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Preface

The 22nd Theory of Cryptography Conference (TCC 2024) was held during December
2–6, 2024, at Bocconi University in Milano, Italy. It was sponsored by the International
Association for Cryptologic Research (IACR). The general chair of the conference was
Emmanuela Orsini.

The conference received 172 submissions, of which the Program Committee (PC)
selected 68 for presentation, giving an acceptance rate of 39.5%. Each submission was
reviewed by at least three PC members in a single-blind process. The 50 PC members
(including PC chairs), all top researchers in our field, were helped by 185 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the tenth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2004: “Notions of Reducibility between
Cryptographic Primitives,” by Omer Reingold, Luca Trevisan, and Salil P. Vadhan. The
award committee recognized this paper “for providing a rigorous and systematic taxon-
omy of reductions in cryptography, and in particular coining fully black-box reductions
and motivating their use in barrier results.”

We are greatly indebted to the many people who were involved in making TCC 2024
a success. Thank you to all the authors who submitted papers to the conference and to the
PC members for their hard work, dedication, and diligence in reviewing and selecting
the papers.We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. Finally, thank you to the
general chair Emmanuela Orsini and her team at Bocconi University, as well as to the
TCC Steering Committee.

October 2024 Elette Boyle
Mohammad Mahmoody
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Multi-authority Functional Encryption
with Bounded Collusions from Standard

Assumptions

Rishab Goyal and Saikumar Yadugiri(B)

University of Wisconsin-Madison, Madison, WI 53706, USA
{rishab,saikumar}@cs.wisc.edu

Abstract. Multi-Authority Functional Encryption (MA-FE) [Chase,
TCC’07; Lewko-Waters, Eurocrypt’11; Brakerski et al., ITCS’17 ] is a
popular generalization of functional encryption (FE) with the central
goal of decentralizing the trust assumption from a single central trusted
key authority to a group of multiple, independent and non-interacting,
key authorities. Over the last several decades, we have seen tremendous
advances in new designs and constructions for FE supporting different
function classes, from a variety of assumptions and with varying levels of
security. Unfortunately, the same has not been replicated in the multi-
authority setting. The current scope of MA-FE designs is rather limited,
with positive results only known for certain attribute-based functional-
ities or from general-purpose code obfuscation. This state-of-the-art in
MA-FE could be explained in part by the implication provided by Brak-
erski et al. (ITCS’17). It was shown that a general-purpose obfuscation
scheme can be designed from any MA-FE scheme for circuits, even if the
MA-FE scheme is secure only in a bounded-collusion model, where at
most two keys per authority get corrupted.

In this work, we revisit the problem of MA-FE, and show that exist-
ing implication from MA-FE to obfuscation is not tight. We provide new
methods to design MA-FE for circuits from simple and minimal crypto-
graphic assumptions. Our main contributions are summarized below–
1. We design a poly(λ)-authority MA-FE for circuits in the bounded-

collusion model. Under the existence of public-key encryption, we
prove it to be statically simulation-secure. Further, if we assume
sub-exponential security of public-key encryption, then we prove it
to be adaptively simulation-secure in the Random Oracle Model.

2. We design a O(1)-authority MA-FE for circuits in the bounded-
collusion model. Under the existence of 2-party or 3-party non-
interactive key exchange and public-key encryption, we prove it to
be adaptively simulation-secure.

3. We provide a new generic bootstrapping compiler for MA-FE for
general circuits to design a simulation-secure (n1 + n2)-authority
MA-FE from any two n1-authority and n2-authority MA-FE.

R. Goyal—Support for this research was provided by OVCRGE at UW-Madison with
funding from the Wisconsin Alumni Research Foundation.
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15366, pp. 3–30, 2025.
https://doi.org/10.1007/978-3-031-78020-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78020-2_1&domain=pdf
http://orcid.org/0000-0002-5965-1057
https://doi.org/10.1007/978-3-031-78020-2_1
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1 Introduction

Functional encryption (FE) [20,56] has revolutionized the study of public-key
encryption [31]. It challenged the widespread belief that encryption is an all-
or-nothing primitive, where you either learn the full plaintext or nothing. FE
provides fine-grained access over encrypted data enabling recovery of only partial
information about plaintext. Over the last several years, viewing through the
FE lens has led to dramatic re-envisioning of encryption with varying levels
of expressiveness such as identity-based encryption (IBE) [18,27,59], attribute-
based encryption (ABE) [43,56], inner-product functional encryption (IPFE) [22,
49], 1-sided/2-sided predicate encryption (PE) [22,41,42,49,62] and more.

In the standard FE formulation, there is a central trusted authority that
generates the global parameters (MPK,MSK), a master public-secret key pair.
Using the master secret key MSK, it can generate a decryption key SKx for
any attribute x, where SKx enables decryption to f(x) from any ciphertext CT
encrypting a function f . Unfortunately, this trust model is too strong for many
applications, as it implicitly embeds a key-escrow problem. To address this defi-
ciency, functional encryption has been generalized and studied in far more weaker
trust models. (See [2] for a detailed discussion on many such generalizations.)

Decentralizing FE. One of the most well adopted such generalizations of FE
is multi-authority functional encryption (MA-FE) [24–26,51]. MA-FE general-
izes FE by decentralizing the trust to a group of multiple, independent and
non-interacting, key authorities. Each key authority generates its own master
public-secret key (mpki,mski) asynchronously and completely oblivious of other
authorities. From an end-user’s perspective, MA-FE just looks like a regular
(single-authority) FE system with master public key MPK = (mpki)i, except it
receives its decryption key SKx in the form of n disjoint partial keys (skGID,i,x[i])i
from n different key authorities (where each authority just uses its own mski and
GID is the user’s global identifier to tie together partial keys coming from different
authorities). In other words, each key authority controls the master key material
for only a portion of the full encryption system. This decentralizes trust from one
central authority to a group of n individually operating authorities, while GID
ensures partial keys issued to the same user by different authorities are “linked”.

To model real-world threats while formalizing MA-FE security, the standard
approach is to consider two types of corruptions – (1) partial decryption key
corruptions: here an adversary gets a partial key skGID,i,x[i] for some authority i
and partial attribute x[i] and identifier GID, and (2) key authority corruptions:
here an adversary gets a master key mski for authority i. Informally, MA-FE
security states that an attacker cannot learn anything from a ciphertext ct,
encrypting function f , except from what it can learn by legitimately decrypting
using valid combinations of the partial decryption keys and authority master
keys it has.
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What Do We Know? Although MA-FE was formally introduced almost a decade
ago1 [24], we have not seen significant progress in terms of new designs for
MA-FE. And, this is not due to the lack of community-wide efforts. Since the
original proposal of multi-authority attribute-based encryption (MA-ABE) by
Chase [25] in 2007, numerous works have studied MA-FE for different classes,
but the progress from simple assumptions has either been stuck at MA-ABE for
monotone span programs [51], or its generalization to inner-product function-
ality [2]. Moreover, to the best of our knowledge, the only MA-FE construction
that we currently have, that goes beyond such attribute-based functionalities,
is the original obfuscation based construction by Brakerski et al. [24], who for-
mally defined and designed MA-FE for arbitrary polynomial-time computations
based on sub-exponentially secure indistinguishability obfuscation (iO) [37,57]
and injective one-way functions.

The current state-of-the-art for MA-FE is embarrassingly dissatisfying! This
is unlike (single-authority) FE, where we have seen tremendous progress over
the years. Just in the bounded collusion model, we have had multiple FE con-
structions for general circuits for over a decade [3,4,9,35,36,39,55]. And, even in
the fully collusion resistant setting, we have numerous advanced systems such as
for quadratic functions [11,52], “degree 2.5” or partially hiding quadratic func-
tions [6], attribute-based predicates and their variants [19,40,43], recently cul-
minating in FE for general circuits from a combination of well-founded assump-
tions [46,47].

Why is MA-FE this Hard? Although the lack of progress towards new designs
of MA-FE for general circuits suggests an inherent difficulty, there is a deeper
underlying barrier that we discuss next. In addition to the MA-FE construction
from (sub-exponential) iO, Brakerski et al. [24] provided a complementary result
proving that any secure MA-FE scheme for general circuits implies an obfuscation
scheme for general circuits. They proved that the implication to obfuscation
follows as long as the MA-FE system is secure when either (i) one key authority
gets corrupted, or (ii) two partial decryption keys can be corrupted for every key
authority. This two-sided implication between MA-FE and obfuscation highlights
the technical barrier in designing new MA-FE constructions.

At this point, it seems quite convincing that breaking new ground in the
context of MA-FE suffers from the same barriers that we have for code obfusca-
tion [12]. Moreover, the implication by Brakerski et al. [24] follows even when
an attacker just learns 2 partial decryption keys per authority (i.e., total of 2n
partial keys with n authorities). Thus, it appears that even designing MA-FE in
the bounded collusion model [33,38,55] faces the same strong barriers as we have
for code obfuscation. For example, this points to the impossibility of simulation-
secure MA-FE for general circuits in the standard model.

Is this Implication Tight? Does Bounded-Collusion MA-FE Really Give Obfusca-
tion? Recall the MA-FE-based obfuscation construction by Brakerski et al. [24].
1 Its predecessor, multi-authority attribute-based encryption (MA-ABE) [25,26,51],

was proposed nearly two decades ago.
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To obfuscate an n-bit circuit C, an obfuscator samples n MA-FE master key pairs
(mpki,mski), and it encrypts the circuit C under the joint master public key
MPK = (mpki)i to create an encrypted circuit Enc(MPK, C). Now to enable cir-
cuit evaluation, the obfuscator generates 2n partial decryption keys (skGID,i,b)i,b.
That is, for authority i, it generates two partial keys for both attribute bits, 0
and 1. The obfuscated circuit contains the encrypted circuit Enc(MPK, C) and 2n
partial secret keys (skGID,i,b)i,b. An evaluator picks half of the keys (skGID,i,x[i])i,
depending upon its n-bit input x, and uses them to decrypt the MA-FE cipher-
text. Correctness of obfuscation follows from MA-FE correctness, and as long
as MA-FE is secure even when two partial keys per key authority can be cor-
rupted, then security of obfuscation follows. Brakerski et al. [24] used the above
argument (and its extensions2) to argue necessity of obfuscation.

While this might seem tight, a closer inspection reveals a fundamental issue.
The claim that MA-FE is as hard as code obfuscation, even when a bounded
number of secret keys get corrupted, is not true! This is because in the above
obfuscation construction, the obfuscator generates two partial secret keys for
the same GID for every authority. In other words, it generates two partial keys
for same GID with distinct attribute bits. At first this seems a benign thing
to do, but this conflicts with the classical motivation and application scenario
of MA-FE. As explained by Chase, Chow, Lewko, and Waters [25,26,51], the
notion of a per-user global identifier was introduced to avoid “mix-and-match”
attacks. To expand on this, since the key authorities are completely decentralized
and working asynchronously, and each authority only gives a partial key for its
portion of the attribute, then what prevents two users from combining their
partial secret keys!? To avoid this in the multi-authority regime, each user is
associated with a public global identifier GID (which may or may not contain
information3 about its full attribute x). This ensures that only partial keys
generated for the same GID can be used together, preventing mix-and-match
attacks.

The summary of above discussion is that, in any typical application scenario,
an authority does not need to generate more than one partial key for a single GID.
Thus, it seems most reasonable to consider attackers that receive only one partial
key per authority for every unique GID. This is the standard approach in the
vast MA-ABE literature too [2,5,25,26,28–30,35,50,51,53,54,60]. However, to
design obfuscation from MA-FE, we need security when at least two partial keys
per authority (for some GID) have been corrupted, or an attacker can corrupt
key authorities themselves. Due to this mismatch, it is unclear whether the

2 The extension was to consider authority corruptions instead, and that could reduce
n, the number of key authorities, to just 1 while maintaining the implication to
obfuscation.

3 The motivation behind not including attribute x in the clear in identifier GID is to
get some hiding property about a user’s attribute. Since each key authority only
learns a portion of the user’s attribute along with the public user identifier, thus it
provides attribute privacy from a malicious key authority.
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implication from MA-FE to obfuscation still holds when an attacker can only
corrupt a fixed number of identifiers (GIDq)q.

Our Results. In this work, we provide new methods to design MA-FE for general
circuits from simple and minimal assumptions. All our results are in the bounded-
collusion model [39,55], naturally generalized to the multi-authority setting [35,
60]. We summarize our main results below.

1. For all polynomials n = n(λ), Q = Q(λ), we design a statically4-secure n-
authority MA-FE for general circuits secure, as long as at most Q user get
corrupted, under the minimal assumption of PKE.

2. Next, we show two rather interesting and incomparable approaches to boost
security of our MA-FE to full adaptive security.
(a) First, we show that under the additional assumption of an n-party non-

interactive key exchange (niKE) [21,23,32,48], we can improve our design
to an adaptively secure n-authority MA-FE for general circuits with Q-
corruptions.

(b) Second, we show that by assuming sub-exponential hardness of PKE, we
can improve our design to an adaptively secure n-authority MA-FE for gen-
eral circuits with Q-corruptions in the Random Oracle Model (ROM) [14].

3. Lastly, we also provide a new generic bootstrapping compiler for MA-FE for
general circuits. We show that any adaptively secure n-authority MA-FE for
general circuits with Q-corruptions can be generically upgraded to an adap-
tively secure 2n-authority MA-FE for general circuits with Q-corruptions.

All our MA-FE schemes are proven to be simulation-secure. And, by plugging in
2/3-party key exchange protocols based on DDH hard groups/pairing-friendly
groups, we obtain an adaptively secure 2/3-authority MA-FE for general circuits
based on DDH or standard bilinear pairing assumptions. Further, by applying
our generic bootstrapping compiler, we can design an adaptively secure O(1)-
authority MA-FE for general circuits in the bounded-collusion model, under DDH
or standard pairing assumptions. Alternatively, we can also design an adaptively
secure poly(λ)-authority MA-FE for general circuits in the bounded-collusion
model from regular public-key encryption, in the Random Oracle Model.

Related Work. Fully collusion resistant FE with indistinguishability-based secu-
rity is known to be (nearly) equivalent to iO [7,8,16,37], while simulation-based
security is known to make the object impossible [1]. However, simulation-secure
FE with bounded collusion resistance [33,38,55] is achievable [3,4,9,35,36,39,55]
from minimal assumptions. In the multi-authority setting, numerous construc-
tions for fully collusion resistant MA-ABE have been designed in the past
decade; see [2,5,25,26,28–30,50,51,53,54] and the references there in. While
in the bounded collusion setting, [35,60] have designed MA-ABE for monotone
boolean formulae and circuits (respectively) from minimal assumptions.
4 As we discuss later, by static security we mean that an attacker declares all secret key

queries at the beginning of the security game. Actually this construction is secure in a
slightly stronger model (as we elaborate in the technical overview), but for simplicity
we just state it to be statically secure for the purposes of this introduction.
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2 Technical Overview

In this section, we provide a high level overview of our techniques, and summarize
the key ideas.

Reviewing MA-FE. A multi-authority functional encryption scheme contains
four5 algorithms – AuthSetup, KeyGen, Enc, Dec. The authority setup algo-
rithm, AuthSetup, is used by an authority to create its public-secret key pair
(mpkid,mskid), where id denotes its identity/index. Consider there are n total
authorities with public keys mpk1, . . . ,mpkn. All n keys jointly are regarded as
the master public key MPK for the full system. The special feature of MA-FE
is that any authority can use its secret key mskid to create a partial secret key
skGID,id,xid

for some identifier GID and attribute bit xid
6. An encryptor takes the

full public key MPK and encrypts a circuit C, such that any user with identifier
GID and partial keys skGID,1,x1 , . . . , skGID,n,xn

, can decrypt to learn C(x1, . . . , xn).
MA-FE schemes are very useful because they do not require interaction between
authorities and users to generate keys or compute ciphertexts.

To formally capture adversarial corruptions, one can consider attackers that
can corrupt key authorities as well as partial secret keys. However, Brakerski et
al. [24] showed that MA-FE, secure in presence of a single corrupt authority, is
as powerful as obfuscation. Thus, we only study key corruptions and not study
authority corruptions in the sequel. A bit more formally, we consider attackers
that receive master public keys (mpkid)id for all authorities, and can make key
generation queries to any authority, where it must not submit more than one
key query for a given GID to any key authority. That is, the attacker can submit
as many key queries as it wants, as long as, for any GID, it does not obtain more
than one key per authority7.

In this work, we consider simulation-based security for MA-FE with bounded
collusions. In this setting, the adversary must a-priori commit to a collusion
bound Q, where Q denotes the maximum number of unique GID8 it queries to
any single authority in the security game. Throughout the paper, we refer to
this as Q-GID corruption model. Simulation security states that no PPT distin-
guisher can distinguish between a simulated transcript and an honestly generated

5 Technically, MA-FE schemes also have a global setup algorithm that generates global
public parameters. Typically, this is just some common random string that can be
computed easily in the ROM, or by any party without compromising system security.
Thus, we ignore this detail in this overview.

6 For simplicity, we consider each authority controls a single attribute bit. This can
be generically extended to longer attributes.

7 As discussed earlier, this closely models the real world scenarios, where any user
with GID can only receive a key for a single attribute bit from any authority. This
is fairly common approach in many prior works [2,25,26,51].

8 In our constructions, we denote Q to be the total number of queries the adversary
makes across n authorities. However, for the ease of exposition, we denote Q to be
the number of unique GIDs the adversary queries throughout the overview. This
would only alter the query bound by a factor of n in the actual security game.
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transcript9. And, the simulated transcript must
only reveal {(GID, xGID, C(xGID)) : for every unique GID}, where xGID denotes
the input string obtained by appropriately concatenating attribute bits queried
to each authority for identifier GID.

2.1 Step 1: Adaptively Secure MA-FE with 1-GID Corruption

We start by designing MA-FE that is secure as long as only 1 key per authority
gets corrupted, i.e. in the 1-GID corruption model. Later, we show a bootstrap-
ping approach to design MA-FE secure in the Q-GID corruption model, for any
polynomial Q. To begin, let us keep our focus on proving non-adaptive secu-
rity, where the attacker has to make all key queries before receiving challenge
ciphertext.

Non-adaptive 1-GID MA-FE. Our starting point is the Sahai-Seyalioglu (single-
authority) FE construction [55]. A brief overview of this construction is as fol-
lows.

Setup: Sample 2n public and secret key pairs (PKi,b,SKi,b)i∈[n],b∈{0,1}.
Key Generation: Given x ∈ {0, 1}n, Output n secret keys (SKi,xi

)i∈[n].
Encryption: Given a circuit C, garble the circuit and encrypt the 2n wire labels

accordingly with PKi,b.

Surprisingly, this construction already satisfies the multi-authority criterion.
There is an inherent divisibility property where each secret key for the bit xi and
each encryption for the i-th wire labels are independent of other bits and wire
labels. We can easily transform this construction into a multi-authority version
where each authority samples 2 public and secret key pair corresponding to the
attribute 0 and 1. When the authority is queried for an attribute b, we simply
output SKi,b. During decryption, secret key from each authority reveals one wire
label each.

For security, we crucially rely on the garbled circuit’s security where security
is guaranteed if at most half the wire labels are revealed. If an adversary corrupts
more than one secret key from an authority or corrupt an authority, this scheme
will no longer be secure. But the security for this scheme fits perfectly into our
1-GID version. If the adversary only queries with one unique GID and only queries
each authority once, the security of the scheme follows from the security of SS10
construction.

However, even in this 1-GID corruption setting, this is not adaptively secure.
Unless the challenger knows the value of C(x) = C(x1, . . . , xn), we can’t leverage
the security of the garbling scheme. If an adversary queries keys for attributes xi

in an adaptive fashion, we cannot rely on the garbling scheme’s security during
encryption. Hence, this scheme is only non-adaptively secure. In order to boost
the security of this non-adaptively secure 1-GID MA-FE scheme, we look at the

9 By transcript, we mean the full interaction transcript between the challenger and
attacker.
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transformation of non-adaptively secure one-key FE to adaptively secure one-key
FE from GVW12. The key idea used in this transformation is a non-committing
encryption scheme (NCE). A NCE scheme is a public-key encryption scheme with
the additional property that we can “fake” a ciphertext and later “reveal” it to
be encryption of the message m by tailoring the secret key for m.

How to Use NCE? As a first attempt, let us naively plug-in NCE in place of PKE
in the construction of the non-adaptive version. Although this lets us fake the
wire labels for adaptive queries, we still can’t get the wire labels as we don’t see
x as a whole. Diving a bit further, for any non-adaptive key corruption query,
we can encrypt and decrypt the wire labels similar to the PKE version. And for
any adaptive key corruption queries, we can fake the encryption of wire labels
and reveal them later when we receive the query. However, in order to generate
these wire labels by relying on garbling scheme’s security, we require the input
x as a whole by the time of encryption. So, we still have the same issue we did
when we were using PKE.

It looks like using NCE is still not enough for boosting the non-adaptive
1-GID scheme’s security. The issue is that in order to leverage non-adaptive 1-GID
scheme’s security, we need to make sure that only after all the authorities are
queried, we can compute the ciphertext. Furthermore, this issue is exacerbated
because of authorities who can reveal one wire label each independently of other
authorities. If each authority has a say in decryption of all the wire labels, then
wire labels can be revealed only after all the authorities are queried. Then, we
can rely on the non-adaptive security of SS10 construction. This is the high level
approach we follow.

Using NCE Smartly. In order to bypass the above issue, we employ a novel
way of combining NCE, additive secret sharing, and hybrid encryption. Let
ctid denote the encryption of id-th wire labels of the garbled circuit for C,
i.e., ctid = ( garbled circuit, {Enc(PKid,b, wid,b)}b). We sample random strings
R1, . . . , Rn of the same length as ctid, and encrypt the wire labels for the id-th
input as (NCE1.Enc(R1), . . . ,NCEn.Enc(Rn),

⊕
id∈[n] Rid ⊕ctid). This can be sim-

ply viewed as additively secret sharing the one-time key used in hybrid encryp-
tion. In the key generation algorithm, along with SKid,xid

, each authority provides
a secret key for NCEid. Using these secret keys, each authority has equal contri-
bution in the decryption ctid. For instance, using keys from authority id = 1, we
can only decrypt R1. As R2, . . . , Rn are encrypted, ctid remains perfectly hidden.
Only after all the authorities provide their secret keys, ctid will be revealed in
the clear.

Now, we can argue adaptive security for this scheme using non-adaptive secu-
rity of the SS10-based construction. Assume that an adversary only queries the
n-th authority in the adaptive manner. We can provide the encryption for ctid as
(NCE1.Enc(R1), . . . ,NCEn−1.Enc(Rn−1),NCEn.Fake, R̃). Even with R1, . . . Rn−1

revealed from non-adaptive queries, no information about ctid is revealed. When
the n-th authority is queried, we see the whole x and calculate (ctid)id∈[n]. We
provide the secret key for the n-th authority as (SKn,xn

,NCE.Reveal(R̂)) where
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R̂ = R̃⊕⊕
id∈[n−1] Rid⊕ctid. We need to do this for all ctid in the full construction.

In order to understand our full construction, it helps to think about it in the
following stages.

– During encryption, we calculate an n×n matrix which consists of NCE cipher-
texts.

– We add the sum of the id-th row’s plaintexts to ctid.
– Using the secret keys from id-th authority, the id-th column of this matrix is

decrypted.

Only after all the columns are decrypted, the row values for each id-th row will
be revealed and thus, ctid is revealed. A brief overview of the construction is as
follows.

Authority Setup: For the id-th authority, Generate (PKid,b,SKid,b) for b ∈
{0, 1} and for each i ∈ [n], generate the pair (NCE.pkid,i,NCE.skid,i).

Encryption: Generate the garbled circuit and encrypt the wire labels similar to
SS10 construction. Sample the n × n matrix M = [NCE.Enc(Rid,i)]id∈[n],i∈[n]

and set Rid =
⊕

i∈[n] Rid,i. Output (id-th row of M, Rid ⊕ ctid) for each id.
Key Generation: Given xid ∈ {0, 1}, output SKid,xid

and reveal the secret keys
for the id-th column.

The above idea gives way to our basic result about MA-FE.

Theorem 1 (Informal). Assuming the existence of NCE and garbled circuits
(both implied by public-key encryption), there exists a 1-GID MA-FE scheme for
P/Poly circuits.

For our construction of 1-GID MA-FE schemes, we only need a basic notion
of NCE that is readily provided by public-key encryption [39,44,45]. For more
details about this result and security analysis, please check the full version of
our paper.

2.2 Step 2: Upgrading 1-GID MA-FE to Q-GID MA-FE

In the previous section, we gave an overview of the construction of an adaptively
secure 1-GID MA-FE scheme with an overarching goal of boosting this scheme
to a Q-GID MA-FE scheme using the techniques present in GVW12, AV19. It
would only make sense to take a closer look at the techniques used in these
papers and figure out any bottlenecks we might face in generalizing them to
the multi-authority setting. We provide an overview of the techniques used in
AV19 to construct a bounded functional encryption scheme (BFE) for P/Poly
circuits. Specifically, we provide the overview of correlated garbling, client-server
framework, and how the security of these schemes pave the way for a BFE scheme.
We present the major hurdles present in generalizing this approach as opposed
to the natural generalization of SS10 as seen in the previous section. We provide
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potential ways to overcome these hurdles and the approaches we took in this
paper.

Overview of BFE Constructions from Minimal Assumptions. One of
the core insights in GVW12,AV19 can be summarized as follows: an FE scheme,
BFE, secure under Q collusions can be viewed as a very particular combination of
poly(Q) FE schemes, 1FE, secure under a ‘single’ collusion. The core idea was that
by using randomized encodings from [10] and specific multi-party computation
protocols inspired by [13,15], one can tie together such poly(Q) instantiations of
1FE such that, by employing some statistical combinatorial arguments, we can
argue that attacking the outer BFE scheme is as hard as attacking at least one
1FE scheme. In other words, the multi-party computation protocol is built using
special randomized encodings which ensure that there is enough redundancy
in the system such that even if a small subset of the users become corrupted
(explained later), the protocol remains computationally secure. And, if we can
generate such a protocol with two rounds, we can play this protocol in-the-head
and use each round’s messages in the encryption and key generation algorithm
to construct BFE.

Diving a bit further, AV19 constructs a multi-party computation protocol,
that they called client-server framework (csf). This protocol is constructed using
specialized randomized encoding schemes and leverages certain statistical argu-
ments. In short, it is a neatly tied package of all the complications required to
construct BFE. This csf protocol along with 1FE paved the way to construct
BFE. Hence, we provide a brief overview as follows.

The Client-Server Framework. In this framework10, there is a server with a
circuits C1, . . . , CQ and a client with an input x. Both these parties want to
compute the value of C1(x), . . . , CQ(x) together. The security guarantee requires
that no information about x should be leaked to any party in the protocol
apart from what is leaked from {(Cq, Cq(x)) : q ∈ [Q]}. Note that this already
resembles the simulator definition for a bounded functional encryption scheme. In
order to achieve this task, the client and server perform Q rounds of computation
where they delegate the computation to N users. The protocol proceeds in three
phases described as follows.

Offline Phase: The client equipped with the information about the number
of rounds Q and the maximum size of the circuits s, encodes their input
into (x̂1, . . . , x̂N ) using ClientEnc(1λ, 1Q, 1s, x) procedure and sends the u-th
encoding x̂u to the u-th user.

Online Phase: This phase is executed for Q rounds. In each round, the server
encodes the q-th circuit Cq into (Ĉ1

q , . . . , ĈN
q ) using ServEnc(1λ, 1Q, 1s, Cq)

procedure with the u-th encoding Ĉu
q intended for the u-th user. However,

in each round, not all the users are utilized. Only a subset Sq ⊂ [N ] for

10 We made few modifications to the actual protocol present in AV19 to fit our narra-
tive.
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users are invoked in the q-th round and each user u ∈ Sq, performs ŷu
q ←

UserComp(Ĉu
q , x̂u) to obtain the u-th encoding of the output, yq.

Decoding Phase: This phase is executed for Q rounds. The output encodings
and the subset of users Sq are published to the client who can recover the
output yq using Decode(Sq, {ŷu

q }u∈Sq
).

To utilize this construction for a bounded functional encryption, it is crucial
that the offline and online phases do not share any state. Abstractly, the bounded
functional encryption (BFE) scheme that uses csf proceeds as follows.

Encryption: Compute the offline phase messages (x̂1, . . . , x̂N ) from csf. Encrypt
each encoding using an adaptively secure one-key functional encryption
scheme (1FE). Output the N ciphertexts.

Key Generation: Compute the online phase messages (Ĉ1, . . . , ĈN ) from
csf. Sample random S ⊂ [N ] and for each u ∈ S, generate a key for
UserComp(Ĉu, ·) using 1FE. Output S and these secret keys.

The decryption algorithm performs 1FE decryption to reveal the output
encodings as in the decoding phase of csf and thus retrieve y. It is not hard
to see that if 1FE is adaptively secure and by the csf security, we get a bounded
functional encryption. We denote this construction that uses 1FE and csf as the
BFE blueprint.

Security of csf. The security definition of csf is tailored for BFE. An adversary
against the csf scheme sends the number of rounds Q at the beginning of the
game and proceeds to ask for at most Q server encodings and output encodings
from users. Adversary sends at most one input x and does not receive the full
client encoding. The adversary also gets to chooses the subset of users Sq for each
of the Q rounds adaptively. But this might result in a user being invoked twice
in two different rounds and thus the corresponding 1FE instantiation will be
rendered insecure. Hence, a user that is invoked twice is deemed to be corrupted
and for such a corrupted user, the client encodings x̂u for the corrupted users,
u ∈ Scorr are revealed to the adversary. The adversary also sends the set of non-
corrupted users S̃ = [N ]\Scorr at the beginning of the security game. Hence, the
transcript of the communication to the adversary which includes input encodings
of the corrupted users, the server encodings and the output encodings for each
q ∈ [Q] shouldn’t reveal any more information about x than what is revealed by
{(Cq, Cq(x)) : q ∈ [Q]}.

csf for NC1 Circuits. GVW12 constructed a csf scheme for all NC1 policies using
the celebrated Shamir secret sharing scheme [58]. For the online phase, using a
(N, t)-Shamir secret sharing scheme, sample shares for all N users for the secret
input x. In the offline phase, the server uses Cq as the server encoding for the
circuit Cq. As public-key BFE does not guarantee function-hiding, it is fine to
reveal the circuit Cq. The user computation is evaluation of Cq for each round
on x̂u. That is ŷu = Cq(x̂u). Note that correctness of the scheme relies on Cq

being used as a polynomial and thus will only work for NC1 circuits. As long as
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the subset of users invoked in each round, Sq are more than t, we can guarantee
the correctness of the scheme.

Security of the scheme relies on Shamir secret sharing. However, in order to
instantiate Shamir secret sharing, we need information about the number of users
that can potentially corrupted, i.e., t. Recall that a user u ∈ [N ] is corrupted if
there are q, q′ ∈ [Q] such that u ∈ Sq ∩ Sq′ . If we can bound the size of the set
∪q �=q′Sq ∩ Sq′ by t, Shamir secret sharing will inherently provide us the security
guarantee we are looking for. That is we instantiate secret sharing by (N, t), at
most t users are corrupted, and thus at most t client encodings x̂u are leaked. In
order to achieve this, GVW12 rely on a special statistical lemma when number
of rounds Q is known in advance, called small pairwise intersection lemma which
can be informally stated as follows.

Lemma 1 ([39], informal). For specific N = N(Q,λ), t = t(Q,λ), and |Sq| =
D = D(Q,λ),D ≥ t,Sq ⊆ [N ], the size of the set ∪q �=q′ (Sq ∩ Sq′) is at most t
for randomly sampled S1, . . . ,SQ.

Although the csf as described above looks secure, there is a subtle issue that
renders the scheme insecure. As in each round |Sq| > t, the polynomial used
in Shamir secret sharing is completely revealed by {ŷu

q }u∈Sq
. That is, anyone

can evaluate this polynomial at any point as we have more than t values of the
polynomial and in particular, we can find ŷu

q for u 
∈ Sq. In order to fix this,
GVW12 adds randomness to the output of each user computation. Once again,
if the randomness is fixed, the scheme would suffer from similar issues. It is
required that for each round, we need “unique” randomness to mask ŷu

q . GVW12
uses another statistical lemma called cover-freeness lemma which can be stated
as follows.

Lemma 2 ([39], informal). For specific T = T (Q,λ) and |Δq| = v =
v(Q,λ),Δq ⊆ [T ], there exists at least one unique j∗

q ∈ Δq for each randomly
sampled Δ1, . . . ,ΔQ.

By utilizing this lemma, as part of the offline encodings, along with x, the
client shares the T shares of 0, {ζu

j }u∈[N ],j∈[T ] using (N,D − 1)-Shamir secret
sharing. In each round, the samples a random cover-free set Δq ⊆ [T ], |Δq| = v
and sends the encoding as (Cq,Δq). The users in each round set ŷu

q = Cq(x̂u) +∑
j∈Δq

ζu
j . Due to the unique index j∗

q , ŷu
q is random in each round and the

protocol satisfies the required security definition. This way GVW12 realized a csf
protocol for NC1 circuits and thus BFE for NC1 circuits using the BFE blueprint
from minimal assumptions.

Upgrading csf to P/Poly Circuits. In order to upgrade csf from NC1 to any gen-
eral circuit, it would be sufficient to represent a P/Poly circuit as a polynomial.
However, this might not be possible for any P/Poly circuit. GVW12 utilized ran-
domized encodings of Applebaum-Ishai-Kushilevitz, AIK06 [10] that uses PRGs
in NC1 to encode any P/Poly circuit as an NC0 circuit with locality 4. This way
any P/Poly circuit can be represented as a polynomial. PRGs in NC1 are known
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from various standard assumptions like LWE, factoring, etc. However, it is not
guaranteed that the minimal assumption of one-way functions will yield PRGs
in NC1. In order to resolve this, AV19 proposed a specialized reusable garbling
scheme for P/Poly circuits in which the garbled circuit is an NC0 circuit with
locality 4. They called it correlated garbling (CorrGarb). It is easy to see that once
we have such a garbling scheme, we can randomly encode any P/Poly circuit into
a polynomial and use in csf for NC1 circuits readily to realize a BFE scheme for
P/Poly circuits. Hence, the last missing piece of the BFE-puzzle is CorrGarb and
we provide its overview as follows.

Overview of CorrGarb. At a high-level, CorrGarb crucially relies on the fact that
csf is required only for an a-priori bounded Q number of rounds and generalizes
the randomized encodings provided by AIK06. To understand CorrGarb better,
it would be helpful to look at Yao’s garbling scheme [63] for P/Poly circuits.
In this garbling scheme, we encode the wires using random strings known as
“wire labels”. We sample two wire labels for each bit value the wire can have.
We encode each gate of a circuit11 using double secret-key encryption scheme as
follows:

SK-Enc (SK = wire 2’s label, outer-msg)

where outer-msg = SK-Enc
(
SK = wire 1’s label, inner-msg =

labels for
two output wires

)

If you have the right wire labels for the input wires of a gate, you can retrieve
the output wire labels from inner-msg and the process proceeds for each gate in
the circuit. If we replace the secret-key encryption using one-time pad, we get a
perfect randomized encoding. However, as wire labels for each layer shrinks by
half, we can use this procedure to encode NC1 circuits.

In CorrGarb, the main idea (building on AIK06) is to set the wire labels
to random length-expanding PRG seeds and use a “computational” one-time
pad, i.e., PRG(seed)⊕ (two output seeds). AIK06 used to similar procedure but
required PRGs in NC1 to keep the encoded output in NC0. AV19 used any length-
expanding PRG and gave the randomized encoding algorithm the outputs of
the PRG evaluation so they can readily be used. This way, we can skip the
computational one-time pad from AIK06 and instead simply use these PRG
values readily. The decoding algorithm receives just the PRG seeds for the input
wires and performs the computational one-time pad process to reveal the output
wire labels and the process continues for each gate.

However, these encodings are only useful once. As the PRG seeds are leaked
in evaluation, we cannot rely on the same seeds and PRG security to compute the
encodings for C1, . . . , CQ. In order to overcome this, AV19 relied on Lemma2
and used T distinct PRG seeds as each wire’s label. The computational one-time
pad is performed as follows.

11 w.l.o.g, assume that each gate is a two fan-in, two fan-out NAND gate.
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⊕

j∈Δq

PRG(j-th input wire label) ⊕
(

labels for two output wires
for each j ∈ Δq

)

Note that the encoding process is deterministic given Δq. The security flows
naturally because of the j∗

q -th PRG seed in each round. This way, AV19 con-
structed a deterministic garbling scheme which encodes any P/Poly circuit into
an NC0 circuit with locality 4 (this is by extension of AIK06 result) in which each
encoding is correlated with each other. In conclusion, using CorrGarb, Lemmas 1
and 2, and csf, GVW12 and AV19 constructed BFE from minimal assumptions.

MA-FE Using BFE Blueprint? Ideally, we would like to follow the BFE
blueprint to develop a Q-GID MA-FE scheme. However, several technical issues
arise while using this blueprint. Mainly these issues arise because of the inde-
pendence between n authorities which is crucial in any multi-authority setting.
The csf protocol, as described, is constructed for a single authority. We need
a “distributional” version of csf where n independent authorities can come up
with a valid encoding for a circuit C. Even if we overcome this hurdle, we have
another subtle issue to deal with. In the key generation of BFE, the subset of
users S is sampled randomly. If we are in a system which uses n independent
authorities, with only negligible probability, all of these authorities agree upon
the same S. Because of these two issues, we can’t readily use BFE blueprint to
build a Q-GID MA-FE scheme.

A New Client-Server Framework. In order to overcome the first issue, we propose
our distributed client-server framework (dCSF) that, simply put, guarantees that
n independent servers can come up with a valid server encoding for a circuit C.
Our construction uses two key insights from csf. The server encoding algorithm
of csf randomly samples a cover-free set Δ and outputs (C,Δ) as the u-the
server encoding of C for each u ∈ [N ]. What if we receive the cover-free set Δ
from an external source with a guarantee that they are randomly generated? In
such a scenario, we can look at the server encoding algorithm as a deterministic
encoding that is a conglomeration of |C|-many independent encodings. That is,
we can look at this deterministic variant of server encoding as an aggregation of
encodings from |C| servers each providing (Ci,Δ) for i ∈ [|C|] (moreover, each
of these servers provide deterministic encodings too).

Using this idea, we can split the single server encoding to a distributional
variant in which there are |C| servers which can work independently on their
own bit. However, this way of splitting a server is not quite natural. Recall that
GVW12 relied on splitting the circuit description to construct a key-policy 1FE
scheme using the ciphertext-policy variant of SS10. In our work, we consider
ciphertext-policy MA-FE and use the input x in the KeyGen algorithm. The
switch between ciphertext-policy and key-policy FE can be made using the uni-
versal circuit U . Coincidentally, the garbling algorithm of correlated garbling,
is performed for the circuit U . Hence, we can generically use this algorithm for
our ciphertext-policy MA-FE scheme. Using these insights, we construct a dCSF
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protocol in which the servers possess the string x and the client possesses the
circuit C.

The major difference between our dCSF protocol and csf is in the online
phase. In this phase, for each round, the id-th server is invoked for some id ∈ [n].
The id-th server, encodes the input (GID, xid,Δ) into {x̂u

GID,id}u∈[N ] using the
ServEnc procedure. We then provide these server encodings to a subset of users
S ⊂ [N ]. We require that for a specific GID, (S,Δ) have to be uniform across
all the server queries. The u-th output encoding ŷu

GID is computed if and only
if all the sever encodings are received from the n independent servers. In other
words, only if each u ∈ S receives {x̂u

GID,id}id∈[n], does the u-th user compute
ŷu
GID ← UserComp({x̂u

GID,id}id∈[n], Ĉ
u). The offline and decoding phases are similar

to csf.

Security and Construction of dCSF. Our security definition is non-trivial and
deviates from csf’s version. A succinct and sanitized definition is as follows—
similar to csf security, we allow the adversary to choose the subset users S each
round. In addition, the adversary will also send the cover-free set Δ. (S,Δ) are
such that they are same across all queries that use the same GID. Looking ahead,
in our constructions for MA-FE schemes, we obtain these sets using the GID
information provided by the adversary. The adversary is not allowed to corrupt
the client and sends the set of non-corrupted users S̃ at the beginning of the
security game. We construct our dCSF scheme using a variation of CorrGarb in
the full version of our paper. This variation is a weakening of CorrGarb present
in AV19 and can be derived naturally from their version. Using such a dCSF
scheme, coupled with a one-key multi-authority scheme, we can follow the BFE
blueprint and create a Q-GID MA-FE scheme.

While the above ideas make some progress towards generalizing the single-
authority bounded-collusion FE toolkit, we still have not navigated around the
issue that n independent authorities must agree upon the subset of users S and
cover-free sets Δ. This is a significant technical hurdle, and it is a fundamental
problem that does not exist in the single-authority setting! Thus, we need new
technical ideas to resolve this. In the rest of the paper, we provide different
technical approaches to resolve this. Each technical choice leads to a different
level of security and has its own strengths and limitations as we discuss next.
Below we explain our first approach to bypass this. It can be viewed as a stepping
stone for the rest of our constructions.

The MA-FE Sampling Bottleneck. Let us start by sketching our candidate design
for Q-GID MA-FE based on adaptive 1-GID MA-FE scheme (1MAFE) and an
adaptive dCSF protocol. Following AV19, the idea is to proceed as follows.

Authority Setup: Sample N 1MAFE instantiations.
Encryption: Generate client encodings of C and encrypt the u-th user compu-

tation circuit with the u-th client encoding hardwired using the u-th 1MAFE
instantiation. Output all N ciphertexts.
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Key Generation: For the id-th authority with input GID, xid, sample random
(S,Δ) and generate the id-th server encodings and keys for u-th server encod-
ing with the u-th 1MAFE instantiation. Output S, secret keys for u ∈ S.

As mentioned earlier, the main issue is that BFE blueprint only works if all n
independent authorities come up with the same subset of users S and the cover-
free set Δ. By sampling randomly, (Sid,Δid) for id ∈ [n] will be same with only
negligible probability. If they are not the same, it is not clear whether the small
subset of users Sid ⊂ [N ] will even have an overlap. Thus, we cannot use one
of the core building blocks of the blueprint, small pairwise intersection lemma.
What we ideally require is a modified blueprint for MA-FE schemes in which
during key generation, (S,Δ) are sampled using GID such that every authority
selects the same value, and yet they look random! We refer to this as the MA-FE
sampling bottleneck.

A PRF to the Rescue? So, the main question is: how do we sample (S,Δ) using
GID? One simple thought is to use a (deterministic) pseudorandom function
(PRF). That is, sample a key K for a PRF that on input GID, deterministi-
cally samples (S,Δ), and pass it on to each of the authorities. But how do we
accomplish this? We need to pass a piece of information between n independent
authorities. To this end, we work in the common random string (crs) model,
and treat this key as the crs. We remark that the crs should just be viewed as
the global public parameters. In prior works, information about bilinear pairing
groups, LWE modulus, etc., was treated as the crs. In our work, we proceed
similarly where we view the PRF key as the crs.

While a PRF might seem to get us around the MA-FE sampling bottleneck,
this generates some additional issues. As the PRF key K is part of the crs, in the
security game, the adversary obtains this key K. In such a scenario, we can’t
rely on PRF security anymore. In order to terraform the realm of Q-GID MA-FE,
let us construct a scheme which satisfies a much weaker notion of security, we
define as static-Q-GID security. In this notion, an adversary needs to query all the
pre-challenge and post-challenge queries for Q unique GIDs before receiving the
crs from challenger. This way, we can sample (Sq,Δq)q∈[Q] unique GID queries
before the key K is sent to the adversary.

This still leaves an issue with the statistical lemmas from GVW12 which
should be argued about pseudorandom strings. The small pairwise intersection
lemma and cover-freeness lemma are defined for uniformly random strings and
they might not hold for pseudorandom strings. We remark that this issue does
not stop us from realizing static-Q-GID security. The idea is that if the statis-
tical lemmas do not hold for pseudorandom strings, then we can construct a
polynomial-time distinguisher for PRF scheme. The distinguisher simply queries
the oracle for (S,Δ) with Q unique GIDs and checks whether these lemmas hold
for the received sets. If it doesn’t, distinguisher outputs PRF, otherwise ran-
dom oracle. If the statistical lemmas do not hold for pseudorandom strings, the
advantage of this distinguisher is non-negligible, which breaks the PRF security.

Hence, we can rely on the appropriately strengthened versions of the sta-
tistical lemmas which are used to construct BFE for pseudorandom strings and
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rely on PRF’s security against computational adversaries to build a static-Q-GID
variation of MA-FE. This gives us the following result.

Theorem 2 (Informal). Assuming the existence of a secure PRF, 1-GID
MA-FE for P/Poly circuits, there exists a static-Q-GID MA-FE for P/Poly cir-
cuits.

The scheme as mentioned uses the BFE blueprint and in the key generation
phase, samples (S,Δ) using a PRF whose key is provided as part of crs. The
security of this scheme is easy to visualize as all the secret key generations
for all the authorities occur at once. To develop some intuition, one can view
all the n authorities as a single aggregated authority which reuses (S,Δ) for
a specific GID. The remaining hybrid arguments can then follow the structure
of AV19 closely. Although, this is not exactly how the security proof works,
because we can’t just assume all key generators to be a single party. But, we
state it this way to give some high level intuition about the security proof of the
remaining construction without opening up the box which would include a lot of
unnecessary technical details. At a high level, our assertion is that once we clear
out the issue of consistent randomness (S,Δ), we can naturally generalize the
core proof insights from the single-authority case (BFE), and make it work for
the multi-authority setting. For more details into the construction and security
proof, please refer to the full version of our paper.

2.3 Step 3: Towards Adaptive Q-GID MA-FE from Static Security

In the previous subsection, we saw how to construct Q-GID MA-FE in a weaker
security setting which we defined as static-Q-GID security. However, it would
be ideal to construct adaptively secure Q-GID MA-FE scheme using standard
assumptions. This is not a overzealous goal as adaptive constructions for BFE
are possible from minimal assumptions. In order to realize adaptive security, we
need to overcome the MA-FE sampling bottleneck. In this section, we provide
an overview of the two approaches which we used in this work to construct
adaptive Q-GID MA-FE schemes. In approach 1, we explain the non-interactive
key exchange scheme, the motivation and its placement in the context of MA-FE.
In approach 2, we look at careful complexity leveraging arguments in ROM. In
particular, we explore the nuances in guessing the minimal information required
for overcoming the MA-FE sampling bottleneck and how sub-exponential security
helps in this context.

Approach 1: Non-interactive Key Exchange. MA-FE with Trusted Oracle.
In the static-Q-GID secure construction, we needed the secret key queries to be
provided in a static manner (before crs is generated) because we can’t rely on
the security of PRF if the key is revealed to the adversary as part of crs. As a
hypothetical argument, consider a trusted oracle (O) which is only accessible by
the authorities. If such O exists, we can instantiate it using PRF(K, ·) and each
authority can query this oracle for the sets (S,Δ).
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As a result, all the authorities sample consistent (S,Δ) and we can rely
on PRF security. It looks like having such an oracle solves all of our issues in
constructing a Q-GID MA-FE scheme using the BFE blueprint. Unfortunately,
such an oracle is not an ideal assumption to rely on. Recall that we are trying
to move away from a central authority in the multi-authority setting. Moreover,
assuming that the adversary cannot access O is also an unrealistic assumption.

However, observe that we do not need such a strong oracle. Let us weaken
our assumption a bit and say that the key K is only available to authorities and
not the adversary. This is also a good enough assumption for realizing adaptive
security using BFE blueprint. As K is not revealed to the adversary, we can
rely on PRF security and use BFE blueprint readily to construct an adaptively
secure MA-FE scheme. So, is this assumption realistic? In other words, is there a
cryptographic object that allows n independent parties to compute a key K such
that the adversary remains none the wiser? The answer surprisingly is YES! The
object we need to instantiate this assumption is non-interactive key exchange12
(niKE) for n parties [21,32,48].

Reviewing niKE for n Parties. In a niKE scheme for n parties (in the crs model),
each party computes a public and secret value pair and posts their public values
on a bulletin board. For any id ∈ [n], the id-th party uses its secret value and
public values from all the parties to generate a key K. The correctness of niKE
requires that each party should be able to derive the same key K using its secret
value.

For instance, consider the simplest case of n = 2 and the classic Diffie-
Hellman key exchange protocol [32]. Party A randomly generates the secret
value a and the public value ga, where g is a generator of group G. Similarly,
party B randomly generates a secret value b and the public value gb. Both A
and B post their public values ga, gb respectively to a bulletin board. Party A
computes using a, ga, gb, the key gab. Party B computes using b, ga, gb, the key
gab. As both the keys are same, this is a correct niKE scheme for 2 parties. A
niKE scheme for 3 parties is present in [48] which is constructed using bilinear
pairings.

The security of a niKE scheme guarantees that any adversary that does not
possess secret value of any party, cannot distinguish between a randomly gener-
ated key and the key that honest parties can compute. Case in point, assuming
the Decisional Diffie-Hellman assumption (DDH), the niKE scheme for 2 par-
ties as defined above is secure as for any PPT adversary, {G, g, ga, gb, gab} ≈c

{G, g, ga, gb, gc}, for random a, b, c. Similarly assuming the Bilinear Decisional
Diffie-Hellman assumption (BDDH), the niKE scheme for 3 parties from [48] is
also secure.

Replacing Trusted Oracle O with niKE. A brief overview of construction of
MA-FE from niKE is as follows.

12 As we consider no authority corruptions, we consider a statically secure scheme with
no corruptions.
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CRS Generation: Generate the n party niKE’s crs. Embed this information in
crs.

Authority Setup: Generate N 1MAFE master public and secret key pairs.
Generate public and secret values for id-th party in the niKE scheme.

Key Generation: For the id-th authority with input GID, xid, sample (S,Δ)
using PRF scheme with K generated from niKE. Generate the id-th server
encodings and keys for u-th server encoding with the u-th 1MAFE instantia-
tion. Output S, secret keys for u ∈ S.

As K is indistinguishable from a randomly generated key K, it is only with
negligible probability that an adversary could guess the key K correctly. Because
of this, we can rely on PRF security in the security game and handle all the
queries from adversary, adaptively. We have to be careful in reproving our sta-
tistical lemmas, and we provide detailed information about the construction and
the security proof in the full version of our paper. As mentioned, we rely on the
niKE security and PRF security to randomly sample the sets (S,Δ) statically
in the security game. After that, the security is argued by appropriately com-
bining our proof strategy for the static-Q-GID security model. This gives us the
following result.

Theorem 3 (Informal). Assuming the existence of n party niKE, a secure
PRF, adaptively secure 1-GID MA-FE, there exists an adaptively secure Q-GID
MA-FE scheme for P/Poly circuits.

We have the following corollary for the theorem,

Corollary 1. Assuming polynomial hardness of DDH (or BDDH), there exists
a 2-authority (or 3-authority) Q-GID MA-FE for P/Poly circuits.

The usage of niKE for n parties is an interesting approach on its own and we
think that this is an interesting avenue of research which is even more intriguing
in the corrupted authorities model. To the best of our knowledge, this is the
first time an n party niKE scheme is utilized in the context of bounded collusion
functional encryption for general circuits.

Approach 2: Complexity Leveraging in Random Oracle Model. In this
section, we will look at an alternate approach to solve the MA-FE sampling
bottleneck by using random oracles. We provide an overview of a specific notion
of stronger security that our static-Q-GID construction generically satisfies in
ROM. We call this partial adaptive security. We also provide a brief insight into
the complexity leveraging argument that can used to boost any partial adaptively
secure Q-GID MA-FE scheme to adaptively secure Q-GID scheme.

Why ROM? In the static-Q-GID construction and throughout approach 1, we
relied on a deterministic PRF scheme to solve the MA-FE sampling bottleneck.
At its core, this bottleneck is the issue of sampling shared randomness among
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independent parties. However, there is another way to generate shared random-
ness for the authorities. We can use a hash function H modelled as a random
oracle for the system and work in the Random Oracle Model [14]! The motivation
behind this approach is twofold:

1. One issue with deterministic PRFs is that if the key is lost, we cannot rely
on its security to build our schemes. This is precisely why we ended up using
niKE for adaptive security.

2. Currently, niKE for n > 3 is only known to be facilitated by strong assump-
tions such as Multilinear Maps or iO [21,23]. Ideally, we would like to build
an adaptively secure scheme which can support any n = poly(λ) authorities
for P/Poly circuits from minimal/standard assumptions.

Issues with Q-GID MA-FE in ROM. Note that the construction in ROM is similar
to that of static-Q-GID MA-FE. Except now, we use a hash function which takes
GID as an input and deterministically samples (S,Δ) and provide it as to all
the users of the system. In the security proof however, there is an issue with the
number of strings that adversary receives.

In the random oracle model, the adversary can make arbitrary number of
queries (say P ) to H and receive an arbitrary number of strings. P can be much
larger than Q. In that case, the Lemmas 1 and 2 with the parameter regime
as presented in GVW12 do not hold. This is because they do not guarantee
that the lemmas will hold for any subset of size Q of a larger set of size P .
We demonstrate a slight technical fix for these issues. Crudely speaking, we
multiply each parameter of small pairwise intersection and cover-freeness lemmas
by Q. The idea is that, if in the Chernoff’s bound argument of these lemmas, we
increase the exponent by a factor of Q, then by a union bound on the number
of subsets of P of size Q, the lemma still holds13. We refer the reader to the
full version of our paper for a detailed overview and proof of these augmented
lemmas.

Partial Adaptive MA-FE in ROM. Now that as we do not have any PRF key K
and H is modelled as a random oracle, there is no need for the adversary to
make the queries in a static manner. In other words, the construction in ROM
already satisfies a stronger security than static-Q-GID security. This construction
does not satisfy adaptive security yet. In order to understand why, we need to
understand a subtle technical issue in the security proofs of GVW12, AV19. In
both of these constructions, as (S,Δ) as randomly sampled and as adversary
only receives these after the challenger samples it, they are able to sample these
sets statically in the security game. An added benefit of this approach is that
the challenger can determine which users are going to be corrupted14. However,
working in the random oracle model, this is not feasible as the adversary can
13 As the number of such subsets are bounded by PQ.
14 Recall that a user u is corrupted if it is invoked in two different rounds of csf. As

we can sample sets S early in [9,39], we can determine the corrupted users well in
advance.
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always query the result of a GID adaptively to H first and then to the challenger.
What if the adversary submits all the GIDs for which the adversary will query
secret keys for statically, i.e., before receiving the crs (and hence, H) from the
challenger?

In such a scenario, using a programmable H, we can sample the responses
to these GID queries before hand and determine the set of non-corrupted users
which is required to argue the security of dCSF. So, it looks like our construction
for static-Q-GID when we replace the PRF function with H satisfies a stronger
security where we only require the unique GIDs that the adversary is going to
query for secret keys from authorities statically. Moreover, we can handle n =
poly(λ) authorities in this construction and depend upon minimal assumptions.
We denote this security definition as partial adaptive security. The security of
the scheme follows from the BFE blueprint. As we can compute the set of non-
corrupted users, we can rely on the adaptive security of dCSF and the adaptive
security of 1MAFE to realize partial adaptive security of this scheme. We refer
the reader to the full version of our paper for more details on the construction
and security analysis.

Final Step: Complexity Leveraging for Adaptive Security. Partial adaptive secu-
rity is still not adaptive security. The only thing standing in between this con-
struction and an adaptively secure version is that we crucially require to get all
the Q unique GIDs that the adversary might query. Can we guess the GID queries
and incur a small loss in the reduction advantage? As these |GID| = poly(λ),
when we guess all the Q GID strings, we will incur an exponential loss. Never-
theless, we can rely on sub-exponential security of the underlying primitives and
still incur a “small” loss by setting the security parameter appropriately [17]. In
the full version of our paper, we show that by setting the parameters appropri-
ately, we can construct a adaptively secure Q-GID MA-FE scheme assuming the
sub-exponential security of the underlying assumptions in ROM. This gives us
the following result.

Theorem 4 (Informal). Assuming the existence of sub-exponentially secure
PKE and PRG schemes, there exists a (t, ε)-adaptively secure bounded MA-FE
scheme for P/Poly circuits in the random oracle model.

For the exact values of t, ε, and a detailed security analysis, we refer the
reader to the full version of our paper. We remark that the security analysis of
this scheme is very non-trivial, and this is because as a reduction algorithm, we
cannot just use a fully adaptive adversary to break the underlying partial adap-
tive security. This will be an incorrect argument, as the adversary’s behavior
is correlated with the random selections made by a reduction algorithm at the
beginning. Thus, when the attacker’s choice of GID queries match the reduction
algorithm’s guess, then there could be negative correlation between the reduc-
tion’s success and the adversary’s success. Similar issues commonly arose in the
context of proving adaptive security of Identity-Based Encryption [61]. To this
end, Waters [61] proposed an “artificial abort” technique to not use an adver-
sary when there is negative correlation, and this opens the door to a successful
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reduction. In this work, we borrow ideas from the artificial abort technique, and
use it to prove adaptive security of our construction. Our exact proof template
is inspired by the advantage counting variation of the artificial abort technique
developed in [34]. These techniques have been used at many places in the IBE
and ABE literature, and to the best of our knowledge, our utilization of this tech-
nique in the context of multi-authority functional encryption for general circuits
is a first. We believe future works in multi-authority encryption might benefit
from our proof strategies.

2.4 Bootstrapping Compiler for Q-GID MA-FE

In this section, we provide the motivation and techniques behind our bootstrap-
ping compiler which combines two Q-GID MA-FE schemes to generically produce
schemes supporting a larger number of authorities. Our techniques rely only on
the additional assumption of a secure PRF scheme. We remark that our com-
piler can only be used to construct a O(1)-authority Q-GID MA-FE scheme and
provide a brief insight into this issue. However due to Theorem 3 and Theorem 5
(stated below), we can create an adaptively-secure O(1)-authority Q-GID MA-FE
scheme for P/Poly circuits from DDH or BDDH.

Motivation for Studying Bootstrapping. While studying new bootstrapping com-
pilers is already a very interesting research topic in functional encryption and its
generalizations, we were able to find an additional motivation for developing a
bootstrapping compiler for MA-FE. In a few words, our additional motivation is
stated as Corollary 1. It is a very interesting result which states that there exists
a 2/3-authority adaptively secure Q-GID MA-FE scheme from polynomially-hard
standard assumptions. Compared to this, other results for adaptively secure Q-
GID MA-FE schemes in our work require either strong assumptions (n-party
niKE) or sub-exponentially secure PKE in the ROM. Ideally, we want to design
adaptively-secure construction for any n = poly(λ) under just polynomially-hard
standard assumptions. Since n-party niKE is a very strong assumption, not cur-
rently known from standard assumptions for n > 3. Thus, it appears that we have
only one approach to design bounded MA-FE schemes for poly(λ)-authorities in
the standard model. And, that approach goes via n-party niKE which is only
known from indistinguishability obfuscation.

Observe that any multi-authority scheme itself is inherently a way of combin-
ing n independent authorities for arguing the security n-ary circuits. In addition,
we can also compose circuits where one circuit outputs the description of other
circuits. These observations lead us to a natural question.

Can we combine two n-authority MA-FE schemes to produce a 2n-authority
MA-FE scheme?

Motivated by this question, we started to look into an MA-FE compiler for
bootstrapping the maximum number of authorities that can be supported. This
way, we can realize an n-authority MA-FE scheme for P/Poly starting from a
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2-authority or 3-authority scheme in O(log n) combinations. We provide such
a bootstrapping compiler that combines two n-authority MA-FE schemes to a
2n-authority MA-FE scheme.

Circuit Composition for Bootstrapping MA-FE. The main idea of the compiler
can be understood as follows. Given a 2n-ary circuit C, one can construct an
n-ary circuit FC such that FC(xn+1, . . . , x2n) = C(·, . . . , ·, xn+1, . . . , x2n). That
is, FC is an n-ary P/Poly circuit that takes the last n inputs meant for C and
outputs the description of an n-ary circuit which is nothing but C with the
last n inputs hardwired inside it. So, given a 2n-ary circuit, we can split it
“recursively” into two n-ary circuits. We can simply encrypt FC with the second
instantiation of n-authority MA-FE. Technically, we need to modify FC so that
it outputs the encryption of the n-ary version of C under the first n-authority
MA-FE instantiation. We refer the reader to the full version of our paper for
more details. In summary, we transform C into FC and encrypt FC under the
second n-authority instantiation where FC recursively calls the first n-authority
instantiation’s encryption algorithm.

The high level technical idea seems to bear resemblance to the bootstrapping
techniques used to build indistinguishability obfuscation from succinct one-key
functional encryption [7,16]. However, the resemblance seems to fade away when
we carefully compare our compiler with theirs due to significantly diverging goals.
Regardless, the main point we want to get across is that by using this tree-esuqe
bootstrapping compiler, it looks like we can build an n-authority MA-FE scheme
for any n = poly(λ). Because we can go from 2n-authority instantiations to 4n
and so on. And, proceeding this way, ideally, within O(log n), we can build an
poly(λ)-authority bounded MA-FE scheme. Unfortunately, this is not the case!

The issue is that with d layers of recursive construction, size of FC grows with
poly(λ)d. This is because size of FC is at least the size of the encryption circuit
of first n-authority MA-FE scheme. We are encrypting FC again. Hence, any
non-linear circuit size will result in exponential blow-up in encryption circuit’s
size making it too inefficient to use it for more than constant many layers of
combination. A basic overview of the compiler is as follows.

CRS Generation: Output crs for both the instantiations.
Authority Setup: For id ∈ [n], output key pair from first instantiation and for

the rest from the second.
Key Generation: If id ∈ [n], generate secret using the first instantiation. Oth-

erwise, the second.
Encryption: Given C, generate FC which outputs the encryption of first instan-

tiation. Encrypt FC using second instantiation and output the ciphertext.

The adaptive simulation security of our resulting scheme can be appropriately
reduced to the adaptive simulation security of the underlying two instantiations.
This is because once we rely on the security of the second instantiation, we can
internally rely on the security of the first instantiation. Thus, using the above
compiler, we get the following result.
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Theorem 5 (Informal). Assuming the existence of two n-authority MA-FE
schemes, there exists a 2n-authority MA-FE scheme where n > 1, n = O(1) in
the crs model.

Similarly, we have the following corollary.

Corollary 2. Assuming polynomial hardness of DDH or BDDH, there exists a
O(1)-authority Q-GID MA-FE scheme for P/Poly circuits.

The above discussion is merely a high-level overview of our compiler. For
an in-depth overview, construction, and security analysis of this compiler, please
check the full version of our paper. We conclude by stating that, to the best of our
knowledge, this is the first bootstrapping compiler for any type of multi-authority
functional encryption system. We think our bootstrapping compiler might be of
independent interest, and could be useful for future research on MA-FE. Lastly,
we leave an open question, which is to create a compiler that can efficiently
support a super-constant number of authorities. This will readily lead to poly(λ)-
authority Q-GID MA-FE scheme for P/Poly circuits under polynomially hard
standard assumptions.
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Abstract. Multi-input Attribute-Based Encryption (ABE) is a gen-
eralization of key-policy ABE where attributes can be independently
encrypted across several ciphertexts, and a joint decryption of these
ciphertexts is possible if and only if the combination of attributes satisfies
the policy of the decryption key. We extend this model by introducing
a new primitive that we call Multi-Client ABE (MC-ABE), which pro-
vides the usual enhancements of multi-client functional encryption over
multi-input functional encryption. Specifically, we separate the secret
keys that are used by the different encryptors and consider the case that
some of them may be corrupted by the adversary. Furthermore, we tie
each ciphertext to a label and enable a joint decryption of ciphertexts
only if all ciphertexts share the same label. We provide constructions
of MC-ABE for various policy classes based on SXDH. Notably, we can
deal with policies that are not a conjunction of local policies, which has
been a limitation of previous constructions from standard assumptions.

Subsequently, we introduce the notion of Multi-Client Predicate
Encryption (MC-PE) which, in contrast to MC-ABE, does not only guar-
antee message-hiding but also attribute-hiding. We present a new com-
piler that turns any constant-arity MC-ABE into an MC-PE for the same
arity and policy class. Security is proven under the LWE assumption.

1 Introduction

Attribute-Based Encryption. Attribute-based encryption (ABE) [31,42] is
a powerful generalization of classical public-key encryption that enables fine-
grained access control on encrypted data. In (key-policy) ABE, a ciphertext CTx

encrypting a message μ is generated with respect to a public attribute x while a
secret decryption key DKf is generated with respect to a policy f . The decryption
key DKf is authorized to decrypt the ciphertext CTx if and only if the attribute x
satisfies the policy f , i.e. f(x) = 1. Security requires indistinguishability in the
presence of collusion attacks. That is, for any attribute x and any pair of mes-
sages (μ0, μ1), ciphertexts corresponding to (x, μ0) and to (x, μ1) are indistin-
guishable, even for adversaries possessing a set of decryption keys {DKfi

}i unless
one of the keys DKfi

is individually authorized to decrypt. A strengthening of this
c© International Association for Cryptologic Research 2025
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notion, traditionally referred to as Predicate Encryption (PE) [19,43], requires
ciphertexts to not only hide messages but also their associated attributes.

Decentralized Encryption. Until recently, ABE and PE were solely stud-
ied in the centralized setting, i.e. the considered policies f have arity one. The
notions of Multi-Input ABE (MI-ABE) [11,20] and Multi-Input PE (MI-PE) [26]
overcome this limitation by considering n encryptors who each encrypt their
inputs (x1, μ1), . . . , (xn, μn) independently using uncorrelated random coins. The
key generator provides decryption keys for arity n functions f , and a joint decryp-
tion recovers (μ1, . . . , μn) if and only if f(x1, . . . , xn) = 1. As in the single-input
case, the security model of MI-ABE only guarantees to hide the message encoded
in a ciphertext while MI-PE hides in addition the associated attribute.

In practice, the multi-input versions of ABE and PE often seem more realistic
as they allow data to be encrypted in different locations or at different points in
time. As an example, consider a company that stores its client data in encrypted
form on a server. Each employee has their own decryption key which they can use
to decrypt parts of the data depending on the employee’s role. At one point, the
company decides to expand and opens several new branches across the country.
Clients should be able to be served from each branch. This requires that data
can be independently encrypted and uploaded to the central server while still
being subject to the global access control for employees. To implement these
requirements, we could use an MI-ABE or MI-PE.

Let us extend the above scenario as follows. First, suppose that one of the
company’s branches falls victim to a hacker attack. Since MI-ABE and MI-PE
use the same master secret key across all encryption slots, an attack on a single
branch threatens to compromise the security of the entire system. Instead, it
would be better if a restricted form of security could be preserved even if a few
branches are corrupted. Second, the company’s data might be time-sensitive in
a sense that, say, data from different years should not be authorized for a joint
decryption. To prevent unintended decryptions and the resulting data leakage,
we may wish to equip ciphertexts with timestamps and allow a joint decryption
if and only if all involved ciphertexts share the same timestamp.

To deal with this extended scenario, we introduce two natural generaliza-
tion of MI-ABE and MI-PE which we dub Multi-Client ABE (MC-ABE) and
Multi-Client PE (MC-PE). In contrast to MI-ABE and MI-PE, our new notions
implement two additional features. First, they separate the secret keys of the
slots and guarantee security even if some of them are known to the adversary.
Second, encryption proceeds with respect to a label that can be used to realize
a timestamp.

1.1 Related Work

The notion of MI-ABE had been studied first by Brakerski et al. [20] as a new
pathway for achieving witness encryption. However, they did not consider strong
security notions nor did they provide any constructions. In [11], Agrawal et
al. provided the first constructions for 2-input ABE for NC1 from LWE and a
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nonstandard assumption on pairings. They also gave heuristic constructions for
2-input ABE for P and 3-input ABE for NC1. Additionally, they gave a compiler
that lifts a constant-input ABE scheme to a PE scheme for the same arity and
policy class, using a sophisticated nesting technique of lockable obfuscation which
can be based on LWE. In an independent work, Francati et al. [26] built MI-PE
for conjunctions of (bounded) polynomial-depth circuits from LWE1. Notably,
they can support a polynomial number of inputs. Furthermore, when restricting
to constant arity, they provide a construction that remains secure under user
corruptions. On the negative side, neither of their MI-PE constructions can be
proven secure under collusions. Very recently, Agrawal et al. [8] presented a
constant-arity MI-ABE for NC1 whose security is based on evasive LWE which is
a strong knowledge type assumption. When additionally assuming tensor LWE,
they can upgrade their scheme to support arbitrary policies in P.

MI-ABE and MI-PE can both be viewed as a special case of the more gen-
eral primitive Multi-Input Functional Encryption (MIFE) [28]. The notion of
MIFE has been the subject of extensive studies resulting in large body of works
with various trade-offs between expressiveness, security, underlying assumptions
and efficiency, e.g. [1–6,14,22,24,28,36,44]. As MIFE for NC1 is known to imply
indistinguishability Obfuscation (iO) [15,27] it remains an important area of
research to build MIFE schemes for simpler function classes from assumptions
not known to imply iO. Some of these function classes are still powerful enough
to imply MI-ABE. Specifically, Nguyen et al. [41] built the first attribute-based
Multi-Client Functional Encryption (MCFE) for inner products, where poli-
cies are conjunctions of Linear Secret Sharings (LSS). As they consider MCFE
instead of MIFE, their construction supports corruption of users and encryp-
tion with respect to labels. They make use of pairings and proof security under
the SXDH assumption. However, their security model does not allow repetitions2.
In [9], Agrawal et al. presented the first attribute-based MIFE for attribute-
weighted sums. The supported policies are conjunctions of NC1 for a polynomial
number of slots. Their construction uses pairings and is proven secure under the
matrix DDH assumption. By plugging the scheme into the compiler from [11], it
can be lifted to MI-PE for constant arity and without corruptions.

1.2 Our Results

In this work, we introduce the notions of MC-ABE and MC-PE as a general-
ization of their multi-input siblings. We discuss our constructions for the two
primitives below. For a comparison with known results, please see Table 1.

MC-ABE for Non-conjunctions. Prior to our work, all known constructions
of MI-ABE and MI-PE fall into one of two categories: they are either based
1 A policy f is said to be a conjunction of a policy class F if there exist poli-

cies f1, . . . , fn ∈ F such that f(x1, . . . , xn) = f1(x1) ∧ · · · ∧ fn(xn).
2 Unless stated otherwise, we use the term MCFE as a generalization of MIFE, so

it allows multiple uses of labels. In contrast, a weaker notion of MCFE has been
considered in the literature [22] where each label can be used only once, thus it does
not imply MIFE. We refer to this weaker version as MCFE without repetitions.
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on standard assumptions but their supported policies are only conjunctions of
local policies [9,26,41], or they can handle more complex policy classes such
as NC1 or P but their security proof relies on nonstandard assumptions [8,11].
We therefore raise the following question:

Is it possible to build MI-ABE or MC-ABE from standard assumptions for
policies that are not a conjunction of local policies?

It is well known that MI-ABE for LSS can be generically upgraded to MI-ABE for
NC1 via a doubling of the attribute space, and that (polynomial-arity) MI-ABE
for NC1 implies Witness Encryption (WE) for languages that can be verified in
NC1 [20]. Considering the fact that the construction of WE with NC1 verification
from standard assumptions is still an open problem, it is not surprising that MI-
ABE for policies that are not a conjunction has also remained elusive so far, even
for relatively simple policy classes such as LSS. As previous works [9,26], we are
not able to build MI-ABE or MC-ABE for a policy class that is powerful enough
to trigger the entire chain of implications up to WE. Nonetheless, we identify
various special cases that circumvent the known implications to WE, thereby
giving an affirmative answer to the above question. Specifically, we present con-
structions of MC-ABE for the following situations:

1. Small Parameters. If the arity n and the attribute space {0, 1}k are small
(more precisely, they satisfy kn = O(log λ)), then we can build an MC-ABE
for all NC1 policies.

2. Simple Policies. If k = n = poly(λ), then we can build MC-ABEs for NC0 poli-
cies and threshold policies with constant threshold, i.e. policies that accept
any combination of at least τ out of the total of kn attributes, where τ = O(1)
or τ = kn−O(1). Note that NC0 policies can only depend on a constant num-
ber of inputs whereas threshold policies depend on all inputs; so they cannot
be implemented in NC0.

3. Weaker Security. In the weaker MCFE model without repetitions, we can
choose k = n = poly(λ) and build MC-ABE for the policy class NC1 and no
user corruptions, or for the policy class LSS with user corruptions.

We discuss the relation between our constructions and the (non-)implications to
WE in more detail below.

From MC-ABE to MC-PE. In [11], the authors present two generic compilers
that lift an MI-ABE scheme to MI-PE for the same policy class. The first one
can deal with any constant arity but works only in a weak security model where
the adversary must not obtain valid decryption keys for any ciphertext, even
if the ciphertext corresponds to a “non-challenge” encryption query (x, μ0, μ1)
where μ0 = μ1. Note that the ability to decrypt such non-challenge ciphertexts
does not render the security game trivial and admitting this kind of queries yields
a stronger security model. Indeed, their second compiler allows the decryption
of non-challenge ciphertexts, but works only for arity 2.

In this work, we present a new generic compiler that works for a constant
number of inputs and achieves the stronger security model. Moreover, it can deal
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Table 1. Comparison with existing works in MI-ABE and MI-PE

Work ArityAttribute1 CollusionCorruptionLabels Policy Class Assumptions

[11] 2 private ✓ ✗ ✗ NC1 KOALA2 ,
LWE

[8]

const private ✓ ✗ ✗
NC1 Evasive LWE3

P
Evasive and
Tensor LWE

[41] poly public ✓ ✓ OT4 Conjunctions
of LSS

SXDH

[26]
poly

private ✗
✗

✗
Conjunctions

of P
LWE

const ✓

[9] poly public ✓ ✓ ✗
Conjunctions

of NC1 Matrix DDH

[9] + [11] const private ✓ ✗ ✗
Conjunctions

of NC1 Matrix DDH

full version poly public ✓
✓

OT
LSS

SXDH

✗ NC1

Sect. 5
log5

public ✓ ✓ ✓
NC1

SXDH

poly
NC0 or const

threshold

Sec. 5 +
Sect. 6

const6 private ✓ ✓ ✓ NC1 SXDH, LWE

[9]
+ Sect. 6

const private ✓ ✓ ✗
Conjunctions

of NC1
Matrix DDH,

LWE

1 Public attributes correspond to ABE and private attributes to PE.
2 KOALA is a nonstandard knowledge type assumption on pairings.
3 Evasive LWE is a nonstandard knowledge type assumption on lattices.
4 OT refers to one-time labels, i.e. the weaker MCFE model without repetitions.
5 More precisely, the scheme’s arity n and attribute space {0, 1}k are subject to
the
condition kn = O(log λ).
6 The limitation from 5 is still in place and translates into k = O(log λ). Therefore,
it does not include the next row which allows only conjunctions but k = poly(λ).

with labels and corruption of users, thus turning MC-ABE into MC-PE. Similar
to [11], our construction relies on lockable obfuscation whose security can be
based on LWE.
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1.3 Relation to Witness Encryption

A witness encryption (WE) scheme for an NP relation R defined over a lan-
guage L allows a sender to efficiently encrypt a message μ with respect to a
problem instance x. A receiver holding a witness w can recover the message μ
if (x,w) ∈ R. Security requires that ciphertexts for messages μ0 and μ1 are com-
putationally indistinguishable if x /∈ L. The authors of [20] define a relaxation
of classical WE that they call non-trivially eXponentially efficient WE (XWE),
where the runtime of the encryption algorithm for witnesses of length n is ˜O(2γn)
for some constant γ < 1 called the compression factor.

In [20], the authors show that n-input ABE for a policy class F implies
WE for relations with length n witnesses whose verification algorithm is in F .
If n = poly(λ) and F = P, we obtain WE for all NP relations. But even for
smaller arity or simpler policy classes there are nontrivial implications. Since
there are NP relations that can be verified in NC1 (e.g. 3-SAT), MI-ABE for NC1

policies already implies WE for certain NP relations. Furthermore, it is shown
that n-input ABE for n < poly(λ) implies XWE with a compression factor
of γ = 1/(n + 1). Plugging the two-input ABE from [11] or the O(1)-input ABE
from [8] into the conversion to XWE, one obtains compression factors of γ = 1/3
and γ = 1/O(1), respectively; although the latter result may be less interesting as
their hardness assumption, evasive LWE, is already known to imply WE [45,46].
When relying on standard assumptions, the best known compression factor is
still γ = 1/2 which corresponds to a classical single-input ABE scheme, and any
improvement would be highly interesting. Unfortunately, all our constructions
fail to improve the compression factor due to the following reasons. (1) We either
need n = poly(λ) and k = 1 in which case we immediately get (polynomially
efficient) WE, or n < poly(λ) and k = poly(λ) in which case we obtain XWE
with compression factor 1/(n + 1). If both k, n < poly(λ), it is unclear how the
compression factor could be improved. (2) NC0 or constant-threshold policies are
not powerful enough to verify an NP language. (3) The weaker MC-ABE model
without repetitions does not imply MI-ABE, thus fails to imply (X)WE.

The work [26] presents an interesting alternative pathway towards WE. If the
MI-ABE is secure under corruptions, then a two-input scheme for conjunctions
of some policy class F implies WE for any relation whose verification algorithm
lies in F . Importantly, for the conversion of [26] to work, the first slot must have
a wildcard while the second slot must not. This property is achieved by all our
constructions. However, even in this case our construction for NC1 fails to imply
WE because for n = 2, the constraint kn = O(log λ) translates into k = O(log λ)
which is not enough as witnesses must be of polynomial length.
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2 Technical Overview

We first introduce our new primitives MC-ABE and MC-PE. Our syntax closely
follows [8]. Specifically, the 0-th client (the “encryptor”) runs an algorithm Enc
which takes as input a label lab0, an attribute x0 and a message μ to create a
ciphertext CTlab0,x0 . The other clients 1, . . . , n − 1 (the “attribute key genera-
tors”) run an algorithm AKeyGen which takes only a label labi and an attribute xi

to generate a decryption key DKlabi,xi
. Policy decryption keys DKf for a pol-

icy f are generated by a central authority which runs an algorithm PKeyGen.
CTlab0,x0 can be decrypted using {DKlabi,xi

}i and DKf if lab0 = · · · = labn−1

and f(x0, . . . , xn−1) = 1. For MC-ABE security, we require the usual ciphertext
indistinguishability against collusion attacks under corruptions. MC-PE security
additionally considers left-or-right queries for attributes in both slot 0 cipher-
texts and slot i attribute decryption keys for all i ∈ [n − 1]. This leads to a
subtle yet important difference in the security models. In MC-ABE, the encryp-
tion oracle of client 0 is the only left-or-right (“challenge”) oracle. In this case,
public-key security is stronger than secret-key security which is why we provide
client 0 with a master public key MPK and all other clients i ∈ [n − 1] with
a secret key SKi. In MC-PE on the other hand, the oracles of all clients take
left-or-right queries. Now considering a public encryption algorithm would actu-
ally make the primitive weaker due to inevitable leakage. This is a well-known
phenomenon in the context of MIFE and MCFE in general. For this reason,
we consider MC-PE in the secret-key setting where the encryptor takes a secret
key SK0 instead of a public key MPK. We summarize the syntax as follows:

Client 0 : Enc(MPK/SK0, lab, x0, μ) → CTx0

Client i ∈ [n − 1] : AKeyGen(SKi, lab, xi) → DKxi

Authority : PKeyGen(MSK, f) → DKf

For completeness, we mention that MC-ABE and MC-PE can also be considered
in an n-message setting where not only the 0-th but all slots encrypt a message.
In [11], it was shown that a single-message MI-ABE scheme can be generically
lifted to an n-message scheme. The conversion is extremely simple and basically
runs n single-message schemes in parallel with rotated slots. The same technique
generalizes to MC-ABE and MC-PE.

2.1 Construction of MC-ABE

Ingredients to Our Constructions. Let G = (G1, G2, Gt, g1, g2, >, e, p) be a
pairing group. For i ∈ {1, 2, t} and a ∈ Zp, we write [[a]]i = ga

i and use additive
notations for the group operations.

An inner-product functional encryption (IPFE) scheme based on G enables
the generation of ciphertexts iCT([[x]]1) associated with vectors x ∈ Z

N
p encoded

in G1 and decryption keys iDK([[y]]2) for vectors y ∈ Z
N
p encoded in G2 such that

the decryption of iCT([[x]]1) with iDK([[y]]2) reveals only the inner product [[x�y]]t
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of x and y encoded in Gt and hides all other information about x whereas [[y]]2 is
usually public. When we use several IPFE schemes in parallel, we add an index
to indicate the respective instance, e.g. for the i-th IPFE instance, we write
iCTi([[x]]1) and iDKi([[y]]2).

In the same vein, identity-based encryption (IBE) allows creating cipher-
texts idCT(i, μ) associated with an identity i for a message μ, and decryption
keys idDK(i′) associated with an identity i′. Decryption is possible if i = i′.

Given a vector x ∈ {0, 1}k, we write Πx = {j ∈ [k] : x[j] = 1}. A linear secret
sharing (LSS) scheme allows to decompose a secret scalar s ∈ Zp into a vector of
shares Share(s, f) → s ∈ Z

k
p with respect to some policy f : {0, 1}k → {0, 1} such

that s can be reconstructed from a subset of the shares {s[j]}j∈Πx for x ∈ {0, 1}k

if and only if f(x) = 1. For this reconstruction, there exists an efficient algorithm
FindCoef(Πx, f) that outputs coefficients ω1, . . . , ωk such that ωj = 0 for all
j /∈ Πx and

∑

j∈[k] ωjs[j] = s.

Key-Policy ABE for LSS Policies. Our starting point is a technique that
combines IPFE with secret sharing schemes. The same approach has recently
been used to build ciphertext-policy ABEs with interesting new features [10,12,
13,35]. Very roughly, these works view a secret sharing as a weak form of one-
time, non-collusion resistant ABE, which is then lifted to full ABE using IPFE.
To encrypt a message μ from a polynomial-size space3 under a policy f , they
generate secret shares Share(μ, f) → s ∈ Z

k
p and encode them in the ciphertexts

of k independent IPFE instances. To generate a key for an attribute vector x ∈
{0, 1}k, one picks a uniformly random scalar r and generates IPFE secret keys
of r for those IPFE instances that correspond to indices in Πx:

CP-ABE.CTf : {iCTj([[s[j]]]2)}j∈[k]

CP-ABE.DKx : [[r]]t,
{

iDKj([[r]]1)
}

j∈Πx

}

[[r]]t,
{

[[r · s[j]]]t
}

j∈Πx

IPFE decryption yields target group encodings of rs[j] for all j ∈ Πx. If f(x) = 1,
one can run FindCoef(Πx, f) → {ωj}j and recover the product r·μ encoded in Gt:

∑

j∈Πx
ωj [[r · s[j]]]t = [[∗]]r ·∑j∈Πx

ωj · s[j]
t
= [[r · μ]]t

Then one can find μ by solving the discrete logarithm of [[r · μ]]t in basis [[r]]t.
Under an appropriate hardness assumption, the presence of r prevents adver-
saries from meaningfully “combining” information obtained from decryptions
with different ABE decryption keys.

To turn this into a key-policy scheme, the obvious idea is to flip ciphertexts
and decryption keys. However, there is one subtlety: when generating a secret
sharing for a policy f during the key generation, the message μ is not known. So
one cannot generate secret shares of μ. Therefore, we generate the secret sharing
for a random scalar s which is used to mask μ. Then one uses another IPFE

3 The restriction to a polynomial-size message space is only for notational convenience
throughout the technical overview. For superpolynomial size, one can simply view
the construction as a KEM with messages in Gt that can be used as a one-time pad.
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instance to enable decryption:

KP-ABE.CTx : iCT0([[r, μ]]1), {iCTj([[r]]1)}j∈Πx

KP-ABE.DKf : iDK0([[s, 1]]2), {iDKj([[s[j]]]2)}j∈[k]

}

[[r · s + μ]]t,
{[[r · s[j]]]t}j∈Πx

Similar to above, if f(x) = 1, one can run FindCoef(Πx, f) → {ωj}j and recover
the message μ encoded in Gt:

[[r · s + μ]]t −∑

j∈Πx
ωj [[r · s[j]]]t = [[r · s + μ]]t − [[∗]]r ·∑j∈Πx

ωjs[j]t = [[μ]]t

MC-ABE for LSS Without Repetitions. We next discuss how the genera-
tion of the ciphertext CTx can be distributed so as to turn the above key-policy
ABE into an MC-ABE. A natural approach is to follow [22,41] who construct
(Decentralized) MCFE for inner products. Even though not explicitly stated as
such, they essentially use an independent IPFE instance for each client, and
the common randomness r in the ciphertexts facing a secret sharing (s[j])j in
the decryption keys is provided by a random oracle. Translating this idea into
our context, each client i ∈ [0;n − 1] holds the master secret keys of k indepen-
dent IPFE instances, where k is the dimension of the attribute vectors4. The 0-th
client additionally holds iMSK0 as it takes the message input. To obtain the com-
mon random scalar [[r]]1 encoded in G1, we use a hash function H : {0, 1}∗ → G1.
To generate a decryption key for an attribute vector xi ∈ {0, 1}k with respect
to a label lab, the corresponding client i ∈ [n − 1] computes [[r]]1 ← H(lab)
and issues {iCTi,j([[r]]1)}j∈Πxi

. Similarly, to encrypt a message μ with respect
to x0 ∈ {0, 1}k, the 0-th client computes {iCT0,j([[r]]1)}j∈Πx0

and additionally
provides iCT0([[r, μ]]1). Decryption keys DKf for policies f are still generated by
a central authority, so the policy key generation algorithm does not need to be
modified. This leads us to the following MC-ABE for LSS:

MC-ABE.CTx0 : iCT0([[r, μ]]1),
{
iCT0,j([[r]]1)

}
j∈Πx0

MC-ABE.DKxi :
{
iCTi,j([[r]]1)

}
j∈Πxi

MC-ABE.DKf : iDK0([[s, 1]]2),
{
iDKi,j([[s[i, j]]]2)

}j∈[k]

i∈[0;n−1]

⎫
⎪⎪⎬

⎪⎪⎭

[[rs + μ]]t,
{
[[rs[i, j]]]t

}j∈Πxi
i∈[0;n−1]

where [[r]]1 ← H(lab) and s[i, j] denotes the entry of the share vector correspond-
ing to the j-th coordinate of xi for i ∈ [0;n− 1] and j ∈ [k]. The security notion
that we can achieve for this scheme suffers from the same limitations as [22,41];
most importantly, we cannot prove security under repetitions. Moreover, not
being able to prove security under repetitions implies that the encryption algo-
rithm must take a secret key, as otherwise the adversary could create multiple
ciphertexts under the same label by herself. The reason for these restrictions is
the fact that our only source of randomness is the random oracle whose only
input is the label. Hence, to achieve security in a stronger model, our first step
is to remove the random oracle from the construction.

