, I, rI , π, rĪ) to A, where Ī = [m]\I.
• If β = 1, the challenger gives (crs, I, rI , π, r′̄

I
) to A where Ī = [m] \ I.

3. Algorithm A outputs a bit b′ ∈ {0, 1}.
We say the ΠHBG is computationally hiding if for all efficient adversaries A,
there exists a negligible function negl(·) such that for all λ ∈ N,

|Pr[b′ = 1 | β = 1] − Pr[b′ = 1 | β = 0]| = negl(λ).

Theorem 4 (NIZK from Hidden-Bits Generator [26]). If there exists a
hidden-bits generator with subset-dependent proofs, then there exists a computa-
tional NIZK argument for NP. The NIZK argument satisfies adaptive computa-
tional soundness and adaptive multi-theorem zero knowledge.
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3 Hidden-Bits Generator from Adaptively-Sound BARGs
and OWFs

In this section, we show how to construct a hidden-bits generator with subset-
dependent proofs using an adaptively-sound batch argument for NP, a one-time
dual-mode bit commitment scheme, and a leakage-resilient weak PRF. By The-
orems 3 and 2, the dual-mode bit commitment scheme and the leakage-resilient
weak PRF can be constructed from one-way functions. From Theorem 20, we can
construct an adaptively-sound BARG for NP from any sub-exponentially-secure
somewhere-sound BARG for NP. Invoking Theorem 4 now yields a NIZK for NP
from any sub-exponentially-secure somewhere-sound BARG for NP (Corollary
1).

Boolean Circuits. We start by describing the conventions we use for describing
Boolean circuits. Let C : {0, 1}n → {0, 1} be a Boolean circuit where each gate
is a fan-in-2 nand gate. Let s be the size of C, as measured by the number of
wires in C. We associate an index i ∈ [s] with each wire:

– Input wires: We index the n input wires with the values 1, . . . , n and will
refer to the wire at index i ∈ [n] as the “ith input wire” to C.

– Internal wires: Each non-input wire is associated with an index i ∈
{n + 1, . . . , s} with the property that the value of wire i is completely deter-
mined by the value of the wires indexed ji,l, ji,r ∈ {1, . . . , i − 1}. Specifically,
the value of wire i is the nand of the value of its left input wire (i.e., the wire
indexed ji,l) and the value of its right input wire (i.e., the wire indexed ji,r).

– Output wire: The output wire is associated with the index s.

Construction 5 (Hidden-Bits Generator from Batch Arguments). Let
λ ∈ N be a security parameter and m ∈ N be an output length parameter. Our
construction depends on the following primitives:

– Let ΠLRwPRF = (LRwPRF.Setup, LRwPRF.Eval) be a leakage-resilient weak
PRF (Definition 2) with range {0, 1}. Let 	 = 	(λ,m) be a leakage param-
eter which will be set according to the requirements of the security analysis
(Theorems 7 and 8). Let κ = κ(λ,m) be the bit-length of the keys output by
LRwPRF.Setup(1λ, 1�(λ,m)). Let n = n(λ,m) be the bit-length of the domain
of LRwPRF (when instantiated with security parameter λ and leakage param-
eter 	 = 	(λ,m)).

– Let C : {0, 1}κ+n → {0, 1} be the Boolean circuit that evaluates ΠLRwPRF.
Namely, C(k, z) := LRwPRF.Eval(k, z). Let s be the size of C (i.e., the number
of wires in C). In the following, we will define the following sets to refer to
the wires in C:

• Let Skey = {1, . . . , κ} be the indices of the wires corresponding to the
PRF key.

• Let Seval = {κ + 1, . . . , κ + n} be the indices of the wires corresponding
to the evaluation point z.

• Let Sint = {κ + n + 1, . . . , s} be the indices of the non-input wires.
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– Let ΠBC = (BC.SetupBind,BC.SetupEquivocate,BC.Commit,BC.Verify) be a
one-time dual-mode bit commitment scheme (Definition 3).

– Let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be an (adaptively-
sound) batch argument for NP. Let 	BARG = 	BARG(λ, T, s) denote a bound
on the length of the proof output by ΠBARG as a function of the bound on
the number of instances T and the size s of the associated NP relation.

– Define the NP relation R as follows:

Statement: common reference string crs
(l)
BC, crs

(r)
BC , crs

(out)
BC and commit-

ments cl, cr, cout
Witness: bits bl, br, bout ∈ {0, 1} and openings σl, σr, σout
Output 1 if the following conditions hold:

• For each i ∈ {l,r,out}, BC.Verify(crs(i)BC, ci, bi, σi) = 1.
• bout = nand(bl, br).

Otherwise, output 0.

Let CR be the circuit computing the NP relation R and L be the associated
NP language.

We construct our hidden-bits generator ΠHBG = (Setup,GenBits,Prove,
Verify) as follows:

– Setup(1λ, 1m): On input the security parameter λ and output length m, the
setup algorithm start by sampling the following collection of common refer-
ence strings for the bit commitment scheme:

• CRS for the key: For j ∈ Skey, sample crs
(key,j)
BC ← BC.SetupBind(1λ).

• CRS for the evaluation point: For i ∈ [m] and j ∈ Seval, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

• CRS for the non-input wires: For i ∈ [m] and j ∈ Sint, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

Next, the setup algorithm samples z1, . . . , zm
r← {0, 1}n. The setup algorithm

commits to z1, . . . , zm as follows:
• For each i ∈ [m] and j ∈ Seval, compute the commitments and openings

(c(i,j), σ(i,j)) ← BC.Commit
(
crs

(i,j)
BC , zi,j−κ

)
.

Let sint = |Sint| = s − (κ + n) be the number of non-input wires in C. Sample
a CRS for the BARG: crsBARG ← BARG.Setup(1λ, 1msint , 1|CR|). Output the
common reference string

crs =
(
(z1, . . . , zm),

{
crs

(key,j)
BC

}
j∈Skey

,
{
crs

(i,j)
BC

}
i∈[m],j∈Seval∪Sint

,{(
c(i,j), σ(i,j)

)}
i∈[m],j∈Seval

, crsBARG
)
. (3.1)
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– GenBits(crs): On input the common reference string crs (parsed accord-
ing to Eq. (3.1)), the generator algorithm samples a weak PRF key k ←
LRwPRF.Setup(1λ, 1�) and computes ri ← LRwPRF.Eval(k, zi) for each
i ∈ [m]. It outputs the hidden bits string r = r1‖ · · · ‖rm and the state
st = (crs, k).

– Prove(st, I): On input the state st = (crs, k) (where crs is parsed according to
Eq. (3.1) and k ∈ {0, 1}κ) and a set of indices I ⊆ [m], the prove algorithm
proceeds as follows:

• Commit to the bits of k: For each j ∈ Skey, compute(
c(key,j), σ(key,j)

) ← BC.Commit
(
crs(key,j), kj

)
.

• Commit to the non-input wires for C(k, zi): For each i ∈ [m], let
w

(i)
1 , . . . , w

(i)
s be the wire values of C(k, zi). For each i ∈ [m] and j ∈ Sint,

compute
(
c(i,j), σ(i,j)

) ← BC.Commit
(
crs(i,j), w

(i)
j

)
.

• Construct a BARG proof of validity: Recall that sint = |Sint| =
s − (κ + n) is the number of non-input wires in the circuit C. These
indices associated with these wires are κ + n + 1, . . . , κ + n + sint. Now,
for each i ∈ [m], define the following:

∗ As before, let w
(i)
1 , . . . , w

(i)
s ∈ {0, 1} be the wire values of C(k, zi).

∗ For each j ∈ [sint], let jl, jr be the wire indices that determine the
value of the jth non-input wire jout = (κ+n)+j. Define the statement
x(i,j) and witness w(i,j) as follows:

x(i,j) =
(
crs

(i,jl)
BC , crs

(i,jr)
BC , crs

(i,jout)
BC , c(i,jl), c(i,jr), c(i,jout)

)
(3.2)

w(i,j) =
(
w

(i)
jl

, w
(i)
jr

, w
(i)
jout

, σ(i,jl), σ(i,jr), σ(i,jout)
)

. (3.3)

Here, for all i ∈ [m] and j ∈ Skey, we adopt the convention that
crs

(i,j)
BC := crs

(key,j)
BC , c(i,j) := c(key,j), and σ(i,j) := σ(key,j).

Construct the proof

πBARG ← BARG.Prove
(
crsBARG, CR, (x(i,j))i∈I,j∈[sint], (w

(i,j))i∈I,j∈[sint]

)
.

(3.4)
Output

π =
(
πBARG, {c(key,j)}j∈Skey

, {c(i,j)}i∈I,j∈Sint , {σ(i,s)}i∈I

)
. (3.5)

– Verify(crs, I, rI , π): On input a common reference string crs (parsed accord-
ing to Eq. (3.1)), a subset I ⊆ [m], a string rI ∈ {0, 1}|I|, and a proof
π =

(
πBARG, {c(key,j)}j∈Skey

, {c(i,j)}i∈I,j∈Sint , {σ(i,s)}i∈I

)
, the verification algo-

rithm checks the following conditions:
• Validity of output commitments: For all i ∈ I, check that the output

commitments satisfy BC.Verify
(
crs

(i,s)
BC , c(i,s), ri, σ

(i,s)
)

= 1.
• Validity of BARG proof: For each i ∈ I and j ∈ [sint], compute x(i,j)

from crs and π according to Eq. (3.2). Then, check that the BARG proof
satisfies BARG.Verify(crsBARG, CR, (x(i,j))i∈I,j∈[sint], πBARG) = 1.

If both checks pass, output 1. Otherwise, output 0.
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Theorem 6 (Correctness). If ΠBARG is complete and ΠBC is correct, then
Construction 5 is correct.

Proof. Let λ be a security parameter, m be an output length, and I ⊆ [m]
a set of indices. Let crs ← Setup(1λ, 1m), parsed according to Eq. (3.1). Let
(r, st) ← GenBits(crs) where st = (crs, k) and π ← Prove(st, I). Then,

π =
(
πBARG, {c(key,j)}j∈Skey

, {c(i,j)}i∈I,j∈Sint , {σ(i,s)}i∈I

)
.

For each i ∈ I, let w
(i)
1 , . . . , w

(i)
s ∈ {0, 1} be the wire values of C(k, zi). Consider

the output of Verify(crs, I, rI , π). First, we show that for every i ∈ I and j ∈ [s],

BC.Verify
(
crs

(i,j)
BC , c(i,j), w

(i)
j , σ(i,j)

)
= 1. (3.6)

We consider three cases:

– Suppose j ∈ Skey. By definition, this means crs(i,j)BC = crs
(key,j)
BC , c(i,j) = c(key,j),

σ(i,j) = σ(key,j) and w
(i)
j = kj . By construction, the Prove algorithm computes

(c(key,j), σ(key,j)) ← BC.Commit(crs(key,j)BC , kj), where the Setup algorithm sam-
pled crs

(key,j)
BC ← BC.SetupBind(1λ). By correctness of ΠBC,

BC.Verify
(
crs

(i,j)
BC , c(i,j), w

(i)
j , σ(i,j)

)
= BC.Verify

(
crs

(key,j)
BC , c(key,j), kj , σ

(key,j)
)

= 1.

– Suppose j ∈ Seval. Then, w
(i)
j = zi,j−κ. By construction, the Setup algorithm

samples (c(i,j), σ(i,j)) ← BC.Commit(crs(i,j)BC , zi,j−κ). Again, since crs
(i,j)
BC ←

BC.SetupBind(1λ), it follows by correctness of ΠBC that

BC.Verify
(
crs

(i,j)
BC , c(i,j), w

(i)
j , σ(i,j)

)
= BC.Verify

(
crs

(i,j)
BC , c(i,j), zi,j−κ, σ(i,j)

)
= 1.

– Suppose j ∈ Sint. By construction, the Prove algorithm computes the commit-
ments and openings (c(i,j), σ(i,j)) ← BC.Commit(crs(i,j), w(i)

j ). Since crs(i,j)BC ←
BC.SetupBind(1λ), by correctness of ΠBC,

BC.Verify
(
crs

(i,j)
BC , c(i,j), w

(i)
j , σ(i,j)

)
= 1.

We now consider the two checks performed by Verify:

– Validity of output commitments. Let i ∈ I. The value of the output wire
is w

(i)
s = C(k, zi) = ri. From Eq. (3.6),

BC.Verify
(
crs

(i,s)
BC , c(i,s), ri, σ

(i,s)
)

= BC.Verify
(
crs

(i,s)
BC , c(i,s), w(i)

s , σ(i,s)
)

= 1.
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– Validity of BARG proof. Take any index i ∈ I and j ∈ [sint]. Let jl and
jr be the wire indices that determine the value of the jth non-input wire
jout = (κ + n) + j. Let x(i,j) and w(i,j) be the statement and witness as
defined in Eqs. (3.2) and (3.3):

x(i,j) =
(
crs

(i,jl)
BC , crs

(i,jr)
BC , crs

(i,jout)
BC , c(i,jl), c(i,jr), c(i,jout)

)

w(i,j) =
(
w

(i)
jl

, w
(i)
jr

, w
(i)
jout

, σ(i,jl), σ(i,jr), σ(i,jout)
)

.

Now, the following conditions hold:
• By Eq. (3.6), BC.Verify

(
crs

(i,jpos)
BC , c(i,jpos), w

(i)
jpos

, σ(i,jpos)
)

= 1 for each pos ∈
{l,r,out}.

• Since the wire values w
(i)
1 , . . . , w

(i)
s are associated with the wire values of

C(k, zi), it holds that w
(i)
jout

= nand(w(i)
jl

, w
(i)
jr

).
By construction of R, this means (x(i,j), w(i,j)) ∈ R for each i ∈ I and
j ∈ [sint]. By completeness of ΠBARG,

BARG.Verify(crsBARG, CR, (x(i,j))i∈I,j∈[sint], πBARG) = 1.

Since both checks pass, we conclude that Verify(crs, I, rI , π) outputs 1, as
required.

Security. We now state the main security theorems for Construction 5 and defer
their formal proofs to Sect. 3.1 and the full version of this paper [7].

Theorem 7 (Somewhat Computational Binding). Suppose κ(λ,m) ≤ mδ·
p(λ) for some constant δ < 1 and a fixed polynomial p(·). Then, if ΠBC is
statistically binding in binding mode and ΠBARG is adaptively sound, it follows
that Construction 5 satisfies somewhat computational binding.

Theorem 8 (Computational Hiding). Suppose ΠBC satisfies mode indis-
tinguishability and ΠLRwPRF is a leakage-resilient weak PRF. If 	(λ,m) ≥
	BARG(λ,msint, |CR|), Construction 5 satisfies computational hiding.

Parameter Instantiations. We now describe a possible instantiation of the under-
lying building blocks in Construction 5 to obtain a NIZK argument from a sub-
exponentially-secure somewhere-sound BARG. We summarize our main result
in Corollary 1.

– We instantiate the one-time dual-mode bit commitment scheme ΠBC using
Naor’s bit commitment scheme [31] (Theorem 3) based on one-way functions.
With this instantiation, the size of the circuit CR in Construction 5 can be
bounded by O(λc1) for some constant c1 ∈ N.

– We instantiate the leakage-resilient weak PRF ΠLRwPRF with the scheme based
on one-way functions [22,35] (Theorem 2). Let 	 be the leakage parameter for
the leakage-resilient weak PRF. With this instantiation, the keys have length
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at most κ = 	 · O(λ2) and the inputs have length n = O(λ + log 	). Let s be
the size of the Boolean circuit that takes as input a key k and an input z and
outputs LRwPRF.Eval(k, z). Since the construction is efficient, the size of this
circuit can be upper-bounded by s = O((	λ)c2) for some constant c2 ∈ N.

– We instantiate the batch argument ΠBARG with a scheme where the proof size
satisfies

	BARG(λ, T, s) < T ε · O((λ + s)c3),

where 0 < ε < 1/(1 + c2) and c3 ∈ N are fixed constants. Existing BARG
constructions based on standard number-theoretic assumptions [12,14,16,24,
39] satisfy an even stronger succinctness guarantee where 	BARG(λ, T, s) ≤
poly(λ + log T + s) where the proof size is polylogarithmic in the number of
instances T ; this is the default definition from Definition 6. However, as we
show here, our construction applies even in settings where the BARG proof
size scales with T ε for sufficiently small constants ε < 1. Finally, all of the
aforementioned BARG constructions satisfy somewhere soundness, which can
be bootstrapped to an adaptively-sound construction using Theorem 20 (via
complexity leveraging).

– With this choice of parameters, we choose constants δ1 = ε/(1 − εc2) and
δ2 = (εc2 + c1c3)/(1 − εc2). Finally, we set 	(λ,m) = mδ1 · Θ(λδ2).

It is easy to see that this setting of parameters satisfies the requirements in
Theorems 7 and 8:

– Binding (Theorem 7): For this choice of parameters,

κ(λ,m) = 	(λ,m) · O(λ2) = mδ1 · poly(λ) = mε/(1−εc2) · poly(λ).

Moreover, since ε < 1/(1 + c2), this means ε + εc2 < 1 so ε < 1 − εc2.
Correspondingly, this means that 0 < ε/(1 − εc2) < 1. Thus, the condition of
Theorem 7 is satisfied.

– Hiding (Theorem 8): For this choice of parameters, we have

	BARG(λ,msint, |CR|) < (ms)ε · O((λ + λc1)c3)
= mε(	λ)εc2 · O(λc1c3)

= mε(1+δ1c2) · O
(
λ(δ2+1)(εc2)+c1c3

)
.

Next, we can write

ε(1 + δ1c2) = ε

(
1 +

εc2
1 − εc2

)
=

ε

1 − εc2
= δ1

(δ2 + 1)εc2 + c1c3 = δ2εc2 + εc2 + c1c3

= (εc2 + c1c3)
(

εc2
1 − εc2

+ 1
)

=
εc2 + c1c3
1 − εc2

= δ2.
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Correspondingly, we see that for this choice of parameters,

	BARG(λ,msint, |CR|) < mε(1+δ1c2) · O
(
λ(δ2+1)(εc2)+c1c3

)
= mδ1 · O(λδ2)
= 	(λ,m),

which satisfies the requirement in Theorem 8.

We summarize this instantiation with the following corollary.

Corollary 1 (NIZKs from Sub-Exponentially Secure Somewhere-
Sound BARGs). Assuming the existence of one-way functions and either (1)
an adaptively-sound BARG for NP (Definition 6); or (2) a sub-exponentially-
secure somewhere-sound BARG for NP (Definition 7), there exists a computa-
tional NIZK argument for NP.

3.1 Proof of Theorem 8 (Computational Hiding)

Let A be an efficient adversary for the computational hiding security game for
Construction 5. We define a sequence of hybrid experiments between the chal-
lenger and A.

– Hyb0: This is the computational hiding game with β = 0. Specifically, the
game proceeds as follows:

• On input the security parameter 1λ, algorithm A outputs the output
length 1m and a subset I ⊆ [m].

• The challenger samples crs ← Setup(1λ, 1m). Specifically, it starts by sam-
pling the common reference strings for the bit commitment schemes:

∗ CRS for the key: For j ∈ Skey, sample crs
(key,j)
BC ← BC.Setup

Bind(1λ).
∗ CRS for the evaluation point: For i ∈ [m] and j ∈ Seval, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

∗ CRS for the non-input wires: For i ∈ [m] and j ∈ Sint, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

Next, the challenger samples z1, . . . , zm
r← {0, 1}n. For each each i ∈ [m]

and j ∈ Seval, it computes (c(i,j), σ(i,j)) ← BC.Commit
(
crs

(i,j)
BC , zi,j−κ

)
.

Finally, it samples crsBARG ← BARG.Setup(1λ, 1msint , 1|CR|) and defines
crs according to Eq. (3.1).

• Next, the challenger computes (r, st) ← GenBits(crs) and π ←
Prove(st, I). First, the challenger samples a weak PRF key k ←
LRwPRF.Setup(1λ, 1�) and computes ri ← LRwPRF.Eval(k, zi). It sets
r = r1‖ · · · ‖rm. To construct the proof π, the challenger first sets
w

(i)
1 , . . . , w

(i)
s to be the wire values of C(k, zi) for each i ∈ [m]. Then,

it does the following:
∗ Commit to the bits of k: For each j ∈ Skey, compute the commit-

ment and opening
(
c(key,j), σ(key,j)

) ← BC.Commit
(
crs(key,j), kj

)
.
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∗ Commit to the non-input wires for C(k, zi): For each i ∈ [m]
and j ∈ Sint, compute

(
c(i,j), σ(i,j)

) ← BC.Commit
(
crs(i,j), w

(i)
j

)
.

∗ Construct a BARG proof of validity: For each j ∈ [sint], let jl, jr
be the wire indices that determine the value of the jth non-input wire
jout = (κ + n) + j. Then, for each i ∈ [m], define the statement x(i,j)

and witness w(i,j) as follows:

x(i,j) =
(
crs

(i,jl)
BC , crs

(i,jr)
BC , crs

(i,jout)
BC , c(i,jl), c(i,jr), c(i,jout)

)

w(i,j) =
(
w

(i)
jl

, w
(i)
jr

, w
(i)
jout

, σ(i,jl), σ(i,jr), σ(i,jout)
)

.

As in Construction 5, we adopt the convention that crs
(i,j)
BC :=

crs
(key,j)
BC , c(i,j) := c(key,j), and σ(i,j) := σ(key,j). The challenger com-

putes πBARG according to Eq. (3.4).
Finally the challenger defines the proof π to be

π =
(
πBARG, {c(key,j)}j∈Skey

, {c(i,j)}i∈I,j∈Sint , {σ(i,s)}i∈I

)
.

• The challenger gives (crs, I, rI , π, rI) to A. Algorithm A outputs a bit
b′ ∈ {0, 1}, which is the output of the experiment.

– Hyb1: Same as Hyb0, except the challenger switches the bit commitments for
the key and the non-input wires to be equivocating.

• On input the security parameter 1λ, algorithm A outputs the output
length 1m and a subset I ⊆ [m].

• The challenger starts by sampling the common reference strings for the
bit commitment schemes:

∗ CRS for the key: For j ∈ Skey, sample

(
crs

(key,j)
BC , c̃(key,j), σ̃

(key,j)
0 , σ̃

(key,j)
1

) ← BC.SetupEquivocate(1λ).

∗ CRS for the evaluation point: For i ∈ [m] and j ∈ Seval, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

∗ CRS for the non-input wires: For i ∈ [m] and j ∈ Sint, sample

(
crs

(i,j)
BC , c̃(i,j), σ̃

(i,j)
0 , σ̃

(i,j)
1

) ← BC.SetupEquivocate(1λ).

The remaining components of the crs are computed exactly as described
in Hyb0 (same for all hybrids).

• The challenger samples k ← LRwPRF.Setup(1λ, 1�) and computes ri ←
LRwPRF.Eval(k, zi). It sets r = r1‖ · · · ‖rm. To construct the proof π, the
challenger first sets w

(i)
1 , . . . , w

(i)
s to be the wire values of C(k, zi) for each

i ∈ [m]. Then, it does the following:
∗ Commit to the bits of k: For each j ∈ Skey, let c(key,j) := c̃(key,j)

and σ(key,j) := σ̃
(key,j)
b where b = kj .



Batch Arguments to NIZKs from One-Way Functions 455

∗ Commit to the non-input wires for C(k, zi): For each i ∈ [m]
and j ∈ Sint, let c(i,j) := c̃(i,j) and σ(i,j) := σ̃

(i,j)
b where b = w

(i)
j .

∗ Construct a BARG proof of validity: The BARG proof πBARG is
computed exactly as described in Hyb0 (same for all hybrids).

The challenger defines the proof π as in Hyb0 (same for all hybrids).
• The challenger gives (crs, I, rI , π, rI) to A. Algorithm A outputs a bit

b′ ∈ {0, 1}, which is the output of the experiment.
– Hyb2: Same as Hyb1, except for all i /∈ I, the challenger samples ri

r← {0, 1}.
Specifically, the experiment proceeds as follows:

• On input the security parameter 1λ, algorithm A outputs the output
length 1m and a subset I ⊆ [m].

• The challenger starts by sampling the common reference strings for the
bit commitment schemes:

∗ CRS for the key: For j ∈ Skey, sample
(
crs

(key,j)
BC , c̃(key,j), σ

(key,j)
0 , σ

(key,j)
1

) ← BC.SetupEquivocate(1λ).

∗ CRS for the evaluation point: For i ∈ [m] and j ∈ Seval, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

∗ CRS for the non-input wires: For i ∈ [m] and j ∈ Sint, sample
(
crs

(i,j)
BC , c̃(i,j), σ̃

(i,j)
0 , σ̃

(i,j)
1

) ← BC.SetupEquivocate(1λ).

The remaining components of the crs are computed exactly as described
in Hyb0 (same for all hybrids).

• The challenger samples k ← LRwPRF.Setup(1λ, 1�). For each i ∈ I, it
computes ri ← LRwPRF.Eval(k, zi). For each i /∈ I, it samples ri

r← {0, 1}.
It sets r = r1‖ · · · ‖rm. To construct the proof π, the challenger first sets
w

(i)
1 , . . . , w

(i)
s to be the wire values of C(k, zi) for each i ∈ [m]. Then, it

does the following:
∗ Commit to the bits of k: For each j ∈ Skey, let c(key,j) := c̃(key,j)

and σ(key,j) := σ̃
(key,j)
b where b = kj .

∗ Commit to the non-input wires for C(k, zi): For each i ∈ [m]
and j ∈ Sint, let c(i,j) := c̃(i,j) and σ(i,j) := σ̃

(i,j)
b where b = w

(i)
j .

∗ Construct a BARG proof of validity: The BARG proof πBARG is
computed exactly as described in Hyb0 (same for all hybrids).

The challenger defines the proof π as in Hyb0 (same for all hybrids).
• The challenger gives (crs, I, rI , π, rI) to A. Algorithm A outputs a bit

b′ ∈ {0, 1}, which is the output of the experiment.
– Hyb3: Same as Hyb2 except the challenger switches the commitments back to

binding mode. This is the computational hiding game with β = 1. Specifi-
cally, the game proceeds as follows:

• On input the security parameter 1λ, algorithm A outputs the output
length 1m and a subset I ⊆ [m].

• The challenger starts by sampling the common reference strings for the
bit commitment schemes:
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∗ CRS for the key: For j ∈ Skey, sample crs
(key,j)
BC ←

BC.SetupBind(1λ).
∗ CRS for the evaluation point: For i ∈ [m] and j ∈ Seval, sample

crs
(i,j)
BC ← BC.SetupBind(1λ).

∗ CRS for the non-input wires: For i ∈ [m] and j ∈ Sint, sample
crs

(i,j)
BC ← BC.SetupBind(1λ).

The remaining components of the crs are computed exactly as described
in Hyb0 (same for all hybrids).

• The challenger samples k ← LRwPRF.Setup(1λ, 1�). For each i ∈ I, it
computes ri ← LRwPRF.Eval(k, zi). For each i /∈ I, it samples ri

r← {0, 1}.
It sets r = r1‖ · · · ‖rm. To construct the proof π, the challenger first sets
w

(i)
1 , . . . , w

(i)
s to be the wire values of C(k, zi) for each i ∈ [m]. Then, it

does the following:
∗ Commit to the bits of k: For each j ∈ Skey, compute the commit-

ment and opening
(
c(key,j), σ(key,j)

) ← BC.Commit
(
crs(key,j), kj

)
.

∗ Commit to the non-input wires for C(k, zi): For each i ∈ [m]
and j ∈ Sint, compute

(
c(i,j), σ(i,j)

) ← BC.Commit
(
crs(i,j), w

(i)
j

)
.

∗ Construct a BARG proof of validity: The BARG proof πBARG is
computed exactly as described in Hyb0 (same for all hybrids).

The challenger defines the proof π as in Hyb0 (same for all hybrids).
• The challenger gives (crs, I, rI , π, rI) to A. Algorithm A outputs a bit

b′ ∈ {0, 1}, which is the output of the experiment.

We write Hybi(A) to denote the output distribution of an execution of Hybi

with adversary A. Due to space limitations, we give the formal analysis in the
full version of this paper [7].

4 Hidden-Bits Generator from BARGs and Public-Key
Encryption

In this section, we show how to construct a hidden-bits generator with subset-
dependent proofs by combining a polynomial-hard somewhere-sound BARG with
a public-key encryption scheme. Compared to Corollary 1, this construction only
relies on polynomial hardness on the somewhere-sound BARG (as opposed to
sub-exponential hardness), but in exchange, it requires an additional assump-
tion of public-key encryption. As described in Sect. 1.1, this construction follows
the same template as the previous construction (Sect. 3), but uses public-key
encryption to construct a one-time dual-mode bit commitment with efficient
extraction.

4.1 One-Time Dual-Mode Bit Commitment with Extraction

The main building block we use in this section is a one-time dual-mode bit
commitment scheme that supports efficient extraction. Recall that in a standard
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one-time dual-mode bit commitment scheme (Definition 3), we only require the
bit commitment scheme to be statistically binding in binding mode. Here, we
upgrade the statistical binding to a strong extractability guarantee. This will
allow us to base security of our hidden-bits generator somewhere soundness
rather than adaptive soundness.