4 Ciphertexts and decryption keys corresponding to the j-th IPFE scheme of client i
are denoted by iCTi,j and iDKi,j .
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Removing the Random Oracle and Enabling Public Encryption. In
our first attempt above, the random oracle provides common randomness across
independently generated ciphertexts and keys. Clearly, this is not possible any-
more without a random oracle. Therefore, it seems inevitable to have one client
(say, the 0-th) generate all the IPFE ciphertexts {iCTi,j([[r]]1)}i,j . However,
when generating CTx0 , the vectors x1, . . . ,xn−1 are unknown, so it is unclear
which iCTi,j([[r]]1) for i > 0 should be included in CTx0 .

As a solution, we let client 0 generate all ciphertexts {iCTi,j([[r]]1)}j∈[k]
i∈[n−1], but

instead of providing them “in the clear”, we hide them with an additional layer of
identity-based encryption. Specifically, the 0-th client encrypts each iCTi,j([[r]]1)
with respect to the identity (lab, j) using the public key of client i. Correspond-
ingly, client i ∈ [n − 1] provides the identity-based decryption keys idDKi(lab, j)
for each j ∈ Πxi

needed to recover the IPFE ciphertexts generated by client 0.
This idea yields the following MC-ABE for LSS in the standard model:

CTx0 :

[

iCT0([[r, μ]]1),
{

iCT0,j([[r]]1)
}

j∈Πx0
{

idCTi

(

(lab, j), iCTi,j([[r]]1)
)}j∈[k]

i∈[n−1]

]

DKxi
:

{

idDKi(lab, j)
}

j∈Πxi

DKf : iDK0([[s, 1]]2),
{

iDKi,j([[s[i, j]]]2)
}j∈[k]

i∈[0;[n−1]

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

[[r · s + μ]]t,
{

[[r · s[i, j]]]t
}j∈Πxi

i∈[0;n]

(1)

Here, r $← Zp is a fresh random scalar for each ciphertext. Due to this fact,
the scheme remains secure even under several encryption queries for the same
label and, in particular, enables a public encryption algorithm. Indeed, if each
encryption samples a fresh r $← Zp, then each message [[μ]]t is hidden by a fresh
looking mask [[r · s]]t. So the ability to create ciphertexts by herself does not help
the adversary to recover information from a challenge ciphertext anymore.

On the negative side, the scheme in (1) is still not secure under repetitions
for slots i ∈ [n− 1]. For example, consider an adversary that submits queries for
decryption keys DKxi

and DKx′
i

for two attribute vectors xi,x′
i ∈ {0, 1}k. Then

DKyi
:= DKxi

∪ DKx′
i

is a decryption key for the vector yi ∈ {0, 1}k having a 1
in all coordinates j ∈ [k] where 1 ∈ {x[j],x′[j]}. Thus, DKyi

may be used to
decrypt ciphertexts that cannot be decrypted by neither DKxi

nor DKx′
i
.

MC-ABE for LSS With Repetitions. To achieve security under repetitions
for slots i ∈ [n − 1], we must make sure that multiple decryption keys for the
same label-slot pair (lab, i) cannot be combined in a meaningful way as it is
possible for the scheme in (1). In other words, all components of a decryp-
tion key DKxi

should “depend on” the entire vector xi instead of only a sin-
gle coordinate xi[j]. To this end, we now let DKxi

= idDKi(lab,xi) as opposed
to {idDKi(lab, j)}j∈Πxi

. Then security of the MC-ABE under repetitions directly
corresponds to the collusion resistance of the employed IBE.

On the other hand, correctness is no longer straightforward. This is because
a successful decryption using the new keys requires the 0-th client to provide
encryptions of the IPFE ciphertexts {iCTi,j([[r]]1)}i,j with respect to identities
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that depend on attribute vectors x1, . . . ,xn−1. These vectors are not given as
input and, thus, are unknown at encryption time. Moreover, decryption with
a key DKf is supposed to work with any combination of x1, . . . ,xn−1 satisfy-
ing f(x0, . . . ,xn−1) = 1. Therefore, the problem is not only that these attribute
vectors are unknown, but in general there can be many possible choices that
should allow decrypting. In particular, when f is the constant function that
always outputs 1, then decryption must succeed for any choice of x1, . . . ,xn−1.
This observation ultimately forces the encryptor to provide encryptions of the
IPFE ciphertexts {iCTi,j([[r]]1)}j with respect to every identity (lab,xi) such
that xi ∈ {0, 1}k, for i ∈ [n − 1]. More precisely, a ciphertext CTx0 for a mes-
sage μ consists of the following components:

CTx0 :

⎧

⎨

⎩

iCT0([[rx, μ]]1),
{

iCT0,j([[rx]]1)
}

j∈Πx0
,

{

idCTi

(

(lab,xi), iCTi,j([[rx]]1)
)}j∈Πxi

i∈[n−1]

⎫

⎬

⎭

x=(x1,...,xn−1)∈{0,1}(n−1)k

(2)

where rx
$← Zp for each x ∈ {0, 1}(n−1)k. It is clear that these ciphertexts have

exponential size if k or n are chosen too large. However, it remains polynomial
if one chooses e.g. k · n = O(log λ) which gives |{0, 1}(n−1)k| = poly(λ).

Upgrading the Policy Class to NC1. Let f be a policy specified by an
NC1 circuit over the variables (x0, . . . ,xn−1) ∈ {0, 1}[0;n−1]×[k]. We can view f
as a Boolean formula consisting of (fan-in 1) ¬ gates and (fan-in 2) ∧ and
∨ gates. Using De Morgan laws, we can push the ¬ gates to the leaves such
that all internal nodes consist only of ∧ and ∨ gates, while leaves are labeled
by either attributes or their negations. In this way, we obtain a monotone for-
mula f : {0, 1}[0;n−1]×[k]×{0,1} → {0, 1} that is “equivalent” to f in the following
sense. For each x ∈ {0, 1}[k], we define the extended vector x ∈ {0, 1}[k]×{0,1}

component-wise via x[(j, 1)] = x[j] and x[(j, 0)] = 1−x[j] for each j ∈ [k]5. Then
we have f(x0, . . . ,xn−1) = f(x0, . . . ,xn−1) for each (x0, . . . ,xn−1). Lewko and
Waters [34] presented an LSS for all monotone access structures which implies
that f can be captured by an LSS.

Given an MC-ABE aFE for LSS policies f : {0, 1}[0;n−1]×[k]×{0,1} → {0, 1},
we can build an MC-ABE aFE for NC1 policies f : {0, 1}[0;n−1]×[k] → {0, 1} by
simply replacing the inputs x0, . . . ,xn−1 and f with x0, . . . ,xn−1 and f . In
general, aFE is only secure if the adversary is not allowed to corrupt users. To
see this, we first note that there exist vectors x ∈ {0, 1}[k]×{0,1} that are not an
extension of a vector x ∈ {0, 1}[k]. More precisely, x is an extension of some x if
and only if x[j, 0] = 1−x[j, 1] for all j ∈ [k]. Let us call such vectors x valid. By
construction, an aFE decryption key for a vector xi is an aFE decryption key for
the extended vector xi. Therefore, to reduce the security of aFE to the security
of aFE, we must argue that the adversary cannot obtain aFE decryption keys for
vectors that are not valid. Without corruptions, this is easy to see. However, if
5 We can think of x as a vector of length 2k whose coordinates are indexed by the

set [k] × {0, 1} for convenience.
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the adversary can obtain a client’s secret key, then this is no longer the case, as
the adversary could generate decryption keys for invalid vectors by herself. Thus,
using this conversion generically, we can convert the schemes in (1) and (2) into
MC-ABEs for NC1 without corruptions.

Moreover, we can even achieve security with corruptions when performing
a concrete security analysis for the scheme in (2). For this, we recall that the
secret key SKi of some client i ∈ [n − 1] consists of an IBE master secret key
that is used to generate decryption keys for identities (lab,xi). Even though this
key could be maliciously used to generate decryption keys for invalid vectors xi,
this does not help to win the security game as these identities do not occur in
the challenge ciphertext.

Other Policy Classes. We recall from (2) that our scheme becomes inefficient
when we choose k, n = poly(λ) since then there is an exponential number of x =
(x1, . . . ,xn−1) ∈ {0, 1}[n−1]×[k]. Nevertheless, there exist nontrivial subclasses
of NC1 which do not require to consider all x during the encryption procedure.

• NC0 Policies. The output of an NC0 policy f depends only on a set L of
size τ = O(1) out of the total of kn inputs. As the remaining kn − τ inputs
can be chosen arbitrarily without changing the output, it suffices to consider
vectors x that are 0 outside L. There are

(

kn
τ

) ≤ (kn)τ = poly(λ) possible
sets L and for each choice we only need to consider 2τ = O(1) vectors x.

• Threshold Policies with Constant Threshold. Threshold policies with a thresh-
old τ ≤ O(1) are not in NC0 as they depend on all kn inputs. However, they
have the property that each authorized set also has an authorized subset of
size τ . This allows an argument similar to above where we only deal with
subsets L of size τ . Symmetrically, we can also handle policies with a thresh-
old kn− τ where we consider

(

kn
kn−τ

) ≤ (kn)τ = poly(λ) sets L of size kn− τ .

While the idea is simple, the concrete implementation requires some care because
it must be guaranteed that the choices of L in the 0-th client remain compatible
with the IBE keys provided by the other clients. For details, please see Sect. 5.

Security. To get a grasp of the security proof, it is instructive to first consider
the case where the IPFE is simulation secure. This means the only values that
the adversary learns are

• encodings [[s]]2 of random scalars s $← Zp sampled during the key generation
and their corresponding share vectors [[s]]2, and

• target group encodings of the form [[r · s + μ]]t (IPFE instance 0) and
[[r · s[i, j]]]t (IPFE instance (i, j)) for random scalars r $← Zp sampled dur-
ing the encryption of the challenge message.

Importantly, nothing about r is leaked in G1. So we can rely on the DDH to
obtain a fresh looking mask [[r · s]]t with a fresh share vector [[r · s]]2 for each
combination of r and s. Then we can exploit the one-time security provided by
the LSS scheme to replace the individual secret sharings with random values:
by the admissibility of the adversary, there does not exist any pair (r, s) such
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that the adversary has sufficient information about a subset of shares that allows
her to recover the mask [[r · s]]t. Instead, they look uniformly random and, thus,
perfectly hide the challenge message.

Unfortunately, simulation security for many ciphertexts is known to be
impossible in the standard model [18]. Therefore, we can only rely on an IPFE
with indistinguishability-based security. This makes the proof slightly more com-
plex since we cannot directly conclude anymore that the adversary learns the
scalars r only as part of the inner products encoded in Gt. To circumvent this
problem, we use a primitive called slotted IPFE [38] which is a mix between
public-key and private-key IPFE that provides standard security on the public
part and additionally hides the function vectors in the private part. Using this
primitive, we can move the scalar r from the message vectors encoded in G1 into
a hidden coordinate of the function vectors in G2. Subsequently, we can rely on
the DDH in G2 and proceed with the proof as in the case of simulation security.

Finally, we want to mention an important detail that occurs during the secu-
rity proof. The adversary’s admissibility condition only covers the case when
she obtains at least one key for each slot (via either corruption or attribute
key generation queries). Therefore, we must protect against so-called incomplete
queries, where the adversary does not submit a query for every slot, but still
has sufficient information to decrypt. In the context of IPFE (without access
control) this can be done using a primitive called all-or-nothing encoding [23].
In the context of attribute-based MIFE for attribute-weighted sums, [9] uses a
ciphertext-policy ABE for arithmetic branching programs which was recently
proposed by Lin and Luo [39]. In our case, we can avoid the usage of a complex
primitive like ABE because we can model the completeness condition as part of
our policies. This is feasible since our construction can check a global condition
before releasing any information. Previous works considered only conjunctions
of local checks in each slot which is not powerful enough to verify completeness.

2.2 MC-PE from MC-ABE and Lockable Obfuscation

Lockable Obfuscation. We make use of a primitive called lockable obfusca-
tion (LO) [30,49]. Roughly speaking, LO allows to obfuscate a circuit C with
respect to a message μ and a lock value σ. Correctness asks that an evaluation
of the obfuscated circuit on some input x yields μ if C(x) = σ and ⊥ otherwise.
Simulation security requires that if σ looks random to the adversary, then the
obfuscated circuit is computationally indistinguishable from a garbage program
that does not carry any information about μ or C.

The Compilers of [11]. The authors of [11] present two compilers from MI-
ABE to MI-PE which nest several obfuscated circuits in a sophisticated manner.
Very roughly, the obfuscated circuit ˜C0 for the zeroth slot takes as input another
obfuscated circuit ˜C1 for the first slot, which in turn takes an obfuscated cir-
cuit ˜C2 for the second slot and so on until one arrives at the last slot n − 1.
˜C0 is generated with respect to an attribute x0 and a message μ whereas the
other ˜Ci’s only depend on an attribute xi. The crucial part of the construction
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is to establish “communication” between consecutive circuits without violating
attribute privacy. The idea is to build a recursive evaluation chain where the
innermost circuit checks the condition f(x0, . . . , xn−1) = 1 using the MI-ABE;
and a successful evaluation of an obfuscated circuit ˜Ci, for i ∈ [n − 1], unlocks
the lock and reveals a secret which is needed for a successful evaluation of ˜Ci−1.

In their first compiler, these secret values are global secrets. This leads to
a straightforward construction as all clients know these common secrets when
they obfuscate their circuits. However, the supported security model is weak.
This is because once the adversary submits any combination of oracle queries
that enables a valid decryption process, these global secrets are revealed and
security collapses even if all involved oracle queries have the same left and right
input. To achieve security in a stronger model, their second compiler avoids
these global secrets. However, this makes the construction more complex, and
they are able to deal with only two slots. Our new construction can be viewed
as a generalization of this arity-2 compiler to any constant arity. We therefore
recall the arity-2 construction as a warm-up.

Construction in the Two-Input Setting. We start from an MI-ABE (aSetup,
aEnc, aAKeyGen, aPKeyGen, aDec). For notational convenience, we use the short-
hand notations aCT�(x0, μ), aDK�(i, xi) and aDK�(f) to denote executions
of aEnc�(aMPK�, x0, μ), aAKeyGen(aSK�,i, xi) and aPKeyGen(aMSK�, f), for
two independently generated aFE instances (aMPK�, aMSK�, {aSK�,i}i) ←
aSetup(1λ) indexed by � ∈ {0, 1}. The MI-PE encryptor (client 0) pos-
sesses (aMPK0, aSK1) and the attribute key generator (client 1) possesses
(aMPK1, aSK0). The master secret key contains the ABE master secret
keys (aMSK0, aMSK1). To encrypt a message μ with respect to an attribute x0,
client 0 samples a random lock value σ0 and computes aCT0(x0, σ0)
and aDK1(1, x0). The final ciphertext is an obfuscation ˜C0 of a cir-
cuit C0[aCT0(x0, σ0), aDK1(1, x0)] with respect to the message μ and lock
value σ0. The notation C[α] indicates that the value α is hardwired in the
description of the circuit C. Similarly, to produce a decryption key with respect
to an attribute x1, client 1 samples a lock value σ1, generates aCT1(x1, σ1)
and aDK0(1, x1) and outputs an obfuscation ˜C1 of a circuit C1[aCT1(x1, σ1)]
with respect to the message aDK0(1, x1) and lock value σ1. An MI-PE decryp-
tion key consists of a set of MI-ABE decryption keys {aDK0(f), aDK1(f)}.

The pivotal point that makes the whole scheme work is the definition of
the circuits. Specifically, decryption evaluates the obfuscated outer circuit ˜C0 on
input the obfuscated inner circuit ˜C1 and the MI-ABE keys {aDK0(f), aDK1(f)}.
Suppose that f(x0, x1) = 1. For a successful decryption, we must unlock ˜C0. The
lock value σ0 is already hardwired in the circuit C0[aCT0(x0, σ0), aDK1(1, x0)],
however it is hidden in the ciphertext aCT0(x0, σ0). To decrypt this cipher-
text, we need the decryption key aDK0(1, x1) embedded in ˜C1. For this rea-
son C0[aCT0(x0, σ0), aDK1(1, x0)] starts by evaluating ˜C1 on input (aDK1(1, x0),
aDK1(f)). From its inputs, the inner circuit C1[aCT1(x1, σ1)] obtains everything
it needs to decrypt its hardwired ciphertext aCT1(xa, σ1) and to recover the
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correct lock value σ1 which unlocks ˜C1 and reveals aDK0(1, x1). At this point,
C0[aCT0(x0, σ0), aDK1(1, x0)] can perform a similar computation by decrypting
the ciphertext aCT0(x0, σ0) and recovering σ0. This eventually unlocks ˜C0 and
outputs μ. Importantly, this construction does not use global secrets, hence its
security is not compromised after one successful decryption.

Generalization to Constant-Arity MC-ABE. Our new compiler generalizes
this framework to more than two slots and the more general MC-PE model. We
will use independent MC-ABE instances for each slot to check if decryption is
permitted, and each MC-PE client holds the key of one slot from each MC-ABE
instance. Specifically, we let client i ∈ [0;n − 1] control

• the i-th slot of the MC-ABE instances � ∈ [0; i − 1],
• the 0-th slot of the MC-ABE instance � = i, and
• the (i + 1)-th slot of the MC-ABE instances � ∈ [i + 1;n − 1].

In particular, we note that each MC-PE client is the encryptor in exactly one of
the MC-ABE schemes.

To encrypt a message μ with respect to a label lab and an attribute x0, client 0
samples a random lock value σ0 and creates aCT0(lab, x0, σ0) and aDK�(lab, 1, x0)
for all � ∈ [n−1]. Then, it issues an obfuscation of a circuit C0[aCT0(lab, x0, σ0),
{aDK�(lab, 1, x0)}�∈[n−1]] generated with respect to the message μ and the lock
value σ0. Similarly, to generate a key for a label lab and an attribute xi, client i ∈
[n−1] samples a lock value σi and creates aCTi(lab, xi, σi), aDK�(lab, i, xi) for � ∈
[0; i−1], and aDK�(lab, i+1, xi) for i ∈ [i+1;n−1]. Then it outputs an obfuscation
of a circuit Ci[aCTi, {aDK�(lab, i + 1, xi)}�∈[i+1;n−1]] generated with respect to
the message {aDK�(lab, i, xi)}�∈[0;i−1] and lock value σi. Decryption keys for a
policy f are a set of MC-ABE decryption keys {aDK�(f)}�∈[0;n−1].

As in the two-input case, the crucial point is to establish communication
between the obfuscated circuits in a secure way. However, the nested evaluations
become more complex now. We first observe the following properties satisfied by
all obfuscated circuits ˜Ci for i ∈ [0;n − 1]:

1. Decryption keys aDK�(lab, i+1, xi) for � > i are hardwired in the description
of the circuit. This means they can be accessed during the evaluation of ˜Ci

and passed as input to the evaluation of ˜Cj for j > i.
2. Decryption keys aDK�(lab, i, xi) for � < i are stored as the message of ˜Ci

which is revealed in case of a successful evaluation. This means they can be
recovered and used during the evaluation of ˜Cj for j < i.

Suppose that f(x0, . . . , xn−1) = 1. Decryption evaluates ˜C0 on input the
obfuscated circuits { ˜Ci}i∈[n−1] and the MC-ABE keys {aDK�(f)}�∈[0;n−1]. The
lock value of ˜C0 is hidden in its hardwired ciphertext aCT0(lab, x0, σ0). To
decrypt this ciphertext, we need the keys {aDK0(lab, i, xi)}i∈[n−1] stored in
the messages of { ˜Ci}i∈[n−1], so we need to evaluate them first. Specifically,
via a chain of recursive calls where each ˜Ci invokes the evaluation of ˜Ci+1,
we arrive at the evaluation of ˜Cn−1. From property 1 , it follows that ˜Cn−1
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receives as input all the keys {aDKn−1(lab, i, xi)}i∈[n−1] to decrypt its hard-
wired ciphertext aCTn−1(lab, xn−1, σn−1) and to recover the lock value σn−1. In
this way, ˜Cn−1 can be unlocked and its message revealed. In the next step, it
follows from property 2 that now the evaluation of ˜Cn−2 has everything it needs
to perform a similar computation to recover σn−2 and unlock ˜Cn−2, and so on.

While at first glance it may seem that this decryption procedure is efficient
for any (polynomial) number of slots, there is a subtle problem: each obfuscation
increases the size of the circuit by a polynomial factor. As we nest the evaluation
of the circuits, this leads to an exponential blow-up in the number of slots.
Therefore, the decryption algorithm is only efficient for n = O(1), i.e. constant
arity.

Security. The security proof is a simple sequence of hybrids over all slots
from n − 1 to 0. In each hybrid, if f(x0, . . . , xn−1) = 0, then we can rely on
the security of the i-th MC-ABE instance to replace the ciphertext aCTi(xi, σi)
hardwired in ˜Ci with a ciphertext of the zero string aCTi(xi, 0). Then the lock
value σi appears random to the adversary and the obfuscated circuit ˜Ci can
be replaced with a simulated obfuscation that carries no information about xi.
In the last step, we replace ˜C0 with a simulation that erases all information
about x0 and μ.

3 Preliminaries

3.1 Notational Conventions

Let λ ∈ N be the security parameter. Except in the definitions, we will suppress
λ in subscripts for brevity. A nonnegative function ε : N → R is negligible if
ε(λ) = O(λ−n) for all n ∈ N. An algorithm is said to be efficient if it runs in
probabilistic polynomial time (PPT) in the security parameter.

To avoid confusion, we always write vectors v and matrices A in boldface
and use uppercase letters for the latter. Scalars s are written in italics. Unless
otherwise stated, all vectors v are viewed as column vectors. The corresponding
row vector is denoted by v�.

Sets and Indexing. We denote by Z and N the sets of integers and natural
numbers (positive integers). For integers m and n, we write [m;n] to denote the
set {z ∈ Z : m ≤ z ≤ n} and let [n] := [1;n]. For a prime number p, Zp denotes
the finite field of integers modulo p. For a finite set S, we let 2S denote the power
set of S.

To index a vector or the columns of a matrix, we write v[i] and A[j]. In
contrast, objects of some collection that is not regarded as a vector or matrix
are indexed using subscripts (or superscripts in some cases). For instance, vi

represents a vector, not a component of some vector. If i runs through some
index set [n], it means that there are n vectors v1, . . . ,vn. If the n objects are
scalars (or not explicitly vectors), we will write v1, . . . , vn instead.
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For convenience, objects might be indexed by arbitrary sets, not just integers.
For finite sets s, A, we write As := {(v[i])i∈s : v[i] ∈ A} for the set of vectors
whose entries are in A and indexed by s, e.g. Z

[n]
p is just Z

n
p . Suppose s1, s2

are two index sets with s1 ⊆ s2. For a vector v ∈ Z
s2
p , we denote by u = v|s1

its canonical projection onto Z
s1
p , i.e. u ∈ Z

s1
p and u[i] = v[i] for all i ∈ s1.

Conversely, for any vector u ∈ Z
s1
p , we write v = u|s2 for its zero-extension into

Z
s2
p , i.e. v ∈ Z

s2
p and v[i] = u[i] if i ∈ s1, and v[i] = 0 if i ∈ s2 \ s1.

3.2 Pairing Groups and Hardness Assumptions

Pairing Groups. Our constructions use a sequence of pairing groups

G = {Gλ = (Gλ,1, Gλ,2, Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N ,

where Gλ,1 (resp. Gλ,2, Gλ,t) is a cyclic group of order pλ generated by gλ,1

(resp. gλ,2, gλ,t), and eλ : Gλ,1 × Gλ,2 → Gλ,t is the pairing operation satisfying
eλ(ga

λ,1, g
b
λ,2) = gab

λ,t for all integers a, b. The group operations and the pairing
map are required to be efficiently computable.

Following the implicit notation in [25], we write [[a]]i to denote ga
λ,i for

i ∈ {1, 2, t}. This notation extends component-wise to matrices and vectors
having entries in Zp. Equipped with these notations, group operations are writ-
ten additively and the pairing operation multiplicatively, e.g. [[A]]1 −B[[C]]1D =
[[A − BCD]]1 and [[A]]1[[B]]2 = [[AB]]t.

Computational Assumptions. We state the assumptions needed for our con-
structions. Let {Gλ = (Gλ,1, Gλ,2, Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N be a sequence
of pairing groups.

Definition 1 (Decisional Diffie-Hellman Assumption (DDH)). Let i ∈
{1, 2, t}. The DDH assumption holds in {Gλ,i}λ∈N if {[[a, b, ab]]i}λ∈N ≈c

{[[a, b, ab + c]]i}λ∈N for a, b, c $← Zpλ
.

Definition 2 (Symmetric eXternal Diffie-Hellman Assumption
(SXDH)). The SXDH assumption holds in {Gλ}λ∈N if the DDH assumption holds
in both {Gλ,1}λ∈N and {Gλ,2}λ∈N.

3.3 Monotone Access Structures and Linear Secret Sharing
Schemes

Let X = {0, 1}s be the attribute universe with index set s. An access structure
on X is a collection S ⊆ 2s \ ∅ of nonempty subsets of s. We call the sets in S
authorized, and those in 2s\S unauthorized. Each access structure S corresponds
to an access policy f : X → {0, 1} defined via

f(x) =

{

1 if {i ∈ s : x[i] = 1} ∈ S
0 if {i ∈ s : x[i] = 1} /∈ S .
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An access structure S ⊆ 2s is said to be monotone if the following condition is
satisfied for all S1, S2 ⊆ s: if S1 ∈ S and S1 ⊆ S2, then S2 ∈ S. A policy is said
to be monotone if its corresponding access structure is monotone.

We next recall the definition of a linear secret sharing scheme.

Definition 3 (Linear Secret Sharing (LSS) Scheme [16,17]). Let �, n ∈ N

and p be a prime number. We denote e1 = (1, 0, . . . , 0)� ∈ Z
n
p the first unit-vector

in Z
n
p . A linear secret sharing (LSS) scheme over Zp for an access structure S ⊆

2s on an attribute universe X = {0, 1}s is specified by a share generating matrix
M ∈ Z

n×�
p and a function ρ : [�] → s mapping the columns of M to indices in s,

which satisfy the following condition:

S ∈ S ⇐⇒ e1 ∈ span{M[j] : j ∈ [�], ρ(j) ∈ S} . (3)

For convenience, we often do not distinguish between an access structure S, its
corresponding policy f and a pair (M, ρ) satisfying (3). In particular, we may
write f = (M, ρ). In order to share a value s ∈ Zp using an LSS scheme over Zp,
one samples u $← Z

n−1
p and computes the share vector

s = (s,u[1], . . . ,u[n − 1]) · M ∈ Z
�
p .

Then a set {s[j]}j∈J for some J ⊆ [�] can be used to reconstruct s if and only
if {ρ(j)}j∈J is authorized with respect to the access structure corresponding
to f = (M, ρ). Indeed, in this case there exist coefficients ω1, . . . , ω� ∈ Zp such
that ωj = 0 for all j ∈ [�] \ J and

∑

j∈[�] ωjM[j] = e1. These coefficients can be
used to compute

∑

j∈J

ωjs[j] =
∑

j∈[�]

ωjs[j] = (s,u[1], . . . ,u[n − 1]) ·
∑

j∈[�]

ωjM[j] = s .

Lewko and Waters [34] presented an LSS scheme for all monotone access struc-
tures.

3.4 Function-Hiding Slotted Inner-Product Functional Encryption

We recall the definition of slotted IPFE from [38]. Similar to [10,35,38], this
primitive will allow us to employ techniques akin to dual system encryption [33,
47]. To adhere to the formalism used in this work, we present the syntax in a
pairing-based setting.

Definition 4 (Slotted IPFE). Let G = {Gλ = (Gλ,1, Gλ,2, Gλ,t, gλ,1, gλ,2, gλ,t,
eλ, pλ)}λ∈N be a sequence of pairing groups. A slotted IPFE scheme based on G

consists of five efficient algorithms:

Setup(1λ, spub, spri) → (MPK,MSK): On input the security parameter and two
disjoint index sets, the public slot spub and the private slot spri, this algorithm
outputs a pair of a master public and a master secret key (MPK,MSK). We
denote the whole index set by s := spub ∪ spri.
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Enc(MSK, [[x]]1) → CT: On input a master secret key MSK and an encoding of a
vector x ∈ Z

s
pλ

in Gλ,1, this algorithm outputs a ciphertext CT for x.
KeyGen(MSK, [[y]]2) → SK: On input a master secret key MSK and an encoding

of a vector y ∈ Z
s
pλ

in Gλ,2, this algorithm outputs a decryption key DK
for y.

Dec(DK,CT) → [[d]]t: On input a decryption key DK and a ciphertext CT, this
algorithm outputs an element [[d]]t ∈ Gλ,t.

SlotEnc(MPK, [[xpub]]1) → CT: On input a master public key MPK and an encod-
ing of a message vector xpub ∈ Z

spub
pλ in Gλ,1, this algorithm outputs a cipher-

text for the vector x = xpub|s ∈ Z
s
pλ

.

Correctness. A slotted IPFE scheme satisfies decryption correctness if for all
λ ∈ N, all disjoint index sets spub, spri and all vectors x,y ∈ Z

s
pλ

, it holds that

Pr

⎡

⎢

⎣
Dec(DK,CT) = [[〈x,y〉]]t

∣

∣

∣

∣

∣

∣

∣

(MPK,MSK) ← Setup(1λ, spub, spri)
CT ← Enc(MSK, [[x]]1)
DK ← KeyGen(MSK, [[y]]2)

⎤

⎥

⎦
= 1 .

Furthermore, we say that a slotted IPFE scheme satisfies slot-mode correctness
if for all λ ∈ N, all disjoint index sets spub, spri, all i ∈ Iλ and xpub ∈ Z

spub
p , the

following distributions D0,D1 are identical:

D0 =

{

(MPK,MSK,CT)

∣

∣

∣

∣

∣

(MPK,MSK) ← Setup(1λ, spub, spri)
CT ← Enc(MSK, i, [[xpub|s]]1)

}

,

D1 =

{

(MPK,MSK,CT)

∣

∣

∣

∣

∣

(MPK,MSK) ← Setup(1λ, spub, spri)
CT ← SlotEnc(MPK, i, [[xpub]]1)

}

,

where the probability is taken over the random coins of the algorithms.

Security. We define adaptive function-hiding IND-CPA security.

Definition 5 (Function-Hiding Security). For a slotted IPFE scheme iFE

and a PPT adversary A, we define the security experiment Expsl-ipfe-b
iFE,A (1λ) as

shown in Fig. 1. The oracles OKeyGen and OEnc can be called in any order
and any (polynomial) number of times. The adversary A is admissible with
respect to Qenc and Qkey, denoted by adm(A) = 1, if all ([[x0]]1, [[x1]]1) ∈ Qenc

and ([[y0]]2, [[y1]]2) ∈ Qkey satisfy 〈x0,y0〉 = 〈x1,y1〉 and y0|spub = y1|spub . Oth-
erwise, we say that A is not admissible and write adm(A) = 0. We call iFE

function-hiding if Expsl-ipfe-0
iFE,A (1λ) ≈c Expsl-ipfe-1

iFE,A (1λ).

There exists a slotted IPFE scheme based on G which can be proven (adap-
tively) function-hiding under the SXDH6 assumption in G. The construction is
based on a sequence of works [7,37,40,48] and has been described explicitly
in [38].
6 More precisely, the security proof only relies on MDDHk, for any k > 1, in both G1

and G2. This assumption is implied by SXDH on G.
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Fig. 1. Security game Expsl-ipfe-b
iFE,A (1λ) for Definition 5

3.5 Identity-Based Encryption

We recall the definition of identity-based encryption (IBE).

Definition 6 (Identity-Based Encryption). Let M = {Mλ}λ∈N and I =
{Iλ}λ∈N be sequences of message and identity spaces, respectively. An identity-
based encryption scheme for M and I consists of four efficient algorithms:

Setup(1λ) → (MPK,MSK): On input the security parameter, this algorithm out-
puts a pair of a master public key MPK and a master secret key MSK.

Enc(MPK, i, μ) → CT: On input a master public key MSK, an identity i ∈ Iλ

and a message μ ∈ Mλ, this algorithm outputs a ciphertext CT for μ created
with respect to i.

KeyGen(MSK, i′) → DK: On input a master secret key MSK and an identity i′ ∈
Iλ, this algorithm outputs a decryption key DK for i′.

Dec(DK,CT) → μ′ ∨⊥: On input a decryption key DK and a ciphertext CT, this
algorithm outputs an element μ′ ∈ Mλ or ⊥.

Correctness. An IBE scheme is said to be correct if for all λ ∈ N, all identi-
ties i ∈ Iλ and all messages μ ∈ Mλ, it holds that

Pr

⎡

⎢

⎣
Dec(DK,CT) = μ

∣

∣

∣

∣

∣

∣

∣

(MPK,MSK) ← Setup(1λ)
CT ← Enc(MPK, i, μ)
DK ← KeyGen(MSK, i)

⎤

⎥

⎦
= 1 ,

where the probability is taken over the random coins of the algorithms.

Security. We define adaptive IND-CPA security.

Definition 7 (Security). For an IBE scheme IBE and a PPT adversary A,
we define the security experiment Expibe-b

IBE,A(1λ) as shown in Fig. 2. The ora-
cle OKeyGen can be called any (polynomial) number of times whereas the ora-
cle OEnc can be called only once. We call IBE secure if Expibe-0

IBE,A(1λ) ≈c

Expibe-1
IBE,A(1λ).

There exist various IBE schemes in the group-based setting, e.g. [21,32,47].
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Fig. 2. Security game Expibe-b
IBE,A(1λ) for Definition 7

3.6 Lockable Obfuscation

We recall the definition of a lockable obfuscator [30,49]. Given polynomials n =
n(λ),m = m(λ) and d = d(λ), we denote by Cn,m,d(λ) the class of depth d(λ)
circuits with n(λ) bits input and m(λ) bits output.

Definition 8 (Lockable Obfuscation). Let M = {Mλ}λ∈N be a sequence
of message spaces and {Cn,m,d(λ)}λ∈N a sequence of circuit classes. A lockable
obfuscator for M and C is a tuple of two efficient algorithms:

Obf(1λ, C, μ, σ) → ( ˜C): On input 1λ, a circuit C ∈ Cn,m,d(λ), a message μ ∈
Mλ and a “lock value” σ ∈ {0, 1}m(λ), this algorithm outputs an obfuscated
circuit ˜C.

Eval( ˜C, x) → μ′ ∨ ⊥: On input an obfuscated circuit ˜C and an input x ∈
{0, 1}n(λ), this algorithm outputs a value μ′ ∈ Mλ or ⊥.

Correctness. A lockable obfuscator satisfies (perfect) correctness if for all λ ∈
N, all circuits C ∈ Cn,m,d(λ), all messages μ ∈ Mλ and all inputs x ∈ {0, 1}n(λ),
the following two implications are satisfied:

1. if C(x) = σ, then Eval(Obf(1λ, C, μ, σ), x) = μ
2. if C(x) �= σ, then Eval(Obf(1λ, C, μ, σ), x) = ⊥
Security. We define security against multiple challenges. In [11], this definition
was observed to be equivalent to the original single-challenge version from [30].

Definition 9 (Security against Multiple Queries). For a lockable obfusca-
tion scheme LObf = (Obf,Eval) and an efficient algorithm Sim, we define the
following oracles:

OObf0(C, μ): sample σ $← {0, 1}m(λ) and return ˜C ← Obf(1λ, C, μ, σ)
OObf1(C, μ): return Sim(1λ, 1|C|, 1|μ|)

We call LObf secure if there exists a PPT simulator Sim such that for all PPT
adversaries A, there exists a negligible function negl(·) such that

Advlock
LObf,A(λ) :=

∣

∣

∣Pr
[

AOObf1 → 1
]

− Pr
[

AOObf0 → 1
]∣

∣

∣ ≤ negl(λ) .

Perfectly correct lockable obfuscators for general circuits are known to exist
under the LWE assumption [29,30].
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4 Multi-client Attribute-Based and Predicate Encryption

We define multi-client attribute-based encryption (MC-ABE) and multi-client
predicate encryption (MC-PE). Since the only difference between these notions
lies in the security game, we unify the syntax of the algorithms.

Definition 10 (Public-Key Syntax). Let n = n(λ) be a polynomial. Fur-
thermore, let M = {Mλ}λ∈N be a sequence of message spaces, X = {Xλ}λ∈N

a sequence of attribute universes, L = {Lλ}λ∈N a sequence of label spaces and
F = {Fλ}λ∈N a sequence of policy classes, where each policy fλ ∈ Fλ maps from
X n

λ to {0, 1}. An MC-ABE (resp. MC-PE) scheme for M, X , F and L consists
of five efficient algorithms:

Setup(1λ) → (MPK,MSK, {SKi}i∈[n−1]): On input the security parameter 1λ,
this algorithm outputs a pair of master public key MPK and master secret
key MSK as well as a set of secret keys {SKi}i∈[n−1].

Enc(MPK, lab, x0, μ) → CTlab: On input the master public key MPK, a label
lab ∈ Lλ, an attribute x0 ∈ Xλ and a message μ ∈ Mλ, this algorithm
outputs a ciphertext CTlab.
In case of an MC-ABE scheme, we assume that CTlab implicitly includes x0.

AKeyGen(SKi, lab, xi) → DKlab,i: On input a secret key SKi for some i ∈ [n − 1],
a label lab ∈ Lλ and an attribute xi ∈ Xλ, this algorithm outputs a decryption
key DKlab,i.
In case of an MC-ABE scheme, we assume that DKlab,i implicitly includes xi.

PKeyGen(MSK, f) → DKf : On input the master secret key MSK and a policy
f ∈ Fλ, this algorithm outputs a decryption key DKf .
We assume that DKf implicitly includes a description of f .

Dec(DKf , {DKlab,i}i∈[n−1],CTlab) → μ′ ∨ ⊥: On input a decryption key DKf for
a policy f ∈ Fλ, a set of attribute decryption keys {DKlab,i}i∈[n−1] generated
with respect to some label lab ∈ Lλ and a ciphertext CTlab created with respect
to the same label lab, this algorithm outputs an element μ′ ∈ Mλ or ⊥.

Below, we discuss security in the public-key and secret-key setting. In the secret-
key setting, we slightly change the syntax, as we find it more intuitive to let the
encryption algorithm take a secret key SK0 instead of a master public key MPK
if this key is not given to the adversary.

Correctness. An MC-ABE (resp. MC-PE) is correct if for every λ, n ∈ N, label
lab ∈ Lλ, message μ ∈ Mλ, policy f ∈ Fλ and attributes x0, . . . , xn−1 ∈ Xλ

such that f(x0, . . . , xn−1) = 1, it holds that

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

μ′ = μ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(MPK,MSK, {SKi}i∈[n−1]) ← Setup(1λ)
CTlab ← Enc(MPK, lab, x0, μ)
∀i ∈ [n − 1] : DKlab,i ← AKeyGeni(SKi, lab, xi)
DKf ← PKeyGen(MSK, f)
μ′ := Dec(DKf , {DKlab,i}i∈[n−1],CTlab)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1
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Security. We define security for MC-ABE in the public-key setting as well as
security for MC-PE in the secret-key setting.

Definition 11 (Public-Key Security for MC-ABE). Let xxx ∈ {sel, adap}
and yyy ∈ {norep, rep}. For an MC-ABE scheme aFE and a PPT adver-
sary A, we define the experiment Expmc-abe-b

aFE,A (1λ) as shown in Fig. 3. The oracles
OCorrupt, OEnc, OAKeyGen and OPKeyGen can be called in any order and any
polynomial number of times, except for OEnc which can be called only once.
Let (lab, x0, μ

0, μ1) denote the single query to OEnc. The adversary A is admis-
sible, denoted by adm(A) = 1, if it satisfies the following conditions:

1. For all f ∈ Qkey and x1, . . . , xn−1 ∈ Xλ such that (i, lab, xi) ∈ Qakey for
all i ∈ [n − 1] \ C, it holds f(x0, . . . , xn−1) = 0.

2. If xxx = sel, then the adversary cannot call OCorrupt, OEnc and OAKeyGen
anymore after submitting the first query to OPKeyGen.

3. If yyy = norep, then for each i ∈ [n − 1] and lab ∈ L the adver-
sary submits at most one query of the form OAKeyGen(i, lab, �), i.e. we
have |{xi ∈ {0, 1}k : (i, lab, xi) ∈ Qakey}| ≤ 1.

Otherwise, we say that A is not admissible and write adm(A) = 0. We call aFE
xxx-yyy-secure if Expmc-abe-0

aFE,A (1λ) ≈c Expmc-abe-1
aFE,A (1λ).

Fig. 3. Security game Expmc-abe-b
aFE,A (1λ) for Definition 11

Definition 12 (Secret-Key Security for MC-PE). Let xxx ∈ {sel, adap}
and yyy ∈ {norep, rep}. For an MC-PE scheme pFE and a PPT adversary A, we
define the experiment Expmc-pe-b

pFE,A (1λ) as shown in Fig. 4. The oracles OCorrupt,
OEnc, OAKeyGen and OPKeyGen can be called in any order and any poly-
nomial number of times. Let lab ∈ L. We define Q′

0,lab = {(x0
0, x

1
0, μ

0, μ1) :
(lab, x0

0, x
1
0, μ

0, μ1) ∈ Qenc} and Q′
i,lab = {(x0

i , x
1
i ) : (i, lab, x0

i , x
1
i ) ∈ Qakey} as

well as



54 D. Pointcheval and R. Schädlich

Q0,lab =

{

Q′
0,lab if 0 ∈ [0;n − 1] \ C

Q′
0,lab ∪ {(x0, x0, μ, μ) : x0 ∈ X , μ ∈ M} if 0 ∈ C

Qi,lab =

{

Q′
i,lab if i ∈ [0;n − 1] \ C

Q′
i,lab ∪ {(xi, xi) : xi ∈ X} if i ∈ C

for all i ∈ [n − 1]. The adversary A is admissible, denoted by adm(A) = 1, if it
satisfies the following conditions:

1. For all lab ∈ L, (x0
0, x

1
0, μ

0, μ1) ∈ Q0,lab, (x0
1, x

1
1) ∈ Q1,lab, (x0

2, x
1
2) ∈ Q2,lab,

. . . , (x0
n−1, x

1
n−1) ∈ Qn−1,lab and policies f ∈ Qkey, it holds f(x0

0, . . . , x
0
n−1) =

f(x1
0, . . . , x

1
n−1) = 0 or (x0

0, . . . , x
0
n−1, μ

0) = (x1
0, . . . , x

1
n−1, μ

1).
2. If xxx = sel, then the adversary cannot call OCorrupt, OEnc and OAKeyGen

anymore after submitting the first query to OPKeyGen.
3. If yyy = norep, then for each i ∈ [n − 1] and lab ∈ L the adver-

sary submits at most one query of the form OAKeyGen(i, lab, �, �), i.e. we
have |{xi ∈ {0, 1}k : (i, lab, xi) ∈ Qakey}| ≤ 1.

Otherwise, we say that A is not admissible and write adm(A) = 0. We call pFE
xxx-yyy-secure if Expmc-pe-0

pFE,A (1λ) ≈c Expmc-pe-1
pFE,A (1λ).

Fig. 4. Security game Expmc-pe-b
pFE,A (1λ) for Definition 12

5 Construction of MC-ABE

In this section, we present our construction for MC-ABE with repetitions. The
full version contains an additional construction of MC-ABE for all LSS schemes
without repetitions which can be upgraded to NC1 policies when not considering
corruptions. Our construction needs the following two definitions.
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Complete Policies. Let k, n ∈ N. We define c : {0, 1}[n−1]×{0} → {0, 1} by
c((xi,0)i∈[n−1]) =

∧

i∈[n−1] xi,0. Given a policy f : {0, 1}[0;n−1]×[k] → {0, 1}, we
write (c ∧ f) for the complete policy

(c ∧ f) : {0, 1}[0;n−1]×[0;k] → {0, 1}
(xi,j)i,j �→ c

(

(xi,0)i∈[n−1]

) ∧ f
(

(xi,j)(i,j)∈[0;n−1]×[k]

)

.

Transformation to Monotone Policies. For (xi,j)i,j ∈ {0, 1}[0;n−1]×[0;k], we
define (xβ

i,j)
β
i,j ∈ {0, 1}[0;n−1]×[0;k]×{0,1} by x1

i,j = xi,j and x0
i,j = 1 − xi,j . Given

a policy f : {0, 1}[0;n−1]×[0;k] → {0, 1} computable by an NC1 circuit, we con-
struct the corresponding monotone policy f : {0, 1}[0;n−1]×[0;k]×{0,1} → {0, 1}
as follows: first, we view f as a Boolean formula consisting of (fan-in 1) ¬
gates and (fan-in 2) ∧ and ∨ gates. Then, using De Morgan laws, we push
the ¬ gates to the leaves such that all internal nodes consist only of ∧ and ∨
gates, while leaves are labeled by either attributes or their negations. Finally,
for each (i, j) ∈ [0;n − 1] × [0; k] we identify the attribute xi,j ∈ {0, 1} with the
attribute x1

i,j and the negation of xi,j with x0
i,j . The resulting formula f is mono-

tone and equivalent to f in the sense that it satisfies f((xβ
i,j)

β
i,j) = f((xi,j)i,j)

for all inputs (xi,j)i,j ∈ {0, 1}[0;n−1]×[0;k].
We combine this transformation with complete policies. Given an NC1 pol-

icy f : {0, 1}[0;n−1]×[k] → {0, 1}, we denote by (c ∧ f) : {0, 1}[0;n−1]×[0;k]×{0,1} →
{0, 1} the monotone policy obtained by applying the above transformation to
the complete policy (c ∧ f) : {0, 1}[0;n−1]×[0;k] → {0, 1}.

Our Policy Classes. We consider various policy classes F containing policies
of the form f : {0, 1}[0;n−1]×[k] → {0, 1}.

• Small Parameters. Let k, n such that kn = O(log λ), i.e. the total length of
the input is logarithmic in λ. We let F log-att denote the class of all policies
with input {0, 1}[0;n−1]×[k] computable by an NC1 circuit and, for x1, . . . ,xn ∈
{0, 1}k, we define the sets

Π log-att′
x0

=
{

(y′
0, . . . ,y

′
n−1) : y′

0 = x0 ∧ y′
1, . . . ,y

′
n−1 ∈ {0, 1}k

}

,

and Ωlog-att′
xi

= {xi} for i ∈ [n − 1].
• NC0 Policies. Let k, n = poly(λ) and d = O(1) be some fixed upper bound on

the depth of the considered circuits. Then each policy depends on at most τ =
2d = O(1) out of the kn input bits. We denote by F const-dep the set of all NC0

policies with depth d and input {0, 1}[0;n−1]×[k]. For x1, . . . ,xn ∈ {0, 1}k, we
define the sets

Πconst-dep′
x0

=

{

(y′
0, . . . ,y

′
n−1) :

y′
0 = x0 ∧ y′

1, . . . ,y
′
n−1 ∈ {0, 1,⊥}k

s.t.
∑

i∈[0;n−1] δ(y
′
i) = τ

}

Ωconst-dep′
xi

=
{

z′
i ∈ {0, 1,⊥}k : (∀j ∈ [k]. z′

i[j] ∈ {xi[j],⊥}) ∧ (δ(z′
i) ≤ τ)

}

,

where δ(y) = |{j ∈ [k] : y[j] ∈ {0, 1}}| denotes the number of coordinates
being not equal to ⊥.
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• Threshold Policies. Let k, n = poly(λ). Instead of a constant input locality,
we may also consider policies, where every authorized set has a constant-
size subset that is also authorized. This property is satisfied by e.g. threshold
policies with a constant threshold τ = O(1). We denote by f t-thr the threshold
policy which allows the reconstruction of the secret from arbitrary t (out of
the total of kn) shares. Then we define the policy class F≤const-thr = {f t-thr :
t ∈ [τ ]} and, for x1, . . . ,xn ∈ {0, 1}k, we set

Π≤const-thr
x0

′
=

{

(y′
0, . . . ,y

′
n−1) :

y′
0 = x0 ∧ y′

1, . . . ,y
′
n−1 ∈ {1,⊥}k

s.t.
∑

i∈[0;n−1] δ(y
′
i) = τ

}

Ω≤const-thr
xi

′
=
{

z′
i ∈ {1,⊥}k : (∀j ∈ [k]. z′

i[j] ∈ Sxi[j]) ∧ (δ(z′
i) ≤ τ)

}

,

where S0 = {⊥} and S1 = {1,⊥}. Note that threshold policies are in partic-
ular monotone policies, which is why we can pick y′

i, z
′
i ∈ {1,⊥}k as opposed

to y′
i, z

′
i ∈ {0, 1,⊥}k. This will improve the efficiency of the scheme as it

reduces the size of the sets Π≤const-thr
x0

′ and Ω≤const-thr
xi

′.
Conversely, we define the policy class F≥const-thr = {f t-thr : t ∈ [kn − τ ; kn]}
and the sets

Π≥const-thr
x0

′
=

{

(y′
0, . . . ,y

′
n−1) :

y′
0 = x0 ∧ y′

1, . . . ,y
′
n−1 ∈ {1,⊥}k

s.t.
∑

i∈[0;n−1] δ(y
′
i) ≥ kn − τ

}

and Ω≥const-thr
xi

′ = {z′
i} where z′

i ∈ {1,⊥}k is defined coordinate-wise
as z′

i[j] = sxi[j] for all j ∈ [k] where s0 = ⊥ and s1 = 1.

We must protect against incomplete queries by considering the complete pol-
icy (c ∧ f) instead of f . For this, we define

Π type
x0

=

{

(y0, . . . ,yn−1) :
y0 = (⊥,y′

0) ∧ y1 = (1,y′
1) ∧ · · · ∧ yn−1 = (1,y′

n−1)

s.t. (y′
0, . . . ,y

′
n−1) ∈ Π type

x0

′

}

Ωtype
xi

=
{

zi = (1, z′
i) : z′

1 ∈ Ωtype
xi

′}
,

where type ∈ {log-att, const-dep,≤const-thr,≥const-thr} and i ∈ [n − 1].

Construction 1 (MC-ABE with Repetitions). Let type ∈ {log-att, const-
loc,≤const-thr,≥const-thr}. If type = log-att, pick k and n such that kn =
O(log λ). Otherwise, let k = n = poly(λ). Our construction uses the following
ingredients:

• A slotted IPFE scheme iFE = (iSetup, iKeyGen, iEnc, iDec) based on a pairing
group G = (G1, G2, Gt, g1, g2, >, e, p).

• An identity-based encryption scheme idFE = (idSetup, idKeyGen, idEnc, idDec)
with identity space I = L×{0, 1}[0;k] for L = {0, 1}poly(λ) and message space
being the ciphertext space of iFE

The MC-ABE scheme aFE for n clients and the policy class F type with message
space M = Gt, label space L and attribute universe X = {0, 1}k works as follows:
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Setup(1λ) takes as input the security parameter 1λ and generates

(iMPK0, iMSK0) ← iSetup(1λ, {1, 2}, {3})
{

(iMPKβ
i,j , iMSKβ

i,j) ← iSetup(1λ, {1}, {2})
}β∈{0,1}
(i,j)∈[0;n−1]×[0;k]

{

(idMPKi, idMSKi) ← idSetup(1λ)
}

i∈[n−1]
.

Then it outputs (MPK,MSK, {SKi}i∈[n−1]) as follows:

MPK =
(

iMPK0, {iMPKβ
i,j}β∈{0,1}

(i,j)∈[0;n−1]×[0;k], {idMPKi}i∈[n−1]

)

MSK =
(

iMSK0, {iMSKβ
i,j}β∈{0,1}

(i,j)∈[0;n−1]×[0;k]

)

{SKi = idMSKi}i∈[n−1] .

We implicitly parse these keys in the algorithms below.
Enc(MPK, lab,x0, [[μ]]t) takes MPK, a label lab ∈ L, an attribute x0 ∈ {0, 1}k

and a message [[μ]]t ∈ Gt as input. We define q0 := |Π type
x0

| and parse Π type
x0

=
{yν}ν∈[q0] where yν = (yν

1 , . . . ,y
ν
n). For i ∈ [0;n − 1], let Y ν

i = {i} × {j ∈
[0; k] : yν

i [j] �= ⊥}. For convenience, we also set Y ν =
⋃

i∈[0;n−1] Y
ν
i

and Y ν
≥1 = Y ν\Y ν

0 . The algorithm samples random elements [[r1]]1, . . . , [[rq0 ]]1,
[[σ]]1 $← G1, computes [[d]]t = [[σ + μ]]t and generates

{

iCTν
0 ← iSlotEnc(iMPK0, [[(rν , σ)]]1)

}ν∈[q0]

{

iCTν
i,j ← iSlotEnc(iMPK

yν
i [j]

i,j , [[rν ]]1)
}ν∈[q0]

(i,j)∈Y ν

{

idCTν
i,j ← idEnc(idMPKi, (lab,yν

i ), iCTν
i,j)
}ν∈[q0]

(i,j)∈Y ν
≥1

.

Finally, it outputs the ciphertext

CTlab =
(

[[d]]t, {iCTν
0}ν∈[q0], {iCTν

0,j}ν∈[q0]
(0,j)∈Y ν

0
, {idCTν

i,j}ν∈[q0]
(i,j)∈Y ν

≥1

)

.

AKeyGen(SKi, lab,xi) takes as input SKi for some i ∈ [n − 1], a label lab ∈ L
and an attribute xi ∈ {0, 1}k. We define qi := |Ωtype

xi
| and parse Ωtype

xi
=

{zν
i }ν∈[qi]. The algorithm outputs DKlab,i = {idSKν

i }ν∈[qi] computed as fol-
lows:

idSKν
i ← idKeyGen(idMSKi, (lab, zν

i )) .

PKeyGen(MSK, f) takes as input MSK and a policy f ∈ F type. Let (c ∧ f) =
(M ∈ Z

m×�
p , ρ = (ρ1, ρ2, ρ3) : [�] → [0;n − 1] × [0; k] × {0, 1}). The algorithm

samples s $← Zp and u $← Z
m−1
p , computes s = (s,u�) · M and generates

iSK0 ← iKeyGen(iMSK0, [[(s, 1, 0)]]2)
{

iSKκ ← iKeyGen(iMSK
ρ3(κ)
ρ1(κ),ρ2(κ)

, [[(s[κ], 0)]]2)
}

κ∈[�]
.

Finally, it outputs DKf = {iSKκ}κ∈[0;�].
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Dec(DKf , {DKlab,i}i∈[n−1],CTlab) takes as input a decryption key DKf for a pol-
icy f ∈ F type, a set of decryption keys {DKlab,i}i∈[n−1] created with respect to
attributes x1, . . . ,xn−1 ∈ {0, 1}k and a label lab ∈ L, and a ciphertext CTlab

created with respect to an attribute x0 ∈ {0, 1}k and the same label lab.
Parse DKf , {DKlab,i}i∈[n−1], CTlab, Π type

x0
, {Ωtype

xi
}i∈[n−1] and {Y ν}ν∈[q0] as

in the algorithms above. Let (c ∧ f) = (M ∈ Z
m×�
p , ρ : [�] → [0;n−1]× [0; k]×

{0, 1}) The algorithm picks indices ν0 ∈ [q0], ν1 ∈ [q1], . . . , νn−1 ∈ [qn−1]
such that
1. yν0

i = zνi
i for all i ∈ [n − 1], and

2. X = {(i, j,yν0
i [j]) : (i, j) ∈ Y ν0} ∩ ρ([�]) satisfies the policy (c ∧ f).

If no such indices exist, then the algorithm outputs ⊥. Otherwise, it decrypts
{

iCTi,j ← idDec(idSKνi
i , idCTν0

i,j)
}

(i,j)∈Y
ν0

≥1
,

and finds coefficients ω1, . . . , ω� ∈ Zp such that
∑

κ∈[�] ωκM[κ] = e1 and
ωκ = 0 for all κ /∈ ρ−1(X). Finally, the algorithm computes

[[d0]]t ← iDec(iSK0, iCT0)
{

[[dκ]]t ← iDec(iSKκ, iCTρ1(κ),ρ2(κ))
}

κ∈ρ−1(X)
,

and outputs [[μ′]]t = [[d]]t − [[d0]]t +
∑

κ∈ρ−1(X) ωκ[[dκ]]t.

A detailed correctness and efficiency analysis can be found in the full version.
Moreover, the scheme satisfies selective security with repetitions.

Proposition 1. Let type ∈ {log-att, const-dep,≤const-thr,≥const-thr}. If the
DDH assumption holds in G2, iFE is slot-mode correct and function-hiding and
idFE is secure, then Construction 1 is sel-rep-secure.

The proof can be found in the full version.

6 Construction of MC-PE

In this section, we present our new compiler that turns any O(1)-client ABE
into an O(1)-client PE scheme for the same policy class.

For each � ∈ [0;n − 1], we define a permutation π� of the set [0;n − 1] via

π�(i) =

⎧

⎪

⎨

⎪

⎩

i + 1 if i ∈ [0; � − 1]
0 if i = �

i if i ∈ [� + 1;n − 1] .

Correspondingly, for a policy f ∈ F and � ∈ [0;n − 1], we define π�(f) as a
variant of f with permuted inputs:

(

π�(f)
)

(x0, . . . ,xn−1) = f(xπ�(0), . . . ,xπ�(n−1)) .
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Construction 2 (Multi-client Predicate Encryption). The construction
uses the following ingredients:

• An MC-ABE scheme aFE = (aSetup, aEnc, aAKeyGen, aPKeyGen, aDec) for
a message space M = {0, 1}m for some m = poly(λ), a label space L, an
attribute universe X and a policy class F .

• A lockable obfuscation scheme LObf = (Obf,Eval) with lock space M and
message space M′. We write C[x](y) to indicate that a circuit C has the
value x hardwired in its description and takes y as input.

The MC-PE scheme pFE for message space M′, label space L, attribute uni-
verse X and policy class F works as follows:

Fig. 5. Definition of the circuit Ci[aCTi, {aDK�,i+1}�∈[i+1;n−1]] on input

({C̃�}�∈[i+1;n−1], {aDK�,j}j∈[i]

�∈[i;n−1], {aDK�,f}�∈[i;n−1])

Setup(1λ) takes as input the security parameter 1λ and generates n aFE instances
{

(aMPK�, aMSK�, {aSK�,i}i∈[n−1]) ← aSetup(1λ)
}

�∈[0;n−1]
.

Then the algorithm outputs ({SKi}i∈[0;n−1],MSK) as follows:
{

SKi := (aMPKi, {aSK�,j}(�,j)∈Ji
)
}

i∈[0;n−1]
, MSK := {aMSK�}�∈[0;n−1] ,

where Ji = {(�, π�(i))}�∈[0;n−1]\{i}. We implicitly parse these keys in the
algorithms below.
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Enc(SK0, lab, x0, μ) takes as input SK0, a label lab ∈ L, an attribute x0 ∈ X and
a message μ ∈ M′. The algorithm samples σ0

$← M, runs

aCT0 ← aEnc(aMPK0, lab, x0, σ0)
{

aDK�,1 ← aAKeyGen(aSK�,1, lab, x0)
}

�∈[n−1]

˜C0 ← Obf(1λ, C0[aCT0, {aDK�,1}�∈[n−1]], μ, σ0)

and outputs CTlab := ˜C0. The circuit C0 is described in Fig. 5.
AKeyGen(SKi, lab, xi) takes as input SKi for some i ∈ [n − 1], a label lab ∈ L

and an attribute xi ∈ X . The algorithm samples σi
$← M, runs

aCTi ← aEnc(aMPKi, lab, xi, σi)
{

aDK�,j ← aAKeyGen(aSK�,j , lab, xi)
}

(�,j)∈Ji

˜Ci ← Obf(1λ, Ci[aCTi, {aDK�,i+1}�∈[i+1;n−1]], {aDK�,i}�∈[0;i−1], σi)

and outputs DKlab,i := ˜Ci with Ci being described in Fig. 5.
PKeyGen(MSK, f) takes as input MSK and a policy f ∈ F , runs

{

aDK�,f ← aPKeyGen(aMSK�, π�(f))
}

�∈[0;n−1]
,

and outputs DKf := {aDK�,f}�∈[n].
Dec(DKf , {DKlab,i}i∈[n−1],CTlab) takes as input a policy decryption key DKf =

{aDK�,f}�∈[0;n−1], a set of attribute decryption keys {DKlab,i = ˜Ci}i∈[n−1]

and a ciphertext CTlab = ˜C0. The algorithm outputs μ′ computed as follows:

μ′ ← Eval( ˜C0, ({ ˜Ci}i∈[n−1], ∅, {aDK�,f}�∈[0;n−1])) .

The compiler is correct and efficient for arity n = O(1). Furthermore, it preserves
the security level of the underlying MC-ABE.

Proposition 2. Let xxx ∈ {sel, adap} and yyy ∈ {rep, norep}. If aFE is xxx-yyy-
secure and LObf is secure, then the MC-PE scheme pFE in Construction 2 is
also xxx-yyy-secure.

Detailed proofs of correctness, efficiency and security can be found in the full
version.
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25. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

26. Francati, D., Friolo, D., Malavolta, G., Venturi, D.: Multi-key and multi-input
predicate encryption from learning with errors. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 573–604. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30620-4 19

27. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (2013). https://doi.org/10.1109/
FOCS.2013.13

28. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-319-98113-0_23
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-031-30620-4_19
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-642-55220-5_32


Multi-client Attribute-Based and Predicate Encryption 63

29. Goyal, R., Koppula, V., Vusirikala, S., Waters, B.: On perfect correctness in (lock-
able) obfuscation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550,
pp. 229–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 9

30. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.)
58th FOCS, pp. 612–621. IEEE Computer Society Press (2017). https://doi.org/
10.1109/FOCS.2017.62

31. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006). https://
doi.org/10.1145/1180405.1180418, available as Cryptology ePrint Archive Report
2006/309

32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2016). https://doi.org/10.1007/s00145-016-9243-7

33. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

34. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

35. Li, H., Lin, H., Luo, J.: ABE for circuits with constant-size secret keys and adaptive
security. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol.
13747, pp. 680–710. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22318-1 24
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Abstract. Attribute-based encryption (ABE) enables fine-grained con-
trol over which ciphertexts various users can decrypt. A master authority
can create secret keys skf with different functions (circuits) f for differ-
ent users. Anybody can encrypt a message under some attribute x so
that only recipients with a key skf for a function such that f(x) = 1 will
be able to decrypt. There are a number of different approaches toward
achieving selectively secure ABE, where the adversary has to decide on
the challenge attribute x ahead of time before seeing any keys, including
constructions via bilinear maps (for NC1 circuits), learning with errors,
or witness encryption. However, when it comes adaptively secure ABE,
the problem seems to be much more challenging and we only know of two
potential approaches: via the “dual systems” methodology from bilinear
maps, or via indistinguishability obfuscation. In this work, we give a new
approach that constructs adaptively secure ABE from witness encryption
(along with statistically sound NIZKs and one-way functions). While wit-
ness encryption is a strong assumption, it appears to be fundamentally
weaker than indistinguishability obfuscation. Moreover, we have candi-
date constructions of witness encryption from some assumptions (e.g.,
evasive LWE) from which we do not know how to construct indistin-
guishability obfuscation, giving us adaptive ABE from these assumptions
as a corollary of our work.

1 Introduction

Attribute-Based Encryption (ABE) [SW05] is an advanced form of encryption
where the user’s ability to decrypt ciphertexts is governed by a policy attached
to their key. In such a system a ciphertext encrypting a message m is associated
with a attribute string x. A secret key in turn will be issued by some authority
which associates it with some predicate function f to generate skf . Decryption
semantics dictate that skf will be able to decrypt a ciphertext associated with
attribute x if f(x) = 1. A system is informally said to be secure if no attacker can
distinguish between an encryption of message m0 from m1 under attribute x∗

so long as it only obtains secret keys for functions f1, . . . , fq where fi(x∗) = 0.
Over the past two decades ABE has emerged as an important construct for
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both encrypted access control as well as at tool for building other cryptographic
primitives (e.g., [PRV12,GKP+13]).

The first constructions of Attribute-Based Encryption [SW05,GPSW06]
utilized groups with efficiently computable bilinear maps and supported func-
tions that could be expressed as boolean formulas or circuits of logarith-
mic depth in the security parameter. Several years later construction based on
lattices [GVW13,BGG+14] emerged that were provably secure from the learn-
ing with errors (LWE) [Reg05] assumption. Remarkably, these construction sup-
ported policies that could be expressed as any circuit of a priori bounded depth
and thus in principle of any function of fixed runtime. Around the same time
a third avenue for realizing ABE systems manifested when Garg, Gentry, Sahai
and Waters [GGSW13] proposed the concept of witness encryption and showed
how to build ABE from it. Witness is encryption is a powerful, yet general
primitive where one encrypts a message m to a statement z and decryption is
achievable for any decryptor which knows a witness w such that R(z, w) = 1 for
some family of relations indexed by the security parameter.

Proving security is a central and involved part of building ABE systems.
All three (bilinear map, LWE and witness encryption) paths for realizing
Attribute-Based Encryption first established solutions in the selective model
of security where an attacker declares an attribute string x∗ before seeing either
the public parameters of the system or receiving any private keys. This notion
is meaningful; however, if fails to capture many “real life” attacks where an
attacker might somehow influence the attribute string of a ciphertext in a way
that depends on such information. While we can bridge the gap from selective to
adaptive security using a complexity leveraging guessing strategy in conjunction
with subexponential hardness assumptions, this is somewhat unsatisfactory both
from the stronger assumption requirement and from an intellectual understand-
ing standpoint.

Over the years achieving adaptive security has borne out to be quite challeng-
ing. Unlike Identity-Based Encryption (IBE) [Sha84] which admits a varied num-
ber of approaches [BF01,BB04,Wat05,Gen06,Wat09,DG17,Tsa19], ABE sys-
tems must maintain the “structure” and semantics of the attribute string which
rule out many hashing techniques. Going further it was formally shown [LW14]
that one cannot prove adaptive security using “partitioning” reductions which
were integral to proving security for many IBE schemes.1

The first solutions [LOS+10] for adaptively secure Attribute-Based Encryp-
tion applied the dual system encryption methodology of Waters [Wat09] using
bilinear groups. In a dual system encryption proof, the challenge ciphertext is
first changed to a semi-functional form. Following this each secret key issued
will be changed one at a time to a semi-functional form which is inher-
ently incompatible with the challenge ciphertext, but still compatible with
all other normally generated ciphertexts. Unfortunately, to this point it has
proven difficult to find adaptations of these ideas to either the LWE or witness

1 A weaker notion called semi-adaptive security [BV16,GKW16] is known to be sig-
nificantly easier to achieve, but appears to still be far from fully adaptive security.
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encryption avenues described above. (One exception is the work of [Tsa19] that
gives an ABE system for a subset functionality which is more expressive than
IBE string matching, but well short of ABE for boolean formulas or circuits.)
From the learning with errors side, the algebraic analogs of bilinear map tools
have not come fully to fruition. While witness encryption is a powerful primitive
in some ways, it is arguably quite limited in others. In particular, it lacks the
“hidden computation” aspect that is present in the more powerful concept of
indistinguishability obfuscation. As such the only solutions for achieving adap-
tively secure ABE beyond bilinear maps have required indistinguishability obfus-
cation or functional encryption [Wat15,ABSV15] which precisely rely on such
hidden computation properties.

Our Results: Adaptive ABE from Witness Encryption. In this work, we construct
adaptively secure attribute-based encryption from witness encryption along with
statistically sound NIZKs and one-way functions. At a high level, we do so by
showing how to employ dual system encryption techniques using witness encryp-
tion.

This is both an important and technically challenging endeavor. While we
already had adaptive ABE from indistinguishability obfuscation (iO) [Wat15,
ABSV15] have recently seen iO proven from “well founded” assumptions [JLS21],
witness encryption appears to be a fundamentally weaker primitive than iO. For
example, we have black-box separations showing that witness encryption does
not generically imply iO [GMM17]. Furthermore, witness encryption may admit
solutions from a broader set of cryptographic assumptions. Two recent examples
include the witness encryption built from variants of the evasive LWE assumption
[Tsa22,VWW22] as well as a direction towards achieving witness encryption from
pairing free groups [BIOW20]. Therefore, we get adaptively secure ABE from
(e.g.,) evasive LWE as a corollary of our work. Overall, similarly to the recent
work of [FWW23], we view the construction of advanced cryptosystems from
plain witness encryption rather than iO as a well motivated and worthwhile
endeavour.

Technically, witness encryption does not seem to support any form of hidden
computation and thus appears to be incompatible with developing dual sys-
tem encryption type proofs where we want to incrementally and undetectably
change the form of the challenge ciphertext and private keys to make them mutu-
ally exclusive in a working decryption operation. We surmount this challenge
by developing new tools and techniques for bringing in “outside” cryptography
primitives to augment witness encryption to allow for such an argument.

1.1 Technical Overview

Selective ABE from WE. The prior work of [GGSW13] constructed selectively
secure ABE from witness encryption. The main idea behind their solution is to
set the master public/secret key to be a the verification/signing key for a special
type of signature scheme. The secret keys skf are signature of the functions
f , and an encryption under an attribute x is a witness encryption that there
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exists some signature for some function f such that f(x) = 1. In the proof of
security, we can indistinguishably “constrain” the special signature scheme on
the challenge attribute x∗ so that there only exist valid signatures π for functions
f for which f(x∗) = 0. Then the security of witness encryption ensures that the
message is hidden. The signature itself is implemented using statistically binding
commitments and statistically sound NIZKs. Unfortunately, this proof strategy
inherently only achieves selective security since we need to know the challenge
attribute x∗ when creating the master public key of the ABE.

Overview of Our Approach. While our approach can also be seen relying on
a special form of constrained signatures instantiated from commitments and
NIZKs, the way we use these to achieve adaptive security is more sophisticated
and is inspired by dual-system techniques [Wat09,LOS+10]. There are three
main elements of our construction: (a) we introduce a new notion called a func-
tional tag system, (b) we use a functional tag system to construct adaptive ABE
from witness encryption (together with statistically binding commitments and
statistically sound NIZKs), (c) we show how to construct a functional tag sys-
tem from one-way functions. We now elaborate on each of these elements one
by one.2

Functional Tag System. A functional tag system allows us to generate “input
tags” tagx for inputs x and “function tags” tagf for functions (i.e., circuits) f .
There is a dummy (D) way to generate such tags tagx ← DInputTag(x), tagf ←
DFunctionTag(f) randomly and independently of each other. There is also a
smart (S) way to generate these using some common secret key tsk with
tagx ← SInputTag(tsk, x), tagf ← SFunctionTag(tsk, f). There is an efficient
predicate Trigger(tagf , tagx) that checks if some pair of function/input tag “trig-
ger”. Dummy pairs of tags trigger with only negligible probability. Smart pairs
of tags generated using a common key tsk always trigger if f(x) = 1. A fully
adaptive adversary who gets to see a single input tag tagx for an input x and
many function tags tagfi

for functions fi cannot tell the difference between see-
ing all dummy tags versus all smart tags generated using a common key tsk as
long as fi(x) = 0 for all i.

ABE from WE via a Functional Tag System. We set the master public/secret
key of the ABE to be the verification/signing key for a special type of
“constrained” signature scheme, described later on. Each function secret key
skf = (f, tagf , π) consists of a randomly generated “dummy function tag”
tagf ← DFunctionTag(f) along with a signature π of the pair (f, tagf ). To
encrypt a message under an attribute x, we generate a “dummy input tag”
tagx ← DInputTag(x) and send it along with a witness encryption of the

2 In the main body, we reverse the order and present (c) before (b), but for the
introduction we prefer this ordering.
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message under the NP statement “there exists some pair (f, tagf ) that has a
valid signature π such that f(x) = 1 and Trigger(tagf , tagx) = 0”.3

In the proof of security, we first switch to using “smart function tags”
tagf ← SFunctionTag(tsk, f) in the secret keys skf and a “smart input tag”
tagx ← SInputTag(tsk, x) in the challenge ciphertext, all generated using a
common key tsk. By the adaptive security of the functional tag system, this
is indistinguishable. We then indistinguishably “constrain” the special signa-
ture scheme so that valid signatures π only exist for pairs (f, tagf ) where
tagf ← SFunctionTag(tsk, f). Finally, we argue that the NP statement used for
the witness encryption is false, and therefore witness encryption security ensures
that the encrypted message is hidden. This holds because whenever π is a valid
signature of (f, tagf ) then it must be the case that tagf ← SFunctionTag(tsk, f),
and if f(x) = 1, then it must also be the case that Trigger(tagf , tagx) = 1.

The special constrained signature scheme is constructed from statistically
binding commitments and statistically sound NIZKs as follows. The verifica-
tion key consist of two commitments com0, com1 to 0, along with the CRS
of the NIZK; the signing key is a decommitment of com0. The signature π
for a pair (f, tagf ) is a NIZK proof that “either com0 is a commitment to 0
or com1 is a commitment to tsk and there is some randomness r such that
tagf = SFunctionTag(tsk, f ; r)”. The NIZK proof is generated using the decom-
mitment of com0 as the witness. To constrain the signature, we set com0 to be a
commitment to 1, com1 to be a commitment to tsk and we generate the NIZKs
using the the decomitment to com1 and the randomness used to generate tagf

as the witness. The corresponding constrained verification key and signatures
are indistinguishable.

Functional Tag System from One-Way Functions. Finally, we construct a
functional tag system from one-way functions using “blind garbled circuits”
[BLSV18]. In blind garbled circuits, for any distribution over input x and circuit
C for which C(x) is uniformly random, the corresponding garbled input/circuit
pair x̃, ˜C look like uniformly random bits. We rely on a slightly more complex
version of blind garbled circuits where the adversary can see many different gar-
bled circuits ˜Ci but only one garbled input x̃; furthermore we allow semi-adaptive
security where the circuits and the input can be chosen adaptively, but the chal-
lenge circuit must be chosen after the input. The detailed definition is somewhat
cumbersome and we defer it to the main body, but we show that the basic “point
and permute” construction of garbled circuits from one-way functions achieves
this notion similarly to [BLSV18].

To construct a functional tag system from blind garbled circuits, we set
dummy input tags tagx and dummy function tags tagf to be uniformly random

3 We note that, in contrast to the selectively secure ABE schemes from LWE of
[GVW13,BGG+14], our ABE is not succinct and the encryption run-time and
ciphertext size scales with the circuit size of the supported functions f . Constructing
even selectively secure succinct ABE from Witness Encryption is an intriguing open
problem.
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values of appropriate size. To determine if a input/function tag pair (tagf , tagx)
“triggers” we interpret tagx = x̃ as a garbled input and tagf = ( ˜C, t) as a garbled
circuit together with a target value t of length security parameter, and output
1 if the evaluation of the garbled circuit ˜C on the garbled input x̃ produces the
target value t. In the dummy case, this only happens with negligible probability,
ensuring “dummy correctness”. A smart input tag for x consists of a correctly
garbled input tagx = x̃, and a smart function tag for f consists of tagf = ( ˜C, t)
where t is a random target value and ˜C is a garbling of the circuit C that
evaluates f(x) and if the output is 1 it outputs the target value t else it outputs
a random independent value u. This ensures that a smart input/function tag
pair tagx, tagf does trigger when f(x) = 1.

For security, we intuitively want to rely on blind garbled circuits to ensure
that we can replace dummy function tags with smart ones in the case where
f(x) = 0, by relying on the fact that the circuit C(x) outputs a random inde-
pendent value u in this case. However, there is an issue with adaptivity. Blind
garbled circuits only provide semi-adaptive security, where the challenge circuit
C must be chosen after the input x, while functional tag systems require fully
adaptive security where the challenge functions f can be chosen before or after
the input x. We resolve this issue using techniques developed in the study of
adaptively secure garbled circuits [HJO+16]. In particular, we encrypt the gar-
bled circuit with a “somewhere equivocal PRF” whose key is part of the input
tag. For any circuit C chosen before the input x, this allows us to give a fake
ciphertext inside tagf and only later equivocate the garbled circuit ˜C inside the
ciphertext after the input x is chosen, in affect allowing ˜C to depend on x inside
the security proof. Therefore, we can rely on semi-adaptive security of the blind
garbled circuits to achieve fully adaptive security of the functional tag system.

2 Preliminaries

For any integer n ≥ 1, define [n] = {1, . . . , n}. A function ν : N → N is said
to be negligible, denoted ν(n) = negl(n), if for every positive polynomial p(·)
and all sufficiently large n it holds that ν(n) < 1/p(n). We use the abbreviation
PPT for probabilistic polynomial time. For a finite set S, we write a ← S to
mean a is sampled uniformly randomly from S. For a randomized algorithm A,
we let a ← A(·) denote the process of running A(·) and assigning the outcome
to a; when A is deterministic, we write a := A(·) instead. For a randomized
algorithm A we use the notation a := A(·; r) to denote the process of running the
randomized algorithm A with some fixed randomness r. We denote the security
parameter by λ. For two distributions X,Y parameterized by λ we say that they
are computationally indistinguishable, denoted by X ≈c Y if for every PPT
distinguisher D we have |Pr[D(X) = 1] − Pr[D(Y ) = 1]| = negl(λ).

2.1 Attribute Based Encryption (ABE)

We define an ABE scheme with adaptive security.
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Definition 1 (Attribute-Based Encryption (ABE)). An ABE scheme a
function class Fλ ⊆ {f : {0, 1}n(λ) → {0, 1}} consists of PPT procedures
(Setup,KeyGen,Enc,Dec) with the following syntax:

– (mpk,msk) ← Setup(1λ): Generates a master public key mpk and master
secret key msk.

– skf ← KeyGen(msk, f): Generates a function key skf for a function f ∈ Fλ.
– ct ← Enc(mpk, x, b): Given an attribute x ∈ {0, 1}n(λ) and a bit b ∈ {0, 1}

outputs a ciphertext ct.
– b := Dec(skf , ct): Decrypts ct using skf .

We require correctness and adaptive security defined as follows:

– Correctness: There is some negligible function μ such that for all λ ∈ N all
f ∈ Fλ all x ∈ {0, 1}n(λ) such that f(x) = 1 all b ∈ {0, 1} we have:

Pr

⎡

⎣Dec(skf , ct) = b :
(mpk,msk) ← Setup(1λ)
skf ← KeyGen(msk, f)
ct ← Enc(mpk, x, b)

⎤

⎦ ≤ μ(λ).

– Adaptive Security: We define the game ABEGameb
A(1λ) between a chal-

lenger and an stateful adversary A(1λ) as follows:
• The challenger chooses (mpk,msk) ← Setup(1λ) and gives mpk to A.
• Pre-challenge key queries: The adversary can make arbitrarily many
queries fi ∈ Fλ and the challenger responds with skfi

← KeyGen(msk, fi).
• Challenge ciphertext: The adversary chooses an attribute x ∈ {0, 1}n(λ)

such that fi(x) = 0 for all pre-challenge key queries fi, and the challenger
responds with the challenge ciphertext ct ← Enc(mpk, x, b).

• Post-challenge key queries: The adversary can make arbitrarily many
additional queries fi ∈ Fλ such that fi(x) = 0 and the challenger responds
with skfi

← KeyGen(msk, fi).
• The adversary output a bit b′ which is the output of the game.

We require that for all PPT A we have
∣

∣Pr[ABEGame0A(1λ) = 1] − Pr[ABEGame1A(1λ) = 1
∣

∣ ≤ negl(λ).

An ABE for circuits allows us to instantiate an ABE scheme for the function
class Cs,n

λ consisting of boolean circuits of size s(λ) with n(λ)-bit input, for any
polynomials s(λ), n(λ).

2.2 Commitments

We define statistically binding commitments in the Common Reference String
(CRS) model.

Definition 2 (Statistically Binding Commitments). A commitment
scheme consists of PPT algorithms (Setup,Commit) with the following syntax:
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– crs ← Setup(1λ): generates a common reference string crs.
– com := Commitcrs(b; r): generates a commitment com to a bit b ∈ {0, 1} using

randomness r ∈ {0, 1}λ.

We require hiding and statistical binding:

– Hiding: We have (crs, com0) ≈c (crs, com1) where crs ← Setup(1λ), comb ←
Commitcrs(b).

– Statistical Binding: We say that a crs is binding if there do not exist
any r0, r1 such that Commitcrs(0; r0) = Commitcrs(1; r1). We require that:
Pr[crs is binding : crs ← Setup(1λ)] = 1 − negl(λ).

We abuse notation and write Commitcrs(x) for a string x ∈ {0, 1}� to denote the
process of committing to each bit of x separately.

Naor’s commitment scheme [Nao91] gives statistically binding commitments
assuming only one-way functions. In particular, it constructs commitments from
a pseudorandom generator PRG : {0, 1}λ → {0, 1}3λ, where Setup(1λ) outputs
a uniformly random crs ← {0, 1}3λ and Commitcrs(b; r) = PRG(r) ⊕ (b · crs).
Hiding follows from PRG security and binding follows since

Pr
crs

[∃r0, r1 : PRG(r0) = PRG(r1)⊕crs] ≤
∑

r0,r1

Pr[crs = PRG(r0)⊕PRG(r1)] ≤ 22λ/23λ ≤ 2−λ.

Theorem 1 ([Nao91]). Assuming one-way functions, there exist statistically
binding commitments.

2.3 NIZKs

We define statistically sound NIZKs in the CRS model with witness indistin-
guishability.

Definition 3 (Statistically Sound Non-Interactive Zero-Knowledge
(NIZK)). A NIZK proof system for an NP relation Rλ ⊆ {0, 1}n(λ)×{0, 1}m(λ)

with a corresponding NP language Lλ = {x : ∃w (x,w) ∈ Rλ} consists of PPT
algorithms (Setup,Prove,Verify) with the following syntax:

– crs ← Setup(1λ): generates a common reference string crs.
– π ← Provecrs(x,w): generates a proof π for the statement x using witness w.
– b = Verifycrs(x, π): verifies the proof π for a given statement x and outputs a

decision bit 0 (reject) or 1 (accept).

We require the following properties:

– Completeness: There exists a negligible function μ such that for all λ ∈ N,
all (x,w) ∈ Rλ we have:

Pr
[

Verifycrs(x, π) = 1 : crs ← Setup(1λ), π ← Provecrs(x,w)
] ≥ 1 − μ(λ).
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– Statistical Soundness: We say that a crs is sound if for all x �∈ Lλ and
all π we have Verifycrs(x, π) = 0. We require that Pr[crs is sound : crs ←
Setup(1λ)] = 1 − negl(λ).

– Witness Indistinguishability: For any ensemble xλ, w0
λ, w1

λ such that
(xλ, wb

λ) ∈ Rλ for b ∈ {0, 1} we have (crs, π0) ≈c (crs, π1) where crs ←
Setup(1λ) and πb ← Provecrs(xλ, wb

λ) for b ∈ {0, 1}.
A NIZKs for NP allows us to instantiate NIZK for any polynomial-time NP
relation Rλ. We remark that the property of witness indistinguishability is weaker
than an implied by the zero knowledge property typically associated with NIZKs.

Theorem 2 ([FLS90,CHK03,GOS06,CCH+19,PS19]). Statistically sound
NIZKs in the CRS model exist assuming any one of: (1) hardness of factoring,
or (2) the decisional linear assumption in bilinear groups, or (3) the learning
with errors assumption.

2.4 Witness Encryption

We define a witness encryption scheme.

Definition 4 (Witness Encryption). A witness encryption scheme for an
NP relation Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ) with a corresponding NP language
Lλ = {x : ∃w (x,w) ∈ Rλ} consists of PPT algorithms (Enc,Dec) with the
following syntax:

– ct ← Enc(1λ, x, b): Encrypts a bit b ∈ {0, 1} under the NP statement x ∈
{0, 1}n(λ).

– b = Dec(ct, w): Decrypts the ciphertexts using a witness w.

We require the following properties:

– Correctness: There exists a negligible function μ such that for all λ ∈ N, all
(x,w) ∈ Rλ we have:

Pr
[

Dec(Enc(1λ, x, b), w) = b
] ≥ 1 − μ(λ).

– Security : For any ensemble {xλ}λ∈N such that xλ �∈ Lλ for all λ, we have

Enc(1λ, xλ, 0) ≈c Enc(1λ, xλ, 1).

A WE for NP allows us to instantiate WE for any polynomial-time NP relation
Rλ.