Definition 9 (One-Time Dual-Mode Bit Commitment with Extrac-
tion). A one-time dual-mode bit commitment with extraction is a tuple of
algorithms ΠBC = (SetupBind,SetupEquivocate,Commit,Verify,Extract) with the
following syntax:

– SetupBind(1λ) → (crs, td): On input the security parameter λ, the setup algo-
rithm for the binding mode outputs a common reference string crs and trapdoor
td.

– SetupEquivocate(1λ) → (crs, c̃, σ̃0, σ̃1): On input the security parameter λ, the
setup algorithm for the equivocating mode outputs a common reference string
crs along with a commitment c̃ and openings σ̃0, σ̃1.

– Commit(crs, b) → (c, σ): On input the common reference string crs and a bit
b ∈ {0, 1}, the commit algorithm outputs a commitment c and an opening σ.

– Verify(crs, c, b, σ) → {0, 1}: On input the common reference string crs, a com-
mitment c, a bit b ∈ {0, 1}, and an opening σ, the verification algorithm
outputs a bit b′ ∈ {0, 1}.

– Extract(td, c) → {0, 1}: On input the trapdoor td and a commitment c, the
verification algorithm outputs a bit b ∈ {0, 1}.
We require ΠBC satisfy the following properties:

– Correctness: Same as in Definition 3.
– Mode indistinguishability: Same as in Definition 3.
– Extractable in binding mode: For all adversaries A, there exists a negli-

gible function negl(·) such that for all λ ∈ N,

Pr

⎡
⎣Verify(crs, c, b, σ) = 1 ∧ b �= b′ :

(crs, td) ← SetupBind(1λ)
(c, σ, b) ← A(1λ, crs)
b′ ← Extract(td, c)

⎤
⎦ = negl(λ).

Constructing a One-Time Dual-Mode Bit Commitment with Extraction Scheme.
We can construct a one-time dual-mode bit commitment with extraction scheme
by composing a vanilla one-time dual-mode bit commitment scheme (Definition
3) with a public-key encryption scheme. A similar approach was used implicitly
in previous works [27,29].

Construction 9 (One-Time Dual-Mode Bit Commitment with Extrac-
tion). Our construction relies on the following primitives:

– Let Π ′
BC = (BC.SetupBind′,BC.SetupEquivocate′,BC.Commit′,BC.Verify′) be

a one-time dual mode bit commitment scheme. Let 	BC = 	BC(λ) be a bound
on the length of the openings output by BC.Commit′.
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– Let ΠPKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) be a public-key encryp-
tion scheme with message space Mλ = {0, 1}�BC(λ)+1 ∪ {⊥}. Let ρ = ρ(λ)
be the randomness complexity of PKE.Encrypt (i.e., the number of bits of
randomness that PKE.Encrypt takes as input).

We construct a one-time dual mode bit commitment scheme scheme with
extraction ΠBC = (SetupBind,SetupEquivocate,Commit,Verify,Extract) as fol-
lows:

– SetupBind(1λ): On input the security parameter λ, the binding mode setup
algorithm samples crs′ ← BC.SetupBind′(1λ) and (pk, sk) ← PKE.Setup(1λ).
It then outputs the common reference string crs = (crs′, pk) and the extraction
trapdoor td = (crs′, sk).

– SetupEquivocate(1λ): On input the security parameter λ, the equivocating
mode setup algorithm samples (crs′, c̃′, σ̃′

0, σ̃
′
1) ← BC.SetupEquivocate′(1λ)

and (pk, sk) ← PKE.Setup(1λ). Next, for b ∈ {0, 1}, it samples rb
r← {0, 1}ρ

and sets ctb ← PKE.Encrypt(pk, (b, σ̃′
b); rb). It outputs the common reference

string crs = (crs′, pk), the commitment c̃ = (c̃′, ct0, ct1), and the openings
σ̃0 = (σ̃′

0, r0), σ̃1 = (σ̃′
1, r1).

– Commit(crs, b): On input the common reference string crs = (crs′, pk) and a
bit b ∈ {0, 1}, the commit algorithm constructs a commitment (c′, σ′) ←
BC.Commit′(crs′, b). Then, it samples rb

r← {0, 1}ρ and computes ctb ←
PKE.Encrypt(pk, (b, σ′); rb). It also computes ct1−b ← PKE.Encrypt(pk,⊥).
Finally, it outputs the commitment c = (c′, ct0, ct1) and the opening σ =
(σ′, rb).

– Verify(crs, c, b, σ): On input the common reference string crs = (crs′, pk), a
commitment c = (c′, ct0, ct1), a bit b ∈ {0, 1}, and an opening σ = (σ′, rb),
the verification algorithm outputs 1 if BC.Verify′(crs′, c′, b, σ′) = 1 and ctb =
PKE.Encrypt(pk, (b, σ′); rb).

– Extract(td, c): On input an extraction trapdoor td = (crs′, sk) and a com-
mitment c = (c′, ct0, ct1), the extraction algorithm computes the message
m0 ← PKE.Decrypt(sk, ct0). If m0 = (0, σ′) and BC.Verify′(crs′, c′, 0, σ′) = 1,
then it outputs 0. Otherwise, it outputs 1.

Correctness and Security Analysis. We state correctness and security theorems
here, but defer the proofs to the full version of this paper [7].

Theorem 10 (Correctness). If Π ′
BC and ΠPKE are correct, then Construction

9 is correct.

Theorem 11 (Mode Indistinguishability). Suppose Π ′
BC satisfies mode

indistinguishability. Then Construction 9 satisfies mode indistinguishability.

Theorem 12 (Extractable in Binding Mode). If ΠPKE is perfectly correct
and Π ′

BC is statistically binding, then Construction 9 is extractable in binding
mode.

Corollary 2 (One-Time Dual-Mode Bit Commitment with Extrac-
tion). Assuming the existence of public-key encryption, there exists a one-time
dual-mode bit commitment with extraction scheme.
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4.2 Hidden-Bits Generator Construction

We now describe our hidden-bits generator based on public-key encryption. The
construction replaces the one-time dual-mode bit commitment scheme in Con-
struction 5 with a scheme that supports extraction. This allows basing security
on polynomial somewhere soundness of the underlying BARG rather than adap-
tive soundness (which necessitated sub-exponential hardness). The construc-
tion is identical to Construction 5, except we modify the binding analysis to
rely on somewhere soundness of the BARG (and extraction) rather than adap-
tive soundness.

Construction 13 (Hidden-Bits Generator from Polynomial-Hard
Batch Arguments). The construction is identical to Construction 5, except
for the following two differences:

– We replace the one-time dual-mode bit commitment scheme with a one-
time dual-mode bit commitment scheme with extraction ΠBC = (SetupBind,
SetupEquivocate,Commit,Verify,Extract). Note that the Extract algorithm is
only needed in the security analysis, so the scheme semantics are identical to
Construction 5.

– We replace the adaptively-sound BARG with a somewhere sound BARG.
Functionally-speaking, the only difference in Setup is when sampling the CRS
for the BARG, the scheme additionally provides a dummy index 1. Namely,
the Setup algorithm samples crsBARG ← BARG.Setup(1λ, 1msint , 1|CR|, 1).

Correctness and Security Analysis. We now state the correctness and security
theorems for Construction 13. The correctness and hiding proofs are identical to
the respective proofs for Construction 5 (Theorem 6 and Theorem 8). We defer
the binding proof to the full version of this paper [7].

Theorem 14 (Correctness). If ΠBARG is complete and ΠBC is correct, then
Construction 13 is correct.

Proof. Follows by the same argument as in the proof of Theorem 6.

Theorem 15 (Somewhat Computational Binding). Suppose κ(λ,m) ≤
mδ ·p(λ) for some constant δ < 1 and a fixed polynomial p(·). If ΠBC is extractable
in binding mode and ΠBARG is somewhere sound, then Construction 13 satisfies
somewhat computational binding.

Theorem 16 (Computational Hiding). Suppose ΠBC satisfies mode indis-
tinguishability and ΠLRwPRF is a secure leakage-resilient weak PRF. If 	(λ,m) ≥
	BARG(λ,msint, |CR|), Construction 13 satisfies computational hiding.

Proof. Follows by the same argument as in the proof of Theorem 8 (see Sect. 3.1).
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Parameter Instantiations. We can instantiate the underlying primitives following
the same methodology as in Sect. 3. This yields the following corollary:

Corollary 3 (NIZKs from Somewhere-Sound BARGs and PKE).
Assuming the existence of public-key encryption and somewhere-sound BARGs
for NP (Definitions 6 and 7), there exists a computational NIZK argument for
NP.

5 BARGs with Adaptive Soundness via Sub-Exponential
Hardness

In this section, we show that using complexity leveraging, any sub-exponentially-
secure somewhere-sound BARG (Definition 7) is also adaptively sound (Defi-
nition 6). Specifically, the analysis relies on sub-exponential index hiding. We
describe our construction and analysis below:

Construction 17 (Adaptively-Sound BARG from a Somewhere-Sound
BARG). Let λ be a security parameter and s be a circuit-size parameter. Let
ΠSSBARG = (SSBARG.Setup,SSBARG.Prove,SSBARG.Verify) be a somewhere-
sound batch argument for Boolean circuit satisfiability. Let λSSBARG =
λSSBARG(λ, s) be a polynomial which will be set in the security proof (Theo-
rem 20). We construct an adaptively-secure batch argument for Boolean circuit
satisfiability ΠBARG = (Setup,Prove,Verify) as follows:

– Setup(1λ, 1T , 1s): Output

crs ← SSBARG.Setup(1λSSBARG(λ,s), 1T , 1s, 1).

– Prove(crs, C, (x1, . . . ,xt), (w1, . . . ,wt)): Output

π ← SSBARG.Prove(crs, C, (x1, . . . ,xt), (w1, . . . ,wt)).

– Verify(crs, C, (x1, . . . ,xt), π): Output

b ← SSBARG.Verify(crs, C, (x1, . . . ,xt), π).

Correctness and Security Analysis. We state the correctness and security the-
orems for Construction 17 here, but defer the proof of soundness to the full
version of this paper [7].

Theorem 18 (Completeness). If ΠSSBARG is complete, then Construction 17
is complete.

Proof. Follows immediately from completeness of ΠSSBARG.

Theorem 19 (Succinctness). If ΠSSBARG is succinct, then Construction 17 is
succinct.
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Proof. Take any common reference string crs in the support of Setup(1λ, 1T , 1s).
Then, crs is in the support of SSBARG.Setup(1λSSBARG , 1T , 1s, 1). Let C : {0, 1}n ×
{0, 1}h → {0, 1} be a Boolean circuit of size at most s. Take any sequence of
statements x1, . . . ,xt ∈ {0, 1}n and witnesses w1, . . . ,wt ∈ {0, 1}h, where t ≤ T .
Let proof π be π ← Prove(crs, C, (x1, . . . ,xt), (w1, . . . ,wt)). By succinctness of
ΠSSBARG, |π| ≤ p(λSSBARG + log t + s) for some fixed polynomial p(·). Next,
λSSBARG = (λ + s)c for some constant c ∈ N. Thus, we conclude that |π| ≤
p((λ + s)c + log t + s) ≤ q(λ + log t + s), for a fixed polynomial q that depends
only on the polynomial p and the constant c.

Theorem 20 (Adaptive Soundness). Suppose ΠSSBARG is a somewhere-
sound BARG which satisfies sub-exponential index hiding with parameter c > 1
and somewhere soundness. Suppose moreover that λSSBARG(λ, s) = (λ + s)c.
Then, Construction 17 is adaptively sound.
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Abstract. Proof-carrying data (PCD) is a powerful cryptographic primitive that
allows mutually distrustful parties to perform distributed computation in an effi-
ciently verifiable manner. Real-world deployments of PCD have sparked keen
interest within the applied community and industry.

Known constructions of PCD are obtained by recursively-composing
SNARKs or related primitives. Unfortunately, known security analyses incur
expensive blowups, which practitioners have disregarded as the analyses would
lead to setting parameters that are prohibitively expensive.

In this work we study the concrete security of recursive composition, with the
goal of better understanding how to reasonably set parameters for certain PCD
constructions of practical interest. Our main result is that PCD obtained from
SNARKs with straightline knowledge soundness has essentially the same secu-
rity as the underlying SNARK (i.e., recursive composition incurs essentially no
security loss).

We describe how straightline knowledge soundness is achieved by SNARKs
in several oracle models, which results in a highly efficient security analysis of
PCD that makes black-box use of the SNARK’s oracle (there is no need to instan-
tiated the oracle to carry out the security reduction).

As a notable application, our work offers an idealized model that provides
new, albeit heuristic, insights for the concrete security of recursive STARKs used
in blockchain systems. Our work could be viewed as partial evidence justifying
the parameter choices for recursive STARKs made by practitioners.

Keywords: proof-carrying data · succinct non-interactive arguments ·
relativization · concrete security

1 Introduction

Proof-carrying data (PCD) [21] is a powerful cryptographic primitive that allows
mutually distrustful parties to perform distributed computation in an efficiently ver-
ifiable manner. PCD generalizes the notion of incrementally-verifiable computation
(IVC) [45], and has found applications in enforcing language semantics [26], verifiable
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MapReduce computations [22], image authentication [37], verifiable registries [44], pri-
vacy pools [3], blockchains [10,18,32,38], and more.

Known PCD constructions (and practical IVC constructions) are obtained via recur-
sive proof composition, a framework for building PCD from simpler primitives such
as SNARKs [7,8,20] or accumulation schemes [9,11–14,33,34].1 Constructions differ,
but the high-level idea is similar: to prove the correctness of t computation steps given
a correctness proof for t − 1 steps, one proves that “step t is correct and there is a valid
proof for the first t − 1 steps”.

There are several practically efficient constructions of PCD, which has sparked keen
industry interest and led to real-world deployments [35,40,41,43]. However, the con-
crete cost of the security reduction from PCD to the underlying primitive is not well
understood: there are no comprehensive guidelines for securely instantiating PCD con-
structions. In fact, an initial motivation for this work was the desire to better understand
the concrete security of recursive STARKs [43] used in blockchain systems.

The prevailing practice in real-world deployments is setting parameters so that the
underlying SNARK or accumulation scheme achieves the desired security level, and
then assuming that the resulting PCD construction inherits the same security level. But
this fails to account for the potential security loss in the security reduction from PCD
to the primitive(s) underlying its construction.

This state of affairs leads us to ask a basic question:

What is the concrete security cost of recursive proof composition?

Known Security Analyses. The security analysis of most PCD constructions works
only for a constant number of recursions ( [7–9,11–14,20,33,34]). Informally, this is
because the security reduction recursively invokes an underlying knowledge extractor
that, at each invocation, incurs a polynomial blowup in time/size relative to the prior
invocation. Moreover, in many settings, this blow up is unknown because it originates
from an underlying knowledge assumption (e.g., a knowledge-of-exponent assumption).
Overall this state of affairs implies that one is unable to set security parameters, and that
the security loss is exponential in the recursion depth. This is considerably worse than
“the security of PCD is approximately that of the underlying primitive” (the prevailing
practice).

What About Oracle Models? The aforementioned inefficiencies of knowledge extrac-
tion generally do not arise for SNARKs (or accumulation schemes) constructed in ora-
cle models. This is because the knowledge extractor is explicit (it is constructed rather
than assumed), and deduces a witness merely by analyzing the prover’s queries to the
oracle and their answers; this does not require any access to the prover itself, and avoids
rerunning the prover multiple times (which incurs significant time or error overheads).
Unfortunately, PCD constructions typically make a non-black-box use of the underly-

1 A separate line of work constructs IVC for deterministic computations from falsifiable cryp-
tographic assumptions using different tools (see [39] and references therein). These elegant
constructions are less relevant to the motivation of this paper as, typically, applications of
PCD and IVC require supporting nondeterministic computations.
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ing SNARK or accumulation scheme,2 which requires instantiating the oracle (a heuris-
tic step), and so the security reduction cannot take advantage of the efficient knowl-
edge extraction previously available in the oracle model. Instead, the security reduc-
tion assumes some (non-black-box) knowledge extractor for the heuristically derived
scheme.

Hope: Black-Box Constructions of PCD. Several works construct PCD in oracle mod-
els without instantiating the oracle (that is, while making a black-box use of the oracle)
[16,17,21]. The key step is obtaining a relativized SNARK, a SNARK in an oracle model
that can prove computations that themselves involve calls to the oracle. Then recursive
proof composition can be used to directly obtain PCD in the same oracle model, via a
security analysis that involves an explicit extractor.

1.1 Our Results

In this paper we show that PCD constructions obtained from SNARKs with straightline
knowledge soundness have essentially the same security as the underlying SNARK.
Afterwards, we explain how this setting arises in several constructions of interest,
including in deployed systems. In particular, our work gives partial justification for
parameter settings currently used by practitioners in certain deployed PCD construc-
tions.3

PCD from Straightline Extraction. Suppose that we are given a relativized SNARK in
a certain oracle model. The canonical construction of PCD from a SNARK in the stan-
dard model [8] straightforwardly extends to the relativized case. Indeed, the SNARK
prover can prove the correctness of oracle computations, and in particular can prove the
correctness of the SNARK verifier (which queries the oracle).

We show that if the relativized SNARK has a straightline extractor then the resulting
PCD scheme has a straightline extractor with the same error as the underlying SNARK.

Theorem 1 (informal). Let ARG be a relativized non-interactive argument in an ora-
cle model, and let PCD be the PCD scheme obtained from ARG via the canonical
construction (adapted to the relativized setting).

Suppose that ARG has a straightline extractor with knowledge soundness error
κARG(λ, q, s) and extraction time tARG(λ, q), where λ ∈ N is the security parameter,
q ∈ N is the number of queries by the adversary to the oracle, and s is the size of the
adversary. Then PCD has a straightline extractor with:

– knowledge soundness error κPCD(λ, q, s, N) ≤ κARG(λ, q, s′) where s′ := s + O(N ·
tARG(λ, q)), and

– extraction time tPCD(λ, q, N) ≤ O(N · tARG(λ, q)).

2 The statement that “there exists a valid proof” refers to the verifier of the underlying SNARK
or accumulation scheme. As such, the resulting PCD scheme makes non-black-box use of the
verifier for the underlying scheme.

3 There are other PCD constructions of practical interest that do not fit our setting (e.g., those
based on knowledge-of-exponent assumptions). Achieving security reductions that yield useful
concrete security bounds for these remains an open problem.
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Above, N is the maximum number of nodes in the PCD distributed computation.

Above, the additive term O(N · tARG(λ, q)) intuitively corresponds to the N extrac-
tions required to produce a PCD distributed computation of size at most N . Note that,
since extraction is straightline, the extraction times tARG and tPCD do not depend on adver-
sary size.

We discuss two applications of Theorem 1: in Sect. 1.1 we discuss an application
the black-box PCD constructions; and in Sect. 1.1 we discuss an application to partially
justify parameter settings used in certain deployed PCD constructions.

Application: Black-Box PCD Constructions. Several works [16,17,21] construct
PCD in oracle models, with black-box security reductions to falsifiable cryptographic
assumptions.4 While [17] constructs a rewinding knowledge extractor (and leaves
open the question of constructing a straightline knowledge extractor), [16,21] con-
struct straightline knowledge extractors in their respective oracle models. These lat-
ter works roughly achieve the following: they construct a relativized SNARK with a
certain (straightline) knowledge soundness error κARG and then show that the resulting
PCD scheme has (straightline) knowledge soundness error (roughly) κPCD(λ, q, s, N) ≤
N · κARG(λ, q, s′), where s′ := s+ O(N · tARG(λ, q)).

Our Theorem 1 offers a significant improvement for [16,21]: the knowledge sound-
ness error κPCD(λ, q, s, N) ≤ κARG(λ, q, s′), eliminating the multiplicative factor N
(PCD distributed computation size). We suspect that this upper bound is tight, as the
only overhead comes from increasing the adversary size from s to s′ = s + O(N ·
tARG(λ, q)), which reflects the additive cost to recover a PCD distributed computation
of size N by invoking the SNARK extractor (whose running time is tARG(λ, q)) for N
times.

Application: Hash-Based PCD. Hash-based SNARKs have found widespread deploy-
ment in practice. Security parameters of such SNARKs are heuristically set according
to the random oracle methodology [4]: first, model the hash function as a random func-
tion (even though it is not), which results in a SNARK in the ROM that “idealizes”
the given hash-based SNARK; second, establish concrete security bounds in the ROM;
finally, set security parameters of the hash-based SNARK according to the analysis for
the SNARK in the ROM.

The random oracle methodology applied to the hash-based SNARK is thus tanta-
mount to a conjecture: attacks against the hash-based SNARK are no more effective
than attacks against the corresponding SNARK in the ROM (hence it is reasonable to
set security parameters of the former according to the latter). Such conjectures are gen-
erally believed to hold for “natural” cryptographic protocols that use hash functions.5

4 Such reductions are unlikely to exist in the standard model [29], as PCD can be used to con-
struct a SNARK [8].

5 The random oracle methodology is widely used across cryptography to set the security param-
eters of protocols that rely on cryptographic hash functions (and possibly other cryptographic
building blocks). The methodology must, nevertheless, be applied with caution because it does
not work for every protocol [15].
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In certain applications, the hash-based SNARK is recursively composed, leading to
deployments of hash-based PCD constructions. Known security analyses of these PCD
constructions incur expensive blowups, which practitioners have disregarded as those
security analyses would lead to setting parameters that are prohibitively expensive. In
other words, the common practice is to set security parameters as if the security reduc-
tion incurred no costs. Below we elaborate on these challenges, and then we propose
how the results in this paper can be viewed as providing partial justification for current
parameter settings in practice.

Challenges. Once the SNARK in the ROM is heuristically instantiated as a hash-based
SNARK, we lose the explicit knowledge extractor constructed in the ROM. Hence, to
analyze the resulting hash-based PCD construction, prior work postulates the existence
of a non-black-box knowledge extractor for the hash-based SNARK in the standard
model. But such a knowledge extractor is weak (it leads to a PCD knowledge extrac-
tor whose time/size has an exponential dependence on the recursion depth), and also
rules out any hope for concrete security because we know nothing of the postulated
knowledge extractor.

Alternatively, why not apply the random oracle methodology? Idealize the hash-
based PCD construction as a PCD in the ROM, then set security parameters of the
hash-based PCD according to a concrete security analysis of the corresponding PCD
in the ROM. Unfortunately, this is problematic because it would require the underlying
SNARK in the ROM to be relativized; indeed, the SNARK prover would have to attest
to computations involving the random oracle (namely, its own SNARK verifier). How-
ever known SNARKs in the ROM are not relativized and, in fact, relativized SNARKs
in the ROM do not exist [1].6

Our Proposal. We propose a method, based on Theorem 1, that provides new insights
into the concrete security cost of PCD obtained from hash-based SNARKs. Specifi-
cally, we can idealize the hash-based PCD construction in a less straightforward way,
resulting in a PCD construction in the ROM that, albeit not succinct, is covered by
Theorem 1 and could be reasonably conjectured to capture the security of the original
hash-based PCD construction. Of course, the security of hash-based PCD constructions
merits further study beyond this work, given the delicate nature of heuristic instantia-
tions of SNARKs in the ROM [2].

Briefly, the hash-based PCD construction makes a specific non-black-box use of the
underlying hash function: it uses the underlying hash-based SNARK to prove correct
execution of computations that involve the hash function itself. In the idealization, we
can model this as a non-succinct SNARK in the ROM where query-answer pairs to the
random oracle of the proved computation are simply included in the argument string
as claims to be checked directly by the verifier (which has access to the oracle). This
relativized “non-succinct NARK” in the ROM directly leads to a (non-succinct) PCD
construction in the ROM, whose concrete security follows from Theorem 1. This latter
PCD construction in the ROM closely models the original hash-based PCD construc-

6 Relativization is distinct from other limitations of SNARKs in the presence of oracles: [28]
studies limitations of knowledge extraction for adversaries that access oracles exogenous to
the SNARK scheme itself (e.g., the signing oracle of a signature scheme).
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tion, and, in analogy to the random oracle methodology, one may conjecture that attacks
against the hash-based PCD construction are no more effective than attacks against the
idealized (non-succinct) PCD construction in the ROM sketched above.

The above steps are summarized in Fig. 1.

Fig. 1. The grey box “PCD” on the right represents the hash-based PCD construction used in
practice whose concrete security we wish to understand. Top: Prior work provides an expensive
security analysis based on a hash-based SNARK, whose security is heuristically set by equating
it to a corresponding idealized SNARK in the ROM (i.e., via the random oracle methodology).
Bottom: We directly idealize the hash-based PCD construction, equating its security to a cor-
responding (non-succinct) PCD in the ROM whose security we establish. (Color figure online)

In sum, our Theorem 1 provides new insights for practitioners: in the above heuristic
sense (inspired by the random oracle methodology), one may conjecture that the con-
crete security of hash-based PCD constructions equals that of the underlying idealized
SNARK in the ROM, matching widespread practices for recursive proof composition
(and thus providing some justification for these practices).

See Sect. 2.3 for more discussion.

A-Priori UnknownN . In the (pure) ROM setting described above, the size of the adver-
sary does not matter (only the query bound matters). Hence the knowledge soundness
error simplifies to

κPCD(λ, q, N) ≤ κARG(λ, q)

which is independent of N .7 Therefore, with our improvement, suitably setting κARG

once suffices for all distributed computations (which may have arbitrarily large size
that is unknown a priori), whereas with the prior results one would have to set κARG

7 The extraction time is as before and, necessarily, depends on N , as the extractor outputs a
distributed computation of size N .
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depending on the pre-specified bound N on the size of the distributed computation.
In Sect. 2.4 we describe a natural real-world example where there does not exist any
pre-specified bound N on the size of a valid distributed computation.

2 Techniques

We overview the main ideas underlying our results. In Sect. 2.1 we discuss our improved
security analysis for PCD constructed from relativized SNARKs with straightline
extractors. In Sect. 2.2 we discuss how our improvement applies to prior relativized
SNARKs in different oracle models. In Sect. 2.3 we discuss relativized “non-succinct
NARKs” in the random oracle model, and implications to real-world constructions. In
Sect. 2.4 we discuss a real-world compliance predicate that did not have security guar-
antees (in terms of knowledge soundness) prior to our work. In Sect. 2.5 we discuss how
our security analysis extends to the case of straightline extractors that are probabilistic
and may query the oracle.

2.1 Security Analysis of PCD from Straightline Extractors

We elaborate on Theorem 1 and outline the main ideas of its proof. The technical details
that make these discussions precise are provided in Sects. 4 and 5.

Review: PCD. Proof-carrying data (PCD) is a cryptographic primitive that enables
untrusted provers to efficiently demonstrate the correctness of a distributed computa-
tion. A distributed computation T is viewed as a directed acyclic graph in which each
vertex is labeled with local data and each edge is labeled with a message; the compu-
tation output is the message on the lexicographically-first edge into a sink. Correctness
is determined by a given compliance predicate φ: T is φ-compliant if, for every ver-
tex in T, φ outputs 1 when given as input the vertex’s output message, local data, and
input messages. The transcript size and transcript depth of φ are the largest size and
largest depth of any φ-compliant distributed computation T.8 A PCD scheme is a tuple
PCD = (P,V) for proving/verifying φ-compliance of distributed computations, as fol-
lows.

– The PCD prover P receives an output message z, local data wloc, and input messages

(zi)i together with PCD proofs (each proof attests to the φ-compliance of
the corresponding message zi), and produces a PCD proof for the φ-compliance
of the output message z.

– The PCD verifier V receives a message z and PCD proof , and outputs a decision
bit.

The PCD scheme is complete if proofs for compliant messages are accepted by the
PCD verifier. The PCD scheme is knowledge sound if every malicious PCD prover
producing a message and proof accepted by the PCD verifier “knows” a compliant

8 In particular, the transcript size and transcript depth may or may not be bounded for a particular
compliance predicate φ.
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distributed computation whose output is that message, up to some error. This error is
bounded by a knowledge soundness error function κPCD(λ, q, s, N), which depends on
the security parameter λ, number of queries q by the adversary to the oracle, size s
of the adversary, largest size N of any φ-compliant distributed computation, and other
parameters that we omit here for simplicity. Our Theorem 1 establishes an improved
bound on the knowledge soundness error κPCD(λ, q, s, N) of PCD schemes obtained
from non-interactive arguments with straightline knowledge soundness. See Sect. 3.2
for a formal definition of a PCD scheme.

Limitations of PCD from SNARKs in the Standard Model. A PCD scheme in the
standard model can be constructed from any SNARK (with adaptive security) in the
standard model [8]. Informally, the PCD prover uses the SNARK prover to produce a
short proof attesting that (i) the compliance predicate accepts the output message, local
data, and input messages, and (ii) input messages carry valid SNARK proofs; the PCD
verifier uses the SNARK verifier to check the proof accompanying a message.