We abuse notation and write Enc(1λ, x,m) for a long message
m ∈ {0, 1}� to denote the process of encrypting the message bit-wise
Enc(1λ, x,m1), . . . ,Enc(1λ, x,m�).
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2.5 Somewhere Equivocal PRF

We define the notion of a somewhere equivocal PRF (SEPRF) from [HJO+16,
Definition 7] (also refereed to as a 1-SEPRF there). Intuitively, an SEPRF con-
sists of a pseudorandom function y = PRF(key, x) that maps inputs x to outputs
y using a secret key. For any input x∗, there is a way to generate an equivocal
key eqKey that leaves the output of the PRF unspecified at x∗, but allows us
to evaluate it at all input x �= x∗ by computing PRF(eqKey, x). Later for any
output y∗ we can fix the output of the PRF at x∗ to y∗ by generating a key key
such that PRF(key, x∗) = y∗, while ensuring PRF(key, x) = PRF(eqKey, x) for
all x �= x∗. Moreover, for any x∗, one cannot distinguish between an honestly
generated key versus first generating eqKey that is equivocal at x∗ and later
fixing the output of the PRF at x∗ to a uniformly random y∗ by generating the
corresponding key.4

Definition 5 (SEPRF). An SEPRF with input length n(λ) and output length
m(λ) consists of the PPT algorithms (KeyGen,PRF,Sim1,Sim2) with the follow-
ing syntax:

– key ← KeyGen(1λ): generates a PRF key.
– y = PRF(key, x): A deterministic algorithm that takes as input x ∈ {0, 1}n(λ)

and outputs y ∈ {0, 1}m(λ).
– eqKey ← Sim1(1λ, x∗): Given x∗ ∈ {0, 1}n(λ) outputs a key eqKey that is

equivocal on x∗.
– key ← Sim2(eqKey, y∗): Given an output y∗ ∈ {0, 1}m(λ) creates an equivo-

cated key key.

We require two properties:

– Correctness: For all x∗ ∈ {0, 1}n(λ), y∗ ∈ {0, 1}m(λ) we have

Pr

[
PRF(key, x∗) = y∗

∧ ∀x �= x∗ : PRF(key, x) = PRF(eqKey, x)
:

eqKey ← Sim1(1λ, x∗)
key ← Sim2(eqKey, y∗)

]
= 1.

– Security: We define the game SEPRFGameb
A(1λ) between a challenger and

an stateful adversary A(1λ) as follows:
• The adversary chooses x∗ ∈ {0, 1}n(λ).
• If b = 0 the challenger chooses key ← KeyGen(1λ) and gives key to the
adversary.
If b = 1 the challenger chooses eqKey ← Sim1(1λ, x∗), y∗ ← {0, 1}m(λ),
key ← Sim2(eqKey, y∗) and gives key to the adversary.

• The adversary outputs a bit b′ which is the output of the game.
4 Our definition below is slightly syntactically simplified from the one in [HJO+16]

since we have Sim1 output a single value eqKey while the one in [HJO+16] outputs
a pair key′, state where the former is used to evaluate the PRF and the latter is
used by Sim2. However, we can always set eqKey = (key′, state) and have the PRF
evaluation ignore the second component to derive a scheme matching our syntax.
Note that there is no requirement that eqKey looks like key.
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We require that for all PPT A we have
∣

∣Pr[SEPRFGame0A(1λ) = 1] − Pr[SEPRFGame1A(1λ) = 1
∣

∣ ≤ negl(λ).

Theorem 3 ([HJO+16]). Assuming the existence of one-way functions, for any
polynomials n = n(λ),m = m(λ) there exists an SEPRF with input length n and
output length m.

3 Functional Tag System

Our paper consists of three main components: (1) introducing a new notion
of functional tag systems in this section, (2) constructing a functional tag sys-
tem from one-way functions via garbled circuits in Sect. 4, and (3) constructing
adaptively secure ABE from WE via a functional tag system in Sect. 5.

A functional tag system allows us to generate “input tags” tagx for inputs
x and “function tags” tagf for functions f . There is a dummy (D) way to gen-
erate these randomly/independently and a smart (S) way to generate these in
a coordinated way using some common secret key tsk. There is an efficient pro-
cedure that checks if some combinations of (tagf , tagx) “trigger”. Dummy ones
trigger with negligible probability. Smart ones always trigger if f(x) = 1. A fully
adaptive adversary who gets to see a single input tag for an input x and many
function tags for functions fi cannot tell the difference between dummy and
smart as long as fi(x) = 0 for all i.

Definition 6 (Functional Tag System). A functional tag system for a func-
tion class Fλ ⊆ {f : {0, 1}n(λ) → {0, 1}} consists of PPT procedures

(DInputTag,DFunctionTag,SGen,SInputTag,SFunctionTag,Trigger)

with the following syntax:

– tagx ← DInputTag(1λ, x) takes as input x ∈ {0, 1}n(λ) and generates a
“dummy input tag”.

– tagf ← DFunctionTag(1λ, f) takes as input f ∈ Fλ and generates a “dummy
function tag”.

– tsk ← SGen(1λ) generates a tag key tsk.
– tagx ← SInputTag(tsk, x) takes as input x ∈ {0, 1}n(λ) and generates a “smart

input tag”.
– tagf ← SFunctionTag(tsk, f) takes as input f ∈ Fλ and generates a “smart

function tag”.
– b = Trigger(tagf , tagx) a deterministic procedure that outputs 0 (not triggered)

or 1 (triggered).

The scheme has the following properties:

1. Dummy Correctness: There exists some negligible μ such that for all λ ∈
N, f ∈ Fλ, x ∈ {0, 1}n(λ):

Pr
[

Trigger(tagf , tagx) = 1 :
tagx ← DInputTag(x)
tagf ← DFunctionTag(f)

]

≤ μ(λ).
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2. Smart Correctness: For all λ ∈ N, f ∈ Fλ, x ∈ {0, 1}n(λ) such that f(x) =
1:

Pr

⎡

⎣Trigger(tagf , tagx) = 1 :
tsk ← SGen(1λ)
tagx ← SInputTag(tsk, x)
tagf ← SFunctionTag(tsk, f)

⎤

⎦ = 1.

3. Security: We define the game FunTagGameb
A(1λ) between a challenger with

a bit b and an stateful adversary A(1λ) as follows:
– If b = 1, the challenger samples a random tsk ← SGen(1λ).
– Pre-challenge function tag queries: The adversary can make arbitrarily

many queries fi ∈ Fλ. If b = 0 the challenger responds with tagfi
←

DFunctionTag(1λ, fi) and if b = 1 the challenger responds with tagfi
←

SFunctionTag(tsk, fi).
– Challenge input tag: The adversary chooses an input x ∈ {0, 1}n(λ) such

that fi(x) = 0 for all prior function tag queries fi. If b = 0 the chal-
lenger responds with tagx ← DInputTag(1λ, x) and if b = 1 the challenger
responds with tagx ← SInputTag(tsk, x).

– Post-challenge function tag queries: The adversary can make arbitrar-
ily many additional queries fi ∈ Fλ such that fi(x) = 0. If b = 0 the
challenger responds with tagfi

← DFunctionTag(1λ, fi) and if b = 1 the
challenger responds with tagfi

← SFunctionTag(tsk, fi).
– The adversary output a bit b′ which is the output of the game.

We require that for all PPT A we have
∣

∣Pr[FunTagGame0A(1λ) = 1] − Pr[FunTagGame1A(1λ) = 1]
∣

∣ ≤ negl(λ).

A functional tag system for circuits allows us to instantiate a functional tag
system for the class Cs,n

λ consisting of boolean circuits of size s(λ) with n(λ)-bit
input, for any polynomials s(λ), n(λ).

4 A Functional Tag System from One-Way Functions

We construct a functional tag system for circuits from one-way functions. Our
main tool is a special form of blind garbled circuits. We first define and construct
this form of blind garbled circuits and then proceed to use them to construct a
functional tag system.

4.1 Blind Garbled Circuits

We rely on blind garbled circuits, originally defined in [BLSV18]. In a blind
garbled circuits, if one gets a garbled input together with a garbled circuit that
outputs a uniformly random value on that input, the pair looks like completely
random bits. We rely on a variant of blind garbled circuit security that we
call semi-adaptive blind garbled circuits, defined formally below. Informally, we
consider a game where the adversary can get arbitrarily many garbled circuits
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and a single garbled input x̃ of a value x, all chosen adaptively. In addition the
adversary chooses a challenge circuit C after it gets the garbled input x̃ and
should not be able to distinguish between a real garbling ˜C of the challenge
circuit C versus a simulated one. Note that the input x cannot depend on the
garbled circuit ˜C, which avoids the main difficulty in adaptively secure garbled
circuits. The simulator needs to simulate the garbled circuit ˜C given x,C(x), but
without knowing the circuit C. For blindness, we require that, for a uniformly
random output C(x), the corresponding simulated garbled circuit ˜C is uniformly
random. While the definition is incomparable to the one in [BLSV18], we show
that the same “point-and-permute” construction used in [BLSV18] satisfies our
definition as well.

Definition 7 (Semi-adaptive Blind Garbled Circuit). Let Cs,n,m
λ be a class

of circuits of size s = s(λ) with n = n(λ)-bit input and m = m(λ)-bit output. A
semi-adaptive blind garbled circuit scheme for Cs,n,m

λ consist of PPT algorithms:
(GarbleGen,GInput,GCircuit,SimCircuit,Eval) and garbled circuit size parameter
� = �(λ) with the following syntax.

– sk ← GarbleGen(1λ): generates a garbling secret key sk.
– x̃ ← GInput(sk, x): garbles an input x ∈ {0, 1}n.
– ˜C ← GCircuit(sk, C): garbles a circuit C ∈ Cs,n,m

λ with ˜C ∈ {0, 1}�.
– y := Eval( ˜C, x̃): a deterministic algorithm that evaluates the garbled circuit

on the garbled input and yields output y ∈ {0, 1}m.
– ˜C ← SimCircuit(sk, x, y): produces a simulated circuit ˜C ∈ {0, 1}� for a given

output y = C(x) without knowing C.

We require the following properties:

Correctness: For all λ,C ∈ Cs,n,m
λ x ∈ {0, 1}n we have

Pr[Eval(C̃, x̃) = C(x) : sk ← GarbleGen(1λ), x̃ ← GInput(sk, x), C̃ ← GCircuit(sk, C)] = 1.

Semi-adaptive Simulation Security: We define the game GCGameb
A(1λ)

between a challenger with a bit b and an stateful adversary A(1λ) as follows:
– Challenger picks sk ← GarbleGen(1λ).
– Adversary AGCircuit(sk,·) picks x ∈ {0, 1}n and gets back x̃ ← GInput(sk, x).
– Adversary AGCircuit(sk,·) picks a boolean circuit C ∈ Cn,m

λ . The adver-
sary gets back either ˜C ← GCircuit(sk, C) if b = 0 or ˜C ←
SimCircuit(sk, x, C(x)) if b = 1.

– Adversary AGCircuit(sk,·) outputs a bit b′ which is the output of the game.
We require that for all PPT A we have

∣

∣Pr[GCGame0A(1λ) = 1] − Pr[GCGame1A(1λ) = 1]
∣

∣ ≤ negl(λ).

Blindness: For every fixed choice of sk in the support of GarbleGen(1λ) every
x ∈ {0, 1}n we have:

SimCircuit(sk, x, Um) ≡ U�,

where Ui denotes the uniform distribution over {0, 1}i and “≡” denotes dis-
tributional equivalence.
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Construction. Let s(λ), n(λ),m(λ) be arbitrary polynomials. We assume that
circuits in Cs,n,m

λ have some fixed topology. In particular, each circuit C ∈ Cs,n,m
λ

consists of s gates and s+n+m wires, with n input wires denoted in1, . . . inn, m
output wires denoted out1, . . . , outm and s internal wires. Each gate g ∈ [s] gets
2 input wires and 1 output wire; we allow arbitrary fan-out since each output
wire can be an input to arbitrarily many other gates. Each gate g computes
some function fg : {0, 1}2 → {0, 1}. The gates are connected via some fixed
topology that is the same for all circuits in the class: that is, any gate g ∈ [s] has
some fixed input writes wg,1, wg,2 and output wire wg,w for all C ∈ Cs,n,m

λ . The
only distinction between different circuits C ∈ Cs,n,m

λ are the functions fg com-
puted by each gate. Note that we can convert general circuits into ones having
a fixed topology with only a polylogarithmic blowup in circuit size via universal
circuits, and therefore the above assumption is without loss of generality. Let
PRF : {0, 1}λ × {0, 1}∗ → {0, 1}λ+1 be a pseudorandom function. The “point-
and-permute” construction of blind garbled circuits for the class Cs,n,m

λ works
as follows:

– sk ← GarbleGen(1λ): For each of the n input wires ini, sample PRF keys
sini,b ← {0, 1}λ and random bits αini

← {0, 1} for i ∈ [n], b ∈ {0, 1}. Let
sk = (sini,b, αini)i∈[n],b∈{0,1}.

– x̃ ← GInput(sk, x): For x = (x1, . . . , xn) ∈ {0, 1}n output x̃ = (sini,xi
, αini ⊕

xi)i∈[n].
– ˜C ← GCircuit(sk, C): Sample a random circuit nonce c ← {0, 1}λ. For each

wire w that is not an input wire sample fresh PRF keys sw,b ← {0, 1}λ for
b ∈ {0, 1} along with a random bit αw ← {0, 1}. The corresponding values
sini,b, αini for the input wires ini are contained in sk. For each gate g, let
fg : {0, 1}2 → {0, 1} be the Boolean function computed by the gate. For
every gate g ∈ [s] with input wires w1, w2 and output wire w3, and for all
β1, β2 ∈ {0, 1}, set β3 := fg(αw1 ⊕β1, αw2 ⊕β2)⊕αw3 , and compute the table
entry:

T
β1,β2
g := (sw3,αw3⊕β3 ‖ β3)⊕PRF(sw1,αw1⊕β1 , c ‖ g ‖ β1 ‖ β2)⊕PRF(sw2,αw2⊕β2 , c ‖ g ‖ β1 ‖ β2).

(1)
Define the table for gate g as Tg := (T β1,β2

g )β1,β2∈{0,1}. Then, output the
garbled circuit consisting of:

˜C =
(

c , (Tg)g∈[s] , (αoutj )j∈[m]

)

,

with ˜C ∈ {0, 1}� for � = λ + 4(λ + 1)s + m.
– y := Eval( ˜C, x̃): Parse x̃ = (sini

, βini
)i∈[n]. For every gate g ∈ [s] in topological

order, let w1, w2 be its input wires and let w3 be its output wire. Then, given
(sw1 ‖ βw1), (sw2 ‖ βw2), compute

(sw3 ‖ βw3 ) = T
βw1 ,βw2
g ⊕ PRF(sw1 , c ‖ g ‖ βw1 ‖ βw2 ) ⊕ PRF(sw2 , c ‖ g ‖ βw1 ‖ βw2 ).

Finally, upon obtaining βoutj , set yj := βoutj ⊕ αoutj for j ∈ [m] and output
y := (y1, . . . , ym) ∈ {0, 1}m.
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– ˜C ← SimCircuit(sk, x, y): Sample a random circuit nonce c ← {0, 1}λ. For
each wire w that is not an input wire sample a fresh PRF key sw ← {0, 1}λ

along with a random bit βw ← {0, 1}. For each input wire ini, set sini
:= sini,xi

βini := xi ⊕ αini using the values from sk. For each gate g with input wires
w1, w2 and output wire w3, compute

T
βw1 ,βw2
g := (sw3 ‖ βw3 ) ⊕ PRF(sw1 , c ‖ g ‖ βw1 ‖ βw2 ) ⊕ PRF(sw2 , c ‖ g ‖ βw1 ‖ βw2 ),

(2)
and choose T β0,β1

g ← {0, 1}λ+1 uniformly at random for all (β0, β1) �=
(βw1 , βw2). Define the table for gate g as Tg := (T β1,β2

g )β1,β2∈{0,1}. Output

˜C =
(

c , (Tg)g∈[s] , (βoutj ⊕ yj)j∈[m]

)

.

Theorem 4. Assuming one-way functions, there exist semi-adaptive blind gar-
bled circuits for the class Cs,n,m

λ for any polynomials s, n,m.

Proof. We show that the “point-and-permute” construction from pseudorandom
functions described above is a semi-adaptive garbled circuit. The theorem then
follows using the fact that pseudorandom functions can be constructed from
one-way functions.

Perfect Correctness. For the perfect correctness of the construction, note
that during evaluation it holds that each computed value (sw, βw) =
(sw,val(w), val(w) ⊕ αw), where val(w) is the value on the wire w during the com-
putation C(x), and sw,b, αw are the values chosen during garbling. This is true
for the input wires, and is easily seen to be true for all subsequent wires by
induction. Therefore it holds that for the output wires βoutj = yj ⊕ αoutj and
therefore evaluation computes the correct outputs yj .

Semi-Adaptive Simulation Security. To prove semi-adaptive simulation security,
we do a sequence of hybrids where we change the challenge garbled circuit ˜C

from real to simulated. Firstly, we define the games ̂GCGame
b

identically to
GCGameb, except that the game outputs 0 if the circuit nonce c used in the
challenge garbled circuit ˜C is ever used in any other garbled circuit created by

the GCircuit(sk, ·) oracle. For b ∈ {0, 1}, the games GCGameb and ̂GCGame
b

are

statistically indistinguishable. Therefore it suffices to show that ̂GCGame
0

and
̂GCGame

1
are computationally indistinguishable.

To do so, we iterate over all gates g ∈ [s] in topological order starting with
the input layer. For i ∈ [s+1], define hybrids Gamei where the challenge garbled
circuit

˜C =
(

c , (Tg)g∈[s] , (αoutj )j∈[m]

)

is sampled as follows. We sample the values c, sw,b, αw as specified by GCircuit.
Define sw := sw,val(w), βw := αw ⊕ val(w) where val(w) is the value on the
wire w during the computation C(x), which is well defined since the input x is
chosen before the challenge circuit ˜C is created. For the gates g ≥ i the tables
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Tg := (T β1,β2
g )β1,β2∈{0,1} are created as in GCircuit following Eq. 1. For gates

g < i, the tables Tg := (T β1,β2
g )β1,β2∈{0,1} are instead created as in SimCircuit;

namely if the gate g has input wires w1, w2 and output wire w3, then the table
entry T

βw1 ,βw2
g is created as in Eq. 2 and the other entries are sampled randomly

with T β0,β1
g ← {0, 1}λ+1 for all (β0, β1) �= (βw1 , βw2). It is easy to see that Game1

is identical to ̂GCGame
0
. Furthermore, for all g ∈ [s], Gameg is computationally

indistinguishable from Gameg+1. The only difference between the games is how
the entries T β0,β1

g for (β0, β1) �= (βw1 , βw2) are sampled. However, it is easy
to show that the games are indistinguishable by PRF security. In particular, for
these entries, at least one of the two PRF outputs in Eq. 1 involves a PRF key sw,b

that is not used in the game in any other way beyond black-box PRF evaluation
PRF(sw,b, ·) and the input c ‖ g ‖ β1 ‖ β2 on which the PRF is evaluated is
not used anywhere else. Therefore, we can replace this PRF output by uniform.

Lastly, we observe that Games+1 is identical to ̂GCGame
1
. This simply follows

since, for each non-input wire, the values sw := sw,val(w), βw := αw ⊕ val(w) are
uniformly random over the choice of sw,0, sw,1, αw and for the output wires we
have αoutj = βoutj ⊕ val(outj) = βoutj ⊕ yj .

Blindness. Finally, to show blindness, we need to show that the distribution of
the simulated garbled circuit

˜C =
(

c , (Tg)g∈[s] , (βoutj ⊕ yj)j∈[m]

) ← SimCircuit(sk, x, Um)

satisfies ˜C ≡ {0, 1}� for � = λ+4(λ+1)s+m. First, ˜C ≡ (

c , (Tg)g∈[s] , Um

)

since the y ← Um is uniformly random and independent of c, (Tg)g∈[s] or {βw}.
Second, we proceed in reverse topological order starting at the output layer and
show that each table Tg is uniformly random over {0, 1}4(λ+1) even given c and
all the tables Ti for i < g. This follows from Eq. 2 and the fact that (sw3 ‖ βw3)
is uniformly random and is not used in the construction of tables Ti for i < g.
Therefore ˜C ≡ (

c , (Tg)g∈[s] , Um

) ≡ (c, U4(λ+1)s, Um) ≡ U�.

4.2 Functional Tag System from Blind Garbled Circuits

We construct a functional tag system (Definition 6) from one-way functions using
blind garbled circuits (Definition 7) and a somewhere equivocal PRF (Defini-
tion 5). As a starting point of our construction, we set dummy input tags to
be garbled inputs tagx = x̃ using a fresh garbling key sk, and dummy function
tags tagf = ( ˜C, t) consist of a uniformly random garbled circuit ˜C ← {0, 1}�

along with some target value t. An input/function tag “triggers” if evaluat-
ing the garbled circuit ˜C on the garbled input x̃ produces the target value
t. In the dummy case, this only happens with negligible probability, ensuring
“dummy correctness”. A smart input tag is a garbled inputs tagx = x̃ using
a garbling key sk contained in the tag key tsk = sk, and a smart function tag
tagf = ( ˜C, t) consists of a random target value t along with a correctly garbled
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circuit ˜C ← GCircuit(tsk, C) of the circuit C that evaluates f(x) and if the out-
put is 1 it outputs the target value t else it outputs a random independent value
u. This ensures that a smart input/function tag pair tagx, tagf does trigger when
f(x) = 1. For security, we intuitively want to rely on blind garbled circuits to
ensure that we can replace dummy function tags with smart ones in the case
where f(x) = 0, by relying on the fact that the circuit C(x) outputs a random
independent value u in this case. However, there is an issue with adaptivity.
Blind garbled circuits only provide semi-adaptive security, where the challenge
circuit C must be chosen after the input x, while functional tag systems require
fully adaptive security where the challenge functions f can be chosen before or
after the input x. We resolve this issue by encrypting the garbled circuit with
a somewhere equivocal PRF whose key is part of the input tag. For any circuit
C chosen before the input x, this allows us to give a fake ciphertext inside tagf

and only later equivocate the garbled circuit ˜C inside the ciphertext after the
input x is chosen, in affect allowing ˜C to depend on x inside the security proof.
Therefore, we can rely on semi-adaptive security of the blind garbled circuits to
achieve fully adaptive security of the functional tag system.

Construction. Let n = n(λ), s = s(λ) be any polynomials. We construct a func-
tional tag system for the class Fλ = Cs,n

λ consisting of circuits of size s with
n-bit input and 1-bit output. Let (GarbleGen,GInput,GCircuit,Eval) be a semi-
adaptive blind garbled circuit for the class Cs′,n,m=sec

λ , where s′ = s + O(λ)
will be defined later, and let � = �(λ) be the corresponding garbled cir-
cuit size. Let (KeyGen,PRF,Sim1,Sim2) be a somewhere equivocal PRF with
input length λ and output length �. We construct a functional tag system
(DInputTag,DFunctionTag,SGen, SInputTag, SFunctionTag, Trigger) defined as
follows:

– tagx ← DInputTag(x): Choose sk ← GarbleGen(1λ), key ← KeyGen(1λ), x̃ ←
GInput(sk, x). Output tagx = (key, x̃).

– tagf ← DFunctionTag(f): Output tagf = (t0, t1, t2) ← {0, 1}λ × {0, 1}� ×
{0, 1}λ.

– tsk ← SGen(1λ): Choose sk ← GarbleGen(1λ), key ← KeyGen(1λ) and set
tsk = (sk, key).

– tagx ← SInputTag(tsk, x): Choose x̃ ← GInput(sk, x). Output tagx = (key, x̃).
– tagf ← SFunctionTag(tsk, f): Choose t0, t2, u ← {0, 1}λ and let C∗

f,u,t2
be the

circuit that on input x outputs u if f(x) = 0 and outputs t2 if f(x) = 1.
We define the parameter s′ = s + O(λ) be the size of C∗

f,u,t2
for f ∈ Cs,n.

Let ˜C ← GCircuit(sk, C∗
f,u,t2

) and set t1 = PRF(key, t0) ⊕ ˜C. The output is
tagf = (t0, t1, t2).

– Trigger(tagf , tagx): Parse tagx = (key, x̃), tagf = (t0, t1, t2). Let ˜C :=
PRF(key, t0) ⊕ t1. Output 1 iff Eval( ˜C, x̃) = t2.

Theorem 5. Assuming one-way functions, for any polynomials n = n(λ), s =
s(λ), there exists a functional tag system for the class Fλ = Cs,n

λ .
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Proof. We start by proving dummy correctness. Let f, x be arbitrary and
let tagx ← DInputTag(x), tagf ← DFunctionTag(f) with tagx = (key, x̃), tagf =
(t0, t1, t2) and let ˜C = PRF(key, t0) ⊕ t1. Since t2 is uniformly random and
independent of ˜C, x̃, we have:

Pr[Trigger(tagf , tagx) = 1] = Pr[Eval( ˜C, x̃) = t2] = 2−λ.

Next we prove smart correctness. Let f, x be arbitrary such that f(x) = 1
and let tsk ← SGen(1λ), tagx ← SInputTag(tsk, x), tagf ← SFunctionTag(tsk, f)
with with tagx = (key, x̃), tagf = (t0, t1 = PRF(key, t0) ⊕ ˜C, t2). Then

Pr[Trigger(tagf , tagx) = 1] = Pr[Eval( ˜C, x̃) = t2] = 1

by the perfect correctness of garbled circuits.
Lastly, we prove the security of the functional tag system via a sequence of

hybrid games where we change how the challenger generates input and function
tags.

– Game0: This is the game FunTagGame0 which
outputs ADInputTag(1λ,·),DFunctionTag(1λ,·)(1λ), where the adversary A has the restric-
tions that: (1) it makes a single challenge input tag query x to the oracle
DInputTag(1λ, ·) and (2) all the queries fi made to the DFunctionTag(1λ, ·)
oracle (both pre-challenge and post-challenge) satisfy fi(x) = 0.

– Game1: In this game, if the oracle DFunctionTag(1λ, ·) ever samples a value
t0 that was already used in the response to a previous query, we define the
output of the game to be 0.
It is easy to see that Game0 and Game1 are statistically indistinguishable since
t0 ← {0, 1}λ is chosen randomly each time.

– Game2: In this game, we choose tsk ← SGen(1λ) at the very beginning of the
game and change the first oracle from DInputTag(1λ, ·) to SInputTag(tsk, ·).
Game1 and Game2 are identically distributed by the definition of
DInputTag,SInputTag and the fact that tsk is never used anywhere else.

– Game3: For all pre-challenge function-tag queries, switch to answering them
using SFunctionTag(tsk, ·) instead of DFunctionTag(·). Indistinguishability fol-
lows via a sequence of internal hybrids Gamei

2→3 where the first i pre-challenge
function-tag queries are answered using SFunctionTag(tsk, ·) and the rest are
answered using DFunctionTag(·). Note that if the adversary makes q such
queries then Game02→3 is identical to Game2 and Gameq

2→3 is identical to
Game3. To switch from Gamei

2→3 to Gamei+1
2→3 we introduce further sub-

hybrids as follows:
1. Gamei.1

2→3: At the very beginning of the game, when choosing tsk =
(sk, key) change from choosing the PRF key as key ← KeyGen(1λ) to
choosing

t0 ← {0, 1}λ, eqKey ← Sim1(1
λ, t0), r∗ ← {0, 1}�, key ← Sim2(eqKey, r

∗).

Then use the value t0 to generate the i’th function-tag query (t0, t1, t2).
Gamei

2→3 is computationally indistinguishable from Gamei.1
2→3 by SEPRF

security.
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2. Gamei.2
2→3: Choose t0, eqKey at the beginning of the game as before, but

do not choose r∗, key yet. For all function-tag queries before the i’th
one, use eqKey instead of key to answer the query. When answering the
i’th pre-challenge function-tag query (t0, t1, t2), use the value t0 sampled
previously. When answering the challenge input-tag query later, choose
˜C ← {0, 1}�, r∗ ← t1 ⊕ ˜C, key ← Sim2(eqKey, r∗).
Gamei.1

2→3 is identically distributed to Gamei.2
2→3 by the correctness of the

SEPRF which says that PRF(eqKey, t′0) = PRF(key, t′0) for all t′0 �= t0,
and if t′0 = t0 is ever chosen before the i’th query then the game outputs
0 in either case. Note that r∗ is still uniform and independent of t1 so
defining r∗ = t1 ⊕ ˜C is the same as r∗ ← {0, 1}�.

3. Gamei.3
2→3: When answering the challenge input-tag query, instead

of choosing ˜C ← {0, 1}�, we now choose u ← {0, 1}λ, ˜C ←
SimCircuit(sk, x, u).
Gamei.2

2→3 is identically distributed to Gamei.3
2→3 by the blindness property

of blind garbled circuits and the fact that u ← {0, 1}λ is chosen randomly.
4. Gamei.4

2→3: When answering the challenge input-tag query, instead
of choosing ˜C ← SimCircuit(sk, x, u), we now choose ˜C ←
GCircuit(sk, C∗

fi,u,t2
) where fi is the function chosen in the i’th function-

tag query.
Gamei.3

2→3 is computationally indistinguishable from Gamei.4
2→3 by the semi-

adaptive simulation security of the garbled circuit. The reduction does
not know the garbling key sk but is responsible for incorporating the
equivocal PRF. It uses its oracle to GCircuit(sk, ·) to answer all calls to
SFunctionTag(tsk, ·). During the challenge input-tag query for input x, the
reduction hands x to its challenger to get x̃. It then hands the challenger
the circuit C∗

fi,u,t2
and gets ˜C. It uses the values x̃, ˜C to correctly answer

the challenge input-tag query. If ˜C ← SimCircuit(sk, x, u) then the game
is identical to Gamei.3

2→3 and if ˜C ← GCircuit(sk, C∗
fi,u,t2

) then the game
is identical to Gamei.4

2→3. Here we rely on the fact that fi(x) = 0 to ensure
that C∗

fi,u,t2
(x) = u.

5. Gamei.5
2→3: Instead of choosing t1 ← {0, 1}λ in the i’th function-tag query

and then waiting to choose ˜C ← GCircuit(sk, C∗
fi,u,t2

), r∗ ← t1⊕ ˜C, key ←
Sim2(eqKey, r∗) in the input-tag query, we now choose r∗ ← {0, 1}�, key ←
Sim2(eqKey, r∗) at the very beginning of the game and then during the
i’th function-tag query choose ˜C ← GCircuit(sk, C∗

fi,u,t2
) and set t1 =

˜C⊕PRF(key, t0). Furthermore, we now use key instead of eqKey to answer
all function-tag queries before the i’th one.
Gamei.4

2→3 is identically distributed to Gamei.5
2→3. The changes before the

“furthermore” are just syntactic. In both cases t1, r
∗ are random subject

to t1 ⊕ r∗ = ˜C. The “furthermore” part is identical by the correctness of
the SEPRF which says that PRF(eqKey, t′0) = PRF(key, t′0) for all t′0 �= t0,
and if t′0 = t0 is ever chosen before the i’th query then the game outputs
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0 in either case. Recall this rule about outputting 0 when t0 values are
repeated was adopted in Game1.

6. Gamei+1
2→3: This is identical to Gamei.5

2→3, except that, instead of choosing

t0 ← {0, 1}λ, eqKey ← Sim1(1λ, t0), r∗ ← {0, 1}�, key ← Sim2(eqKey, r∗)

at the beginning of the game we now just choose key ← KeyGen(1λ) at
the very beginning and wait to choose t0 until the i’th function-tag query.
Gamei.5

2→3 is computationally indistinguishable from Gamei+1
2→3 by SEPRF

security.
Therefore the combination of the above hybrids shows that for each i:
Gamei

2→3 is computationally indistinguishable from Gamei+1
2→3 and therefore

Game2 is computationally indistinguishable from Game3.
– Game4 For all post-challenge function-tag queries, switch to answering them

using SFunctionTag(tsk, ·) instead of DFunctionTag(·). Indistinguishability fol-
lows via a sequence of internal hybrids Gamei

3→4 where the first i post-
challenge function-tag queries are answered using SFunctionTag(tsk, ·) and the
rest are answered using DFunctionTag(·). Note that if the adversary makes q
such queries then Game03→4 is identical to Game3 and Gameq

3→4 is identical
to Game4. To switch from Gamei

3→4 to Gamei+1
3→4 we introduce further sub-

hybrids as follows (essentially a simpler version of the sub-hybrids needed
to go from Game2 to Game3 since we do not need to equivocate the SEPRF
here):

• Gamei.1
3→4: We change how the i’th post-challenge function-tag query

is answered from choosing t1 ← {0, 1}� to choosing u ← λ, ˜C ←
SimCircuit(sk, x, u) and setting t1 := ˜C ⊕ PRF(key, t0). We still choose
t2 ← {0, 1}λ uniformly at random.
Gamei

3→4 is distributed identically to Gamei.1
3→4 by the blindness property

of blind garbled circuits and the fact that u ← {0, 1}λ is chosen randomly,
which ensures that ˜C is uniformly random over {0, 1}�.

• Gamei+1
3→4: We change how the i’th post-challenge function-tag query with

function fi is answered from ˜C ← SimCircuit(sk, x, u) to choosing ˜C ←
GCircuit(sk, C∗

fi,u,t2
).

Gamei.1
3→4 is computationally indistinguishable from Gamei+1

3→4 by the semi-
adaptive simulation security of the garbled circuit. The reduction does not
know sk. During the challenge input-tag query for input x, the reduction
hands x to its challenger to get x̃ and uses it to answer the challenge
input-tag query. It uses its oracle to GCircuit(sk, ·) to answer all calls to
SFunctionTag(tsk, ·) aside from the i’th post-challenge function-tag after
the input-tag query. For the i’th post-challenge function-tag query it picks
the challenge circuit C∗

f,u,t2
and gets ˜C from its oracle which it uses to

answer that call. If ˜C ← SimCircuit(sk, x, u) then the game is identical
to Gamei.1

3→3 and if ˜C ← GCircuit(sk, C∗
fi,u,t2

) then the game is identical
to Gamei+1

3→4. Here we rely on the fact that fi(x) = 0 to ensure that
C∗

fi,u,t2
(x) = u.
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Therefore the combination of the above hybrids shows that for each i:
Gamei

3→4 is computationally indistinguishable from Gamei+1
3→4 and therefore

Game3 is computationally indistinguishable from Game4.
– Game5: This is the game FunTagGame1 which outputs ASInputTag(1λ,·),SFunctionTag(1λ,·)(1λ).

This is the same as Game4 except that we “undo” the change from Game1: if
the oracle SFunctionTag(1λ, ·) ever samples a value t0 that was already used
in the response to a previous query, we continue as usual instead of defining
the output of the game to be 0.
It is easy to see that Game4 and Game5 are statistically indistinguishable since
t0 ← {0, 1}λ is chosen randomly each time.

The above sequence of hybrids shows that FunTagGame0 and FunTagGame1 are
computationally indistinguishable, which proves security.

5 Adaptive ABE from WE via a Functional Tag System

We construct an adaptively secure ABE scheme for circuits using:

– a statistically binding commitment scheme (Com.Setup,Commit) per Defini-
tion 2,

– a statistically sound witness indistinguishable NIZK for NP (NIZK.Setup,
Prove,Verify) per Definition 3,

– a witness encryption scheme for NP (WE.Enc,WE.Dec) per Definition 4,
– a functional tag system for circuits (DInputTag,DFunctionTag,

SGen,SInputTag,SFunctionTag,Trigger) per Definition 6 where the tag key
tsk ← SGen(1λ) is of length |tsk| = �(λ).

For any polynomials s(λ), n(λ), let us fix the function class Cs,n
λ to consist of

boolean circuits of size s(λ) with n(λ)-bit input. We construct an ABE for the
function class Cs,n

λ using a functional tag system for Cs,n
λ as a building block.

We specify the NP relations NIZK.R,WE.R for the NIZK and WE inside the
construction.

Construction. The ABE scheme (Setup,KeyGen,Enc,Dec) is defined as follows:

– (msk,mpk) ← Setup(1λ): Choose NIZK.crs ← NIZK.Setup(1λ), Com.crs ←
Com.Setup(1λ), r0, r1 ← {0, 1}λ, and set

com0 := CommitCom.crs(0; r0), com1 := CommitCom.crs(0�(λ); r1).

Output mpk := (Com.crs,NIZK.crs, com0, com1), msk := r0.
– skf ← KeyGen(msk, f): Generate tagf ← DFunctionTag(1λ, f). Give a NIZK

proof

π ← ProveNIZK.crs( x̃ = (Com.crs, com0, com1, f, tagf ) , w̃ = r0 )
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for the NP relation

NIZK.R =

⎧
⎪⎪⎨

⎪⎪⎩
(x̃, w̃) :

x̃ = (Com.crs, com0, com1, f, tagf )

either w̃ = r0 : com0 = CommitCom.crs(0; r0)
or w̃ = (tsk, r1, r2) : com1 = CommitCom.crs(tsk; r1)

∧tagf = SFunctionTag(tsk, f ; r2)

⎫
⎪⎪⎬

⎪⎪⎭
.

Output skf = (f, tagf , π)
– ct ← Enc(mpk, x, μ): Generate tagx ← DInputTag(1λ, x) and a witness encryp-

tion WE.ct ← WE.Enc(1λ, x̂ = (Com.crs,NIZK.crs, x, com0, com1, tagx), μ) for
the relation

WE.R =

⎧
⎨

⎩(x̂, ŵ) :

x̂ = (Com.crs,NIZK.crs, com0, com1, x, tagx), ŵ = (f, tagf , π)

VerifyNIZK.crs(x̃ = (Com.crs, com0, com1, f, tagf ), π) = 1

∧f(x) = 1 ∧ Trigger(tagf , tagx) = 0

⎫
⎬

⎭ .

Output ct = (x, tagx,WE.ct).
– μ := Dec(skf , ct): Output μ := WE.Dec(WE.ct, (f, tagf , π)).

Theorem 6. Assuming witness encryption for NP, statistically sound NIZK for
NP, statistically binding commitments and a functional tag system for circuits
there exists an adaptively secure ABE for circuits.

In particular, the above holds assuming witness encryption for NP, statisti-
cally sound NIZK for NP, and one-way functions. Alternately, the above holds
assuming witness encryption for NP and any one of: (1) hardness of factoring,
or (2) the decisional linear assumption in bilinear groups, or (3) the learning
with errors (LWE) assumption. Lastly, the above holds just assuming evasive
LWE.

Proof. We show that the construction given above is an adaptively secure ABE
for Cs,n

λ assuming the security of the components. The correctness of the ABE
follows from the correctness of the WE and NIZK along with correctness (prop-
erty 1) of the functional tag system. To prove adaptive security, we define a
sequence of games:

– Gameb
0: This is the ABE game ABEGameb between the adversary and the

challenger.
– Gameb

1: We modify the game so that the challenger initially chooses a “smart
tag system key” tsk ← SGen(1λ). When answering key queries, the chal-
lenger now samples keys skf = (f, tagf , π) by choosing a “smart function
tag” tagf ← SFunctionTag(tsk, f) instead of a dummy one. For the challenge
ciphertext ct = (x, tagx,WE.ct), the challenger now chooses a “smart input
tag” tagx ← SInputTag(tsk, x) instead of a dummy one. The keys and the
challenge ciphertext are otherwise generated the same way as previously.
Gameb

0 and Gameb
1 are indistinguishable by the security property (property 3)

of the functional tag system. Note that in the ABE adaptive security game, the
adversary can only choose attribute x such that fi(x) = 0 for all key queries
fi, which matches the restriction on the adversarial queries of the functional
tag system.
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– Gameb
2: We modify the game so that, when choosing mpk = (Com.crs,

NIZK.crs, com0, com1), the challenger sets com1 := CommitCom.crs

(tsk; r1) to be a commitment to tsk instead of 0�(λ).
Gameb

1 and Gameb
2 are indistinguishable by the computational hiding security

of the commitment scheme. Note that the commitment randomness r1 does
not appear anywhere else in the game.

– Gameb
3: We modify how the challenger answers key queries with keys skf =

(f, tagf , π). In particular, the challenger now generates the proof π as:

π ← ProveNIZK.crs( x̃ = (Com.crs, com0, com1, f, tagf ) , w̃ = (tsk, r1, r2) )

using the witness w̃ = (tsk, r1, r2) where r2 is the randomness used to gener-
ate tagf := SFunctionTag(tsk, f ; r2), instead of using the witness w̃ = r0.
Gameb

2 and Gameb
3 are indistinguishable by witness indistinguishability secu-

rity of the NIZK.
– Gameb

4: In this game, when choosing the master public key mpk =

(Com.crs,NIZK.crs, com0, com1), the challenger now sets com0 := CommitCom.crs(1; r1)

to be a commitment to 1 instead of 0.
Gameb

3 and Gameb
4 are indistinguishable by the computational hiding security

of the commitment scheme. Note that the commitment randomness r0 does
not appear anywhere else in the game.

– Gameb
5: In this game, when choosing the challenge ciphertext ct =

(x, tagx,WE.ct), the challenger samples

WE.ct ← WE.Enc(1λ, x̂ = (Com.crs,NIZK.crs, x, com0, com1, tagx), 0)

to be an encryption of 0 rather than the bit b.
Gameb

4 and Gameb
5 are indistinguishable by WE security. Firstly,

note that whenever Com.crs is binding and NIZK.crs is sound (see
Definitions 2 and 3) then the statement x̂ is false. To see this,
assume otherwise that (x̂, ŵ) ∈ WE.R for some ŵ = (f, tagf , π).
Then it must hold that f(x) = 1, Trigger(tagf , tagx) = 0 and
VerifyNIZK.crs(x̃ = (Com.crs, com0, com1, f, tagf ), π) = 1. The latter implies
that there exists some w̃ such that (x̃, w̃) ∈ NIZK.R. Since com0 =
CommitCom.crs(1; r0), com1 = CommitCom.crs(tsk; r1) this in turn implies
that tagf = SFunctionTag(tsk, f ; r2) for some r2. But since tagtagx ←
SInputTag(tsk, x), the above contradicts property 2 of the functional tag sys-
tem. Secondly, note that Com.crs is binding and NIZK.crs is sound with
overwhelming probability, and therefore the statement x̂ is false with over-
whelming probability. Given the above, an adversary distinguishes Gameb

4

and Gameb
5 with non-negligible probability must distinguish WE.Enc(1λ, x̂, 0)

and WE.Enc(1λ, x̂, 1) for a false statement x̂ with non-negligible probability.

Note that Game05 ≡ Game15 since the game completely ignores the bit b. Therefore,
by the hybrid argument, we have Game00 is indistinguishable from Game10, which
implies ABE security.
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Abstract. This work addresses the long quest for proving full (adaptive)
security for attribute-based encryption (ABE). We show that in order to
prove full security in a black-box manner, the scheme must be “irregular”
in the sense that it is impossible to “validate” secret keys to ascertain
consistent decryption of ciphertexts. This extends a result of Lewko and
Waters (Eurocrypt 2014) that was only applicable to straight-line proofs
(without rewinding). Our work, therefore, establishes that it is impossible
to circumvent the irregularity property using creative proof techniques,
so long as the adversary is used in a black-box manner.

As a consequence, our work provides an explanation as to why some
lattice-based ABE schemes cannot be proven fully secure, even though
no known adaptive attacks exist.

1 Introduction

An Attribute-Based Encryption scheme (ABE) [SW05,GPSW06] is one that
allows fine-grained access to encrypted data by issuing multiple secret keys,
each with its own permissions, and protecting the privacy of ciphertext even
against colluding unauthorized parties. More explicitly, an ABE scheme con-
sists of a global pair of “master” public-key (also known as the public parame-
ters of the scheme) and secret-key, where the former is used to encrypt mes-
sages, and the latter is used to issue individual decryption keys. Messages
are encrypted, using the public parameters, with respect to an attribute x
(for our purposes x ∈ {0, 1}n). Secret keys are generated using the master
secret-key, with respect to predicate functions f , so that SKf can decrypt
all ciphertexts with attributes x for which f(x) = 1.1 The security require-
ment is collusion resilience. Namely, even if an attacker has as many SKfi

1 The description here is for a variant known as Key-Policy ABE (KP-ABE). There
is another variant known as Ciphertext-Policy ABE (CP-ABE) where encryption is
with respect to f , and secret-key generation is with respect to x. The distinction is
not very important for our purposes, so we adopt the KP-ABE notation throughout
this manuscript.
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as they want, if fi(x) = 0 for all i, then the attacker cannot decrypt cipher-
texts with attribute x. ABE schemes that support sufficiently rich function
classes (even the class of shallow circuits or the class of boolean formu-
lae) are known to exist only under two types of cryptographic assumptions:
assumptions on groups with bilinear maps [SW05,GPSW06,OSW07,Wat11,
LOS+10,LW12,KL15,CGKW18,KW20,GW20,LL20] and lattice assumptions
[AFV11,ABV+12,Boy13,GVW13,BGG+14].

ABE proved to be a useful primitive for many purposes (see [LOS+10,
AFV11,DDM15,GKW17,DGP21] for just a few samples among many). How-
ever, proving security for ABE is a challenging task. In the security reduction,
the ABE adversary is used to violate the underlying hardness assumption. Since
the ABE adversary is allowed to request multiple keys SKfi

, the proof needs to
be designed so that such keys can be generated and fed to the adversary, where
at the same time, there is a challenge of the underlying assumption that remains
unsolved in the eyes of the reduction algorithm. Therefore, in many cases, secu-
rity is proved in a relaxed model, which is known as selective security. In this
model, the adversary needs to declare, ahead of time, the value x∗ on which
it wishes to violate security [CHK03]. This allows the reduction to design the
public parameters so that it is possible to generate SKfi

for which fi(x∗) = 0.
However, this naturally restricts the attacker’s power since, in an actual attack,
the adversary may be exposed to some SKfi

and only then choose x∗. Protecting
against the latter is known as full security, or as adaptive security, to emphasize
the possibility of the aforementioned adaptive attacks. An intermediate notion,
semi-adaptive security, allows x∗ to be chosen after seeing the public parameters
but before seeing any actual key. This latter notion appears to be more similar
to selective than to adaptive security and can be achieved in similar ways to the
selective case [BV16,GKW16].

Adaptive security is notoriously hard to prove. Intuitively, this is because
the reduction needs to be prepared to “feed” the adversary with a key of their
choice. For example, the reduction does not know whether the adversary will
ask for a key for a function f or for its complement. Therefore, in a sense,
the reduction should have the ability to decrypt any ciphertext without the
adversary’s help. Indeed, until recently, fully secure ABE was only known to exist
under assumptions on bilinear maps, mostly using the dual-system technique
of Waters and its successors [Wat09].2 Recently, Tsabary [Tsa19] showed an
approach towards full security in the lattice regime, but only for a very restricted
class of functions f (in particular, this is still not known for general shallow
circuits or for the class of boolean formulae).

Nevertheless, as hard as it is to prove adaptive security, actual adaptive
attacks are not so common. In fact, we are not aware of adaptive attacks against
the lattice-based schemes of [GVW13,BGG+14]. It is, therefore, quite puzzling

2 We note that there is a way to generically upgrade selective to adaptive security,
at the cost of a 2n factor degradation in security, by simply guessing the value of
x∗. This is known as complexity leveraging. However, the cost is prohibitive in many
cases, and furthermore, this method cannot be applied if n is not a-priori bounded.
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that we need to apply involved techniques and lose a lot of functionality (as of
yet) in order to prove this property.

Lewko and Waters [LW14] tried to formalize the above intuition on the hard-
ness of proving adaptive security. They noticed that since the reduction needs
to be able to produce keys that essentially violate the security of any individ-
ual ciphertext, one can extract from the reduction itself information that allows
violating the hardness assumption, thus trivializing the proof. This extraction
is done via rewinding. At a high level, we consider an algorithm that runs the
reduction as an adversary, asks for a key for the function f0, and then rewinds
the reduction to the point before the key was queried. It then asks for a dif-
ferent key f1 and claims to violate security for some x∗ for which f0(x∗) = 1
and f1(x∗) = 0. Indeed, security is violated by using SKf0 that was obtained in
the rewound part of the execution. The current thread of the reduction “thinks”
that only f1 was queried, thereby assuming it is interacting with a legitimate,
successful ABE adversary. This should lead to the reduction of violating the
hardness assumption in polynomial time.

One has to be careful when applying this argument (especially given that
adaptive security via black-box reductions is possible to achieve in some cases).
In order for it to work, the reduction should not notice that the challenge cipher-
text is being decrypted by a key that was obtained in another thread. Therefore,
SKf0 should decrypt ciphertexts in a “canonical” manner that does not expose
the origins of the key. Lewko and Waters, therefore, defined a criterion for secret
keys and ciphertexts, essentially requiring that it is not possible to distinguish
different decryptions of a ciphertext, even if they were obtained using different
keys (so long as all secret keys and ciphertext involved pass a public validation
procedure). This is a very natural property, and thus the Lewko-Waters result
has the following very strong implication. In order to achieve provable adaptive
security, one must forgo the ability to validate secret keys and ciphertexts to
ensure that decryption is done in a consistent manner. We are not aware of a
setting where this “checkability” property is explicitly required, but we imagine
that the ability to validate keys and ciphertexts may be desirable in a multi-user
system.

Existing methods for constructing fully secure ABE do this by making their
scheme impossible to validate. This applies to Waters’s aforementioned dual-
system technique, where the proof utilizes “semi-functional” keys and cipher-
texts, which differ in functionality from “regular” keys, thus inherently violat-
ing the checkability property. Tsabary’s approach relies on generating a spe-
cial ciphertext that some policy-accepting honestly-generated secret keys cannot
decrypt. Therefore, in the security proof, the challenge ciphertext would decrypt
to different values if the attacker attempted to decrypt it with different (policy-
accepting) secret keys. Here again, it is inherently impossible to come up with a
validation procedure for the scheme. We note that one can also derive adaptively-
secure ABE from a stronger notion known as (adaptively-secure) Functional
Encryption (FE) which is intimately related to program obfuscation [GGH+13].
Known constructions of adaptively-secure FE [Wat15,ABSV15] use a so-called
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“punctured programs” technique which, similarly to dual-systems inherently vio-
late checkability.

An important limitation of the Lewko-Waters result is that it does not apply
when the reduction itself rewinds the adversary. Indeed, rewinding is a very
common proof technique in cryptography. For example, the reduction, upon
receiving a request to provide a key for f0, may rewind the adversary and test it
on public parameters that the reduction generated by itself in order to see that
it actually manages to solve ABE “dummy challenges” before actually providing
it with keys with respect to the “real” public parameters.

If we then try to apply the outline above, our algorithm tries to rewind the
reduction, but then the reduction, in turn, attempts to rewind the attacker.
Our algorithm, therefore, needs to pretend to have been rewound and solve
the dummy challenges, which again requires rewinding the reduction. Rewind-
ing seems to complicate the above outline significantly, and indeed, Lewko and
Waters only applied their techniques to straight-line reductions – ones that do
not use rewinding. This still leaves hope that maybe, if we are clever enough
about proof techniques, we can come up with a fully secure ABE scheme that
is as simple as our existing selective schemes. In fact, perhaps it is even possi-
ble to prove adaptive security for [GVW13,BGG+14] using a sufficiently clever
reduction.

1.1 Our Results

Our main result is to extend the result of Lewko and Waters to handle rewinding
reductions. Along the way, we introduce a simpler notion of checkability. There-
fore, our result shows that the Lewko-Waters argument cannot be circumvented
by clever proof techniques (so long as the adversary is used in a black-box man-
ner), and necessarily, there is a cost for the ability to prove adaptive security.
Both in terms of naturalness and possibly performance.

Whereas Lewko and Waters considered security proofs that consisted of a
simple black-box reduction to a non-interactive hardness assumption, we allow
the underlying hardness assumption to be interactive and merely require that the
number of communication rounds is a priori bounded by a fixed polynomial. This
is a natural and essentially necessary requirement since otherwise we could take
the adaptive security of the scheme to be the underlying hardness assumption,
and trivially the adaptive security reduces to itself.

As an implication of our main theorem, we show that (the delegatable version
of)3 the celebrated lattice-based scheme of [BGG+14] cannot be proven adap-
tively secure, at least without modifications. To this end, we observe that the
security definition of an ABE scheme does not involve the decryption algorithm.
Indeed, an attacker receives keys and a challenge ciphertext and attempts to

3 In the delegatable version, the secret key contains a lattice trapdoor rather than a
single vector. See Sect. 1.2 for further explanation and discussion on the implications
for the non-delegatable version.
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recover the message that has been encrypted. The entire security game is con-
ducted without any party being “instructed” to use the decryption algorithm.4

We show that these schemes have an alternative decryption algorithm and that,
with respect to this decryption algorithm, it is possible to validate secret keys
and ciphertexts. Therefore, our result can be applied to rule out adaptive secu-
rity reductions for this scheme. An important takeaway here is that in order
to rule out validation, one must consider all possible decryption circuits (that
decrypt correctly) and effectively show that it is impossible to validate secret
keys and ciphertexts with respect to all of them. We then discuss some modifi-
cations to the aforementioned scheme and their impact on the ability to validate.
Our conclusion is that apparently a more radical change, as per [Tsa19], may be
required in order to be able to prove adaptive security in the lattice setting.

1.2 Technical Overview

To prove our main theorem, we consider a Turing reduction R from some
intractability assumption C to violating the adaptive security of some ABE
scheme. The assumption C is stated in terms of an interactive game (follow-
ing the framework of [Nao03]). The reduction asserts that if there existed a
successful ABE adversary A, then R could use it in a black-box manner in order
to break the assumption C. Following [LW14], the underlying idea of our proof is
to use the reduction R directly in order to break the assumption C, without the
help of an actual ABE attacker. In order to do so, we wish to efficiently emulate
an ABE attacker for R, in a way that R would not be able to distinguish from
a real attacker.

Adaptive security is defined by an interactive game between the reduction
R, i.e. the challenger, and the attacker A. The game begins with the challenger
declaring the public parameters of the ABE scheme. Then, the attacker can make
key queries to the challenger for secret keys of predicates of its choice. Next, it
declares a challenge attribute x∗, and receives from the challenger a challenge
ciphertext CTx∗ encrypted w.r.t. x∗ (say, encrypting either the message 0 or
1). Afterward, A can make more key queries until finally, it sends a guess of
which message was encrypted in CTx∗ . The adversary wins the game if it has
not received any secret key that accepts x∗ and the guess has been correct. We
say that an adversary breaks the security assumption if it wins the game with a
noticeable advantage compared to randomly guessing.

Recall that in order to emulate an attacker for R, our algorithm should
be able to solve possible “dummy challenges” and properly decrypt cipher-
texts provided by the reduction. Naively, this could be achieved by rewinding
the reduction and extracting additional secret keys. However, as we explained
above, two issues arise: (1) First, the reduction may notice when the simu-
lated attacker decrypts the challenge ciphertext using a secret key that was
extracted by rewinding the reduction, and then behave unexpectedly as a result,

4 This property is not unique to ABE, and it also occurs in standard CPA secure
encryption.
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so we would not be able to use the reduction to violate C. (2) Second, once
we allow the reduction to rewind the attacker, the naive strategy could lead to
many “nested” rewindings of the reduction and the attacker, which in turn may
result in an exponential running time. Furthermore, when considering a general
assumption C, we have to ensure that rewinding the reduction does not affect
the interaction between R and C, since C itself is not in our control and we are
unable to rewind it.

In [LW14], Lewko and Waters addressed the first obstacle and defined a
checkability criterion for ABE schemes, which states that each secret key and
each ciphertext can be validated to ensure “canonical” decryption. Namely, the
checkability property requires that a valid ciphertext is decrypted to the same
message using any valid secret key. This way, the simulated attacker can vali-
date the challenge ciphertext and the secret key used for decryption, and the
reduction would not detect which secret key was used. We present a simpler
checkability requirement, which states that each secret key can be validated and
that the decryption of ciphertext using any valid secret key results in the same
decryption distribution. This property is sufficient to ensure consistent decryp-
tion by applying the same attacker strategy. Note that every scheme that satisfies
Lewko and Waters’s checkability requirement can be trivially transformed to sat-
isfy our checkability requirement by validating the ciphertext at the beginning of
the decryption procedure and outputting ⊥ if found invalid. We further observe
that the implementation of the decryption procedure of an ABE scheme does not
play any role in the adaptive security proof. Therefore, if we modified the decryp-
tion procedure of an ABE scheme so it would satisfy our checkability property
and show it cannot be proved adaptively secure, then we would conclude that
the original scheme could not be proven adaptively secure as well.

To overcome the second obstacle, we adopt the more delicate rewinding tech-
nique introduced by Pass [Pas11] in the context of witness-hiding special-sound
protocols for unique relations. Pass used the rewinding technique in order to
obtain a sufficient amount of interaction transcripts, which are essentially proofs
of some statement x with different suffixes. The transcripts are then fed to the
special-soundness extractor in order to recover a witness for x. We employ simi-
lar tools in order to rewind an ABE challenger, obtain multiple keys with respect
to the same public parameters, and use them for the purpose of decrypting the
challenge ciphertext.

Adopting Pass’s terminology, we define the notion of a slot, a “time win-
dow” during the execution of R. This window “opens” when the emulated ABE
attacker makes a key query to obtain a secret key for some predicate function,
and it “closes” right after the reduction responds with one and the attacker
validates it. Intuitively, this is the shortest time frame that could be rewound
in order to extract additional validated secret keys from the reduction. As pre-
viously described, due to the recursive nature of rewinding both the reduction
and the simulated attacker, the reduction may rewind the attacker at some point
during a slot, so another “nested” slot may open. We consider a slot to be “good”
for rewinding if, between the time that it opens and the time that it closes, there
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is no communication between R and C, and in addition, R does not rewind the
attacker “too many times” within the slot. We also require the extracted key to
be a valid one. Intuitively, the first condition ensures that rewinding the slot does
not disturb the interaction between R and C, and the second condition allows
us to bound the recursion depth and limit the growth in runtime due to possible
nested slots being rewound. Once we encounter a good slot in the execution, we
rewind it several times to extract multiple secret keys. The precise criterion for
a slot being good is determined with respect to the maximal running time of the
reduction and the recursive depth of the slot. This, combined with the fact that
R is an efficient algorithm and cannot make “too many” queries to the attacker,
allows us to ensure the existence of good slots while maintaining the bound on
the running time of the emulation. Note that an ABE attacker may query the
challenger (embodied by the reduction in our case) many times. It suffices for us
that just a fraction of the slots induced by these queries is good because once a
slot is good, we can rewind it many times and obtain many secret keys that will
allow us to decrypt the challenge ciphertext.

Being able to rewind the reduction is a necessary step toward simulating an
attacker, but we must also argue that the rewound reduction will indeed provide
us with a valid secret key that will decrypt x∗. To this end, we need to design
the function class for which we make queries, as well as the challenge attribute
x∗. We aim for these values to meet the following conditions: On the one hand,
the secret keys queried during the “mainline” execution of R should not accept
the selected challenge attribute x∗. On the other hand, to successfully decrypt
the challenge, at least one of the keys from the rewound execution should accept
x∗. Finally, we must meet these two conditions in a way such that the reduction
would not be able to detect when it is being rewound; otherwise, it may abort.

We approach this challenge as follows: The challenge attribute x∗ is sampled
uniformly at random from the set of possible attributes, and each secret key is
sampled randomly from a specific set of functions, exactly the same way during
the rewound queries as during the “mainline” ones. The set of functions is con-
structed from a pairwise independent hash family, so we expect the fraction of
any subset of attributes covered by a uniformly random function from the set
to be close to its expectation (a property also known as mixing). This is a key
ingredient in our analysis to ensure any attribute has a high enough probability
of being covered by the secret keys we extract by rewinding (this is true even
when the reduction may choose not to disclose a fraction of the keys, as we
explain shortly). The probability of a function in the set covering some attribute
is chosen to be small enough so that with high enough probability, the uniformly
random challenge x∗ is not covered by the functions queried during the “main-
line” execution of R, but large enough so that with high enough probability, x∗

is covered by at least one key that was extracted from a rewound execution. By
specifying the functions to be queried, we require the ABE scheme to support
them as predicates. Fortunately, since pairwise hash families can be implemented
by NC1 circuits [IKOS08], the requirement is commonly satisfied.
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We must pay delicate care when computing the probability of x∗ being cov-
ered by a secret key that was extracted by rewinding since we are not allowed
to make any presumptions regarding the behavior of the reduction. In partic-
ular, R may refuse to provide secret keys for certain queries in an unexpected
way. However, since R is a reduction from some hardness assumption C to an
attacker, it should be impossible for R to violate the assumption C without the
help of the attacker. In other words, the reduction must rely on the attacker
breaking adaptive security, so it must cooperate and “play” according to the
security game protocol with a high enough probability. Otherwise, it would fail
to violate C with a noticeable advantage. For the same reason, if the reduction
would only accept a negligible portion of the possible challenge attributes, it
would fail to successfully violate C with a noticeable advantage. This behavior
is a generalization of a method known as complexity leveraging, in which the
challenger guesses the challenge attribute x∗ in advance and rejects any other
challenge. The method is used to upgrade a selectively secure scheme to be adap-
tively secure generically, but at the cost of exponential degradation in security,
which, as explained, makes it irrelevant to our scenario.

Implications to Lattice-Based ABE Schemes. We now turn our attention to
applying our result to the lattice-based ABE scheme of Boneh et al. [BGG+14].
This scheme supports policy functions represented by boolean circuits of a poly-
nomially a-priori bounded depth (the depth bound is a parameter in the initial-
ization of the scheme), and security is based on the hardness of the Learning
with Errors problem (LWE) [Reg05].

We start by outlining the high-level structure of the scheme. In particular,
we consider the version that supports key delegation (see discussion on other
variants and on other lattice-based ABE schemes at the end of this outline).
The public parameters are designed so that each input attribute x is associated
with a lattice Ax (we do not define what a lattice is since this is a high-level
overview, but we will explain all properties that are relevant to our outline).
This lattice can be publicly derived from the public parameters of the scheme. A
ciphertext with respect to x consists of a noisy vector that is close to the lattice
Ax. More explicitly, Ax is represented as a matrix in Z

n×m
q , and the ciphertext

consists of a vector of the form c = sAx + e (mod q), where s is a uniform
vector in Z

n
q , and the noise e is sampled from a distribution over short vectors.

The message to be encrypted is then encoded by adding an “offset” to c, which
depends on the message. Importantly, being able to recover e from c suffices in
order to recover the message m, so the exact encoding procedure is immaterial
for our purposes. In terms of key generation, every possible predicate function
f is also associated with a (public) lattice Af . In this version of [BGG+14],
the secret key for the predicate f consists of a trapdoor for the lattice Af . A
lattice trapdoor can take many forms (that are interchangeable). The simplest
one, perhaps, is a “short basis” for the so-called dual lattice. The details are
immaterial, but the important property is that given a trapdoor TA for a lattice
A and given a vector c = sA + e (mod q), where ‖e‖ ≤ B (for some parameter
B that relates to the “quality” of the trapdoor), it is possible to recover e (and
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furthermore this e is unique). We refer to this operation as decoding (due to the
similarity of decoding in error correcting codes). Thus, secret keys allow decoding
with respect to Af , but ciphertexts are encoded with respect to different lattices
Ax.

The ingenious component of the scheme is a mechanism that allows, for
every f, x s.t. f(x) = 1, to come up with a low-norm matrix H = Hf,x s.t.
Af = AxHf,x (we do not define what we mean by a norm of a matrix, one can
think about its spectral norm, for example). This means that given c = sAx + e
(mod q), it is possible to multiply by H and obtain c′ = sAf + e′ (mod q),
where e′ has a possibly higher norm than e, but the degradation of the norm is
bounded and respective to the norm of H. This new c′ can be decoded using TAf

in order to decrypt ciphertexts. (We did not explain why recovering e′ suffices
for decryption, but this can be done.)

To apply our theorem to this scheme, we require the following observa-
tion, which follows from the analysis of trapdoor properties in the literature,
e.g. [MP12]. It can be shown that Hf,x can also be used to translate a trapdoor
for Af into a trapdoor for Ax, with somewhat lower quality.5 This means that
an alternative decryption procedure would be to deduce the trapdoor for Ax and
then decode the vector c directly.

For our purposes, we wish to ensure that two different keys, with respect to
f1 or f2, will decrypt all ciphertext in the same way. We, therefore, take the
following strategy. Given a secret key for a function f , we first check that its
“quality” as a trapdoor TAf

for Af is good enough. That is, the honest key
generation is guaranteed to produce trapdoors of a certain quality, and when
we are given a candidate trapdoor, we check that it is indeed of this quality.
Then, given a vector c, we derive a trapdoor TAx

for Ax, and use it to decode
c. This is the end of the “standard” decryption procedure, but our “validated”
decryption has additional steps. Note that it is quite possible that c is not a
legitimate ciphertext at all, and perhaps the outcome e that we obtained is
“garbage” and does not actually describe the difference from a nearby lattice
point. In such a case, different trapdoors could lead to different “garbage” which
contradicts the consistency property we are interested in. Therefore, once we
recover the noise vector e, we check whether (c − e) is indeed of the form sAx

(i.e., is a vector in the lattice Ax) and also that ‖e‖ is sufficiently short (in
this case, that its norm is consistent with the norm of a noise vector that is
selected by the honest encryption procedure). If either check fails, we return ⊥,
otherwise, we return e (or rather, the message m that is induced by the value of
e). The important observation is that any trapdoor for Ax that has been derived
by taking a trapdoor for some Af of the prescribed quality and converting it
into a trapdoor for Ax using Hf,x should be able to decode “legal” values of e.
Therefore, if we get c with an “illegal” value of e, then we always output ⊥, and
if the value of e is “legal”, then it should be correctly decoded.

5 This is a general property. If A = BH, and H is short, then given H, a trapdoor for
A implies a trapdoor for B, with the “quality” of the trapdoor degrading respective
to the norm of H.
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This concludes our alternative decryption algorithm for the [BGG+14]
scheme, for which every validated secret key will produce the same output on
any given input ciphertext c. Therefore, by our main result, this scheme cannot
have a black-box proof of security.

If we wish to construct an adaptively secure scheme, we need to eliminate
the checkability property. One direction that comes to mind is to degenerate the
[BGG+14] scheme so that it is no longer possible to obtain a trapdoor for Ax. We
could try, for example, to change the secret keys of the scheme so that they no
longer contain a trapdoor for Af . Indeed, such a modification is possible, where
the secret key for f is modified to only contain a single short vector from the
dual lattice rather than a basis. The non-delegatable version of the [BGG+14]
scheme indeed works in this way. The predecessor of the [BGG+14] scheme,
namely the [GVW13] scheme, also has a similar structure to the non-delegatable
[BGG+14], where the secret key does not allow obtaining a full trapdoor for Ax,
but only a partial trapdoor (a number of short vectors in the dual lattice, that
do not form a basis).

In order for this approach to indeed allow an adaptive security proof, the
scheme needs to have properties that seem quite implausible. In particular, it
would still be possible to apply our result to obtain a barrier if, instead of
querying just one f , the attacker can query many different f ’s that all accept
the same value x. This would allow obtaining a large number of short vectors
in the dual lattice of Ax, thus obtaining a trapdoor for x, which would allow
for canonical decryption as described above. Due to the convoluted structure of
Hf,x, it is hard to prove that a full basis will be generated in this way, but it
seems very implausible that this will not be the case. The situation that we are
considering is querying the key generation process on multiple functions f and
finding out that on all of the x’s that we consider (except a negligible fraction), if
we take the dual-lattice vectors for Ax that are generated by all f ’s that accept
x, it holds that they all fall into a proper subspace and do not form a full rank
set. Note that the degrees of freedom of the key generation are fairly limited,
and the number of x’s we can consider is far greater than the number of vectors
produced by the key generation. Still, coming up with proof is non-trivial, and
we leave it as an open problem. Nevertheless, any attempt to prove adaptive
security would require proving the opposite, which seems quite difficult.

Our conclusion, therefore (and others may draw their own), is that one has to
deviate from the known methods in order to achieve adaptive security. Indeed,
Tsabary’s construction [Tsa19] achieves this, for a very limited function class,
by significantly deviating from the above blueprint so as to make it impossible
to validate the decryption process.

1.3 Paper Organization

Some preliminaries and notation, along with ABE-related definitions are pro-
vided in Sect. 2. Our lower bound argument appears in Sect. 3. The technical
details of our lattice instantiation, which are outlined in the overview above, are
provided Sect. 4.
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2 Preliminaries

2.1 Basic Definitions

Let n be a natural number. We denote by 1n the unary expansion of n, that is,
the concatenation of n 1’s. We also denote [n] def= {1, . . . , n}.

Definition 21 (Negligible Function). A function f : N → R≥0 is said to be
negligible if for all c there exists N such that f(n) < n−c for all n > N . We
denote by negl(·) a negligible function.

Definition 22 (Computational Indistinguishability). Let {Xλ}λ∈N
and {Yλ}λ∈N

be two distribution ensembles. We say they are computationally indistinguishable
if for any probabilistic polynomial-time algorithm A, it holds that

∣
∣
∣
∣

Pr
x←Xλ

[A(x) = 1] − Pr
x←Yλ

[A(x) = 1]
∣
∣
∣
∣
= negl(λ) (1)

Definition 23 (Statistical Distance). Let X and Y be two random variables
over a finite domain Ω, we define their statistical distance by

D(X,Y )
def
=

1
2

∑

ω∈Ω

|Pr[X = ω] − Pr[Y = ω]| (2)

Definition 24 (Statistical Indistinguishability). Let {Xλ}λ∈N
and {Yλ}λ∈N

be
two distribution ensembles over a finite domain Ω. We say they are statistically
indistinguishable if D(Xλ, Yλ) = negl(λ).

Definition 25 (Pairwise-Independent Hash Functions). A family H of func-
tions h : [n] → [m] is called pairwise independent if for every i, j ∈ [n] such that
i �= j and every x, y ∈ [m] it holds that

Pr
h

$←H

[h(i) = x ∧ h(j) = y] =
1

m2
(3)

2.2 Algorithms

The following algorithms have various alternative definitions. We present the
definitions relevant to our analysis and results here and assume familiarity with
Turing machines.

Definition 26 (Probabilistic Algorithm). A probabilistic algorithm is a Turing
machine that receives an auxiliary random tape as input.

Definition 27 (Interactive Algorithm and Interactive Protocol). An interactive
algorithm, or interactive machine, is a Turing machine that has two additional
communication tapes, a read-only one and a write-only one. An interactive proto-
col consists of two interactive machines π = (A,B) such that A’s write-only com-
munication tape is B’s read-only communication tape, and A’s read-only com-
munication tape is B’s write-only communication tape. The machines take turns
(also called “rounds”) in being active, each turn ends with the active machine
either halting or sending a message to the other machine.



102 Z. Brakerski and S. Medina

Given a pair of interactive algorithms A and B that interact according to
some interactive protocol on some common input x, we denote by 〈A,B〉(x) the
distribution of the output of B after interacting with A on the common input.

Definition 28 (Oracle Machine). An oracle machine is a Turing machine with
access to another machine, called the oracle. The access is implemented using an
additional tape, called oracle tape, and two special states, ASK and RESPONSE.
The oracle machine may enter the ASK state, which invokes an execution of an
oracle on the input received through the oracle tape. The contents of the oracle
tape are then replaced with the output of the oracle, and the state is changed to
RESPONSE. Let A be an oracle machine and B an oracle; we denote AB the
execution of A with oracle access to B.

Remark 21 (Relation between Oracle Machines and Interactive Machines).
Throughout the paper, we treat interactive machines and oracle machines sim-
ilarly, according to the following equivalency: Consider an interactive protocol
(A,B). The execution of the machines interactively is equivalent to executing A
as an oracle machine with oracle access to a stateless version of machine B (i.e.,
machine B without a state register), where every oracle query contains the par-
tial transcript of the interactive protocol, and the output of the oracle is B’s next
message according to the interactive protocol. Similarly, given an oracle machine
A with oracle access to B, we can consider an interactive protocol (A,B) that
contains the oracle queries made by A to B and the corresponding responses.

Remark 22 (Rewinding an Oracle). Consider an interactive protocol (A,B)
and the corresponding execution of oracle machine A with oracle access to B.
Machine A can “rewind” B by making a query to B with input that is a strict
prefix of the partial transcript of the interactive protocol, i.e., “rewind” B to a
previous state in the interaction.

Definition 29 (Decision Problem). A decision problem is a problem that is
solved by classifying inputs to an output which is either 0 or 1.

Definition 210 (Black-box Reduction). A black-box reduction from a decision
problem A to a decision problem B is a Turing machine that solves problem A
given oracle access to a machine that solves problem B.

2.3 Intractability Assumption

In the following definition, we formally describe the notion of intractability
assumption to model a problem that is assumed to be “hard to solve”. The
assumption C is stated in terms of an interactive game between a challenger and
an adversary (following the framework of [Nao03]).

Definition 211 (r(·)-round Intractability Assumption with Threshold t(·)). An
r(·)-round intractability assumption with threshold t(·) is an interactive prob-
abilistic decision problem C, called the challenger, that interacts with another
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algorithm A, called the attacker, such that: (1) both algorithms take as input 1λ

where λ is the security parameter, and (2) the interaction is a-priori bounded by
r(λ) rounds. We define the advantage of the attacker A with respect to C as

Adv(A)
def
=

∣
∣Pr

[〈A, C〉 (

1λ
)

= 1
] − t(λ)

∣
∣ (4)

C is associated with a computational assumption that states that for any
polynomial-time attacker A there exists a negligible function μ(·) such that for
all λ ∈ N

Adv(A) ≤ μ(λ) (5)

We say that a polynomial-time attacker A breaks the assumption C with non-
negligible advantage p if Adv(A) = p.

2.4 Attribute-Based Encryption

Definition 212 (Key-Policy Attribute-Based Encryption Scheme). Let X be a
set of objects and F be a class of functions of the form f : X → {0, 1}. A
key-policy Attribute Encryption (KP-ABE) scheme for attribute set X and pol-
icy class F is a tuple of probabilistic polynomial-time algorithms S = (Setup,
Encrypt, KeyGen, Decrypt) as follows:

– Setup(1λ) → PP, MSK The setup algorithm takes the security parameter
λ as input. It outputs the public parameters PP of the scheme and a master
secret key MSK.

– Encrypt(x,M,PP) → CTx The encryption algorithm takes in an
attribute x ∈ X , a message M ∈ {0, 1} and public parameters PP. It out-
puts a ciphertext CTx, which is an encryption of M under x. Assume w.l.o.g.
that CTx contains x.

– KeyGen(MSK, f,PP) → SKf The key generation algorithm takes in the
master secret key MSK, a policy f ∈ F and public parameters PP. It outputs
a secret key SKf for f . Assume w.l.o.g. that SKf contains f .

– Decrypt(CTx,SKf ,PP) → M The decryption algorithm takes in a
ciphertext CTx, a secret SKf and public parameters PP. It outputs a message
M ∈ {0, 1}.

Remark 23. Another variant of ABE is Ciphertext-Policy ABE (CP-ABE),
where ciphertexts are associated with policies and secret keys with attributes. The
distinction is immaterial for our purposes, so we adopt the notation of KP-ABE
scheme and simply refer to it as ABE for convenience.

Definition 213 ((Perfect) Correctness of KP-ABE). Let S = (Setup, Encrypt,
KeyGen, Decrypt) be a key-policy ABE scheme for attribute set X and pol-
icy class F . We say that S is (perfectly) correct if the following holds: Let
(PP, MSK) = Setup(1λ), f ∈ F , x ∈ X and M ∈ {0, 1} and suppose f(x) = 1.
Denote CTx = Encrypt(x,M,PP) and SKf = KeyGen(MSK, f,PP). It holds
that

Decrypt(CTx,SKf ,PP) = M (6)
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Definition 214 (Adaptive Security of KP-ABE). Let S = (Setup, Encrypt,
KeyGen, Decrypt) be a key-policy ABE scheme for attribute set X and pol-
icy class F . We define adaptive security to be the intractability assumption that
consists of the following interactive “game”:

1. Setup Phase The challenger runs Setup(1λ) and sends PP to the adver-
sary.

2. Key Query Phase I The adversary makes key queries for policies in F
of her choice: that is, in each key query, the adversary sends a policy of her
choice to the challenger, the challenger runs the KeyGen algorithm to produce
a secret key and sends it to the adversary.

3. Challenge Phase The adversary declares two messages M0,M1 and a chal-
lenge attribute x∗ ∈ X . The challenger samples a uniformly random bit
b ∈ {0, 1}, computes CTx∗ = Encrypt (x∗,Mb,PP) and sends the result to
the adversary.

4. Key Query Phase II Same as Key Query Phase I.
5. Guess The adversary sends a guess b′ for the bit b.

The output of the game is defined as follows: If every queried policy f satisfies
f (x∗) = 0, the output is the adversary’s guess b̃ = b′; otherwise, the output is a

uniformly random bit b̃
$← {0, 1}. The threshold of the intractability assumption

is 1/2, so the advantage of the adversary is
∣
∣
∣Pr[b̃ = b] − 1/2

∣
∣
∣.

Remark 24. We observe that the adaptive security of an ABE scheme depends
only on the Setup, KeyGen, and Encrypt procedures and not on the Decrypt
procedure. Therefore, any two ABE schemes that differ only in their implemen-
tations of the decryption must either both be adaptively secure or both not.

Next, we formally define a condition on an ABE scheme that essentially
requires the scheme to support a set of policies derived from a pairwise-
independent hash family. Intuitively, a random sample of policies from such
a set has a significant probability of accepting a uniformly random attribute.
This property will be used in our proof to ensure that an attacker that requests
secret keys for many policies in that set can use them to decrypt a challenge
ciphertext with a large enough probability.

Definition 215 (Pairwise-Friendliness of ABE). Let S be an ABE scheme for
attribute set X and policy class F . We say that S is pairwise friendly if for every
a, b ∈ N such that a > b and a = O(log |X |), there exists a pairwise independent
hash family H = {h : X → [a]} so that the following holds: For every h ∈ H,
the function fh : X → {0, 1} defined by

fh(x) = 1 ⇐⇒ h(x) ≤ b (7)

is in F .

Remark 25. For every n ∈ N and m ≤ n there exists a pairwise independent
hash family H = {h : {0, 1}n → {0, 1}m} such that every h ∈ H can be computed
by an NC1 circuit [IKOS08].



Limits on Adaptive Security for Attribute-Based Encryption 105

Remark 26. Following the previous remark, let S be an ABE scheme with
attribute set X and policy class F such that F contains the class of functions
with depth-d circuits for d = O(log |X |), then S is pairwise friendly.

The following definitions describe our checkability criterion for an ABE
scheme. Intuitively, the checkability condition requires a validation procedure
for secret keys, which ensures that validated keys decrypt any ciphertext the
same. In particular, it makes it impossible for a challenger to distinguish which
key was used to decrypt a challenge ciphertext. More precisely, checkability cor-
rectness requires that honestly generated keys are indeed valid (according to the
validation procedure), and checkability soundness requires that any two valid
keys decrypt any ciphertext the same way.

Definition 216 (Checkability of ABE). We say that an ABE scheme is “check-
able” if it has an additional algorithm:

– SKCheck(PP, SK, f) → {True, False} The ciphertext checking algorithm
takes in public parameters PP, a key SK and a policy f ∈ F . It outputs either
True or False.

Definition 217 (Checkability Correctness of KP-ABE). Let S = (Setup,
Encrypt, KeyGen, Decrypt, SKCheck) be a KP-ABE scheme for attribute set
X and policy class F . We say that S satisfies the checkability-correctness
property if the following holds: Let (PP, MSK) = Setup(1λ), f ∈ F , and
SKf = KeyGen(MSK, f,PP), then SKCheck(PP,SKf , f) = True.

Definition 218 (Checkability Soundness of KP-ABE). Let S = (Setup,
Encrypt, KeyGen, Decrypt, SKCheck) be a KP-ABE scheme for attribute set
X and policy class F . We say that S satisfies the checkability-soundness prop-
erty if the following holds: Let PP, SK1,SK2 and f1, f2 ∈ F . Let CTx, i.e. a
ciphertext claimed to be encrypted w.r.t. attribute x ∈ X ,6 s.t. f1(x) = f2(x) = 1.
If SKCheck(PP,SK1, f1) = SKCheck(PP,SK2, f2) = True, then

Decrypt(CTx,SK1,PP) = Decrypt(CTx,SK2,PP) (8)

Remark 27. To obtain our result, it suffices to assume a looser condition on a
checkable ABE scheme: Instead of requiring that any two policy keys decrypt the
ciphertext exactly the same, it suffices to require that for any two policy keys, the
distributions of the decryption outputs are computationally indistinguishable.

3 The Main Theorem and Proof

Informally, our main theorem asserts the following: Any pairwise-friendly, check-
able ABE scheme cannot be proven adaptively secure by constructing a black-box
reduction that reduces an intractability assumption to breaking the security of
6 Recall our convention (Definition 212) that ciphertexts contain their attribute as a

part of their description.
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the scheme, even if the reduction is rewinding. We prove that if such a reduction
existed, it would be possible to construct an efficient algorithm that violates
the intractability assumption by using only the reduction, without requiring a
successful ABE adversary, thereby leading to a contradiction.

Theorem 31. Let λ a security parameter and n = poly(λ). Let S be a pairwise
friendly and checkable ABE scheme with attribute set X = {0, 1}n and policy
class F . Let C be an r(·)-round intractability assumption with threshold t(·),
where r, t are polynomials. Suppose that for every polynomial l(·) there exists a
black-box reduction R such that the following holds: If R is given oracle access
to an attacker A that makes l(·) key queries and has a non-negligible advantage
in the adaptive security game of S, then RA has non-negligible advantage w.r.t.
the assumption C.

Let l(λ) = ω(n(λ)+r(λ)) and a corresponding reduction R. Denote A to be a
hypothetical attacker that has a non-negligible advantage in the adaptive security
game of S. Then there exists a polynomial-time algorithm B and a negligible
function μ(·) such that

∣
∣Pr

[〈RA, C〉 (

1λ
)

= 1
] − Pr

[〈BR, C〉 (

1λ
)

= 1
]∣
∣ ≤ μ(λ) (9)

In particular, BR is a polynomial-time algorithm that has a non-negligible advan-
tage w.r.t. the assumption C.

In the remainder of the section, we prove the theorem:

Proof. Let λ denote the security parameter and suppose there exist S and C
as described in the theorem. Let l(λ) = ω(n(λ) + r(λ)) and let R be the cor-
responding reduction as described in the theorem. By definition of R, if there
were an attacker A with non-negligible advantage in the security game of S, and
R would be given oracle access to A, then R could use A during an interaction
with C to gain non-negligible advantage w.r.t. C. We will prove that the oracle
access to A can be simulated in a way that preserves R’s advantage w.r.t. C,
even if it does not have oracle access to an actual attacker A.

More explicitly, we will construct a machine B that has oracle access to the
reduction R and simulates the interaction between C and RA for a properly
defined A so that B has non-negligible advantage w.r.t. C. To simulate the inter-
action accurately, B emulates an oracle access to an attacker A for R, making it
appear as if A has a non-negligible advantage in the adaptive security game of
S. Furthermore, the expected running time of B is polynomial, and in particular,
the emulation of the attacker is efficient.

First, we introduce an inefficient hypothetical attacker A with a non-
negligible advantage in the adaptive security game of S. A can be used by R
so that RA has non-negligible advantage w.r.t. the assumption C. Second, we
describe the algorithm B that has oracle access to the reduction R, but instead
of giving R an oracle access to an actual attacker, it simulates an attacker for
R that is indistinguishable from A by R. As we will show, B simulates A by
rewinding the reduction R and exploiting the fact that R runs in polynomial
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time and cannot make too many queries to A. Finally, we analyze the running
time and advantage of BR to prove that there exists a polynomial-time algorithm
that breaks the assumption C with non-negligible advantage.

To summarize notations:

Parameter Size Meaning

n n(λ) = poly(λ) The dimension of X = {0, 1}n, the
attribute
set of S on input 1λ.

r r(λ) = poly(λ) The number of communication
rounds in
the intractability assumption C on
input 1λ.

t t(λ) = poly(λ) The threshold associated with the
intractability assumption C on input
1λ.

l l(λ) = ω(n(λ) + r(λ)) The number of key queries made by
the
attacker A on input 1λ.

M M(λ) = poly(λ) The bound on the running time of R
on
input 1λ.

m m(λ) > 8l(λ) A parameter of B to be defined later.

k k(λ) = ω(l(λ) log λ) A parameter of B to be defined later.

Recall that S is pairwise friendly, and let H = {h : {0, 1}n → [m]} be the
pairwise independent hash family such that for every h ∈ H, the function fh

defined by fh(x) = 1 ⇐⇒ h(x) ≤ m
8l is in F .

3.1 Hypothetical Attacker A
The hypothetical attacker algorithm performs as follows:

Algorithm A(1λ)
1. Receive PP from the challenger.
2. Initialize F = ∅ the set of functions to be queried during the key query

phase and their corresponding keys.
3. Make l key queries, for each one:

(a) Sample a uniformly random h
$← H and make a key query by sending

the policy f
def= fh to the challenger.

(b) Receive SKf and update F ← F ∪ {(f,SKf )}.
(c) Run SKCheck(PP, SKf , f), if the output is False then abort.
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4. Declare two messages M0 = 0 and M1 = 1. Sample a uniformly random
challenge attribute x∗ $← {0, 1}n and send it to the challenger. Receive
a ciphertext CTx∗ .

5. Brute-force search for h′ ∈ H such that fh′ (x∗) = 1. If no such h′ exists,
then abort.

6. Iterate over all possible secret keys and check for every key SK if
SKCheck(PP,SK, fh′) = True. If so, stop the iteration. If no such key
was found, then abort.

7. Decrypt CTx∗ using SK and return the result.
Similarly to [Pas11], we formally equip A with access to a random oracle

which is used to generate the random coins used by A. This will allow us to
consider rewindings of R more conveniently. We may think of A as a distribution
over attackers, each defined by an instantiation of the random oracle.

Success Probability. We show that A breaks the adaptive security of S:

Claim 31. A wins the adaptive security game of S with advantage ≥ 7
16 .

Proof. The proof is available in the eprint version of the paper: https://eprint.
iacr.org/2023/952

3.2 Algorithm B
Overview. Recall that we wish to construct an algorithm B that simulates oracle
access to an attacker A for R without having access to an actual attacker. In such
a simulation, R initiates an interaction with the attacker by first sending the
public parameters; then they interact according to the adaptive security game of
S until finally, the attacker sends a guess for which message was encrypted in the
challenge ciphertext. Naively, B could simulate the attacker by rewinding R to a
previous state of the interaction, extracting an additional secret key, and using
it to decrypt the challenge ciphertext. We emphasize that the extracted secret
key should be validated by the attacker using the SKCheck procedure to ensure
canonical decryption, as guaranteed by the checkability soundness of the scheme.
A major problem with this naive approach is that R can make “intertwined”
queries to A for many different public parameters. Therefore, if B would rewind
R whenever it would be required to decrypt a challenge ciphertext, we could get
an exponential blow-up in running time7. We resolve this by having B rewind the
reduction R only under certain conditions and have a more delicate rewinding
process, as we will describe shortly.