However, the security analysis works only for compliance predicates with constant
transcript depth. This is because SNARKs in the standard model satisfy a modest notion
of adaptive knowledge soundness: non-black-box knowledge soundness. Informally, for
every SNARK adversary there exists a knowledge extractor, whose size is polynomially-
related to the adversary size, such that, whenever the SNARK adversary convinces the
SNARK verifier, the knowledge extractor outputs a valid witness (up to some error).
If the polynomial blowup from adversary to extractor is n �→ nc then the security
reduction for a PCD prover of size n would yield a PCD extractor of size (roughly) ncd ,
where d is the transcript depth of the compliance predicate.9 This size blowup is huge
in concrete terms, and asymptotically this requires d to be constant.

PCD from Relativized SNARKs. In the relativized setting, we consider SNARKs that
are constructed in an idealized model where the SNARK can prove/verify computations
involving the same oracle. In other words, all (honest and malicious) parties have access
to an oracle sampled according to a certain distribution and, in particular, the SNARK
prover and SNARK verifier may query the oracle; crucially, the SNARK is required to
work even for relations that are defined relative to the same oracle. See Sect. 3.1 for a
formal definition of a relativized non-interactive argument in an oracle model.

The aforementioned canonical PCD construction in the standard model extends nat-
urally to the relativized setting. Indeed, in the recursive step of the construction, the
PCD prover produces a SNARK proof attesting the computation of the SNARK ver-
ifier, which in turn involves oracle calls. A relativized SNARK prover possesses the
capability to generate such a proof. Furthermore, the security analysis of the relativized
PCD construction can be carried over but presents the same blowup encountered in the
standard model.

Enabler: Straightline Extraction. In the relativized setting, we have the additional
benefit of a stronger knowledge soundness property: many SNARKs in oracle models
have a (universal) straightline extractor, a notion that is uniquely defined within an
oracle model and lacks an equivalent counterpart in the standard model. A straightline

9 The dependence is on transcript depth rather than transcript size because the security reduction
simultaneously extracts from all SNARK proofs at the same transcript depth (see, e.g., [20]).
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extractor does not get access to the malicious SNARK prover; instead, it produces a
witness by examining the following: the instance and argument string output by the
malicious SNARK prover, the sequence of queries to the oracle performed by the mali-
cious SNARK prover, and the corresponding query answers. We refer to the list of
query-answer pairs as the query-answer trace tr of the SNARK prover.

Definition 1 (Informal). ARG = (P,V) for a relation R has straightline knowledge
soundness error κARG if there exists a polynomial-time deterministic extractor E such
that, for every security parameter λ ∈ N and q-query s-size prover ˜P ,

Pr

⎡

⎣

(x,w) �∈ R
∧Vf (x, π) = 1

∣

∣

∣

∣

∣

∣

f ← U(λ)
(x, π) tr←− ˜Pf

w ← E(x, π, tr)

⎤

⎦ ≤ κARG(λ, q, s) .

Above tr denotes the query-answer trace of ˜P with the oracle f .

The running time of the straightline extractor E does not depend on the running time
of the malicious SNARK prover, but only on the number of query-answer pairs in the
SNARK prover’s trace tr (as well as the instance x and SNARK proof π). Straightline
extractors are common in oracle models, and as we explain shortly they will enable us
to avoid the blowup in the PCD extractor size discussed above.

We begin by sketching a (straightline) PCD extractor E that is naturally obtained
from the given straightline SNARK extractor E , by recursively extracting prior mes-
sages (and SNARK proofs), one vertex at a time. The straightline extractor E receives
as input the compliance predicate φ, the message zout and proof output by the
malicious PCD prover, and the query-answer trace tr of the malicious PCD prover; E
aims to output a φ-compliant PCD transcript T whose output is zout.

:
1. Initialize a PCD transcript T as an empty graph.
2. Add to T vertices v0 and v1, and add to T the edge (v1, v0) with label

.
3. Initialize an extraction queue L with the vertex v1.
4. While the extraction queue L is not empty:

(a) Pop the first vertex v from the queue L.
(b) Let be the label of the unique outgoing edge of v.

(c) Run the SNARK knowledge extractor to obtain a witnessw.

(d) Parse w to obtain local data wloc and input messages and proofs
for v.

(e) Label v the vertex by wloc.

(f) For each message-proof pair : add a new child vertex of v, label the

new edge with , and add the new vertex to the extraction queue L.
5. Output the PCD transcript T.

For the rest of this section, let λ be the security parameter, q an upper bound on the
number of oracle queries made by the malicious PCD prover ˜P, s an upper bound on the
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size of the malicious PCD prover, and N an upper bound on the size of any φ-compliant
transcript.

Security Analysis Inspired by Prior Work. Security analyses of PCD in prior
works based on straightline extractors [16,21] bound the knowledge error (roughly)
as κPCD(λ, q, s, N) ≤ N · κARG(λ, q, s′) where s′ := s + O(N · tARG(λ, q)). Intuitively,
each recursion incurs the SNARK knowledge soundness error of κARG(λ, q, s′). In more
detail, the i-th extraction is achieved by invoking the SNARK knowledge extractor
for a corresponding i-th SNARK prover ˜Pf

i , which outputs the message and proof
in the label of the outgoing edge of the i-th vertex considered by E. Note that ˜Pf

i

runs in time s + O(i · tARG(λ, q)) because, to perform the extraction associated to
the i-th vertex, it first has to perform the extractions associated to the first i − 1 ver-
tices (as E does). Using a union bound, the success probability of the PCD adversary
can be upper bounded by the sum of the success probabilities of all these argument
adversaries (one per vertex in the transcript), yielding the aforementioned upper bound
κPCD(λ, q, s, N) ≤ N · κARG(λ, q, λ, q, s′).

This bound (obtained via straightline knowledge extraction) is a significant improve-
ment over the exponential blow-up incurred when only relying on non-black-box knowl-
edge extraction, and as discussed, is achieved by prior works on PCD in oracle mod-
els [16,21]. However, the multiplicative factor of N impacts concrete security, and, in
fact, is unacceptable when N is unknown a priori. (There are compliance predicates
deployed in the real world for which N is unknown a priori; see Sect. 2.4.)

Our Security Analysis. We improve the security analysis of PCD from straightline
knowledge extraction: we avoid paying for the multiplicative factor of N , bound-
ing the PCD knowledge soundness error as κPCD(λ, q, s, N) ≤ κARG(λ, q, s′) where
s′ := s + O(N · tARG(λ, q)). Intuitively, we force the SNARK adversary to pinpoint
the problematic vertex (if any) in a PCD distributed computation transcript T by run-
ning the PCD adversary ˜P once.

In particular, our SNARK adversary ˜P follows the PCD knowledge extractor E. If
the PCD transcript T extracted by E is not compliant with the predicate φ, there must
exist at least one problematic vertex in T. The SNARK adversary ˜P reconstructs T and
searches for this problematic vertex along the way.

˜Pf :
1. Run the PCD adversary ˜P

f to obtain its output , and its query-
answer trace tr.

2. Initialize a PCD transcript T as an empty graph.
3. Add to T vertices v0 and v1, and add to T the edge (v1, v0) with label

.
4. Initialize an extraction queue L with the vertex v1.
5. While L is not empty:

(a) Pop the first vertex v from the queue L.
(b) Let be the label of the unique outgoing edge of v.

(c) Run the SNARK knowledge extractor to obtain a witnessw.

(d) Parse w to obtain local data wloc and input messages and proofs
for v.
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(e) For each message-proof pair : add a new child vertex of v, label the

new edge with , and add the new vertex to the extraction queue L.
(f) If at least one of following is true, output :

i. φ(z, wloc, (zi)i) �= 1 (i.e., v is not φ-compliant).
ii. There exists i such that

(i.e., the SNARK verifier rejects ).
6. If no output so far, output an arbitrary message-proof pair.

The malicious SNARK prover ˜P above follows the PCD extractor E, with additional
checks in Item 5f. If the PCD transcript T is not φ-compliant, there must be at least
one vertex v in T such that the outgoing message of v is inconsistent with the incoming
messages to v (and the local data at v), and the SNARK verifier does not catch this. In
other words, computation at vertex v successfully fools the SNARK verifier. The label
corresponding to the outgoing edge of the first such v (in the order E extracts) is output
by ˜P .

The number of queries made by ˜P equals the number of queries made by ˜P, plus
the additional queries by the SNARK verifier V in Item 5(f)ii (which is invoked at most
N times). In fact, in the technical sections, we explain how to avoid this latter additive
cost, observing that it suffices to run only a “part” of the SNARK verifier V that does
not query the oracle (see details in Sect. 5).

Lastly, the size of ˜P is the sum of the size s of ˜P, the size of the N invocations of the
argument extractor E (and some processing in between), all of which is upper bounded
by s+ O(N · tARG(λ, q)).

We conclude κPCD(λ, q, s, N) ≤ κARG(λ, q, s′) as desired.

The Preprocessing Setting. For wider applicability of our results, in the technical sec-
tions, we work in a more general setting. We consider SNARKs (and PCD) in the pre-
processing model, which means that an additional algorithm known as the indexer may
do an offline computation on the “offline” part of the instance, producing a correspond-
ing proving key and verification key to be used for proving and verifying proofs.

2.2 Application: Improved Concrete Security for Black-Box PCD Constructions

We discuss two oracle models from prior work where one can construct relativized
SNARKs with straightline knowledge soundness. Our Theorem 1 yields a security
bound for PCD schemes obtained in these oracle models that is a significant improve-
ment over previously-known bounds.

Arithmetized RandomOracle. [16] constructs PCD in the arithmetized random oracle
model (AROM), which is an idealization of capabilities associated to the arithmetization
of a hash function. In this model, all parties have access to a random oracle, which as
usual can be viewed as the idealization of some concrete hash function h; in addition,
all parties have access to an associated arithmetization oracle, which can be viewed as
an idealization of a low-degree polynomial ph that “encodes” the circuit of h.

Briefly, [16] shows that queries to the AROM can be “accumulated”, and they show
how this implies that any SNARK in the ROM can be transformed into a relativized
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SNARK in the AROM; moreover, the relativized SNARK has a straightline extractor
if the given SNARK has a straightline extractor. In turn, this implies a construction of
PCD in the AROM (that makes a black-box use of the AROM).

The analysis in [16] implies an error bound for PCD that is (roughly)
κPCD(λ, q, s, N) ≤ N · κARG(λ, q, s + O(N · tARG(λ, q))) where κARG is the (straight-
line) knowledge soundness error of the underlying relativized SNARK in the AROM.
Our Theorem 1 improves the error bound for PCD to κPCD(λ, q, s, N) ≤ κARG(λ, q, s +
O(N · tARG(λ, q))).

Signed Random Oracle. [21] constructs PCD in an oracle model that combines the
random oracle model and a signature scheme, which here we refer to as the signed
random oracle model (SROM). All parties have access to an oracle that, on a new input
x, samples a random answer y, generates a signature σ on (x, y) under a secret signing
key embedded in the oracle, and outputs (y, σ); repeated inputs have the same answers.

Intuitively, this model facilitates a PCD construction because the SNARK verifier
does not need to query the oracle: to check that the oracle answers x with (y, σ), one
can verify that σ is a valid signature on the message (x, y) using the oracle’s public key;
there is no need to query the oracle at x.

More generally, any SNARK in the ROM (with straightline extraction) directly
implies a relativized SNARK in the SROM (with straightline extraction), up to an error
that depends on the security of the signature scheme. To prove an oracle computation,
invoke the prover of the SNARK in the ROM on the computation where all oracle calls
are replaced with sub-computations that verify signatures on the relevant messages; to
verify the corresponding SNARK proof, invoke the verifier of the SNARK in the ROM.

The aforementioned relativized SNARK implies a corresponding PCD construction
in the SROM (which is essentially the one studied in [21] but reinterpreted through
the relativization lens). The analysis in [21] implies an error bound that is (roughly)
κPCD(λ, q, s, N) ≤ N · κARG(λ, q, s + O(N · tARG(λ, q))) where κARG is the (straight-
line) knowledge soundness error of the underlying relativized SNARK in the SROM.
Our Theorem 1 improves this error bound to κPCD(λ, q, s, N) ≤ κARG(λ, q, s + O(N ·
tARG(λ, q))).

Remark 1. [17] constructs PCD in the low-degree random oracle model (LDROM),
where all parties have access to a random low-degree extension of a random oracle.
Specifically they construct a relativized SNARK in the LDROM, and from there obtain
PCD in the LDROM. However, the relativized SNARK in [17] is only shown to have
a rewinding extractor, and because of this they show security of the PCD construction
only for compliance predicates with constant transcript depth. Constructing a straight-
line extractor for the relativized SNARK in the LDROM in [17] (or, indeed, any rela-
tivized SNARK in the LDROM) remains an open problem, which precludes our Theo-
rem 1 from use in the LDROM setting.

2.3 Application: a Paradigm to Set Security for Hash-Based PCD

Relativized SNARKs in the ROM do not exist [1]. Nevertheless, one can achieve a
weak form of relativized SNARKs in the ROM that implies a corresponding weak form
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of PCD in the ROM (using no assumptions or heuristics), for which our Theorem 1
gives concrete security bounds. This weak form of PCD in the ROM can be (heuris-
tically) viewed as an idealization of an important class of (succinct) hash-based PCD
constructions used in practice. In turn, we gain new insights into the concrete security
of these hash-based PCD constructions. We elaborate on this below.

“Weak” Relativized SNARKs in the ROM. One can construct relativized SNARKs in
the ROM for relations decidable via computations that perform few queries to the ran-
dom oracle. The construction below remains secure regardless of the number of queries.
However, if the number of queries to the oracle is large, then the resulting argument
system is a relativized “non-succinct NARK” rather than a relativized SNARK.

Suppose we have a non-relativized SNARK in the ROM [6,23–25,36] with proof
size �. Consider an oracle relation RU whose decision involves q queries to the random
oracle. We can construct a SNARK in the ROM for RU with proof size � + O(q · λ),
where λ is the output size of the random oracle. We modify the circuit that checks
whether a given instance-witness pair is in the relativized relation: remove each oracle
gate and instead read a corresponding query-answer pair from an augmented instance
(which now additionally stores the list of all query-answer pairs for the computation).
The new circuit is proved using the given non-relativized SNARK in the ROM; and
the resulting SNARK proof of size � is accompanied by the list of query-answer pairs,
increasing its size to � + O(q · λ). The new SNARK verifier checks the SNARK proof
and checks that the list of query-answer pairs is consistent with the random oracle.

Say that the non-relativized SNARK (P1,V1) is for the circuit satisfiability rela-
tion RCSAT. We construct a (weak) relativized SNARK (P2,V2) for the oracle relation
Rf

CSAT := {(C,x,w) : Cf (x,w) = 1}.
– Pf

2 (C,x,w):
1. Run Cf (x,w) to obtain its query-answer trace trC .
2. Construct the new (non-oracle) circuit C ′ that, on input ((x, trC),w), computes

C(x,w) by answering C’s queries to f with the query-answer pairs in trC .
3. Run the SNARK prover for RCSAT: π ← Pf

1 (C
′, (x, trC),w).

4. Output (π, trC).
– Vf

2 (C,x, (π, trC)):
1. Construct the new (non-oracle) circuit C ′ from C like P2 does.
2. Check that Vf

1 (C
′, (x, trC), π) = 1.

3. Check that trC is consistent with f (by directly querying f for each query in
trC).

The security of the SNARK for Rf
CSAT follows from the security of the SNARK

for RCSAT. Specifically, the transformation preserves straightline extraction: if the
SNARK for RCSAT has a straightline extractor (with a knowledge error),10 then so
does the SNARK for Rf

CSAT constructed above (with the same knowledge error).

“Weak” PCD in the ROM. The weak relativized SNARK (P2,V2) in the ROM directly
leads to a weak PCD scheme (P,V) in the ROM. The PCD construction invokes the

10 Achieving straightline extraction in the ROM is straightforward; see prior work [6,23–25,36].
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SNARK for relations that involve the SNARK verifier, which makes a small number
of queries to the random oracle. Hence the above relativized SNARK can be used to
recursively prove the correctness of the SNARK verifier. Our Theorem 1 provides a
bound on the knowledge soundness error of the resulting PCD scheme, thanks to the
straightline knowledge soundness of the SNARK. However, with each recursive step,
proof size increases, leading to a PCD construction that is not succinct, aligning with
the limitations of PCD in the ROM [1,19,31].

The Silver Lining. There is a silver lining between the limitations of PCD in the ROM
and the aforementioned non-succinct construction of PCD in the ROM, which improves
our understanding of security bounds in practice. Specifically, the non-succinct con-
struction of PCD in the ROM described above can be viewed as an idealization of
succinct hash-based constructions of PCD in practice, as we now explain.

The random oracle methodology tells us that the (non-relativized) SNARK (P1,V1)
in the ROM can be viewed as an idealization of a hash-based SNARK (P̂1, V̂1) in the
standard model, namely, the scheme (P1,V1) where the random oracle is instantiated
via a concrete hash function. Crucially, in a similar (though formally distinct) way, we
can view (P2,V2) as an idealization of (P̂1, V̂1) when used to prove computations that
involve calls to the concrete hash function. Indeed, (P2,V2) equals (P1,V1) up to the
fact that calls to the random oracle are included as explicit input-output claims in the
output argument string.

Next, let (P̂, V̂) be the hash-based PCD scheme in the standard model that is
obtained by recursively composing the hash-based SNARK (P̂1, V̂1). The PCD scheme
(P̂, V̂) is the real-world hash-based construction whose concrete security we wish to
understand. The key point in this discussion is that we can view the weak PCD scheme
(P,V) in the ROM mentioned above as an idealization of (P̂, V̂). This is because:

– in the standard model, (P̂, V̂) is obtained via recursive composition of (P̂1, V̂1);
– in the ROM, (P,V) is obtained via recursive composition of (P2,V2);
– (P2,V2) is an idealization of (P̂1, V̂1) when used for computations involving calls
to the hash function.

In sum, it may be reasonable to set the security parameters of (P̂, V̂) according
to the security parameters of (P,V) (whose security is establish by our Theorem 1).
This is tantamount to conjecturing that attacks against (P̂, V̂) are no more effective
than attacks against (P,V). More precisely, either an attack against (P̂, V̂) reduces to
an attack against (P,V) (inheriting its security), or an attack (usefully) exploits the
instantiation (and non-black-box use of) the concrete hash function, which remains an
open problem.

The above reasoning is summarized in Fig. 1 (and compared to prior approaches).
This approach avoids the need to replace the random oracle with a hash function in the
middle of the construction and its analysis; instead, all heuristics are deferred to the
very end. (Deferring all heuristics to the very end has several advantages, articulated in
[17]; indeed, other works achieving PCD in oracle models [16,21] also benefit from the
ability to defer any heuristics till the end.)

Instantiating the SNARK. The aforementioned PCD construction in the ROM is based
on a given SNARK in the ROM. There are several SNARKs in the ROM (with uncon-
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ditional security) [6,23–25,36]. These constructions follow a common paradigm: they
compile a probabilistic proof (a PCP or an IOP) into a SNARK by using a vector com-
mitment scheme in the ROM and other ROM techniques. If the underlying probabilistic
proof has a straightline extractor (the vast majority of relevant probabilistic proofs do)
then the resulting SNARK in the ROM has one as well. Indeed, these constructions
preserve straightline extractability (e.g., the vector commitment scheme in the ROM is
straightline extractable).

For example, the SNARK in the ROM in [5] (known as STARK) is widely deployed
in practice (along with various optimizations), including with recursion [43]. It is based
on an IOP that is far more practical than any known PCP (and admits a straightline
extractor). By our Theorem 1, the resulting PCD from the relativized version of the
IOP-based SNARK has knowledge soundness error

κPCD(λ, q, s, N) ≤ κARG(λ, q) ≤ q · κIOP +
4q2

2λ
,

where κIOP is the (straightline) knowledge soundness error of the IOP. Note that in the
ROM, κARG does not depend on the adversary size.

Our bound provides partial justification for the security parameters for PCD based
on this SNARK used in practice. (This was one of our initial motivations to study con-
crete security bounds for PCD in the ROM.)

Remark 2 (compatibility with zero knowledge). Recursively composing a zero-know-
ledge SNARK (that can prove correctness of its own verifier) yields zero-knowledge
PCD. Concrete bounds on the zero-knowledge error of the PCD construction (in terms
of the zero-knowledge error of the underlying SNARK) are known, including for the
hash-based constructions of interest to us [20]. (Analyzing zero knowledge is “easy”
because only the last recursion matters.)

Our proposal for a heuristic security analysis of the knowledge soundness error
of hash-based PCD constructions is compatible with zero knowledge, in the follow-
ing sense. Observe that if the (non-relativized) SNARK (P1,V1) is zero knowledge,
the transformation from (P1,V1) to the relativized NARK (P2,V2) does not necessar-
ily maintain zero knowledge (due to the inclusion of query-answer pairs in the argu-
ment string). However, this is not a problem because our goal is to establish security
bounds on the knowledge soundness error: the (non-succinct) PCD construction (P,V)
obtained from (P2,V2) remains an idealization of the hash-based PCD construction
(P̂, V̂) that is obtained via recursive composition of (P̂1, V̂1) (the hash-based instanti-
ation of (P1,V1) that heuristically remains zero knowledge). Hence, our proposal, in
particular, also could be used as a guide for parameters of hash-based PCD construc-
tions that are zero knowledge.

2.4 Example: A Real-World Compliance Predicate with Unknown Size
and Depth Bound

We describe a compliance predicate with unbounded transcript size and depth that is an
illustrative simplification of a compliance predicate deployed in a real-world applica-
tion. Prior security analyses of PCD constructions do not provide any security guaran-
tees (in terms of knowledge soundness) for such predicates. In contrast, the discussion
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in Sect. 2.3 for the ROM (where, in particular, adversary size does not matter) explains
how our Theorem 1 can be used to partially justify security parameters currently used
in practice for this example. We elaborate on this below.

Motivation: Recursive STARKs. Computation in the Ethereum smart contract system
is expensive: informally, each computation step is re-executed by every node in the
network, and so the system charges users for each computation step that they want
to execute (e.g., by calling a smart contract). A class of architectures known as layer 2
proof-based rollups [27] moves computation off-chain, in the sense that users send their
computation requests to an aggregator who then periodically produces a SNARK proof
about batches of user computations; the Ethereum smart contract system then verifies
the SNARK proof and makes a state transition reflecting all the computations in the
batch. The SNARK’s succinctness property ensures that checking a SNARK proof is
exponentially cheaper than checking the computation it attests to. These savings in on-
chain computation are the motivation behind layer 2 proof-based rollups.

Producing SNARK proofs for large batches is expensive, but efficiency can be
improved if the SNARK proof is itself produced via a PCD distributed computation
that involves separately proving and aggregating small sub-computations, following a
“proof tree” approach common in PCD applications [8,45]. This approach is taken by
several systems, including one produced by StarkWare [30,43].

Informally, a smart contract on Ethereum [42] is a PCD verifier that enables the
recursive proof composition of “STARK proofs” according to a compliance predicate
described below.11 The users submit computation requests by providing a piece of code
to run and an input for it, which are the local data in the distributed computation. Mes-
sages, on the other hand, are hashes of outputs of computations.

In that system, security in the recursive composition of the STARK is assumed to
equal the security of a standalone (non-recursive) use of the STARK (i.e., no security
loss is accounted for in the security reduction from PCD to the STARK). Is this assump-
tion (at least heuristically) justified?

The Compliance Predicate.Asmentioned in Sect. 2.1, a compliance predicate receives
as input, for a given vertex v in the graph (of the distributed computation), an output
message z, some local data wloc, and (in the recursive case) a list of input messages
(zi)i. Let h : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function, M be a universal
Turing machine (on input a program P and an input x, M outputs P (x)), and T ∈ N be
a maximum time bound. Below we describe a compliance predicate φh,M,T : {0, 1}∗ →
{0, 1}.
– Formats:

• Local data wloc is a tuple (P, x), where P is a program and x is an input.
• A message z is a pair (y, t), where y is a claimed output (or hash value) and t is

a time bound.
– Base case: v is a source vertex.

φh,M,T (z, wloc,⊥):

11 A STARK (as deployed in that system) is the heuristic instantiation (via the random oracle
methodology) of a SNARK in the ROM, with straightline knowledge soundness, that is based
on a certain IOP.
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1. Parse z as (y, t).
2. Parse wloc as (P, x).
3. Check that t ≤ T , M(P, x) = y, and M(P, x) runs in t steps.

– Recursive case: v is an internal node.
φh,M,T (z, wloc, (zi)i):
1. Parse z as (y, t).
2. Check that t = 0 and wloc = ⊥.
3. For each i, parse zi as (yi, ti) and check that ti ≤ T .
4. Check that h((yi)i) = y.

The base case in φh,M,T represents user computation requests, and the recursive
case represents aggregation. In practice, h is set to a concrete hash function (e.g.,
blake2s in [42]), M is set to a specific universal machine (e.g., a machine that executes
Cairo instructions [30]), and T to some large upper bound.

Moreover, φh,M,T does not impose any bound on the depth (or size) of a compliant
PCD distributed computation: given λ, T ∈ N, φh,M,T allows a chain of computations
of any length, independent of λ and T , to be aggregated together. In particular, given a
batch of base cases, it is possible to combine them in any arbitrary way by hashing the
outputs of their computations for some unknown number of times.

In sum, no prespecified upper bound N would support this compliance predicate.

Sketch of the Application.We outline how the aggregator uses a PCD scheme PCD =
(P,V) relative to the compliance predicate φh,M,T . Consider two computation requests
(P1, x1, t1) and (P2, x2, t2), where Pi is a program, xi is an input, and ti is a time
bound. The aggregator uses the PCD prover P to generate proofs π1, π2 attesting to
the φh,M,T -compliance of (y1, t1), (y2, t2) respectively, where y1 := P (x1), y2 :=
P (x2). Then, using these messages and proofs, the aggregator again uses the PCD P to
create a proof attesting to the φh,M,T -compliance of (y, 0), where y := h((y1, y2)).
More generally, the aggregator can generate a single compliance proof for a batch of
computation requests ((Pi, xi, ti))i as follows.

1. Compute the proofs for each user request (base case): For each i:
– yi := M(Pi, xi).
–

2. Compute the proofs for the second layer: For each neighboring pair (i, j) of the
computation requests:

– .
3. Keep aggregating proofs until there is only one node remaining. Output the last proof

.

The above procedure always aggregates two proofs. In practice, users may submit
computation requests in a streaming fashion. Hence, the above process can be gen-
eralized to handle streaming requests by greedily aggregating the requests submitted
together (more than 2 requests can be handled at once). The resulting PCD transcript is
not necessarily a binary tree.

This procedure is useful in multiple scenarios. One of them is when one or multiple
users submit a series of computation requests: it is possible to construct one SNARK
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proof for all the computations so that the Ethereum smart contract can verify this proof
and update the states all together. More specifically, the aggregator divides all requests
into smaller batches, and compliance predicate φh,M,T is able to handle each batch in
parallel and combine them together into one proof even when the computations are not
the same.

Prior work vs. our Result in this Application. Prior security analyses of PCD con-
structions (both from non-black-box extractors and from straightline extractors as in
[16,21]) establish upper bounds on the PCD knowledge soundness error that depend
on the transcript size and/or depth. Hence no security guarantees (for knowledge sound-
ness) are provided for the compliance predicate φh,M,T deployed in [42] described
above. Moreover, even if φh,M,T were modified to impose some pre-specified large
transcript size/depth, the security loss depending on these parameters would have to be
accounted for, which would cause a corresponding (and possibly large!) increase in the
security parameters used in that system. (In other words, the underlying STARK would
have to be much more secure to account for this loss.)

In contrast, our Theorem 1 establishes an upper bound on the PCD knowledge
soundness error that applies to the compliance predicate φh,M,T ; indeed, in the ROM
the adversary size does not matter, so the upper bound does not depend on either tran-
script size or depth (see the end of Sect. 1.1). In turn, since the underlying recursive
STARKs are a (heuristic) PCD construction obtained from SNARKs in the ROM, our
discussion in Sect. 2.3, provides new insights for practitioners. Specifically, that dis-
cussion suggests the security achieved by a non-recursive one-shot STARK proof is
inherited by the corresponding PCD scheme without any loss. This provides a heuristic
justification for the current settings of parameters in that system.

2.5 Technical Extension: A More General Analysis

The notion of straightline extraction for SNARKs that we used so far imposes two
requirements on the knowledge extractor E (see Definition 1): (i) E is deterministic; and
(ii) E does not query the oracle. These requirements are typically fulfilled by straightline
extractors for known relativized SNARKs. Under these requirements Theorem 1 yields
the upper bound κPCD(λ, q, s, N) ≤ κARG(λ, q, s+ O(N · tARG(λ, q))).

We additionally ask: how does the upper bound on κPCD change if we consider a
notion of straightline extraction that relaxes either of these requirements? Such relax-
ations can be useful; we give two examples.

– Randomness. The SNARK knowledge extractor E typically runs, as a subroutine, a
knowledge extractor for an underlying probabilistic proof, which in turn may rely
on a list-decoding algorithm for the error-correcting code used by the probabilistic
proof. Randomness can be used to speed up list-decoding algorithms and, if E were
required to be deterministic, those speedups would be ruled out.

– Querying the oracle. The SNARK knowledge extractor E may wish to query the
oracle so to determine the decision bit of the SNARK verifier on the given instance
and argument string (i.e., to compute Vf (x, π)).