Before diving into a formal description of the rewinding process, we provide
a high-level intuition. Consider the tape of the Turing machine BR, i.e., the
execution of B given oracle access to R. At a high level, B initiates an execution of
R, forwards all communication between C and R, and whenever R tries to access
the attacker oracle, B emulates the attacker for R. Under certain conditions to
7 A similar problem was presented in the context of concurrent zero-knowledge in

[DNS04].

https://eprint.iacr.org/2023/952
https://eprint.iacr.org/2023/952
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be specified later, B “forks” the execution into two parallel executions, a process
which could be thought of as “duplicating” the machine tape, and rewinds R in
the forked execution to a previous state. In other words, B makes a copy of the
current state of execution and then rewinds the copied execution so that it would
continue differently from the original one. We think of the relation between the
original execution and the duplicated one as “parent” and “child”, respectively.
B then continues running the child execution until a certain event occurs, when
it terminates it (and all its child executions if they exist), and finally continues
the parent execution.

More precisely, taking inspiration from Pass’s work [Pas11], we define the
notion of a “slot”, denoted by s, to be a time window within the execution of R
that “opens” just before the simulated attacker sends a policy to the reduction,
and “closes” right after the reduction sends back a corresponding secret key and
the simulated attacker validates it using SKCheck. Whenever a slot closes, B
decides whether to rewind R back to the opening of the slot, depending on three
conditions that determine if the slot is “good”:

1. Between the time the slot s opened and the time it closed, R did not send
(and thus did not receive) any external message to (or from) C.

2. Between the time the slot s opened and the time it closed, the number of
other slots that opened is “small”, where “small” will be defined below.

3. The received key is valid, i.e., the result of SKCheck was True.

Whenever such a slot s closes, B “duplicates” the execution, rewinds R in the
duplicated execution back to the opening of the slot, and sends a different policy
than the one sent in the original execution. B runs the duplicated execution until
the slot either closes or stops being “good”, and then terminates it (along with
all its child executions if they exist). B repeats this process of duplicating the
execution and rewinding the slot several times to extract several keys until finally,
B returns to the original execution and continues running it. We highlight that
the rewinding process could be recursive – recall that R might make intertwined
queries, thus, there might be a slot that opens and closes within another slot.

Next, we describe this procedure formally.

The Algorithm. We will use the notion of a machine state, or simply a state, to
formally describe the control flow of the algorithm. Intuitively, we could think
of a state as a pointer to the machine tape of B. W.l.o.g., we assume a state
includes a record of all the messages sent and received by C, B and R, up to the
point that the state points to.

We define a state v to be d-good with respect to a previous state u if: (1)
R does not attempt to send messages to C during the time between u and v,
and (2) the number of slots that open between u and v is at most M

nd . We define
a slot to be the time window whose opening is a state right before B makes
sends key-query, and closing is a state right after the respective key that was
received is checked using SKCheck. We observe that any slot can be specified
by its opening state, and the opening defines a distribution over the possible
closings of the slot (depending on the key that was queried and the respective
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response). An execution-instance of a slot is a pair (u, v) where u is the slot-
opening and v is a specific slot-closing. We say that an execution-instance (u, v)
of slot s is d-good if the closing of s, v, is d-good with respect to its opening, u,
and the result of SKCheck at the end of the slot is True.

The algorithm we describe is BR, that is, the algorithm B given oracle access
to the reduction R. The formal description uses the definition of the hypothetical
attacker A and a recursive procedure SIM that simulates the attacker oracle for
R.

Recall that the interactive protocol between the reduction and the attacker
oracle begins with the reduction sending public parameters to the attacker. Since
R can make queries to the attacker that correspond to intertwined interaction
transcripts, we associate each message with the public parameters that initiated
the corresponding transcript. Similarly, we associate each slot with the public
parameters that initiated the transcript that contains the policy message that
“opened” the slot.

Algorithm BR(1λ)
1. Initialize a global set F̃ = ∅.
2. Receive a message from C.
3. Initiate an execution of the reduction oracle R, and send the message

received from C to R.
4. Run SIMR(1λ, 0, 0, 0).

Algorithm SIMR(1λ, d, u, v)
On input the recursive depth d, a state u, and a state v:
1. Check for the following mutually exclusive conditions and perform

accordingly:
(a) If d = 0 and R attempts to send a message to C, forward the message

and feed R the response received from C. Note that only at recursive
depth d = 0 the reduction R can interact with C.

(b) If d > 0 and v is not a d-good state with respect to u, return ⊥.
(c) If d > 0, u is an opening of a slot s that closes at v, and (u, v) is

a d-good execution-instance of s, then return (PP, f,SKf ) where f
and SKf are the policy and secret key retrieved during the slot s and
PP is the corresponding public parameters.

(d) If v is the closing of a slot s̃ that opened at state ũ which is strictly
after u, and (ũ, v) is a (d + 1)-good execution-instance of s̃: Repeat
the following k(n) times:
i. Let r = SIM(1λ, d + 1, ũ, ũ). emphasize that this is where

the rewinding occurs – another execution of SIM is forked and
rewound to the previous state ũ.)

ii. If r �=⊥, store r = (PP, f,SKf ) in F̃ .
2. If none of the above conditions were satisfied, check if R is sending a

message to the attacker:
(a) If R is sending a challenge ciphertext, do nothing and continue.
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(b) If R is sending a secret key SK as a response to a key query for policy
f with respect to public parameters PP:
i. Run SKCheck(PP,SK, f).
ii. If the output is False and d = 0 then abort. If the output is False

and d > 0 then return ⊥.
3. If none of the conditions of (1) and (2) were satisfied, check if according

to the interactive protocol between R and the hypothetical attacker A,
R is expecting to receive a response message from the attacker:
(a) If R is expecting to receive a decryption of a ciphertext associated

with public parameters PP, then perform as follows: Let CTx∗ be
the ciphertext and x∗ the challenge under which the ciphertext was
encrypted;
i. Search F̃ for a tuple that has the same PP and also satisfies

f (x∗) = 1.
ii. If there exists such a tuple, use SKf to decrypt CTx∗ and send

the result.
iii. Otherwise, send a uniformly random guess.

(b) If R is expecting to receive a policy, then respond as the attacker

oracle would; that is, sample a uniformly random h
$← H and send

fh.
(c) If R is expecting to receive a M0, M1 and a challenge attribute, then

respond as the hypothetical attacker oracle would; that is,
i. Declare two messages M0 = 0 and M1 = 1.
ii. Sample a uniformly random x∗ $← {0, 1}n and send it to R.

4. Update v to be the current state (that includes all messages up to the
current point) and return SIMR (

1λ, d, u, v
)

.

3.3 Running Time

Consider a variant of B, B̃, such that whenever B̃ is required to decrypt a chal-
lenge ciphertext without having retrieved a suitable secret key, B̃ magically gets
a key that decrypts the ciphertext (we can think of this as brute-force searching
for a key in the same manner as the hypothetical attacker, but without count-
ing the brute-force search into the runtime). We note that this change does not
change the runtime of the algorithm. We observe that B̃ always responds the
same as the hypothetical attacker A.

Lemma 31. There exists some polynomial p(·) such that the running time of
B̃R (

1λ
)

is bounded by p(λ).

Proof. We use a recursion tree to describe how B̃ executes and rewinds R: The
root of the tree is the initial (and single) execution of R at level d = 0. When-
ever B̃ forks a child execution at recursive level d, that is, what we previously
described as “duplicating the tape”, it is translated into a new node at level
d + 1 which is a child of the node from which it was forked from at level d.
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As previously described, this occurs whenever B̃ encounters a (d + 1)-good slot
instance (i.e., a (d + 1)-good execution-instance of a slot) during an execution
at recursive level d, which B̃ then rewinds in the forked execution.

First, by definition of the algorithm B̃, the depth of the recursion tree is
bounded by a constant c = logλ M · θ(1). Second, at each execution of R at
recursive level d, R opens at most M slots, so there are at most M points from
which B̃ may fork child executions. Third, also by definition of B, each slot is
forked and rewound k times. Combining these observations, we get that each
execution node in the recursion tree has at most M slots that have k children
each, so overall a maximal number of Mk child executions. Therefore, the overall
size of the recursion tree is bounded by (Mk)c+1, thus the runtime of B̃R is
bounded by a polynomial of λ as well.

To conclude a bound on the expected running time of B from the bound on
the running time of B̃, we first make the following assumption: Suppose that the
probability of B being required to decrypt a ciphertext without having retrieved
a suitable key during an execution of BR is bounded by a negligible function of
λ. Given this assumption, the transcript of the interaction between BR with C
is indistinguishable from the transcript of the interaction between B̃R with C.
Therefore, under this assumption, the expected running time of B is bounded
by a polynomial as well. The assumption is proven in the next section, in which
we analyze the success probability of B breaking the intractability assumption
C.

3.4 Success Probability

In order to analyze the success probability of BR, we compare the transcript of
the interaction between C and BR with the transcript of the interaction between
C and RA. We show that the distributions of those transcripts are indistinguish-
able, therefore, the probability that C outputs 1 is the same in both scenarios
except for some negligible probability. In other words, we show that there exists
some negligible function μ(·) such that

Pr
[〈BR, C〉 (

1λ
)

= 1
] ≥ Pr

[〈RA, C〉 (

1λ
)

= 1
] − μ(λ) (10)

By the definition of B, it forwards all messages from C to the (single) exe-
cution of R at recursive level d = 0 and vice versa. For simplicity, denote the
execution of R at level d = 0 by R0. If B would perfectly simulate the hypothet-
ical attacker A for R, that is, respond to all queries made by R to the attacker
oracle exactly the same as A would, then R0 would behave exactly the same as
RA (all other recursive calls at level d > 0 would be irrelevant to R0), leading to
the transcripts in both scenarios having exactly the same distribution. Although
this is not necessarily the case, we show that the probability that B responds
differently from A is negligible, so even though the transcripts are not identically
distributed, they are indeed indistinguishable.

By the definitions of the hypothetical attacker A and the algorithm B, they
respond exactly the same to all queries that R makes to the attacker oracle,
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with the exception of when R requires the attacker oracle to provide a guess for
which message was encrypted in the challenge ciphertext. When that happens,
then the hypothetical attacker should be able to decrypt by brute-force searching
for a decrypting secret key, whereas the simulated attacker might fail to obtain
such a key and respond differently than A. We argue that the probability that
B fails to decrypt a ciphertext is negligible.

Denote:

– E1 the event that B is required to decrypt a ciphertext CTx associated with
some public parameters PP without having previously rewound at least n
slots associated with the same PP.

– E2 the event that B is required to decrypt a ciphertext CTx associated with
some public parameters PP, at least n slots associated with the same PP
were successfully rewound, but every (PP, f,SKf ) ∈ F̃ (with the same PP)
satisfies f(x) = 0.

If neither E1 nor E2 occur, then B necessarily obtains a decrypting key and
successfully decrypts the challenge ciphertext.

Claim 32. The probability that E1 happens in an execution between BR and C
is 0.

Proof. The proof of this claim follows similar guidelines as presented in [Pas11].
We first observe that every time an instance of a game between R and the sim-
ulated attacker reaches the challenge phase, and R sends a challenge ciphertext
associated with public parameters PP, then it must have sent l(λ) = ω(n + r) =
ω(2n+ r +1) secret keys8 associated with the same PP (i.e., as part of the same
game). Moreover, those keys must have been valid ones, otherwise, the simulated
attacker would have stopped responding and never reached the guessing phase.

Consider an occurrence of B being required to send a guess as part of a game
associated with public parameters PP, and the l slots associated with the same
PP. These slots may be distributed over several nodes in the recursion tree. Since
the recursive depth of the simulation is bounded by a constant c, there must be
some recursion level d such that the number of these slots at level d is at least
l
c . For sufficiently large λ, l

c ≥ 2n + r + 1. Since r bounds the total number
of external messages, we conclude that in at least 2n + 1 of the slots, there is
no communication between R and C. By the design of the rewinding process,
the number of slot openings during any slot s at level d is bounded by M

nd , so
there must be at least n of the l/c slots that have no more than M

nd+1 inner
slot openings. We conclude that at least n of the slots associated with PP are
(d + 1)-good, and thus can be rewound, as desired.

Claim 33. There exists some negligible function μ2(·) such that the probability
that E2 happens in an execution between BR and C on input 1λ is bounded by
μ2(λ).
8 It will be more convenient to think about (2n + r + 1) as a fundamental quantity as

we see below.
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Proof. Consider a query that R makes to the attacker and the respective security
game, and assume that B is required to decrypt a challenge ciphertext. By Claim
32, there are at least n relevant slots that were rewound. Let s1, . . . , sn be those
slots. For every i ∈ [n] we let Wi ⊆ H be the set of hash functions h ∈ H
such that querying a secret key for a policy fh in slot si results in the reduction
responding with a valid key SKfh

with probability at least (1 − α), where α
is a parameter that we will choose shortly. Note that the sets W1, . . . ,Wn are
random variables that depend on the random coins used by R and B.

Denote by E3 the event that W1, . . . ,Wn are all smaller than |H|/4. Since
B samples the policies in the key queries uniformly at random, and the game
reaches the challenge phase only if the reduction responds with valid keys, the
probability that B is required to decrypt and E3 occurs is bounded by

Pr[(B required to decrypt) ∧ E3] ≤
n∏

i=1

[ |Wi|
|H| · 1 +

(

1 − |Wi|
|H|

)

(1 − α)
]

≤
n∏

i=1

[

(1 − α) +
|Wi|
|H| · α

]

<

n∏

i=1

(

1 − 3
4
α

) (11)

Choosing α = 1/4, we get

Pr[(B required to decrypt) ∧ E3] ≤
(

13
16

)n

(12)

Thus, this probability is bounded by a negligible function.
From now on, we consider the case in which E3 does not occur, that is, there

is a slot si during the query phase that was successfully rewound and satisfies
|Wi| ≥ |H|/4. To analyze the probability that B fails to retrieve a key that
decrypts the challenge ciphertext, we use the following additional notations:

– Let T = {1, . . . ,
⌊

m
4l

⌋}, which is the set of values such that h(x) ∈ T ⇐⇒
fh(x) = 1.

– Let W = Wi, that is, the set of hash functions h ∈ H such that querying fh

in slot si results in the reduction responding with a valid key with probability
at least 1 − α (where α = 1/4).

– For all δ, let Sδ =
{

x ∈ {0, 1}n

∣
∣
∣
∣
Pr

h
$←W

[h(x) ∈ T ] < δ

}

, i.e., the set of all

challenges such that if we sample a uniformly random h
$← W , the probability

that h(x) ∈ T is < δ.
– For all δ and all Y ⊆ H let Xδ

Y be the random variable |h−1(T ) ∩ Sδ| when

sampling a uniformly random h
$← Y .

Before diving further into the technical details, we provide a brief intuition.
By definition of Sδ, this is intuitively a set of “bad challenges” – challenges that
have a small probability (< δ) to be covered by a random hash function in W .
Note that the smaller δ is, the smaller the set Sδ is. Since the attacker samples
random hash functions in H, which is a pairwise independent family, the fraction



Limits on Adaptive Security for Attribute-Based Encryption 115

of Sδ that is covered by a uniformly random h ∈ H is close to its expectation
with high probability. Therefore, for small δ, we expect to find only a small
fraction of the functions in H whose intersection with Sδ is very small. These
are intuitively “bad functions” because their contribution to the coverage of Sδ,
the set of “bad challenges”, is little.

To compute the probability of covering a random challenge attribute x∗,
we will compute lower and upper bounds on the expected coverage of Sδ by a
random function in W , and extract a trade-off between the size of Sδ and 1/δ.
The lower bound computation will assume a worst-case scenario in which all of
the “bad functions” are in W and exploit the fact that W is a large enough
fraction of H to not be affected “too much” by the “bad functions” (when δ is
chosen to be small enough).

As we will see, we can choose δ such that δ = 1/poly(λ) and the size of Sδ

is negligible. From this, we will conclude that a random challenge attribute is
covered by the keys retrieved from the k rewindings of si with all but negligible
probability.

We continue with a formal analysis:

Lemma 32. For every δ we have

δ >
|T |
2m

(

1 − 4|H|m
|W ||T ||Sδ|

)

(13)

Proof. The proof is available in the eprint version of the paper: https://eprint.
iacr.org/2023/952

Next, we use Lemma 32 and substitute the bounds |W | ≥ |H|
4 and |T |

m ≥ 1
8l .

We get that for every δ

δ >
1

16l

(

1 − 27 · l

|Sδ|
)

(14)

Setting δ′ = 1
32l and substituting into (14),

1
32l

>
1

16l

(

1 − 27 · l

|Sδ′ |
)

⇒ |Sδ′ | < 28 · l (15)

For sufficiently large λ it holds that l < 2n/2−8, thus |Sδ′ | < 2n/2.
Next, we upper bound the probability of not covering a uniformly random

x∗ $← {0, 1}n by F̃ , that is, the probability that h(x∗) /∈ T for every fh ∈ F̃ .
The remaining probabilistic calculation, which concludes the proof of this

claim, is available in the eprint version of the paper: https://eprint.iacr.org/
2023/952

By the two previous claims, the attacker simulated by B is indistinguishable
by R from the hypothetical attacker A, therefore the transcript of the interaction
between C and R0 is indistinguishable from the transcript of the interaction
between C and RA, and so

Pr
[〈BR, C〉 (

1λ
)

= 1
]

= Pr
[〈RA, C〉 (

1λ
)

= 1
] − negl(λ) (16)

https://eprint.iacr.org/2023/952
https://eprint.iacr.org/2023/952
https://eprint.iacr.org/2023/952
https://eprint.iacr.org/2023/952
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Combining with the runtime analysis, we conclude that the expected running
time of B is bounded by a polynomial function of λ, thus by Markov’s inequality,
we can truncate B to run in strictly polynomial time while preserving its non-
negligible advantage w.r.t. the assumption C. Finally, we conclude that there
exists a polynomial-time machine such that, if given oracle access to R, has a
non-negligible advantage w.r.t. the assumption C. This completes the proof.

4 The Case of Lattice-Based ABE

As an example of applying our framework, we consider the celebrated [BGG+14]
KP-ABE candidate and show that a its delegatable version conforms with the
conditions of our main theorem. The [BGG+14] scheme has been proven selec-
tively secure based on the hardness of Learning with Errors (LWE), and while
we are not aware of it being conjectured adaptively secure, we do not know
of concrete adaptive attacks. We consider a variant of the scheme where func-
tion secret keys consist of lattice trapdoors. This version can be adapted to our
framework fairly straightforwardly.

4.1 Lattice Cryptography Background

We start by presenting a few necessary definitions of lattice cryptography on the
subjects of LWE and lattice trapdoors, which are required in order to describe
the ABE scheme formally.

Definition 41 (Decisional LWEn,m,q,χ). Let λ be a security parameter, n =
n(λ), m = m(λ) and q = q(λ) be integers, and χ = χ(λ) be a noise distribution
over Z. The (n,m, q, χ)-LWE decision problem is to distinguish between the fol-

lowing two distributions: Letting A
$← Z

n×m
q , s

$← Z
n
q , e ← χm, u

$← Z
m
q , the

first distribution is (A,AT s + e) and the second is (A, u).

Definition 42 (Gadget Matrix). We define the “gadget matrix” by G =
g ⊗ In ∈ Z

n×n�log q	
q where g = (1, 2, 4, . . . , 2�log q	−1) ∈ Z

�log q	
q . We define

the inverse of the gadget matrix function G−1 : Zn×m
q → {0, 1}n�log q	×n which

expends each entry a ∈ Zq of the input matrix into a column of size �log q�
which is a binary representation of a, so for any matrix A ∈ Z

n×m
q it holds that

G · G−1(A) = A.

Definition 43 (Matrix Norms). Let T ∈ Z
n×m be a matrix and T̃ the result

of applying Gram-Schmidt orthogonalization to the columns of T . We define the
GS-norm ‖T‖GS as the l2 length of the longest column of T̃ . We let ‖T‖2 be the
operator norm of T defined by ‖T‖2 = sup‖x‖=1 ‖Tx‖.

The following are properties of lattice trapdoors, see [BGG+14] for references.

Lemma 41. Let m,n, q > 0 be integers with q prime.
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– There is an efficient randomized algorithm TrapGen(1n, 1m, q) that when m =
Θ(n log q), outputs a full-rank matrix A ∈ Z

n×m
q along with a basis TA ∈

Z
m×m for

Λ⊥
q (A) = {z ∈ Z

m | A · z = 0 mod q}
such that A is statistically indistinguishable from a uniformly-sampled matrix
and ‖TA‖GS = O(

√
n log q), with all but negligible probability.

– There is an efficient algorithm TrapExtend(A,B, TA) that given a full-rank
matrix A ∈ Z

n×m
q , a basis TA of Λ⊥

q (A), and B ∈ Z
n×m
q , outputs a basis

T[A|B] of Λ⊥
q ([A | B]) such that ‖T[A|B]‖GS = ‖TA‖GS.

– There is a randomized algorithm SampleD(A,D, TA, σ) that given a full-rank
matrix A ∈ Z

n×m
q , a basis TA of Λ⊥

q (A), a matrix D ∈ Z
n×k
q , and σ =

‖TA‖GS ·ω(
√

log m), outputs a random matrix R ∈ Z
m×k such that AR = D,

and ‖RT ‖2 < mσ with all but negligible probability.

Lemma 42. Let A ∈ Z
n×m
q be a full rank matrix with a basis TA ∈ Z

m×m for
Λ⊥

q (A), and let B ∈ Z
n×k
q and C ∈ Z

k×m
q such that A = BC. Let D ∈ Z

m×k
q

such that AD = B (which necessarily exists since A has a trapdoor TA). Then
the matrix TB = [CTA | I −CD] is a full-rank set of vectors in Λ⊥

q (B) such that
‖TB‖GS = ‖CTA‖GS.

Proof. We can immediately verify that BTB = 0, thus TB ∈ Λ⊥
q (B). TB is also

full-rank since

TB

[

T−1
A D
I

]

= I (17)

For the same reason, the GS-norm of TB‖GS is the same as [CTA | I], which is
‖CTA‖GS, as desired.

Key-Homomorphic Evaluation. Let f be a boolean circuit of depth d computing
a function {0, 1}k → {0, 1}, and assume that f contains only NAND gates. We
“translate” the operation of f into a computation on matrices: We associate with
every input wire of f a matrix Ai, and for every other wire we assign a matrix
recursively as follows: Let Aα, Aβ be the matrices of the input wires, then the
output wire is associated with the matrix Aγ = Aα · G−1(Aβ) − G. Note that
for every input values xα, xβ ∈ {0, 1},

[Aα + xαG | Aβ + xβG] ·
[
G−1(Aβ)

−xαI

]

= Aγ + (1 − xαxβ)G

= Aγ + NAND(xα, xβ)G
(18)

Denote by Af the matrix of the output wire of f . We define Eval(f, (A1, . . . , Ak))
to be the procedure that takes as inputs f and A = (A1, . . . , Ak) and outputs
Af . Note that for input wires x1, . . . , xk, the homomorphic evaluation satisfies

[A1 + x1G | · · · | Ak + xkG] · Hf,x,A = Af + f(x1, . . . , xk)G (19)

for some short matrix Hf,x,A ∈ Z
mk×m that has norm O(n log q)O(d).
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4.2 The [BGG+14] Scheme

Next, we describe the properties of [BGG+14] scheme and show their sufficiency
for applying our theorem. For simplicity, we assume that the policies of the
scheme accept attributes if and only if f(x) = 0 (instead of f(x) = 1).

Let λ denote the security parameter, the parameters of the scheme are an
integer n = n(λ), a prime q = q(λ), an integer m = Θ(n log q), a noise dis-
tribution χ = χ(λ) over Z, and d = d(λ). The noise distribution is chosen to
be χmax-bounded, that is, its support is in [−χmax, χmax]. The attribute set is
X = {0, 1}k for k which is given as input, and the class of policies F is the class
of functions with depth-d circuits.

The public parameters of the scheme are matrices A0, A1, . . . , Ak,D ∈ Z
n×m
q .

Every attribute x is associated with a public key Ax ∈ Z
n×m
q computed by

Ax
def= [A0 | A1 + x1G | · · · | Ak + xkG] ∈ Z

n×m(k+1)
q

(20)

Every predicate f is also associated with a public key Af ∈ Z
n×m
q , computed

by Eval(f, (A1, . . . , Ak)).
At a high level, the encryption procedure of the scheme is a variant of dual

Regev encryption [Reg05], so a ciphertext encrypted under a public key A ∈ Z
n×l
q

is essentially a noisy vector close to the lattice spanned by A, and has the form
cT = sT A+eT where s

$← Z
n
q is a uniformly random vector and e ∈ Z

l is a noise
vector sampled from a distribution over short vectors. A message is encoded
into the ciphertext by adding an “offset” that depends on the message. A secret
key SK for A is a lattice trapdoor TA, i.e., a low-norm basis for the dual lattice
Λ⊥

q (A). The trapdoor can be used to decrypt a ciphertext so long as the norm
of its noise vector e is small enough.

Formally, the encryption of a message M ∈ {0, 1}m under public key Ax is

CTT
x =

[

cT
0 | cT

1 | · · · | cT
k | cT

out

]

= sT [A0 | x1G + A1 | · · · | xkG + Ak | D]

+
[

eT
0 | eT

1 | · · · | eT
k | eT

out + �q/2�MT
]

(21)

where s
$← Z

n and e0, . . . , ek, eout ← χm.
To decrypt a ciphertext CTx using a key SKf for which f(x) = 0, one first

homomorphically evaluates the ciphertext by applying a publicly known low-
norm matrix Hf,x,A ∈ Z

mk×m (described in the key-homomorphic evaluation)
that satisfies

[A1 + x1G | · · · | Ak + xkG]Hf,x,A = Af + f(x)G ∈ Z
n×m
q (22)

The result of evaluating a ciphertext with respect to policy f is an encryption
of the original message under the public matrix [A0 | Af + f(x)G] as follows:

cT
f =

[

cT
1 | · · · | cT

k

]

Hf,x,A

= sT [x1G + A1 | · · · | xkG + Ak] Hf,x,A +
[

eT
1 | · · · | eT

k

]

Hf,x,A

= sT Af +
[

eT
1 | · · · | eT

k

]

Hf,x,A

(23)
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It holds that
∥
∥
∥HT

f,x,A

∥
∥
∥

2
≤ Δ where Δ is a parameter of the scheme.

The secret key for a predicate f is a trapdoor Tf for [A0 | Af ], whose GS-
norm is ρ = O(

√
n log q). The trapdoor is used to sample a matrix R ∈ Z

2m×m
q

such that [A0 | Af ]R = D and ‖RT ‖2 < 2mρσ for σ that is a parameter of the
scheme. Decryption is computed by

cT
out − [

cT
0 | cT

f

]

R = sT D + eT
out + �q/2�MT

− [

sT A0 + eT
0 | sT Af +

[

eT
1 | · · · | eT

k

]

Hf,x,A

]

R

= �q/2�MT + eT
out − [

eT
0 | [

eT
1 | · · · | eT

k

]

Hf,x,A

]

R

(24)

We observe that the largest coordinate of the noise vector

eT
out − [

eT
0 | [

eT
1 | · · · | eT

k

]

Hf,x,A

]

R

is bounded by χmax + 2mρσkΔχmax. The parameters of the scheme are chosen
such that this bound is small enough compared to q/4, so one can round the
result to extract M .

4.3 Applying Theorem 31

First, following Remark 26, the parameters of the scheme can be chosen to
satisfy pairwise friendliness. Second, we claim that there exist an alternative
decryption procedure, denote Decrypt’, and a procedure SKCheck, such that
the ABE scheme equipped with (SKCheck, Decrypt’) satisfies the checkability
property. Proving this claim is sufficient to apply our theorem to the scheme
equipped with (SKCheck, Decrypt’), and by Remark 24 we conclude that the
original scheme cannot be proved adaptively secure as well.

The implementation of SKCheck is relatively straightforward: Given the pub-
lic parameters, a secret key SK, and a predicate f , verify that SK is a basis for
Λ⊥

q ([A0 | Af ]) and that its GS-norm is smaller than ρ. By definition of the
scheme, we immediately get that any honestly-generated secret key passes the
check, as desired.

Our strategy for the alternative decryption procedure is the following: Let
SKf be a (valid) secret key for policy f and let CTx be a ciphertext such that
f(x) = 0. Note that

Ax

[
I 0
0 Hf,x,A

]

= [A0 | Af ] (25)

So by Lemma 42, the secret key, which is a trapdoor Tf for [A0 | Af ], can
be used to obtain a trapdoor Tx such that ‖Tx‖GS ≤ Δρ. We use the “secret
key” SKx = Tx for Ax to “decode” and decrypt the ciphertext CTx according to
the following procedure. The procedure takes in a ciphertext, a secret key and
public parameters.

Decode(CTx,SKx,PP): Denote the components of the ciphertext by c0, . . . , ck,
cout as defined in (21). Denote ρ′ the GS-norm of SKx. Use Tx = SKx to obtain a
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matrix R ∈ Z
m(k+1)×m such that AxR = D and ‖RT ‖2 ≤ (k+1)mρ′σ. Compute

cT
out − [

cT
0 | · · · | cT

k

]

R and round the result to extract M ∈ {0, 1}m such that

�q/2�MT = round
(

cT
out − [

cT
0 | · · · | cT

k

]

R
)

(26)

Use Tx again to obtain a basis R′ for Λ⊥
q ([Ax | D]) such that ‖R′‖GS ≤ ρ′.

Compute the vector

yT =
[

cT
0 | cT

1 | · · · | cT
k | cT

out − �q/2�MT
]

R′ (27)

Lift y to its canonical representative ỹ ∈ [− q
2 , q

2

)m(k+2), compute R′−1 over the
rationals, and compute zT = ỹT R′−1. Let z0, z1, . . . , zk, zout ∈ Z

m such that
z = (z0, z1, . . . , zk, zout). Check that the coordinates of z0, z1, . . . , zk, zout are
smaller than χmax. If not, output ⊥, otherwise, output M .

We claim that the new procedure satisfies the ABE correctness requirement,
that is, the result of the Decode procedure on honestly generated input is the
message M encrypted in the input ciphertext. We prove this formally in the
following lemma:

Lemma 43. For any M ∈ {0, 1}m, x ∈ {0, 1}k, honestly generated public
parameters PP, honestly generated public key Ax for x, and honestly generated
secret key Tf for for a predicate f such that f(x) = 0, it holds that

Decrypt(Encrypt(x,M,PP), Tx,PP) = M (28)

Proof. The proof is available in the eprint version of the paper: https://eprint.
iacr.org/2023/952

Finally, we prove the following lemma to conclude the checkability of the
alternative decryption:

Lemma 44. Let T1, T2 be two trapdoors for Ax such that ‖T1‖GS, ‖T1‖GS ≤
Δρ. For any ciphertext CTx it holds that Decode(CTx, T1,PP) = Decode(CTx,
T2,PP).

Proof. The proof is available in the eprint version of the paper: https://eprint.
iacr.org/2023/952
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Abstract. One of the most popular techniques to prove adaptive secu-
rity of identity-based encryptions (IBE) and verifiable random functions
(VRF) is the partitioning technique. Currently, there are only two meth-
ods to relate the adversary’s advantage and runtime (ε,T) to those of the
reduction’s (εproof ,Tproof) using this technique: One originates to Waters
(Eurocrypt 2005) who introduced the famous artificial abort step to
prove his IBE, achieving (εproof ,Tproof) = (O(ε/Q),T+ O(Q2/ε2)), where
Q is the number of key queries. Bellare and Ristenpart (Eurocrypt 2009)
provide an alternative analysis for the same scheme removing the artifi-
cial abort step, resulting in (εproof ,Tproof) = (O(ε2/Q),T+O(Q)). Impor-
tantly, the current reductions all loose quadratically in ε.

In this paper, we revisit this two decade old problem and analyze
proofs based on the partitioning technique through a new lens. For
instance, the Waters IBE can now be proven secure with (εproof ,Tproof) =
(O(ε3/2/Q),T+ O(Q)), breaking the quadratic dependence on ε. At the
core of our improvement is a finer estimation of the failing probability
of the reduction in Waters’ original proof relying on artificial abort. We
use Bonferroni’s inequality, a tunable inequality obtained by cutting off
higher order terms from the equality derived by the inclusion-exclusion
principle.

Our analysis not only improves the reduction of known constructions
but also opens the door for new constructions. While a similar improve-
ment to Waters IBE is possible for the lattice-based IBE by Agrawal,
Boneh, and Boyen (Eurocrypt 2010), we can slightly tweak the so-called
partitioning function in their construction, achieving (εproof ,Tproof) =
(O(ε/Q),T+O(Q)). This is a much better reduction than the previously
known (O(ε3/Q2),T+ O(Q)). We also propose the first VRF with proof
and verification key sizes sublinear in the security parameter under the
standard d-LIN assumption, while simultaneously improving the reduc-
tion cost compared to all prior constructions.
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1 Introduction

1.1 Background

In security proofs for cryptographic primitives, we often face conflicting require-
ments. For instance, when proving security of a signature scheme, the reduction
needs to simulate signatures upon adversary’s signing queries and to extract a
solution to a computationally hard problem from the forgery. On first glance,
such a proof seems to indicate that a reduction can simply simulate an adversary
internally: It simulates a forgery instead of running the adversary and extracts
the solution from it, contradicting the hardness of the problem. The partition-
ing technique resolves this apparent paradox. The message space is divided into
controlled and uncontrolled sets. The reduction can only simulate signatures
for controlled messages, while a forgery is only useful if it’s for an uncontrolled
message. Since a message can only be either controlled or uncontrolled, the
paradox is resolved. This technique has been useful outside the simple applica-
tion of signatures, and in particular, has been central to show adaptive secu-
rity of more advanced primitives such as identity-based encryption (IBE) [1–
4,7,8,12,24,25,30,32–34] and verifiable random function (VRF) with large input
spaces [16,19,21–24,26,28,33].1

A proof relying on the partitioning technique comes in two steps. The first
step consists of constructing a scheme that secretly partitions the challenge space
in controlled and uncontrolled sets during the security proof. This is typically
done by implicitly computing a bespoke keyed function F inside the scheme.
In the context of signatures, this partitioning function F(M) is secretly com-
puted during the signing algorithm, where F(M) = 1 (resp. 0) indicates that
M is included in the controlled (resp. uncontrolled) set. For the reduction, the
probability that the adversarial queries are consistent with the partition made
by F needs to be high enough. Specifically, the probability that (i) F(M(i)) = 1
for all messages (M(i))i∈[Q] queried to the signing oracle and (ii) F(M∗) = 0 for
the forgery message M∗ must be noticeable. Below, we denote this probability
as γ(M), where M := (M(1), · · · ,M(Q),M∗). The second step is to lower bound
the advantage εproof of the reduction using the advantage of the adversary ε.
This step is trivial when reducing a hard search problem to a search type secu-
rity game (e.g., unforgeability of a signature scheme) as we have a simple lower
bound εproof ≥ γminε, where γmin = minM γ(M). However, such a simple bound
no longer holds when reducing a hard decisional problem to a decisional security
game, those considered by IBEs and VRFs. Studying the partitioning technique
in this non-trivial setting is the main focus of our work.2

To the best of our knowledge, there are only two solutions to the second step
of the partitioning technique. The first solution originates to Waters [30], who

1 Other techniques to achieve adaptive security relying on specific algebraic structures
(e.g., dual system encryption) exists. See Sect. 1.3 for more details.

2 Looking ahead, the difficulty stems from the fact that in a decisional security game,
the adversary may have a negative advantage conditioned on M. We refer to Sect. 2.1
for the details. .



126 G. Hanaoka et al.

identified this non-triviality when proving security of his IBE. His main obser-
vation was that it suffices to efficiently approximate γ(ID) to lower bound εproof ,
where we replace M with ID to be consistent with our IBE explanation. Namely,
he used the Monte Carlo method to approximate γ(ID) and completed the reduc-
tion using the notorious artificial abort step; a counterintuitive step where the
reduction sometimes aborts the simulation and outputs a random guess, even if
the simulation is successful (i.e., the adversarial queries lie in the correct con-
strained and unconstrained sets). While this solved the elusive problem of using
the partitioning technique for decisional security games, the main caveat was
that performing artificial abort incurred a huge runtime loss due to the Monte
Carlo method. Denoting the runtime of the reduction and adversary by Tproof

and T, respectively, we have (εproof ,Tproof) = (O(ε/Q),T+O(Q2/ε2)), where Q is
the number of key queries made by the adversary.3 The second solution is due to
Bellare and Ristenpart [5]. They showed that if the value of γ(ID) for all ID lie
in a narrow enough interval, the artificial abort step by Waters can be removed
from the reduction. Specifically, the reduction no longer needs to run the costly
Monte Carlo method. To satisfy this condition on γ(ID), they further proposed
a new partitioning function F. Altogether, they achieve a better reduction with
(εproof ,Tproof) = (O(ε2/Q),T + O(Q)), shaving off a factor Q in total. However,
notice the advantage εproof becomes worser than Waters due to the modification
they made to the partitioning function F. Importantly, both solutions still have
a reduction loss quadratic in ε.

Surprisingly, this analysis of (εproof ,Tproof), i.e., the second step of the par-
titioning technique, has not seen any improvement for over 15 years. Indeed,
all previously cited IBEs [1–4,7,8,12,24,25,30,32–34] and VRFs [16,19,21–
24,26,28,33] have proofs based on the partitioning technique that rely either
on a Waters-style analysis or a Bellare-Ristenpart-style analysis—most of the
improvements come from designing a better partitioning function F with a com-
patible scheme, i.e., improving the first step of the partitioning technique. This
motivates us with the following question:

Can we achieve a better reduction cost for proofs based on the partitioning
technique? That is, is there a better analysis than those by Waters [30] and
Bellare and Ristenpart [5]?

1.2 Our Contributions

In this paper, we answer the above question affirmatively by proposing a new
analysis for proofs based on the partitioning technique. Using our analysis, we
improve the reduction cost of many of the aforementioned IBEs and VRFs with-
out any modification to the construction. For example, Waters IBE can now
be proven secure with (εproof ,Tproof) = (O(ε3/2/Q),T + O(Q)), breaking the
quadratic dependence on ε. We further obtain the same reduction cost for the

3 Throughout the introduction, we ignore factors only depending on the security
parameter κ and focus on the adversarially dependent Q and ε.
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lattice-based Agrawal-Boneh-Boyen (ABB) IBE [3], where the known reduction
was quite loose, only achieving (εproof ,Tproof) = (O(ε3/Q2),T + O(Q)).4

Our analysis not only improves the reduction of known constructions but
also opens the door for new constructions. Concretely, we construct an IBE and
VRF with novel properties.

– By slightly tweaking the ABB IBE construction, we obtain an IBE with a
reduction (εproof ,Tproof) =

(
O(ε1+

1
d−1 /Q),T + O(Q)

)
, where d ≥ 3 is a tun-

able positive integer that roughly dictates the length of the public parame-
ter. When d = 3, we recover the ABB IBE, modulo the small difference in
how an identity ID is hashed to matrices. By setting d = ω(1), we achieve
(εproof ,Tproof) = (O(ε/Q),T + O(Q)), which can be thought of as an ideal
reduction for a partitioning based proof, matching the lower bound for the
(black-box) reduction for Waters IBE [17].

– We propose the first VRF achieving sublinear verification key and proof sizes
(in the security parameter) under the standard d-LIN assumption. Previous
VRFs only achieved this under non-static q-type assumptions. In fact, we
propose two VRFs, where one achieves an ω(1) proof size at the cost of
increasing the verification key size slightly compared to the other. Moreover,
the two VRFs enjoy a reduction of (εproof ,Tproof) =

(
O(ε1.5/Q),T + O(Q)

)

and
(
O(ε1+

µ
2 /Qμ),T + O(Q)

)
for an arbitrary constant μ > 1, respectively.

All prior reductions of VRFs with either sublinear verification key or proof
sizes only achieve (εproof ,Tproof) =

(
O(ε1+μ/Qμ),T + O(Q)

)
, or worse. We

refer to Table 2 in Sect. 6.2 for the detailed comparison.

At the core of our technical contribution is a new framework for partitioning
that interpolates the analysis of Waters and Bellare-Ristenpart in a way that we
achieve the best of both worlds. Recall Waters [30] used the naive Monte Carlo
method to approximate γ(ID). While this leads to a good approximation, it
suffers from longer runtime of O(Q2/ε2). In contrast, Bellare and Ristenpart [5]
show that if γ(ID) for all ID lie within a narrow enough interval, the expensive
approximation step can be removed. This intuitively requires that a fixed value γ̃
can be used as a good enough approximation for γ(ID) for all ID. To realize this
restrictive condition, they have to change the partitioning function F, leading to
a worser advantage εproof = O(ε2/Q).

In our work, we resurrect Waters’ artificial abort step, where we approximate
γ(ID) for each ID, rather than requiring a single approximation γ̃ that works for
γ(ID) for all ID as Bellare-Ristenpart. This provides us with greater flexibility in
selecting the partitioning function F compared to Bellare-Ristenpart and opens
up the potential for achieving a higher advantage εproof . To this end, we require an
improved approximation for γ(ID) in comparison to Bellare and Ristenpart, as
well as an efficient algorithm for computing this approximation in comparison
to the Monte-Carlo method by Waters. For a better approximation of γ(ID),
we use Bonferroni’s inequality [10], a tunable inequality obtained by cutting of
4 To be precise, we modify the partitioning function used in ABB-IBE in a superficial

manner, so technically speaking, it is no longer an identical scheme (see Sect. 2.7).



128 G. Hanaoka et al.

higher order terms from the equality derived by the inclusion-exclusion principle.
The evaluation of γ(ID) by Bellare and Ristenpart, which uses union bound, can
be seen as an application of the special case of Bonferroni’s inequality. Now,
computing an approximation of γ(ID) depends on the concrete choice of the
partitioning function F. In one case, used by Waters IBE, we need to solve certain
counting problem efficiently. For this purpose, we use generating functions—a
standard tool in enumerative combinatorics but seldom used in cryptography.
This part may be of independent interest.

Given that the second step of the partitioning technique remains independent
of the underlying primitives (e.g., IBE or VRF) and algebraic structures (e.g.,
pairings or lattices), we abstract it as a partitioning function with approximation,
an extension of the partitioning function due to Yamada [33]. We extend the prior
definition by augmenting it with an efficient algorithm that estimates γ(ID).
We revisit partitioning functions implicitly used in previous works [3,27,30],
observing that they fit within our abstraction.

Lastly, our new analysis indicates that it is beneficial to choose a partitioning
function F that allows to nicely and efficiently approximate γ(ID). This leads to
new ideas to improve the first step of the partitioning technique. For example,
we show that by slightly tweaking the partitioning function F used in ABB IBE,
we can efficiently compute the Bonferroni’s inequality at a much higher order,
allowing for a better approximation of γ(ID). Further details are given in Sect. 2.

1.3 Related Works

We refer to the full version for related works on IBEs and VRFs.

Related Works on Partitioning Techniques. Many prior works focus on
the first step of the partitioning technique, namely, designing of the partition-
ing function F and compatible algebraic structures. Concrete examples are for
instance the admissible hash function [8,12,13,27], Waters hash [5,18,19,30] and
its variant [3,11], and others [2,32–34]. These partitioning functions lead to IBEs
and VRFs with various tradeoffs between efficiency, underlying assumption, and
tightness when combined with suitable algebraic structures. We refer to the full
version for more information.

Several works abstract out the algebraic structure that is compatible with the
partitioning. In particular, Hofheinz and Kiltz [18] introduce the notion of pro-
grammable hash functions on pairing groups, which abstracts out the properties
of Waters hash [30]. They show new applications along with novel asymptotic
analysis. Zhang, Chen, and Zhang [34] extend the notion of programmable hash
function to the lattice settings. Importantly though, all the above works on
IBEs and VRFs rely either on the Waters-style analysis or Bellare-Ristenpart-
style analysis to argue the second step of the partitioning technique5, possibly
resulting in a sub-optimal reduction.
5 The work by Hofheinz and Kiltz [18] does not explicitly consider an application to

IBEs. However, we can use their framework in the context of IBE and this requires
the heavy artificial abort step in the reduction.
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2 Technical Overview

We provide an overview of our techniques. Due to page limitation, the overview
for our construction of VRF can be found in the full version of this paper.

2.1 The Difficulty

Let us review the proof of Waters IBE [30] based on the partitioning technique
and observe the non-triviality of it. In his proof, the reduction algorithm for
DBDH perfectly simulates the security game for an adversary A against the IBE
scheme until it reaches the point where it cannot continue the simulation any-
more and has to abort the reduction. The probability that the simulation is not
successful only depends on the sequence of identities ID = (ID∗, ID(1), . . . , ID(Q)),
where ID∗ ∈ {0, 1}� is the challenge identity for which the challenge ciphertext is
generated and ID(1), . . . , ID(Q) ∈ {0, 1}� are identities for which key queries were
made. Let us analyze a naive reduction that outputs the same bit as A when the
simulation is successful and outputs a random bit when the simulation fails.

We denote the advantage of the adversary A by ε, the probability that A
makes the sequence of queries ID by p(ID), and its advantage conditioned on
the sequence of queries ID by ε(ID). We have

1
2

+ ε =
∑

ID

p(ID)
(

1
2

+ ε(ID)
)

=
1
2

+
∑

ID

p(ID)ε(ID),

where the sum is taken over all possible ID. Denoting the probability of the
simulation being successful by γ(ID),6 the advantage of the reduction algorithm
against DBDH can be evaluated as

∑

ID

p(ID)
(

γ(ID)
(

1
2

+ ε(ID)
)

+
1 − γ(ID)

2

)
− 1

2
=
∑

ID

γ(ID)p(ID)ε(ID). (1)

In Waters’ proof, it is shown that γ(ID) ≥ 1/poly for all possible ID. It is
tempting to conclude the proof by claiming the above advantage is non-negligible
conditioned on ε being non-negligible. However, this intuition turns out to be
false and this is precisely the reason why artificial abort was introduced in [30].
As an illustrating example, consider an adversary who yields only two types of
query sequences IDA and IDB . We further assume p(IDA) = p(IDB) = 1/2,
γ(IDA) = 1/3, γ(IDB) = 2/3, ε(IDA) = 2/5, and ε(IDB) = −1/5. Even though
the adversary A has advantage 1/10, the advantage of the reduction algorithm is
0, meaning that it guesses the challenge bit no better than randomly guessing.

The reason why the above problem occurs is that ε(ID) can be negative for
some ID. When the “weight” on ε(ID) changes from p(ID) to p(ID)γ(ID) due
6 We differentiate “not aborting” and “simulation being successful”, since we will

later introduce artificial abort, where the simulator aborts even if the simulation is
successful. We note that in the naive reduction described here, this distinction is
irrelevant.
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to the failure of the simulation, the negative ε(ID) may be amplified to cancel
out the positive ε(ID′), rendering the total sum being negligible. It is worth
highlighting that this is exactly why partitioning based proofs are easier for
search type games since ε(ID) ≥ 0 is guaranteed by definition (see Footnote 2).

2.2 Artificial Abort

We then move to explain in several steps how Waters [30] resolved the above
problem by introducing the artificial abort step. First, observe that if γ(ID) = γ
holds for some fixed γ ≥ 1/poly for all ID, the above naive reduction works. This
is because we have the following which is non-negligible:

∑

ID

γ(ID)p(ID)ε(ID) = γ
∑

ID

p(ID)ε(ID) = γε.

We then move to the more realistic setting where γ(ID) varies with ID.
Here, we still assume that γ(ID) ≥ γmin holds for all ID and for some fixed
γmin ≥ 1/poly. For the sake of explanation, we also introduce a simplifying
assumption that γ(ID) can be computed efficiently given ID. In this setting, we
can make the reduction work by introducing an additional abort step (i.e., arti-
ficial abort). Namely, after having successfully completed the simulation against
the adversary, the simulator evaluates γ(ID) based on the sequence of queries ID.
It then aborts with probability 1−γmin/γ(ID) and outputs a random bit. Then,
the probability of the simulation not aborting is the same for all ID, namely,
γmin. We therefore can use the above analysis to conclude that the advantage of
the final adversary is γminε, which is non-negligible.

However, in reality, we do not know how to compute γ(ID) efficiently. What
Waters [30] did instead is to approximate the value of γ(ID) by the Monte Carlo
method. The simulator repeatedly chooses simulation randomness, sees if each
randomness leads to a successful simulation, and uses the fraction of randomness
that leads to a successful simulation as an approximation for γ(ID). We do not
give details of the analysis by [30] further, since it is irrelevant to the overview.
We just note that the Monte Carlo method is expensive and the approximation
needs time proportional to O(Q2/ε2) to compute.

2.3 Accuracy of Approximation

Let us discuss how the accuracy of the approximation γ(ID) affects the reduction.
We note that our explanation here is different from the analysis by [30] and is
an extension of the analysis by Bellare and Ristenpart [5]. For the sake of easier
exposition, we first show our general analysis and then explain the analysis by
[5] as a special case. Let us assume that γ(ID) can be approximated efficiently
and deterministically. We denote the approximation for γ(ID) by γ̃(ID). At the
end of the simulation, the reduction algorithm aborts and outputs a random
bit with probability 1 − γmin/γ̃(ID), with the intention of making the abort
probability as independent of ID as possible. We then discuss the advantage
of the adversary. Since we have just changed the abort probability, we can see
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that the advantage of the reduction algorithm is obtained by replacing γ(ID)
in Eq. (1) with γmin · γ(ID)/γ̃(ID), which is the probability that the reduction
algorithm does not abort conditioned on the sequence of the identities in the
simulation is ID. Namely, the advantage is

∑

ID

γmin ·
(

γ(ID)

γ̃(ID)

)
· p(ID)ε(ID) = γmin ·

(
∑

ID

(1 + Δ(ID)) · p(ID)ε(ID)

)
,

where we define Δ(ID) := γ(ID)/γ̃(ID) − 1. In the following, we will argue that
if Δ(ID) is sufficiently small, we can give a useful lower bound for the above
quantity. Toward this goal, we assume −Δ ≤ Δ(ID) ≤ Δ and continue the
analysis. We have

∑

ID

(1 + Δ(ID)) · p(ID)ε(ID)

= ε +
∑

ID

Δ(ID)p(ID)ε(ID)

≥ ε +
∑

ID s.t. ε(ID)≥0

(−Δ) · p(ID)ε(ID) +
∑

ID s.t. ε(ID)<0

Δ · p(ID)ε(ID)

≥ ε − 2Δ,

where the first line uses
∑

ID p(ID)ε(ID) = ε and the third line uses∑
ID s.t. ε(ID)≥0 p(ID)ε(ID) ≤ 1 and

∑
ID s.t. ε(ID)<0 p(ID)ε(ID) ≥ −1. This analy-

sis shows that if Δ < ε/3, we have that the overall advantage of the reduction
algorithm is at least γminε/3, which is non-negligible. Recalling the definition of
Δ, this means that for the reduction to work, it suffices to approximate γ(ID)
within an additive error no greater than γminε/3.

We then move to explain the idea of Bellare and Ristenpart [5] as a special
case of the above reduction strategy. We can regard their reduction algorithm as
a special case of the above reduction, where the approximation γ̃(ID) for γ(ID) is
always set to be γmin, regardless of ID. This means that the reduction algorithm
never artificially aborts, since 1−γmin/γ̃(ID) = 0. As we have discussed above, we
need to have Δ < ε/3, which implies that (1− ε/3)γmin ≤ γ(ID) ≤ (1+ ε/3)γmin

for all ID. They achieve this condition by finding a clever choice of parameters.
We defer the detail to the next subsection.

2.4 Simulation Method of Bellare and Ristenpart [5]

To explain their idea, we have to dive into details of how γ(ID) is defined for a
sequence of queries ID. Recall that in the security proof using the partitioning
technique, we divide the identity space into controlled and uncontrolled sets
based on a secret randomness K. In the security proof by [5,30], they divide the
identity space by the following (partitioning) function

FWat(K, ID) =

{
0 (Meaning“uncontrolled”) if K0 +

∑
i:IDi=1 Ki = 0

1 (Meaning“controlled”) if K0 +
∑

i:IDi=1 Ki �= 0.
, (2)
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where K = (K0,K1 . . . , K�) is the secret randomness chosen as K0
$← [−�N, 0]

and Ki
$← [0, N ] for i ∈ [�], � denotes the binary length of identities, and IDi

denotes the i-th bit of an identity ID ∈ {0, 1}�. We will explain how they deter-
mine the parameter N later. Recall that γ(ID) is the probability that the simu-
lation is successful. Namely, this is the probability that ID∗ falls into the uncon-
trolled set and all of ID(1), . . . , ID(Q) fall into the controlled set. Denoting the
event that FWat(K, ID∗) = 0 holds by E∗ and the event that FWat(K, ID(j)) = 0
holds for j ∈ [Q] by E(j), we have

γ(ID) = Pr[E∗ ∧ ¬E(1) · · · ∧ ¬E(Q)]
= Pr[E∗] − Pr[E∗ ∧ (E(1) ∨ · · · ∨ E(Q))]
= Pr[E∗] − Pr[(E∗ ∧ E(1)) ∨ · · · ∨ (E∗ ∧ E(Q))], (3)

where the probability is taken over the choice of K.
Since it is straightforward to see Pr[E∗] = 1/(�N +1), getting approximation

for γ(ID) boils down to getting approximation for Pr[(E∗∧E(1))∨· · ·∨(E∗∧E(Q))].
They use the union bound to upper bound the term and give a trivial lower bound
0, which results in the following inequality:

Pr[E∗] −
∑

j∈[Q]

Pr[E∗ ∧ E(j)]

︸ ︷︷ ︸
=Approximationerror

≤ γ(ID) ≤ Pr[E∗]. (4)

Recall that they use fixed γmin as an approximation for γ(ID) for all ID and
for the reduction to work, the approximation should be within additive error
of γminε/3. To achieve this guarantee, they adjust the parameter so that the
approximation error term

∑
j∈[Q] Pr[E∗ ∧ E(j)] is as small as possible. Let us

introduce the parameter δ, which is defined as δ := Pr[E∗]. We can easily see
that δ can be controlled by adjusting the parameter N and Pr[E(j)] = δ for
j ∈ [Q] holds. For the sake of simplicity of the explanation, we introduce an
oversimplifying assumption that these events are pair-wise independent, meaning
that Pr[E(j) ∧ E∗] = δ2 and Pr[E(j) ∧ E(k)] = δ2. We then upper bound the error
term as ∑

j∈[Q]

Pr[E∗ ∧ E(j)] ≤ Qδ2.

What remains is to choose γmin and δ so that γmin ≤ δ−Qδ2 and Qδ2 ≤ γminε/3
hold. The latter inequality implies Qδ2 � γmin and the former then implies that
we can take γmin = δ/2 for example. Then, the latter implies Qδ2 ≤ δε/6, which
in turn implies δ ≤ ε/6Q. Therefore, we set δ = Θ(ε/Q) and then the advantage
of the reduction algorithm is γminε/3 = Θ(δε) = Θ(ε2/Q).7

7 Due to the simplifying assumption, the bound here does not exactly correspond
to that given in [5]. More formally, we have an extra cost of O(1/�) in the final
advantage. Similar remark applies to other analyses that appear in the overview.
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2.5 More Sophisticated Approximation

Our idea to improve the reduction algorithms of previous works [5,30] is to
approximate γ(ID) by a more sophisticated analysis. In particular, we approx-
imate the term Pr[(E∗ ∧ E(1)) ∨ · · · ∨ (E∗ ∧ E(Q))] in Eq. (3) by Bonferroni’s
inequalities8, rather than the union bound. Namely, we have
∑

j∈[Q]

Pr[E(j)
2 ] −

∑

1≤j<k≤Q

Pr[E(j)
2 ∧ E

(k)
2 ] ≤ Pr[E(1)

2 ∨ · · · ∨ E
(Q)
2 ] ≤

∑

j∈[Q]

Pr[E(j)
2 ],

where we denote E
(j)
2 := E∗ ∧ E(j) for notational convenience in the above.

Plugging the above equation into Eq. (3), we obtain

Pr[E∗] −
∑

j∈[Q]

Pr[E∗ ∧ E(j)] ≤ γ(ID) ≤ Pr[E∗] −
∑

j∈[Q]

Pr[E∗ ∧ E(j)]

+
∑

1≤j<k≤Q

Pr[E∗ ∧ E(j) ∧ E(k)]

︸ ︷︷ ︸
=

Approximationerror, (5)

where we use Pr[E(j)
2 ∧ E

(k)
2 ] = Pr[E∗ ∧ E(j) ∧ E(k)]. We then use Pr[E∗] −∑

j∈[Q] Pr[E∗ ∧ E(j)] as the approximation for γ(ID), i.e., γ̃(ID) := Pr[E∗] −
∑

j∈[Q] Pr[E∗ ∧ E(j)]. While for this to be useful, we have to show that we can
efficiently compute Pr[E∗ ∧E(j)], we simply assume this is possible and defer the
detail to Sect. 2.6. Now, observe that the approximation error can be bounded by∑

1≤j<k≤Q Pr[E∗∧E(j)∧E(k)]. We analyze this term by introducing again an over-
simplifying assumption that the events E∗,E(1), . . . ,E(Q) are 3-wise independent,
meaning that any conjunction of 3 of them happens with probability δ3. Using
this, we bound the above approximation error term by Q(Q − 1)δ3/2 ≤ Q2δ3.
By our condition on the approximation error, we need to satisfy

Q2δ3 ≤ γminε/3.

We also have to set γmin so that it is smaller than the leftmost term in Eq. (5).
We have

∑
j∈[Q] Pr[E∗ ∧E(j)] = Qδ2 by our assumption of pairwise independence

and thus the condition is equivalent to

γmin ≤ δ − Qδ2.

By a similar analysis explained in the previous subsection, we can take γmin =
δ/2. We then have Q2δ3 ≤ δε/6, resulting in δ ≤ ε1/2/6Q. By setting
δ = Θ(ε1/2/Q), the advantage of the reduction algorithm becomes γminε/3 =
Θ(δε) = Θ(ε1.5/Q), improving the result of [5]. The reason for this improvement
is our fine-grained approximation of γ(ID) compared to [5] based on Bonferroni’s
inequality. By representing the approximation error as a higher order polynomial
of δ, we can chose a larger δ (i.e., Θ(ε0.5/Q) as opposed to Θ(ε/Q)), leading to
a better advantage.
8 Bonferroni’s inequalities are the inequalities obtained by cutting off higher order

terms from the equality derived from inclusion-exclusion principle. See the full ver-
sion for the formal statement.
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2.6 Computing the Probability Efficiently

Two things are missing from the above explanation. First, in the above
analysis, we assumed that the events E∗, E(1), . . . ,E(Q) are 3-wise indepen-
dent. Unfortunately, this assumption is not true. However, we can show that
Pr[E∗ ∧ E(j) ∧ E(k)] = Θ(�2δ3) for j 	= k, which is still useful for the analy-
sis. We defer the details on how to prove this to the main body of the paper.
The other more important detail missing from the above explanation is how to
compute Pr[E∗ ∧ E(j)] efficiently for j ∈ [Q]. The rest of this subsection will be
devoted on explaining how to do it. Let us define S := {i ∈ [�] : ID∗

i = 1} and
T := {i ∈ [�] : ID(j)

i = 1}. Then, by the definition of E∗ and E(j), we have

Pr[E∗ ∧ E(j)] = Pr

[
K0 +

∑

i∈S

Ki = 0 ∧ K0 +
∑

i∈T

Ki = 0

]
(6)

=
1

�N + 1
· Pr

[
∑

i∈S

Ki =
∑

i∈T

Ki

]
,

where the probability is taken over the randomness of K0
$← [−�N, 0] and Ki

$←
[0, N ] for i ∈ [�]. Without loss of generality, we can assume that S ∩ T = ∅.
Furthermore, we can assume that S = [nS ] and T = [nS + 1, nS + nT ], where
nS = #S and nT = #T with nS ≤ nT . Toward computing the above probability,
we introduce a function R, defined as

Rn(α) := #

⎧
⎨

⎩
0 ≤ Ki ≤ N :

∑

i∈[n]

Ki = α

⎫
⎬

⎭
.

Using the notation, we continue the analysis from Eq. (6). We have

Pr[E∗ ∧ E(j)] =
1

(�N + 1)(N + 1)nS+nT

·#
⎧
⎨

⎩Ki ∈ [0, N ] for i ∈ [nS + nT ] :
∑

i∈[nS ]

Ki =
∑

i∈[nT ]

Ki

⎫
⎬

⎭ =
1

(�N + 1)(N + 1)nS+nT

·
nSN∑

α=0

#

⎧
⎨

⎩Ki ∈ [0, N ] for i ∈ [nS + nT ] :
∑

i∈[nS ]

Ki =
∑

i∈[nT ]

Ki = α

⎫
⎬

⎭

=
1

(�N + 1)(N + 1)nS+nT
·

nSN∑

α=0

RnS (α)RnT (α).

At this point, the problem of estimating the probability boils down to the prob-
lem of computing the summation

∑nSN
α=0 RnS

(α)RnT
(α). We emphasize that

the algorithm needs to run in at most poly-logarithmic time in N . Other-
wise, our final reduction algorithm will add an additive overhead Q · poly(N) =
Q · poly(Q, 1/ε) to the running time, which ruins the merit of having a larger
distinguishing advantage for the reduction algorithm compared to [5].
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The most natural approach for solving the problem would be to take a
dynamic programming approach to compute Rn(α) for n ∈ {nS , nT } and
α ∈ [0, nT ] and then compute the summation. This approach is problematic in
two-folds: First, computing Rn(α) by dynamic programming requires poly(N)
time, which is too slow. Furthermore, even if R�(α) can be computed efficiently,
we have to compute the summation of nSN terms, which requires poly(N) time
if we follow the straightforward approach. Luckily, there is an elegant solution to
the first problem of computing Rn(α) efficiently using the powerful machinery of
generating functions [31], which is a standard tool in enumerative combinatorics.
Furthermore, we can show the equation

nSN∑

α=0

RnS
(α)RnT

(α) = RnS+nT
(nT N) (7)

again using generating functions and therefore the summation can be computed
efficiently. We defer the detail of how to compute R�(α) to the main body and
explain how to prove the equation here.

Before the proof, let us define a useful notation. For a polynomial f(Z) =∑
i aiZ

i with Z being indeterminate, we denote [Zj ]f(Z) as the j-th coefficient of
f(Z), namely, aj . We then observe that Rn(α) equals to [Zα](1+Z+Z2+· · ·ZN )n.
This can be seen by expanding the multiplication and observing that to yield
the term Zα, we have to choose ZKi from the i-th factor so that their sum
K1 + · · · KN equals to α. We also observe that Rn(α) = Rn(nN −α), which can
be seen by comparing the coefficients of the left and right hands of the equality
(1 + Z + Z2 + · · ·ZN )n = ZnN (1 + Z−1 + · · ·Z−N )n. We finally observe that for
polynomials f(Z) and g(Z) and an integer n with n ≥ deg(f), we have

[Zn](f(Z) · g(Z) ) =
deg(f)∑

i=0

[Zi]f(Z) · [Zn−i]g(Z).

Equipped with the observations, we are now ready to prove Eq. (7). We have:

nSN∑

α=0

RnS (α)RnT (α) =

nSN∑

α=0

RnS (α)RnT (nT N − α)

=

nSN∑

α=0

[Zα](1 + Z + Z2 + · · · + ZN )nS · [ZnT N−α](1 + Z + Z2 + · · · + ZN )nT

= [ZnT N ](1 + Z + Z2 + · · · + ZN )nS+nT

= RnS+nT (nT N)

as desired.

2.7 Partitioning for Lattices

From here on, we shift our focus and analyze different partitioning strategies. Let
us start with a variant of FWat defined in Eq. (2). While the partitioning strategy
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specified by the function FWat can in principle be used in the lattice setting,
it requires a super-polynomial size modulus q for the underlying scheme, since
q should be larger than the parameter N , which is polynomially related to Q
(and 1/ε). To refrain from using a superpolynomial modulus q, Boyen [11] pro-
posed a variant of Waters’ partitioning function suitable for the lattice setting,
later used for proving the security of ABB IBE [3]. Our formal analysis reveals
that their analysis suffers from a large reduction loss of γminε = O(ε3/Q2). We
show that a more natural adaptation of the Waters’ partitioning function to
the lattice setting gives us a reduction with γminε = O(ε2/Q), even with the
Bellare-Ristenpart-style analysis. This variant is essentially identical to Boyen’s
partitioning function but fixing some superfluous components. Importantly, this
is only a superficial difference and keeps the efficiency of the original ABB IBE
unchanged. We then show that this can be further improved to γminε = O(ε1.5/Q)
by our analysis using Bonferroni’s inequality. Lastly, with a more noticeable
tweak to the partitioning function, we can achieve γminε = O(ε1+1/d/Q) for an
arbitrary d > 2 or even γminε = O(ε/Q), where this tweak results in slightly
modifying the ABB IBE.

More concretely, we define our partitioning function FParWat(K, x) as follows:

FParWat(K, ID) =
{

0 K0 +
∑

i:IDi=1 Ki = 0c (mod q)
1 otherwise

,

where K = (K0,K1, . . . , K�) ∈ (Zc
q)

� and c is a parameter that will be defined
later. K0,K1, . . . , K� are chosen uniformly at random from Z

c
q. We note that

here, q is a small polynomially bounded prime.

Bellare-Ristenpart-Style Analysis. We then analyze γ(ID). Let us start with
a Bellare-Ristenpart-style analysis, where we use a fixed value γmin for the esti-
mation of γ(ID). Denoting the event that FParWat(K, ID∗) = 0 holds by E∗ and
the event that FParWat(K, ID(j)) = 0 holds for j ∈ [Q] by E(j), Eq. (4) can be
shown to hold by the same analysis as in Sect. 2.4. We then proceed to bound
the error term

∑
j∈[Q] Pr[E∗ ∧E(j)]. While this requires a bit of work for the case

of FWat, it is straightforward here. Concretely, we have

Pr[E∗] =
1
qc

, Pr[E∗ ∧ E(j)] =
1

q2c

for all j ∈ [Q]. Here, the former equation is straightforward to see by the fact
that K0 is distributed uniformly at random over Z

c
q. To see the latter equation,

we observe
K0 +

∑

i:IDi=1

Ki = (1, ID) · (K�
0 ,K�

1 , . . . , K�
� )�,

where we regard ID ∈ {0, 1}� as a row vector with dimension � and (K�
0 ,

K�
1 , . . . , K�

� )� ∈ Z
(�+1)×c
q is a matrix obtained by regarding each Ki as a

row vector and concatenating them vertically. When ID∗ and ID(j) are dis-
tinct, (1, ID∗) and (1, ID(j)) are linearly independent and thus the pair (K0 +∑

i:ID∗
i =1 Ki,K0 +

∑
i:ID

(j)
i =1

Ki) are distributed uniformly at random over Z
2c
q ,

implying the above equation.
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From the above analysis, we can see that the error term in Eq. (4) can be
bounded by Q · q−2c. It remains to choose γmin and c so that γmin ≤ q−c −Qq−2c

and Q · q−2c ≤ γminε/3 hold. Combining these inequalities, we have Q · q−2c ≤
q−cε/3. To satisfy this, we choose c = logq(3Q/ε), which leads to the reduction
cost γminε = Θ(ε2/Q).

Our Improved Analysis. We then move to explain our finer-grained analy-
sis using Bonferroni’s inequality. Now, by the same analysis as Sect. 2.5 using
Bonferroni’s inequality, we can derive Eq. (5). We then set γ̃(ID) := Pr[E∗] −∑

j∈[Q] Pr[E∗ ∧ E(j)] = q−c − Qq−2c. Unlike Sect. 2.5, we can directly compute
γ̃(ID). We then bound the error term

∑
j,k Pr[E∗ ∧ E(j) ∧ E(k)] in Eq. (5). We

have
Pr[E∗ ∧ E(j) ∧ E(k)] = q−3c

for each j, k, since we can prove that the vectors (1, ID∗), (1, ID(j)), and (1, ID(k))
are linearly independent for mutually distinct ID∗, ID(j), and ID(k). This allows
us to bound the error term by Qq−3c. It remains to choose γmin and c so that
γmin ≤ q−c − Qq−2c and Q2 · q−3c ≤ γminε/3 hold. Combining these inequalities,
we have Q · q−3c ≤ q−cε/3. To satisfy this, we choose c = logq(3Q/

√
ε), which

leads to the reduction cost γminε = Θ(ε1.5/Q). This improves the bound based
on the Bellare-Ristenpart-style analysis by a factor of ε1/2.

Going Beyond γminε = O(ε1.5/Q). A natural question would be whether we
can go beyond γminε = O(ε1.5/Q) using Bonferroni’s inequality with higher order
terms. This could be possible if we had Pr[E∗ ∧ E(j1) ∧ · · · ∧ E(jd−1)] = q−cd for
d ≥ 4. However, unfortunately, this does not hold already for d = 4. We therefore
change the function a bit so that

FParWat(K, ID) =
{

0 K0 +
∑

i:hd-wise(ID)i=1 Ki = 0c (mod q)
1 otherwise

,

where the only change we add is that we hash the identity by a hash function
hd-wise : {0, 1}� → {0, 1}Ld . For the hash function, we require the property
that (1, hd-wise(ID1)), . . . , (1, hd-wise(IDd)) are linearly independent over Zq for
mutually distinct ID1, . . . , IDd. Let us postpone the construction of such a hash
function to the main body. Assuming that we have such a hash function, we
are now able to prove Pr[E∗ ∧ E(j1) ∧ · · · ∧ E(jd−1)] = q−cd by the same linear
algebraic discussion we have done. We can then approximate the value of γ(ID)
within error Qd−1q−cd and this leads to the improved reduction cost of γminε =
Θ(ε1+1/(d−1)/Q). Furthermore, by setting d = ω(1), we can completely eliminate
the dependence of γmin on ε to achieve γmin = O(1/Q), which leads to γminε =
O(ε/Q). Note that the above change in the partitioning function increases the
size of the key K, since the output length Ld of hd-wise is about d�, which is d
times longer than the input.

2.8 Partitioning Based on Substring Matching

Here, we demonstrate that our technique can lead to tighter analysis also for the
partitioning based on the substring matching [27], which has been a useful tool in
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constructing adaptively secure IBEs and VRFs [6,8,12,24,26,33]. Here, we focus
on the application to IBE, though our analysis is applicable to VRF as well, as
is done in Sect. 6. To describe the partitioning function, we introduce an error
correcting code Encode : {0, 1}� → {0, 1}n with relative distance 0 < c < 1/2
and output length n.9 Then, the identity space {0, 1}� is partitioned as follows:

FSSM(K, ID) =

{
0 if σi = Encode(ID)Ii ∀i ∈ [η]
1 otherwise

, (8)

where the secret information K is in the form of K = {(Ii, σi)}i∈[η] and Ii ∈ [n]
and σi ∈ Σ for all i ∈ [n], with η being a parameter that will be chosen later. We
choose I = (Ii)i∈[η] so that I constitutes a random subset of [n] and σi

$← {0, 1}
for each i.

Bellare-Ristenpart-Style Analysis. We then analyze γ(ID). Let us start with
a Bellare-Ristenpart-style analysis. Denoting the event that FSSM(K, ID∗) = 0
holds by E∗ and the event that FSSM(K, ID(j)) = 0 holds for j ∈ [Q] by E(j), Eq.
(4) can be shown to hold by the same analysis as in Sect. 2.4. We then proceed
to bound the error term

∑
j∈[Q] Pr[E∗ ∧ E(j)]. Noting that it is straightforward

to see Pr[E∗] = 2−η, we evaluate Pr[E∗ ∧ E(j)]:

Pr[E∗ ∧ E(j)] = Pr

⎡
⎢⎣

(
Encode(ID∗)Ii = σi ∀i ∈ [η]

) ∧ I ⊆ {k : Encode(ID∗)k = Encode(ID(j))k︸ ︷︷ ︸
:=J

}

⎤
⎥⎦

= Pr
[(
Encode(ID∗)Ii = σi ∀i ∈ [η′]

) ∣∣ I ⊆ J}] · Pr[I ⊆ J}]

= 2−η ·
η−1∏
i=0

(
#J − i

n − i

)
(9)

≤ 2−η ·
η−1∏
i=0

(
(1 − c)n − i

n − i

)

≤ 2−η(1 − c)η

where the third equation follows from σi
$← {0, 1} and by the fact that I is

a random subset of [n] and the first inequality follows from the fact that the
relative distance of Encode is c, which in turn implies J ≤ (1 − c)n. From the
above analysis, we can see that the error term in Eq. (4) can be bounded by
Q · 2−η(1 − c)η. It remains to choose γmin and η so that γmin ≤ 2−η − Q2−η(1 −
c)η and Q · 2−η(1 − c)η ≤ γminε/3 hold. Combining these inequalities, we have
Q · 2−η(1 − c)η ≤ 2−ηε/3. To satisfy this, we choose η = log1/1−c(3Q/ε), which
leads to the reduction cost γminε = Θ(ε1+μ/Qμ), where μ = 1/(log 1/(1 − c)).
Note that we have μ > 1 and by approaching c to 1/2, it is possible to make
μ approach to 1 as closely as one wants. The security proofs for many IBE and

9 Many previous works (e.g., [8,12]) primarily focus on the encoding function and call
it “admissible hash”. In this paper, we use the term partitioning based on substring
matching following [6,26].
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VRF schemes [21,24,26,33] essentially depend on the above analysis and derive
the above reduction cost.

Our Improved Analysis. We then move to explain our finer-grained anal-
ysis. Now, by the same analysis as Sect. 2.5 using Bonferroni’s inequality, we
can derive Eq. (5). We then set γ̃(ID) := Pr[E∗] −

∑
j∈[Q] Pr[E∗ ∧ E(j)]. Simi-

larly to Sect. 2.7, it is straightforward to compute γ̃(ID) efficiently, since we can
use Eq. (9) to compute each of Pr[E∗ ∧ E(j)]. We then bound the error term∑

j,k Pr[E∗ ∧ E(j) ∧ E(k)] in Eq. (5). For doing that, we need an extra property
for Encode that we call the small triple overlap property. Namely, we need for
an arbitrary but mutually distinct x1, x2, x3 ∈ {0, 1}� to satisfy,

# {ι ∈ [n] : Encode(x1)ι = Encode(x2)ι = Encode(x3)ι} ≤ (1 − c)2n.

We defer the construction of such code to the end of this subsection and continue
the analysis. We now bound each of Pr[E∗ ∧ E(j) ∧ E(k)]:

Pr[E∗ ∧ E(j) ∧ E(k)]

= Pr

[
(Encode(ID∗)Ii = σi ∀i ∈ [η]) ∧ I

⊆ {ι : Encode(ID∗)ι = Encode(ID(j))ι = Encode(ID(k))ι}︸ ︷︷ ︸
:=L

⎤

⎥⎦

= Pr [(Encode(x)Ii = σi ∀i ∈ [η]) | I ⊆ L] · Pr[I ⊆ L]

= 2−η ·
η−1∏

i=0

(
#L − i

n − i

)

≤ 2−η ·
η−1∏

i=0

(
(1 − c)2n − i

n − i

)

≤ 2−η(1 − c)2η.

where we use the small triple overlap property in the first inequality. From the
above analysis, we can see that the error term in Eq. (5) can be bounded by
Q22−η(1−c)2η. It remains to choose γmin and η so that γmin ≤ 2−η−Q·2−η(1−c)η

and Q2 · 2−η(1 − c)2η ≤ γminε/3 hold. From the both inequalities, we can derive
Q2(1 − c)2η ≤ ε/3. We then take η = log1/1−c(3Q/

√
ε), which leads to the

reduction cost γminε = Θ(ε1+μ/2/Qμ), where μ = log 1/(1 − c). Note that we
can make μ approach 1 as closely as one wants by approaching c to 1/2. This
improves the reduction cost of previous works γminε = Θ(ε1+μ/Qμ) by a factor
of εμ/2. Again, the reason why the improvement is possible is that we use the
finer-grained approximation of γ(ID) using Bonferroni’s inequality to represent
the error terms as a higher order polynomial of (1 − c). This allows us to take η
smaller, which leads to better advantage.

Instantiating Encode. We then discuss how to instantiate Encode. Unfortu-
nately, we do not know explicit constructions of a function with the small
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triple overlap property, where an explicit construction refers to a determinis-
tic algorithm that takes as input n, �, and ID and outputs Encode(ID). Instead,
we observe that a randomly chosen 3-wise independent hash function satisfies
this property with overwhelming probability under specific parameter settings.
Therefore, in applications to IBEs/VRFs, we choose a random 3-wise indepen-
dent hash function and append it to the public parameters as the description
of Encode. The description size of Encode is much shorter than any other part
of the parameters in our application and does not harm the efficiency of the
construction. In addition, we observe that this does not harm the security of the
constructions either. We defer to the details to the main body.

Polynomial-Size Alphabet Variant. Finally, we discuss the variant of the
function FSSM with polynomial-size alphabets, where the underlying encod-
ing function has codewords with a polynomial-size alphabet. Namely, we have
Encode : {0, 1}� → Σn for a polynomial size Σ, rather than Σ = {0, 1}. While
many previous works primarily focused on binary encoding functions when con-
structing IBEs/VRFs [8,12,24,33], Kohl [26] showed that using encoding func-
tions with a polynomial-size alphabet can be useful when constructing VRF
schemes with a compact proof size. While she uses Reed-Solomon code, we
replace it with a 3-wise independent hash function. Since a 3-wise independent
hash function achieves larger relative distance c than the Reed-Solomon code
(w.h.p), using it is quite beneficial. We can improve the overall parameter size of
her construction even if we have to add the description of Encode to the public
parameter as the description size is small. Furthermore, we can also improve
the reduction cost because of the larger relative distance of the 3-wise indepen-
dent hash function. On top of the improvement described above, we can further
apply our finer-grained analysis to the variant with polynomial-size alphabet,
since the underlying encoding function satisfies the small triple overlap prop-
erty. This leads to a tighter analysis that achieves γminε = O(ε1.5/Q).

3 A Finer Grained Analysis of the Artificial Abort
Paradigm

Our main technical contribution is to provide a more fine grained analysis of
Bellare and Ristenpart [5] by further relying on the artificial abort paradigm [30].
In this section, we divorce the artificial abort paradigm from security proofs of a
particular cryptographic primitive. Instead, we provide a statistical theorem that
extracts the essence of the paradigm. Looking ahead, in Sect. 4, we will relate the
following statistical theorem to concrete cryptographic primitives using a tool
called partitioning function with approximation. This allows for a more modular
proof of IBE and VRF schemes, as we illustrate in Sects. 5 and 6.

Theorem 1. Let T be a finite set named the transcript space. Let D : {0, 1} ×
{0, 1} × T → [0, 1] be an arbitrary distribution. Let γmin > 0 be a positive real
and γ : T → [0, 1] and γ̃ : T → [0, 1] be functions such that γ(T) ≥ γ̃(T) ≥ γmin

for all transcripts T ∈ T .
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Consider a distribution D∗ : {0, 1} × {0, 1} × T defined through the following
procedure:

1. Sample (coin, ĉoin,T) $← D.
2. With probability γ(T), set coin′ ← ĉoin and with probability 1 − γ(T), sample

a uniformly random coin′ $← {0, 1}. The later event is called Bad. If ¬Bad, it
further executes Item 3.

3. With probability 1−γmin/γ̃(T), replace coin′ with a uniformly random coin′ $←
{0, 1}. This event is called AAbort, short for artificial abort.

4. Output (coin, coin′,T).

Lastly, define

ε =

∣∣∣∣∣ Pr
(coin,̂coin,T)

$←D

[
ĉoin = coin

]
− 1

2

∣∣∣∣∣ and ε∗ =

∣∣∣∣∣ Pr
(coin,coin′,T) $←D∗

[
coin′ = coin

]− 1

2

∣∣∣∣∣ .

Then, if |γ(T) − γ̃(T)| < γmin

3 · ε holds for all transcripts T ∈ T , we have
ε∗ > γmin

3 · ε.

We refer to the full version for the proof. Here, we explain some intuition of
the theorem. In the context of security proofs, coin denotes the random challenge
bit sampled by the challenger and ĉoin denotes the guess output by the adversary
A. The advantage of A is thus ε. Bad denotes the typical event that the reduction
fails. For example, in the context of IBE schemes, Bad can denote the event
that the reduction cannot answer the key-extraction query or cannot simulate
the challenge ciphertext. In such a case, since the reduction cannot properly
simulate the game for A, it will output a random coin′ as A’s output. AAbort is
the more interesting event. In this case, while the reduction is able to simulate A
till the end of the game and obtains ĉoin, it will ignore this and output a random
coin′ with some probability. The term artificial abort stems from the fact that
the reduction is ignoring A’s output even if it might be the case coin = ĉoin.
While counter intuitive, The artificial abort paradigm states that the reduction’s
advantage can degrade by at most a factor γmin/3. In other words, the quality
of the reduction is dictated by how large γmin can be; the larger the γmin, the
better the reduction is.

Remark 1 (Comparison with Prior Work). As briefly mentioned in the intro-
duction, the proof of Bellare and Ristenpart [5] can be seen as a special case
of our Theorem 1. Their proof fixes the approximation function γ̃(T) := γmin

for all T ∈ T . Effectively, this is a special class of reduction without perform-
ing artificial aborts. As we see in the later sections, a tighter security proof is
achieved by fine-tuning γ̃(T) and tactically performing artificial aborts. While
we did not chose to do so, we can generalize our Theorem 1 to capture the proof
of Waters [30] as well. Recall that in his proof, γ̃(T) is not a fixed value but
rather a probabilistic value defined through the Monte Carlo method. Accord-
ingly, |γ(T) − γ̃(T)| < γmin

3 · ε will only be satisfied with some probability. As we
did not obtain new results with this generalization, we intentionally kept our
definition simple to only capture [5].
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4 Partitioning Function with Approximation

In this section, we introduce a tool called partitioning function with approxima-
tion allowing us to naturally use the finer grained artificial abort paradigm in
Theorem 1 to prove tighter security of a wide class of cryptographic primitives.

4.1 Overview

A partitioning function without approximation was first introduced by
Yamada [33]. Let us use IBE schemes as a representative example to get a flavor
of this tool. A partitioning function allows the reduction to secretly partition
the identity space into two sets of exponential size: the reduction can answer
key-extraction queries on one set and embed a hard problem into the challenge
ciphertext on the other set. The partition is made in a meticulous manner so
that there is a noticeable probability that the adversary’s key-extraction queries
and the challenge identity fall in the correct sets. Looking at Theorem1, the
probability that the partitioning fails (e.g., the reduction cannot answer the
key-extraction query) is denoted as Bad, occurring with probability 1 − γ(ID),
where ID is the sequence of identities queried by the adversary. Most prior works
using (explicitly or implicitly) partitioning functions [6,21,25,32,33] rely on the
analysis of Bellare and Ristenpart [5]. They approximate γ(ID) by the trivial
lower bound γ̃(ID) = γmin, in which case the probability of an artificial abort
AAbort occurring becomes 1 − γmin/γ̃(ID) = 0. Consequently, as explained in
the technical overview, the reduction has to rely on a small γmin. As it is clear
from Theorem 1, a smaller γmin results in a worser reduction.

It is worth recalling that we cannot choose an arbitrary approximation γ̃(ID),
say γ̃(ID) = γ(ID), as γ̃(ID) needs to be efficiently computable. This is because
the reduction must compute 1 − γmin/γ̃(ID) to perform the artificial abort.

We propose four partitioning functions allowing to efficiently approximate
γ(ID) better than γmin. Each partitioning function has different characteristics
and can be embedded into a wide class of cryptographic primitives with different
algebraic properties. An overview of the partitioning functions with approxima-
tion can be found in the following Table 1. One of the four partitioning functions
FParWat is new to this work. FSSM, FWat, and FBoy appear in [27], [30], and [3],
respectively. The novelty of our work is proving that each of FSSM, FWat, and
FBoy has a corresponding efficiently computable approximation γ̃(ID) better than
γmin, where in the case of FSSM, we have to use specific error correcting codes in
order for our analysis to work. Here, we present and analyze FParWat and refer to
the full version for details on the other functions. A concrete example of how to
use our partitioning function with approximation along with Theorem 1 is given
in Sect. 5 and 6.

4.2 Definition of Partitioning Function with Approximation

We define a partitioning function with approximation. The definition is based on
[33], where we extend the original definition to capture a finer grained approxi-
mation of γ. We recover the original definition by setting γ̃(x) = γmin.
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Table 1. Different Types of Partitioning Function and their Quality of γmin.

Partitioning Function γmin with
[5] Analysis

γmin with
Fine-tuned
Analysis

Misc.

FWat O(ε/�Q) O(
√

ε/�Q) pairing: IBEs and VRFs
lattice: IBE with exp. modulus q

FBoy O(ε2/Q2) O(ε/Q2) lattice IBEs

FParWat (Sect. 4.3) O(ε/qQ) O(ε1/d/qQ)† lattice IBEs

FSSM O((ε/Q)μ) O((
√

ε/Q)μ) pairing and lattice IBEs & VRFs

FSSM O((ε/�Q)1+1/ν)‡ O(
√

ε/�νQ) pairing and lattice IBEs & VRFs

The table shows four different partitioning functions. A black (resp., gray)
entry shows that the corresponding bound is proven in our work (resp., pre-
vious work). The column “γmin with [5] Analysis” shows lower bounds on γmin

derived from Bellare-Ristenpart-style analysis, where γ̃(x) is a fixed value that
does not depend on x. The column “γmin with Fine-tuned Analysis” shows
lower bounds on γmin derived from our fine-tuned analysis, where γ̃ can be
dependent on the input x. For FSSM, “Binary” (resp., “Poly”) represents the
case where the underlying error correcting code is instantiated over binary
(resp., polynomial size) alphabet. In the table, � is the length of the input,
q is the size of the modulus used in the lattice based constructions, and d is
an integer that can be set arbitrarily, which is determined by the underlying
hash functions. The constants μ > 1 and 1 ≥ ν > 0 are determined by the
underlying error correcting codes and can be set arbitrarily.
† By choosing d = ω(1), we can achieve γmin = O(1/qκQ), which removes the
dependency on ε altogether.
‡ The bound here is due to Kohl [26]. We can improve the bound to O(ε/�νQ)
using our error correcting code. We refer to the full version for the details.