In light of the above, we additionally give a general security analysis that upper bounds
the PCD knowledge soundness error κPCD without assuming either of the requirements,
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broadening the applicability of our result. While this analysis results in slightly larger
bounds, the bounds remain significant improvements over the prior state of the art.

Below, we elaborate on how we handle each relaxation individually; in the technical
sections, we handle both relaxations simultaneously (in which case the different types
of upper bounds combine in a single upper bound for both). Fix the security parameter
λ. The error κARG primarily depends on the number of queries made by the adversary
and the size of the adversary, which is the focus of the reasoning below. (The error κARG

depends also on other values; We refer the reader to the full version of this paper for all
technical details.)

– Probabilistic extractors. The basic analysis described in Sect. 2.1 that leads to the
upper bound κPCD(λ, q, s, N) ≤ N · κARG(λ, q, s+O(N · tARG(λ, q))) can be adapted
to hold for probabilistic extractors. For the i-th invocation of the SNARK extractor E ,
we consider a corresponding malicious argument prover ˜P that outputs the message-
proof pair in the label of the unique outgoing edge of the i-th vertex considered
by E. The extraction error for each malicious argument prover is upper bounded
by κARG(λ, q, s + O(N · tARG(λ, q))) (as the argument prover ˜P runs the q-query s-
size PCD prover ˜P to obtain the output of the PCD transcript and then invokes the
argument extractor for at most N times along with some post-processing). Finally,
the PCD knowledge soundness error follows from a union bound.
This bound is essentially tight. The knowledge soundness error ofEmay come either
from the choice of oracle or from E’s randomness. The latter case is something that,
intuitively, must be paid N times, once per extraction; and it might be that, say, half
of the knowledge soundness error is due to E’s randomness. (Each invocation of E
has an independent error from other invocations of E , so the errors accumulate.)
More generally, we could consider a definition of straightline knowledge soundness
for the SNARK that separates a global error κARG due to the oracle and a local error ε
due to E’s randomness. In this case, the upper bound would be κARG(λ, q, s+ O(N ·
tARG(λ, q))) + N · ε.

– Extractors with oracle queries. Suppose that the SNARK extractor E makes q′

queries to the oracle. In the PCD extractor E, we need to account for a query-answer
trace that grows with each invocation of the SNARK extractor E . Indeed, as per the
definition of straightline knowledge soundness of the SNARK, each invocation of
the SNARK extractor E takes in the query-answer trace of the corresponding mali-
cious SNARK prover, which in the security reduction is an algorithm that runs the
malicious PCD prover plus prior executions of E (each of which contributes new
queries).
A basic analysis here would establish a soundness error of roughly
κPCD(λ, q, s, N) ≤ ∑N

i=1 κARG(λ, q + i · q′, s + O(N · tARG(λ, q))). Indeed, after i
extractions, the query-answer trace for the execution of the i-th argument adversary,
which initially has length at most q due to the malicious PCD prover, increases by
at most i · q′. A union bound over all vertices gives the aforementioned bound.
A more careful analysis establishes a (tight) bound of roughly κPCD(λ, q, s, N) ≤
∑N

i=1 κARG(λ, q+ di · q′, s+ O(N · tARG(λ, q))), where di is the depth of the vertex
associated with the i-th extraction in the extracted PCD transcript T (which can be
exponentially smaller than size). Indeed, an extracted PCD transcript T is a tree;
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when using the SNARK extractor E for a vertex v, the query-answer trace that “mat-
ters” for v only needs to include (the basic query-answer trace of the malicious PCD
prover and) the queries and answers made by extractions on the path from v to the
root. Hence, by giving each E only the query-answer traces it needs, the number
of queries made by argument adversaries depends only on the depth of the PCD
transcript.

3 Preliminaries

Definition 2. An indexed relation R is a set of tuples (i,x,w) where i is the index, x
the instance, and w the witness. The corresponding indexed language L(R) is the set
of pairs (i,x) for which there exists a witness w such that (i,x,w) ∈ R.

Definition 3. For a distribution over oracles U , an oracle indexed relation RU is a set
of indexed relations {Rf : f ∈ U}.

Definition 4. The query-answer trace of an algorithm A with oracle access to f ∈
U(λ) is a list tr of query-answer pairs that includes the queries made by A along with

the corresponding answers by the oracle. We write z
tr←− Af to mean that A, given

oracle f , outputs z and has query-answer trace tr.

3.1 Non-Interactive Arguments in Oracle Models

We provide notation and definitions for (preprocessing) non-interactive arguments as
used in this paper. We do not describe the soundness property, as we always use a
knowledge soundness property.

Definition 5. A (preprocessing) non-interactive argument relative to an oracle distri-
bution U for an oracle indexed relation RU is a tuple of algorithms ARG = (G, I,P,V)
that works as follows.

– G(1λ) → pp: On input a security parameter λ (in unary), the generator G samples
public parameters pp.

– If (pp, i) → (ipk, ivk): On input the public parameters pp and an index i for the
relation Rf , the indexer I deterministically computes index-specific proving and
verification keys (ipk, ivk).

– Pf (ipk,x,w) → π: On input an index-specific proving key ipk, an instance x, and
a corresponding witness w, the prover P computes an argument string π that attests
to the claim that (i,x,w) ∈ Rf .

– Vf (ivk,x, π) → b: On input an index-specific verification key ivk, and an instance
x, and a corresponding argument string π, the verifier V outputs a decision a bit b.

Definition 6 (Perfect Completeness). For every security parameter λ ∈ N and adver-
sary A,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

(i,x,w) ∈ Rf

⇓
Vf (ivk,x, π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ← U(λ)
pp ← G(1λ)

(i,x,w) ← Af (pp)
(ipk, ivk) ← If (pp, i)

π ← Pf (ipk,x,w)

⎤

⎥

⎥

⎥

⎥

⎦

= 1 .
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Definition 7 (Straightline Knowledge Soundness). ARG has (straightline) knowl-
edge soundness error κARG with extraction time tARG if there exists a deterministic
extractor E such that, for every security parameter λ ∈ N, auxiliary input distribution
D, query bound q ˜P ∈ N, size bound s ˜P ∈ N, q ˜P-query s ˜P-size deterministic circuit ˜P ,
index size bound n ∈ N, and instance size bound k ∈ N,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

|i| ≤ n
∧ |x| ≤ k

∧ (i,x,w) �∈ Rf

∧Vf (ivk,x, π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ← U(λ)
pp ← G(1λ)
ai ← D(pp)

(i,x, π) tr←− ˜Pf (pp, ai)
(ipk, ivk) ← If (pp, i)
w ← E(pp, i,x, π, tr)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ κARG(λ, q ˜P , s ˜P , n, k) ,

and E runs in time tARG(λ, q ˜P , n, k).

Remark 3. The auxiliary input distribution D can be the uniform random distribution.
In that case the auxiliary input ai is a uniform random string, which enables the argu-
ment adversary ˜P to be randomized. In other words, ˜P is deterministic relative to the
auxiliary input ai.

3.2 Proof-Carrying Data in Oracle Models

We provide notation and definitions for (preprocessing) proof-carrying data as used in
this paper. This requires first introducing definitions for PCD transcripts and compli-
ance.

Definition 8. A (PCD) transcript T is a directed acyclic graph where each vertex
u ∈ V (T) is labeled by local data w

(u)
loc and each edge e ∈ E(T) is labeled by a

message z(e) �= ⊥. The output of a transcript T, denoted out(T), is the message z(e)

where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 9. A compliance predicate φ (with M input messages of size l) is an oracle
boolean circuit that receives as input 1 output message of size at most l, some local
data, and M input messages of size at most l, and outputs a decision bit. In particular,
φ outputs 0 if more than M + 1 messages are given or any of the input messages are
longer than l bits. We use |φ| to denote the size of the circuit φ and qnum(φ) to denote
the number of queries by φ to the oracle function.

Definition 10. Let U be an oracle distribution and let Φ be a class of compliance pred-
icates. Consider f ∈ U and φ ∈ Φ. Given a transcript T, a vertex u ∈ V (T) is
(φ, f)-compliant if the following holds for every outgoing edge e = (u, v) ∈ E(T)
from u:

– (base case) if u has no incoming edges, φf (z(e), w(u)
loc , (⊥)) = 1;

– (recursive case) if u has incoming edges e1, . . . , eM ,
φf (z(e), w(u)

loc , (z(e1), . . . , z(eM ))) = 1.
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The transcript T is (φ, f)-compliant if E(T) �= ∅ and every vertex u ∈ V (T) is
(φ, f)-com-
pliant.

Definition 11. We define the depth, size, and arity of a PCD transcript T.

– The depth depth(T) is the number of vertices of the longest path in T.
– The size size(T) is the number of non-sink vertices in T.
– The arity arity(T) is the maximum number of incoming edges of any vertex in T.

Definition 12. We define the transcript depth, transcript size, and transcript arity of a
compliance predicate φ. Let U be an oracle distribution.

– The transcript depth is

tdepth(φ) := max
f∈U

T is (φ,f)-compliant

depth(T) ;

– The transcript size is

tsize(φ) := max
f∈U

T is (φ,f)-compliant

size(T) ;

– The transcript arity is

tarity(φ) := max
f∈U

T is (φ,f)-compliant

arity(T) .

Definition 13. A compliance predicate φ is (Φ,N,D,M,S,Q)-compatible if: φ ∈ Φ;
tsize(φ) ≤ N ; tdepth(φ) ≤ D; tarity(φ) ≤ M ; |φ| ≤ S; and qnum(φ) ≤ Q.

Definition 14. A proof-carrying data scheme (PCD scheme) for a class of com-
pliance predicates Φ relative to an oracle distribution U is a tuple of algorithms
PCD = (G, I,P,V) that works as follows.

– G(1λ) → pp: On input a security parameter λ (in unary), the generator G samples
public parameters pp.

– I
f (pp, φ) → (ipk, ivk): On input the public parameters pp and the compliance

predicate φ, the indexer I deterministically computes proving and verification keys
(ipk, ivk).

– : On input the proving key ipk, a message z,

a local data wloc, and a list of incoming messages and proofs , the
prover P outputs a new proof for the outgoing message z.

– : On input the verification key ivk, a message z, and a corre-
sponding proof , the verifier V computes a decision bit b.
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Definition 15 (Perfect Completeness). For every security parameter λ ∈ N and
adversary A,

Definition 16 (Straightline Knowledge Soundness). PCD has (straightline) knowl-
edge soundness error κPCD with extraction time tPCD if there exists a deterministic
extractor E such that, for every security parameter λ ∈ N, auxiliary input distribution
D, indexer query bound qI ∈ N, indexer size bound sI, adversary query bound q˜P ∈ N,
adversary size bound s˜P ∈ N, q˜P-query s˜P-size deterministic circuit ˜P, predicate size
bound N ∈ N, predicate depth bound D ∈ N, predicate circuit size bound S ∈ N, pred-
icate query number bound Q ∈ N, number of input edges bound M ∈ N, and message
size bound l ∈ N,

and E runs in time tPCD(λ, qI, sI, q˜P, N,D, S,Q,M, l).

4 From Relativized ARG to PCD: Construction

We describe how to construct a PCD scheme from a relativized non-interactive argu-
ment (Theorem 3), and after that we describe how to construct a straightline PCD
extractor from an underlying straightline non-interactive argument extractor (Theorem
4).

These constructions are straightforward adaptations to the relativized case of prior
constructions in the literature ( [7,8,20,21]). Our main contribution is the security anal-
ysis of the PCD scheme (via this straightline PCD extractor), which we postpone to
Sect. 5.

Let U be an oracle distribution. The definition below is a circuit used to realize the
recursive composition.

Construction 2. Fix λ ∈ N. Let f ∈ U(λ). Let V(λ,n,k) be the circuit corresponding to
the ARG verifier V with security parameter λ, checking indices of sizes at most n and
instances of size at most k.

[C(λ,M,n,k)
V,φ ]f ((ivk, zout), (wloc,zin,πin)):

1. Check that φf (zout, wloc,zin) = 1.
2. If there exists i such that (zin[i],πin[i]) �= ⊥: check that

[V(λ,n,k)]f (ivk, (ivk,zin[i]),πin[i]) = 1 for every i ∈ [M ].
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Construction 3 (PCD from ARG). Let ARG = (I,P,V) be a non-interactive argu-
ment for the oracle indexed relation RU

CSAT. We construct a PCD scheme PCD =
(G, I,P,V) as follows.

– G(1λ):
1. Sample public parameters pp ← G(1λ).
2. Output pp := pp.

– I
f (pp, φ):
1. Parse pp as pp.
2. Construct the oracle recursion circuit C := C

(λ,M,n,k)
V,φ .

3. Compute the index key pair (ipk, ivk) ← If (pp, C).
4. Output (ipk, ivk) := ((ipk, ivk), ivk).

– :
1. Parse the proving key ipk as (ipk, ivk).
2. πout ← Pf (ipk, (ivk, zout), (wloc,zin,πin)).
3. Output πout.

– :
1. Parse the verification key ivk as ivk.
2. Parse the PCD proof as an argument proof πout.
3. Check that Vf (ivk, (ivk, zout), πout) = 1.

Construction 4 (Knowledge extractor for PCD). Let E be a straightline knowledge
extractor for ARG. We construct a straightline knowledge extractor E for PCD as fol-
lows.

:
1. Parse pp as pp.
2. Parse as πout.
3. Parse ivk as ivk.
4. Initialize graph T = (V,E) where V = {v0, v1} and E = {(v1, v0)}.
5. Label the edge (v1, v0) by (zout, πout).
6. Initialize the extraction queue L := (v1).
7. Set i := C

(λ,M,n,k)
V,φ .

8. While L is non-empty:
(a) Let v be the first vertex in L, remove the first vertex v from L.
(b) Let z(e) and π(e) be the message and proof in the label of the unique outgo-

ing edge e from v.
(c) Let (iv,xv, πv) := (i, (ivk, z(e)), π(e)).
(d) Run the argument extractor wv ← E(pp, iv,xv, πv, tr).

(e) Parse .
(f) Label v in T by w

(v)
loc .

(g) For every j such that z
(v)
in [j] �= ⊥:

i. Add a new vertex v′ to V , and an edge (v′, v) in E.

ii. Parse .
iii. Add the label (z(v)

in [j], π(v′,v)) to the edge (v′, v) in T.
iv. Add v′ to L.

9. Output the augmented transcript T.
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5 From Relativized ARG to PCD: Security Reduction

In Sect. 4, we described how to construct a PCD scheme from a relativized non-
interactive argument, and how to construct a straightline PCD extractor from an underly-
ing straightline non-interactive argument extractor. In this section, we give our security
analysis of the PCD scheme, via this straightline PCD extractor.