Definition 1 (Partitioning Function with Approximation). Let F ={
Fκ : Kκ × {0, 1}�(κ) → {0, 1}

}
κ∈N

be an ensemble of function families. We
say that F is a (γmin, TF, Tapprox)-partitioning function, if there exists an effi-
cient algorithm PrtSmp(1κ, Q, ε), which takes as input a polynomially bounded
Q = Q(κ) ∈ N and a noticeable ε = ε(κ) ∈ (0, 1/2] and outputs a partitioning
key K such that:

1. There exists κ0 ∈ N such that

Pr
[
K ∈ Kκ : K

$← PrtSmp (1κ, Q(κ), ε(κ))
]

= 1

for all κ > κ0. Here, κ0 may depend on functions Q(κ) and ε(κ).
2. For a vector x := (x∗, x(1), . . . , x(Q)) ∈ ({0, 1}�)Q+1, let us define γ(κ, x) as

γ(κ, x) := Pr
[
F(K, x(1)) = · · · = F(K, x(Q)) = 1

∧ F(K, x∗) = 0 : K
$← PrtSmp (1κ, Q(κ), ε(κ))

]
.

For λ > λ0, there exist γmin(κ) and γ̃(κ, x) that depend on Q(κ) and ε(κ) such
that for all distinct x(1), . . . , x(Q), x∗ ∈ {0, 1}�, the following hold:

γ(κ, x) ≥ γmin(κ), γ̃(κ, x) ≥ γmin(κ), |γ(κ, x) − γ̃(κ, x)| <
γmin(κ)

3
· ε.(10)
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The probability is taken over the choice of K
$← PrtSmp(1λ, Q(λ), ε(λ)).

3. For λ > λ0, there exists an algorithm that takes κ,Q, ε, and x as input and
computes γmin(κ) and γ̃(κ, x) in time Tapprox(κ,Q, ε). Moreover, for all κ > κ0,
K ∈ K and x ∈ {0, 1}�, F(K, x) can be computed in time TF(κ).

We may drop the subscript λ and denote F, K, and X for the sake of simplicity.

4.3 A New Partitioning Function for Lattices

Here, we present a new partitioning function FParWat that can be used in place
of FBoy [3]. Compared to FBoy, it achieves better parameter (i.e., larger γmin) and
thus leads to better reduction costs in the corresponding applications. FParWat can
be viewed as performing parallel repetition of the Waters partitioning function
FWat with a twist, using a (perfect) d-wise linearly independent hash function.

Let Hfrd
n : Zn

q → Z
n×n
q a full-rank difference encoding (see the full version for

the formal definition). For any integers d and Ld = L(d), let hd-wise : {0, 1}� →
{0, 1}Ld be a d-wise linearly independent hash function over Zq, that is, for any
distinct (xi)i∈[d] ∈ ({0, 1}�)d, (hd-wise(xi))i∈[d] is linearly independent over Zq.
For d = 3, we can define hd-wise(x) = (1, x), since as we show in the full version,
the map x �→ (1, x) is 3-wise linearly independent over Zp for any primer p ≥ 3.
We show how to construct such a d-wise linearly independent hash function for
d > 3 in the full version. We then define our partitioning function FParWat as
follows:

FParWat(K, x) =
{

0
∑

i:hd-wise(x)i=1 H
frd
n (Ki) = 0n×n (mod q)

1 otherwise

where K := (K1, . . . , KLd
) ∈ K := (Zn

q )Ld , x ∈ {0, 1}�, and hd-wise(x)i is the i-th
bit of the hashed identity hd-wise(x) ∈ {0, 1}Ld .

For this function, we have the following theorem.

Theorem 2. Let n = n(κ), � = �(κ), q = q(κ), d = d(κ) be integers such that
q is a prime and d ≥ 3 is odd. Let hd-wise : {0, 1}� → {0, 1}Ld be a d-wise
linearly independent hash function over Zq. Let ε = ε(κ) be a noticeable function
in (0, 1/2], Q = Q(κ) be a polynomially bounded positive integer, let k be the
smallest integer such that qk ≥ 2 ·Q · ε− 1

d−1 . Then, FParWat is a (γmin, TF, Tapprox)-
partitioning function such that

γmin =
1

qk
+
∑

t∈[d−2]

(−1)t ·
(

Q

t

)
· 1

q(t+1)k
, TF = Ld · poly(κ), and Tapprox = poly(κ),

where poly(κ) is a fixed polynomial independent from Q and ε. In particular, this

implies γmin ≥ ε
1

d−1

4q·Q and we have γmin ≥ 1
4κq·Q if we set d = ω(1).

Proof. We first define the algorithm PrtSmp(1κ, Q, ε).
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PrtSmp(1κ, Q, ε) → K: It takes as input a security parameter 1κ, a polynomial
bounded Q = Q(κ), and a noticeable ε = ε(κ) ∈ (0, 1/2]. It computes the
smallest integer such qk ≥ 2 · Q · ε− 1

d−1 and samples K
$← (Zk

q × {0}n−k)Ld ⊆
(Zn

q )Ld and returns K.

It is clear that PrtSmp terminates in polynomial time. Below, we show that
PrtSmp satisfies the three properties in Definition 1.

First Property. It is clear that K ∈ K := (Zn
q )Ld . Since the output K of

PrtSmp is always included in K, PrtSmp satisfies the first property.

Second Property. For any x, denote E(x) as the event FParWat(K, x) = 0. Then,
for x = (x∗, x(1), . . . , x(Q)), we define γ(κ, x) as

γ(κ, x) := Pr
[
¬E(x(1)) ∧ · · · ∧ ¬E(x(Q)) ∧ E(x∗)

]

where the probability is taken over the choice of K
$← PrtSmp (1κ, Q, ε).

Further define γmin and γ̃(x) as

γmin :=
1
qk

+
∑

t∈[d−2]

(−1)t ·
(

Q

t

)
· 1
q(t+1)k

γ̃(x) := Pr[E(x∗)] +
∑

t∈[d−2]

(−1)t ·

⎛

⎝
∑

1≤j1<···<jt≤[Q]

Pr

⎡

⎣E(x∗) ∧
∧

k∈[t]

E(x(jk))

⎤

⎦

⎞

⎠ .

(11)

Below, we show that γ(x), γmin, and γ̃(x) satisfy the three inequalities in
Definition 1, Item 2. We first make a simplifying observation: notice that
for any x ∈ {0, 1}�, FParWat(K, x) = 0 implies

∑
i:hd-wise(x)i=1 Ki = 0n ∈

Z
n
q since Hfrd

n is linearly homomorphic and 0n is the only vector that gets
mapped to 0n×n by Hfrd

n . Moreover, since each entry of K1, · · · ,Kn is dis-
tributed independently of each other, we can analyze the probability that∑

i:hd-wise(x)i=1 Ki = 0n entry-wise. That is, for any x ∈ {0, 1}�, we have

Pr[
∑

i:hd-wise(x)i=1 Ki = 0n] =
∏

ν∈[n] Pr
[∑

i:hd-wise(x)i=1 Ki[ν] = 0
]

=
∏

ν∈[k]

Pr
[∑

i:hd-wise(x)i=1 Ki[ν] = 0
]
, where Ki[ν] denotes the ν-th entry of Ki and

the last equality follows from Ki ∈ Z
k
q × {0}n−k for all i ∈ [Ld]. For any x

and ν ∈ [k], let us denote Eν(x) to be the event
∑

i:hd-wise(x)i=1 Ki[ν] = 0 for

K
$← PrtSmp(1λ, Q, ε). Then, from the above argument, E(x) = ∧ν∈[k]Eν(x)

defines the event FParWat(K, x) = 0.

Now, let us first focus on the first inequality: γ(x) ≥ γmin. Notice that if
γ(x) ≥ γ̃(x), then the second inequality in Definition 1, Item 2 implies the first
inequality. Since we will show the second inequality later, we only need to show
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γ(x) ≥ γ̃(x).

γ(x) = Pr[E(x∗) ∧ ¬E(x(1)) ∧ · · · ∧ ¬E(x(Q))]

= Pr[E(x∗)] − Pr[E(x∗) ∧ ¬(¬E(x(1)) ∧ · · · ∧ ¬E(x(Q)))]

= Pr[E(x∗)] − Pr[E(x∗) ∧ (E(x(1)) ∨ · · · ∨ E(x(Q)))]

= Pr[E(x∗)] − Pr[(E(x∗) ∧ E(x(1))) ∨ · · · ∨ (E(x∗) ∧ E(x(Q)))]

≥ Pr[E(x∗)] +
∑

t∈[d−2]

(−1)t ·
⎛

⎝
∑

1≤j1<···<jt≤[Q]

Pr

⎡

⎣
∧

k∈[t]

(
E(x∗) ∧ E(x(jk))

]
⎞

⎠

⎞

⎠

= Pr[E(x∗)] +
∑

t∈[d−2]

(−1)t ·
⎛

⎝
∑

1≤j1<···<jt≤[Q]

Pr

⎡

⎣E(x∗) ∧
∧

k∈[t]

E(x(jk))

⎤

⎦

⎞

⎠ = γ̃(x),

(12)
where the third equation follows from the De Morgan’s laws and the inequality
follows from the Bonferroni inequality and the fact that d is odd. In the above,
we also assume implicitly that d ≤ Q; if d = Q, then the above will be an equal-
ity rather than an inequality. Thus, γ(x) ≥ γ̃(x) as desired.

We next show the second inequality: γ̃(x) ≥ γmin. Using the fact that
hd-wise is a d-wise linearly independent hash over Zq, for any distinct (xi)i∈[d],
(hd-wise(xi))i∈[d] is linearly independent over Zq. As we show in the full version,
we have the following for every t ∈ [d] and ν ∈ [k]:

Pr

⎡

⎣
∧

i∈[t]

Eν(xi)

⎤

⎦ =
1
qt

⇒ Pr

⎡

⎣
∧

i∈[t]

E(xi)

⎤

⎦ =
1

qtk
, (13)

where the implication holds from E(x) = ∧ν∈[k]Eν(x) and the independence of
Eν(x) for distinct ν’s. Plugging this into Eq. (12), we have

γ̃(x) =
1
qk

+
∑

t∈[d−2]

(−1)t ·
(

Q

t

)
· 1
q(t+1)k

= γmin.

This establishes the second inequality.
Finally, we show the third inequality: |γ(κ, x) − γ̃(κ, x)| < γmin(κ)

3 ·ε. Following
a similar argument made to derive Eq. (12), we can establish

γ(x) ≤ Pr[E(x∗)] +
∑

t∈[d−1]

(−1)t ·

⎛

⎝
∑

1≤j1<···<jt≤[Q]

Pr

⎡

⎣E(x∗) ∧
∧

k∈[t]

E(x(jk))

⎤

⎦

⎞

⎠ ,

where the only difference is that we use the Bonferroni inequality to upper bound,
rather than lower bound, γ(x). This implies

|γ(x) − γ̃(x)| ≤
∑

1≤j1<···<jd−1≤[Q]

Pr

⎡

⎣E(x∗) ∧
∧

k∈[d−1]

E(x(jk))

⎤

⎦ =
(

Q

d − 1

)
· 1
qdk

,
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where the right equality holds from Eq. (13).
It remains to show the following inequality for the third inequality.

(
Q

d − 1

)
· 1
qdk

<
γmin

3
· ε =

ε

3qk

⎛

⎝1 +
∑

t∈[d−2]

(−1)t ·
(

Q

t

)
· 1
qtk

⎞

⎠ . (14)

From assumption, we have Q ≤ c · qk · ε1/(d−1) for c = 1/2. Plugging this into
the left hand side of Eq. (14), we have

(l.h.s) ≤ Qd−1

2d−2 · qdk
≤ cd−1 · ε

2d−2 · qk
=

ε

22d−3 · qk
,

where the first inequality follows from the fact (d− 1)! ≥ 2d−2 for d ≥ 3. On the
other hand, we have

ε

6qk
≤ ε

3qk
·
(
1 − c · ε

1
d−1

)
≤ (r.h.s),

where the first inequality follows from c = 1/2, ε ∈ (0, 1/2] and ε1/(d−1) < 1
for any d ≥ 3, and the second inequality follows implicitly from the Bonferroni
inequality. Thus, for any d ≥ 3, we have Eq. (14) as desired. This establishes the
third inequality.

Combining everything, FParWat indeed satisfies the second property of Defini-
tion 1. As a concrete example, k is the smallest integer such that qk ≥ 2·Q·ε− 1

d−1 .
Thus, we have 2 ·Q ·ε− 1

d−1 ≥ qk−1, implying 2 ·q ·Q ·ε− 1
d−1 ≥ qk. Combined with

the lower bound γmin ≥ 1
2qk (implicitly) established above, we have γmin > ε

1
d−1

4q·Q
as in the theorem statement. The statement on the case of d = ω(1) is obtained
by observing ε > κ−d for sufficiently large λ.

Third Property. Finally, we show the third property of Definition 1. Notice
that for any x, we established γ̃(x) = γmin. Since γmin can be com-
puted in time poly(d, log Q, log(1/ε)) so can γ̃(x). Note we can upper bound
poly(d, log Q, log(1/ε)) = poly(d, κ) by a fixed polynomial since Q is a polyno-
mial and ε is noticeable. Moreover, FBoy can be computed with k × Ld additions
so we have TF = Ld · poly(log Q, log(1/ε)). Similarly this is upper bounded by
Ld · poly(κ) for some fixed polynomial as desired.

5 Application to IBEs

Recall that the notion of the partitioning function [33] abstracts out the core
statistical properties useful for proving security of various cryptographic primi-
tives. Section 3, we essentially showed that if the underlying partitioning function
admits good enough approximation for the quantity γ, then we can achieve bet-
ter reduction costs in various security proofs than those obtained by existing
techniques [5,30]. Then, in Sect. 4, we showed that new and existing partition-
ing functions indeed admit good enough approximations. These arguments are
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divorced from the underlying cryptographic primitives and algebraic structures.
In this section, we apply the tools we developed in Sects. 3 and 4 to the specific
context of IBE. This allows us to prove improved reduction costs for Waters
IBE [30] and Agrawal-Boneh-Boyen IBE [3] and also yields a new scheme with
good reduction costs. To formally prove these results in a unified manner, we
show a template of the security proof for IBE that uses partitioning functions.
We then prove the security of the respective IBE schemes using the template.

5.1 Application to Waters IBE

Here, we apply our framework to Waters IBE [30]. His IBE achieves the unique
property of having short ciphertext consisting only of 2 group elements and secu-
rity under the standard DBDH assumption or even under the CBDH assumption
if we slightly modify it using Goldreich-Levin’s hardcore bit function [14] (See
the full version and [25]). For Waters IBE, we improve the reduction cost from
O(ε2/Q�) to O(ε1.5/Q�), where by reduction cost we mean the advantage of
the DBDH solving algorithm obtained by a (t,Q, ε)-adversary against the IBE.
Here, we ignore the difference between the running time of the DBDH solving
algorithms, since they are t+Q ·poly(κ) in both cases and their difference can be
ignored in most of the interesting parameters settings. More formally, we obtain
the following theorem:

Theorem 3. If there is an (tA, Q, εA)-adversary A against the IND-CPA secu-
rity of the Waters IBE scheme, there is an adversary B that breaks the DBDH
problem with advantage εB and tB such that

εB >
ε1.5
A

21Q�
, tB = tA + O(Q · �2) · poly(κ) (15)

where Q ≤ p
√

εA/�
√

3 and poly(κ) is roughly the overhead incurred by the run-
ning the simulated algorithms compared to the real (Setup,KeyGen,Encrypt) algo-
rithms.

The proof of the theorem can be obtained by observing that the original proof
of Waters IBE follows the template of partitioning-based reduction for IBE and
plugging in our analysis on FWat into our template. We provide the proof of the
theorem and necessary background, including the description of the Waters IBE
scheme and partitioning-based reduction for the scheme, in the full version.

5.2 Applications to ABB IBE and Its Variant

Here, we apply our framework to ABB IBE [3], which is one of the most impor-
tant lattice IBE schemes, since it achieves the shortest ciphertext size and com-
putational efficiency among the existing schemes. Conventionally, the reduction
cost for ABB IBE was considered to be O(ε2/qQ), employing the partitioning
strategy based on FBoy. However, as we note in the full version, our formal analy-
sis reveals that they are only lower bounded by O(ε3/Q2), which is much worse.
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Using our new analysis on FBoy, we can improve it to be O(ε2/Q2). Furthermore,
by using our analysis on new partitioning function FParWat with d = 3, this can
be further improved to be O(ε1.5/qQ). More formally, we obtain the following
theorem:

Theorem 4. If there is an (tA, Q, εA)-adversary A against the IND-CPA security
of the ABB IBE scheme, there is an adversary B that breaks the LWE problem
with advantage εB and tB such that

εB >
ε1.5
A

12qQ
− negl(κ), tB = tA + Q · poly(κ) (16)

where qn ≥ 2 ·Q/
√

εA holds for dimension n of the scheme and poly(κ) is roughly
the overhead incurred by the running the simulated algorithms compared to the
real (Setup,KeyGen,Encrypt) algorithms.

We also consider a variant of ABB IBE, where we hash an identity using d-
wise linearly independent hash function and then use it as a new identity in ABB
IBE scheme. Roughly speaking, d-extended ABB IBE has a master public key
size that is d-times longer than the original ABB IBE and has almost the same
ciphertext size. We call it d-extended ABB IBE scheme. For d-extended ABB
IBE, we can achieve better reduction cost of O(ε1+

1
d−1 /qQ) using the power of

FParWat for arbitrarily chosen odd d.

Theorem 5. If there is an (tA, Q, εA)-adversary A against the IND-CPA security
of the d-extended ABB IBE scheme for odd integer d ≥ 3, there is an adversary
B that breaks the LWE problem with advantage εB and tB such that

εB >
ε
1+ 1

d−1
A

12qQ
− negl(κ), tB = tA + Q · poly(κ).

In particular, if we have d ≥ ω(1), we have

εB >
εA

12qκQ
− negl(κ), tB = tA + Q · poly(κ)

where qn ≥ 2 · Q · ε− 1
d−1 holds for dimension n of the scheme and poly(κ) is

roughly the overhead incurred by the running the simulated algorithms compared
to the real (Setup,KeyGen,Encrypt) algorithms.

Note that Theorem 4 is a special case of Theorem 5, since d-extended ABB
scheme with d = 3 equals to the ABB scheme. The proof of Theorem 5 can be
obtained by showing that d-extended ABB IBE admits partitioning-based reduc-
tion and plugging in our analysis on FParWat in Sect. 4.3 into our template. We
provide the formal proof of the theorems and necessary background, including
the description of ABB and d-extended ABB IBE schemes, in the full version.
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6 Application to VRFs

In this section, we apply the tools we developed in Sects. 3 and 4 to VRF.
Similarly to the case of IBE (Sect. 5), we prepare a security proof template
that allows us to prove the security of VRF using partitioning function with
approximation in a modular manner. The template is provided in the full version.
However, unlike Sect. 5, we do not focus on applying our framework to existing
schemes. Rather, we construct a new VRF scheme and then apply our framework
to the scheme. The new VRF scheme subsumes the previous schemes in terms
of asymptotic space efficiency and security at the same time, in the sense that it
is proven secure under the standard d-LIN assumption with tighter reductions.
We refer to Table 2 for the overview.

6.1 Our New Short VRF

Here, we propose new construction of VRF with short parameters. Our scheme
achieves the best space efficiency among the existing schemes and enjoys the
security proof under a static assumption at the same time. Our construction is
based on the construction proposed by Kohl [26], but we substantially improve
the space efficiency by adding a new twist to the scheme. We then proceed to
prove the security of the scheme based on our framework. Our framework yields
tighter reduction cost compared to the conventional analyses.

In Fig. 1, we give the description of our new VRF scheme. We refer to the
full version for details on the notations. For the construction, we need an error
correcting code Encode : {0, 1}� → Σn for an alphabet Σ and an injective map
Inj : [n] × Σ → [n1] × [n2]. In order to be able to define such an injective map,
we need to have n|Σ| ≤ n1n2, where |Σ| is the size of the alphabet. We will
typically set n1 = n2 = �

√
n|Σ|� to achieve the smallest verification key size.

For the construction, we use the map S : {0, 1}� → 2[n1]×[n2] defined as

S(x) := { Inj(i,Encode(x)i) : i ∈ [n] } ,

where Encode(x)i ∈ Σ denotes the i-th symbol of Encode(x) ∈ Σn. We can
instantiate Encode by the binary or non-binary error correcting codes (see the full
version). As we will discuss in Sect. 6.2, different choice of error correcting codes
leads to trade-offs between the efficiency and the reduction loss. The construction
is parameterized by d and is secure under the d-LIN assumption similarly to [26].
We typically choose d to be small constant like d = 2 or d = 3.

We prove correctness, unique provability, and pseudorandomness of our new
VRF scheme in the full version. The pseudorandomness of our VRF scheme
is proven by using our security proof template. Specifically, we show that our
scheme has the partitioning-based reduction associated with the partitioning
function with approximation FSSM and plugging in our analysis on FSSM into the
template.
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Fig. 1. Our VRF Scheme.

6.2 Comparison

Here, we discuss our new VRF scheme constructed in Sect. 6.1 and compare it
with previous schemes. We refer to Table 2 for the overview. For comparison, we
focus on the schemes that achieve “all the desired properties” [16]. Namely, we
require the construction to have exponential-sized input space, adaptive security
(i.e., both evaluation queries and the challenge query can be made adaptively),
and security under non-interactive assumption. Here, we narrow the focus fur-
ther and discuss constructions that are proven secure under a static assumption.
We therefore do not include constructions that are proven secure under q-type
assumptions [9,20,21,24,28,33] or even stronger assumptions [22,23] in the table.
However, we mention that our construction achieves asymptotic efficiency that
matches that of [24], which is based on q-type assumptions. We also do not
include the construction of VRFs from general assumptions that are quite ineffi-
cient [6,15]. As we can see from the table, we achieve the best parameter size and
reduction costs at the same time. In particular, compared to [26], our scheme
substantially reduces the verification key size and improves the reduction cost
at the same time, while maintaining the compact proof size. This improvement
is obtained by the combination of our usage of error correcting codes and the
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Table 2. Comparison of VRF Schemes with All The Desired Properties Based on
Standard Assumptions.

Schemes |vk| |π| Reduction Cost

(# of G) (# of G)

[16] O(κ) O(κ) ε1+μ/κQμ

[29] O(κ) O(κ) ε1+μ/κQμ

[26] (binary) ω(κ log κ) ω(log κ) ε1+μ/ω(log κ)Qμ

[26] (polynomial) ω(λ2+2ν) ω(1) ε2+1/ν/ω(1)κ1+νQ1+1/ν

Section 6.1 (binary) ω(
√

κ log κ) ω(log κ) ε1/2+μ/ω(log κ)Qμ

Section 6.1 (polynomial) ω(λ1/2+5ν/2) ω(1) ε3/2/ω(1)κνQ

We compare VRF schemes with all the desired properties proven secure
under a static assumption. The constructions in the table are all proven
secure under the d-LIN assumption. |vk| and |π| represent the size of
the verification keys and the size of the proofs, respectively. To measure
|vk| and |π|, we count the number of group elements. Q and ε denote the
number of evaluation queries and the advantage, respectively. poly(λ)
represents fixed polynomial that does not depend on Q and ε. To mea-
sure the reduction cost, we show the advantage of the algorithm that
solves the problem constructed from the adversary against the corre-
sponding VRF scheme. We measure the reduction cost by employing
the technique of Bellare and Ristenpart [5] for all the prior scheme and
use our fine-tuned analysis for our schemes. In the table, μ and ν are
arbitrary constants with μ > 1 and 0 < ν ≤ 1, respectively.

change in the underlying algebraic structure of the scheme. We refer to the full
version for more discussion.

Acknowledgement. The first and the last author were partly supported by JST
AIP Acceleration Research JPMJCR22U5. The third author is partially supported by
JSPS KAKENHI Grant Number JP21K17700. The last author was supported by JST
CREST Grant Number JPMJCR22M1.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: relations to
identity-based key encapsulation and new constructions. J. Cryptol. 27(3), 544–
593 (2014). https://doi.org/10.1007/s00145-013-9153-x

2. Abla, P., Liu, F.-H., Wang, H., Wang, Z.: Ring-based identity based encryption
– asymptotically shorter MPK and tighter security. In: Nissim, K., Waters, B.
(eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 157–187. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90456-2 6

3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

https://doi.org/10.1007/s00145-013-9153-x
https://doi.org/10.1007/978-3-030-90456-2_6
https://doi.org/10.1007/978-3-642-13190-5_28


Tighter Adaptive IBEs and VRFs: Revisiting Waters’ Artificial Abort 153

4. Apon, D., Fan, X., Liu, F.H.: Vector encoding over lattices and its applications.
Cryptology ePrint Archive, Report 2017/455 (2017). https://eprint.iacr.org/2017/
455

5. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 24

6. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3 19

7. Boneh, D.: Simplified OAEP for the RSA and Rabin functions. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 275–291. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 17

8. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

9. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 131–140. ACM Press
(Oct 2010). https://doi.org/10.1145/1866307.1866323

10. Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilita. Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze
8, 3–62 (1936)

11. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 29

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

13. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 28

14. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press (1989). https://doi.org/10.1145/73007.
73010

15. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part II. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70503-3 18

16. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 336–
362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 14

17. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

https://eprint.iacr.org/2017/455
https://eprint.iacr.org/2017/455
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/3-540-44647-8_17
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1145/1866307.1866323
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-662-49096-9_14
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5


154 G. Hanaoka et al.

18. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 2

19. Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard
assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–
350. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 19

20. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 33

21. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 121–143. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 5

22. Jager, T., Kurek, R., Niehues, D.: Efficient adaptively-secure IB-KEMs and VRFs
via near-collision resistance. In: Garay, J.A. (ed.) PKC 2021, Part I. LNCS, vol.
12710, pp. 596–626. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75245-3 22

23. Jager, T., Niehues, D.: On the real-world instantiability of admissible hash func-
tions and efficient verifiable random functions. In: Paterson, K.G., Stebila, D. (eds.)
SAC 2019. LNCS, vol. 11959, pp. 303–332. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-38471-5 13

24. Katsumata, S.: On the untapped potential of encoding predicates by arithmetic
circuits and their applications. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part III. LNCS, vol. 10626, pp. 95–125. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70700-6 4

25. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 682–712. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 23

26. Kohl, L.: Hunting and gathering – verifiable random functions from standard
assumptions with short proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 408–437. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 14

27. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

28. Niehues, D.: Verifiable random functions with optimal tightness. In: Garay, J.A.
(ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 61–91. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75248-4 3
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Abstract. A broadcast encryption scheme allows a user to encrypt a
message to N recipients with a ciphertext whose size scales sublinearly
with N . While broadcast encryption enables succinct encrypted broad-
casts, it also introduces a strong trust assumption and a single point of
failure; namely, there is a central authority who generates the decryption
keys for all users in the system. Distributed broadcast encryption offers
an appealing alternative where there is a one-time (trusted) setup process
that generates a set of public parameters. Thereafter, users can indepen-
dently generate their own public keys and post them to a public-key
directory. Moreover, anyone can broadcast an encrypted message to any
subset of user public keys with a ciphertext whose size scales sublinearly
with the size of the broadcast set. Unlike traditional broadcast encryp-
tion, there are no long-term secrets in distributed broadcast encryption
and users can join the system at any time (by posting their public key
to the public-key directory).

Previously, distributed broadcast encryption schemes were known
from standard pairing-based assumptions or from powerful tools like
indistinguishability obfuscation or witness encryption. In this work, we
provide the first distributed broadcast encryption scheme from a falsi-
fiable lattice assumption. Specifically, we rely on the �-succinct learn-
ing with errors (LWE) assumption introduced by Wee (CRYPTO 2024).
Previously, the only lattice-based candidate for distributed broadcast
encryption goes through general-purpose witness encryption, which in
turn is only known from the private-coin evasive LWE assumption, a
strong and non-falsifiable lattice assumption. Along the way, we also
describe a more direct construction of broadcast encryption from lat-
tices.

1 Introduction

Suppose a user wants to encrypt a message to a set of users S. With vanilla
public-key encryption, the encrypter would separately encrypt the message under
each user’s public key, and then broadcast the set of |S| ciphertexts. Each user
can read the message by decrypting their respective ciphertext in the broad-
cast. In this case, the size of the encrypted broadcast scales linearly with the
size of the set |S|. Broadcast encryption [FN93] provides an elegant approach
for achieving succinct encrypted broadcasts. With broadcast encryption, the
c© International Association for Cryptologic Research 2025
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encrypter can encrypt a message to an arbitrary set of S users with a ciphertext
whose length scales sublinearly with |S|. However, broadcast encryption achieves
this savings at a cost of introducing a central trusted authority that generates
the public parameters for the scheme as well as each user’s individual decryp-
tion key. Broadcast encryption thus has built-in key escrow, and indeed, if the
central authority is ever compromised, then the attacker learns the secret keys
for every single user in the system. This is in direct contrast to the setting with
public-key encryption where each user generates their own cryptographic keys. A
natural question is whether we can achieve the efficiency advantages of broadcast
encryption without relying on a trusted centralized authority.

Distributed Broadcast Encryption. To circumvent the key escrow problem
implicit in broadcast encryption, several works have introduced the notion
of distributed broadcast encryption [WQZDF10,BZ14]. Distributed broadcast
encryption is a hybrid between public-key encryption and broadcast encryp-
tion. Like the setting of public-key encryption, users in distributed broadcast
encryption generate their own public/secret key-pairs and then post their public
keys to a public-key directory (i.e., a public bulletin board). Anyone can encrypt
a message to an arbitrary collection of public keys with a ciphertext whose
size scales sublinearly with the size of the broadcast set (much like in tradi-
tional broadcast encryption). Note that in distributed broadcast encryption, we
assume the encrypter and the decrypter know the set of public keys associated
with a ciphertext (similar to how in broadcast encryption, both the encrypter
and the decrypter know the set of users associated with the broadcast). While
there is no trusted authority in distributed broadcast encryption, we do allow
for a one-time trusted sampling of a set of public parameters. The trusted setup
only needs to be performed once (e.g., using multiparty computation) and the
same set of public parameters can be shared across multiple schemes. There are
no long-term secrets in the scheme following the initial setup process. Thus, dis-
tributed broadcast encryption (and its generalizations) provide an elegant way
to combine the decentralized, trustless nature of public-key encryption with the
efficiency benefits of broadcast encryption.

To date, distributed broadcast encryption is known from indistinguishabil-
ity obfuscation [BZ14], witness encryption [FWW23], as well as assumptions
over bilinear groups [WQZDF10,KMW23,GKPW24]. The work of [FWW23]
also shows how to generic construct a distributed broadcast encryption scheme
from a registered attribute-based encryption (ABE) scheme; several recent works
have shown how to construct registered ABE from pairing-based assumptions
[HLWW23,ZZGQ23,GLWW24,AT24]. Among these constructions, the only one
from plausibly post-quantum assumptions is the one based on witness encryp-
tion, which can be constructed using lattice assumptions [Tsa22,VWW22]—
specifically, the evasive learning with errors (LWE) assumption [Wee22,Tsa22].
However, evasive LWE is a strong non-falsifiable lattice assumption, and more-
over, existing constructions of witness encryption rely on a private-coin version
of evasive LWE. As noted in [VWW22], there are (heuristic) obfuscation-based
counter-examples for the general version of private-coin evasive LWE, so the
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status of private-coin evasive LWE remains unsettled. A natural goal then is to
obtain simpler and more direct constructions of distributed broadcast encryption
from (preferably falsifiable) lattice assumptions. An even better objective would
be to obtain distributed broadcast encryption from the plain LWE assump-
tion, but to date, even the simpler notion of centralized broadcast encryption
from LWE remains a long-standing open problem. Existing centralized broadcast
encryption schemes from lattice assumptions either lack a security proof [BV22],
or rely on new lattice assumptions such as (public-coin) evasive LWE [Wee22]
or �-succinct LWE [Wee24].

This Work. In this work, we give the first distributed broadcast encryption
scheme from a falsifiable lattice assumption. Specifically, we rely on the �-
succinct LWE assumption recently introduced by Wee [Wee24] for constructing
broadcast encryption and succinct attribute-based encryption. The �-succinct
LWE assumption essentially asserts that (A, sTA + eT) is pseudorandom even
given a trapdoor for the related matrix V = [I� ⊗ A | U] where A r← Z

n×m
q ,

s r← Z
n
q , e ← χm, U r← Z

�n×m
q , and χ is an error distribution. We pro-

vide more details in Sect. 1.1. The �-succinct LWE assumption is a falsifiable
assumption and is implied by (public-coin) evasive LWE (in combination with
LWE). Variants of this assumption (adapted to the setting of short integer
solutions) have also been used in recent constructions of succinct functional
commitments [ACL+22,WW23a,CLM23,BCFL23,WW23b,FMN23]. We sum-
marize our results with the following informal theorem and provide a comparison
to previous distributed broadcast encryption schemes in Table 1.

Theorem 1 (Informal). Let λ be a security parameter and N be a bound on
the number of users. Then, under the �-succinct LWE assumption (with � ≥ N ·
O(λ logN)), there exists a distributed broadcast encryption scheme that supports
up to N users with the following properties:

– The public parameters consist of a structured string of size N2 ·poly(λ, logN).
– Each user’s public key has size O(Nλ log2 N) and secret key has size

O(λ log2 N).
– An encryption to a set of S ⊆ [N ] users has size O(λ log2 N).
– Encryption and decryption with respect to a set S take time |S|·poly(λ, logN).

Moreover, if the set S is known in advance, we can precompute a set-dependent
encryption key pkS; encrypting to the set S then requires poly(λ, logN) time.
Similarly, each user i ∈ S can also precompute a set-dependent decryption key
skS,i; decrypting a ciphertext associated with S then requires poly(λ, logN)
time.

Open Problems. Our work gives the first distributed broadcast encryption
scheme from a falsifiable lattice assumption. Our scheme has a quadratic-size
CRS. An interesting open problem is to obtain a distributed broadcast encryp-
tion scheme with a linear (or even sublinear-size) CRS from a falsifiable lattice
assumption. Schemes with linear-size public parameters are known from bilinear
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Table 1. Comparison with existing distributed broadcast encryption schemes. For each
scheme, we report the size of the public parameters pp, the user public/secret key-pair
(pk, sk), and the ciphertext ct as a function of the number of users N , and the size of
the broadcast set |S|. For simplicity of comparison, we suppress poly(λ, logN) factors,
where λ is the security parameter. For each scheme, we also indicate whether the public
parameters pp (if required) can be generated using a transparent setup procedure (TP),
and whether it is (plausibly) post-quantum secure (PQ). The first two rows describe
generic non-succinct approaches of using public-key encryption (PKE) or registration-
based encryption (RBE) [GHMR18] to separately encrypt to each user in the broadcast
set. We write iO to denote indistinguishability obfuscation [BGI+01,GGH+13]. The
parameter � in �-succinct LWE must satisfy � ≥ N · O(λ logN).

Scheme Assumption |pp| |pk| |sk| |ct| TP PQ

Generic public-key encryption – 1 1 |S| ✓ ✓

Generic registration-based encryption 1 1 1 |S| ✓ ✓

[WQZDF10] bilinear Diffie-Hellman exponent N N2 N 1 ✓ ✗

[BZ14] iO + one-way function – 1 1 1 ✓ ✗

[FWW23]∗ witness encryption + LWE 1 1 1 1 ✓ ✓

[KMW23] bilinear Diffie-Hellman exponent N N 1 1 ✗ ✗

[KMW23] k-Lin (pairing group) N2 N 1 1 ✗ ✗

[GKPW24] generic bilinear group N N 1 1 ✗ ✗

This work �-succinct LWE N2 N 1 1 ✗ ✓

∗ The work of [FWW23] also describe a generic approach for
constructing distributed broadcast encryption from any registered
attribute-based encryption (ABE) scheme. A number of recent
works have shown how to construct registered ABE from bilin-
ear maps [HLWW23,ZZGQ23,GLWW24,AT24]. Since these generic
instantiations do not improve upon other the other bilinear-map-
based constructions already shown in the table, we omit these for
simplicity of comparison.

maps (under either the bilinear Diffie-Hellman exponent assumption or in the
generic bilinear group model) [KMW23,GKPW24]. Another interesting question
is to construct a distributed broadcast encryption scheme that is able to sup-
port an a priori unbounded number of users. Currently, this is only known from
witness encryption and indistinguishability obfuscation. Note that if we alterna-
tively impose a bound on the size of the broadcast set, then the transformation
of [GLWW23] can be used to obtain a scheme that supports an arbitrary number
of users (but where each ciphertext can only target a bounded subset of users).

On the �-Succinct LWE Assumption. Security of our lattice-based distributed
broadcast encryption scheme relies on the �-succinct LWE assumption recently
introduced by Wee [Wee24]. Prior to this work, distributed broadcast encryption
was known from witness encryption [FWW23], which can be built from eva-
sive LWE [Tsa22,VWW22]. Since both approaches rely on non-standard lattice
assumptions, it is natural to ask whether it is worthwhile to study constructions
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from �-succinct LWE if we already have one from evasive LWE. We provide a
brief discussion here and refer to [Wee24, §1.4] for additional perspectives.

First, unlike evasive LWE, the �-succinct LWE assumption is falsifiable.
The �-succinct LWE assumption is also implied by (public-coin) evasive LWE
together with plain LWE (c.f., [Wee24, §6.2]), so formally, �-succinct LWE is a
weaker assumption than evasive LWE. On the other hand, evasive LWE is non-
falsifiable, and must be carefully-formulated to avoid counter-examples. In par-
ticular, there are obfuscation-based counter-examples for the general version of
private-coin evasive LWE [Wee22,VWW22]. Existing constructions of witness
encryption based on evasive LWE [Tsa22,VWW22] all rely on private-coin ver-
sions of evasive LWE. Note that the known counter-examples for private-coin
evasive LWE pertain only to the most general version of the assumption, and
not to the specific distributions needed by [Tsa22,VWW22].

A second advantage of the �-succinct LWE assumption over evasive LWE is
that it is “instance-independent.” We reduce to the same assumption irrespec-
tive of the adversary. In contrast, when reducing security to evasive LWE, the
matrices in the pre- and post-conditions are typically functions of the adversary
(specifically, the queries that the adversary makes). Formally, this is captured
by defining a sampling algorithm based on the adversary. So even though the
evasive LWE post-condition itself is a falsifiable assumption, there is typically
a different post-condition for each adversary. As such, when analyzing security,
we are relying on a family of computational assumptions (one for each adver-
sary) as opposed to a single instance-independent assumption (that applies to all
adversaries). Since �-succinct LWE is falsifiable and instance-independent, the �-
succinct LWE assumption provides a concrete target for cryptanalysis, especially
compared to evasive LWE.

There has also recently been a proliferation of new (falsifiable) lattice assump-
tions. Most of these correspond to some variant of the short integer solu-
tions (SIS) problem or the LWE problem with hints [ACL+22,WW23b,CLM23,
BCFL23,WW23a,FMN23,AFLN24]; see [Alb24] for a survey and comparison.
Essentially, these assumptions assert that SIS or LWE is hard with respect to
a matrix A even given some structured preimage A−1(P) for some matrix P.
Among these, the �-succinct SIS assumption is weaker (up to polynomial losses in
the parameters) than assumptions like BASISstruct or k-R-ISIS assumptions con-
sidered in many of the aforementioned works. From this perspective, we believe
�-succinct SIS and �-succinct LWE to be an appealing assumption to use when
studying new lattice-based constructions.

Finally, if we compare our distributed broadcast encryption scheme directly
to the one based on witness encryption, we obtain a much more direct con-
struction (conceptually similar to classic pairing-based broadcast encryption
schemes [BGW05,GW09]). For instance, the witness encryption approach makes
heavy non-black-box use of cryptographic objects (specifically, the witness
encryption scheme is applied to a function-binding hash function, which itself
relies on leveled homomorphic encryption to construct). In contrast, our app-
roach directly realizes the broadcast functionality and does not need any kind
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of homomorphic encryption machinery. We believe this to be a significant con-
ceptual benefit of our approach.

1.1 Technical Overview

In this section, we provide a high-level overview of our approach for constructing
distributed broadcast encryption from lattices.

Notation. We write DZ,σ to denote the discrete Gaussian distribution over Z

with width parameter σ > 0. For a matrix A ∈ Z
n×m
q and a target vector

t ∈ Z
n
q , we write A−1(t) to denote a random variable x ← Dm

Z,σ conditioned
on Ax = t. We can efficiently sample from A−1(t) given a trapdoor for the
matrix A. To simplify the description in this overview, we use curly underlines
to suppress small noise terms. Namely, we write sTA

���
to denote sTA+ eT where

e is a small error vector.

Distributed Broadcast Encryption. Next, we recall the syntax of a distributed
broadcast encryption scheme [WQZDF10,BZ14]:

– Setup: In distributed broadcast encryption, there is an initial (trusted) setup
algorithm that samples a set of public parameters pp. Similar to [WQZDF10,
KMW23,GKPW24], we assume an a priori bound N on the maximum number
of users, and allow the size of the public parameters to scale with N .

– Key-generation: In distributed broadcast encryption, each user has a dis-
tinct index i ∈ [N ]. Using the public parameters pp, user i can generate a
public/secret key-pair (pki, ski). Typically, user i would post the public key
pki to the public key directory. As noted in Sect. 1.2, the notion of flexi-
ble broadcast encryption [FWW23] eliminates the need for a user index (i.e.,
users simply generate a public/secret key-pair). The work of [GLWW23] show
how to generically transform a distributed broadcast encryption into a flexi-
ble broadcast encryption scheme. In this work, we just focus on the simpler
notion of distributed broadcast encryption.

– Encryption: The encryption algorithm takes the public parameters pp, a set
of public keys {pki}i∈S , the message μ, and outputs the ciphertext ct.

– Decryption: The decryption algorithm takes a ciphertext, the public param-
eters pp, the associated set of public keys {pki}i∈S , the secret key ski for i ∈ S,
and outputs the message.

The security requirement says that an encryption of μ to a set of public keys
{pki}i∈S should computationally hide μ from an adversary who only sees the
public parameters pp and the public keys {pki}i∈S of the users in the broadcast
set. We say the scheme is selectively secure if the adversary has to declare the
indices S ⊆ [N ] of the honest users at the beginning of the security game before
it sees the public keys, and that it is adaptively secure if the adversary can
choose the set S after seeing each user’s public key (and selectively corrupting
a subset of their keys). In this work, we are only able to prove selective security
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of our scheme; it is an interesting question to construct an adaptively secure
distributed broadcast encryption scheme from lattice assumptions.1

Starting Point: A (centralized) Broadcast Encryption Scheme. We begin by
describing a simple (centralized) broadcast encryption scheme for N users. While
previous lattice-based broadcast encryption schemes [BV22,Wee22,Wee24] start
by constructing a ciphertext-policy ABE scheme with succinct ciphertexts, we
take a more direct approach which notably does not rely on any of the homo-
morphic evaluation machinery typically seen in lattice-based ABE schemes. In
turn, our approach more readily extends to support distributed key genera-
tion. The structure of our construction can be viewed as a lattice-based version
of the pairing-based broadcast encryption scheme from [GW09,GKW18]. We
describe our approach below:

– Setup: The master public key mpk for the broadcast encryption scheme is a
tuple (

A,B,p,W1, . . . ,WN , r1, . . . , rN ,
{
A−1(Wirj)

}
i�=j

)
.

Here, A,B,Wi
r← Z

n×m
q , p r← Z

n
q , and ri ← Dm

Z,σ. The secret key for user
i ∈ [N ] is

ski = A−1(p+Bri +Wiri).

– Encryption: To encrypt a bit μ ∈ {0, 1} to a set S ⊆ [N ], the encrypter
samples an LWE secret s r← Z

n
q and computes WS =

∑
j∈S Wj . The cipher-

text is
ctS =

(
sTA
���

, sT(B+WS)
����������

, sTp+ μ · �q/2�
�������������

)
,

where we write �·� to denote the function that rounds to the nearest integer.
– Decryption: Decryption relies on the fact that when i ∈ S, we have

sTA
���

⎛
⎝ski +

∑
j∈S\{i}

A−1(Wjri)

⎞
⎠ ≈ sTp+ sTBri + sTWiri +

∑
j∈S\{i}

sTWjri

= sTp+ sTBri + sTWSri,

where A−1(Wjri) are the “cross-terms” from the master public key. To
decrypt, user i then computes

sTp+ μ · �q/2�
������������

+sT(B+WS)
����������

ri−sTA
���

⎛
⎝ski +

∑
j∈S\{i}

A−1(Wjri)

⎞
⎠ ≈ μ·�q/2� ,

and rounds to recover μ.
1 We are limited to selective security because our security proof relies on a “parti-

tioning” argument where the reduction algorithm first programs the challenge set
into the public parameters. This limitation is common to most lattice-based ABE
and broadcast encryption schemes [GVW13,BGG+14,DKW21,WWW22,Wee22,
HLL23,Wee24].
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We can prove selective security of this construction by relying on evasive
LWE [Wee22,Tsa22].2 The evasive LWE assumption essentially asserts that if
(sTA

���
, sTP

���
) is pseudorandom, then sTA

���
is pseudorandom given A−1(P). As noted

above, in the selective security game, the adversary begins by declaring its chal-
lenge set S∗ ⊆ [N ]. It then receives the secret keys ski for all i /∈ S∗ and its goal
is to distinguish between encryptions of μ0 and μ1 to the set S∗. To prove selec-
tive security from evasive LWE, we leverage a partitioning argument where the
reduction programs B := B∗ − WS∗ where B∗ r← Z

n×m
q . Under evasive LWE,

the claim now boils down to showing that

sTA
���

, sTB∗
����

, sTp
���

,
{
sTWirj
������

}
i�=j

,
{
sT(p+ (B∗ − WS∗)ri +Wiri)
��������������������������

}
i/∈S∗

is pseudorandom. Since the details of this proof is immaterial to our subsequent
construction (and analysis), we omit the formal details in this overview.3

Distributed Key Generation. To extend to distributed broadcast encryption,
we partition the public parameters for the centralized broadcast encryption
described above into two sets of components: one that is sampled by the ini-
tial (trusted) setup, and one that is sampled by each individual user:

– The components (A,B,p, r1, . . . , rN ) are part of the public parameters for
the distributed broadcast encryption scheme.

– The matrices Wi as well as the cross terms A−1(Wirj) for j 
= i will be chosen
by user i. Namely, the ith user’s public key is pki =

(
Wi,

{
A−1(Wirj)

}
j �=i

)
.

The decryption key for user i is still ski = A−1(p + Bri + Wiri). At this
point, it is unclear how user i samples these components since it does not
(and cannot) have a trapdoor for A.

Observe that the public parameters pp together with any collection of public
keys {pki}i∈S now define a set of public parameters for the centralized broad-
cast encryption scheme (for |S| users). Correctness now follows immediately. It
suffices to build a mechanism for users to sample their public and secret keys
without knowledge of a trapdoor for A.

2 Note that the security of our distributed broadcast encryption scheme will ultimately
be based on the �-succinct LWE assumption [Wee24], which is a falsifiable assumption
that is implied by evasive LWE. However, we do not know how to prove security of
this particular centralized broadcast encryption scheme from �-succinct LWE. This
is because our distributed broadcast encryption scheme will use a modified key-
generation algorithm (described below).

3 One approach is to first argue that sTWirj
������

is pseudorandom for all i, j ∈ [N ]. Since
rj is short, we can use noise smudging to argue that sTWirj

������
≈ (sTWi + eT)rj

�����������
, for

a small error vector e. Then, by LWE (with secret s), this is indistinguishable from
tTi ri
���

, where ti
r← Z

m
q . We can now appeal to LWE again (with secret ti) to argue

that this is pseudorandom. Since rj is short, this step would rely on the analysis
from [BLMR13].
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Sampling Public Keys. To complete the construction, we need a way for a user
to sample a public key pki =

(
Wi,

{
A−1(Wirj)

}
j �=i

)
together with a secret key

ski = A−1(p+Bri+Wiri) without a trapdoor for A. For simplicity, consider first
the simpler goal of sampling a fresh Wi ∈ Z

n×m
q together with short vectors

yj ∈ Z
m
q where Ayj = Wirj for all j ∈ [N ]. To facilitate this, we can publish

a collection of random matrices Z1, . . . ,Zk ∈ Z
n×m
q in the public parameters

together with their preimages A−1(Zirj) for all i ∈ [k] and j ∈ [N ]. The user can
now pick a (short) vector d ∈ Z

k
q and define Wi :=

∑
τ∈[k] dτZτ . Moreover, if d

is short, then
∑

τ∈[k] dτA−1(Zτrj) is a short preimage of
∑

τ∈[k] dτZτrj = Wirj

for all i, j ∈ [N ]. In essence, the public parameters contain k public/secret key-
pairs and the user samples their key by taking a random linear combination
of the fixed keys in the public parameters. The hope then is that the user’s
public key Wi =

∑
τ∈[k] dτZτ and cross-terms

∑
τ∈[k] dτA−1(Zτrj) hide the

linear combination d the user used to generate their public/secret key-pair.
While a Gaussian leftover hash lemma [AGHS13,AR16] can plausibly be used to
show that the cross-terms are statistically close to A−1(

∑
τ∈[k] dτZτrj), we opt

for a more direct approach inspired by recent constructions of functional com-
mitments [WW23a,WW23b]. Namely, we publish a full trapdoor to facilitate
direct sampling of the cross terms A−1(

∑
τ∈[k] dτZτrj) and the secret key. This

approach is also more conducive to proving security from the �-succinct LWE
assumption.

Publishing a Trapdoor for a Related Matrix. Instead of publishing short preim-
ages A−1(Zirj) in the public parameters, we give out a full trapdoor for a matrix
related to A in the public parameters. In particular, we define the matrix

V =

⎡
⎢⎣
A −Z1r1 · · · −Zkr1

. . .
...

. . .
...

A −Z1rN · · · −ZkrN

⎤
⎥⎦ =

⎡
⎢⎣
A −Z(Ik ⊗ r1)

. . .
...

A −Z(Ik ⊗ rN )

⎤
⎥⎦ ∈ Z

nN×(mN+k)
q ,

(1.1)
where Z = [Z1 | · · · | Zk] ∈ Z

n×mk
q . Suppose we sample

⎡
⎢⎢⎢⎣

y1

...
yN

d

⎤
⎥⎥⎥⎦ ← V−1(ui ⊗ (p+Bri)) ∈ Z

mN+k
q , (1.2)

where ui ∈ Z
N
q denotes the ith canonical basis vector, and each yj ∈ Z

m
q and

d ∈ Z
k
q . This means

⎡
⎢⎣
A −Z(Ik ⊗ r1)

. . .
...

A −Z(Ik ⊗ rN )

⎤
⎥⎦ ·

⎡
⎢⎢⎢⎣

y1

...
yN

d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0n

...
0n

p+Bri
0n

...
0n

⎤
⎥⎥⎥⎥⎥⎦

∈ Z
nN
q . (1.3)
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Next, by the mixed product rule for tensor (Kronecker) products (Eq. (2.1)), we
can also write

Z(Ik ⊗ rj)d = Z(Ik ⊗ rj)(d ⊗ 1) = Z(d ⊗ Im)(1 ⊗ rj) = Z(d ⊗ Im)rj .

Define Wi := Z(d ⊗ Im). Then, Eq. (1.3) says that for all i 
= j,

∀j 
= i : Ayj − Z(Ik ⊗ rj)d = 0n =⇒ Ayj = Wirj

and
Ayi − Z(Ik ⊗ ri)d = p+Bri =⇒ Ayi = p+Bri +Wiri.

These are the same relations for the public parameters and the secret key as
in the centralized broadcast encryption scheme. Moreover, when A r← Z

n×m
q

and m ≥ O(n log q), the distribution of d output by Eq. (1.2) is distributed
according to a discrete Gaussian. This follows implicitly from the Gaussian
preimage sampling algorithm from [GPV08]; we also refer to [WW23b, §2] for a
formal proof. Correspondingly then, when k ≥ O(nm log q), the distribution of
Wi = Z(d ⊗ Im) is statistically close to uniform. Moreover the distribution of
cross-terms yj is distributed exactly according to A−1(Wirj). As such, the pub-
lic keys sampled using this procedure precisely coincide with the distribution
in the original centralized broadcast encryption scheme. Putting all the pieces
together, we now describe the full distributed broadcast encryption scheme:

– Setup: The public parameters pp consists of

pp = (A,B,p, r1, . . . , rN ,Z, tdV),

where A,B r← Z
n×m
q , p r← Z

n
q , and r1, . . . , rN ← Dm

Z,σ exactly as in the
centralized broadcast encryption scheme. The additional components Z and
tdV are sampled as Z r← Z

n×mk
q and tdV is a (random) trapdoor for the

matrix V in Eq. (1.1).
– Key generation: To generate a public/secret key pair for an index i ∈ [N ],

the user uses the trapdoor tdV to sample (y1, . . . ,yN ,d) according to Eq.
(1.2). It computes Wi = Z(d ⊗ Im) and defines the public key to be pki =(
Wi, {yj}j �=i

)
and the secret key to be ski = yi. As shown previously, for all

j 
= i, it holds that Ayj = Wirj and Ayi = p+Bri +Wiri.
– Encryption and decryption: These are the same as in the centralized

broadcast encryption scheme. Specifically, the combination of the public
parameters pp with the individual user public keys {pki}i∈[N ] can be viewed as
a set of public parameters for the centralized broadcast encryption scheme.
Since each user’s secret key satisfies the same invariant as the centralized
scheme, correctness follows as before.

We give the formal description in Sect. 3.1.

N -Structured LWE. To prove security, we rely on the N -structured LWE assump-
tion which asserts that

(A, sTA
���

,Z, r1, . . . , rN , tdV) ≈ (A,vT,Z, r1, . . . , rN , tdV), (1.4)
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where V is the matrix in Eq. (1.1), tdV is a random trapdoor for V, and A r←
Z

n×m
q , s r← Z

n
q , v r← Z

m
q , Z r← Z

n×mk
q , and r1, . . . , rN ← Dm

Z,σ. Later on, we will
show that the N -structured LWE assumption follows from the �-succinct LWE
assumption recently introduced by Wee [Wee24]. We discuss both assumptions
at the end of this section.

Proof Strategy. We now provide a sketch of our security proof, and specifically,
how the reduction algorithm simulates the key-generation queries. In the selec-
tive security game, the adversary begins by committing to the set of indices
S∗ ⊆ [N ] associated with the challenge ciphertext. The reduction algorithm
obtains (A,vT,Z, r1, . . . , rN , tdV) from the �-structured LWE challenger. It uses
A,Z, r1, . . . , rN , tdV as the corresponding components of the public parame-
ters for the distributed broadcast encryption scheme. The question is how the
reduction algorithm simulates the public keys pki = (Wi, {yi,j}j �=i) for the hon-
est users and how it simulates the challenge ciphertext. Suppose for a moment
that the reduction algorithm knew the Wi for each index i ∈ S∗ in the chal-
lenge set. Then, it would be able to compute WS∗ =

∑
i∈S∗ Wi and set

B = AH − WS∗ , p = Ah where H r← {0, 1}m×m and h r← {0, 1}m. In this
case, the reduction could define the challenge ciphertext to be

ctS∗ =
(
vT,vTH,vTh+ μ · �q/2� )

.

If vT = sTA
���

, then we have

ctS∗ =
(
sTA
���

, sTAH
�����

, sTAh+ μ · �q/2�
��������������

)
=

(
sTA
���

, sT(B+WS∗)
�����������

, sTp+ μ · �q/2�
������������

)
,

which is distributed according to the real scheme. If v is a random vector, then
by the leftover hash lemma, the challenge ciphertext is uniformly random and
security holds.

The problem with this approach is that the reduction algorithm cannot
choose Wi arbitrarily. Recall that Wi is a component of the public key,
and in the real scheme, is derived by first sampling (yi,1, . . . ,yi,N ,di) from
V−1(ui ⊗ (p+Bri)) according to Eq. (1.3) and then setting Wi = Z(di ⊗ Im).
Here, we immediately run into a circularity issue. The reduction algorithm needs
to know Wi in order to program the challenge set S∗ into B, but sampling Wi

seemingly requires that B is already fixed!
Thus, the reduction algorithm needs an alternative method for simulating

the honest users’ public keys. The observation is simple: the public key pki for
an index i ∈ S∗ only depends on yi,j for j 
= i and d; importantly, pki does not
depend on the value of yi,i. Indeed, yi,i is the secret key for user i which is not
revealed to the adversary and also cannot be known to the reduction. Thus, in
the reduction, instead of sampling yi,i so that Ayi,i = p + Bri + Wiri as in
the real scheme, the reduction algorithm simply samples yi,i so that Ayi,i =
Wiri. In other words, the reduction algorithm samples (yi,1, . . . ,yi,N ,di) from
V−1(0nN ). By the structure of V (see Eq. (1.1)), we can show that sampling from
this distribution does not affect the marginal distributions of yi,j for j 
= i and d.
As such, this does not affect the adversary’s view. With this modified sampling



Distributed Broadcast Encryption from Lattices 167

procedure, the reduction algorithm is able to sample the Wi components of each
public key (independently of B), and then program WS∗ =

∑
i∈S∗ Wi into the

public parameters (as described above). We provide the full details in Sect. 3.1.

N -structured LWE and �-succinct LWE. The above reduction relies on the
N -structured LWE assumption (Eq. (1.4)) which essentially asserts hardness
of LWE given a trapdoor for the related matrix V used in our construction. We
can relate this assumption to the recently introduced �-succinct LWE assump-
tion [Wee24] which asserts that

(A, sTA
���

,U, tdV) ≈ (A,vT,U, tdV), (1.5)

where A r← Z
n×m
q , s r← Z

n
q , v r← Z

m
q , U r← Z

�n×m
q , V = [I�⊗A | U] and tdV is a

random trapdoor for the matrix V. The �-succinct LWE assumption is a falsifi-
able assumption and moreover, Wee showed that it is implied by the (public-coin)
evasive LWE assumption [Wee24]. Wee also showed how to leverage �-succinct
LWE to construct an ABE scheme with succinct ciphertexts, which in particu-
lar, implies a (centralized) broadcast encryption scheme with short ciphertexts
(and long public parameters). The analogous �-succinct short integer solutions
(SIS) assumption (i.e., SIS is hard with respect to A given a trapdoor for V) has
been used to construct succinct functional commitments [WW23a]. As shown in
[Wee24], the �-succinct SIS assumption is the least-structured or weakest among
the multitude of structured lattice assumptions (e.g., BASISstruct [WW23b] or
k-R-ISIS [ACL+22]) that have been introduced in recent years.

In Sect. 4, we show that if the �-succinct LWE assumption holds with param-
eter � ≥ N · O(λ logN), then the N -structured LWE assumption also holds,
provided that the width parameter k (i.e., the number of blocks in Z) is at least
k ≥ O(nm log q). While it may appear that the N -structured LWE assumption
gives out a trapdoor for a more structured matrix than the N -succinct LWE
assumption, we show here that they are very similar. We illustrate this with
a simple example. In the following description, we write [IN ⊗ A | MZ,R] (for
R = [r1 | · · · | rN ]) to denote the matrix V from Eq. (1.1) and [IN ⊗ A | U]
to denote the matrix V from the �-succinct LWE assumption (Eq. (1.5)). In
particular,

MZ,R :=

⎡
⎢⎣

−Z(Ik ⊗ r1)
...

−Z(Ik ⊗ rN )

⎤
⎥⎦ ∈ Z

nN×k
q and U =

⎡
⎢⎣
U1

...
U�

⎤
⎥⎦ ∈ Z

n�×m
q .

Suppose we sample (y1, . . . ,y�, r) from [I� ⊗A | U]−1(0n�), where yi ∈ Z
m
q , r ∈

Z
m
q . This is statistically indistinguishable from sampling

r ← Dm
Z,σ and ∀i ∈ [�] : yi ← A−1(−Uir). (1.6)

On the other hand, suppose we sample (ŷ1, . . . , ŷN , d̂) from [IN ⊗A | MZ,R]−1

(0nN ), where ŷi ∈ Z
m
q and d̂ ∈ Z

k
q . This is statistically indistinguishable from

sampling

d̂ ← Dk
Z,σ and ∀j ∈ [N ] : ŷi ← A−1(Z(d̂ ⊗ Im)ri). (1.7)
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Since d̂ ← Dk
Z,σ, when k ≥ O(nm log q), the marginal distribution of Z(d̂⊗Im) is

statistically close to uniform. If we define U := Z(d̂⊗Im), then the distribution in
Eq. (1.7) becomes

d̂ ← Dk
Z,σ and ∀j ∈ [N ] : ŷi ← A−1(Uri). (1.8)

This is a similar “cross-term” structure as in Eq. (1.6), except with the roles of
U and r interchanged (i.e., the same r is used for all i ∈ [�] in Eq. (1.6) while
the same U is used for all i ∈ [N ] in Eq. (1.8)). By “transposing” a collection of
preimages sampled as in Eq. (1.6), we can transform them into a collection of
preimages distributed as in Eq. (1.8). To simulate the Z and d̂ components that
determine the U matrix in Eq. (1.8), we rely on preimage sampling techniques.
We provide a formal reduction in Sect. 4 (Theorem 8).

1.2 Additional Related Work

Decentralized broadcast encryption. An alternative approach for solving the
key-escrow problem in broadcast encryption is to rely on an interactive
key-generation process. This is referred to as decentralized broadcast encryp-
tion [PPS12]. Namely, when a new user joins the system, the users in the system
runs an MPC protocol with the existing users to obtain their secret key (and
existing users obtain an updated key). In distributed broadcast encryption, key-
generation is non-interactive and we do not require users to be cognizant of other
users in the system.

Flexible Broadcast Encryption. In distributed broadcast encryption, each user’s
public key is actually associated with a slot index i ∈ [N ]. Moreover, a user
can only encrypt to a set of public keys if they occupy different slots. The
work of [FWW23] introduced a stronger notion of flexible broadcast encryption
where it is possible to encrypt to an arbitrary set of public keys without any
slot restrictions. In the same work, the authors showed how to construct flexible
broadcast encryption using witness encryption (together with a function-binding
hash function). Recently, the work of [GLWW23] showed a generic compiler
from distributed broadcast encryption to flexible broadcast encryption using
combinatoric tools. The work of [GKPW24] also provides a direct construction
of flexible broadcast encryption from pairings.

Registration-Based Cryptography. Distributed broadcast encryption falls into the
more general umbrella of “registration-based cryptography” [GHMR18], which
seeks to remove the trusted authority from advanced encryption schemes like
identity-based encryption (IBE) [GHMR18,GHM+19,GV20,CES21,GKMR23,
DKL+23,FKdP23], attribute-based encryption (ABE) [HLWW23,FWW23,
ZZGQ23,GLWW24,AT24], functional encryption (FE) [FFM+23,DPY23], and
traitor tracing [BLM+24]. Broadly speaking, the goal in each of these settings is
to replace the trusted key-issuing authority with a public bulletin board where
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users can post their own public keys (that they themselves sample). Moreover
a (transparent) key curator can then aggregate the individual public keys into
a single short set of public parameters. The work of [FWW23] also shows how
to compile any registered ABE scheme (that supports a single attribute and
the always-accept policy) into a distributed broadcast encryption scheme (with
succinct ciphertexts). Existing constructions of registered ABE either rely on
indistinguishability obfuscation [HLWW23], witness encryption [FWW23], or
pairing-based assumptions [HLWW23,ZZGQ23,GLWW24,AT24].

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. For a posi-
tive integer n ∈ N, we write [n] := {1, . . . , n}. We write poly(λ) to denote a fixed
polynomial in λ. We write negl(λ) to denote a function that is negligible in λ:
namely, o(λ−c) for all c ∈ N. We say an event occurs with overwhelming proba-
bility if the probability of its complement occurring is negligible. For functions
f = f(λ) and g = g(λ), we write f ≥ O(g) to denote that there exists a fixed
function g′ ∈ O(g) such that f(λ) ≥ g′(λ) for all λ ∈ N. We say an algorithm is
efficient if it runs in probabilistic polynomial time in the length of its input. For
two ensembles of distributions D1 = {D1,λ}λ∈N

and D2 = {D2,λ}λ∈N
indexed

by a security parameter, we say they are computationally indistinguishable if no
efficient algorithm can distinguish them except with negl(λ) probability. We say
they are statistically indistinguishable if the statistical distance between them
is negl(λ). We write D1

c≈ D2 (resp., D1
r← D2) if D1 and D2 are computation-

ally (resp., statistically) indistinguishable. Throughout this work, we will use
bold uppercase letters (e.g., A, B) to denote matrices and bold lowercase letters
(e.g., u, v) to denote vectors. We use non-boldface letters (e.g., v1, . . . , vn) to
refer their components. For a dimension n ∈ N, we write In ∈ Z

n×n to denote
the identity matrix of dimension n. Throughout, we write ‖·‖ to denote the �∞
norm.

Tensor Products. For matrices A ∈ Z
n×m
q and B ∈ Z

k×�
q , we write A ⊗ B ∈

Z
nk×m�
q to denote their tensor (Kronecker) product. For matrices A,B,C,D

where the products AC and BD are well-defined, then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). (2.1)

We now recall a generalization of the leftover hash lemma along with a simple
corollary that will be useful in our analysis.

Lemma 1 (Generalized Leftover Hash Lemma [ABB10, Lemma 13,
adapted]). Let n,m, q be integers such that m ≥ 2n log q and q > 2 is prime.
Then, for all fixed vectors e ∈ Z

m
q and all k = poly(n), the statistical distance

between the following distributions is negl(n):
{
(A,AR, eTR) :

A r← Z
n×m
q

R r← {0, 1}m×k

}
and

{
(A,U, eTR) :

A r← Z
n×m
q ,U r← Z

n×k
q

R r← {0, 1}m×k

}
.
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Corollary 1 (Column Space of Random Matrix [GPV08, Lemma 5.1]).
Let n,m, q be lattice parameters where q is prime and m ≥ 2n log q. Then, for
all but a q−n fraction of matrices A ∈ Z

n×m
q , the columns of A generate Z

n
q .

Discrete Gaussians and Gadget Matrices. We write DZ,σ to denote the discrete
Gaussian distribution over Z with width parameter σ > 0. For a matrix A ∈
Z

n×m
q and a target vector t ∈ Z

n
q in the column-space of A, we write A−1

σ (t) to
denote a random variable x ← Dm

Z,σ conditioned on Ax = t mod q. We extend
A−1

σ to matrices by applying A−1
σ to each column of the input. For positive

integers n, q ∈ N, let Gn = In ⊗ gT ∈ Z
n×m′
q be the gadget matrix [MP12]

where In is the identity matrix of dimension n, gT = [1, 2, . . . , 2�log q	], and
m′ = n(�log q�+1). We also recall some basic properties of the discrete Gaussian
distribution.

Lemma 2 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let n,m, q
be lattice parameters where m ≥ 2n log q. Sample A r← Z

n×m
q . Then, for all

σ > logm and all vectors t ∈ Z
n
q in the span of A,

Pr[‖u‖ >
√

mσ : u ← A−1
σ (t)] ≤ O(2−m).

For the particular case of the discrete Gaussian over the integers and any λ ∈ N,

Pr[|x| >
√

λσ : x ← D
Z,σ] ≤ 2−λ.

Lemma 3 (Gaussian Samples [GPV08, adapted]). Let n,m, q, σ be lattice
parameters such that σ ≥ logm, m ≥ 2n log q, and q is prime. Then the statis-
tical distance between the following distributions is at most negl(n):

{
(A,x,Ax) : A r← Z

n×m
q ,x ← Dm

Z,σ

}
and

{
(A,x, t) :

A r← Z
n×m
q

t r← Z
n
q ,x ← A−1

σ (t)

}
.

Basis Extension and Lattice Trapdoors. We will also use the following
lemma characterizing the distribution of [A | B]−1(·). We give the statement
from [WW23b], which follows immediately from earlier works on preimage sam-
pling and basis delegation [GPV08,CHKP10,MP12]. Finally, we recall the notion
of a gadget trapdoor [MP12].

Lemma 4 (Marginal of Gaussian Preimages [WW23b]). Let n,m, q be
lattice parameters where m ≥ 2n log q and q is prime. Let B ∈ Z

n�×k
q where

�, k = poly(n, log q). Let C = [I� ⊗ A | B] ∈ Z
n�×(m�+k)
q . Then for all target

vectors t ∈ Z
n�
q and all width parameters s ≥ log(�m), the statistical distance

between the following distributions is negl(n):

{v : A r← Z
n×m
q ,v ← C−1

s (t)} and
{[

v1
v2

]
:

A r← Z
n×m
q ,v2 ← Dk

Z,s

v1 ← (I� ⊗ A)−1
s (t − Bv2)

}
.

Lemma 5 (Gadget Trapdoor [Ajt96,GPV08,MP12]). Let n,m, q be lat-
tice parameters with m ≥ 3n log q. Then there exists efficient algorithms
(TrapGen,SamplePre) with the following syntax:
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– TrapGen(1n, q,m) → (A,R): On input the lattice dimension n, the mod-
ulus q, and the number of samples m, the trapdoor-generation algorithm
outputs a matrix A ∈ Z

n×m
q together with a trapdoor R ∈ Z

m×m′
q where

m′ = n(�log q� + 1).
– SamplePre(A,R, t, σ) → x: On input a matrix A ∈ Z

n×m
q , a trapdoor

R ∈ Z
m×m′
q , a target vector t ∈ Z

n
q , and a Gaussian width parameter σ,

the preimage-sampling algorithm outputs a vector x ∈ Z
m
q .

Moreover, the above algorithms satisfy the following properties:

– Trapdoor distribution: If (A,R) ← TrapGen(1n, q,m) and A′ r← Z
n×m
q ,

then Δ(A,A′) = negl(n). Moreover, AR = Gn ∈ Z
n×m′
q and ‖R‖ = 1.

– Preimage sampling: For all matrices R ∈ Z
m×m′
q , parameters σ > 0,

and all target vectors t ∈ Z
n
q in the column span of A, the output x ←

SamplePre(A,R, t, σ) satisfies Ax = t.
– Preimage distribution: Suppose R is a gadget trapdoor for A ∈ Z

n×m
q (i.e.,

AR = Gn). Then, for all σ ≥ m‖R‖ log n, and all target vectors t ∈ Z
n
q , the

statistical distance between the following distributions is at most negl(n):

{x ← SamplePre(A,R, t, σ)} and {x ← A−1
σ (t)}.

Learning with Errors and �-Succinct LWE. The learning with errors (LWE)
assumption [Reg05] with parameters (n,m, q, σ) states that the distribution of
(A, sTA + eT) is computationally indistinguishable from (A,vT) when A r←
Z

n×m
q , s r← Z

n
q , e ← Dm

Z,σ, and v r← Z
m
q . Many recent works [ACL+22,WW23b,

BCFL23,WW23a,CLM23,FMN23,Wee24] have introduced falsifiable variants of
the LWE assumption (or the dual problem of short integer solutions (SIS)) which
conjecture that the LWE (or SIS) problem with respect to A is hard even given
a trapdoor for a matrix related to A. In this work, we use the �-succinct LWE
assumption introduced by Wee [Wee24], which asserts that LWE is hard with
respect to A even given a trapdoor for the matrix [I�⊗A | U] where U r← Z

n�×m
q .

As discussed in [Wee24], the �-succinct LWE assumption is weaker than many of
the other recently-proposed structured lattice assumptions (specifically, the LWE
analogs of k-R-ISIS [ACL+22,BCFL23] and BASISstruct [WW23a,FMN23]). It
is also implied by assumptions like the evasive LWE assumption [Wee22,Tsa22].
We now give the formal statement of the assumption:

Assumption 2 (�-Succinct LWE [Wee24]). Let λ be a security parameter
and let n = n(λ),m = m(λ), q = q(λ), σ = σ(λ) be lattice parameters. Let
s = s(λ) be a Gaussian width parameter and � = �(λ) be a dimension. We say
that the �-succinct LWE assumption with parameters (n,m, q, σ, s) holds if for
all efficient adversaries A, there exists a negligible function negl(·) such that for
all λ ∈ N:

|Pr[A(A, sTA+ eT,U,T) = 1] − Pr[A(A,vT,U,T) = 1]| = negl(λ),
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where A r← Z
n×m
q , s r← Z

n
q , e ← Dm

Z,σ, v r← Z
m
q , U r← Z

n�×m
q , and T ←

[I� ⊗ A | U]−1
s (Gn�).4

In other words, we require that LWE is hard with respect to A even given a
fresh gadget trapdoor T for a related matrix [I� ⊗ A | U].

2.1 Distributed Broadcast Encryption

We now define the notion of distributed broadcast encryption.

Definition 1 (Distributed Broadcast Encryption [BZ14,KMW23]). Let
λ be the security parameter and N be the number of users. An N -user
distributed broadcast encryption scheme is a tuple of efficient algorithms
(Setup,KeyGen, IsValid,Enc,Dec) with the following syntax:

– Setup(1λ, 1N ) → pp: On input the security parameter λ and the number of
users N , the setup algorithm outputs the public parameters pp.

– KeyGen(pp, i) → (pki, ski): On input the public parameters pp and an index
i ∈ [N ], the key-generation algorithm outputs a public key and secret key
(pki, ski).

– IsValid(pp, i, pki) → b: On input the public parameters pp, an index i ∈ [N ],
and a public key pki, the validity-checking algorithm outputs a bit b ∈ {0, 1}.

– Enc(pp, {(i, pki)}i∈S , μ) → ct: On input the public parameters pp, a collection
of public keys pki and a message μ ∈ {0, 1}, the encryption algorithm outputs
a ciphertext ct.

– Dec(pp, {(i, pki)}i∈S , ct, (j, skj)) → μ: On input the public parameters pp, a
collection of public keys pki, a ciphertext ct, and a secret key skj for an index
j, the decryption algorithm outputs a message μ ∈ {0, 1}.
We require that (Setup,KeyGen, IsValid,Enc,Dec) satisfy the following prop-

erties:

– Correctness: For a security parameter λ ∈ N, a bound N on the number of
users, and an adversary A, we define the correctness experiment as follows:

• The challenger samples pp ← Setup(1λ, 1N ) and gives pp to A.
• The adversary specifies a target index j ∈ [N ]. The challenger responds

by computing (pkj , skj) ← KeyGen(pp, j). It gives pkj to the adversary A.
• The adversary outputs a set S ⊆ [N ], a collection of public keys pki for

i ∈ S \ {j}, and a message μ ∈ {0, 1}.
• The challenger checks that j ∈ S and that IsValid(pp, i, pki) = 1 for each

i ∈ S \ {j} and outputs b = 1 if not. Otherwise, the challenger computes
ct ← Enc(pp, {(i, pki)}i∈S , μ) and μ′ ← Dec(pp, {(i, pki)}i∈S , ct, (j, skj)).
It outputs b = 1 if μ = μ′ and b = 0 otherwise.

We say that the scheme is correct if for all λ,N ∈ N and all adversaries A,
there exists a negligible function negl(·) such that for all λ ∈ N, Pr[b = 1] ≥
1 − negl(λ) in the correctness experiment.

4 Note that this distribution is only well defined when Gn� is in the image of [I� ⊗
A | U]. Thus, when Gn� is not in the image, we set T = ⊥. Accordingly, taking
m ≥ 2n log q ensures that this event occurs with negligible probability (Corollary 1).
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– Verifiable keys: For all λ,N ∈ N, and all indices i ∈ [N ], it holds that

Pr
[
IsValid(pp, i, pki) = 1 : pp ← Setup(1λ, 1N )

(pki, ski) ← KeyGen(pp, i)

]
≥ 1 − negl(λ).

– Selective security: For a security parameter λ, a bound N on the number
of users, and a bit b ∈ {0, 1}, we define the selective security game between
an adversary A and a challenger as follows:

• On input the security parameter 1λ and the number of users 1N , the
adversary outputs a challenge set S∗ ⊆ [N ].

• The challenger samples pp ← Setup(1λ, 1N ) and (pki, ski) ←
KeyGen(pp, i) for i ∈ S∗. It also computes ctb ← Enc(pp, {pki}i∈S∗ , b, S∗)
and sends

(
pp, {pki}i∈S∗ , ctb

)
to A.

• At the end of the game, algorithm A outputs b′ ∈ {0, 1}, which is the
output of the experiment.

We say the distributed broadcast encryption scheme is selectively secure if
for all polynomials N = N(λ), and all efficient adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N,

|Pr[b′ = 1 | b = 1] − Pr[b′ = 1 | b = 0]| = negl(λ) (2.2)

in the selective security game. We say that the scheme is selectively secure for
up to N users if Eq. (2.2) holds for the specific value of N .

– Short ciphertexts: There exists a fixed polynomial poly(·) such that for
all λ,N ∈ N, all subsets S ⊆ [N ], all public parameters pp in the sup-
port of Setup(1λ, 1N ), all key-pairs (pki, ski) in the support of KeyGen(pp, i)
for i ∈ S, all messages μ ∈ {0, 1}, and all ciphertexts ct in the support of
Enc(pp, {pki}i∈S , μ, S), it holds that |ct| ≤ poly(λ + logN).

Remark 1 (Encrypting Long Messages). Definition 1 considers the (simple) set-
ting where the ciphertext encrypts a single bit. It is straightforward to support
encrypting longer messages by composing with a symmetric encryption scheme.
Namely, to encrypt a message μ ∈ {0, 1}m, the encryption algorithm samples
a symmetric key k ∈ {0, 1}poly(λ), encrypts the bits of k using the broadcast
encryption scheme, and then encrypts μ using the symmetric key k. The size of
the overall ciphertext is then |μ| + poly(λ, logN).

3 Distributed Broadcast Encryption from Lattices

In this section, we give our construction of a selectively-secure distributed broad-
cast encryption scheme. We begin by introducing an intermediate assumption
called the �-structured LWE assumption which we will use in our security anal-
ysis. Then, in Sect. 4, we show that our intermediate assumption follows from
the �′-succinct LWE assumption (Definition 2) for �′ ≥ � · O(n log q), where n, q
are lattice parameters.
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Assumption 3 (�-Structured LWE). Let λ be a security parameter and n =
n(λ),m = m(λ), q = q(λ), σ = σ(λ) be lattice parameters. Let s = s(λ) be a
Gaussian width parameter. Let k = k(λ) and � = �(λ) be dimension parameters.
We say that the �-structured LWE assumption with parameters (n,m, q, σ, s, k)
holds if for all efficient adversaries A, there exists a negligible function negl(·)
such that for all λ ∈ N:

|Pr[A(A, sTA+ eT,Z,R,T) = 1] − Pr[A(A,uT,Z,R,T) = 1]| = negl(λ),

where A r← Z
n×m
q , s r← Z

n
q , e ← Dm

Z,σ, u r← Z
m
q , Z = [Z1 | · · · | Zk] r← Z

n×mk
q ,

R = [r1 | · · · | r�] ← Dm×�
Z,s , T ← (V�,k)−1

s (Gn�), and

V�,k =

⎡
⎢⎣
A −Z1r1 · · · −Zkr1

. . .
...

. . .
...

A −Z1r� · · · −Zkr�

⎤
⎥⎦ =

⎡
⎢⎣
A −Z(Ik ⊗ r1)

. . .
...

A −Z(Ik ⊗ r�)

⎤
⎥⎦ ∈ Z

n�×(m�+k)
q .

(3.1)

Similar to �-succinct LWE, we require that LWE is hard with respect to A
even given a trapdoor T for a related matrix V�,k. While the right side of the
matrix V�,k appears significantly more structured than the random matrix U
in the �-succinct LWE assumption (Definition 2), we show in Sect. 4 that this
assumption is implied by the �′-succinct LWE assumption (when �′ ≥ �·O(n log q)
and k ≥ 3nm log q).

Parameter Setting. Similar to �-succinct LWE, we only consider instantiations
with m ≥ O(n log q) so that the matrix A spans Z

n
q with overwhelming proba-

bility and the Zi matrices have sufficient width. We additionally note that the
�-structured LWE assumption is false when k is too small. In this setting, the
adversary can use the trapdoor to repeatedly sample (V�,k)−1

s (0). By Lemma 4,
these preimages include samples from A−1

s (Z(d⊗Im)ri) where d ← Dk
Z,s. When

k is too small, collisions in the value of d will arise with noticeable probability.
Such a collision immediately gives a short vector x such that Ax = 0 (which
immediately breaks LWE with respect to A). Thus, we require k = ω(log n) to
ensure that collisions are unlikely to occur. In our setting, we will only consider
k ≥ O(nm log q). In this case, the marginal distribution of Z(d ⊗ Im) is statis-
tically close to uniform by Lemma 3. For this parameter reigme, we can in fact
show that the �-structured LWE assumptions holds under the �′-succinct LWE
for �′ ≥ � · O(n log q). We provide this reduction in Sect. 4.

3.1 Distributed Broadcast Encryption from �-Structured LWE

In this section, we describe our distributed broadcast encryption scheme from
�-structured LWE, where � = N is the bound on the number of users in the
system.
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Construction 4 (Distributed Broadcast Encryption). Let λ ∈ N be a
security parameter, N ∈ N be the number of users, and n = n(λ,N),m =
m(λ,N), q = q(λ,N), σ = σ(λ,N) be lattice parameters. Let s0 = s0(λ,N), s1 =
s1(λ,N) be Gaussian width parameters, k = k(λ,N) be a dimension, and β =
β(λ,N) be a norm bound. We construct our distributed broadcast encryption
scheme (Setup,KeyGen, IsValid,Enc,Dec) as follows:

– Setup(1λ, 1N ): On input the security parameter λ and the bound on the num-
ber of users N , the setup algorithm proceeds as follows:
1. Sample (A,TA) ← TrapGen(1n, q,m), B r← Z

n×m
q , p r← Z

n
q .

2. For each i ∈ [k], sample Zi
r← Z

n×m
q and let Z = [Z1 | · · · | Zk] ∈ Z

n×mk
q .

For each i ∈ [N ], sample ri ← Dm
Z,s0

.
3. Sample TV ← SamplePre

(
VN,k,

[
IN⊗TA

0

]
,GnN , s0

)
, where

VN,k =

⎡
⎢⎣
A −Z(Ik ⊗ r1)

. . .
...

A −Z(Ik ⊗ rN )

⎤
⎥⎦ ∈ Z

nN×(mN+k)
q . (3.2)

Output pp = (A,B,p,Z, {ri}i∈[N ],TV).
– KeyGen(pp, i): On

input the public parameters pp = (A,B,p,Z, {ri}i∈[N ],TV) and an index
i ∈ [N ], the key-generation algorithm samples

⎡
⎢⎢⎣

y1
...

yN

d

⎤
⎥⎥⎦ ← SamplePre(VN,k,TV,ui ⊗ (p+Bri), s1), (3.3)

where ui ∈ {0, 1}N is the the ith standard basis vector, yi ∈ Z
m for each

i ∈ [N ], and d ∈ Z
k. It sets W = Z(d ⊗ Im) ∈ Z

n×m
q and outputs the

public key pk = (W, {yj}j �=i) and the secret key sk = yi.
– IsValid(pp, i, pki): On input the parameters pp = (A,B,p,Z, {ri}i∈[N ],TV),

an index i ∈ [N ], and a public key pki = (Wi, {yi,j}j �=i), the validity-checking
algorithm outputs 1 if the following holds:

∀j 
= i : Ayi,j = Wirj and ‖yi,j‖ ≤ β.

Otherwise, the algorithm outputs 0.
– Enc(pp, {(j, pkj)}j∈S , μ): On input pp = (A,B,p,Z, {ri}i∈[N ],TV), a col-

lection of public keys pkj = (Wj , {yj,j′}j′ �=j) for each j ∈ S, and a mes-
sage μ ∈ {0, 1}, the encryption algorithm samples s r← Z

n
q , e ← Dm

Z,σ,
H r← {0, 1}m×m, and h r← {0, 1}m. It computes WS =

∑
j∈S Wj and outputs

ct =
(
sTA+ eT , sT(B+WS) + eTH , sTp+ eTh+ μ · �q/2� )

.
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– Dec(pp, {(j, pkj)}j∈S , ct, (i, ski)): On input pp = (A,B,p,Z, {ri}i∈[N ],TV), a
collection of public keys pkj = (Wj , {yj,j′}j′ �=j) for each j ∈ S, a ciphertext
ct = (cT

1, c
T
2, c3), and a secret key ski = yi,i ∈ Z

m
q for an index i, the decryption

algorithm computes

z = c3 + cT

2ri − cT

1

⎛
⎝yi,i +

∑
j∈S\{i}

yj,i

⎞
⎠ ∈ Zq,

and outputs �z� where �z� outputs 0 if −q/4 ≤ z < q/4 and 1 otherwise.

Theorem 5 (Verifiable Keys). Suppose q is prime, n ≥ λ, m ≥ 2n log q,
s0 ≥ (mN + k) log(nN), s1 ≥ (mN + k)

√
ms0 log(nN), and β ≥ √

ms1. Then,
Construction 4 has verifiable keys.

Proof. Let λ,N ∈ N and i ∈ [N ]. Let pp = (A,B,p,Z, {ri}i∈[N ],TV) ←
Setup(1λ, 1N ), and sample (pki, ski) ← KeyGen(pp, i). Then, we can write

pki =
(
Wi, {yi,j}j �=i

)
and ski = yi,i.

We now show that IsValid(pp, i, pki) = 1 with overwhelming probability:

– Since s0 ≥ (mN +k) log(nN), by Lemma 5, the distribution of TV is statisti-
cally close to (VN,k)−1

s0
(GnN ). Since m ≥ 2n log q and q is prime, by Lemmas

4 and 2, we have that ‖TV‖ ≤ √
ms0 with overwhelming probability.

– Since s1 ≥ (mN + k)
√

ms0 log(nN), by Lemma 5, the distribution of
yi,1, . . . ,yi,N ,di output by Eq. (1.2) is statistically close to sampling from
(VN,k)−1

s1
(ui ⊗ (p+Bri)). By construction of VN,k (see Eq. (3.2)) and using

Eq. (2.1), this means that for all j 
= i

0 = Ayi,j −Z(Ik ⊗rj)di = Ayi,j −Z(Ik ⊗rj)(di ⊗1) = Ayi,j −Z(di ⊗Im)rj .

By definition of KeyGen, it sets Wi = Z(di ⊗ Im). Correspondingly, this
means that

Ayi,j = Z(di ⊗ Im)rj = Wirj .

– By Lemmas 2 and 4, ‖yi,j‖ ≤ √
ms1 ≤ β with overwhelming probability.

Thus, IsValid(pp, i, pki) = 1 holds with overwhelming probability.

Theorem 6 (Correctness). Suppose the modulus q is prime, m ≥ 2n log q,
s0 ≥ (mN + k) log(nN), s1 ≥ (mN + k)

√
ms0 log(nN), β ≥ √

ms1, and q ≥
4
√

nmσ(1 + Nβ +
√

nms0). Then, Construction 4 satisfies correctness.

Proof. Let pp = (A,B,p,Z, {ri}i∈[N ],TV) ← Setup(1λ, 1N ). Take any index
i ∈ [N ], and let (pki, ski) ← KeyGen(msk, i). Write pki =

(
Wi, {yi,j}j �=i

)
and

ski = yi,i. By the same analysis as in the proof of Theorem 5, we have ‖yi,i‖ ≤ β
and Ayi,i − Z(di ⊗ Im)ri = p+Bri. Since Wi = Z(di ⊗ Im), this means that

Ayi,i = p+Bri +Wiri (3.4)
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Take any set S ⊆ [N ] and any collection of public keys {pkj}j∈S\{i} where pkj

satisfies IsValid(pp, i, pki) = 1. This means that for all j ∈ S \ {i},

Ayj,i = Wjri and ‖yj,i‖ ≤ β. (3.5)

Take any message μ ∈ {0, 1} and let ct = (cT
1, c

T
2, c3) ← Enc(pp, {pki}i∈S , μ, S).

Let s ∈ Z
n
q , e ∈ Z

m
q ,H ∈ {0, 1}m×m,h ∈ {0, 1}m be the com-

ponents sampled by encryption. Consider the output of the algorithm
Dec(pp, {(i, pki)}i∈S , ct, (j, skj)). First,

cT

1

⎛
⎝yi,i +

∑
j∈S\{i}

yj,i

⎞
⎠ = sTAyi,i +

∑
j∈S\{i}

sTAyj,i + eTyi,i +
∑

j∈S\{i}
eTyj,i

︸ ︷︷ ︸
ẽ1

.

Combined with Eqs. 3.4 and 3.5, this becomes

cT

1

⎛
⎝yi,i +

∑
j∈S\{i}

yj,i

⎞
⎠ = sT(p+Bri +Wiri) +

∑
j∈S\{i}

sTWjri + ẽ1

= sT(p+Bri +WSri) + ẽ1,

using the fact that WS =
∑

j∈S Wj and i ∈ S. Next,

c3 + cT

2ri = μ · �q/2� + sTp+ sT(B+WS)ri + eTh+ eTHri︸ ︷︷ ︸
ẽ2

.

Putting everything together, we have

c3 + cT

2ri − cT

1

⎛
⎝yi,i +

∑
j∈S\{i}

yj,i

⎞
⎠ = μ · �q/2� − ẽ1 + ẽ2.

It suffices to show that |ẽ1 − ẽ2| < q/4. We show this holds with overwhelming
probability:

– Since Enc samples e ← Dm
Z,σ, by Lemma 2, with overwhelming probability,

‖e‖ ≤ √
nσ.

– Since ‖yj,i‖ ≤ β for all j ∈ S, it follows that |eTyj,i| ≤ √
nmβσ. Thus,

|ẽ1| ≤
∑
j∈S

|eTyj,i| ≤ N
√

nmβσ.

– Next, H ∈ {0, 1}m×m and h ∈ {0, 1}m so |eTh| ≤ √
nmσ and ‖eTH‖ ≤√

nmσ. Since ri ← Dm
Z,s0

, by Lemma 2, with overwhelming probability ‖ri‖ ≤√
ns0. Then, |eTHri| ≤ nm2σs0. Thus,

|ẽ2| ≤ |eTh| + |eTHri| ≤ √
nmσ(1 +

√
nms0).
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Correctness holds as long as

q ≥ 4|ẽ1 − ẽ2| ≥ 4
√

nmσ(1 + Nβ +
√

nms0).

Theorem 7 (Selective Security). Let λ be a security parameter and N =
N(λ) be any polynomial function. Suppose n ≥ λ, m ≥ 3n log q, s0 ≥ (mN +
k) log(nN) and s1 ≥ (mN + k)

√
ms0 log(nN). Then, under the N -structured

LWE assumption (Assumption 3) with parameters (n,m, q, σ, s0, k), Construc-
tion 4 is selectively-secure for up to N users.

Proof. Take any polynomial N = N(λ) and any efficient adversary A for the
selective security game. We start by defining a sequence of hybrid experiments:

– Hyb
(b)
0 : This is the selective security game with challenge bit b ∈ {0, 1}.

At the beginning of the game, the adversary A declares the set S∗ ⊆ [N ].
The challenger then samples pp ← Setup(1λ, 1N ), (pki, ski) ← KeyGen(pp, i)
for each i ∈ S∗, and ctb ← Enc(pp, {pki}i∈S∗ , b, S∗). The challenger gives
(pp, {pki}i∈S∗ , ctb) to the adversary A. To recall, the challenger samples the
elements as follows:

• The challenger starts by sampling (A,TA) ← TrapGen(1n, q,m), B r←
Z

n×m
q , p r← Z

n
q , Z1, . . . ,Zk

r← Z
n×m
q , and r1, . . . , rN ← Dm

Z,s0
. It sets

Z = [Z1 | · · · | Zk] ∈ Z
n×mk
q and VN,k as in Eq. (3.2).

• Next, it samples a trapdoor TV ← SamplePre(VN,k,
[
IN⊗TA

0

]
,GnN , s0).

The challenger sets the public parameters to be

pp = (A,B,p,Z, {ri}i∈[N ],TV).

• To generate the public key for i ∈ S∗, the challenger samples

κi ← SamplePre(VN,k,TV,ui ⊗ (p+Bri), s1),

and then parses

κi =

⎡
⎢⎢⎣

yi,1
...

yi,N

di

⎤
⎥⎥⎦ ∈ Z

Nm+k
q , (3.6)

where yi,j ∈ Z
m
q and di ∈ Z

k
q . It sets Wi = Z(di ⊗ Im) and pki =(

Wi, {yi,j}j �=i

)
.

• Finally, to generate the challenge ciphertext, the challenger samples
s r← Z

n
q , e ← Dm

Z,σ, H r← {0, 1}m×m, and h r← {0, 1}m. It sets
WS∗ =

∑
j∈S∗ Wj and constructs the challenge ciphertext as

ctb = (cT

1, c
T

2, c3) =
(
sTA+eT , sT(B+WS∗)+eTH , sTp+eTh+b·�q/2� )

.

At the end of the experiment, algorithm A outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment.

– Hyb
(b)
1 : Same as Hyb(b)0 , except the challenger samples TV ← (VN,k)−1

s0
(GnN ).
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– Hyb
(b)
2 : Same as Hyb

(b)
1 , except for all i ∈ S∗, the challenger samples the κi

component as κi ← (VN,k)−1
s1

(ui ⊗ (p+Bri)).
– Hyb

(b)
3 : Same as Hyb

(b)
2 , except the challenger samples A r← Z

n×m
q .

– Hyb
(b)
4 : Same as Hyb

(b)
3 , except for all i ∈ S∗, the challenger first samples

di ← Dk
Z,s1

. Then, it sets Wi = Z(di ⊗ Im). Finally, it samples

∀j 
= i : yi,j ← A−1
s1

(Wirj) and yi,i ← A−1
s1

(p+Bri +Wiri).

– Hyb
(b)
5 : Same as Hyb(b)4 , except for all i ∈ S∗, the challenger samples the secret

key component yi,i ← A−1
s1

(Wiri).
– Hyb

(b)
6 : Same as Hyb

(b)
5 , except for all i ∈ S∗, the challenger samples the

key component κi ← (VN,k)−1
s1

(0nN ) and the components yi,j , di are again
derived from κi according to Eq. (3.6).

– Hyb
(b)
7 : Same as Hyb

(b)
6 except for all i ∈ S∗, the challenger samples κi as

κi ← SamplePre(VN,k,TV,0nN , s1).
– Hyb

(b)
8 : Same as Hyb

(b)
7 , except the challenger sets B = B∗ − WS∗ , where

B∗ r← Z
n×m
q .

– Hyb
(b)
9 : Same as Hyb

(b)
8 except the challenger sets B∗ = AH and p = Ah.

– Hyb
(b)
10 : Same as Hyb

(b)
9 except the challenger samples c1 r← Z

m
q and sets

cT
2 = cT

1H and c3 = cT
1h+ b · �q/2�.

– Hyb
(b)
11 : Same as Hyb

(b)
10 except the challenger samples B∗ r← Z

n×m
q , p r← Z

n
q ,

c2 r← Z
m
q and c3

r← Zq.

We write Hyb
(b)
i (A) to denote the output distribution of an execution of

Hyb
(b)
i with adversary A. We now argue that each adjacent pair of distributions

are indistinguishable.

Lemma 6. Suppose n ≥ λ, m ≥ 3n log q and s0 ≥ (mN + k) log(nN). Then,
Hyb

(b)
0 (A) r← Hyb

(b)
1 (A).

Proof. Since m ≥ 3n log q and s0 ≥ (mN + k) log(nN), by Lemma 5, the
distribution of TV in Hyb

(b)
0 is statistically indistinguishable from sampling

TV ← (VN,k)−1
s0

(GnN ).

Lemma 7. Suppose n ≥ λ, m ≥ 2n log q and s1 ≥ (mN + k)
√

ms0 log(nN).
Then, Hyb(b)1 (A) r← Hyb

(b)
2 (A).

Proof. Since m ≥ 2n log q and q is prime, by Lemmas 2 and 4, we have
that ‖TV‖ ≤ √

ms0 with overwhelming probability. Since s1 ≥ (mN +
k)

√
ms0 log(nN), by Lemma 5, the distribution of κi in Hyb

(b)
1 is statistically

close to sampling from (VN,k)−1
s1

(ui ⊗ (p+Bri)). Since N = poly(λ), the claim
now follows by a hybrid argument.

Lemma 8. Suppose n ≥ λ and m ≥ 3n log q. Then, Hyb(b)2 (A) r← Hyb
(b)
3 (A).
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Proof. Follows immediately by Lemma 5.

Lemma 9. Suppose n ≥ λ, m ≥ 2n log q, and s1 ≥ log(mN). Then,
Hyb

(b)
3 (A) r← Hyb

(b)
4 (A).

Proof. By Lemma 4, for each i ∈ S∗, the distribution of {yi,j}j∈[N ] and di in
Hyb

(b)
3 is statistically close to the distribution

di ← Dk
Z,s1 , ∀j 
= i : yi,j ← A−1

s1 (Z(Ik ⊗ rj)di), yi,i ← A−1
s1 (p+Bri + Z(Ik ⊗ ri)di).

In Hyb
(b)
3 , the challenger then sets Wi = Z(di ⊗ Im). In this case, by Eq. (2.1),

Z(Ik ⊗ rj)di = Z(Ik ⊗ rj)(di ⊗ 1) = Z(di ⊗ Im)rj = Wirj .

The challenger’s sampling procedure in Hyb
(b)
3 is thus equivalent to first sampling

di ← Dk
Z,s1

, then setting Wi = Z(di ⊗ Im), and finally sampling

∀j 
= i : yi,j ← A−1
s1

(Wirj) and yi,i ← A−1
s1

(p+Bri +Wiri).

This is the sampling procedure in Hyb
(b)
4 . Since N = poly(λ), the claim now

follows by a hybrid argument over each i ∈ S∗.

Lemma 10. The distributions Hyb
(b)
4 (A) and Hyb

(b)
5 (A) are identically dis-

tributed.

Proof. The adversary’s view in the two experiments is independent of yi,i for all
i ∈ S∗, so these two distributions are identical.

Lemma 11. Suppose n ≥ λ and m ≥ 2n log q, and s1 ≥ log(mN). Then,
Hyb

(b)
5 (A) r← Hyb

(b)
6 (A).

Proof. This follows by a similar argument as in the proof of Lemma 9. Specifi-
cally, by Lemma 4, the distribution of {yi,j}j∈[N ] and di in Hyb

(b)
6 is statistically

close to the distribution

di ← Dk
Z,s1

and ∀j ∈ [N ] : yi,j ← A−1
s1

(Z(Ik ⊗ rj)di).

Then, the challenger sets Wi = Z(di ⊗ Im). As in the proof of Lemma 9, we can
write Wirj = Z(Ik ⊗ rj)di. Thus, the challenger is sampling yi,j ← A−1

s1
(Wirj)

for all j ∈ [N ]. This is the distribution in Hyb
(b)
5 .

Lemma 12. Suppose n ≥ λ, m ≥ 2n log q and s1 ≥ (mN + k)
√

ms0 log(nN).
Then, Hyb(b)6 (A) r← Hyb

(b)
7 (A).

Proof. Follows by the same argument as in the proof of Lemma 7.

Lemma 13. The distributions Hyb
(b)
7 (A) and Hyb

(b)
8 (A) are identically dis-

tributed.
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Proof. In Hyb
(b)
7 and Hyb

(b)
8 , none of the κi depend on B. As such, the distri-

bution of B is uniform and independent of WS∗ in both experiments. As such,
these two distributions are identical.

Lemma 14. Suppose n ≥ λ, m ≥ 2n log q and q > 2 is prime. Then,
Hyb

(b)
8 (A) r← Hyb

(b)
9 (A).

Proof. By Lemma 1, for all e ∈ Z
m
q , the following two distributions are statisti-

cally indistinguishable:

(A,AH,Ah, eTH, eTh) and (A,B∗,p, eTH, eTh),

where A r← Z
n×m
q ,B∗ r← Z

n×m
q ,p r← Z

n
q ,H r← {0, 1}m×m,h r← {0, 1}m. The

left and right distributions correspond to Hyb
(b)
9 and Hyb

(b)
8 , respectively.

Lemma 15. Suppose the N -structured LWE (Assumption 3) holds with param-
eters (n,m, q, σ, s0, k). Then, sslo9(A) c≈ Hyb

(b)
10 (A).

Proof. Suppose there exists a bit b ∈ {0, 1} and an efficient adversary A that
can distinguish between Hyb

(b)
9 and Hyb

(b)
10 with non-negligible advantage ε > 0.

We use algorithm A to construct an algorithm B that breaks the N -structured
LWE assumption with parameters (n,m, q, σ, s0, k):

1. At the start of the game, algorithm B receives an N -structured LWE challenge
(A, cT

1,Z,R,TV) from its challenger. Let VN,k be the matrix from Eq. (3.2)
formed from the components Z and R = [r1 | · · · | rN ].

2. Algorithm B samples H r← {0, 1}m×m and h r← {0, 1}m, then sets B∗ =
AH,p = Ah, cT

2 = cT
1H and c3 = cT

1h+ b · �q/2�.
3. Algorithm B starts running algorithm A and receives a set S∗ ⊆ [N ]. For

all i ∈ S∗, algorithm B samples κi ← SamplePre(VN,k,TV,0nN , s1) and sets
Wi = Z(di ⊗ Im), where yi,j and di are derived from κi as in Eq. (3.6).

4. Algorithm B sets B = B∗ − WS∗ , pp = (A,B,p,Z, {ri}i∈[N ],TV), and
pki = (Wi, {yi,j}j �=i) for each i ∈ S∗. It sets ctb = (cT

1, c
T
2, c3). It gives

(pp, {pki}i∈S∗ , ctb) to A and outputs whatever algorithm A outputs.

We first show that B correctly simulates an execution of Hyb(b)9 and Hyb
(b)
10

for A.

– The N -structured LWE challenger samples A r← Z
n×m
q , Z r← Z

n×mk
q , and

R ← Dm×�
Z,s0

. Moreover, the challenger samples TV ← (VN,k)−1
s0

(GnN ), which

coincides with the distribution of the public parameters in Hyb
(b)
9 and Hyb

(b)
10 .

Next, algorithm B sets B = AH and p = Ah, so we conclude that the public
parameters pp are perfectly simulated.

– Next, algorithm B samples κi using the same procedure as in Hyb
(b)
9 and

Hyb
(b)
10 , so the public keys are perfectly simulated.

– Consider the distribution of the challenge ciphertext:
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• If cT
1 = sTA+ eT where s r← Z

n
q and e ← Dm

Z,σ, then

cT

2 = cT

1H = sTAH+ eTH = sTB∗ + eTH = sT(B+WS∗) + eTH

c3 = cT

1h+ b · �q/2� = sTAh+ eTp+ b · �q/2� = sTp+ eTh+ b · �q/2� ,

which is the distribution of the challenge ciphertext in Hyb
(b)
9 .

• Conversely, if c1 r← Z
m
q . Then, algorithm B perfectly simulates an execu-

tion of Hyb(b)10 .

We conclude that algorithm B breaks the N -structured LWE problem with
the same advantage ε.

Lemma 16. If n ≥ λ, m ≥ 2(n + 1) log q, and q > 2 is a prime, then
Hyb

(b)
10 (A) r← Hyb

(b)
11 (A).

Proof. This follows from Lemma 1 applied to the matrix
[

A
cT
1

]
∈ Z

(n+1)×m
q .

Lemma 17. The experiments Hyb
(0)
10 (A) and Hyb

(1)
11 (A) are identically dis-

tributed.

Proof. By construction, the challenger’s behavior in Hyb
(b)
11 is independent of

the challenge bit b ∈ {0, 1}, so the adversary’s view in the two distributions is
identical.

Combining Lemmas 6 to 17, selective security follows by a hybrid argument.

Parameter Instantiation. Let λ be a security parameter and N be a bound on
the number of users. We can instantiate the lattice parameters in Construction
4 to satisfy Theorems 5 to 7:

– We set the lattice dimension n = λ and m = O(n log q).
– We set the noise parameter σ = poly(n) (such that the LWE assumption with

parameters (n,m, q, σ) holds). We set the dimension to be k = O(nm log q).
– We set s0 = (mN + k) log(nN) and s1 = (mN + k)

√
ms0 log(nN) = (mN +

k)2
√

m log2(nN).
– Finally, we set the norm bound β =

√
ms1 = (mN + k)2m log2(nN) and the

modulus q such that

q ≥ 4
√

nmσ(1 + Nβ +
√

nms0) = N3 · poly(λ, logN).

In this case, log q = O(logN + log λ).

With this setting of parameters, we obtain a distributed broadcast encryption
scheme with the following parameter sizes. Without loss of generality, we assume
that N ≥ λ.

– Public parameter size: The public parameters pp have size |pp| = N2 ·
poly(λ, logN).
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– Public key size: Each user’s public key pk consists of a matrix W ∈ Z
n×m
q

and N − 1 cross-terms yj ∈ Z
m
q , so |pk| ≤ (n + N)m log q = O(Nλ log2 N).

– Secret key size: The secret key for user i ∈ [N ] consists of a vector yi ∈ Z
m
q ,

so |ski| = O(m log q) = O(λ log2 N).
– Ciphertext size: The ciphertext for any set S ⊆ [N ] and message μ ∈ {0, 1}

consists of of 2m + 1 elements of Zq, so |ct| = O(λ log2 N).

Combined with the reduction from �-structured LWE to �′-succinct LWE (for
�′ ≥ � · O(n log q)) from Sect. 4 (Theorem 8), we obtain the following corollary:

Corollary 2 (Distributed Broadcast Encryption from �-succinct
LWE). Let λ be a security parameter and N = N(λ) be any polynomial. Let
� ≥ N ·O(λ logN). Under the �-succinct LWE assumption for � = N ·O(λ logN)
(and a polynomial modulus-to-noise ratio), there exists a selectively-secure dis-
tributed broadcast encryption scheme. Both the size of the ciphertext and a user’s
secret key is O(λ log2 N), the size of a user’s public key is O(Nλ log2 N), and
the size of the public parameters is N2 · poly(λ, logN).

Remark 2 (Precomputing Encryption and Decryption Keys). Similar to the
pairing-based constructions of distributed broadcast encryption [KMW23,
GLWW23,GKPW24], we can improve the efficiency of the encryption and
decryption algorithms when the broadcast set S is known in advance. Specif-
ically, we can view the matrix WS =

∑
i∈S Wi as the public key for encrypting

to the set S; given WS , encrypting a message to the set S just requires time
poly(λ, logN). Similarly, if user j knows the broadcast set S in advance, she
can pre-compute her decryption component yj,S :=

∑
i∈S\{j} yi,j . Given yj,S ,

decryption now runs in time poly(λ, logN). Precomputation is useful in settings
where users frequently send or receive broadcasts to the same set S.

4 Relating �-Structured LWE and �-Succinct LWE

In this section, we formally show that the �-structured LWE assumption
(Assumption 3) used in Sect. 3.1 follows under the �′-succinct LWE assump-
tion (Assumption 2) when �′ ≥ � · O(n log q), where n is the lattice dimension
and q is the modulus. Essentially, our proof shows how to build a trapdoor
for the �-structured LWE assumption using a trapdoor for the �′-succinct LWE
assumption. We refer to Sect. 1.1 for a high-level overview of our proof strategy.

Theorem 8 (�′-succinct LWE implies �-structured LWE). Let λ be a
security parameter and n = n(λ),m = m(λ), q = q(λ), σ = σ(λ) be lattice
parameters. Let s = s(λ), s′ = s′(λ) be Gaussian width parameters, and � =
�(λ), k = k(λ) be polynomially-bounded dimensions. Suppose q is prime and the
following conditions hold:

– n ≥ λ, m ≥ 2n log q, k ≥ 3nm log q, q ≤ 2n;
– s′ ≥ logm, s ≥ max

{
m3/2(�′ + 1)s′ log(n�′), k log(nm)

}
.
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Let �′ = �n(�log q�+1). Then, the �′-succinct LWE assumption with parame-
ters (n,m, q, σ, s′) implies the �-structured LWE with parameters (n,m, q, σ, s, k).

Proof. We show how to transform the components in an �′-succinct LWE
instance into those of an �-structured LWE instance. Specifically, consider
the components (A,U,T′) in an �′-succinct LWE instance with parameters
(n,m, q, σ, s′):

A r← Z
n×m
q and U r← Z

n�′×m
q and T′ ← [I�′ ⊗ A | U]−1

s′ (Gn�′), (4.1)

We show how to use these components to construct a tuple (A,Z,R,T) dis-
tributed according to the specification of an �-structured LWE instance with
parameters (n,m, q, σ, s, k):

A r← Z
n×m
q and Z r← Z

n×mk
q and R ← Dm×�

Z,s and T ← (V�,k)−1
s (Gn�),

(4.2)
where V�,k is the matrix from Eq. (3.1). We construct a reduction algorithm R
as follows:

1. On input (A,U,T′), parse

U =

⎡
⎢⎣
U1

...
U�′

⎤
⎥⎦ ∈ Z

n�×m
q , (4.3)

where Ui ∈ Z
n×m
q . Next, write the gadget matrix Gn� as

Gn� =

⎡
⎢⎣
v1,1 · · · v1,�′

...
. . .

...
v�,1 · · · v�,�′

⎤
⎥⎦ ∈ Z

n�×�′
q , (4.4)

where vi,j ∈ Z
n
q for all i ∈ [�] and j ∈ [�′]. For each i ∈ [�], define

v̂i :=

⎡
⎢⎣
vi,1

...
vi,�′

⎤
⎥⎦ ∈ Z

n�′
q .

Then, for each i ∈ [�], sample

⎡
⎢⎢⎣

xi,1
...

xi,�′

ri

⎤
⎥⎥⎦ ← SamplePre

(
[I�′ ⊗ A | U],T′, v̂i, s

) ∈ Z
m�′+m
q , (4.5)

where xi,j , ri ∈ Z
m
q .
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2. Next, sample (Z′,TZ′) ← TrapGen(1nm, q, k) and

dj ← SamplePre(Z′,TZ′ , vec(−Uj), s) ∈ Z
k
q (4.6)

for each j ∈ [�′]. Here, vec(−Ui) ∈ Z
nm
q denotes the vectorization of −Ui

(i.e., the vector obtained by vertically stacking the columns of −Ui from left
to right).

3. For each i ∈ [k], let Zi ∈ Z
n×m
q be the matrix where vec(Zi) = z′

i and
z′

i ∈ Z
nm
q is the ith column of Z′. Let Z = [Z1 | · · · | Zk] ∈ Z

n×mk
q and

R = [r1 | · · · | r�] ∈ Z
m×�
q . Finally, let

V�,k =

⎡
⎢⎣
A −Z(Ik ⊗ r1)

. . .
...

A −Z(Ik ⊗ r�)

⎤
⎥⎦ ∈ Z

n�×(m�+k)
q ,T =

⎡
⎢⎢⎢⎣
x1,1 · · · x1,�′

...
. . .

...
x�,1 · · · x�,�′

d1 · · · d�′

⎤
⎥⎥⎥⎦ ∈ Z

(m�+k)×�′
q .

(4.7)
Output (A,Z,R,T).

In the full version of this paper [CW24], we show that if the inputs (A,U,T′)
to the above algorithm are distributed according to Eq. (4.1), then the outputs
(A,Z,R,T) are statistically close to the distribution in Eq. (4.2).

SIS Variants. Our proof for Theorem 8 shows how to use a trapdoor for the
�′-succinct LWE assumption to construct a trapdoor for the �-structured LWE
assumption. The same transformation would apply to show a similar reduction
between the �′-succinct SIS assumption and the �-structured SIS assumption. We
can also construct an analogous reduction algorithm that transforms an instance
of the �′-structured LWE assumption into an instance of the �-succinct LWE
assumption. Thus, up to a O(n log q) increase in the dimension (and polynomial
blow-up in the noise parameters), these assumptions are essentially equivalent.
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Abstract. Non-malleable cryptography, proposed by Dolev, Dwork,
and Naor (SICOMP ’00), has numerous applications in protocol com-
position. In the context of proofs, it guarantees that an adversary who
receives a proof cannot maul it into another valid proof. However, non-
malleable cryptography (particularly in the non-interactive setting) suf-
fers from an important limitation: An attacker can always copy the proof
and resubmit it to another verifier (or even multiple verifiers).

In this work, we prevent even the possibility of copying the proof as it
is, by relying on quantum information. We call the resulting primitive
unclonable proofs, making progress on a question posed by Aaronson. We
also consider the related notion of unclonable commitments. We intro-
duce formal definitions of these primitives that model security in various
settings of interest. We also provide a near tight characterization of the
conditions under which these primitives are possible, including a rough
equivalence between unclonable proofs and public-key quantum money.

1 Introduction

Non-malleable cryptography studies cryptographic primitives that (provably)
cannot be mauled in a “controlled” way. For instance, non-malleable zero-
knowledge [DDN00] considers protocols between a prover and a verifier, where
the prover wants to convince the verifier of the validity of a certain NP-statement
x. At the same time, non-malleability guarantees that the verifier cannot act
as a man-in-the-middle, i.e., it cannot use the interaction with the prover to
convince a different verifier (unless they were able to create their proof from
scratch). However, traditional non-malleable cryptographic protocols (particu-
larly the non-interactive ones) suffer from an important limitation: A man-in-
the-middle can always copy the messages of the prover and forward them to the
new verifier. This attack is clearly unavoidable, and it is typically ruled out by
weakening the non-malleability guarantee (for instance, by only requiring non-
malleability across different NP-statements, or by associating each participant
with a tag and defining non-malleability to hold only across different tags). In
this work, we ask the following question:

Can we construct proofs that (provably) cannot be cloned?

c© International Association for Cryptologic Research 2025
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While this question is clearly hopeless classically, quantum information behaves
in a fundamentally different manner. The no-cloning theorem [WZ82] offers
the tantalizing possibility that one may be able to overcome the above limi-
tation leveraging quantum information. In fact, recent years have seen a surge
of success in constructing cryptographic primitives with unclonability guaran-
tees, such as quantum money [Wie83,Aar09,AC12,FGH+12,Zha21], unclonable
encryption [BL20,AK21,AKL+22], signature tokens [BS17,CLLZ21], revocable
decryption keys [KN22,AKN+23,APV23,BGG+23], unclonable pseudorandom
functions [CLLZ21], to mention a few. However, to the best of our knowledge, the
notion of unclonable proofs (and even the more basic notion of unclonable com-
mitments) has not been formally studied. In fact, this same question was posed
by Aaronson as open problem.1 The purpose of this work is to make progress on
this front.

Fig. 1. The Commitment/Proof Cloning Experiment

Unclonable Commitments and Proofs. In this work we initiate the formal study
of unclonable commitments and unclonable proofs.2 More specifically, we con-
sider a man-in-the-middle (MiM) interacting in a left session with an honest
sender, and in two right sessions with two honest receivers. This is illustrated in
Fig. 1. In these settings we require that:

– (Commitments) The message committed to in one of the right sessions is
independent of the message committed to in the left session. In particular,
consider two (non-communicating) distinguishers which each receive one of
the messages that were committed to in the right sessions, then attempt to
guess whether the left session is a commitment to m0 or to m1. We require that
they cannot simultaneously succeed with negligible advantage over random
guessing, i.e. with probability 1/2 + negl(λ).

– (Proofs: Simulation-Extractability) If the right receivers both accept state-
ments x̃1 and x̃2, then MiM must know a witness for at least one of the two
statements. This is formalized using a simulator-extractor which simultane-
ously simulates MiM’s view without the witness for the left session and, if
both right sessions accept, extracts a witness for either x̃1 and x̃2.

1 https://scottaaronson.blog/?p=2903.
2 We refer to both computationally and statistically sound protocols as proofs in this

work.

https://scottaaronson.blog/?p=2903
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– (Proofs: Simulation-Soundness) Even if MiM receives a simulated proof for
any statement x (potentially not in the language L) in the left session, it
cannot convince two honest verifiers to accept statements x̃1 /∈ L and x̃2 /∈ L
in the right sessions.

We explicitly mention here that the notion of unclonability is in principle mean-
ingful for proofs that do not satisfy any zero-knowledge guarantee. However,
there must be a sense in which the witness is hidden, as otherwise the verifier
could violate the above properties by simply recovering the witness and comput-
ing any number of honest proofs.

Application: Unclonable Credentials. As an interesting application, we mention
that unclonable proofs/arguments can be used to convert any classical creden-
tial into an unclonable credential. Starting from any publicly-verifiable credential
(such as a digital signature), one can simply commit to such a credential and
produce an unclonable proof of the validity of such a credential. The resulting
state can be then publicly verified and it can (provably) not be cloned. This
can be used, for instance, to building uncloneable smartcards or tokens to grant
access to a restricted area, or to log into a particular device. Contrary to existing
unclonable smartcards, unclonable credentials provide provably secure guaran-
tees against an adversary that can even tamper with the hardware.

1.1 Our Results

As the main contributions of this work, we lay the definitional groundwork
for unclonable commitments and proofs, and we study under which compu-
tational assumptions we can build this primitives. We consider two settings:
Same-protocol unclonability and strong unclonability.

Same-Protocol Unclonability. In these settings, we require that the above unclon-
ability guarantees hold when the same verification protocol is performed in all
three sessions. For commitments, we obtain three different constructions with
tradeoffs between their assumptions and properties.

Theorem 1 (Unclonable Commitments - Informal). We obtain the fol-
lowing constructions of unclonable commitments.

– Assuming public-key quantum money and non-interactive non-malleable com-
mitments, there exist non-interactive unclonable commitments.

– Assuming post-quantum non-malleable commitments, there exist interactive
post-quantum unclonable commitments.

– Assuming non-interactive post-quantum non-malleable commitments for one
left session and four right sessions, there exist non-interactive unclonable
commitments.

The assumption of non-malleable commitments is somewhat minimal, since
unclonability is a strengthening of non-malleability. On the other hand, we show
that non-interactive unclonable proofs require (seemingly) stronger assumptions.
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Theorem 2 (Non-Interactive Unclonable Proofs - Informal). Assum-
ing non-interactive zero knowledge and either one-way functions or public key
encryption, non-interactive unclonable proofs exist if and only if public key quan-
tum money exists.

If we are willing to allow interaction, then we can construct an unclonable
proof with only classical computation.

Theorem 3 (Post-Quantum Unclonable Proofs - Informal). Assuming
post-quantum one-way functions, there exist (interactive) post-quantum unclon-
able proofs.

Additionally, we study the setting where the adversary receives k commit-
ments/proofs in the left sessions and attempts to clone them to produce k + r
commitments/proofs in the right sessions, which we call many-many unclonabil-
ity. Our constructions also obtain many-many unclonability, if instantiated with
a commitment/proof where non-malleability holds even for many left and right
sessions (concurrent non-malleability).

Theorem 4 (Many-Many Unclonability - Informal). Assuming concur-
rent non-malleable commitments (respectively, proofs), there exist many-many
unclonable commitments (respectively, proofs).

Strong Unclonability. In these settings, we require that the above unclonabil-
ity guarantees hold for commitments/proofs with respect to any verification
procedure. This is a strong notion of unclonability that effectively captures the
intuition that the information vanishes after the verification is performed. Unfor-
tunately, we show that unclonable proofs do not exist in these settings, assuming
the existence of commitments. In these settings we show that unclonable proofs
are impossible to achieve.

Theorem 5 (Impossibility of Strongly Unclonable Proofs - Informal).
Assuming classical commitments, there do not exist strongly unclonable proofs,
even for interactive protocols.

The proof of the impossibility result makes use of a secure multiparty com-
putation protocol to construct an explicit attack. To the best of our knowledge,
this is the first time that techniques from secure multiparty computation have
been used to analyze unclonability.

We complement the impossibility result by mentioning several possible mod-
ifications to the model that may allow sidestepping the impossibility. We explore
one of them to construct strongly unclonable commitments in the quantum ran-
dom oracle model (QROM), and leave the rest as open problems.

Theorem 6 (Strongly Unclonable Commitments - Informal). In the
QROM, there unconditionally exist strongly unclonable commitments against
right protocols which are statistically binding.
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2 Technical Overview

Since unclonability is closely related to non-malleability, we begin by recalling
this notion and discussing its relation with unclonability. In a non-malleability
experiment, an adversarial MiM interacts with a sender in a left session and
with a receiver in the right session. This is similar to the scenario illustrated
in Fig. 1, except that there is only one right receiver. Since it is impossible to
prevent the MiM from directly forwarding the messages between the two sessions,
non-malleability is commonly defined with respect to identities, or tags, to force
differences between the two sessions. If the MiM uses a different tag in the
right session than in the left session, then we may require one of the following
guarantees:

– (Commitments [DDN00,PR05b]) The message committed to in the right ses-
sion is independent of the message committed to in the left session. In par-
ticular, the joint view of the MiM and the value committed to in the right
session cannot be used to distinguish whether the left session is a commitment
to m0 or to m1.

– (Proofs: Simulation-Extraction [PR05b]) The MiM must know a witness for
the statement x̃ in the right session. This is formalized using a simulator-
extractor which simultaneously simulates MiM’s view without the witness for
the left session and, if the right session accepts, extracts a witness for x̃.

– (Proofs: Simulation-Soundness [Sah99]) Even if the MiM receives a simulated
proof for any statement x (potentially not in the language L) in the left
session, it cannot convince an honest verifier to accept a false statement x̃ /∈ L
in the right session.

We emphasize that these guarantees only hold if the left and right sessions use
different tags.

2.1 Definitions: Unclonable Commitments

Unclonable commitments remove the different-tag restriction by considering two
right sessions, instead of one. Although the MiM can still forward one of the
right sessions, we require that the messages m̃1 and m̃2 committed to in the
right sessions cannot simultaneously be dependent on the message m committed
to in the left session. We formalize this by requiring that no adversary wins the
following game with probability greater than 1/2 + negl.

1. The challenger commits to either m0 or m1 in the left session, and the MiM
commits in the right sessions. Afterwards, the MiM splits its internal state
into two registers MiM1 and MiM2.

2. Two non-communicating distinguishers D1 and D2 each receive a residual
register MiM1 (respectively MiM2) and the value m̃1 (respectively, m̃2) of the
commitment in right session one (respectively, two). The adversary wins if
both distinguishers correctly guess which message the challenger committed
to.
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To ensure that m̃1 and m̃2 are well-defined, we define unclonability for statis-
tically binding commitments. This allows us to define the value of a commitment
using a computationally-unbounded extractor that acts on the receiver’s state.
The case of computationally bounded unclonable commitments is less straight-
forward. Even in the less demanding setting of classical non-malleability, defi-
nitions with respect to computational binding are nuanced since it is difficult
to define a meaningful “value committed in the right session”. Nevertheless, our
paradigm can in principle be applied to any notion of non-malleability for com-
putational binding, such as non-malleability with respect to opening [DIO98] or
non-malleability with respect to replacement [Goy11], simply by using the cor-
responding notion of a commitment’s value. For example, non-malleability with
respect to opening defines a commitment’s value to be the receiver’s output at
the end of the opening phase.

Relation to Unclonable Encryption. The definition of unclonable commitments
has many similarities to unclonable encryption [BL20], but has a few key dif-
ferences. In unclonable encryption, the adversary splits a ciphertext Enc(k,mb)
into two registers B and C. Then, adversaries B and C are given B and C, respec-
tively, along with the secret key k, and try to guess the bit b simultaneously with-
out communicating. Philosophically, unclonable encryption captures the scenario
where an eavesdropping adversary wants to collect information about a cipher-
text in the hopes of later learning the key.

In contrast, unclonable commitments philosophically captures a scenario
where an eavesdropping adversary not only wishes to leak information about
the committed message, but to actually make use of the leaked information
before it is revealed. Because the adversary is attempting a more difficult task,
we can hope to construct unclonable commitments from weaker assumptions.
Indeed, indistinguishable-unclonable encryption is currently only known in the
random oracle model [AKL+22]. In contrast, we show that when the same pro-
tocol is used in all three sessions, it is possible to construct non-interactive
unclonable commitments from any non-interactive non-malleable commitment
(see Sect. 4.2). In this sense, unclonable commitments are weaker than unclon-
able encryption.

However, the two notions are technically incomparable. We note that unclon-
able encryption may in principle be unconditionally possible, whereas unclonable
commitments necessarily require computational assumptions. Even with compu-
tational assumptions, it is not clear how to transform an unclonable encryption
scheme into an unclonable commitment. Indeed, existing techniques for adding
computational assumptions to unclonable encryption (e.g. to create unclonable
public-key encryption) make crucial use of a “fake-key” property that allows the
encrypter to open a ciphertext to any message it wants [AK21]. This technique
is fundamentally incompatible with the binding requirement of a commitment
scheme.

Relation to [BC23]. Recently, Broadbent and Culf proposed a different definition
of unclonable commitments. In their definition, the committer Alice interacts
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with a receiver Bob, while an eavesdropper Eve sees (and can interfere with)
their messages. After the commitment phase, Alice and Bob run a check phase.
During the opening phase, which happens after the check phase, Bob and Eve
cannot directly communicate. Their definition guarantees that if Alice accepts
in the check phase, then at the end of the opening phase Eve has no information
about Alice’s message. Here, Eve plays a similar role to the one that MiM plays
in our definition. There are several core differences between our definitions.

– The first difference is that their definition takes place in the interactive setting
due to the extra check phase, whereas our definition also makes sense for non-
interactive settings.

– The second is that their definition is for statistically hiding (and hence compu-
tationally binding) commitments, whereas ours is for computationally hiding,
statistically binding commitments.

– A third difference is that their scheme provides no guarantees if Alice rejects
during the check phase, or if Eve can communicate with Bob during the open-
ing phase. In this case, it is possible that Eve and Bob both hold information
about Alice’s message. In contrast, our guarantee always holds (even if the
left session aborts during one of the two phases).

To exemplify the difference between the two approaches, consider the follow-
ing toy scenario: Alice has found a proof that P=NP and wants to commit to the
proof to the Clay institute (Bob), to later claim the 1M$ prize. Note that our
constructions allow Alice to make a non-interactive commitment. Eve intercepts
the commitment, and she tries to clone it and submit as her own commitment
to Bob (who is distributing the prize). Our definition prevents this attack since
Eve’s commitment is not allowed to depend on that of Alice. On the other hand,
Broadbent and Culf’s definition does not necessarily defend against this attack:
This is because their definition only applies if Eve and Bob do not communi-
cate at all during the opening phase. In this example, Eve can intercept Alice’s
opening, create her own opening based on that, and submit to Bob.

2.2 Definitions: Unclonable Proofs

We now turn our attention to defining unclonable proofs. Existing notions
of unclonability, such as unclonable encryption [BL20] or even copy-
protection [Aar09] attempt to prevent an adversary in possession of a cloned
state from learning new information. However, these notions do not make sense
in the context of proofs, since it is always possible to generate a fresh proof using
the witness. To fill this gap, we present two incomparable notions of unclonable
proofs which are inspired by the non-malleable proof literature.

Extraction-Unclonability. The first notion aims to realize the intuition that the
only way for the MiM to generate two accepting proofs is to generate one of them
using the witness. In other words, the MiM must “know” at least one witness.
In the classical setting of non-malleability, this is formalized by the notion of
simulation-extraction.
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In the setting of unclonability, we consider a cloning experiment where the
MiM receives a proof of a statement x in the left session and sends proofs in
two right sessions (see Fig. 1). This experiment outputs MiM’s final view, as
well as the statements x̃1 and x̃2 in the two right sessions and whether the
verifiers accept in those sessions. Extraction-unclonability requires the existence
of a simulator S(x) which receives as input the statement x to be proved in the
left session (but not a witness) and outputs two things. First, it must output a
view τ which is indistinguishable from adversary’s view at the end of the real
cloning experiment. Second, it must output two potential witnesses w̃1 and w̃2.
If the verifiers accept in both right sessions of τ , then at least one of w̃1 and w̃2

must be a valid witness for x̃1 and x̃2, respectively. We note that since witness
relations are efficiently checkable, it is possible to efficiently determine which of
the two right sessions extraction succeeded in, and which session was potentially
forwarded.

Soundness-Unclonability. A more nuanced adversary might attempt to directly
break soundness of both right sessions. Although extraction-unclonability pre-
vents this by extracting at one least valid witness if the left session proves a true
statement x ∈ L, it does not provide any guarantees if the left session proves
a false statement x /∈ L. This nuance is reminiscent of the difference between
simulation-extraction and simulation-soundness in the setting of classical non-
malleability, which [JP14] shows are incomparable.

In fact, this scenario arises naturally in cryptographic proofs. Consider a
“paired commitment” where the left prover commits twice to the same value v
and proves in zero knowledge that the two commitments are consistent. A simple
strategy to prove security of this paired commitment is to use a hybrid argument
where first we simulate the zero-knowledge proof, then switch the commitments
one at a time to a new value v′. Observe that in the middle hybrid, the left
commitments are to different values v and v′, yet the zero-knowledge proof is
still being simulated. If the receiver (the MiM) were to engage as a prover in
a second proof during this hybrid, then the results could be catastrophic, since
there would be no guarantee of soundness. Thus, we could not simultaneously
rely on the hiding of the paired commitment and the soundness of a second
proof.

To address this issue, we extend simulation-soundness to the setting of
unclonability. Consider the same proof cloning experiment as for extraction-
unclonability. Simulation-soundness requires the existence of a simulator S(x)
which receives as input the statement x to be proved in the left session (but not a
witness), then outputs a view τ which is indistinguishable from the adversary’s
view at the end of the proof cloning experiment. Furthermore, if x̃1 /∈ L and
x̃2 /∈ L in τ , then at most one of the receivers accept in the right sessions of τ .

Application: Unclonable Credentials. We expand on the previously mentioned
application of unclonable credentials and briefly discuss why both extraction-
unclonability and soundness-unclonability suffice for it. Recall that to construct
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an unclonable credential (say for an employee’s badge), one can classically com-
mit to a signature of the badge number b, then produce an unclonable proof that
the commitment contains a valid signature of b.

If the proof were to satisfy extraction-unclonability, then any copier would
be able to produce a valid signature without receiving one in the clear. This
immediately violates the unforgeability of the signature scheme.

On the other hand, if the proof were to satisfy soundness-unclonability, then
we could consider a series of hybrid experiments where b becomes an invalid
credential in general. First, the unclonable proof is simulated. Second, the badge
holds a commitment to ⊥, instead of a commitment to a signature on b. Finally,
the signing key is “punctured”, so that no valid signature on b exists [BSW16].
In the final hybrid, any proof of a signature for b must be breaking soundness, so
soundness-unclonability guarantees that the adversary cannot create two accept-
ing badges for b. Since this experiment is indistinguishable from the real world,
it also cannot create an acceptable second badge for b in the real world.

2.3 Same-Protocol Unclonability

In same-protocol unclonability, we consider the case where the right sessions
use the same commitment/proof protocol as the left session. For example, this
scenario could be useful when many users are interacting with the same central
entity, who uses a standardized cryptographic suite.

Unclonable Tag-Generation. A non-malleable commitment has similar security
to an unclonable one, except that its security guarantee only holds when the
right and left sessions use different tags. Thus, if there was a way to guarantee
that one of the two right sessions uses a different tag than the left session, we
would be able to rely on non-malleability in that session.

This suggests a natural primitive which we call unclonable tag-generation. In
a tag-generation protocol, a sender and a receiver interact to agree on a string
tag. Unclonability is defined using a game where an adversary MiM participates
in three simultaneous sessions: a left session where it acts as the receiver, and
two right sessions where it acts as the sender. Unclonability guarantees that at
least one of the two right sessions outputs a different tag than the left session,
unless all three sessions output a failure symbol ⊥.

Armed with this primitive, there is a simple construction of unclonable com-
mitments or unclonable proofs. First, agree on tag using an unclonable tag-
generation protocol. Then, execute a non-malleable commitment using tag. If
both the tag-generation protocol and the non-malleable commitment are non-
interactive, then the two messages can be sent in parallel. This yields a non-
interactive unclonable commitment. Unclonable proofs can be constructed sim-
ilarly from non-malleable proofs.

Constructing Unclonable Tag-Generation. A natural idea for unclonable tag-
generation is to use the strong unclonability properties of public key quantum
money (PKQM). This yields a simple, non-interactive protocol. The sender sends
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a serial number, banknote pair (s, |$s〉) to the receiver. The tag is s. The verifier
checks that the banknote matches s before outputting s. Since no MiM can
create two copies of |$s〉, it can only use s as a tag in a single right session.
Unfortunately, public key quantum money is currently only known from strong or
poorly-understood assumptions such as indistinguishability obfuscation [AC12,
FGH+12,Zha21].

It is immediate to see that in the interactive setting, a classical solution is
possible. The key observation is that two different receivers may act differently,
as long as they send at least one message. First, the receiver sends a uniformly
random message r. The sender samples a signature key pair (sk, vk), then signs r.
It sends vk and the signature back to the receiver, who verifies the signature. The
tag is the verification key vk. Notice that in the unclonability experiment, the left
sender will only sign a single r. However, the two right sessions will use different
r’s with high probability. Thus, in order to break unclonability, the adversary
MiM must forge one of the two signatures. By combining this idea with a post-
quantum non-malleable commitment/proof (e.g. [ABG+21,BLS22,LPY23]), it
is even possible to construct a post-quantum unclonable commitment/proof. The
downside of this approach is that it is interactive, which precludes constructing
non-interactive unclonable primitives.

As a result of these ideas, we obtain two constructions of both unclonable
commitments and unclonable proofs. One construction is non-interactive, but
requires public key quantum money. The other is post-quantum, but requires
two rounds of communication.

Non-interactive Unclonable Commitments without PKQM. In the case of com-
mitments, it is possible to generate the tags in a more flexible way. Since a
commitment has both a commitment phase and an opening phase, the tag can
be generated in the commitment phase, then confirmed in the opening phase.
Unless the adversary can confirm the same tag in both opening phases, it is
unable to clone a commitment. This delayed confirmation allows us to use tech-
niques from private-key quantum money, which exists unconditionally [Wie83].

This idea yields our third construction of unclonable commitments, which
is non-interactive and can be based only on post-quantum non-interactive non-
malleable commitments. As mentioned previously, this is an almost minimal
assumption, since unclonability is a strengthening of non-malleability. To gener-
ate the tag, the committer samples a random Wiesner state |x〉θ, then commits to
(x, θ) using a post-quantum non-interactive non-malleable commitment scheme
with tag 0. Call this commitment comtag. Then, to commit to a message m, the
committer computes a non-interactive non-malleable commitment to m, using
comtag as the tag. To open the commitment, the committer opens both non-
malleable commitments and the verifier checks that comtag matches the Wiesner
state.

Since the tag comtag is statistically binding, it information-theoretically deter-
mines a Wiesner state. Thus, in order to use the same tag in all three sessions,
the adversarial MiM must clone a Wiesner state before its description is revealed.
Otherwise, one of the right sessions will contain an invalid commitment. On the
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other hand, if the adversary uses a different tag in one of the right sessions,
then non-malleability guarantees that the value committed inside that session is
independent of the value committed in the left session.

However, this intuitive proof fails against a more subtle attack. An adversary
may attempt to selectively generate invalid commitments according to the left
message m. To do this, it generates an independent Wiesner state |x̃〉

˜θ. Then, it
mauls the commitment to m so that its right tag commitment c̃omtag matches
the Wiesner state if and only if m is a pre-determined message. Crucially, the
non-malleability of comtag prevents this type of attack. Since c̃omtag must use
a different tag (0) from the commitment to m, the value committed inside it
must be independent of m. Combining this with the intuitive proof from before
shows that in at least one session, the adversary must either make an invalid
commitment or commit to a value which is independent of m, and that which case
happens must also be independent of m. Therefore this session is independent
of m in general.

Unclonable NIZKs Imply PKQM. The reader may observe that the two ideas
for unclonable commitments from weaker assumptions both made use of multi-
ple messages to confirm the tag. In our third construction of commitments, we
make use of the opening phase to delay the confirmation, giving non-interactive
unclonable commitments. However, some primitives, such as proofs, only consist
of a single phase. Given this, it is natural to wonder whether non-interactive
unclonability for such primitives inherently require public key quantum money.
We show that in the case of unclonable non-interactive zero knowledge (NIZKs),
the answer is yes; unclonable NIZKs do imply public key quantum money, assum-
ing one-way functions. When combining this with the previous construction of
unclonable NIZKs from public key quantum money, we arrive at a loose equiv-
alence between the two.

To construct public key quantum money, we use unclonable NIZKs and com-
mitments. To mint a note, the bank first samples a common reference string
(CRS) for the NIZK. Since the bank’s only goal is to prevent cloning of ban-
knotes, it may be trusted to do this honestly. Then, it generates a commitment
com0 to 0, which will act as the serial number. Finally, it proves using the unclon-
able NIZK that com0 is a commitment to 0. Intuitively, the unclonability of the
NIZK guarantees that any adversary which produces two banknotes must be
able to find a witness for com0 being a commitment to 0, just given com0. How-
ever, this would violate the security of the commitment! It is also possible to
show the security of the scheme using the related notion of NIZK soundness-
unclonability, which guarantees that the adversary cannot convince both right
verifiers to accept a statement x̃ /∈ L, even if it receives a simulated proof for a
statement x (potentially not in L). We defer the details to the technical section.

2.4 Strong Unclonability

It is also interesting to consider the setting where the right protocols may be
different from the left protocol. For example, this scenario could be useful when
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a user wishes to place sealed bids in auctions from multiple auction houses, who
might each prefer their own cryptographic libraries.

Negative Results. It is simple to see that strongly unclonable NIZKs are not
possible; an adversary can simply ask the verifier to return the NIZK after they
are done, then reuse the returned NIZK. We further show that even interactive
strongly unclonable proofs are not possible.

Intuitively, an adversary can attack a candidate proof by engaging in a single
session of a secure multiparty computation (MPC) protocol (for quantum func-
tionalities) with the two verifiers. The MPC protocol emulates a single verifier
for the proof. This ideal verifier will always accept the (honest) proof from the
left session, so both right verifiers will also accept. We emphasize that the veri-
fiers do not have a direct channel between them, so they must send messages to
each other via the adversary. Since the adversary controls the channel between
the two verifiers, the MPC protocol must be secure against a dishonest majority
in order to guarantee that the right protocols are sound.

One can also imagine a similar attack for commitments. However, we only
define unclonable commitments with respect to statistical binding. In order for
the right protocols, which are defined using the MPC, to be statistically binding,
the MPC must guarantee the correct output even when an unbounded adversary
controls the majority of the parties.

Positive Results: Commitments. One option for avoiding the impossibility is to
use a random oracle (the QROM model). In a dishonest majority setting, an
MPC cannot hope to query the QROM, preventing the attack. We show how
to construct a strongly unclonable commitment scheme in the QROM model,
where unclonability holds if the two right protocols are statistically binding.

To commit to a message m, encrypt m using an unclonable encryption
scheme, then commit to the encryption key k using the random oracle. Unclon-
able encryption can be constructed in the QROM [AKL+22]. As long as k is sta-
tistically bound, there is only one possible decryption of the unclonable cipher-
text, giving statistical binding. Crucially, random oracles allow commitments
which are both statistically binding and statistically hiding. The former prop-
erty allows statistical binding. The latter property ensures k can be removed
from the left commitment without affecting the values committed to in the right
commitments. Since the right commitments must be statistically binding, they
each uniquely determine a value m̃r. However, if m̃1 and m̃2 simultaneously
depended on m, then this would violate the security of the underlying unclon-
able encryption scheme.

2.5 Concurrent Work

In an independent and concurrent work, Jawale and Khurana [JK23] also intro-
duced a notion of unclonable NIZKs and showed that it is roughly equivalent
to public-key quantum money. Their notion of unclonable extractability is very
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similar to our notion of extraction-unclonability, which supports it as a natu-
ral definition of unclonability. They also apply unclonable NIZKs to construct
unclonable signatures of knowledge, which we do not consider. On the other
hand, we additionally define and construct unclonable commitments, extend our
definitions to the interactive case, and investigate the possibility of achieving
security against verifiers who do not follow the honest verification procedure
(strong unclonability).

2.6 Paper Organization

We define and construct unclonable tag-generation in Sect. 3. We define unclon-
able commitments in Sect. 4.1 and construct them in Sect. 4.2. We define unclon-
able proofs in Sect. 5.1 and construct them in Sect. 5.2. We prove their equiva-
lence to public key quantum money in Sect. 5.3. We present our negative results
for strong unclonability in Sect. 6 and the positive results in Sect. 7.

3 Unclonable Tag-Generation

In order to construct unclonable primitives, we start by constructing a primitive
called unclonable tag-generation protocols. Informally, a tag-generation protocol
guarantees that no adversary can receive a generated tag in a left session, then
force the same tag in two other sessions of the same protocol. This is a useful
property to combine with non-malleable primitives, which only guarantee secu-
rity if the tags in the left and right sessions are different. Together, they give a
very natural construction of unclonable primitives: determine the tag using an
unclonable tag-generation protocol, then run the corresponding non-malleable
primitive.

3.1 Definition

Tag-Generation Protocols. A tag-generation protocol is a (potentially interac-
tive) protocol between a sender and a receiver. At the end of the protocol, the
sender and the receiver output the same string tag.

Tag Cloning Game. The tag cloning game Cl-TagGen(1λ) uses a tag-generation
protocol TagGen. It involves three session: a “left” session between an honest
sender SL and a QPT adversarial man-in-the-middle MiM, and two right sessions
between MiM and an honest right receiver, respectively named R1 and R2. The
sessions may be interleaved arbitrarily. The game is played as follows:
1. Tag-Generation: Each session runs an instance of TagGen.
2. Output: Let tag be SL’s output, let ˜tag1 be R1’s output, and let ˜tag2 be R2’s

output. The adversary wins (output 1) if tag = ˜tag1 = ˜tag2 �= ⊥. Otherwise
the game outputs 0.

Definition 1 (Unclonability for Tag-Generation). A tag-generation
scheme Π is unclonable if for all QPT MiM,

Pr[Cl-TagGen(1λ) = 1] ≤ negl
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3.2 Constructions

A Classical Interactive Protocol. We observe that even classically, two different
receivers may act differently. Thus, we may use interaction to realize a classical
unclonable tag-generation protocol.

Fig. 2. Post-Quantum Unclonable Tag-Generation

Lemma 1 (Interactive Classical Unclonable Tag-Generation). Assum-
ing post-quantum one-way functions, there exists a two-round, post-quantum
tag-generation protocol which is unclonable.

Proof. The construction is given in Fig. 2. Note that post-quantum digital signa-
tures can be constructed from post-quantum one-way functions. Say that MiM
violated unclonability, and consider an execution where tag = ˜tag1 = ˜tag2 �= ⊥.
By assumption, such executions occur with noticeable probability. Since no tag
is equal to ⊥, it must be the case that Verify( ˜tag1, σ̃1, r̃1) and Verify( ˜tag2, σ̃2, r̃2)
both accepted. Furthermore, r̃1 �= r̃2 with probability 1 − 2−λ over the random-
ness of R1 and R2. Therefore either r �= r̃1 or r �= r̃2. Without loss of generality,
say it is r̃i. Thus, given MiM, we could break the unforgeability of digital signa-
tures by querying the unforgeability challenger on r, using the returned signature
σ to finish the unclonability game, and outputting σ̃i.

Unfortunately, using an interactive tag-generation protocol to build an
unclonable protocol results in an interactive protocol. In order to construct non-
interactive unclonable primitives, we will need a non-interactive tag-generation
protocol.

Unclonable Tag-Generation From Public Key Quantum Money. Public key quan-
tum money scheme has a very strong unclonability property. This gives a very
simple and natural unclonable tag-generation protocol.

Lemma 2 (Unclonable Tag-Generation from PKQM). Assuming public
key quantum money, there exists a non-interactive unclonable tag-generation
protocol.
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Fig. 3. Non-Interactive Unclonable Tag-Generation from Public Key Quantum Money

Proof. The construction is given in Fig. 3. Say that some MiM violated unclon-
ability. Then with noticeable probability, s = s̃1 = s̃2 and both |˜$1〉 and |˜$2〉 are
valid banknotes for s. This is a direct contradiction of the security of public key
quantum money.

4 Unclonable Commitments

4.1 Definitions

Informally, an unclonable commitment guarantees that no man-in-the-middle
can receive a commitment to m, then commit to related messages in two other
sessions of the same commitment protocol. This is very similar to the guarantee
provided by non-malleable commitments. The key difference is that an unclon-
able commitment does not require that the committers in the three sessions use
distinct identities, or even that they send different messages. As a direct con-
sequence, unclonability is meaningful even if the adversary attempts to directly
forward the left session.

Commitment Cloning Game. The commitment cloning game Cl-Com
(1λ,m0,m1) uses a statistically binding commitment protocol (Com,Open). It
involves three session: a “left” session between an honest committer CL and an
adversarial man-in-the-middle MiM, and two right sessions between MiM and
an honest right receiver, respectively named R1 and R2. The sessions may be
interleaved arbitrarily. Additionally, it uses two QPT distinguishers D1 and D2.
The game is played as follows:

1. Commitment: In the left session, CL samples a random bit b, then commits
to mb using Com. Simultaneously in the right sessions, MiM interacts with
R1 and R2 as the committer in two executions of Com. At the end of the
execution, MiM splits its internal state into two registers MiM1 and MiM2.

2. Output: Let Ext be the statistical binding extractor for (Com,Open). Let
R1 and R2 be the internal registers of R1 and R2, respectively. Compute
(R1, ˜M1) ← Ext(R1) and (R2, ˜M2) ← Ext(R2), where registers ˜M1 and ˜M2

contains the extracted messages for right session one and two, respectively.
Compute D1(MiM1, ˜M1) and D2(MiM2, ˜M2), then measure their respective
output bits b1 and b2. The adversary wins (output 1) if b1 = b2 = b, and
otherwise the game outputs 0.
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Definition 2 (Unclonability for Commitments). A commitment scheme
(Com,Open) is unclonable if for all (non-uniform) QPT adversaries MiM,
all (non-uniform) QPT distinguisher pairs (D1,D2) and all message pairs
(m0,m1) ∈ {0, 1}�,

Pr[Cl-Com(1λ,m0,m1) = 1] ≤ 1
2

+ negl(λ)

It is also interesting to consider a stronger notion where the right sessions
may use different (statistically binding) commitment schemes than the left ses-
sion. The corresponding game Cl-Comstrong(1λ,m0,m1) takes the same form as
G(1λ,m0,m1), except the right sessions use commitment schemes ( ˜Com1, ˜Open1)
and ( ˜Com2, ˜Open2). These right commitments must satisfy statistical binding.

Definition 3 (Strong Unclonability). A commitment scheme (ComL,OpenL)
is strongly unclonable if for all right commitment schemes ( ˜Com1, ˜Open1) and
( ˜Com2, ˜Open2), every non-uniform QPT adversary MiM, every (non-uniform)
QPT distinguisher pair (D1,D2) and all message pairs (m0,m1) ∈ {0, 1}n,

Pr[Cl-Comstrong(1λ,m0,m1) = 1] ≤ 1
2

+ negl(λ)

Since strong unclonability is a property about the composition of different
protocols, it is much more difficult to achieve. We examine this notion further
in Sect. 7.

Many-Many Unclonability. A natural extension is to consider an adversary which
receives commitments in k left sessions and attempts to produce k + r commit-
ments to related values in the right sessions. Similar settings have been previously
studied in the context of program-copy protection [Aar09,LLQZ22]. In the case
of commitments, we additionally aim to generalize the notion of concurrent non-
malleable commitments [DDN00,PR05a]. In concurrent non-malleable commit-
ments, the joint values of all right commitments whose tags differ from the left
commitments must be independent of the joint values of all left commitments.
Intuitively, many-many unclonability guarantees that if there are k left sessions,
then at most k right sessions are correlated with them; the others must be inde-
pendent. The many-many commitment cloning game Cl-Comk,r(1λ,m0,m1) for
k left sessions and k + r right sessions is played as follows:

1. Commitment: In the left sessions, the challenger samples a random bit b,
then commits to mb,i for each i ∈ [k]. Simultaneously in the right sessions,
MiM interacts as the committer with the k+r honest receivers. At the end of
this phase, MiM chooses a partition P = (P1, . . . , Pk+1) of [k + r] and splits
its state into k + 1 registers MiM1, . . . ,MiMk+1.

2. Output: For every i ∈ [k + 1], compute (Ri, ˜Mi) ← Ext(Ri), then compute
Di(MiMi, ˜Mi) and measure its output bit bi. The adversary wins (output 1)
if bi = b for every i ∈ [k + 1]. Otherwise the experiment outputs 0.
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Definition 4 (Many-Many Unclonability for Commitments). A commit-
ment scheme (Com,Open) is many-many unclonable if for all k = poly(λ),
r = poly(λ), all (non-uniform) QPT adversaries MiM, all (non-uniform) QPT
distinguishers D1, . . . , Dk+1, and all message vectors (m0,m1) ∈ {0, 1}nk,

Pr[Cl-Comk,r(1λ,m0,m1) = 1] ≤ 1
2

+ negl(λ)

4.2 Constructions

A simple construction for unclonable commitments is to use an unclonable tag-
generation protocol to generate a tag for a non-malleable commitment. This
guarantees that one of the two right sessions uses a different tag than the left
session. In this case, we can rely on the security of the non-malleable commit-
ment.

Fig. 4. An Unclonable Commitment

Theorem 7. Assuming n1-round non-malleable commitments and n2-round
unclonable tag-generation protocols, there exists an unclonable commitment with
n1 + n2 or n1 + n2 or n1 + n2 − 1 rounds.

Proof. The construction is given in Fig. 4. Hiding is immediate from the underly-
ing non-malleable commitment. Binding and hiding follow directly from NMCom.

We show unclonability by reducing to the non-malleability of (NMCom,
NMOpen). The non-malleability adversary MiMnm internally runs the cloning
adversary MiMU . It internally runs TagGen in all three sessions to determine the
tags tag, ˜tag1, and ˜tag2. By the unclonability of TagGen, ˜tagr �= tag for some r.
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MiMnm chooses tag as the tag for the external left session and ˜tagr as the tag for the
external right session. It then plays the non-malleability experiment by forward-
ing messages between the external sessions and their respective internal sessions,
while internally emulating an honest interaction in the unchosen internal right
session. Finally, the non-malleability distinguisher Dnm simply runs the cloning
distinguisher DU,r for session r. Observe that since ˜tagr �= tag, Dnm receives the
same extracted value as DU,r with overwhelming probability. Thus, if the cloning
distinguishers simultaneously succeed with probability 1/2+ε, then Dnm succeeds
with probability ≥ 1/2 + ε − negl(λ). 	


If the non-malleable commitment is concurrent non-malleable, then the same
construction is many-many unclonable.

Theorem 8. Assuming n1-round concurrent non-malleable commitments and
n2-round unclonable tag-generation protocols, there exists a many-many unclon-
able commitment with n1 + n2 or n1 + n2 − 1 rounds.

Proof. Consider an execution of the unclonable commitment game with k left
sessions and k+r right sessions. Due to the unclonability of TagGen, for each left
session there is at most one right session with the same identity tag �= ⊥, except
with negligible probability. This can be reduced to the (1 → 2) unclonability of
the tag-generation by randomly selecting one of the k = poly(λ) left sessions
and two of the k + r = poly(λ) right sessions. Therefore at least one of the
k + 1 sets of right sessions does not include any sessions whose tags match a
left session. Many-many unclonability can be reduced to the concurrent non-
malleability of (NMCom,NMOpen) similarly to the proof of Theorem7; identify
these sessions at the end of the commitment phase, then run the corresponding
cloning distinguisher.

When combining the construction in Fig. 4 with the post-quantum tag-
generation protocol and post-quantum non-malleable commitments, we get
a post-quantum construction of unclonable commitments. Post-quantum non-
malleable commitments were first introduced by [ABG+21]. Later work
improved the assumptions to only require post-quantum one-way func-
tions [BLS22], and even achieved a constant-round version [LPY23].

Corollary 1 (Post-Quantum Interactive Unclonable Commitments).
Assuming post-quantum one-way functions, there exist constant-round post-
quantum unclonable commitments. 	

Proof. This is immediate from Theorem 7, Lemma1 (two-round post-quantum
unclonable tag-generation from one-way functions), and [LPY23].

Corollary 2 (Unclonable Commitments from PKQM). Assuming non-
interactive non-malleable commitments and public key quantum money, there
exist non-interactive unclonable commitments.



Unclonable Commitments and Proofs 211

Proof. This is immediate from Theorem 7 and Lemma 2 (non-interactive tag-
generation from public key quantum money). 	


We note that non-interactive non-malleable commitments with respect to
commitment3 can be constructed in the CRS model from any non-malleable
public key encryption (PKE) scheme with perfect correctness. Non-malleable
PKE can be constructed from any PKE with security against chosen-plaintext
attacks [CDMW18]. Although [CDMW18] proved only classical security, we
observe that their construction is also post-quantum secure.

We now return to the construction sketch of non-interactive non-malleable
commitments. The CRS consists of a public key. To commit to a message, encrypt
it under the public key in the CRS, and to open, reveal the randomness. Per-
fect correctness guarantees binding, since there is a unique message that was
encrypted. Although non-malleable PKE is typically defined without a tag, a
tag t can be generically added by committing to t‖m instead of m [PR05b].

Non-interactive Construction from Weaker Assumptions. Unfortu-
nately, public key quantum money is currently only known from strong assump-
tions such as post-quantum indistinguishability obfuscation [AC12,FGH+12,
Zha21]. In order to build an unclonable commitment from weaker assumptions,
we will make use of the fact that commitments have both a commitment phase
and an opening phase. This structure allows for the tag to be generated in the
commitment phase, then “confirmed” in the opening phase. The delayed verifi-
cation allows for the usage of techniques from private-key quantum money in
order to guarantee that the tag cannot be cloned.

Theorem 9. If there exist post-quantum non-interactive commitments which
are (1, 4)-concurrent non-malleable with respect to commitment, then there exist
non-interactive unclonable commitments.

Proof (Sketch). The construction is given in Fig. 5. Hiding follows directly from
(NMCom,NMOpen). The statistical binding extractor extracts from nmcomtag

and nmcommsg in unbounded time, then measures whether |ψ〉 is consistent with
the extracted messages.

Unclonability reduces to the concurrent non-malleability of (NMCom,
NMOpen), with four right sessions. If MiMU , DU,1, DU,2 win the cloning game
with probability 1/2 + ε, then we can construct a non-malleability adversary
MiMnm and distinguisher Dnm which win the concurrent non-malleability game
with probability 1/2 + ε − negl(λ). In particular, MiMnm can maul nmcommsg.
At a high level, MiMnm picks (x, θ), receives nmcommsg from the challenger, and
internally runs MiMU to obtain two non-malleable commitments from each of
the right session: ñmcomtag,1, ñmcommsg,1, ñmcomtag,1, and ñmcommsg,1.

3 Non-interactive non-malleable commitments were previously studied in [DIO98].
However, they achieve non-malleability with respect to opening, which is weaker
than non-malleability with respect to commitment.



212 V. Goyal et al.

Fig. 5. A Non-Interactive Unclonable Commitment from Post-Quantum Non-Malleable
Commitments

At the end of the commitment phase, the non-malleability experiment pro-
vides the committed values ṽtag,1, ṽmsg,1, ṽtag,2, and ṽmsg,2 to Dnm for each of
these commitments, each of which is replaced with ⊥ if that non-malleable com-
mitment uses nmcomtag as its tag. Dnm then attempts to use these values to learn
at least one of the right committed values ṽ1 or ṽ2. If it can, then it can run the
corresponding cloning distinguisher to win the non-malleability game. Note that
since cloning a commitment requires both distinguishers to win simultaneously,
using one of them is enough.

If one of the two right sessions uses different tags from the left session,
learning the value for that session is trivial. On the other hand, if both right
sessions use the same tags as the left session, then one of them used the tag
invalidly, or else MiMU has cloned |x〉θ from the left session. Since MiMnm has
(x, θ), it can check which of the two sessions used the tag invalidly; this session
must be a commitment to ⊥. See the full version for more details. 	


The construction in Fig. 5 is also many-many unclonable (Definition 4).

Theorem 10. If there exist post-quantum non-interactive commitments which
are concurrent non-malleable with respect to commitment, then there exist non-
interactive many-many unclonable commitments.
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Proof (Sketch). The proof is very similar to the proof of Theorem 9, so we omit
the full details. At a high level, we define a MiMnm which outputs two non-
malleable commitments for each right session of the cloning game. The distin-
guisher Dnm attempts to extract the values of the unclonable commitments using
the values revealed in the non-malleability game. If it succeeds in extracting all
values in at least one distinguishing set, it runs the corresponding cloning dis-
tinguisher on the extracted values. Dnm loses the distinguishing game only if it
fails to extract one value from every distinguishing set or if at least one of the
cloning distinguishers would guess incorrectly. By assumption, the latter occurs
with probability ≤ 1/2 − ε.

The crux of the argument is to show that Dnm successfully extracts every
value from some distinguishing set with overwhelming probability. If this is the
case, then Dnm wins the non-malleability game with probability ≥ 1/2 + ε −
negl(λ), which violates the security of (NMCom,NMOpen). It is possible to show
that for every left commitment in the cloning game, at most one right com-
mitment in the cloning game validly uses the same tag, except with negligible
probability. Since there are k left commitments and k + 1 distinguishing sets, at
least one distinguishing set only contains commitments which do not validly use
any tags from a left session. The values revealed by the non-malleability game
suffice to extract every value from this set. 	


5 Unclonable Proofs

5.1 Definition

Intuitively, an unclonable proof should guarantee that an adversary cannot use
a simulated left proof to produce two new proofs without knowing either wit-
ness. This is very similar to the related notion of non-malleable zero knowledge.
However, a key difference is unclonability does not require the right proofs to
be different than the left proof for its guarantee to hold. Thus, unclonability is
meaningful even if the adversary attempts to directly forward the left proof.

Proof Cloning Experiment. The proof cloning experiment Cl-Arg(1λ, x, w, ρ) uses
a proof 〈Prove,Verify〉 for a language L and is parameterized by a statement-
witness pair (x,w) ∈ RL and a quantum advice string ρ. It involves three
sessions: a “left” session between an honest left prover PL(x,w) and an adver-
sarial man-in-the-middle MiM(ρ), and two right sessions between MiM and an
honest right verifier, respectively named V1 and V2. The sessions may be inter-
leaved arbitrarily. In the left session, PL attempts to convince MiM that x ∈ L,
using 〈Prove,Verify〉. In the right sessions, MiM chooses statements x̃1 and x̃2

adaptively, then attempts to convince V1 and V2 that x̃1 ∈ L and x̃2 ∈ L,
respectively, using the same proof system. Cl-Arg(1λ, x, w, ρ) outputs a tuple
(τMiM, (x̃1, ã1), (x̃2, ã2)) consisting of the view of MiM, the statements x̃1, x̃2

argued in the right sessions, and the acceptance bits ã1, ã2 of the two right
verifiers (where 1 is accept).
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Definition 5 (Simulation-Extraction-Unclonability). A proof system
〈Prove,Verify〉 is SE-unclonable if there exists a QPT simulator-extractor SE,
which outputs a tuple ((τMiM, (x̃1, ã1), (x̃2, ã2)), w̃1, w̃2), such that for every (non-
uniform) QPT adversary MiM with quantum advice ρ and every (x,w) ∈ RL,

1. Zero Knowledge. Cl-Arg(1λ, x, w, ρ) is computationally indistinguishable
from the first output (τMiM, (x̃1, ã1), (x̃2, ã2)) of SE(1λ, x, ρ).

2. Witness Extraction. If SE(1λ, x, ρ) outputs acceptance bits ã1 = ã2 = 1,
then at least one of the following holds, except with negligible probability:
(x̃1, w̃1) ∈ RelL or (x̃2, w̃2) ∈ RelL.

It is also interesting to consider the case where the right sessions may use
different proof systems 〈˜Prove1, ˜Verify1〉 and 〈˜Prove2, ˜Verify2〉 than the left ses-
sion. Note that these proof systems may be for different languages ˜L1 and
˜L2 than the left proof system. We denote the corresponding experiment as
Cl-Argstrong(1λ, x, w, ρ).

Definition 6 (Strong SE-Unclonability). A proof system 〈Prove,Verify〉 is
strongly SE-unclonable if there exists a QPT simulator-extractor SE which out-
puts a tuple ((τMiM, (x̃1, ã1), (x̃2, ã2)), w̃1, w̃2), such that for every (non-uniform)
QPT adversary MiM with quantum advice ρ and every (x,w) ∈ RL,

1. Zero Knowledge. Cl-Argstrong(1λ, x, w, ρ) is computationally indistinguish-
able from the first output of SE(1λ, x, ρ).

2. Witness Extraction. If SE(1λ, x, ρ) outputs acceptance bits ã1 = ã2 = 1,
then at least one of the following holds, except with negligible probability:
(w̃1, x̃1) ∈ Rel

˜L1
or (w̃2, x̃2) ∈ Rel

˜L2
.

Since strong SE-unclonability is a property about the composition of different
protocols, it is much more difficult to achieve. We explore this notion further in
Sect. 6.

Soundness-Unclonability. An alternative notion only requires that at least one
of the two right sessions retains its soundness, even if the left session is simulated
for a potentially false statement. Note that in this case, the adversary can violate
the soundness of one right session simply by forwarding the left session.

Definition 7 (Soundness Unclonability). A proof 〈Prove,Verify〉 is
soundness-unclonable if there exists a QPT simulator S such that for every QPT
MiM with quantum advice ρ,

1. Zero Knowledge. For every (x,w) ∈ RelL, S(1λ, x, ρ) is computationally
indistinguishable from Cl-Arg(1λ, x, w, ρ).

2. Simulation-Soundness. For a simulated execution ν, let SV(ν) be the num-
ber of right sessions i where Ri outputs accept, but x̃i /∈ L, i.e. a soundness
violation occurs. For every x ∈ {0, 1}n,

Pr[SV(ν) > 1 : ν ← S(1λ, x, ρ)] = negl(λ)
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We may additionally consider the strong variant, which permits any
proof in the right sessions. The relation between SE-unclonability and
soundness-unclonability seems similar to the relation between simulation-
extraction [PR05b] and simulation-soundness [Sah99] in non-malleable zero
knowledge, which [JP14] shows are incomparable.

Many-Many Unclonability. A natural extension is to consider an adversary which
sees k proofs in the left sessions and attempts to produce k+r proofs in the right
sessions, for polynomial k and r. Such settings have previously been studied in
the context of program copy-protection [Aar09,LLQZ22]. Intuitively, k → k + r
unclonability should guarantee that the adversary must know at least r witnesses
(or that at least r sessions are sound). We denote the corresponding game as
Cl-Argk,r.

Definition 8 (Many-Many SE-Unclonability). A proof system 〈Prove,
Verify〉 is many-many SE-unclonable if for every k = poly(λ), r = poly(λ),
there exists a QPT simulator-extractor SEk,r which outputs a tuple ((ρMiM,
(x̃i, ãi)i∈[k+r]), (w̃i)i∈[k+r]), such that for every (non-uniform) QPT adversary
MiM with quantum advice ρ and for every (x,w) ∈ RL,

1. Zero Knowledge. Cl-Argk,r(1λ, x, w, ρ) is computationally indistinguishable
from the first output of SEk,r(1λ, x, ρ).

2. Witness Extraction. For a simulated execution ν, let Acc(ν) =
∑k+r

i=1 ãi be
the number of right sessions which output accept. Let W (ν, (w̃i)i∈[k+r]) be the
number of right sessions i such that (x̃i, w̃i) ∈ RelL. Then

Pr[Acc(ν) > W (ν, (w̃i)i∈[k+r]) + k : (ν, (w̃i)i∈[k+r]) ← SEk,r(1
λ, x, ρ)] = negl(λ)

Definition 9 (Many-Many Soundness Unclonability). A proof 〈Prove,
Verify〉 is many-many soundness-unclonable if for every k = poly(λ) and
r = poly(λ), there exists a QPT simulator S such that for every QPT MiM
with quantum advice ρ,

1. Zero Knowledge. For every (x,w) ∈ RelL, S(1λ, x, ρ) is computationally
indistinguishable from Cl-Argk,r(1λ, x, w, ρ).

2. Simulation-Soundness. For a simulated execution ν, let SV(ν) be the num-
ber of right sessions i where Ri outputs accept, but x̃i /∈ L, i.e. a soundness
violation occurs. For every x ∈ {0, 1}n,

Pr[SU(ν) > k : ν ← S(1λ, x, ρ)] = negl(λ)

5.2 Constructions

Theorem 11. Assuming n1-round unclonable tag-generation protocols and n2-
round simulation-sound proofs, there exist soundness-unclonable proofs with n1+
n2 or n1 + n2 − 1 rounds.
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Fig. 6. An SE-Unclonable (respectively, Simulation-Sound) Proof

Proof. The construction is given in Fig. 6. Soundness is immediate from the
underlying proof. The simulator constructs an adversary for the zero knowledge
property of the underlying simulation-sound proof by internally emulating the
two right verifiers. Consider an execution of the simulator where V1 and V2

respectively accept. Say that TagGen output tag in the left session and ˜tag1, ˜tag2
in the right sessions in this execution. By the security of TagGen, tag �= ˜tagb for
some b ∈ {1, 2}. Otherwise, one of the right tags is ⊥, and so the corresponding
right receiver would have rejected the proof. By the simulation-soundness of
〈Prove,Verify〉, right session b is sound. Therefore x̃b ∈ L, except with negligible
probability, since Rb accepted. 	

Theorem 12. Assuming n1-round unclonable tag-generation protocols and n2-
round simulation-extractable proofs, there exist SE-unclonable proofs with n1+n2

or n1 + n2 − 1 rounds.

Proof (Sketch). The construction is given in Fig. 6. Soundness is immediate from
the underlying proof. To show SE-unclonability, we construct the simulator-
extractor SEU . We start by constructing a halfway simulator-extractor SEU,1/2

which will succeed in simulating the adversary’s view, but will only extract a
valid witness with probability 1/2 ± negl(λ). Given an unclonability adversary
MiM∗

U , we will define an adversary MiMnm for the non-malleability game with
〈NMProve,NMVerify〉. We will then use MiMnm to define SEU,1/2.

MiMnm uniformly samples b ← {1, 2}. Set b to be the unchosen value. It
internally runs the unclonability experiment using MiMU by internally simulating
an honest right verifier Rb and forwarding the other sessions to the external non-
malleability experiment.

SEU,1/2 runs the non-malleability simulator-extractor SEnm on MiMnm to
obtain MiMnm’s view and a witness w̃b. Whenever the tags for the forwarded
sessions do not match, i.e. ˜tagb �= tag, and both internal right sessions accept,
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SEU,1/2 succeeds in extracting a witness. This happens with probability 1/2,
so Watrous rewinding can be used to amplify the extraction success rate to
1 − negl(λ).

Full details of the proof can be found in the full version. 	

As it turns out, the construction in Fig. 6 is also many-many unclonable if it

is instantiated with a concurrent non-malleable proof.

Theorem 13. Assuming n1-round unclonable tag-generation protocols and n2-
round concurrent simulation-sound proofs, there exist many-many soundness-
unclonable proofs with n1 + n2 or n1 + n2 − 1 rounds.

Proof. In a tag-generation experiment where a man-in-the-middle acts as the
receiver in k left sessions and as the sender in k + r right sessions, for each
left session there is at most one right session with the same output tag �= ⊥,
except with negligible probability. In particular, at least r right sessions have
tags which either do not belong to any left session or are ⊥, except with neg-
ligible probability. This can be reduced to the (1 → 2) unclonability of the
tag-generation by randomly selecting one of the k = poly(λ) left sessions and
two of the k + r = poly(λ) right sessions.

If k + r′ right sessions accept, then these sessions all have tags which are
not ⊥. By the previous property, r′ of these tags also do not belong to any left
session. Therefore the concurrent simulation-soundness of 〈NMProve,NMVerify〉
implies that the statements in these sessions belong to the NP language. 	

Theorem 14. Assuming n1-round unclonable tag-generation protocols and n2-
round concurrent simulation-extractable proofs, there exist many-many SE-
unclonable proofs with n1 + n2 or n1 + n2 − 1 rounds.

Proof. Define an adversary MiMnm for the underlying non-malleable proof
〈NMProve,NMVerify〉 which internally interacts with the cloning adversary
MiMU . MiMnm internally runs the tag-generation procedure in each session to
determine the tags, then forwards the messages of 〈NMProve,NMVerify〉 between
MiMU and the external non-malleability game. The simulator-extractor for the
unclonable proof runs the simulator-extractor for the underlying non-malleable
proof 〈NMProve,NMVerify〉 on MiMnm. Recall from the proof of Theorem 13 that
at least r right sessions have tags which either do not belong to any left session
or are ⊥, except with negligible probability. If k + r′ right sessions accept, then
at least r′ of these tags are not ⊥ and do not belong to any left session. The
concurrent simulator-extractor for 〈NMProve,NMVerify〉 extracts witnesses for
these sessions, except with negligible probability. 	

Corollary 3. Assuming post-quantum one-way functions, there exist post-
quantum interactive soundness-unclonable proofs and post-quantum interactive
simulation-sound proofs.

Proof. This is immediate from Theorem 12, Theorem 11, Lemma1, and the fact
that post-quantum one-way functions imply simulation-sound proofs [GLM23].
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Post-quantum simulation-extractable proofs are implied by post-quantum
bounded-concurrent secure two party computation, which [GLM23] also con-
structs from post-quantum one-way functions.

	

Corollary 4. Assuming simulation-extractable (respectively, simulation-sound)
NIZKs and public key quantum money, there exist SE-unclonable (respectively,
simulation-sound) NIZKs.

Proof. This is immediate from Theorem 12, Theorem 11, and Lemma 2. Note
that the round-reduction optimization can be applied to make the construction
non-interactive. 	


Simulation-sound NIZKs can be constructed in the common reference string
(CRS) model from any NIZK using one-way functions [Sah99]. Furthermore,
a simulation-sound NIZK can be compiled to be simulation-extractable using
public key encryption, again in the CRS model. We observe that this construction
also holds against quantum adversaries. We sketch a brief justification in the full
version.

5.3 Relation to Public Key Quantum Money

As we saw in the previous section, it is possible to construct unclonable zero-
knowledge proofs using public-key quantum money and a non-malleable zero-
knowledge proof. If the non-malleable proof is non-interactive, then so is the
resulting unclonable proof. Since NIZKs are inherently non-interactive, it is nat-
ural to wonder whether an unclonable NIZK can be used to construct public-key
quantum money. We show in this section that this is indeed the case.

Theorem 15. If one-way functions and simulation-extractable (respectively,
simulation-sound) NIZKs exist, then the existence of SE-unclonable NIZKs
(respectively, soundness-unclonable NIZKs) is equivalent to the existence of
public-key quantum money.

Proof. We prove the forward implication in Lemma 3 and the backward impli-
cation in Lemma 4 	

Lemma 3. If post-quantum one-way functions and either SE-unclonable NIZKs
or soundness-unclonable NIZKs exist, then public key quantum money also
exists.

Proof. We construct a quantum money mini-scheme, which can be transformed
into a fully-fledged public key quantum money scheme using signatures. To gen-
erate a banknote, first honestly generate a common reference string crs for the
NIZK.4 Next, sample a post-quantum, non-interactive, statistically binding com-
4 In general, the bank can be trusted, since its only goal is to prevent the duplication

of banknotes. This differs from quantum lightning [Zha19], where an adversary may
mint its own notes and wants to produce two with the same serial number.
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mitment com ← Com(0).5 Finally, sample an unclonable NIZK |π〉 for the lan-
guage L0 of commitments to 0 and instance com. The serial number is com and
the quantum money state is |π〉. VerifyQM(com, |π〉) outputs the result of the
NIZK verification procedure VerifyNIZK(com, |π〉).