Let U be an oracle distribution. Suppose that ARG = (G, I,P,V) is a non-
interactive argument for the oracle CSAT relation RU

CSAT with straightline knowledge
soundness error κARG(λ, q ˜P , s ˜P , n, k) and extraction time tARG(λ, q ˜P , n, k). Recall that
λ ∈ N denotes the security parameter, S ∈ N the bound on the predicate circuit size,
M ∈ N the bound on the arity of the PCD transcript, and l the bound on the size of each
message. We define an index size bound n and instance size bound k:

– n := nsize (λ, S,M, l), where nsize (·) is carefully defined in Lemma 1; and
– k := |ivk| + l.

Theorem 5. The PCD scheme PCD = (G, I,P,V) constructed from ARG using Theo-
rem 3 has
straightline knowledge soundness error κPCD = κPCD(λ, qI, sI, q˜P, s˜P, N,D, S,Q,M, l)
and extraction time tPCD = tPCD(λ, qI, sI, q˜P, N,D, S,Q,M, l) such that

κPCD ≤ κARG(λ, q ˜P , s ˜P , n, k) ,

tPCD ≤ N · (poly(logN, logM, l, arglen(n, k)) + tARG(λ, q˜P + qI, n, k)) ,

where

– q ˜P := q˜P + qI + N · Q;
– s ˜P := s˜P + sI + N · S + N · vsize(λ, n, k) + tPCD, where vsize(λ, n, k) is the size

of the argument verifier V when invoked with security parameter λ, index of size n,
and instance of size k.

– arglen(λ, n, k) is the size of the argument proof π outputted by the argument prover
when invoked with security parameter λ, index of size n, and instance of size k.

We analyze the knowledge soundness error in Sect. 5.1 and the extraction time in
Sect. 5.2.

Remark 4 (The Information-Theoretic Setting). We discuss a special case of Theorem 5
that yields an even stronger result in a notable setting. Suppose thatARG has straightline
knowledge soundness error κARG that does not depend on the size of the adversary s ˜P ;
for example, this is the case in the “pure” random oracle setting, where adversaries
may be computationally unbounded (and are limited only in the number of queries to
the random oracle). Suppose further that the compliance predicate φ does not query
the oracle (Q = 0); this is a common case as typically the oracle appears only in the
argument verifier (not part of the compliance predicate). In this case the knowledge
error is as follows:

κPCD ≤ κARG(λ, q˜P + qI, n, k) .



Security Bounds for Proof-Carrying Data from Straightline Extractors 489

5.1 Knowledge Soundness Error

The analysis below is stated for non-interactive arguments with split verification (Defi-
nition 17), a property that holds essentially without loss of generality (Remark 5).

Definition 17. ARG = (G, I,P,V) has split verification if the argument string con-
tains a list of query-answer pairs tr that the verifier V checks during verification. More
precisely, V can be written as follows:

Vf (ivk,x, π):
1. Check that VerifyProof(ivk,x, π) = 1.
2. Check that VerifyTracef (π) = 1.

The above subroutines are defined as follows:

– VerifyProof(ivk,x, π): Parse π as (π′, tr) and check that V tr(ivk,x, π′) = 1. (Out-
put 0 if V makes a query q that is not contained in tr.

– VerifyTracef (π): Parse π as (π′, tr), and check that, for every (q, a) ∈ tr, f(q) = a.

Remark 5. Any non-interactive argument system can be modified to satisfy Definition
17, by augmenting the argument string with the list of query-answer pairs to be made
by the argument verifier. We assume split verification throughout this proof.

Let ˜P be a q˜P-query PCD prover. Our goal is to upper bound the following expres-
sion:

(1)
As explained in Sect. 2.1, we construct an argument prover ˜P .

˜Pf (pp, ai):
1. Set pp := pp.

2. Run .
3. Run (ipk, ivk) trI←− I

f (φ).
4. Set tr := tr˜P ‖ trI.
5. Parse the PCD proof as an argument string πout.
6. Parse the PCD verification key ivk as an argument verification key ivk.
7. Initialize a graph T = (V,E) where V = {v0, v1} and E = {(v1, v0)}.
8. Label the edge (v1, v0) by (zout, πout).
9. Initialize the extraction queue as L := (v1).
10. Set i := C

(λ,M,n,k)
V,φ .

11. While the extraction queue L is non-empty:
(a) Let v be the first vertex in L, remove the first vertex v from L.
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(b) Let z(e) and π(e) be the message and proof in the label of the unique outgo-
ing edge e from v.

(c) Let (iv,xv, πv) := (i, (ivk, z(e)), π(e)).
(d) Run the argument extractor wv ← E(pp, iv,xv, πv, tr).

(e) Parse wv as .
(f) Label the vertex v in T by w

(v)
loc .

(g) For every j such that z(v)
in [j] �= ⊥:

i. Add a new vertex v′ to V , and an edge (v′, v) in E.

ii. Parse as π(v′,v).
iii. Add the label (z(v)

in [j], π(v′,v)) to the edge (v′, v) in T.
iv. Add the vertex v′ to the extraction queue L.

(h) Let (v1, . . . , vM ) be the child-vertices just added for v (maybe there are less
than M child-vertices of v in T, but the exact number does not matter as
long as it is upper-bounded by M ).

(i) Let e be the outgoing edge of v, check if at least one of the following is true:
i. φf (z(e), w(v)

loc , (z
(v1,v), . . . , z(vM ,v))) �= 1.

ii. There exists i ∈ [M ] such that VerifyProof(ivk, (ivk, z(vi,v)),
π(vi,v)) �= 1, where VerifyProof is as defined in Definition 17.

If the check passes, then output (i, (ivk, z(e)), π(e)).
12. Output (i, (ivk, z(e)), π(e)) where e is the topologically first edge in E. (This is

a default output.)

The argument prover ˜P queries f when ˜P, I, and (each time it runs) φ. Hence the
query complexity of ˜P can be upper bounded as follows:

q ˜P ≤ q˜P + qI + N · Q .

Similarly, the size of ˜P can be upper bounded as follows:

s ˜P ≤ s˜P + sI + N · S + N · vsize(λ, n, |ivk| + l) + tPCD .

For the rest of the discussion, we consider the following experiment:

Experiment 6
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To bound the probability in Eq. (1), we note that the condition out(T) = zout always
holds by Theorem 4, so we focus on the probability that T is not (φ, f)-compliant.
Intuitively, our goal is to reduce the probability of T being not (φ, f)-compliant to
the probability that the argument prover ˜P constructed above successfully outputs an
argument string that fools the argument verifier.

Towards this, we use a notion called strong (φ, f)-compliance, which requires all
vertices to be (φ, f)-compliant and also every index-instance-proof tuple associated
with an edge to be accepted by the argument verifier. If a transcript T is strongly (φ, f)-
compliant then, in particular, it is (φ, f)-compliant.

Definition 18. A transcript T = (V,E) is strongly (φ, f)-compliant if the following
holds:

– For every vertex u ∈ V , u is (φ, f)-compliant.
– For every edge e ∈ E, Vf (ivk, (ivk, z(e)), π(e)) = 1.

Remark 6. The transcript T output by the PCD extractor E in Theorem 4 is a tree, so
every vertex v ∈ V (T) has a unique outgoing edge. Definitions 10 and 18 can be
simplified accordingly for the purpose of this discussion.

If the transcript T in Theorem 6 is not (φ, f)-compliant, then it must be the case
that T is not strongly (φ, f)-compliant, which implies that there exists v ∈ V (T) such
that at least one of the following is true:

1. φf (z(e), w(v)
loc , (z

(v1,v), . . . , z(vM ,v))) �= 1,
2. Vf (ivk, (ivk, z(vi,v)), π(vi,v)) �= 1 for some i ∈ [M ],

where e = (v, v′) is the unique outgoing edge of v and v1, . . . , vM are child-
vertices of v. Hence, by definition of C

(λ,M,n,k)
V,φ (Theorem 2), (iv,xv,wv) :=

(C(λ,M,n,k)
V,φ , (ivk, z(e)), π(e)) �∈ Rf

CSAT.
Let v be the first such vertex (in the order that E extracts). Let i be the itera-

tion in which E extracts v. Since E is deterministic, we know that ˜P also extracts
v in the i-th iteration, and the corresponding index-instance-proof tuple (iv,xv, πv) :=
(i, (ivk, z(e)), π(e)) for e = (v, v′) is the same as the one in E. Hence, (iv,xv,wv) �∈
RCSAT by the argument above. Moreover, since v is the first such vertex, we can deduce
that Vf (i, (ivk, z(e)), π(e)) = 1. If (iv,xv, πv) is the tuple output by ˜P , then from Def-
inition 7,

where n := nsize (λ, S,M, l) (nsize (·) is the circuit size defined in Lemma 1) and
k := |ivk| + l.

We are left to show that ˜P outputs (iv,xv, πv). We proceed in two steps.
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– Fix any j < i. We argue that ˜P does not output at iteration j. Let vj be the
vertex extracted at iteration j, and let (ij ,xj , πj ,wj) be the corresponding index,
instance, proof, and witness of vj . Let ej be the unique outgoing edge of vj , and let
vj,1, . . . , vj,M be the child-vertices of vj . Since we assume that v is the first vertex
that “breaks” the strong compliance of T, it must be the case that

• φf (z(ej), w
(ej)
loc , (z(vj,1,vj), . . . , z(vj,M ,vj))) = 1; and

• Vf (ivk, (ivk, z(vj,k,vj)), π(vj,k,vj)) = 1 for all k ∈ [M ].
Thus, for all k ∈ [M ]we know that VerifyProof(ivk, (ivk, z(vj,k,vj)), π(vj,k,vj)) = 1,
which follows since Vf (ivk, (ivk, z(vj,k,vj)), π(vj,k,vj)) = 1. Therefore, the checks
in Item 11i cannot pass, and ˜P does not output at iteration j.

– We argue that ˜P outputs (iv,xv, πv) at iteration i. Recall that v is the first vertex
that “breaks” the strong compliance of T. Therefore, according to Definition 18, we
distinguish between following two cases:

• φf (z(e), w(v)
loc , (z

(v1,v), . . . , z(vM ,v))) �= 1: In this case, the first check in Item
11i passes, and ˜P outputs (iv,xv, πv) as desired.

• Vf (ivk, (ivk, z(vk,v)), π(vk,v)) �= 1 for some k ∈ [M ]: We have either
VerifyProof(ivk, (ivk, z(vi,v)), π(vi,v)) �= 1, which makes the second check in
Item 11i pass as desired; or VerifyTracef (π(vk,v)) �= 1, which cannot happen if

the PCD verifier V accepts .

5.2 Extraction Time Bound

We prove the upper bound on extraction time claimed in Theorem 5.

Proof. For every depth d and i-th vertex at depth d, we construct an argument prover
˜Pd,i for the invocation of the argument extractor E for the i-th vertex at depth d. (We
consider v1 to be the 0-th vertex at depth 1.)

Construction 7. The argument prover ˜P1,0 corresponds to the first invocation of E in
E.

˜Pf
1,0(pp, ai):
1. Set pp := pp.

2. Run .
3. Run (ipk, ivk) ← I

f (pp, φ).
4. Parse ivk as ivk.
5. Parse as πout.
6. Set i := C

(λ,M,n,k)
V,φ .

7. Output (i, (ivk, zout), πout).

Construction 8. The (recursively defined) argument prover ˜Pd,i corresponds to the
invocation of E for the i-th vertex at depth d for d > 1 and 0 ≤ i < Md−1 in E.

˜Pf
d,i(pp, ai):
1. Let (parent,pos) := (i/M�, i mod M).
2. Run (i,x, π) tr←− ˜Pf

d−1,parent(pp, ai).



Security Bounds for Proof-Carrying Data from Straightline Extractors 493

3. If (i,x, π) = ⊥, halt and output ⊥.
4. Run the argument extractor w ← E(pp, i,x, π, tr).
5. Parse w as .
6. Parse x as (ivk, z).
7. If zin[pos] = ⊥, output ⊥.

8. Otherwise, output .

The running time of E can be upper bounded in terms of the running time of E and
extra processing time for the outputs of E . Specifically, for every d and i, let qd,i be the
number of queries made by ˜Pd,i, nd,i and kd,i be the sizes of the index and instance
output by ˜Pd,i. The running time of the argument extractor E when invoked for the i-th
vertex v at depth d is, by definition, at most

tARG(λ, qd,i, nd,i, kd,i) .

We now upper bound qd,i, nd,i, kd,i.

Index Size and Instance Size. Every ˜Pd,i outputs an instance of the form x = (ivk, z),
so kd,i ≤ k = |ivk(λ, n)|+l. Every ˜Pd,i outputs the index i = C

(λ,M,n,k)
V,φ (the recursive

circuit), whose size is at most

csize (λ, S,M, l, n) := S + O(M · l) + M · vsize(λ, n, |ivk(λ, n)| + l) .

Above:

– S is an upper bound on the predicate circuit size |φ|;
– O(M · l) bounds the cost of going over all incoming messages;
– vsize(λ, n, k) is the size of V(λ,n,k).

The below lemma gives a bound on the above expression, showing that nd,i ≤ n =
nsize (λ, S,M, l).

Lemma 1 ([20, Lemma 11.8]). Suppose that for every security parameter λ ∈ N

and message size bound l ∈ N, the ratio of verifier circuit size to index size
vsize(λ,n,|ivk(λ,n)|+l)

n is monotonically decreasing in n. Then there exists a size function
nsize (λ, S,M, l) such that

∀λ, S,M, l ∈ N, csize (λ, S,M, l, nsize (λ, S,M, l)) ≤ nsize (λ, S,M, l) .

Query Bound on the Argument Adversary. The malicious PCD prover ˜P makes q˜P

queries to the oracle, and the PCD indexer I makes qI queries to the oracle. Therefore,
the argument prover ˜P1,0 makes q˜P + qI queries to the oracle; in fact, every argument
prover ˜Pd,i makes q˜P + qI queries to the oracle.

Therefore, the cost of running the argument extractor E across all its invocations in
E is at most

N · tARG(λ, qd,i, nd,i, kd,i) .
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Additionally, during the execution of E, for every vertex in the transcript, the
extractor E reads the input messages and attaches the augmented label to the vertex,
which takes at most poly(l, arglen(nd,i, kd,i)) bit operations, where arglen(nd,i, kd,i)
is the length of the argument proof in the label of the vertex. Also, the basic pop
and push operations for a queue take at most O(logN) steps since there are at
most tsize(φ) ≤ N extracted vertices. Therefore, the overhead is at most N ·
poly(logN, logM, l, arglen(nd,i, kd,i)).

In conclusion, E runs in time

N · (poly(logN, logM, l, arglen(n, k)) + tARG(λ, q˜P + qI, n, k)) . (2)
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