Consider the following hybrid experiments, where a challenger generates a
quantum money state and an adversary attempts to clone it. The probability
of the adversary successfully cloning in each of these hybrids is computationally
close to the others.

– H0: This is the original experiment. The experiment outputs whether the
adversary successfully clones, i.e. whether VerifyQM accepts both states.

– H1: The same as the original experiment, except |π〉 is simulated. Indistin-
guishability from H0 reduces to the zero knowledge property of the NIZK.

– H2: The same as H1, except com ← Com(1) is a commitment to 1 instead of
to 0. Indistinguishability from H1 reduces to the hiding of Com.

Say that in H2, the adversary produces two states |π̃1〉 and |π̃2〉 such that
VerifyQM(com, |π̃1〉) and VerifyQM(com, |π̃2〉) both output accept. Since the quan-
tum money verification procedure just runs the NIZK verification procedure,
VerifyNIZK(com, |π̃r〉) also accepts for both r = 1, 2. However, since Com is statis-
tically binding, com /∈ L0. If the NIZK was SE-unclonable, this is a contradiction,
since the simulator-extractor cannot extract a valid witness for either right ses-
sion. Similarly, this is also a contradiction if the NIZK was instead soundness-
unclonable, since MiM breaks soundness in both right sessions. Therefore the
adversary cannot clone the quantum money state in H2, except with negl(λ)
probability. Since the cloning success probability is computationally close in H0

and H2, no computationally bounded adversary can clone banknotes, except
with negl(λ) probability. 	


As previously discussed at the end of Sect. 5.2, simulation-sound NIZKs
can be constructed from any one-way function and any NIZK. Additionally,
simulation-extractable NIZKs can be constructed from any public-key encryption
scheme and any NIZK. Thus we obtain the following corollary of Theorem 15.

Corollary 5. If one-way functions and NIZKs exist, then the existence of
soundness-unclonable NIZKs is equivalent to the existence of public-key quan-
tum money. Furthermore, if public-key encryption and NIZKs exist, then the
existence of SE-unclonable NIZKs is equivalent to the existence of public-key
quantum money.

6 Strong Unclonability: Negative Results

We begin with a very simple attack ruling out strongly unclonable NIZKs.

5 These can be constructed in the CRS model from post-quantum one-way functions,
e.g. using Naor’s commitment scheme [Nao90].
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Theorem 16. There do not exist strongly SE-unclonable or soundness-
unclonable NIZKs.

Proof. As an explicit attack, MiM first forwards the left NIZK to R1. R1 verifies
it, then returns it to MiM. By correctness of the NIZK and the Gentle Mea-
surement Lemma [Win99], the returned state is statistically close to the original
NIZK. Finally, MiM sends the returned NIZK to R2 and R2 verifies it. 	


Interactive Zero Knowledge. Next, we rule out even interactive strongly unclon-
able proofs. At a high level, the man-in-the-middle and two right verifiers will
agree to run an MPC which allows them to act as a single verifier for the left
session. It is important to note that V1 and V2 do not have an authenticated
channel. Instead, they must pass messages to each other through the man-in-
the-middle. Since the man-in-the-middle may tamper with these messages, the
MPC must be secure against a dishonest majority in order for the resulting proof
to be sound.

Theorem 17. Assuming stateful secure multiparty computation for quantum
functionalities with dishonest majority, there do not exist strongly SE-unclonable
proofs in the plain model, except for languages in BQP. Furthermore, there do
not exist strongly soundness-unclonable proofs in the plain model.6

Remark. Commitments imply MPC with dishonest majority [BCKM21]. State-
fulness can be generically and unconditionally added by the ideal functionality
authenticating and encrypting messages to itself. We sketch a construction for
this in the full version.

Proof. We describe an explicit attack. Define a stateful MPC protocol between
three parties P1, P2, and P3, where P3 provides input. The ideal functionality
acts as the verifier in the left proof system. In other words, it interprets the
input as a message from the prover in the left proof, then computes and outputs
the verifier’s next message according to the left proof system. At the end of the
protocol, it outputs the ideal verifier’s output to all parties. This is possible since
the ideal verifier outputs a classical bit.

In right session 1, V1 and MiM interact in an execution of this MPC protocol,
where V1 controls P1 and MiM controls both P2 and P3. In right session 2, V2 and
MiM interact in an execution of this MPC protocol, where V2 controls P2 and
MiM controls both P1 and P3. In both sessions, MiM, acting as P3, is supposed
to input messages from the left proof system into the MPC.

Claim. Both right proof systems are computationally sound.

Proof. This is immediate from the security of the MPC against a dishonest
majority and the soundness of the left proof system. 	

6 We note that the attack given in the proof uses computationally sound right proto-

cols. Definition 6 permits any right proofs, whether computationally or statistically
sound. In principle, we could design a weaker definition which only considers statis-
tically sound right protocols, and the attack would not apply.
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To carry out the attack, MiM forwards messages between the sessions. More
explicitly, consider round i of both sessions. MiM receives messages m1→2

i and
m1→3

i from V1, as well as messages m2→1
i and m2→3

i from V2. It computes mes-
sages m3→1

i and m3→2
i honestly according to the MPC protocol. Then, it sends

m2→1
i and m3→1

i to V1 and sends m1→2
i and m3→2

i to V2.
Observe that due to the message forwarding, MiM, V1, and V2 are effectively

participating in a single execution of the MPC protocol. Thus, whenever the
ideal verifier (which is emulated by the MPC) would accept a statement x ∈ L,
both V1 and V2 will accept the same statement x ∈ L.

Claim. The left proof cannot be soundness-unclonable.

Proof. Consider an execution where the left proof is simulated for a false state-
ment. Then the right protocols both accept the same false statement, breaking
soundness. 	

Claim. If the left proof is SE-unclonable for a language L, then L ∈ BQP.

Proof. To decide a statement x, run the simulator-extractor on x and MiM to
obtain a witness w. Check whether w is a witness for x ∈ L. If x ∈ L, then both
V1 and V2 will accept. Then, by definition of SE-unclonability, the simulator-
extractor must output a valid witness for at least one of the two right sessions.
Note that the simulator-extractor is still well-defined for x /∈ L, but by definition,
it cannot output a valid witness. Since MiM is defined independently of x, the
simulator-extractor thus decides L. 	


	


7 Strong Unclonability: Positive Results

7.1 Commitments: Strong Unclonability with Respect to Statistical
Binding

Our construction is in the QROM and uses any unclonable-indistinguishable
encryption scheme (UGen,UEnc,UDec) with information-theoretic unclonability
as a black box. Such schemes are known in the QROM, and constructing them
in the plain model is an open question [AKL+22]. We note that using a random
oracle bypasses the impossibility result, since a dishonest-majority MPC cannot
correctly implement random oracle calls.

Theorem 18. There exists a non-interactive commitment scheme in the QROM
which is unclonable with respect to any (right) statistically binding commit-
ment scheme. This holds unconditionally against any adversary which makes
polynomially-many queries to the random oracle.

The construction is given in Fig. 7 see the full version for the proof.
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Fig. 7. A Strongly Unclonable Commitment with Respect to Statistical Binding
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Abstract. Quantum no-cloning theorem gives rise to the intriguing pos-
sibility of quantum copy protection where we encode a program or func-
tionality in a quantum state such that a user in possession of k copies
cannot create k +1 copies, for any k. Introduced by Aaronson (CCC’09)
over a decade ago, copy protection has proven to be notoriously hard to
achieve. Previous work has been able to achieve copy-protection for vari-
ous functionalities only in restricted models: (i) in the bounded collusion
setting where k → k + 1 security is achieved for a-priori fixed collusion
bound k (in the plain model with the same computational assumptions
as ours, by Liu, Liu, Qian, Zhandry [QIP’23]), or, (ii) only k → 2k secu-
rity is achieved (relative to a structured quantum oracle, by Aaronson
[CCC’09]).

In this work, we give the first unbounded collusion-resistant (i.e.
multiple-copy secure) copy-protection schemes, answering the long-
standing open question of constructing such schemes, raised by multiple
previous works starting with Aaronson (CCC’09).

More specifically, we obtain the following results.
– We construct (i) public-key encryption, (ii) public-key functional

encryption, (iii) signature and (iv) pseudorandom function schemes
whose keys are copy-protected against unbounded collusions in the
plain model (i.e. without any idealized oracles), assuming (post-
quantum) subexponentially secure iO and LWE.

– We show that any unlearnable functionality can be copy-protected
against unbounded collusions, relative to a classical oracle.

– As a corollary of our results, we rule out the existence of hypereffi-
cient quantum shadow tomography,

• even given non-black-box access to the measurements, assuming
subexponentially secure iO and LWE, or,

• unconditionally relative to a quantumly accessible classical ora-
cle,

and hence answer an open question by Aaronson (STOC’18).
We obtain our results through a novel technique which uses identity-
based encryption to construct multiple copy secure copy-protection
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schemes from 1-copy → 2-copy secure schemes. We believe our technique
is of independent interest.

Along the way, we also obtain the following results.
– We define and prove the security of new collusion-resistant

monogamy-of-entanglement games for coset states.
– We construct a classical puncturable functional encryption scheme

whose master secret key can be punctured at all functions f such
that f(m0) �= f(m1). This might also be of independent interest.

Keywords: Quantum Cryptography · Unclonable Cryptography ·
Shadow Tomography · Copy Protection

1 Introduction

The no-cloning principle, a fundamental implication of quantum mechanics,
shows that arbitrary unknown quantum states cannot be copied. This simple
principle allows us to imagine applications that are classically impossible. Indeed,
it has found a wide range of applications in cryptography, starting with the work
of Wiener [30] where he puts forward the notion of quantum money, where we
imagine that there is a bank producing quantum states, called banknotes, that
are secure against counterfeiting: any (malicious) user in possession of k ban-
knotes for any k cannot produce k + 1 authentic banknotes. The interesting
notion of quantum banknotes (i.e., unclonable authenticatable quantum states)
also led Aaronson [1] to pose the following question:

Can we use quantum information to copy-protect
functionalities/programs, where user(s) in possession of some number of

copies of a program P cannot produce more working copies?

In more detail, we want to achieve the following. A vendor encodes a func-
tionality1 into a quantum state, and a user in possession of such a state can use
it to evaluate the functionality any number of times, and we want to achieve
a → b copy-protection: any malicious user(s) in possession of a such copies of
the program cannot produce b working copies. Similar to quantum money, this is
an impossible feat in a classical world since classical information can be readily
copied any amount of times. Therefore, in a classical world, once you are given
a single working copy of the program, you can make any number of copies of it.

Perhaps surprisingly, [1] showed copy-protection using quantum information
is indeed possible: relative to a structured2 quantum oracle, any unlearnable
program can be copy-protected in a way that is k → k + r secure (for any
[polynomial] k and some r > k). That is, in the construction of [1], the adversary
1 For example, a proprietary software or a decryption program/key of an encryption

system that is used to distribute encrypted content.
2 The oracle used in this construction takes as input a function and a value, evaluates

the function on the value, or takes as input a function and outputs a Haar random
state associated with it.



Unclonable Cryptography with Unbounded Collusions 227

is prevented from doubling their number of working copies. Later, Aaronson et
al. [7] showed that relative to a classical structured oracle (that depends on the
program being copy protected) model, any unlearnable program can be copy-
protected, but this time only in the 1-copy → 2-copy setting.

Copy-Protecting Decryption Keys, PRFs and Signing Keys. In a related line of
work, Georgiou and Zhandry [16] started the study of single-decryptor encryp-
tion, that is, copy-protection for decryption functionality (i.e. secret keys) of a
public-key encryption (PKE) scheme where an adversary tries to create k + 1
working decryption keys given only k copy-protected keys. More formally, in this
model, a pirate adversary obtains the classical public key and k copy-protected
quantum secret keys of the scheme. Then, it produces k + 1 freeloader adver-
saries that are possibly entangled but not communicating3, and these freeloaders
are presented with classical challenge ciphertexts. We require that they can-
not all succeed in decrypting simultaneously. [16] also gave a 1 → 2 secure
copy-protection scheme relative to a structured oracle. Later, Coladangelo et
al. [13] showed how to construct a 1 → 2 copy-protected public-key encryption
using coset states, this time in the plain model, assuming quantum hardness
of LWE, (post-quantum) subexponentially secure indistinguishability obfusca-
tion and one-way functions. They also construct 1 → 2 copy-protection schemes
for pseudorandom functions (PRF), based on the same assumptions. Liu et al.
[21] constructed bounded collusion-resistant PKE and PRF schemes, by showing
through an elegant proof that the k-way parallel repetitions of the schemes of
[13] are bounded k → k +1 copy-protection secure. Further, they also construct
a bounded k → k + 1 copy-protection secure scheme for the signing keys of a
signature scheme. However, for all schemes of [21], the collusion-bound k is fixed
during setup, the sizes of the schemes grow (linearly) with the bound k and the
copy-protected key generation is stateful.

Collusion-Resistant Copy-Protection. Unfortunately, none of the previous work
satisfy the most-general notion of unbounded collusion-resistant copy-protection
where we require k → k + 1 security for all polynomials k (that is not known
and hence the size of the scheme does not depend on it).

In particular, all schemes of [7,13,21] can easily be broken when the adversary
obtains multiple copies. Any 2 users (in case of the first two works) or k + 1
users (for the fixed k value, in case of [21])4 with copy-protected keys can create
an anonymous classical program/string (which can be copied/distributed any
number of times) that can be used to decrypt any ciphertext in case of encryption
schemes, or evaluate/sign any input in case of general programs, PRFs and
signatures. The only other scheme, that of [1], is only k → 2k secure rather
than k → k + 1, and more importantly, since it relies on structured quantum
3 If they were allowed to communicate, one freeloader could hold the secret key and

all the other freeloaders would simply send their challenge ciphertexts to him to
decrypt and send back the result.

4 We re-emphasize that the size of the scheme (e.g. ciphertext and public-key sizes)
grows with the set k value, so it cannot be set arbitrarily large.
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oracles, it cannot even be heuristically instantiated since we do not have any
(even candidate) constructions of general-purpose quantum circuit obfuscation.
In fact, [21] argues that even any extension of the scheme of [1] would require
such obfuscation, since it uses Haar random states and there is evidence that
these states cannot be classically verified [20,21].

We believe that the security guarantees of the previous work [7,13,21] are
very unrealistic in the age of the Internet: the users can actually mount the
anonymous attacks described above through classical channels, by simply mea-
suring their key and sending the classical measurement result to other parties or
posting it online!

Computational Complexity of Shadow Tomography. Lastly, aside from theoret-
ical interest in the unbounded collusion setting in and of itself, we note that it
is a theoretically important problem also due to its intimate connection to the
computational complexity of another important problem, shadow tomography
[3].

The above state of affairs leaves open the following natural question also
raised explicitly in several previous works [1,4,13,21]:

Can we use quantum information to construct unbounded
collusion-resistant copy-protection schemes?

In this work, we answer the above question positively, in the plain model,
with computational assumptions matching the previous work.

1.1 Our Results

In this work, we resolve the long-standing open problem of constructing fully
collusion-resistant copy-protection schemes by constructing such schemes for
public-key encryption, public-key functional encryption, signatures and pseu-
dorandom functions, all in the plain model.

Copy-Protecting Decryption Keys. We construct encryption schemes where the
secret keys are copy-protected.

Theorem 1. Assuming post-quantum subexponentially secure indistinguisha-
bility obfuscation and subexponentially secure LWE, there exists a public-key
encryption scheme with fully collusion-resistant copy-protected secret keys.

Our computational assumptions above match5 the assumptions made by [13]
to achieve 1 → 2 copy-protection and those made by [21] to achieve k → k + 1
bounded collusion-resistant copy-protected public-key encryption schemes.

5 More specifically, our assumptions exactly match the assumptions made by [21],
but [13] assumes polynomially secure LWE whereas we assume subexponentially
secure LWE. We emphasize that [13] still assume subexponentially secure iO and
subexponentially secure one-way functions.
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Theorem 2. Assuming post-quantum subexponentially secure indistinguishabil-
ity obfuscation and subexponentially secure LWE, there exists a public-key func-
tional encryption scheme with fully collusion-resistant copy-protected secret keys.

Prior to our work, the only construction of functional encryption with copy-
protected secret keys (given by Kitagawa and Nishimaki [19]) was in the 1 → 2
copy-protection setting, based on assumptions same as ours, and in a weaker
security model where no key queries were allowed after seeing the challenge
ciphertext. Furthermore, on top of matching the assumptions previous work
used for constructing copy-protected public-key encryption, the iO assumption
we make for our copy-protected FE scheme can be considered necessary since
functional encryption is known to be equivalent to indistinguishability obfusca-
tion (up to subexponential security loss) [10].

Since functional encryption can be used to construct identity-based encryp-
tion [28] and attribute-based encryption [17,25] in a straightforward manner, our
work also gives the first identity-based encryption and attribute-based encryp-
tion schemes with collusion-resistant copy-protected secret keys. Through copy-
protected identity-based encryption, we can also obtain unclonable identity cards,
first suggested by [1].

Copy-Protecting PRF and Signature Keys. We also construct copy-protection
schemes for a family of pseudorandom functions (PRF) and signing keys of a
signature scheme.

Theorem 3. Assuming post-quantum subexponentially secure indistinguishabil-
ity obfuscation and subexponentially secure LWE, there exists a PRF and a sig-
nature scheme with fully collusion-resistant copy-protected keys.

We refer the reader to the full version [11] for the full constructions and the
proofs.

Copy-Protecting All Unlearnable Functionalities. We also show how to copy-
protect any unlearnable functionality, relative to a classical oracle.

Theorem 4. Assuming post-quantum subexponentially secure one-way func-
tions, for any unlearnable functionality, there exists a fully collusion-resistant
copy-protection scheme relative to an efficient classical oracle.

This supersedes6 both [1], which uses a structured quantum oracle and only
satisfies k → 2k copy-protection, and [7] which uses a structured classical oracle
but only satisfies 1 → 2 copy-protection. We refer the reader to the full version
[11] for the construction and the proofs.

6 Note that Theorem 4 and similar results of [1,6] cannot be securely instantiated in
the plain model for all unlearnable functionalities, since [8] proves that there exists
an unlearnable functionality that cannot be copy-protected in the plain model.
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Impossibility of Hyperefficient Shadow Tomograph. Shadow tomography, intro-
duced by Aaronson [3], is the following task: Given many copies of a mixed
state ρ and a list of binary measurements {E1, . . . , EM}, estimate the accep-
tance probabilities Tr(Eiρ) of measurements Ei within additive error ε, for all
measurements i ∈ [M ]. This task has important ramifications for quantum infor-
mation theory, since it means that we can learn many properties of a quantum
state without needing to do a full tomography of it, which necessarily requires
exponentially many copies of the state [24]. It has also found many applications
in cryptography, such as (i) [3] who shows that unconditional copy-protection
is not possible (ii) [9] who shows that unconditional PKE cannot exist even
if we allow public-keys to be quantum and (iii) [18] who shows that uncondi-
tional one-way state generators cannot exist. Lastly, shadow tomography also
has connections to the question of classical vs. quantum advice, and the related
complexity classes BQP/poly and BQP/qpoly. Note that in general, and in par-
ticular in all of these applications, the measurement set is indexed by all possible
strings in some support and M is exponential in the security parameter or in the
number of qubits. In fact, the case M = poly(λ) can be trivially solved in poly-
nomial (M/ε2) time with polynomially many copies, by estimating each Tr(Eiρ)
for i ∈ [M ] simply by actually performing the measurements Ei multiple times
on separate copies.

[3] showed that shadow tomography can be performed in a sample-efficient
manner; using poly(n, logM, 1

ε ) copies of an n-qubit state ρ, however, their
scheme is not computationally efficient, with time complexity Õ(M)7. In light
of above, they posed the following as an open question: is hyperefficient shadow
tomography possible? That is, is it possible to perform shadow tomography with
time complexity poly(n, logM, 1

ε )? Note that in this case, we ask that the set
of measurements {Ei}i∈M be implemented by a uniform quantum algorithm E
that on input i, τ , applies the measurement Ei to the state τ . We will be given
this quantum circuit E as input and we are asked to output a quantum circuit
C such that C(i) estimates Tr(Eiρ) for all i.8

Previously, hyperefficient shadow tomography was ruled out only relative to
quantum oracles [3,5,20], where we only get oracle access to the measurement
circuit E. Through a generic attack on copy-protection schemes using shadow
tomography given by [3,27], a corollary of our results is the impossibility of
hyperefficient shadow tomography, answering the open question of [3].

Corollary 1. Assuming post-quantum subexponentially secure indistinguishabil-
ity obfuscation and LWE, there does not exist a hyperefficient shadow tomography
algorithm.

7 As noted above, M is exponential in the security parameter or in the number of
qubits.

8 Without these assumptions, even reading the descriptions of all measurements or
outputting all the estimates would take Ω(M) time.
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Corollary 2. Assuming post-quantum subexponentially secure one-way func-
tions, relative to a classical oracle, there cannot exist a hyperefficient shadow
tomography algorithm.

We note that making computational assumptions is necessary, since, hypereffi-
cient shadow tomography is possible given access to PP oracle.9

Technical Contributions and Additional Results. An important contribution of
our work is a novel technique to construct collusion-resistant copy-protection
schemes which relies on using identity-based encryption (IBE). We use this tech-
nique in all of our constructions and we believe it to be of independent interest.
Our technique could be considered an analogue of the technique of using digital
signatures to construct full-fledged (i.e. collusion-resistant) quantum money from
single banknote schemes [4,15,22]. We also define and prove the security of new
collusion-resistant monogamy-of-entanglement games [13,14] for coset states to
prove the security of our schemes. We refer the reader to the full version [11] for
the formal statements and the proof.

Finally, using the techniques we employ to prove the security of our func-
tional encryption scheme, we also give a construction of a classical functional
encryption scheme where the master secret key can be punctured such that
the resulting master key allows issuing keys only for functions f that satisfy
f(m0) = f(m1). This allows us to remove the interaction/key queries after the
challenge ciphertext in the usual functional encryption security game, since the
adversary can issue their own keys using the punctured master secret key. This
might also be of independent interest.

Theorem 5. Assuming subexponentially secure indistinguishability obfuscation
and one-way functions, there exists a functional encryption scheme whose master
secret key can be punctured at all functions f such that f(m0) �= f(m1).

We refer the reader to the full version [11] for the constructions and the proofs.

2 Technical Overview

2.1 Public-Key Encryption with Copy-Protected Secret Keys

Let us first describe our model, which is the same as previous work [1,13,16,21].
We consider a public-key encryption scheme with classical ciphertexts, a classical
public-key and an additional (quantum) algorithm QKeyGen. The copy-protected
key generation algorithm QKeyGen, on input the classical secret key, outputs a
reusable quantum state that can be used to correctly decrypt any number of
ciphertexts. For security, we will require that a user with k copy-protected secret
keys cannot create k +1 keys. More formally, in an anti-piracy game for public-
key encryption, we have an adversary, called a pirate. This adversary is given the
public key pk, and then for any (polynomial) number of rounds, it queries for

9 We thank an anonymous reviewer for pointing out this remark.
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quantum copy-protected secret keys. After it is done, it outputs pairs of challenge
messages (m0

� ,m
1
�)�∈[k+1] and k + 1 (possibly entangled) freeloader adversaries,

where k is the number of copy-protected keys it has queried. Then, the challenger
samples challenge bits b�, and presents each freeloader with Enc(pk,mb�

� ). The
freeloaders output their predictions b′

�, and the adversary wins if b′
� = b� for

all � ∈ [k + 1]. We require that no efficient adversary can win with probability
better than 1/2 + negl(λ). The baseline success probability is 1/2, since the
pirate adversary can output k of its keys to the first k freeloaders, and let the
last freeloader randomly guess the challenge bit bk+1.
1 → 2 Copy-Protection Secure Construction of Coladangelo et al. [13]
As a warm-up, we will recall the 1 → 2 copy-protection secure construction based
on coset states, given by [13], which also forms the base of our construction.

A coset state [13,29] is a state of the form
∑

a∈A(−1)〈s
′,a〉|a + s〉 =: |As,s′〉

where A ⊆ Fn
2 is a subspace and s, s′ ∈ Fn

2 . [13,14] showed that coset states
satisfy a property called strong monogamy-of-entanglement (MoE), which is as
follows. Consider the following game between an adversary tuple A0,A1,A2 and
a challenger. Challenger uniformly at random samples a subspace A ⊆ Fn

2 of
dimension n/2 and elements s, s′ ∈ Fn

2 , and submits |As,s′〉 and the obfuscated
programs10 iO(A+s), iO(A⊥ +s′) to the adversary A0. Then, the adversary A0

outputs two (entangled) registers R1,R2, for A1,A2. Then, A1,A2 receive their
registers and also the description of the subspace A (but not the vectors s, s′ of
course). Finally, A1 is required to output a vector in A+ s and A2 is required to
output a vector in A⊥+s′. Strong MoE property says that no efficient adversary
can win this game with non-negligible probability. In a variation used implicitly
by [13] and later formalized in a different context by [12], we present A0 with
multiple, say c many, independent coset states (called a coset state tuple) and
the corresponding membership checking programs, and require that A1,A2 each
output vectors in Ai+si or A⊥

i +s′
i for all i ∈ [c], depending on random challenge

strings r1, r2 ∈ {0, 1}c presented to them. By a reduction to the original version,
it can be shown that no efficient adversary can win this game with non-negligible
probability. We call this variation the multi-challenge version.

Now, we move onto the copy-protected public-key encryption construction of
[13]. During setup, we sample a coset tuple (Ai, si, s

′
i)i∈[c]. The coset state tuple

|Ai,si,s′
i
〉i∈[c(λ)] becomes the copy-protected quantum secret key, and we output

pk = (iO(Ai + s), iO(A⊥
i + s′

i))i∈[c(λ)] as the public key. Finally, to encrypt a
message m, we sample a random string r and an indistinguishability obfuscation
OP ← iO(PCtpk,r,m), where PCtpk,r,m is a program that takes is input vectors
(vi)i∈[c] and, checks if they are in correct cosets with respect to r. That is, we
require v ∈ Ai + si if the i-th bit of r is 0 and v ∈ A⊥

i + s′
i if it is 1. The program

PCtpk,r,m outputs the message m if and only if the vectors pass the test. We
output (OPCt, r) as the ciphertext. To decrpyt a message, we simply apply QFT
(quantum Fourier transform) to our coset state tuple at indices where (r)i = 1.

10 Here, we overload the notation to let A + s also denote the program that takes as
input a vector v and outputs 1 if v ∈ A + s, and 0 if not, and similarly for A⊥ + s.
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Then, it is easy to see that running OPCt coherently on our key and measuring
the result gives us m with probability 111.

On a high level, the security follows by multi-challenge MoE game, since the
two freeloaders, to decrypt their ciphertexts, must be querying the programs
PCt(1),PCt(2) at the correct vectors with respect to r1, r2 respectively, which is
exactly the challenge in the MoE game. The proof is more involved since (i) iO
is used rather than ideal oracles and (ii) the freeloaders can be entangled. We
discuss this further in the upcoming sections.

Challenges for Collusion-Resistant Copy-Protection. First, we note that
the construction of [13] is trivially insecure when the adversary is given two copies
of the secret key: The adversary can measure one copy of the state |Ai,si,s′

i
〉 in the

computational basis and the other copy in the Hadamard basis, thus obtaining
vectors vi ∈ Ai + si and wi ∈ A⊥

i + s′
i for all i ∈ [c]. Using these vectors, one

can decrypt any ciphertext and since these vectors are classical information, the
pirate adversary can indeed produce any number of working secret keys. Thus,
the scheme only satisfies 1 → 2 unclonability.

One natural solution, argued by [21], is to try and employ quantum states
that already possess a collusion-resistant unclonability guarantee, such as Haar
random states or their computational neighbor, pseudorandom states. This is
indeed the approach employed by [1] to achieve k → 2k copy-protection rela-
tive to a structured quantum oracle. However, the problem is that there is no
known way of verifying such states or employing these states to construct a copy-
protection scheme without the use of quantum oracles, and there is evidence that
this is an inherent property of such states [20,21].

Another natural solution, used by [21], is to independently sample a new coset
state tuple |A(j)

i,si,s′
i
〉i∈[c(λ)] whenever a copy-protected secret key is requested

rather than giving out the same key state multiple times. In this case, the cipher-
text program also takes as input the index j of the key the decryption procedure
is using, and verifies the input vectors with respect to that coset tuple. Therefore,
we need to include the corresponding obfuscated membership checking programs
for each possible key in the public-key, since otherwise the ciphertexts would not
be decryptable by that key. Therefore, we can only have k different key states
for a fixed k chosen during setup (which is when pk is created). Therefore, the
construction of [21] only achieves k → k+1 copy-protection where the collusion-
bound k needs to be known at the time of setup, and the size of the scheme
(public key, ciphertexts) grows with k, since the scheme basically consists of k
independent instances of the 1 → 2 secure scheme of [13]. Furthermore, similar
to the scheme of [13], this scheme becomes trivially insecure once given k + 1
keys, since we will have obtained one of the coset state tuples twice.

11 By Gentle Measurement Lemma [2], this also means that we can revert the quantum
key back to its original state after decrypting a ciphertext.
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Our Solution: Pseudorandom Coset States and Identity-Based Encry-
ption. As discussed above, if we are sampling independent coset states for each
copy-protected key query, we need to have an a-priori bound on the number
of different keys. In the unbounded setting, since there are exponentially many
cosets, it is not possible to verify all possible cosets using a polynomial size public
key pk.

Our solution to this is to compress the public-key by using pseudorandom
coset states rather than truly random ones. We sample a PRF key K and include
it in the classical secret key. Then, whenever we need to sample a copy-protected
quantum secret key using our classical secret key, we sample a random identity
string id from {0, 1}λ and then sample a coset state tuple using the randomness
F (K, id). Our public-key will be an obfuscated program OPMemK (with PRF
key K embedded) that takes in an id, some vectors (vi)i∈[c] and a basis r, and
verifies the vectors (vi)i∈[c] with respect to r and the coset tuple associated with
id. We now have a polynomial size public-key that allows us to verify any possible
(honest) coset state tuple.

A high level intuition for security is as follows, where for now we assume
we use ideal oracles instead of iO. By PRF security, the adversary’s view is
indistinguishable from having obtained k independent coset state tuples since for
any efficient adversary that obtains any (polynomial) number of quantum secret
keys, they will all have unique identity strings with overwhelming probability.
Note that we still need to argue that one cannot produce k+1 working keys from
k independent coset state tuples, which we discuss how to argue in Sect. 2.2.

However, in reality, we are using iO and not ideal oracles. Now, the first
problem is that, the coset state tuples that the adversary obtains during key
query phase are no longer pseudorandom, since the adversary does not only have
query access to the PRF but rather has the PRF key K inside pk. A standard
solution when using PRFs and indistinguishability obfuscation is to puncture
the PRF key at some inputs. Let id1, . . . , idk be the identity strings of the k
copy-protected keys obtained by the adversary. We can try to puncture the PRF
key at id1, . . . , idk, but this would make the size of our public-key dependent
on k. A much more important problem is that the adversary is not required
to run PCt on only one of idi, and in fact, PCt might be leaking12 m. Or, the
adversary somehow might be obtaining the hidden message m by running it on
some unrelated identity id and vectors that pass the verification of PMem for
id13. The latter is because the adversary has access to K in some form (i.e. inside
PMem), therefore, it might be somehow obtaining F (K, id) for some id. To rule
this possibility out, we would need to puncture the PRF key at all strings in
{0, 1}λ!

To solve this problem and to puncture the PRF key only at few points, we first
want to make sure that the adversary can obtain the hidden message m only by
running PCt on an identity string associated with one of the copy-protected keys
it did obtain. To ensure this, we use the following approach based on identity-

12 Since we are not using black-box obfuscation for PCt.
13 Since we are not using black-box obfuscation for PMem.
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based encryption (IBE). When PCt is queried on some id and some vectors (uj)j ,
after verifying that the vectors are in the correct cosets with respect to id and r,
the program PCt outputs an IBE encryption of m under the identity id, rather
than m in the clear. We will also change our copy-protected key generation
algorithm to output the IBE secret key associated with id. Now, we will be able
to argue that if an adversary is able to decrypt a ciphertext and obtain m, then
it must have obtained IBE.Enc(pk, idi,m) for some idi. This is because by the
security of IBE, the adversary cannot decrypt ciphertexts under identities other
than id1, . . . , idk - the only identities for which it has obtained the IBE secret
keys. Above in turn means that the adversary must have run PCt on idi and the
correct vectors for the coset tuple associated with idi. In essence, we are forcing
the adversary the clone one of the original copy-protected secret keys rather
than coming up with a new key. Hence, we will eventually reduce to the MoE
security of the coset state tuple associated with some idi. Now, we need to only
puncture the PRF key at (at most) k points! This is still too many.14 However,
we observe the following: the adversary obtains k secret keys skid1 , . . . , skidk

of
the IBE scheme while there are k+1 freeloaders. Hence, by pigeonhole principle,
two of the k + 1 freeloaders must be using the same key skidi

for some i ∈ [k],
and hence, the same coset state tuple - the one associated with idi. As a result,
we will only need to puncture the PRF key K at idi.

2.2 Proving Security

In this section, we give a high-level overview of the security proof of our public-
key encryption construction. Our goal is to reduce the security of our scheme to
the monogamy-of-entanglement game, which we will do so by extracting coset
vectors (vi)i∈[c] from the freeloader adversaries. On a high level, our proof uses
ideas from [7,13] for simultaneous extraction from entangled adversaries and
from [21] to extract the correct coset vectors from multiple freeloaders through
a pigeonhole argument. The security proof of our functional encryption con-
struction follows similarly and we refer the reader to the full version [11] for
details.

Note that in general, applying an extraction (which is essentially a measure-
ment) on one of the freeloader adversaries might irreversibly damage the other
ones since they are entangled. We will first make the testing of the freeload-
ers projective, which will allow us to argue that we can extract vectors from
entangled adversaries since (i) repeating a projective measurement always gives
the same outcome and does not change the state, (ii) acting (e.g. extracting)
on some part of a state, informally, does not change the behaviour of projective
measurements on the other part too much. Now, let us briefly discuss projective
implementations, introduced by Zhandry [31]. Let E = {E1, E0 = I − E} be a

14 Remember that when obfuscating a program using iO, all programs that we will
move between must be of the same size. Thus, if we are puncturing the PRF key
at k points, our initial obfuscated public-key program needs to be padded to a size
that depends on k.
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binary POVM. [31] shows that there is a projective measurement (indexed by a
finite subset of R0≤·≤1) denoted PI(E) such that the following procedure has the
same output distribution as applying E to ρ, for any state ρ.15

1. Apply PI(E) to ρ obtain a value p ∈ [0, 1].
2. Output 1 with probability p.

Essentially, the projective implementation estimates the probability that E
accepts ρ, and does so through a projective measurement. Note that PI(E) in
general is inefficient, however, it can be approximated efficiently [31]. We will
ignore this issue in this section - see the full proof for details.

In our anti-piracy game, we assume that the pirate adversary outputs each
freeloader as (U, σ) where U is a unitary and σ is some quantum state. We
interpret this as a quantum circuit16 (with some hardwired quantum state) that
takes in a challenge ciphertext and outputs a prediction b′. The challenger exe-
cutes the freeloader using an appropriate universal quantum circuit. Now, let
D be a ciphertext distribution and let (Ui,Ri) be a freeloader output by the
pirate adversary (where Ri denotes the register containing the quantum part),
and consider the following measurement on Ri.

1. Sample b ← {0, 1}.
2. Sample ct ← D(mb

i ).
3. Execute U(cti,Ri), measure the first qubit of the output registers in compu-

tational basis to obtain b′.
4. Output 1 if b′ = b.

When we set D to be the honest ciphertext distribution where we encrypt m
as PKE.Enc(pk,m), we see that the above measurement exactly corresponds to
the testing of the freeloader in the anti-piracy game. Now, consider a modified
game (parameterized by some inverse polynomial γ(λ)) where instead of per-
forming this measurement directly, the challenger performs its projective imple-
mentation PID, and the adversary is said to win if the output is > 1/2 + γ(λ)
for all k + 1 freeloaders. Essentially, we are estimating the success probabilities
of the freeloaders and comparing it to the baseline. Note that since PID is pro-
jective, once we apply it and obtain a value p, the post-measurement state will
again give p when its tested again for D. [13] proves that this modified game is
stronger: it implies the security of the original anti-piracy game. Hence, we will
prove security with respect to this stronger game.17

Now, we move onto a sketch of the security proof of our scheme. The idea is to
test the freeloaders with respect to multiple challenge ciphertext distributions to

15 We can equivalently say that the expected value of PI(E) · ρ is Tr[E1ρ].
16 Note that while U is a unitary, this definition is enough to capture general quantum

circuits since the adversary can also include empty workspace qubits inside σ, along
with some quantum information obtained from the copy-protected keys.

17 There is a caveat here that we need to prove security with respect to this game for
all inverse polynomial γ(λ) so that it implies security with respect to the original
game.
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pinpoint two freeloaders that use the same coset state tuple, and then extracting
coset vectors from them and violating its 1 → 2 MoE security. Let us assume
that an adversary wins the (modified) anti-piracy game (with probability 1/p(λ)
where p(·) is a polynomial), meaning that applying PID yields > 1/2 + γ(λ)
for all k + 1 freeloaders simultaneously with probability > 1/p(λ). We define
ciphertext distributions Dj , for all j ∈ {0, 1, . . . , 2λ}, representing all possible
identity strings in {0, 1}λ (plus, the dummy upper bound 2λ). We define Dj so
that an encryption of a message m is (iO(PCtj), r) where PCtj is the program
that works as the honest ciphertext program if the input id satisfies id ≥ j,
and otherwise it replaces its hardcoded message m with 	 at the beginning.
Observe that D0 corresponds to the honest ciphertext distribution, since id < 0 is
never satisfied. Similarly, D2λ corresponds to the dummy ciphertext distribution
where the message is not actually contained in the ciphertext. Now, consider the
following thought experiment. We apply the measurements PIDi

sequentially
from j = 0 to j = 2λ, to all k + 1 freeloaders. Let q�,j denote the outcomes for
each freeloader � ∈ [k + 1]. Intuitively, a non-negligible jump/gap between q�,j

and q�,j+1 for j ∈ {0, . . . , 2λ − 1} will mean that the freeloader � is querying the
ciphertext program at some vectors that are correct for the coset tuple associated
with j. Since D0 is the honest ciphertext distribution of this scheme, the step
j = 0 corresponds to the original security game and hence we get q�,0 > 1/2+ γ
for all � ∈ [k +1] by assumption. We will also have q�,2λ ≤ 1/2 for all � ∈ [k +1]
since the step j = 2λ corresponds to the ciphertext distribution D2λ that does
not actually contain the message, and therefore no freeloader18 can succeed with
probability better than 1/2 against D2λ . Previous works [4,21] use a pigeonhole
principle to reduce k → k + 1 security to 1 → 2 unclonability security, where
they conclude that two freeloaders must have a large gap between |q�,j − q�,j+1|
at the same jump point j, meaning that they are utilizing the same coset state
tuple [21] or two quantum money banknotes must come from the same initial
banknote [4]; where they randomly guess this critical index and place the 1 → 2
challenge there. However, the problem in our case is that the possible jump
points j� are in {0, 1, . . . , 2λ − 1}, whereas we only have k + 1 freeloaders. This
creates a multitude of problems: (i) we cannot conclude that there will be a
non-negligible jump since the average step between q�,0 and q�,2λ is γ/2λ, which
is negligible, (ii) even if there is a non-negligible jump, we cannot apply the
pigeonhole principle to guarantee that there is a pair of freeloaders �, �′ that have
the jump index j� = j�′ since we have 2λ slots for k+1 freeloaders. Further, note
that even if both of the previous concerns worked out and the two freeloaders’
non-negligible jump indices coincide, we cannot actually test the freeloaders with
respect to all Dj to find it or randomly guess it since there are exponentially
many possibilities. However, a careful reader might guess that thanks to the IBE
security, the challenge ciphertext distributions above actually collapse around
k points: j = id1, . . . , idk, the identity strings of the secret keys obtained by

18 Here, we are talking about any freeloader program/state, not necessarily the initial
ones, since the state of the freeloaders has changed since we already applied the
previous tests PIDj for j = 0, . . . , 2λ − 1.
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the adversary. That is, we claim that jumps can only happen at indices j that
correspond to some idi. The reason is that, informally, the difference between
Dj and Dj+1 only occurs when the obfuscated ciphertext program is evaluated
at id = j, in which case the output is IBE encryptions of m and 	 respectively,
both under the identity j. However, if j is not one of idi, then the different
outputs of these programs will be IBE ciphertexts that are indistinguishable to
the adversary, by the security of IBE. Therefore, no freeloader can detect this
change, and there cannot be a jump between q�,j and q�,j+1. This (i) allows us
to conclude that for each freeloader there must be a γ/k jump (which is non-
negligible) at one of j = id1, . . . , idk, and (ii) since the jump points are now all
in {id1, . . . , idk}, we can apply a pigeonhole argument to say that there is two
freeloaders have the same jump point since there are k + 1 freeloaders with k
jump slots. However, note that the ciphertext programs are only iO programs
and not ideal oracles, therefore, the above argument is only informal and needs
to be proven. Overall, while the above intuitions are the crux of our technique,
formalizing these requires care and the full proof delicately intertwines all these
observations, whilst also dealing with further technical problems. We refer the
reader to the full version [11] for the full proof. We also prove a new results
on collusion-resistant MoE for pseudorandom coset states that is needed in our
proof. We refer the reader to the full version [11] for this result.

2.3 Public-Key Functional Encryption with Copy-Protected
Functional Keys

In the setting of functional encryption, we now have functional keys, where a
functional key for a function f allows one to obtain f(m) given the encryption
Enc(m), and nothing else. Similar to PKE (Sect. 2.1), for functional encryption
with copy-protected keys, we require that an adversary that obtains k copy-
protected (functional) keys cannot create k+1 working keys (for any functions).
We also allow the adversary to obtain classical functional keys. We move onto
our construction. The starting point is our public-key encryption scheme. To
generate a quantum copy-protected key for a function f , we sample a random id
as before, but now we generate the coset tuple using the randomness F (K, id||f)
rather than F (K, id). Basically, the coset states are now associated with both the
function f and a random id. We note that the random identity is still required,
since we allow the adversary to query for multiple copy-protected keys for the
same function f . We also change our ciphertexts so that they now output an IBE
encryption of f(m) under the identity id||f , rather than outputting an encryp-
tion of m.

Proving Security: Building and Using Puncturable Functional Encryp-
tion. Proof of security for our FE scheme will be similar to the proof of our PKE
scheme (Sect. 2.2). In particular, we will now identify identity string-function
pairs (associated with the functional keys) with elements of {0, 1, . . . , 2λ · 2λ},
and have ciphertext distributions Di for all such elements. While we have 22λ
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jump points, similar to PKE, we can argue that they can occur only at k points:
j = id1||f1, . . . , idk||fk, where f1, . . . , fk are the functions the pirate adversary
has queried in copy-protected mode and id1, . . . , idk are the associated identity
strings in the same order. The reason is that, for other values, either (i) the
adversary will not have the IBE secret key for the identity id||g (meaning that
it has not queried for the function g), or (ii) we will have g(m0) = g(m1) (if it
has queried for the function g in the classical mode). Thus, Di and Di+1 will be
indistinguishable at points other than ones listed above; either by IBE security
or since the PCt will output g(m0) = g(m1) in both distributions.

There is one caveat left. As discussed before, in our copy-protection security
proofs, we crucially rely on projective implementations [31] to estimate the suc-
cess of the freeloader adversaries for the task where they are given an encryption
of mb with random b ← {0, 1} and they output a prediction b′ for it. This allows
us to simultaneously extract vectors from two entangled freeloader adversaries.
While projective implementations are in general inefficient, [31] also gives an
efficient algorithm (called approximated projective implementation) that approxi-
mates it well, using a technique similar to the celebrated witness-preserving QMA
amplification result of [23]. Crucially, we note that above decryption process
between the challenger and freeloader, for which we estimate the success prob-
ability, is non-interactive (i.e., not single round). However, in a copy-protected
functional encryption security game, the freeloader adversaries will be allowed
to query for more functional keys after they receive their challenge ciphertexts,
for any polynomial number of rounds. Therefore, we will not able to use the
approximated projective implementation as-is to estimate the success probabil-
ity of a freeloader adversary for functional encryption. While one solution might
be to try and generalize approximate projective implementations to interactive
procedures, given that the original technique of [23] also only applies to QMA
(which is single round), this might be a challenging task.

We side-step the issue above using a classical solution. We define a variation
of our scheme where the challenger gives the freeloader adversaries a punctured
master secret key pmsk along with their challange ciphertext. This punctured
key has the challenge messages m0,m1 chosen by the adversary hardcoded, and
it takes in a function f and outputs the secret key for f if f(m0) = f(m1). Then,
since the freeloader adversaries can simulate (using this punctured key pmsk)
themselves any key queries that they want to make after seeing the challenge
ciphertext, we remove the interaction between the freeloaders and the challenger.
As a result, we are again able to use approximate projective implementations in
our technique.

The only remaining challenge is making sure that our functional encryption
construction is still secure when the adversaries obtain this punctured master
secret key, which is an obfuscated program that contains the master secret key
msk. While pmsk will only answer the queries on functions that the adversary
was allowed to query for anyways, the problem is that we are using indistin-
guishability obfuscation rather than black-box obfuscation to compute psmk.
To resolve this issue, we upgrade our FE construction to use an identity-based
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encryption scheme with puncturable master secret keys. In such a scheme, we are
able to produce a master secret key that can issue identity keys for any identity
other than the identity it was punctured at. When we are proving the security of
our functional encryption scheme, we will construct hybrids corresponding to all
possible id||f . Moving between each hybrid, we only need to rely on the security
of IBE at this identity. Therefore, in our security proof, we will not only use a
puncturing argument inside our obfuscated ciphertext program PCt, but we will
also puncture the IBE master secret key inside pmsk at id||f . Thus, we will be
able to rely on the security of IBE even when the adversary has pmsk. We refer
the reader to the full version [11] for the full proof.

2.4 PRFs and Signature Schemes with Copy-Protected Secret Keys

Let us first describe the setting. In the case of PRFs, we imagine a quantum key
generation algorithm that, given the PRF key K, can generate copy-protected
keys that can be used to evaluate the PRF F (K, ·) any number of times. For
copy-protection, we require that given k such keys, the adversary cannot create
k + 1 freeloaders that can distinguish F (K,x) versus a random string from the
co-domain of F , given uniformly at random x.19 In the case of signatures, we
have copy-protected re-usable signing keys that can sign any message. Similar
to above, given k such keys, pirate outputs k + 1 freeloaders, and we ask the
freeloaders to sign random messages.20

Our signature scheme will be the same as our PRF scheme, where the sig-
nature on m will be the PRF evaluation F (K,m), with the difference from the
PRF scheme being that we will also have a verification key. Similar to the signa-
ture scheme construction of Sahai and Waters [26], the verification key will be
an obfuscated program that verifies a message-signature pair (m,σ) by checking
f(σ) = f(F (K,m)) where f is a one-way function. Due to these similarities, we
only discuss our signature scheme here. Both constructions in full with security
proofs can be found in the full version [11].

In our signature scheme, a copy-protected signing key will consist of two
parts: (i) a coset state tuple generated using the randomness F (K ′′, id) for ran-
dom id, similar to our PKE scheme; (ii) an obfuscated signing program PSignK .
The program PSignK will take as input a message m, along with id and vec-
tors (vi)i∈[c]. Similar to the ciphertext programs PCt in our PKE construction,
PSignK will verify that the vectors (vi)i∈[c] are in the correct cosets Ai + si or
A⊥

i + s′
i, depending on the i-th bit of m, where the tuple (Ai, si, s

′
i) is associated

with id. Informally, since the challenge messages m1,m2 are random, similar to
r1, r2 in the PKE case, we will be able to violate the monogamy-of-entanglement
game, given freeloader adversaries that can sign these message - arriving at a

19 Note that x being randomized and being revealated after the splitting is required,
since otherwise the pirate can evaluate the PRF before splitting into freeloaders, and
it can simply give the classical evaluation results to the freeloaders.

20 As in the case of PRFs, known/deterministic messages can be signed before the split
by the pirate, hence, random challenge messages are required.
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contradiction. However, since we are using iO and not black-box obfuscation
to obfuscate PSignK , some information about K might leaking, allowing the
adversary to sign messages without querying the program with correct vectors.
Similar to [13,21], we use the hidden trigger technique of [26] to solve this issue
and reduce the security of our signature scheme to that of our copy-protected
PKE scheme.

Hidden triggers, introduced by [26] to construct deniable encryption, is a
sparse set of inputs that can be efficiently sampled and are pseudorandom, even
given a program that uses these inputs. In the case of [13,21], their set of hidden
trigger inputs are special encodings of the ciphertexts of their copy-protected
PKE scheme. Using this technique, they embed a separate thread in PSignK

that detects if the message m is a trigger input, and in that case, executes the
embedded ciphertext program PCt (which is a PKE encryption of F (K,m)) in
this input instead of normal execution. This allows them to reduce the task of
finding the signature F (K,m) for a message m to the task of decrypting a PKE
ciphertext encrypting F (K,m) (hence reducing security to their PKE scheme),
by undetectably replacing the random challenge messages to be signed with
hidden triggers.

In our case, two new issues arise. First, as discussed, to achieve collusion-
resistance, our PKE ciphertext programs crucially output IBE ciphertexts upon
successful coset vector verification, meaning that they are randomized programs,
which makes it more challenging to encode them as hidden triggers. We solve this
issue as follows. Inside the ciphertext program, we expand the hidden signature
F (K,m) using a PRG, and we use part of the expanded string as a PRF key to
supply randomness to IBE.Encrypt.

Secondly, the previous work [13,21] crucially rely on puncturing the PRF key
K at all the challenge points m1, . . . ,mk+1, to replace these challenge messages
with hidden trigger inputs and utilize the hidden thread in PSign. However, in
our case, we would have to puncture PRF key at k+1 points since we have k+1
freeloaders/challenges, where k is not a-priori bounded - this is not possible
since the sizes of the punctured key and the obfuscated programs would need to
grow with k. We solve this issue by making our hidden trigger inputs publicly
generatable, that is, by arguing that hidden trigger inputs are indistinguishable
from uniform strings even given a program that generates these inputs (which
needs to include the PRF key K). This allows us to only prove that a single
challenge message is indistinguishable from a single hidden trigger input, and
then we simply rely on the hybrid lemma to conclude the same result for any
number of challenge messages, since the trigger inputs can now be generated by
the adversary itself during the hybrid lemma argument. We use a new prefix-
puncturing argument for the PRF key K to achieve publicly-generatable hidden
triggers for our scheme. The full proof is technical, we refer the reader to the
full version [11] for the full constructions and the full proofs.
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2.5 Impossibility of Hyperefficient Shadow Tomography

As discussed in the introduction, an important corollary of our result is the
impossibility of hyperefficient shadow tomography. Suppose a shadow tomogra-
phy procedure exists. We now describe a generic attack on copy-protection, given
by [3] and adapted to the case of copy-protecting decryption keys by [27], that
uses shadow tomography. Let s(λ) be the size of the ciphertexts of a public-key
encryption scheme PKE with collusion-resistant copy-protected secret keys, for
1-bit messages. Then, define the set of measurements {Ect}ct∈{0,1}s(λ) as follows:
Ect is the binary measurement PKE.Dec(·, ct). That is, given a state (which will
be a copy-protected secret key in our case), Ect is the binary measurement imple-
mented by running PKE.Dec on ρ and accepting if it outputs 1. Then, it is easy
to see that once we obtain the estimates of the acceptance probabilities of all
Ect for the state ρ where ρ is the copy-protected secret key, when we are given
a ciphertext ct, we can simply use this estimate to tell if ct is an encryption of 1
or 0, since Ect would accept ρ if ct is an encryption of 1, and reject it otherwise.
Since these estimates are classical values, given some number of keys we can
perform shadow tomography and then we can create any number of decryption
programs.

The attack above is used by [3,27] to conclude that unconditional collusion-
resistant copy-protection is impossible, since [3] gives a shadow tomography
procedure that uses polynomially many copies of a state ρ, however, the
procedure takes exponential time. Now, the question is, does there exist a
hyperefficient shadow tomography procedure? We observe that the measure-
ment set {Ect}ct∈{0,1}s(λ) above is actually implemented by a uniform algo-
rithm: PKE.Dec(·, ·). Hence, if there exists a hyperefficient shadow tomogra-
phy procedure, it would output (a classical description of) a quantum circuit
that can estimate all Ect, given time and number of copies that are both
poly

(|ρ|, log(2s(λ)
))

= poly(λ). However, this would break the security of our
collusion resistant copy-protected PKE scheme, since we can query for suffi-
ciently many keys, perform the shadow tomography and freely distribute the
resulting classical information. Thus, we conclude that hyperefficient shadow
tomography is not possible. We refer the reader to the full version [11] for the
formal statements and proofs.

3 Public-Key Encryption with Copy-Protected Secret
Keys

In this section, we define public-key encryption with copy-protected secret keys.
Then, we give our construction based on coset states and prove it secure.

3.1 Definitions

Definition 1 (Public-key Encryption with Copy-Protected Secret
Keys). A public-key encryption scheme with copy-protected secret keys consists
of the following efficient algorithms.
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– KeyGen(1λ): Takes in the security parameter, output a classical secret key sk
and a public key pk.

– QKeyGen(sk): Takes as input the classical secret key and outputs a quantum
secret key.

– Enc(pk,m): Takes in the public key and a message m ∈ M, outputs and
encryption of m.

– Dec(Rdec, ct): Takes in a quantum secret key and a ciphertext, outputs a mes-
sage or ⊥.

We require correctness21 and CPA security.

Correctness. For all messages m ∈ M,

Pr

⎡

⎣Dec(Rdec, ct) = m :
pk, sk ← Setup(1λ)
Rdec ← QKeyGen(sk)

ct ← Enc(pk,m)

⎤

⎦ = 1.

CPA Security. For any stateful QPT adversary A,

Pr

⎡

⎢
⎢
⎣A(ct) = b :

pk, sk ← Setup(1λ)
m0,m1 ← A(pk, 1λ)

b ← {0, 1}
ct ← Enc(pk,mb)

⎤

⎥
⎥
⎦ ≤ 1

2
+ negl(λ).

As observed by [13], correctness of the scheme along with Almost As Good As
New Lemma [2] means that we can implement decryption in a way such that
the quantum secret key is not disturbed. Thus, we can reuse the key to decrypt
any number of times.

Following prior work, we will use two different security notions, regular anti-
piracy and strong anti-piracy. The former will be the natural security notion
while the latter definition is easier to work with when proving security. Both of
our definitions follow [13,21], with the strengthening that we allow unbounded22

number of key queries and we also allow the adversary to choose different chal-
lenge messages for each freeloader.

Now, we move onto the first definition. In this definition, the pirate (or split-
ting) adversary queries for copy-protected keys for any number of rounds. Then,
if it has queried for k keys, it outputs k+1 freeloaders, which are unitaries along
with hardwired quantum states. More precisely, it outputs a (k+1)-partite (possi-
bly entangled) register Radv and unitaries U�. Then, the challenger presents these
freeloaders with challenge ciphertexts, and the adversary wins if all freeloaders
correctly predict the challenges. Below, we write Uquantum to denote the quan-
tum universal circuit Uquantum((U, ρ), x) that takes in a unitary U and a state
ρ, and simulates the induced quantum circuit on input x (i.e. computes U(ρ, x)),

21 While our schemes satisfy perfect correctness, i.e., correctness with probability 1,
some work relax the definition to 1 − negl(λ).

22 Still polynomial since the adversary is QPT.



244 A. Çakan and V. Goyal

and finally measures the first output qubit in the computational basis. We note
that the freeloaders being unitaries is not restrictive and actually captures gen-
eral quantum circuits since the hardwired quantum state (Radv)� can include23
workspace qubits initialized to zeroes.

Definition 2 (CPA-Style Regular γ-Anti-Piracy Security). Let PKE be
a public key encryption scheme with copy-protected secret keys. Consider the
following game between the challenger and an adversary A.

PKEAntiPiracy(λ,A)

1. The challenger runs sk, pk ← PKE.Setup(1λ) and submits pk to the adversary.
2. For multiple rounds, A makes quantum key queries. For each query, the chal-

lenger generates a key as R ← PKE.QKeyGen(sk) and submits R to the adver-
sary.

3. A outputs a (k + 1)-partite register Radv, unitaries {U�}�∈[k+1] and challenge
messages {m0

� ,m
1
�}�∈[k+1], where k is the number of queries it made.

4. The challenger executes the following for each � ∈ [k + 1].
1. b� ← {0, 1}.
2. ct� ← PKE.Enc(pk,mb�

� ).
3. b′

� ← Uquantum(U�,Radv[�], ct�).
4. Check if b′

� = b�.
5. The challenger outputs 1 if and only if all the checks pass.

We say that PKE satisfies γ-anti-piracy security if for any QPT adversary A,

Pr[PKEAntiPiracy(λ,A) = 1] ≤ 1
2
+ γ(λ) + negl(λ).

We ignore writing γ when γ = 0.

We can also define a stronger notion called CPA-style strong γ-anti-piracy
[13], where γ is a parameter - we refer the reader to the full version [11] for the
formal definition. CPA-style regular γ-anti-piracy for any inverse polynomial γ
implies regular CPA security and regular γ-anti-piracy for γ = 0 [11,13].

3.2 Construction

In this section, we present our construction. Assume the existence of following
primitives where we set ν(λ) = 2−6λ · 2−8λ0.3CMoE.Coll .

– iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ ·
28λ0.3CMoE.Coll -time adversaries,

– IBE, identity-based encryption scheme for the identity space ID = {0, 1}λ

that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,

23 It will also include some quantum information that the pirate adversary has produced
from the copy-protected keys.
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– F1, puncturable PRF family with input length λ and output length same
as the size of the randomness used by CosetGen that is ν(λ)-secure against
25λ · 28λ0.3CMoE.Coll -time adversaries,

– F2, puncturable PRF family with input length λ and output length same
as the size of the randomness used by IBE.Enc that is ν(λ)-secure against
25λ · 28λ0.3CMoE.Coll -time adversaries,

– CCObf, compute-and-compare obfuscation for 2−λ0.2·CMoE.Coll -unpredictable
distributions that is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -
time adversaries,

A remark is in order regarding our assumptions. We note that all of our
assumptions above can be based on any subexponential iO and LWE assumption.
For example, if we have an iO scheme that is 2−λc1 -secure against 2λc2 -time
adversaries; in our construction we implicitly initiate it with security parameter
λc′

where c′ = max{0.3CMoE.Coll/c1, 0.3CMoE.Coll/c2}. While this might require
larger padding for obfuscated circuits, this is still within polynomial factors.
The same applies for the other primitives. Thus, our assumptions can be based
solely on subexponential hardness for any exponent, since we can always scale
the security parameter by a polynomial factor when instantiating the underlying
primitives.

Set L(λ) = λ and therefore cL(λ) = 24·λ3. We also assume that all obfuscated
programs in the construction and in the proof are appropriately padded.

We now give our construction for public-key encryption with copy-protected
secret keys.

PKE.Setup(1λ)

1. Sample a PRF key K1 ← F1.KeyGen(1λ).
2. Sample cpk, csmk ← IBE.Setup(1λ).
3. Sample OPMem ← iO(PMemK1), where PMemK1 is the following program.

PMemK1(id, u1, . . . , ucL(λ), r)
Hardcoded: K1

(a) (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id)).

(b) For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (r)i = 0 and check
if ui ∈ A⊥

i + s′
i if (r)i = 1. If any of the checks fail, output 0 and

terminate.
(c) Output 1.

4. Set pk = (cpk,OPMem) and sk = (cmsk,K1).
5. Output (pk, sk).

PKE.QKeyGen(sk)

1. Parse (cmsk,K1) = sk.
2. Sample id ← {0, 1}λ.
3. (Ai, si, s

′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id)).

4. ck ← IBE.KeyGen(cmsk, id).
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5. Output
(|Ai,si,s′

i
〉)

i∈[cL(λ)]
, ck, id.

PKE.Enc(pk,m)

1. Parse (cpk,OPMem) = pk.
2. Sample r ← {0, 1}cL(λ).
3. Sample a PRF key K2 for F2 as K2 ← F2.KeyGen(1λ).
4. Sample OPCt ← iO(PCtOPMem,cpk,K2,r,m), where PCtOPMem,cpk,K2,r,m is the

following program.

PCtOPMem,cpk,K2,r,m(id, u1, . . . , ucL(λ))
Hardcoded: OPMem, cpk,K2, r,m
(a) Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and ter-

minate.
(b) Output IBE.Enc(cpk, id,m;F2(K2, id)).

5. Output (OPCt, r).

PKE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[cL(λ)], ck, id) = Rkey and (OPCt, r) = ct.
2. For indices i ∈ [cL(λ)] such that (r)i = 1, apply H⊗κ(L(λ)+λ) to Ri.
3. Run the program OPCt coherently on id and (Ri)i∈[cL(λ)].
4. Measure the output register and denote the outcome by cct.
5. Output IBE.Dec(ck, cct).

Correctness with probability 1 follows in a straightforward manner from the
correctness of the underlying schemes. We claim that the construction is also
secure.

Theorem 6. PKE satisfies strong γ-anti-piracy for any inverse polynomial γ.

Proof. We refer the reader to the full version [11] for the proof.

When we instantiate the assumed building blocks with known constructions, we
get the following corollary.

Corollary 3. Assuming subexponentially secure iO and subexponentially secure
LWE, there exists a public-key encryption scheme that satisfies anti-piracy secu-
rity against unbounded collusion.

Proof. IBE can be constructed based on iO and one-way functions. F1 and F2

can be constructed based on one-way functions. Which in turn can be obtained
from LWE. CCObf can be constructed based on iO and LWE.

4 Public-Key Functional Encryption with Copy-Protected
Functional Keys

In this section, we define functional encryption with copy-protected functional
keys. Then, we give a construction based on coset states and prove it secure.
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4.1 Definitions

An informal overview of our security model is as follows. The piracy adversary
will be allowed to adaptively query for classical (i.e., not copy-protected) and
copy-protected (i.e. quantum) functional keys. At the end of this first query
phase, the adversary will produce a pair of challenge messages m0,m1 and k+1
registers (freeloaders) where k is the number of copy-protected keys obtained
by it. After this split, the challenger presents the freeloaders each with a chal-
lenge ciphertext. Finally, after receiving the challenge ciphertexts, freeloaders
can query for more functional keys, and they output their guess at the end.

We will also require the following for the challenge message pair m0,m1 and
the functions queried. First, we require that f(m0) = f(m1) for all functions f
queried by the pirate in the classical mode. This is required since, otherwise, the
pirate can give all the freeloaders the classical key skf , and they can decrypt their
challenge ciphertexts with this key to distinguish Enc(m0) vs Enc(m1). Second,
for the same reason as above, we require that a freeloader can query a key for
f only if f(m0) = f(m1). Note that these requirements are the same as the
classical FE game. Importantly, we will not require anything for functional keys
that were obtained in the copy-protected mode by the pirate adversary before
the split. Thus, our security guarantee will allow k out of the k + 1 freeloaders
to possibly use these copy-protected functional keys to decrypt their challenge
ciphertexts. However, it should not be possible for all k+1 registers to use these
copy-protected keys simultaneously.

We also define our model so that copy-protected functional keys are generated
given only a classical functional key, without any extra information. Therefore,
we do not need to separately require that a copy-protected key for f allows no
more than obtaining f(m) given Enc(m), which is already implied by the regular
functional encryption security.

Definition 3 (Public-key Functional Encryption with Copy-Protected
Secret Keys). A public-key functional encryption scheme with copy-protected
secret keys is a public-key functional encryption scheme with the following addi-
tional algorithm and guarantee.

– QKeyGen(fk): Takes as input a classical functional key, outputs a quantum
secret key.

We require correctness24 for the quantum functional keys.

Correctness. For all messages m ∈ M,

Pr

⎡

⎢
⎢
⎣Dec(Rdec, ct) = f(m) :

pk,msk ← Setup(1λ)
skf ← KeyGen(msk, f)
Rf ← QKeyGen(skf )

ct ← Enc(pk,m)

⎤

⎥
⎥
⎦ = 1.

24 While our schemes satisfy perfect correctness, i.e., correctness with probability 1,
some work relax the definition to 1 − negl(λ).
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As discussed in Sect. 3, correctness of the scheme along with As Good As New
Lemma [2] means that we can implement decryption in a way such that the
quantum functional key is not disturbed. Thus, we can reuse the key to decrypt
any number of times.

Similar to public-key encryption, we define a CPA-style anti-piracy security
definition. We refer the reader to the full version [11] for the formal definition.

4.2 Construction

In section, we give our construction of a functional encryption scheme with copy-
protected keys for the class of functions F defined as all circuits that are of size
at most Q(λ), where Q(λ) is any fixed polynomial. The construction is highly
similar to our public-key encryption construction. The main difference is that a
functional key for a function f will consist of an IBE key for id||f where id is a
random string.

Assume the existence of following primitives where we set ν(λ) = 2−5λ−Q(λ) ·
2−8λ0.3CMoE.Coll .

– iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ ·
28λ0.3CMoE.Coll -time adversaries,

– IBE, identity-based encryption scheme with puncturable master secret keys
and deterministic KeyGen that satisfies strong punctured key correctness,
for the identity space ID = {0, 1}Q(λ)+λ that is ν(λ)-secure against 25λ ·
28λ0.3CMoE.Coll -time adversaries,

– F1, puncturable PRF family with input length Q(λ) + λ and output length
same as the size of the randomness used by CosetGen that is ν(λ)-secure
against 25λ · 28λ0.3CMoE.Coll -time adversaries,

– F2, puncturable PRF family with input length Q(λ) + λ and output length
same as the size of the randomness used by IBE.Enc that is ν(λ)-secure against
25λ · 28λ0.3CMoE.Coll -time adversaries,

– CCObf, compute-and-compare obfuscation for 2−λ0.2·CMoE.Coll -unpredictable
distributions that is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -
time adversaries,

Similar to our public-key encryption scheme, while we assume exponential
security of the above primitives for specific exponents, these assumptions can be
based only on subexponential hardness for some exponent, since we can always
scale the security parameter by a polynomial factor.

Also, set L(λ) = Q(λ) + λ and hence cL(λ) = 3 · (Q(λ) + 2λ)3.
We now give our construction. Below, assume that all programs that are

obfuscated are appropriately padded.
FE.Setup(1λ)

1. Sample a PRF key K1 ← F1.KeyGen(1λ).
2. Sample cpk, csmk ← IBE.Setup(1λ).
3. Sample OPMem ← iO(PMemK1), where PMemK1 is the following program.
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PMemK1(id||f, u1, . . . , ucL(λ), r)
Hardcoded: K1

(a) (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id||f)).

(b) For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (r)i = 0 and check
if ui ∈ A⊥

i + s′
i if (r)i = 1. If any of the checks fail, output 0 and

terminate.
(c) Output 1.

4. Set pk = (cpk,OPMem), msk = (cmsk,K1).
5. Output (pk,msk).

FE.KeyGen(msk, f)

1. Parse (cmsk,K1) = msk.
2. Sample id ← {0, 1}λ.
3. Sample ck ← IBE.KeyGen(cmsk, id||f).
4. (Ai, si, s

′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id||f)).

5. Output (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]).

FE.QKeyGen(fk)

1. Parse (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]) = fk.

2. Output
(|Ai,si,s′

i
〉)

i∈[cL(λ)]
, ck, id, f .

FE.Enc(pk,m)

1. Parse (cpk,OPMem) = pk.
2. Sample r ← {0, 1}cL(λ).
3. Sample a PRF key K2 for F2 as K2 ← F2.KeyGen(1λ).
4. Sample OPCt ← iO(PCtOPMem,cpk,K2,r,m), where PCtOPMem,cpk,K2,r,m is the

following program.
PCtOPMem,cpk,K2,r,m(id||f, u1, . . . , ucL(λ))
Hardcoded: OPMem, cpk,K2, r,m
(a) Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and

terminate.
(b) Output IBE.Enc(cpk, id||f, f(m);F2(K2, id||f)).

5. Output (OPCt, r).

FE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[cL(λ)], ck, id, f) = Rkey and (OPCt, r) = ct.
2. For indices i ∈ [cL(λ)] such that (r)i = 1, apply H⊗κ(L(λ)+λ) to Ri.
3. Run the program OPCt coherently on id, f and (Ri)i∈[cL(λ)].
4. Measure the output register and denote the outcome by cct.
5. Output IBE.Dec(ck, cct).

Correctness with probability 1 follows in a straightforward manner from the
correctness of the underlying schemes. We claim that the construction is also
secure.
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Theorem 7. FE satisfies γ-anti-piracy for any inverse polynomial γ.

Proof. We refer the reader to the full version [11] for the proof

When we instantiate the assumed primitives with known constructions, we get
the following corollary.

Corollary 4. Assuming subexponentially secure iO and subexponentially secure
LWE, there exists a public-key functional encryption scheme that satisfies anti-
piracy security against unbounded collusion.

Proof. We refer the reader to the full version [11] for the proof.

5 Signature Scheme with Copy-Protected Keys

In this section, we define signature schemes with copy-protected signing keys.
Then, we give our construction based on coset states and prove it secure.

5.1 Definitions

Definition 4 (Signature Scheme with Copy-Protected Secret Keys). A
signature scheme with copy-protected secret keys consists of the following efficient
algorithms.

– KeyGen(1λ): Takes in the security parameter, output a classical signing key
sk and a classical verification key vk.

– QKeyGen(sk): Takes as input the classical signing key and outputs a quantum
signing key.

– Sign(Rsk,m): Takes in a quantum signing key and a message m, outputs a
classical signature on m.

– Ver(vk,m, sig): Takes in the verification key, a message m ∈ M and a claimed
signature sig on m, outputs 1 (accept) or 0 (reject).

We require correctness.

Correctness. For all messages m ∈ M,

Pr

⎡

⎣Ver(vk, sig) = 1 :
sk, vk ← Setup(1λ)
Rsk ← QKeyGen(sk)
sig ← Sign(Rsk,m)

⎤

⎦ ≥ 1 − negl(λ).

Definition 5 (Pseudodeterministic Signatures). A signature scheme is
said to be pseudodeterministic if for any value of sk, vk in the support induced
by KeyGen, for any message m ∈ M, there exists a fixed signature sigsk,vk,m

such that

Pr

⎡

⎣sig = sigsk,vk,m :
sk, vk ← Setup(1λ)
Rsk ← QKeyGen(sk)
sig ← Sign(Rsk,m)

⎤

⎦ ≥ 1 − negl(λ).
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As observed by [21], a pseudodeterministic signature scheme, along with As
Good As New Lemma [2] means that we can implement the signing in a way
such that the quantum secret key is only negligibly disturbed. Thus, we can
reuse the key to sign any polynomial number of times. Our scheme (Sect. 5.2)
will be pseudodeterministic.

We now define anti-piracy security for signature schemes, similar to our PKE
definition (Definition 2).

Definition 6 (Anti-Piracy Security for Signature Schemes). Let DS be
a signature scheme with copy-protected secret keys. Consider the following game
between the challenger and an adversary A. SignatureAntiPiracy(λ,A)

1. The challenger runs sk, vk ← DS.Setup(1λ) and submits vk to the adversary.
2. For multiple rounds, A makes quantum key queries. For each query, the chal-

lenger generates a key as R ← DS.QKeyGen(sk) and submits R to the adver-
sary.

3. A outputs a (k + 1)-partite register Radv and freeloader unitaries {U�}�∈[k+1]

where k is the number of queries it made.
4. The challenger executes the following for each � ∈ [k + 1].

(a) m� ← M.
(b) sig� ← Uquantum(U�,Radv[�],m�).
(c) Check if DS.Ver(vk,m�, sig�) = 1.

5. The challenger outputs 1 if and only if all the checks pass.

We say that DS satisfies anti-piracy security if for any QPT adversary A,

Pr[SignatureAntiPiracy(λ,A) = 1] ≤ negl(λ).

5.2 Construction

In this section, we present our construction. Assume the existence of following
primitives where we set ν(λ) = 2−6λ · 2−8λ0.3CMoE.Coll .

– F , prefix puncturable extracting PRF with error 2−λ−1 for min-entropy
s2(λ) + s3(λ), with input length m(λ) and output length n(λ),

– iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ ·
28λ0.3CMoE.Coll -time adversaries,

– IBE, identity-based encryption scheme for the identity space ID = {0, 1}λ

that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,
– F1, puncturable PRF family with input length λ and output length same

as the size of the randomness used by CosetGen, that is ν(λ)-secure against
25λ · 28λ0.3CMoE.Coll -time adversaries,

– F2, puncturable PRF family with input length λ and output length same
as the size of the randomness used by IBE.Enc that is ν(λ)-secure against
25λ · 28λ0.3CMoE.Coll -time adversaries,25

25 We also assume that F2 has uniformly random keys (when not punctured), that is,
the key generation algorithm F2.KeyGen simply samples and outputs a uniformly
random string. This is satisfied by the puncturable PRF constructions based on
one-way functions we are using.
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– CCObf, compute-and-compare obfuscation for 2−λ0.2·CMoE.Coll -unpredictable
distributions that is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -
time adversaries,

– F3, puncturable statistically injective PRF with error probability 2−λ with
input length s3(λ) and output length s2(λ),

– F4, puncturable PRF with input length s2(λ) and output length s3(λ),
– G1, a pseudorandom generator with input length n(λ) and output length n(λ)

plus the key size of the PRF F2,
– G2, a pseudorandom generator with input length s1(λ)/2 and output length

s1(λ),
– G3, a pseudorandom generator with input length λ and output length 2 · λ,
– f , a subexponentially secure injective one-way function with input space

{0, 1}n(λ).

We also set the parameters from above as follows:

– n(λ) = λ,
– s1(λ) = cL(λ),
– s3(λ)−s1(λ)−2λ to be larger than the size of the obfuscations (of the program

Q) that will be used in the proof,
– s2(λ) ≥ 2 · s3(λ) + λ,
– s2(λ) + s3(λ) ≥ n(λ) + 2λ + 4,
– m(λ) = s1(λ) + s2(λ) + s3(λ).

As in our other schemes, while some of our security assumptions above are
exponential with specific exponents, all of these assumptions can be based solely
on subexponential hardness for any exponent, since we can always scale the
security parameter by a polynomial factor when instantiating the underlying
primitives.

Set L(λ) = λ and therefore cL(λ) = 24·λ3. We also assume that all obfuscated
programs in the construction and in the proof are appropriately padded.

We now give our signature scheme with copy-protected signing keys, for the
message space M = {0, 1}m(λ). DS.Setup(1λ)

1. Sample PRF keys K ← F.KeyGen(1λ) and Ki ← Fi.KeyGen(1λ) for i ∈
{1, 3, 4}.

2. Sample cpk, csmk ← IBE.Setup(1λ).
3. Sample OPVer ← iO(PVer) where PVer is the following program.

PVer(m, sig)
Hardcoded: K,K3,K4 Hidden Trigger Check
(a) Parse m1||m2||m3 = m with |mi| = si.
(b) Compute m′

1||OQ′||r′ = F4(K4,m2) ⊕ m3.
(c) Check if m′

1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′

as a classical circuit, output OQ′(mode = verify, sig||0cL(λ)·λ) and
terminate.
Normal Mode
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(d) Parse y||K ′
2 = G1(F (K,m)) with |y| = n(λ).

(e) Output 1 if f(sig) = f(y). Otherwise, output 0.

4. Sample OPMem ← iO(PMemK1), where PMemK1 is the following program.

PMemK1(id, u1, . . . , ucL(λ), x)
Hardcoded: K1

(a) (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id)).

(b) For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (x)i = 0 and check
if ui ∈ A⊥

i + s′
i if (x)i = 1. If any of the checks fail, output 0 and

terminate.
(c) Output 1.

5. Sample OPEval ← iO(PEval), where PEval is the following program.26

PEval(m, id, u1, . . . , ucL(λ))
Hardcoded: OPMem, cpk,K,K3,K4 Hidden Trigger Check
(a) Parse m1||m2||m3 = m with |mi| = si.
(b) Compute m′

1||OQ′||r′ = F4(K4,m2) ⊕ m3.
(c) Check if m′

1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′

as a classical circuit, output OQ′(mode = eval, id, u1, . . . , ucL(λ)) and
terminate.Normal Mode

(d) Run OPMem(id, u1, . . . , ucL(λ),m1). If it outputs 0, output ⊥ and
terminate.

(e) Parse y||K ′
2 = G1(F (K,m)) with |y| = n(λ).

(f) Output IBE.Enc(cpk, id, y;F2(K ′
2, id)).

6. Set vk = OPVer and sk = (cmsk, cpk,K1,OPEval).
7. Output (vk, sk).

DS.QKeyGen(sk)

1. Parse (cmsk, cpk,K1,OPEval) = sk.
2. Sample id ← {0, 1}λ.
3. (Ai, si, s

′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id)).

4. ck ← IBE.KeyGen(cmsk, id).
5. Output

(|Ai,si,s′
i
〉)

i∈[cL(λ)]
, ck, id,OPEval.

DS.Sign(Rkey,m)

1. Parse ((Ri)i∈[cL(λ)], ck, id,OPEval) = Rkey.
2. Parse m1||m2||m3 = m with |mi| = si.

26 Note that it is also possible to put the coset generation PRF key K1 directly inside
OPEval due to the iO security. However, we elect to use OPMem to preserve the
similarities to our PKE construction.
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3. For indices i ∈ [cL(λ)] such that (m0)i = 1, apply H⊗κ(L(λ)+λ) to Ri.
4. Run the program OPEval coherently on m, id and (Ri)i∈[cL(λ)].
5. Measure the output register and denote the outcome by cct.
6. Output IBE.Dec(ck, cct).

DS.Ver(vk,m, sig)

1. Parse OPVer = vk.
2. Output OPVer(m, sig).

We claim that the construction is correct and secure.

Theorem 8. DS satisfies correctness (Definition 4) and psuedodeterminism
(Definition 5), and hence reusability.

Theorem 9. DS satisfies selective27 message existential unforgeability security.

Theorem 10. DS satisfies anti-piracy security (Definition 6).

We refer the reader to the full version [11] for the proofs. When we instantiate
the assumed building blocks with known constructions, we get the following
corollary.

Corollary 5. Assuming subexponentially secure iO and subexponentially secure
LWE, there exists a signature scheme that satisfies anti-piracy security against
unbounded collusion.

Proof. We refer the reader to the full version [11] for the proof.
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Abstract. Quantum information can be used to achieve novel crypto-
graphic primitives that are impossible to achieve classically. A recent
work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses on
equipping the dual-Regev encryption scheme, introduced by Gentry,
Peikert, Vaikuntanathan (STOC 2008), with key revocation capabilities
using quantum information. They further showed that the key-revocable
dual-Regev scheme implies the existence of fully homomorphic encryp-
tion and pseudorandom functions, with both of them also equipped with
key revocation capabilities. Unfortunately, they were only able to prove
the security of their schemes based on new conjectures and left open the
problem of basing the security of key revocable dual-Regev encryption
on well-studied assumptions.

In this work, we resolve this open problem. Assuming polynomial
hardness of learning with errors (over sub-exponential modulus), we show
that key-revocable dual-Regev encryption is secure. As a consequence,
for the first time, we achieve the following results:

– Key-revocable public-key encryption and key-revocable fully-
homomorphic encryption satisfying classical revocation security and
based on polynomial hardness of learning with errors. Prior works
either did not achieve classical revocation or were based on sub-
exponential hardness of learning with errors.

– Key-revocable pseudorandom functions satisfying classical revoca-
tion from the polynomial hardness of learning with errors. Prior
works relied upon unproven conjectures.

1 Introduction

Leveraging fundamental principles of quantum information to achieve crypto-
graphic notions, that are otherwise impossible to achieve classically, is an exciting
research direction. In the past few years, a dizzying variety of quantum crypto-
graphic primitives, termed as unclonable primitives, have been studied. Under-
lying the unclonable primitives is the no-cloning principle of quantum mechan-
ics [WZ82,Die82] which states that quantum states, unlike classical strings, can-
not be copied. The recent surge in the development of unclonable primitives has
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resulted in innovative approaches to tackle many real-world security challenges,
including protection against anti-piracy [Aar09], privacy concerns in blockchain
technology [AGKZ20], and provable deletion of cryptographic data from the
web [BI20,BL20].

We focus on the task of securely leasing or revoking cryptographic keys using
the tools of quantum information. Before precisely stating the problem that we
set out to address, let us consider two scenarios: (a) Imagine a manager needing
to temporarily delegate their duties, including access to sensitive encrypted data,
to their subordinate by sharing cryptographic keys. The challenge is ensuring
the subordinate’s access is revoked upon the manager’s return, a task that is
impossible to achieve with classical keys, (b) If a cryptographic key is stolen
from a device, unless the attacker has left a trace, it becomes challenging to
detect such an attack and report it.

Quantum information presents a unique approach of tackling both of the
above aforementioned problems.

Our Focus. A major focus of our work is on protecting decryption keys.
Specifically, we focus on the popular dual-Regev public-key encryption scheme
of [GPV08] (also, referred to as the GPV encryption scheme), which has inspired
the design of many lattice-based cryptographic primitives [BGG+14,Mah18,
BDGM20,Qua20]. A key-revocable dual-Regev public-key encryption scheme,
first introduced in [APV23], is the same as the dual-Regev scheme except that
we have the additional guarantee that the decryption keys can alternately be
represented as quantum states. Any user in possession of the quantum decryp-
tion key can decrypt ciphertexts just the way he would have been able to do if he
had a classical decryption key. The security guarantee stipulates that once the
user returns the quantum decryption key, they will lose the ability to decrypt
ciphertexts and in particular, we require that the semantic security of dual-
Regev encryption still hold. We refer the reader to Sect. 1.1 for a more detailed
description of the key-revocable dual Regev public-key encryption scheme.

Key-Revocable Security of Dual-Regev: Motivation. Proving the
security of key-revocable dual-Regev encryption could lead to adding key revo-
cation capabilities to other cryptographic primitives. Indeed, [APV23] showed
that key-revocable dual-Regev encryption can be leveraged to prove the exis-
tence of fully homomorphic encryption and pseudorandom functions equipped
with key revocation capabilities. The structure of dual-Regev encryption was
crucially exploited in these applications.

There is also an aesthetic reason behind studying this problem. Dual-Regev
public-key encryption is an elegant construction that is taught in most graduate
classes on lattice-based cryptography. Understanding whether it satisfies key-
revocable security is a natural theoretical question.

The work of [APV23] attempted to prove the key-revocable security of dual-
Regev encryption. Unfortunately, they were only able to prove the security of
this construction based on a new unfounded conjecture. They leave the prob-
lem of proving the key-revocable security of dual Regev encryption on con-
crete computational assumptions as an important open problem. In this same
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work, inspired by the literature on certified deletion [BI20,HMNY21,BK22], they
define a stronger property called classical revocation: instead of the user being
asked to return the state, they are only asked to return a classical string that
certifies that the quantum decryption key has been deleted. After the state has
been deleted, as before, we require the semantic security of dual-Regev encryp-
tion to still hold. [APV23] relied upon yet another new conjecture to show that
dual-Regev encryption satisfied classical key-revocation security. The reliance
on both these conjectures makes the current state of affairs rather unsatisfac-
tory. [APV23] left open the problem of basing key-revocation security of dual-
Regev encryption on well-studied cryptographic assumptions.

Main Result. In this work, we resolve this open problem. We show the following:

Theorem 1. Assuming polynomial hardness of learning with errors over sub-
exponential modulus1, dual-Regev encryption is key-revocable. Moreover, this
scheme satisfies the classical revocation property.

Applications. By combining the above theorem with the applications of key-
revocable dual-Regev encryption in [APV23], we obtain the following results:

Main Application: We present the first result of key-revocable pseudorandom
functions based on the polynomial hardness of learning with errors and also
simultaneously satisfies classical revocation property. Prior work by [APV23]
relied upon unproven conjectures.

Other Applications: We also achieve other applications that are in some
aspects better than the previous works.

1. We present the first result of key-revocable public-key encryption that is based
on polynomial hardness of learning with errors and simultaneously satisfies
classical revocation property. Prior works by [AKN+23,CGJL23] satisfied one
but not the other.

2. We present the first result of key-revocable fully homomorphic encryption that
is based on polynomial hardness of learning with errors and simultaneously
satisfies classical revocation property. Prior work by [CGJL23] achieved this
result from sub-exponential hardness of learning with errors.

Main Technical Contribution: At the heart of our result is a new search-to-
decision reduction that reduces a quantum distinguisher that breaks the seman-
tic security of dual-Regev encryption into a quantum adversary that can solve
an inhomogeneous short integer solution (ISIS) problem. Our search-to-decision
reduction is qualitatively different from [APV23] who rely upon Goldreich-Levin
reduction over large finite fields. In addition to the fact that [APV23] relies

1 By aggressively setting the parameters, it would suffice to just assume polynomial
hardness of learning with errors over quasi-polynomial modulus.
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upon a conjecture, their reduction necessarily2 incurs a loss that is inversely
proportional to q, where q is the size of the field. Since they need to set q to
be sub-exponential in the security parameter, this means that their reduction
suffers from sub-exponential loss. On the other hand, our ISIS solver only incurs
inverse polynomial loss, independent of q.

Related Works: It would be remiss not to discuss two other related prior
works.

Chardouvelis, Goyal, Jain, Liu [CGJL23] present instantiations of key-
revocable public-key encryption and fully homomorphic encryption. Moreover,
their schemes satisfy classical key-revocation security3. There are two advantages
of our work over theirs:

– They do not have any results on pseudorandom functions,
– They assume sub-exponential hardness of learning with errors whereas we only

assume polynomial hardness of learning with errors.

Besides that, our work fundamentally differs from their work, both in terms
of constructions and its analysis. Let us begin by highlighting the differences in
the construction.

At a high level, our construction is the same as the dual-Regev public-key
encryption scheme except for the quantum decryption key, whereas [CGJL23]
builds a new encryption scheme inspired by noisy trapdoor claw-free functions
(NTCF) introduced by [BCM+21]. Specifically, they repeat many instantiations
of NTCFs in parallel and use that to build a key-revocable public-key encryption
scheme. The NTCF itself is instantiated using the (original) Regev public-key
encryption scheme.

Even the overall approach in the analysis is quite different: we do a reduc-
tion from decision LWE to SIS whereas they do a search-to-decision reduction for
LWE itself. In the analysis, we use Gaussian collapsing lemma [Por22] and intro-
duce a new lemma, lemma 6 which is distinct in our work. Given the fact that
the constructions are very different, unsurprisingly, the implementation details
also vary quite a bit in both the works. For instance, since they do parallel rep-
etition, their extraction method is more complicated since the adversary could
have broken any one of the instantiations.

Agrawal, Kitagawa, Nishimaki, Yamada, Yamakawa [AKN+23] present an
instantiation of key-revocable public-key encryption based on the existence of
any post-quantum secure public-key encryption scheme. They also present other
key-revocable notions, such as functional encryption, that are not covered in this
work. There are two advantages of our work over theirs:

– They do not prove the classical key revocation security of their scheme,

2 Their starting point is the classical Goldreich Levin reduction over finite fields by
Dodis et al. [DGT+10]. This reduction already suffers from a loss that is inversely
proportional to q.

3 In fact, they satisfy a much stronger property where the communication with the
user can be completely classical.
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– They also do not provide any positive results on either fully homomorphic
encryption or pseudorandom functions.

Both the works, [CGJL23] and [AKN+23], come up with arguably more
involved constructions of key-revocable public-key encryption which make it
unwieldy to extend their techniques to get new applications.

1.1 Technical Overview

In this section, we give an overview of the main ideas and techniques underlying
our proofs.

Key-Revocable Dual-Regev Public-Key Encryption. We first recall the key-
revocable dual-Regev constructions from [APV23]. This part has been repro-
duced verbatim from their work.

– KeyGen(1λ): Sample a matrix A ∈ Z
n×m
q and a short trapdoor basis tdA

for it. The (quantum) decryption key is a Gaussian superposition of ISIS
solutions, which is generated by the following procedure: Create a Gaussian
superposition of short vectors x, compute the image A · x (mod q) in the
second register to get

|ψ〉 =
∑

x∈Zm
q

ρσ(x)|x〉 ⊗ |A · x (mod q)〉

where ρσ(x) = exp(−π‖x‖2/σ2) is the Gaussian measure, for some σ > 0,
and measure the second register to the Gaussian coset state

|ψy〉 =
∑

x∈Z
m
q

Ax=y (mod q)

ρσ(x)|x〉

for some measurement outcome y ∈ Z
n
q .

Finally we set PK = (A,y), MSK = tdA and ρSK = |ψy〉.
– Enc(PK, μ): To encrypt a bit μ ∈ {0, 1}, sample a random string s $←−Z

n
q

together with discrete Gaussian errors e ∈ Z
m and e′ ∈ Z, and output a

classical ciphertext CT given by

CT =
(
sᵀA+ eᵀ, sᵀy + e′ + μ · �q

2
�
)

∈ Z
m
q × Zq.

– Dec(ρSK,CT): First apply the unitary U : |x〉|0〉 → |x〉|CT · (−x, 1)ᵀ〉 on
input ρSK ⊗|0〉〈0|, and then measure the second register in the computational
basis. Because ρSK is supposed to be the Gaussian coset state |ψy〉, which is a
superposition of short vector x subject A ·x = y, we obtain an approximation
of μ · � q

2� from which we can recover μ.
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– Revoke(PK,MSK, ρ) : Apply the projective measurement {|ψy〉〈ψy|, I − |ψy〉〈ψy|}
onto ρ using the master secret key tdA

4. Output Valid if the measurement
succeeds, and output Invalid, otherwise.

Consider an efficient adversary A. It receives as input a state |ψy〉 from the chal-
lenger and computes a state ρR,Aux on two registers R and Aux. Subsequently,
the adversary returns system R to the challenger, while retaining system Aux

as quantum advice for subsequent steps. Informally speaking, we say that the
above scheme is secure if A wins both of the following events simultaneously
only with negligible probability:

– Revoke on the system R outputs Valid.
– Using Aux, A can distinguish

(
sᵀA+ eᵀ, sᵀy + e′ + � q

2�) versus
(sᵀA+ eᵀ, sᵀy + e′)

Starting Point. Inspired by [APV23], we undertake the following approach. Sup-
pose there did exist an efficient adversary A that is successful in violating the
security of the above construction. We reduce A into an SIS solver B, which
is described as follows: it first runs A on input (A,y, |ψy〉) to obtain a state ρ
on two registers R and Aux. Then, B needs to be cleverly designed in such a
way that it recovers a short vector x0 from R and a short vector x1 from Aux

satisfying the following properties:

– Ax0 = y, Ax1 = y and,
– x0 �= x1.

Once both the vectors x0 and x1 are recovered then it simply sets the SIS
solution to be x0 − x1.

While [APV23] set out on this route, they only managed to show such a
reduction based on a new conjecture. The core reason behind this is the fact
that it is challenging to be able to simultaneously recover two distinct short
solutions from two potentially entangled registers R and Aux. An attempt to
recover x0 from R could invariably disturb the part of the state on Aux such
that it is no longer possible to recover x1. Any approach we undertake should
tackle this challenge.

Our Approach. We propose a three-step approach to prove the security of key-
revocable dual-Regev encryption based on learning with errors.

– Step 1. In the first step, we transform the intermediate state ρ (on R and
Aux) produced by A into a “good state" ρgood. This step doesn’t need to
always succeed. We require two guarantees here: (a) this step aborts with
probability bounded away from 1 and, (b) conditioned on not abort, the
output of this step is a good state ρgood such that the revocation on R succeeds
with non-negligible probability and Step 2 works.

4 [APV23] showed how to implement this projective measurement efficiently with the
trapdoor tdA.
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– Step 2. Suppose the output of Step 1 is ρgood. We require that as long as
ρgood is a good state then, from Aux, we should be able to recover a short
vector x1 such that Ax1 = y. More importantly, we should be able to recover
x1 with overwhelming probability.

– Step 3. We recover a short vector x0 from the register R such that Ax0 = y.
Our hope is that x0 and x1 are distinct and if this is the case then x0 − x1

is a non-trivial short solution in the kernel of A.

The easiest step to realize is Step 3. Suppose we have the guarantee that we
can recover x1 from Aux with overwhelming probability. By invoking almost
as good as new lemma [Aar16], we can show that the state ρ after Step 2 is
not disturbed by much. This means that Revoke still succeeds on R with inverse
polynomial probability. This further implies that measuring the register R yields
a short vector x0. Then using a simplified analysis of [APV23], we can argue that
x0 �= x1, completing the proof.

We focus our attention on implementing Steps 1 and 2. Our main technical
contribution will lie in Step 2.

Implementing Step 1: To implement Step 1, we rely upon the threshold imple-
mentation technique introduced by Zhandry [Zha20]. Threshold implementation
is a technique employed to get an estimate of the success probability of a POVM
on a state. In our context, we employ this technique to test whether the adver-
sary acting upon Aux register of ρ is successful in violating the security of
key-revocable dual-Regev encryption scheme. Formally, we define the threshold
implementation operator TI 1

2+γ , where γ is some inverse polynomial, with the
following properties:

1. TI 1
2+γ is akin to a projector-like operator, collapsing the state to a γ-good

state ρgood capable of distinguishing between (sᵀA+ eᵀ, sᵀy + e′) and (u, r)
for u, r being sampled uniformly randomly with probability 2γ (referred to as
a “γ-good state") when TI 1

2+γ outputs 1, or to some other state when TI 1
2+γ

outputs 0.
2. For a successful adversary, applying TI 1

2+γ with an inverse polynomial γ on
ρAux results in an output of 1 with noticeable probability.

3. Upon applying TI 1
2+γ again on a γ-good state, it yields an output of 1 with

probability 1.

To summarize, as long as A is a successful adversary, TI 1
2+γ collapses ρ into a

good state ρgood with inverse polynomial probability.

Implementing Step 2: As mentioned earlier, implementing Step 2 is our main
technical contribution.

It was already shown by [APV23] that x1 can be extracted from Aux. How-
ever, the success probability of their extraction mechanism was only inverse
polynomial which is insufficient for our purpose. Instead, we completely depart
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from [APV23] and propose a novel extraction method. This high-level app-
roach is inspired by [CGJL23] although they study for a completely different
construction.

At a high level, our extractor proceeds by guessing each entry of x1, where x1

is a short solution mapping A to y, one coordinate at a time. For each coordinate,
we try all possible values and using the distinguisher, test which of our guesses
was correct. Recall that there are exponentially many short vectors that map
A to y. But once we apply the Gaussian collapsing lemma [Por22,LMZ23], we
can replace the state |ψy〉 with |x1〉. While recovering, say, the ith coordinate of
x1, we use the distinguisher on Aux to figure out whether the guess for the ith

coordinate was correct or not. However, this has to be handled with care. Since
the distinguisher has quantum auxiliary advice, we cannot keep hoping to run the
distinguisher again and again. After the first run, the state of the distinguisher
could be damaged making it useless for future iterations. So we need to come
up with a mechanism to check if a guess is correct or not while maintaining
the quantum state. Making crucial use of threshold implementation along with
techniques from lattice-based cryptography, we show how to implement this.

Our extractor is described as follows:

1. Initialize x = 0 as the output register.
2. For each position i ∈ [m] and each guess gi, we test whether the i-th entry

x1 is gi by:
(a) Applying TI 1

2+γ′(i, gi) on system Aux, where TI 1
2+γ′(i, gi) is a threshold

implementation that ‘tests’ whether the state is γ′-good at distinguishing
between

(
sᵀA+ eᵀ + c · î, sᵀy + c · gi + e′

)
(where c $←−Zq and î is the

unit vector on the i-th dimension) and (u, r) (where u $←−Z
m
q , r $←−Zq).

(b) If the output is 1, set xi = gi.
(c) If the output is 0, skip to the next iteration.

3. Output x.

We argue that our extractor outputs x1 with nearly perfect probability if
TI 1

2+γ on ρAux outputs 1. Zhandry [Zha20] demonstrates that for two threshold
implementations concerning computationally indistinguishable tasks (e.g., dis-
tinguishing (sᵀA+ eᵀ, sᵀy + e′) from (u, r), and distinguishing (u,uᵀx1 + e′)
from (u, r)), their outputs are closely related. Now, considering each guess gi for
position i:

– If the guess is correct (i.e., the i-th entry of x1 is gi), the distribution(
sᵀA+ eᵀ + c · î, sᵀy + c · gi + e′

)
is computationally indistinguishable from

the distribution (u,uᵀx1 + e′), and thus also from (sᵀA+ eᵀ, sᵀy + e′).
Given ρ′

Aux is a γ-good state, TI 1
2+γ′(i, gi) outputs 1 with 1−negl probability

if all other threshold implementations are ignored (i.e., applied TI 1
2+γ′(i, gi)

just after TI 1
2+γ).

– If the guess is incorrect, the distribution
(
sᵀA+ eᵀ + c · î, sᵀy + c · gi + e′

)

is computationally indistinguishable from (u, r). Consequently, any state pro-
vides no advantage as advice, and TI 1

2+γ′ outputs 1 with negl probability.
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Finally, we apply the quantum union bound to all measurements to demonstrate
that the probability of no error occurring during our testing procedure is 1−negl.

In the above proof, we omitted a major issue. Recall that in Step 1, we imple-
ment threshold implementation to project the state ρ onto a good state ρgood.
Moreover, this threshold implementation is designed to check if the adversary
can distinguish between the distributions (sᵀA+ eᵀ, sᵀy + e′) and (u, r). As
discussed above, at some point, in the intermediate hybrids we need to change
these distributions. Once we switch the distributions, the threshold implemen-
tation might only work with negligible probability. Our hope, in some cases
invoking learning with errors, is to argue that this does not happen. However, it
is not clear how to carry out this reduction. After all, the threshold implemen-
tation as defined by [Zha20] operates on a superposition of exponentially many
samples from a distribution and so, given just one sample from a distribution, it
is not possible to perform threshold implementation. We present a useful lemma
(in Sect. 5) where we argue that operationally, the guarantees of threshold imple-
mentation (including the output and the residual state) are not affected when
one distribution is replaced with another computationally indistinguishable dis-
tribution.

2 Preliminaries

We use standard notations throughout this work. We assume that the reader is
familiar with quantum computing and lattices. We refer the reader to the full
version [AHH24] for a complete presentation of this section.

2.1 Quantum Computing

We will use the following lemma.

Lemma 1 (Quantum Union Bound, [Gao15]). Let H be a Hilbert space. Let
ρ ∈ D(H) be a state and let Π1, . . . ,Πn ≥ 0 be sequence of (orthogonal) projec-
tions acting on H. Suppose that, for every i ∈ [n], it holds that Tr[Πiρ] = 1−εi,
for εi ∈ [0, 1]. Then, if we sequentially measure ρ with projective measurements
{Π1, I − Π1}, . . . , {Πn, I − Πn}, the probability that all measurements succeed
is at least

Tr[Πn · · · Π1ρΠ1 · · · Πn] ≥ 1 − 4
n∑

i=1

εi.

2.2 Lattices and Cryptography

We adapt notations from [APV23] and keep it same as much as we can. The
following subsection is copied verbatim from [APV23].

In this work, we mainly consider q-ary lattices Λ that that satisfy qZm ⊆
Λ ⊆ Z

m, for some integer modulus q ≥ 2. Specifically, we consider the lattice
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generated by a matrix A ∈ Z
n×m
q for some n,m ∈ N that consists of all vectors

which are perpendicular to the rows of A, namely

Λ⊥
q (A) = {x ∈ Z

m : A · x = 0 (mod q)}.

For any syndrome y ∈ Z
n
q in the column span of A, we also consider the coset

Λy
q (A) given by

Λy
q (A) = {x ∈ Z

m : A · x = y (mod q)} = Λ⊥
q (A) + c,

where c ∈ Z
m is an arbitrary integer solution to the equation Ac = y (mod q).

Definition 1 (Truncated discrete Gaussian distribution). Let m ∈ N,
q ≥ 2 be an integer modulus and let σ > 0 be a parameter. Then, the truncated
discrete Gaussian distribution DZm

q ,σ with finite support {x ∈ Z
m ∩ (− q

2 , q
2 ]

m :
‖x‖ ≤ σ

√
m} is defined as the density

DZm
q ,σ(x) =

ρσ(x)∑

y∈Zm
q ,‖y‖≤σ

√
m

ρσ(y)
.

where ρσ(x) := exp(−π‖x‖2/σ2) is the Gaussian distribution.

We will use the following two results.

Lemma 2 (Noise smudging, [DGT+10]). Let y, σ > 0. Then, the statistical
distance between the distribution DZ,σ and DZ,σ + y is at most y/σ.

We use the following technical lemma on the min-entropy of the truncated
discrete Gaussian distribution, which we prove below.

Lemma 3 (min-entropy of the truncated discrete Gaussian, [APV23],
Lemma 2.10). Let n ∈ N and let q be a prime with m ≥ 2n log q. Let A ∈ Z

n×m
q

be a matrix whose columns generate Z
n
q . Then, for any σ ≥ ω(

√
logm), there

exists a negligible ε(m) such that

max
y∈Zn

q

max
x∈Z

m
q , ‖x‖≤σ

√
m

Ax=y (mod q)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρσ(x)∑

z∈Z
m
q ,‖z‖≤σ

√
m

Az=y (mod q)

ρσ(z)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

≤ 2−m+1 · 1 + ε

1 − ε
.

Theorem 2 (Gaussian-collapsing property, [Por22], Theorem 4). Let n ∈
N and q be a prime with m ≥ 2n log q, each parameterized by λ ∈ N. Let

√
8m <

σ < q/
√
8m. Then, the following samples are computationally indistinguishable
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assuming the quantum hardness of decisional LWEm
n,q,αq, for any noise ratio α ∈

(0, 1) with relative noise magnitude 1/α = σ · 2o(n) :
(
A $←−Z

n×m
q , |ψy〉 =

∑
x∈Z

m
q

Ax=y

ρσ(x) |x〉, y ∈ Z
n
q

)
≈c

(
A $←−Z

n×m
q , |x0〉, A · x0 ∈ Z

n
q

)

where (|ψy〉,y) ← GenGauss(A, σ) and where x0 ∼ DZm
q , σ√

2
is a (truncated)

discrete Gaussian distribution.

2.3 Threshold Implementation and Its Approximate Version

In the subsection, we review some techniques called Threshold Implementation
[ALL+21], which is a simple extension of Projective Implementation [Zha20].

Theorem 3 (Threshold implementation, [ALL+21]). Let γ ∈ (0, 1) be a
parameter and let P = (P,Q) be a two-outcome POVM, where P has an eigen-
basis {|ψi〉} with associated eigenvalues {λi}. Then, there exists a projective
threshold implementation (TIγ(P), I − TIγ(P)) such that

– TIγ(P) projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy the property λi ≤ γ.

– I−TIγ(P) projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy the property λi > γ.

Unfortunately, the threshold implementation can, in general, not be effi-
ciently computable. However, inspired by the work of Marriott and Watrous
[MW05], Zhandry [Zha20] showed that the approximate version of the thresh-
old implementation can be implemented efficiently as long as the POVM is a
mixture of projective measurements. We first review the definition of mixture of
projective measurements.

Definition 2 (Mixture of projective measurements). Let P = {Pi}i∈I be
a collection of binary outcome projective measurements Pi = (Pi, Qi) over the
same Hilbert space H, and suppose that Pi corresponds to outcome 1 and Qi

corresponds to outcome 0. Let D be a distribution over the index set I. Then,
PD = (PD, QD) is the following mixture of projective measurements:

PD =
∑

i∈I
Pr[i ← D]Pi and QD =

∑

i∈I
Pr[i ← D]Qi.

In other words, PD is the same as first sampling i according to the distribution
D, and then applying the projective measurements Pi.

For any mixture of projective measurements PD, the approximate threshold
implementation satisfies the following properties.
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Lemma 4 (Approximate threshold implementation, Theorem 6.2 in
[Zha20] and Corollary 1 in [ALL+21]). Let PD = (PD, QD) be a binary out-
come POVM over Hilbert space H that is a mixture of projective measurements
over some distribution D. Let ε, δ, γ ∈ (0, 1). Then, there exists an efficient
binary-outcome quantum algorithm ATIε,δ

P,D,γ , interpreted as the POVM element
corresponding to outcome 1, such that the following holds:

– For all quantum states ρ, Tr[ATIε,δ
P,D,γ−ε ρ] ≥ Tr[TIγ(PD) ρ] − δ.

– For all quantum states ρ, it holds that Tr[TIγ−2ε(PD) ρ′] ≥ 1 − 2δ, where ρ′

is the post-measurement state which results from applying the measurement
ATIε,δ

P,D,γ to ρ and obtaining outcome 1.
– The expected running time to implement ATIε,δ

P,D,γ is proportional to poly(1/ε,
log(1/δ)), the time it takes to implement PD, and the time it takes to sample
from D.

3 Definition: Key-Revocable Public-Key Encryption

A key-revocable public-key encryption is a type of public-key encryption. Con-
sider the case where the secret key holder wishes to temporarily give the secret
key to a third party and later wants to take it back while maintaining the security
i.e. the third party upon taken its key away, can’t decrypt any message later.
This is impossible in the classical case since the third party can always copy
the secret key locally. But we may achieve this functionality by representing the
secret key as a quantum state.

Definition 3 (Key-Revocable Public-Key Encryption [APV23]). A key-
revocable public-key encryption scheme consists of efficient algorithms (KeyGen,
Enc,Dec,Revoke), where Enc is a PPT algorithm and KeyGen,Dec,Revoke are
QPT algorithms defined as follows:

– KeyGen(1λ): given as input a security parameter λ, output a public key PK,
a master secret key MSK and a quantum decryption key ρSK.

– Enc(PK, μ): given a public key PK and plaintext μ ∈ {0, 1}, output a ciphertext
CT.

– Dec(ρSK,CT): given a decryption key ρSK and ciphertext CT, output a message
y.

– Revoke(PK,MSK, ρR): given as input a master secret key MSK, a public key
PK and quantum state ρR, output Valid or Invalid.

Correctness of Decryption. For μ ∈ {0, 1}, the following holds:

Pr
[
μ ← Dec(ρSK,CT) : (PK,MSK,ρSK)←KeyGen(1λ)

CT←Enc(PK,μ)

]
≥ 1 − negl.

Correctness of Revocation. The following holds:

Pr
[
Valid ← Revoke(PK,MSK, ρSK) : (PK,MSK, ρSK) ← KeyGen(1λ)

] ≥ 1 − negl.
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3.1 Security Definition

The security captures the case where the adversary is given the key and later
taken back. After that, if the key passes the revocation check the adversary is
asked to play a CPA like game that it is given either the ciphertext of a chosen
message or a random message. The adversary wins if it can distinguish between
these two cases.

Definition 4. A key-revocable public-key encryption scheme Σ = (KeyGen,Enc,
Dec,Revoke) is (ε, δ)-secure if, for every QPT adversary A with

Pr
[
Invalid ← ExptΣ,A(1λ, b)

]
≤ δ(λ)

for b ∈ {0, 1}, it holds that
∣∣∣Pr

[
1 ← ExptΣ,A(1λ, 0)

]
− Pr

[
1 ← ExptΣ,A(1λ, 1)

]∣∣∣ ≤ ε(λ),

where ExptΣ,A(1λ, b) is defined as Fig. 1.
If δ(λ) = 1 − 1

poly(λ) and ε(λ) = negl(λ), we simply say the key-revocable
encryption scheme is secure.

Fig. 1. Security Experiment
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4 Construction: Key Revocable Dual-Regev Encryption

The construction is exactly the same as the construction in [APV23]. We include
the construction here for completeness.

Construction 4 (Key Revocable Dual-Regev Encryption [APV23]). Let
n,m ∈ N and q ≥ 2 be a prime, each parameterized by λ ∈ N. Let
α, β, σ > 0 be parameters. The key-revocable public key scheme RevDual =
(KeyGen,Enc,Dec,Revoke) consists of the following QPT algorithms:

– KeyGen(1λ) → (PK, ρSK,MSK): Sample (A ∈ Z
n×m
q , tdA) ←

GenTrap(1n, 1m, q) where GenTrap is the algorithm that generates the LWE
matrix with its trapdoor. Then generate a Gaussian superposition (|ψy〉,y) ←
GenGauss(A, σ)5 for some y ∈ Z

n
q . Output PK = (A,y), ρSK = |ψy〉 and

MSK = tdA.
– Enc(PK, μ) → CT: to encrypt a bit μ ∈ {0, 1}, sample a random vector s ←

Z
n
q and errors e ∼ DZm,αq and e′ ∼ DZ,βq and output the ciphertext pair

CT =
(
sᵀA+ eᵀ (mod q), sᵀy + e′ + μ · � q

2� (mod q)
) ∈ Z

m
q × Zq.

– Dec(ρSK,CT) → {0, 1} : to decrypt CT, apply the unitary U : |x〉|0〉 → |x〉|CT·
(−x, 1)ᵀ〉 on input |ψy〉|0〉, where ρSK = |ψy〉, and measure the second register
in the computational basis. Output 0, if the measurement outcome is closer
to 0 than to � q

2�, and output 1, otherwise.
– Revoke(MSK,PK, ρ) → {�,⊥} : on input tdA ← MSK and (A,y) ← PK,

apply the measurement {|ψy〉〈ψy|, I − |ψy〉〈ψy|} onto the state ρ using the
procedure QSampGauss(A, tdA,y, σ)6. Output � if the measurement is suc-
cessful, and ⊥ otherwise.

From [APV23], this construction satisfies the correctness of decryption and
the correctness of revocation. In this work, we will focus on showing the con-
struction is in fact secure.

Theorem 5. Let n ∈ N and q be a prime modulus with q = 2o(n) and m ≥
2n log q, each parameterized by security parameter λ ∈ N. Let

√
8m < σ <

q/
√
8m and let α, β ∈ (0, 1) be noise ratios chosen such that β/α = 2o(n) and

1/α = 2o(n) · σ. Then, assuming the polynomial hardness of LWEm
n,q,αq with

sub-exponential modulus, the scheme RevDual = (KeyGen,Enc,Dec,Revoke) in
Construction 4 is a secure key-revocable public-key encryption scheme according
to Definition 4.

We organize the proof of Theorem 5 in the following way:

– In Sect. 5, we prove an important property for approximate threshold imple-
mentation, which allows us to do hybrid arguments between approximate
threshold implementation on computationally indistinguishable distributions.

– In Sect. 6, we present our construction for the almost perfect preimage extrac-
tor that lies in the heart of our result.

– In Sect. 7, we complete our proof of the above theorem.
5 The detailed description of GenGauss can be found in [APV23].
6 The detailed description of QSampGauss can be found in [APV23].
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5 Indistinguishability on Approximate Threshold
Implementation

Zhandry [Zha20] analyzed the relationship between the output distribution of
TIγ0(PD0) and TIγ1(PD1) (and ATIP,D0,γ0 and ATIP,D1,γ1) for some thresholds γ0
and γ1 on the same state for two computationally indistinguishable distributions
D0 and D1. However, in our work, we also care about the residual state after
applying the procedures. So we give a more precise analysis below.

In this section, we show how to leverage a (possibly not efficiently con-
structible) quantum state ρ on which ATIP,D0,γ and ATIP,D1,γ behave differently
to construct a QPT distinguisher (with auxiliary state ρ) for D0 and D1. This
can be viewed as an extension of Theorem 6.5 and Corollary 6.9 in [Zha20].

This result allows us to do hybrid arguments between ATIP,D0,γ and
ATIP,D1,γ with exactly the same threshold parameter γ for computationally
indistinguishable distributions D0 and D1 even when an efficient quantum pro-
cedure is applied on the residual state after ATI. Notably, it applies even when
we need some classical advice to sample from D0 and D1, in which case, our
QPT distinguisher additionally takes the same classical advice and distinguishes
D0 and D1.

Lemma 5. Let P be a collection of projective measurements indexed by some set
I. Suppose P can be implemented by a quantum circuit of size |P|. Let D0,D1 be
two efficiently sampleable distributions over I. For any state ρ ∈ D(H), denote
(b, ρ′) ← ATIε,δ

P,D,γ(ρ) be the procedure that runs ATIε,δ
P,D,γ on state ρ, and gets an

output b and the post-measurement state ρ′. For any polynomial μ, any quantum
state ρ and any (possibly quantum) predicate h : {0, 1} × D(H) → {0, 1} with
circuit size |h|, if
∣∣∣Pr [

h(b, ρ′) = 1|(b, ρ′) ← ATIε,δ
P,D0,γ(ρ)

]
− Pr

[
h(b, ρ′) = 1|(b, ρ′) ← ATIε,δ

P,D1,γ(ρ)
]∣∣∣ ≥ 1

μ(λ)
.

Then there exists a quantum circuit C of size poly(λ, 1/ε, log(1/δ), μ, |P| , |h|)
(which only uses the quantum circuits to implement P, h and to sample D0,D1

as a black box) such that
∣∣∣∣Pr

[
C(ρ, x) = b : b

$←− {0,1}
x∼Db

]
− 1

2

∣∣∣∣ ≥ 1
(μ(λ))3 · poly(λ, 1/ε, log(1/δ))

which is an inverse polynomial if μ is a polynomial.

Proof. The proof follows the same idea as the proof for Theorem 6.5 in [Zha20].
Roughly speaking, the output of ATIε,δP,D,γ can be approximated up to inverse
polynomial additive error given only polynomial samples from D. We refer the
reader to the full version [AHH24] for the full proof.

ATI may change the input state in an essential way even when it outputs 1
with overwhelming probability because ATI is not a projector. For example, let
a pure quantum state ρ be a superposition of eigenvectors (of PD) |ψi〉 whose
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eigenvalues λi satisfy the property λi ≥ γ + 10ε. If we apply ATIε,δP,D,γ on ρ,
we will get outcome 1 with almost certainty, but the residual state ρ′ may lose
coherence and become closer to a mixture of |ψi〉.

When we know the ATI outputs 0 or 1 with overwhelming probability, it
is a good idea to minimize the disturbance by purifying ATI and performing
uncomputation, just like the famous gentle measurements. To be more precise,
we consider the projective version of ATIε,δP,D,γ . Formally, ATIε,δP,D,γ can be written
as introducing poly(1/ε, log(1/δ)) ancillas initialized as |0〉, applying a unitary U
on the state, and then applying a projective measurement (|0〉〈0|, |1〉〈1|) on the
output register of state to get the output. We will denote the binary-outcome
projective measurement (U†|0〉〈0|U,U†|1〉〈1|U) as ATI

ε,δ

P,D,γ , the projective ver-
sion of ATIε,δP,D,γ , which also has size poly(1/ε, log(1/δ)). By definition, for any
quantum state ρ, the output distribution of running ATI on ρ along with enough
fresh ancillas is the same as the output distribution of running ATI on ρ (but
the residual states are different).

Roughly speaking, ATI
ε,δ

P,D,γ does the same thing as ATIε,δP,D,γ except that
it uncomputes intermediate results. Notice that a quantum query to function
f is implemented as Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, whose inverse is exactly Uf .
We can use the same proof technique in Lemma 5 to show that ATI

ε,δ

P,D,γ can
also be approximated by polynomial classical samples from D up to inverse
polynomial precision and thus we can also apply hybrid arguments between
ATIP,D0,γ and ATIP,D1,γ for computationally indistinguishable distributions D0

and D1. Formally,

Lemma 6. Let HR,HAux be Hilbert spaces. Let P be a collection of projec-
tive measurements indexed by some set I. Suppose P can be implemented by a
quantum circuit of size |P|. Let D0,D1 be two efficiently sampleable distribu-
tions over I. For any state ρ ∈ D(HR), denote (b, ρ′) ← ATI

ε,δ

P,D,γ(ρ) be the

procedure that runs ATI
ε,δ

P,D,γ on state ρ along with enough fresh ancillas ini-
tialized to |0〉, and gets an output b and the post-measurement state ρ′. For
any polynomial μ, any quantum state ρ and any (possibly quantum) predicate
h : {0, 1} × D(HAux) → {0, 1} with circuit size |h|, if
∣∣∣Pr [

h(b, ρ′) = 1|(b, ρ′) ← ATI
ε,δ
P,D0,γ(ρ)

]
− Pr

[
h(b, ρ′) = 1|(b, ρ′) ← ATI

ε,δ
P,D1,γ(ρ)

]∣∣∣ ≥ 1

μ(λ)
.

Then there exists a quantum circuit C of size poly(λ, 1/ε, log(1/δ), μ, |P| , |h|)
(which only uses the quantum circuits to implement P, h and to sample D0,D1

as a black box) such that
∣∣∣∣Pr

[
C(ρ, x) = b : b

$←− {0,1}
x∼Db

]
− 1

2

∣∣∣∣ ≥ 1
(μ(λ))3 · poly(λ, 1/ε, log(1/δ))

which is an inverse polynomial if μ is a polynomial.

Proof. We omit the proof as it’s almost the same as the proof of Lemma 5.
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6 Almost Perfect Extraction of Preimages

In this section, we show how to extract a short preimage of y with overwhelming
probability, given a good (quantum) distinguisher between the distribution of a
ciphertext of message μ and a uniform distribution. Our main contribution is an
extraction algorithm that is guaranteed to work with overwhelming probability, in
contrast to the extraction algorithm in [APV23] that only works with probability
inversely proportional to the field size.

Since a general quantum distinguisher can be a superposition of a good dis-
tinguisher and a useless distinguisher, we use (Approximate) Threshold Imple-
mentation to (approximately) test whether a given quantum distinguisher is
good before we apply the extraction algorithm. We need the following notations
before we formally define what is a good quantum distinguisher.

Threshold Implementation on a Quantum Distinguisher. For a quantum algo-
rithm A with auxiliary quantum state ρ, let projective measurements {PA

x =
(PA

x , QA
x )} correspond to running A on x and the auxiliary state ρ. Suppose

that PA
x corresponds to outcome 1 and QA

x corresponds to outcome 0.
For two distributions D0 and D1, denote (D0,D1) to be the distribution of

(b, x) where b $←− {0, 1} and x ∼ Db. We say that (A, ρ) is a γ-good quantum dis-
tinguisher for distributions D0 and D1 with support X if and only if ρ passes the
projector TI1/2+γ(PA

(D0,D1)
). Here, we abuse the notation to define the POVM

PA
(D0,D1)

= (PA
(D0,D1)

, QA
(D0,D1)

)7 such that

PA
(D0,D1)

=
PA

D1
+ QA

D0

2
=

∑
x∈X Pr [x ← D1]PA

x +
∑

x∈X Pr [x ← D0]QA
x

2
,

QA
(D0,D1)

= I − PA
(D0,D1)

.

In other words, PA
(D0,D1)

= (PA
(D0,D1)

, QA
(D0,D1)

) is the POVM measurement
(where PA

(D0,D1)
corresponds to output 1 and QA

(D0,D1)
corresponds to output 0)

that on any input quantum state ρ,

– Sample (b, x) ∼ (D0,D1).
– Feed x and the input quantum state ρ into A, which outputs a guess b′.
– Output 1 if b′ = b; 0 otherwise.

We denote the approximate version of TI1/2+γ(PA
(D0,D1)

) as ATIε,δ

PA,(D0,D1),1/2+γ
.

Roughly speaking, ATIε,δPA,(D0,D1),1/2+γ
can efficiently estimate whether the algo-

rithm A, along with the input quantum state as auxiliary, can distinguish
D0 and D1 with advantage at least γ. We denote the projective version of
ATIε,δPA,(D0,D1),1/2+γ

as ATI
ε,δ

PA,(D0,D1),1/2+γ .

7 PA
(D0,D1)

is actually a mixture of projective measurements for the distribution
(D0, D1) and a collection of binary outcome projective measurements Pb,x =
(QA

x , P A
x ) if b = 0 and Pb,x = (P A

x , QA
x ) if b = 1.
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Some Important Distributions. The threshold implementation will be used to
test whether a quantum distinguisher works well on the following distributions.
The prime modulus q, the noise ratios α, β ∈ (0, 1) and n,m ∈ N are all fixed
parameters that will be soon clear from the context. For matrix A ∈ Z

n×m
q , and

vectors y ∈ Z
n
q ,x ∈ Z

m
q ,

– Denote DA,y
lwe to be the distribution of (A,y, sᵀA + eᵀ, sᵀy + e′) where

s $←−Z
n
q , e ∼ DZm

q ,αq and e′ ∼ DZq,βq.
– Denote DA,y

unif to be the distribution of (A,y,uᵀ, u′) where u $←−Z
m
q and

u′ $←−Zq.
– Denote D̄A,x

lwe to be the distribution of (A,Ax,uᵀ,uᵀx+e′) where e′ ∼ DZq,βq

and uᵀ = sᵀA+ eᵀ for s $←−Z
n
q , e ∼ DZm

q ,αq.
– Denote DA,x

gl to be the distribution of (A,Ax,uᵀ,uᵀx+e′) where e′ ∼ DZq,βq

and u $←−Z
m
q .

For each of the above distribution D, we denote D(i, gi) to be the distribution
of (v1,v2,v3 + c · îᵀ, v4 + c · gi) where î is the unit vector with its ith coordinate
being 1, c $←−Zq, and (v1,v2,v3, v4) ∼ D. It is easy to generate a sample from
D(i, gi) given i, gi and a sample from D. Thus if we can efficiently distinguish
between D0(i, gi) and D1(i, gi), then on input (i, gi), we can efficiently distinguish
between D0 and D1.

The adversary can be described as an unitary A acting on a Hilbert space
H = HAλ

⊗ HBλ
= HRλ

⊗ HAuxλ
.

– HAλ
stores the secret key state given by the challenger.

– HBλ
is initialized to a quantum advice.

– HRλ
stores the state returned to the challenger.

– HAuxλ
is kept by the adversary.

We will omit λ when it is clear from the context. We show the following result.

Theorem 6 (Almost Optimal Search-to-Decision Reduction with
Quantum Auxiliary Input). Let n ∈ N and q be a prime modulus with
q = 2o(n) and let m ≥ 2n log q, each parameterized by the security parameter
λ ∈ N such that m ≤ poly(λ). Let

√
8m < σ < q/

√
8m and let α, β ∈ (0, 1) be

noise ratios with β/α = 2o(n), 2−o(n) ≤ ασ ≤ negl(λ) and ασ/β ≤ negl(λ). Let
A = {(Aλ,A,y, νλ)}λ∈N be any non-uniform quantum algorithm consisting of a
family of polynomial-sized quantum circuits and polynomial-sized advice states
νλ ∈ D(HBλ

) which are independent of A and y.
Assume the decisional LWEm

n,q,αq cannot be solved by a quantum algorithm
running in time poly(λ, σ) with distinguishing advantage 1/poly(λ, σ). If there
exist functions ε(λ) = 1/poly(λ), γ(λ) = 1/poly(λ), δ(λ) = 2−Θ(λ) and a QPT
distinguisher D such that (Fig. 2)

Pr
[
1 ← SearchToDecisionExptA,D(1λ)

]
= ε(λ).
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Fig. 2. The experiment SearchToDecisionExptA,D (
1λ

)
.

Then, there exists a quantum extractor E that takes as input A, y and system
Aux of the state ρR,Aux and outputs a short vector in the coset Λy

q (A) in time
poly(λ, σ, 1/γ) such that

Pr

⎡

⎢⎢⎣x ∈ Λy
q (A)∩ Bm(0,σ

√
m/2) :

A
$←− Z

n×m
q

(|ψy〉,y)←GenGauss(A,σ)
ρR,Aux←Aλ,A,y(|ψy〉〈ψy|⊗νλ)

1←ATI
γ/6,δ

PD,(D
A,y
lwe

,D
A,y
unif

),1/2+γ
(ρAux)

x←E(A,y,Aux)

⎤

⎥⎥⎦ ≥ 1 − negl(λ).

6.1 Construction of the Extractor

In the subsection, we formally define our quantum extractor E . E takes A,y and
the quantum state in Aux as input, and does the following:

Fig. 3. The quantum extractor E(A,y,Aux).
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By construction, the extractor runs in time poly(λ, σ,m, 1/ε, log 1
δ ) =

poly(λ, σ, 1/γ).

6.2 Analysis of the Extractor

Before we analyze the success probability of our extractor, we make crucial
observations on the distributions DA,y

lwe , DA,y
unif , D̄A,x

lwe and DA,x
gl .

Lemma 7. For any x ∈ Bm(0, σ
√

m/2), the statistical distance between D̄A,x
lwe

and DA,Ax
lwe is at most negl(λ).

Proof. By noise smudging (Lemma 2), the statistical distance between the
distribution DZq,βq and the distribution of eᵀx + e′ where e′ ∼ DZq,βq and
|eᵀx| ≤ αqσm is at most ασm/β. Notice that for any x ∈ Bm(0, σ

√
m/2), when

e is sampled from DZm
q ,αq, |eᵀx| ≥ αqσm with probability at most 2−Ω(λ)(from

Banaszczyk’s tail bound [Ban93]).
Thus the statistical distance between D̄A,x

lwe and DA,Ax
lwe is at most ασm/β +

2−Ω(λ), which by our choice of parameters, is at most negl(λ).

Lemma 8. For integer i ∈ [m] and gi = xi, DA,x
gl (i, gi) = DA,x

gl .
For integer i ∈ [m] and gi �= xi, DA,x

gl (i, gi) = DA,Ax
unif .

Proof. This follows directly from the definition, so we omit the proof.

Now we are ready to prove Theorem 6.

Proof. To prove Theorem 6, it suffices to prove that

Pr
[
1 ← GameA,D

0

(
1λ
)] ≤ negl(λ)

where GameA,D
0 is shown in Fig. 4.

Fig. 4. The game GameA,D
0

(
1λ

)
.
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Let’s consider the following sequence of hybrid distributions.

H0: This is the same as the game GameA,D
0

(
1λ
)

defined in Fig. 4.
H1: This is the following distribution:

1. Sample A $←−Z
n×m
q .

2. Sample a Gaussian vector x′ ∼ D
Zm

q ,σ/
√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
4. Compute b ← ATI

γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x ← E(A,y,Aux).
6. Output 1 if x /∈ Λy

q (A) ∩ Bm(0, σ
√

m/2); Otherwise, output 0.

H2: This is the following distribution:
1. Sample A $←−Z

n×m
q .

2. Sample a Gaussian vector x′ ∼ D
Zm

q ,σ/
√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
4. Compute b ← ATI

γ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x ← E(A,y,Aux).
6. Output 1 if x /∈ Λy

q (A) ∩ Bm(0, σ
√

m/2); Otherwise, output 0.

H3,k: This is the following distribution which replaces ATIε,δ

PD,(DA,y
lwe

(i,gi),D
A,y
unif ),1/2+γ′

in E with ATI
ε,δ

PD,
(

DA,x′
gl (i,gi),D

A,y
unif

)
,1/2+γ′ one by one (recall the description of

E defined in Fig. 3).
1. Sample A $←−Z

n×m
q .

2. Sample a Gaussian vector x′ ∼ D
Zm

q ,σ/
√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
4. Compute b ← ATI

γ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Set x = 0, ε = γ/6, γ′ = γ − 3ε = γ/2, t = 0.
6. For each i = 1, 2, · · · ,m:

For each gi ∈ [−σ
√

m/2, · · · , σ
√

m/2]:
i. Let Aux store the current state of the quantum distinguisher. t ←

t + 1.
ii. If t ≤ k, run ATI

ε,δ

PD,
(

DA,x′
gl (i,gi),D

A,y
unif

)
,1/2+γ′ on the residual state

in register Aux along with enough fresh ancillas initialized to |0〉.
Otherwise, run ATI

ε,δ

PD,(DA,y
lwe (i,gi),D

A,y
unif ),1/2+γ′ on the residual state in

register Aux along with enough fresh ancillas initialized to |0〉 .
iii. If it outputs 1, set xi = gi, and move on to the next guess.
iv. If it outputs 0, move on to the next guess.

7. Output 1 if x /∈ Λy
q (A) ∩ Bm(0, σ

√
m/2); Otherwise, output 0.

We now show the following:
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Lemma 9. Assuming the quantum hardness of LWEm
n,q,αq, the hybrids H0 and

H1 are computationally indistinguishable,

H0 ≈c H1.

Proof. This follows directly from the Gaussian-collapsing property (Theorem 2)
for quantum distinguishers with auxiliary states.

Lemma 10. Assuming the quantum hardness of LWEm
n,q,αq, the hybrids H1 and

H2 are computationally indistinguishable,

H1 ≈c H2.

Proof. We prove the claim by contradiction.
Suppose H1 and H2 can be distinguished by a QPT algorithm B with advan-

tage 1/λc for a constant c > 0 and infinitely many λ. Fix one such λ.
By standard averaging argument, for at least 1

2λc fraction of (A,x′) sampled
according to A $←−Z

n×m
q and x′ ∼ D

Zm
q ,σ/

√
2, B can distinguish the result of run-

ning step 3–6 of H1 on (A,x′), and the result of running step 3–6 of H2 on (A,x′)
with advantage at least 1

2λc . Let’s call those (A,x′) good. Then from Lemma 5,
there exists a quantum circuit C of size poly(λ, 1/ε, log(1/δ)) such that for each
good (A,x′), C(ρAux,A,x′, ·) can distinguish samples from

(
DA,x′

gl ,DA,y
unif

)
and

samples from
(
DA,y

lwe ,DA,y
unif

)
with advantage at least 1

poly(λ,1/ε,log(1/δ)) .

As we can sample DA,y
unif by ourselves and DA,y

lwe ≈s D̄A,x′
lwe (from Lemma 7

and the choice of parameters), there exists a polynomial size quantum circuit C′

such that for each good (A,x′), C′(ρAux,A,x′, ·) can distinguish samples from
DA,x′

gl and D̄A,x′
lwe with advantage at least 1/λd for some constant d > 0.

Recall that the only difference in DA,x′
gl and D̄A,x′

lwe is whether u is sampled
according to LWE or sampled uniformly. Now let’s show how to leverage the
fact to break LWEm

n,q,αq using this C′ (Algorithm 1). Notice that for all the good
(A,x′), line 3 passes with noticeable probability (by averaging arguments over
the eigenspaces) and the residual state after running ATI and obtaining outcome
1 is still a good distinguisher (by Lemma 4). So Algorithm 1 breaks decisional
LWEm

n,q,αq efficiently if Lemma 10 doesn’t hold.
This ends our proof of the claim.

Lemma 11. Assume that the decisional LWEm
n,q,αq cannot be solved by a

quantum algorithm running in time poly(λ, σ) with distinguishing advantage
1/poly(λ, σ).

The probability that hybrid H3,k outputs 1 and the probability that hybrid
H3,k+1 outputs 1 are negl(λ)/σ close. Formally, for 0 ≤ k ≤ √

2σm3/2 − 1,

|Pr [H3,k+1 = 1] − Pr [H3,k = 1]| ≤ negl(λ)/σ

Proof. The proof is the same with the proof of Lemma 10 except that we apply
Lemma 6 instead of Lemma 5 and that we set the parameter μ in Lemma 6 as
1/poly(λ, σ) instead of 1/poly(λ). We omit the proof details.
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Algorithm 1: An algorithm to break decisional LWEm
n,q,αq if Lemma 10

doesn’t hold
Input : Matrix A ∈ Z

n×m
q and vector u ∈ Z

n
q (and quantum advice νλ).

Output: 0 or 1 (guess whether u is sampled from uniform or according to
LWEm

n,q,αq)
1 Sample a vector x′ ∼ D

Zm
q ,σ/

√
2 and let y = A · x′ mod q.

2 Generate ρR, Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
3 Test whether C′(ρAux,A,x′, ·) can be used to distinguish samples from DA,x′

gl

and samples from D̄A,x′
lwe with advantage at least 1/λd by running ATI1/λd+1,δ on

it with threshold 1/2+ 1
4λd . If the ATI outputs 0 (it is not a good distinguisher),

output a random guess and abort.
4 Denote the residual state (if not abort) in register Aux as ρ′

Aux.
5 Sample e′ ∼ DZq,βq.Let v := (A,Ax′,uᵀ,uᵀx′ + e′).
6 Run C′(ρ′

Aux,A,x′,v) and output the result.

Lemma 12. H3,
√
2σm3/2 outputs 1 with negligible probability.

Proof. We first define GameA,D
1

(
1λ
)

in Fig. 5. It is the same as H3,
√
2σm3/2 except

that it will output 1 if x �= x′ (which is implied by x /∈ Λy
q (A)∩Bm(0, σ

√
m/2)),

so to prove Lemma 12, it suffices to prove that GameA,D
1

(
1λ
)

outputs 1 with
negligible probability.

Fig. 5. The game GameA,D
1

(
1λ

)
.
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Notice that in step 6, we apply a sequence of projective measurements ATI
and set each coordinate of x′ based on the measurement outcomes. By Quantum
Union Bound (Lemma 1), Pr

[
1 ← GameA,D

1

(
1λ
)]

can be bounded by a union

of events that for x′ sampled according to D
Zm

q ,σ/
√
2, SubGameA,D (

1λ, i, gi,x′)

outputs 1:

Pr
[
1 ← GameA,D

1

(
1λ
)]

≤4
m∑

i=1

σ
√

m/2∑

gi=−σ
√

m/2

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′) : x′ ∼ D
Zm

q ,σ/
√
2

]

where SubGameA,D (
1λ, i, gi,x′) is defined in Fig. 6.

Fig. 6. The game SubGameA,D (
1λ, i, gi,x

′).

Now let’s show for any fixed i, gi,x′,

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)] ≤ negl(λ)/σ (1)

Case 1: gi = x′
i Consider the residual state ρ′

Aux of running step 3 and obtaining
b = 1. From Lemma 4, running ATIε,δ

PD,
(

DA,x′
gl ,DA,y

unif

)
,1/2+γ′ on ρ′

Aux, we will obtain

1 with probability at least 1 − 3δ.
From Lemma 8, when gi = x′

i, DA,x′
gl (i, gi) = DA,x′

gl . Thus the output distri-
bution of running ATIε,δ

PD,
(

DA,x′
gl ,DA,y

unif

)
,1/2+γ′ on ρ′

Aux is exactly the same as that

of running ATI
ε,δ

PD,
(

DA,x′
gl (i,gi),D

A,y
unif

)
,1/2+γ′ on ρ′

Aux. Therefore,

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)] ≤ 3δ ≤ negl(λ)/σ.
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Case 2: gi �= x′
i Again consider the residual state ρ′

Aux of running step 3 and
obtaining b = 1. From Lemma 8, when gi �= x′

i, DA,x′
gl (i, gi) = DA,Ax′

unif = DA,y
unif .

Thus when running ATIε,δPD,(DA,y
unif ,DA,y

unif ),1/2+γ′ on ρ′
Aux, we will obtain 1 with

probability exactly Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)
]
.

As PD
(DA,y

unif ,DA,y
unif )

only has eigenvalue 1/2 < 1/2 + γ′ − ε (any distinguisher

cannot do better than outputting a random guess when facing DA,y
unif and DA,y

unif ),
from Lemma 4, running ATIε,δPD,(DA,y

unif ,DA,y
unif ),1/2+γ′ on any state, we cannot get 1

with probability greater than δ, which implies that

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)] ≤ δ ≤ negl(λ)/σ.

Summing up Eq. 1 and averaging over x′, we can get that

Pr
[
1 ← GameA,D

1

(
1λ
)]

≤4
m∑

i=1

σ
√

m/2∑

gi=−σ
√

m/2

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′) : x′ ∼ D
Zm

q ,σ/
√
2

]

≤negl(λ),

which ends the proof.

Recall that H0 is the same as the game GameA,D
0

(
1λ
)
, Theorem 6 follows

directly from Lemma 9, Lemma 10, Lemma 11 over Θ(σm3/2) pairs of consecu-
tive hybrids, Lemma 12 and the observation that H2 = H3,0.

7 Proof of Theorem 5

We prove by contradiction. Let A be the QPT adversary and without loss of
generality, we assume that the adversary submits μ = 0 and assume that

Pr
[
1 ← ExptΣ,A(1λ, 1)

]
− Pr

[
1 ← ExptΣ,A(1λ, 0)

]
= ε(λ),

where ε(λ) is inverse polynomial, ExptΣ,A(1λ, b) is defined as Fig. 1 and Σ =
(KeyGen,Enc,Dec,Revoke).

We decompose the adversary into two QPT algorithms A,D where given
input state |ψy〉, A generates the state ρR,Aux. After returning system R to the
challenger, D takes ρAux and responds to the challenge. Then A,D satisfy

Pr
[
1 ← SecurityExptA,D(1λ, 1)

]
− Pr

[
1 ← SecurityExptA,D(1λ, 0)

]
= ε(λ)

where SecurityExptA,D is the experiment shown in Fig. 7, because the inefficient
revocation implements Revoke(MSK,PK, σ).
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Fig. 7. The experiment SecurityExptA,D (
1λ, b

)
.

Lemma 13. For adversary A,D that satisfy

Pr
[
1 ← SecurityExptA,D(1λ, 1)

]
− Pr

[
1 ← SecurityExptA,D(1λ, 0)

]
= ε(λ),

they also satisfy

Pr
[
1 ← ATISecurityExptA,D,γ(1λ)

]
≥ ε(λ)

4
− negl.

for γ = 3ε
14 where ATISecurityExptA,D is shown in Fig. 8.

Fig. 8. The experiment ATISecurityExptA,D,ε
(
1λ, b

)
.

Proof. Suppose that revocation succeeds with probability p. The residual state
ρAux satisfies

E

[
Tr

[
PD
(DA,y

lwe ,DA,y
unif )

ρAux

]
|Revocation succeeds on R

]
≥ 1

2
+

ε

2p
.
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By averaging argument and the definition of threshold implementation Theorem
3,

E

[
Tr

[
TI 1

2+
ε
4

(
PD
(DA,y

lwe ,DA,y
unif )

)
ρAux

]
|Revocation succeeds on R

]
≥ ε

4p
.

By Lemma 4, if we set δ = 2−Θ(λ) we have,

Pr

[
ATI

γ
6 ,δ

PD,(DA,y
lwe ,DA,y

unif ), 12+γ
(ρAux) = 1|Revocation succeeds on R

]

=E

[
Tr

[
ATI

γ
6 ,δ

PD,(DA,y
lwe ,DA,y

unif ), 12+γ
ρAux

]
|Revocation succeeds on R

]

≥E

[
Tr

[
TI 1

2+
ε
4

(
PD
(DA,y

lwe ,DA,y
unif )

)
ρAux

]
|Revocation succeeds on R

]
− δ

≥ ε

4p
− negl.

Using the above lemma we can construct Algorithm 2 for solving SISm
n,q,σ

√
2m

problem using the adversary A,D. As for our choice of parameters, the hardness
of LWEm

n,q,αq implies the hardness of SISm
n,q,σ

√
2m

, Theorem 5 follows directly
from the correctness of Algorithm 2, which we show in the following claim.

Algorithm 2: SIS_Solver(A)

Input: Matrix A ∈ Z
n×m
q .

Output: Vector x ∈ Z
m.

1 Generate a Gaussian state (|ψy〉,y) ← GenGauss(A, σ) with

|ψy〉 =
∑

x∈Z
m
q

Ax=y (mod q)

ρσ(x) |x〉

for some vector y ∈ Z
n
q .

2 Run A to generate a bipartite state ρR,Aux in systems HR ⊗ Haux with
HR = Hm

q .
3 Run ATI

γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
on system Aux, abort if the output is 0.

4 Run the extractor E(A,y,Aux) from Theorem 6, and let x1 ∈ Z
n
q denote

the outcome.
5 Measure system R in the computational basis, and let x0 ∈ Z

n
q denote the

outcome.
6 Output the vector x = x1 − x0.

Claim. Algorithm 2 solves SISm
n,q,σ

√
2m

with inverse polynomial probability when
A,D is a successful adversary.

Proof. Suppose A,D is a successful adversary. To show that Algorithm 2 can
obtain a short non-zero solution x we prove the following two statements:
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Fig. 9. The experiment SimultExtractionExptA,D (
1λ

)
.

– The probability that on system Aux the extractor E extracts a short preimage
x1 of y and revocation succeeds on R is inverse polynomial

Pr
[
SimultExtractionExptA,D(1λ) = 1

]
=

1
poly(λ)

.

where SimulExtractionExpt is defined as Fig. 9.
– Suppose that revocation succeeds with probability ε(λ) conditioned on the

extraction being successful. Then instead of running revocation on R, if we
measure register R in computational basis and obtain result x0, the probabil-
ity that x0 is a short preimage of y that is different from x1 is ε(λ)− negl(λ)
conditioned on the extraction being successful.

If both statements are true, by basic probability arguments we prove the claim.
The first statement follows from Lemma 13 and Theorem 6. Let

GoodDecryptor denote the event that we pass the ATI test on step 4. Let
RevocationSuc denote the event that the inefficient revocation succeeds on sys-
tem R on step 6. Let ExtractionSuc denote the event that x1 is a short preimage
of y on step 5. Since step 4–5 and step 6 commute, by Lemma 13,

Pr [RevocationSuc ∧ GoodDecryptor] =
1

poly(λ)
.

By Theorem 6,

Pr [ExtractionSuc |GoodDecryptor] ≥ 1 − negl(λ).

By basic probability calculation,

Pr [RevocationSuc ∧ ExtractionSuc] =
1

poly(λ)
.
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Now we prove the second statement. We show that given a specific short
preimage x1 of y and a state ρR such that revocation succeeds on R with prob-
ability ε(λ), if we measure R under computational basis, we obtain a short
preimage x0 of y that is different from x1 with probability ε(λ)−negl(λ). Define
the set of short preimages S =

{
x|Ax = y, ‖x‖ ≤ σ

√
m
2

}
and

|ψ′
y〉 =

(
∑

x∈S
ρ σ√

2
(x)

)− 1
2 ∑

x∈S
ρσ(x)|x〉

be a ‘truncated’ Gaussian coset state. Consider the following projectors

– Π0 =
∑

x∈S,x�=x1
|x〉〈x| is a projector that projects onto all short preimages

we want.
– Π1 = |ψ′

y〉〈ψ′
y| is the approximate revocation projector. The trace distance

between Π1 and the actual revocation projector |ψy〉〈ψy| is negligible by
Banaszczyk’s tail bound [Ban93].

Suppose that A is a full-rank matrix, if Tr[|ψy〉〈ψy|ρR] = ε we have

Tr[Π0ρR] ≥Tr[Π1Π0ρR]
≥Tr[Π1ρR] − negl(λ)
≥Tr[|ψy〉〈ψy|ρR] − negl(λ)
=ε − negl(λ).

where the second inequality follows from Lemma 3. Note that A is full-rank with
1 − negl(λ) probability. Combine all arguments above, we proof this claim.

8 Applications

Combining our result with [APV23], we obtain constructions for

– Public-Key Encryption with Classical Key Revocation.
– Key-Revocable Fully Homomorphic Encryption.
– Revocable Pseudorandom Functions.

8.1 Public-Key Encryption with Classical Key Revocation

A public-key encryption with classical key-revocation is a public-key encryption
such that whenever we want to perform key revocation:

– The lessee runs Delete on its quantum secret key ρSK and produce a classical
certificate π.

– The lessor runs Revoke on input π and output Valid if it is a valid certificate.
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The security of such scheme captures the idea that if an adversary produces
a certificate π that passes the revocation then the remaining adversary cannot
distinguish between a ciphertext of chosen message from a random ciphertext.
In [APV23], they built a public-key encryption with classical key-revocation
assuming the security of key-revocable Dual-Regev encryption. Combine with
our result, we obtain the following theorem.

Theorem 7. Assuming the polynomial hardness of LWE with sub-exponential
modulus. The scheme CRevDual = (KeyGen,Enc,Dec,Delete,Revoke) (Construc-
tion 2, [APV23]) is a secure public-key encryption with classical key-revocation
(Definition 7.1,7.2, [APV23]).

8.2 Key-Revocable Fully Homomorphic Encryption

A key-revocable fully homomorphic encryption is a fully homomorphic encryp-
tion with quantum key revocation just like the key-revocable Dual-Regev
Encryption. In [APV23], they built a key-revocable fully homomorphic encryp-
tion assuming the security of key-revocable Dual-Regev encryption. Meanwhile,
this construction can be adapted to feature classical revocation via techniques
used in public-key encryption with classical key-revocation mentioned above.
Combine with our result, we obtain the following theorem.

Theorem 8. Assuming the polynomial hardness of LWE and SIS with sub-
exponential modulus. The scheme RevDualGSW = (KeyGen,Enc,Dec,Eval,
Revoke) (Construction 3, [APV23]) is a secure key-revocable fully homomor-
phic encryption (Definition 5.3, [APV23]). Meanwhile, this construction can be
adapted to feature classical revocation via (Construction 2, [APV23]).

8.3 Revocable Pseudorandom Functions

A key-revocable (or simply, revocable) pseudorandom function is a weak pseu-
dorandom function with its evaluation key revocable. The μ-security of such
scheme captures the idea that if the revocation succeeds, the remaining adver-
sary cannot distinguish between μ images y1 = PRF(x1), y2 = PRF(x2), · · · , yμ =
PRF(yμ) from μ random preimages x1, x2, · · · , xμ and uniform random values
y1, y2, · · · , yμ. Meanwhile, this construction can also be adapted to feature clas-
sical revocation. Combine with our result, we obtain the following theorem.

Theorem 9. Assuming the polynomial hardness of LWE and SIS with sub-
exponential modulus. The scheme (Gen,PRF,Eval,Revoke) (Construction 5,
[APV23]) is a poly-secure revocable PRF scheme (Definition 9.2, 9.3, [APV23]).
Meanwhile, this construction can be adapted to feature classical revocation via
(Construction 2, [APV23]).
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Abstract. It is well-known that digital signatures can be constructed
from one-way functions in a black-box way. While one-way functions are
essentially the minimal assumption in classical cryptography, this is not
the case in the quantum setting. A variety of qualitatively weaker and
inherently quantum assumptions (e.g. EFI pairs, one-way state genera-
tors, and pseudorandom states) are known to be sufficient for non-trivial
quantum cryptography.

While it is known that commitments, zero-knowledge proofs, and even
multiparty computation can be constructed from these assumptions, it
has remained an open question whether the same is true for quantum
digital signatures schemes (QDS). In this work, we show that there does
not exist a black-box construction of a QDS scheme with classical signa-
tures from pseudorandom states with linear, or greater, output length.
Our result complements that of Morimae and Yamakawa (2022), who
described a one-time secure QDS scheme with classical signatures, but
left open the question of constructing a standard multi-time secure one.

1 Introduction

One of the foundational goals of cryptography is to study the minimal assump-
tions needed to construct cryptographic functionalities of interest. While the
existence of one-way functions is generally considered to be the minimal assump-
tion that is useful for cryptography, a recent line of work, initiated by Kretschmer
[Kre21], has shown that this may not be the case in a quantum world. Since
Kretschmer’s result, the topic has seen a surge of interest, with many recent
works constructing cryptography from assumptions that are potentially weaker
than one-way functions [AQY22,MY22b,MY22a,AGQY23,ALY23,KT23].

These constructions are based on novel primitives whose security is formu-
lated in terms of the hardness of an inherently quantum problem. The first
example of such a primitive, a pseudorandom state (PRS), was proposed by
Ji, Liu, and Song [JLS18a]. A PRS can be thought of as the quantum ana-
logue of a pseudorandom generator (PRG), and it refers to an ensemble of
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efficiently preparable quantum states that are computationally indistinguishable
from Haar random. Other more recent examples are EFI pairs [BCQ22], and one-
way state generators [MY22a]. These inherently quantum primitives are some-
times collectively referred to as “MicroCrypt”1. They are especially interesting
for two reasons. First, they are qualitatively weaker than one-way functions:
while one-way functions imply all of them, Kretschmer showed that they are
provably not sufficient to construct one-way functions when used in a black-box
way [Kre21]. Second, these primitives are sufficient to construct many cryp-
tographic primitives of interest, namely commitments, zero-knowledge proofs,
symmetric-key encryption, and even oblivious transfer and multiparty computa-
tion [AQY22,MY22b,MY22a,AGQY23,ALY23,KT23]. These results are coun-
terintuitive because in a classical world all of these primitives require, at the
very least, one-way functions! The new constructions circumvent this require-
ment because some component of the construction involves quantum states, e.g.
the communication in the case of commitments or oblivious transfer, and the
ciphertext in the case of symmetric-key encryption. In light of this, what more
can we hope to construct in MicroCrypt, and what is beyond reach? In the rest
of this introduction, we focus on PRS, as they imply all other known primitives
in MicroCrypt.

One of the most important primitives whose relationship to MicroCrypt is
still elusive are digital signatures. While classical digital signatures imply one-
way functions, and are thus beyond the reach of MicroCrypt, recent works have
explored the possibility of constructing digital signature schemes where the pub-
lic key is a quantum state. In particular, Morimae and Yamakawa [MY22a]
construct a one-time secure digital signature scheme with quantum public keys
from pseudo random states in a black-box way. One-time security means that
the adversary is only allowed to make one query to the signing oracle, before
attempting to produce a valid signature of a different message. Morimae and
Yamakawa’s construction is a quantum public-key version of the classical Lam-
port signature scheme. However, it is unclear how to extend their construction
to satisfy the standard notion of multi-time security (where the adversary is
allowed an arbitrary polynomial number of queries to the signing oracle). One
of the main obstacles is that the public keys are quantum states (the classical
approach involves signing public keys, and signing quantum states is known to
be impossible in general [AGM21]). Morimae and Yamakawa thus leave open
the question of whether there exists a black-box construction of a quantum dig-
ital signature scheme with multi-time security from a PRS. This is the central
question that we focus on in this work.

Does there exist a black-box construction of multi-time secure quantum digital
signatures from PRS?

1 MicroCrypt is an addition to Impagliazzo’s five worlds [Imp95]. This is a world in
which one-way functions do not exist, but inherently quantum primitives, like PRS,
exist, and thus non-trivial cryptography is possible. As far as we know, the term was
coined by Tomoyuki Morimae.
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On the one hand, the barrier in extending Morimae and Yamakawa’s scheme
seems fundamental, and coming up with entirely new schemes is always a difficult
endeavour. On the other hand, Kretschmer’s original separation of PRS from
one-way functions [Kre21] is the only black-box separation involving MicroCrypt
that we are aware of, and thus known techniques are fairly limited.

1.1 Our Results

We provide a partial answer to the above question on the negative side. Namely,
we show the following.

Theorem 1 (Informal). There is a quantum oracle O relative to which:

1. PRS with linear, or greater, output length exist.
2. No digital signature scheme with a quantum public key, and classical secret

key and signatures (and message length at least 2 log λ) exists.

The oracle is similar to the one that Kretschmer used to separate PRS and
one-way functions [Kre21]. Our analysis builds on a key technique introduced in
the same work, but needs to circumvent several additional roadblocks that we
discuss in the technical overview (Sect. 2). We believe that these roadblocks may
not be unique to this setting, and that our proof ideas (described in Sect. 2.2)
might find application elsewhere. As a corollary, our result implies the following.

Corollary 1 (Informal). There does not exist a fully black-box construction
of a digital signature scheme with a quantum public key (and classical secret key
and signatures) from a PRS with linear, or greater, output length.2

To the best of our knowledge, this is the first non-trivial black-box separation
involving MicroCrypt beyond Kretschmer’s original separation. We point out
that our separation is in the same setting as Morimae and Yamakawa’s positive
result (PRS of linear output length, and classical secret key and signatures).
Thus it directly answers, in the negative, their question of whether their approach
could be extended to yield multi-time security.

How should one view a black-box separation? The vast majority of known
cryptographic constructions are fully black-box. This means that:

(i) The construction of primitive Q from primitive P does not make use of the
“code” of P, but only uses P as a black-box.

(ii) There exists a black-box security reduction, i.e. given an adversary A that
breaks Q, there exists an adversary A′ that breaks P by using A as a black-
box.

2 In fact, our result is slightly stronger than this. We rule out a fully black-box con-
struction where secret keys can also be quantum states, as long as the secret key
generation algorithm does not make queries to the PRS generation algorithm. See
Remark 2 for the details.
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Showing that such a fully black-box reduction does not exist rules out the most
natural class of constructions, and establishes that any attempt to construct Q
from P must violate either (i) or (ii). From the point of view of “cryptographic
complexity”, the black-box separation establishes that primitive Q is, at the very
least, not qualitatively weaker than primitive P, and possibly stronger.

The approach of exhibiting an oracle separation as a means to prove the
impossibility of a black-box construction was introduced in a seminal work of
Impagliazzo and Rudich [IR89]. In Sect. 4, we include a formal discussion of
the relationship between oracle separations and black-box constructions in a
quantum world, i.e. a world in which oracles are unitary and constructions are
quantum algorithms. Such a discussion, to the best of our knowledge, was missing
despite recent works on the topic. The summary is that, when talking about a
black-box construction of primitive Q from primitive P in a quantum world, one
needs to be careful about defining the kind of “access to P” that is available
to the construction. One natural definition is that “access to P” means having
access to a “unitary implementation” of P. However, a natural question is: is
access to the “inverse” also available? Perhaps unsurprisingly, if one wants to
rule out a black-box construction with access to the inverse, then one should
exhibit a separation relative to a pair of oracles (O,O−1).

We point out that our result (Corollary 1) only rules out a fully black-box con-
struction without access to the inverse. This limitation is shared by Kretschmer’s
separation of PRS and one-way functions (this is not by coincidence, but it is
rather because our result leverages some of techniques used there).

1.2 Open Questions

Our result comes short of a full answer to the general question of the relationship
between digital signatures and PRS in two respects:

1. First, our result only rules out a black-box construction of digital signatures
from PRS with long output (linear or greater). However, can digital signatures
be constructed from PRS with short output (sublinear)? We should point out
that, unlike for classical PRGs, for which the output can be stretched, and
also (trivially) shrunk, the relationship between PRS with short and long
output is still very much unclear. We do not know whether one implies the
other (and if so in what direction), or whether they are incomparable. Recent
work [ALY23] shows that PRS with short output can be used to construct
primitives (e.g. QPRGs) that we do not know how to construct from PRS
with long output. So it seems at least in principle possible that there could be
a black-box construction of digital signatures from PRS with short output.

2. Second, our result only applies to digital signatures with a quantum public
key, but with classical secret key and signatures. If we allow the latter to be
quantum as well, then is there a construction? On the one hand, it is unclear
to us how this relaxation may be helpful in realizing a construction. On the
other, our current techniques to prove a separation run into a barrier in this
setting, which we discuss in the technical overview, and in further detail in
Sect. 6.4.



On Black-Box Separations of Quantum Digital. . . 293

2 Technical Overview

We give a detailed informal overview of our result that PRS with linear, or
greater, output length, cannot be used to construct, in a black-box way, a dig-
ital signature scheme with quantum public key, and classical secret key and
signatures. For convenience, from here on, we simply refer to the latter type of
scheme as a QDS.

To show this result, it is sufficient to construct an oracle (classical or quan-
tum) relative to which PRS exist but QDS do not (see Sect. 4 for more details
about why this is sufficient). Before explaining our approach, we give a (slightly
informal) definition of a QDS scheme and its security.

A QDS scheme is specified by a tuple of algorithms (SKGen,PKGen,Sign,
V erify) satisfying the following:

– SKGen(1λ) → sk: is a QPT algorithm that takes as input 1λ, and outputs a
classical secret key sk.

– PKGen(sk) → |pk〉: is a deterministic algorithm that takes as input a secret
key sk, and outputs the quantum state |pk〉.3 We additionally require |pk〉
to be fixed given sk, i.e. the algorithm SKGen is deterministic (it consists of
a fixed unitary quantum circuit acting on the input sk, and some auxiliary
registers).4

– Sign(sk,m) → σ: is a QPT algorithm that takes as input a secret key sk and
a classical message m, and outputs a classical signature σ.

– Verify(|pk〉,m, σ) → accept/reject: is a QPT algorithm that takes as input
a public key |pk〉, a message m, and a candidate signature σ, and outputs
accept or reject.

We take messages and the secret key to be of length λ for simplicity. In this
work, we focus on standard multi-time security, defined in terms of the following
“unforgeability” game between an adversary A and a challenger C.

(i) C samples sk ← SKGen(1λ), and A receives polynomially many copies of
|pk〉 = PKGen(sk).

(ii) A obtains from C the signatures of polynomially many messages of its choice.
(iii) A sends a pair (m,σ) to C, where m is not among the previously signed

messages.
(iv) A wins the game if Verify(pk,m, σ) accepts.

The QDS scheme is multi-time secure if any quantum polynomial time adversary
has negligible winning probability in this game.
3 To clarify, |pk〉 is allowed to be an arbitrary pure state (not necessarily a standard

basis state).
4 We include this requirement so that the notion of “quantum” public key is a little

more faithful to the spirit of a classical public key. This requirement ensures that
the party in possession of the secret key can generate multiple copies of the corre-
sponding public key. Note that for a completely classical digital signature scheme
this requirement is without loss of generality, since any randomness used in the
generation procedure can be included in the secret key.
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The Separating Oracle. We are now ready to describe the oracle relative to
which PRS exist, but QDS schemes of type (1) does not. As mentioned earlier,
the oracle is similar to the one used by Kretschmer in [Kre21]. The oracle O
consists of a pair of oracles (U ,Q), where Q is a classical oracle solving a fixed
EXP-complete problem, and U is a collection of Haar-random unitaries {U�}�∈N,
where each U� is an indexed list of 2� Haar-random unitaries acting on � qubits.

Why is (U ,Q) a natural choice of oracle? First of all, relative to U , there is a
trivial construction of a PRS: on input a seed k, apply the unitary from U|k|
with index k to the state |0〉⊗|k|. Importantly, this construction is still secure
even in the presence of the second oracle Q, provided Q is fixed independently
of the sampled U (this is shown in Lemma 31 of [Kre21]).

The hard part of our result is constructing, for any QDS scheme relative to
these oracles, an adversary AU,Q that breaks it. In this technical overview, as
a warm-up, we start by considering the case of a QDS scheme with a classical
public key (and classical signatures). In this case, a simple approach suffices:
A uses Q to perform a “brute-force” search for a signature that passes the
verification procedure (this “brute-force” search can be performed because Q
solves an EXP-complete problem). Since Q is a function that is fixed before U
is sampled (informally speaking, Q does not have access to U), the brute-force
search approach has to be combined with a technique introduced by Kretschmer
[Kre21] to simulate the queries that the verification procedure makes to U . We
then move on to the case of a QDS scheme with a quantum public key (and
classical signatures). Here, there are several challenges that prevent us from
using the same “brute-force” search approach. We describe these challenges,
and an approach that overcomes them.

2.1 Warm Up: Oracle Separation Between PRS and QDS
with Classical Public Key

Consider a QDS scheme (SKGenU,Q,PKGenU,Q,SignU,Q, V erifyU,Q) with a
classical public key. Unless specified otherwise, we will always consider schemes
with classical secret keys and signatures. Our task is to construct an adversary
AU,Q that wins the multi-time unforgeability game with non-negligible proba-
bility.

How does A Use Q? For concreteness, suppose signatures for some message m
are λ-bit strings. Let pk be the public key. The simplest approach to finding a
valid signature for message m, is to do a “brute-force search” over the space of
λ-bit strings for a string that is accepted by Verify(pk, ·). One needs to be a
bit more careful though since Verify makes queries to both U and Q. Ignoring
U for a moment, since Q solves a fixed EXP-complete problem, the brute-force
search naively corresponds to an EXPEXP problem (which may thus be outside
of EXP). However, since Verify is a QPT algorithm (and thus can only make
polynomial-size queries to Q), this brute-force search actually corresponds to
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an EXP problem (and can thus be reduced to an instance of the EXP-complete
problem solved by Q)5.

The more delicate issue is that, while the algorithm Verify has a succinct
description, unfortunately the oracle U does not. Moreover, the oracle U is sam-
pled after Q is fixed, and so even an inefficient description of U cannot be
“hardcoded” into Q. As anticipated, this issue can be resolved using a technique
by Kretschmer [Kre21], which we describe below.6 This approach still runs into
several fundamental issues when the public key is quantum. We describe these
issues, and how to overcome them, in Sect. 2.2, but for now we focus on the case
of a classical public key.

Remark 1. For simplicity, in the rest of this section, we will often describe Q as
an exponential-time algorithm. Formally, however, Q is a fixed function comput-
ing a fixed EXP-complete problem. So, when describing Q as an exponential-time
algorithm what we formally mean is: we cast the underlying problem that the
algorithm is solving as an EXP problem, and then reduce it to the particular
EXP-complete problem computed by Q.

Simulating Queries to U . The technique relies crucially on the strong concentra-
tion property of the Haar measure. The corollary of this property that is most
relevant here is the following (stated informally). Let C be a quantum circuit
that makes poly(λ) queries to a Haar random unitary acting on λ qubits. Then,
with overwhelming probability over (independently) sampling two such Haar
random unitaries U and U ′, the output distributions of the circuits CU and CU ′

(on, say, the |0〉 input) are within a small constant TV distance of each other.
In fact, the concentration is strong enough to support a union bound over all
standard basis inputs. So, with overwhelming probability over U and U ′, the
output distributions of CU and CU ′

on all standard basis inputs, are within a
small constant TV distance of each other.

In our setting, C is the circuit V erify(pk,m, ·) for some message m, which
makes T queries to the family U . Thanks to the above concentration property,
Q can now perform the brute-force search “without access to U” by simply
replacing the oracle calls of V erify(pk,m, ·) with unitary T -designs. This will
perfectly simulate T queries to freshly sampled Haar random unitaries.

There is still one remaining subtlety. Recall that U is a family of unitaries
{U�}�∈N, where each U� is an indexed list of 2� Haar-random unitaries acting on
� qubits. However, the concentration property only holds for Haar random uni-
taries acting on a large enough number of qubits. This issue can be circumvented
because for smaller dimensions, up to O(log(λ)) qubits, the unitaries can be
“learnt” efficiently (in O(poly(λ)) queries) by performing process tomography.

5 For more details, see the second footnote within Algorithm 2.
6 As an alternative to this classical oracle Q, one might also consider a quantum oracle

Q that makes queries to U . Given exponentially many queries to U , such an oracle
would allow the adversary to easily break the QDS scheme. However, such an oracle
would also break the security of the PRS built using U .
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We can package Kretschmer’s technique into one procedure, which we will
denote as Sim-Haar. The latter procedure has two parameters η and δ. It has
oracle access to U , and takes as input the description of a quantum circuit C
(with a one-bit output) that makes queries to U , and it outputs another quantum
circuit C ′ (with a one-bit output) that does not make queries to U . The guarantee
of Sim-Haar is that, with probability 1 − e−η over U and the randomness of the
procedure, it holds that, for a given x,

∣
∣
∣ Pr[CU (x) = 1] − Pr[C ′(|x〉) = 1]

∣
∣
∣ ≤ δ.

The runtime of Sim-Haar (which includes queries to U) is poly(|C|, T, η, 1/δ),
where |C| is the size of C.

To put things together, the adversary AU,Q for the QDS scheme picks an
arbitrary message m. It first obtains a circuit V erify′ by running Sim-HaarU

on input V erify(pk,m, ·) (with a sufficiently large η, and a small constant δ).
Then, it invokes Q to search for a signature σ such that V erify′(σ) accepts
with probability greater than a sufficiently large constant, and finally it outputs
(m,σ).

2.2 Oracle Separation Between PRS and QDS with Quantum
Public Key

There are several issues when trying to extend the previous ‘brute force’ attack
to a QDS scheme with a quantum public key.

The First Issue with a Quantum pk. Let the public key be a quantum state |pk〉.
The first issue is syntactical: since Q is a classical oracle, how does A describe the
circuit V erify(|pk〉, ·) to Q? The natural way to fix this is to consider a quantum
oracle Q (i.e. one that can take quantum inputs) that is still independent of U .
However, even then, Q would in general need exponentially many copies of |pk〉
in order to run a brute force search algorithm. This is because the public key
state is potentially disturbed every time the circuit V erify is run.7

An Alternative Approach: Note that we should have expected the previous app-
roach to fail. This is because it did not make use of the adversary’s ability to
make queries to the signing oracle. Since there exists a black-box construction
of a one-query secure QDS scheme from a PRS [MY22b], any adversary break-
ing the QDS scheme must necessarily make use of signing queries (and in fact
polynomially many of them). We consider the following alternative approach.

– A makes polynomially many queries to the signing oracle, obtaining message-
signature pairs (mi, σi).

7 Note that attempts to “uncompute” the circuit and recover |pk〉 fail in general for
several reasons. One of them is that correctness and soundness are not perfect, so
negligible errors can add up to a noticeable quantity when performing a brute force
search.
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– A uses Q to find a set of secret keys that are “consistent” with all of the
(mi, σi). We will refer to this set as Consistent. That is, sk ∈ Consistent
if, for all (mi, σi), Pr[V erifyU,Q(PKGenU,Q(sk),mi, σi) = accept] is greater
than some threshold, for example 9

10 . Once again, just like in Subsect. 2.1, Q
is independent of U , and so we need to first obtained a simulated version of
the circuit
V erifyU,Q(PKGenU,Q(·), ·, ·) using the Sim-Haar procedure described in Sub-
sect. 2.1. Recall that the guarantee of Sim-Haar is that, with high probability
over U , on all classical inputs sk,m, σ the simulated circuit’s acceptance prob-
ability is close to the original.
For the rest of the section, whenever we refer to a circuit that originally made
queries to U , we will simply assume that we are utilizing a simulated version
of that circuit obtained using Sim-Haar, and we will drop U from the notation.
For ease of notation, since Q is fixed, we will also drop Q from the notation.

– A signs a fresh message using a uniformly random key from Consistent.

The Main Challenge: Observe that the set of consistent secret keys are, by defi-
nition, those sk such that, for all (mi, σi), Pr[V erify(PKGen(sk), ·) = accept] >
9/10. By a suitable concentration bound (taking the number of queried message-
signature pairs to be a large enough polynomial), we have that, with overwhelm-
ing probability over the (mi, σi), such sk are also such that, for most m,

Pr[V erify(PKGen(sk),m, σ) = accept] ≥ Ω(1), where σ ← Sign(sk∗,m). (1)

In other words, the secret keys in Consistent accept (with high probability) not
only the queried message, signature pairs, but also fresh signatures signed using
the true secret key sk∗.

Unfortunately, this is not quite the guarantee we are looking for! What we
want is the reverse (i.e. we would like the roles of sk and sk∗ to be swapped):
an sk such that, for most m,

Pr[V erify(PKGen(sk∗),m, σ) = accept] ≥ Ω(1), where σ ← Sign(sk,m). (2)

To make the issue concrete, consider an sk for which V erify(PKGen(sk), ·, ·)
simply accepts everything with probability 1. Such an sk would certainly be
in the consistent set of secret keys, but it may not be capable of generating
signatures that are accepted by the true secret key sk∗ (and the existence of
such an sk does not appear to contradict any property of a QDS scheme).

To summarize, so far we have identified a consistent set of secret keys that
clearly contains sk∗, but is potentially exponentially large, and may contain
secret keys that do not satisfy Eq. 2, i.e. they are not “good signers”. So, how
do we proceed?

Finding a Sequence of Smaller and Smaller Subsets Containing sk∗. We describe
an iterative procedure that identifies smaller and smaller subsets of Consistent,
which are guaranteed to still contain sk∗ (or else there is an easy way to find a
signature accepted by PKGen(sk∗)). Eventually, these subsets only contain the
true secret key sk∗.
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Before describing the iterative procedure, we define the following terms:

– “Good signer” secret keys: Informally, a secret key sk ∈ Consistent is a
“good signer” if 9

10 of the other secret keys in Consistent accept signatures
generated using sk on a constant fraction of the message space, with constant
probability. More precisely, sk ∈ Consistent is a good signer iff the following
is true: |acceptsk| ≥ 9

10 · |Consistent|, where acceptsk is the set of all secret
keys sk′ �= sk such that at least 1

8 fraction of the message space satisfies the
following: Pr[V erify(PKGen(sk′),m,Sign(sk,m)] > 1

8 . The exact constants
in this and the next definition are not important.

– “Stingy” secret keys: Informally, a secret key sk ∈ Consistent is “stingy”
if it does not accept most signatures generated by most secret keys in
Consistent. More precisely, sk ∈ Consistent is stingy iff the following is
true: |friendssk| ≤ 1

2 · |Consistent|, where friendssk is the set of all secret
keys sk′ �= sk such that sk ∈ acceptsk′ .

The two sets above can be defined analogously with respect to a set of secret
keys S, which is not necessarily the set Consistent. In this case, we denote them
as GoodSignerS and StingyS .
We are now ready to define the following sequence of nested subsets of
Consistent. Let S0 = Consistent. For j ∈ [T ], where T is a large enough
polynomial in λ, define

Sj = GoodSignerSj−1 ∩ StingySj−1 .

Observation 1: The sets Sj shrink in size very quickly. More precisely, one
can show that |Sj | ≤ 9

10 |Sj−1| (or |Sj | = 1). This is a somewhat straightforward
combinatorial argument based on the fact that the GoodSigner and Stingy sets
impose conflicting restrictions on their elements.

Observation 2: The second crucial observation is that sk∗ ∈ GoodSignerSj

for all j. This is for the following reason. By definition, the Sj are all sub-
sets of Consistent. Moreover, provided the set of queried message-signature
pairs (mi, σi) is a sufficiently large polynomial, then, with overwhelming prob-
ability over the queried pairs (by a concentration bound), all secret keys
sk ∈ Consistent accept most signatures generated using the true secret key
sk∗ (we argued this earlier too in Eq. (1)). In other words, with overwhelming
probability, all sk ∈ Consistent belong to acceptsk∗ . We emphasize that this
part of the proof crucially relies on the fact that the QDS adversary can make
polynomially many signing queries (this is why our black-box separation does
not contradict the one-query secure black-box construction in [MY22b]).

Observation 2 implies that, for all j, sk∗ ∈ Sj if and only if sk∗ ∈ StingySj−1 .
There are two cases:

1. sk∗ ∈ StingySj
for all j. Then it must be that ST = {sk∗} (because of the

shrinking property of the Sj).
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2. sk∗ /∈ StingySj
for some j. Then, note that, by definition of StingySj

, this
implies that PKGen(sk∗) accepts signatures generated by a constant fraction
of sk in Sj , with a constant probability (for a constant fraction of messages).
More formally, sk∗ ∈ acceptsk for a constant fraction of sk.

Returning to our adversary for the QDS scheme, A asks Q to do the following:
compute the sets Sj as defined above, and output one uniformly random element
from each Sj (note that this is an exponential-time computation, and so it can
be “run” by Q). A picks a uniformly random secret key from this (polynomial-
size) set, and uses it to sign a uniformly random message. By the properties we
proved above, the list of secret keys output by Q contains sk∗ (in case 1), or
contains (in case 2), with constant probability, an sk such that sk∗ ∈ acceptsk.
Therefore, A wins the unforgeability game with inverse-polynomial probability.

3 Preliminaries

3.1 Basic Notation

Throughout the paper, [n] denotes the set of integers {1, 2, . . . , n}. If X is a
probability distribution, we use x ∼ X to denote that x is sampled according
to X. A function f is negligible if for every constant c > 0, f(n) ≤ 1

nc for all
sufficiently large n. We use the abbreviation QPT for a quantum polynomial
time algorithm. We use the notation A(·) to refer to an algorithm (classical or
quantum) that makes queries to an oracle.

3.2 Quantum Information

We use TD(ρ, σ) to denote the trace distance between density matrices ρ and σ.
For a quantum channel A, we let ‖A‖� denote its diamond norm. The diamond
norm and trace distance satisfy the following relation:

Fact 1. [NC11] Let A and B be quantum channels and ρ be a density matrix.
Then,

TD(A(ρ),B(ρ)) ≤ ||A − B||�

3.3 Haar Measure and Its Concentration

We use U(N) to denote the group of N ×N unitary matrices, and μN to denote
the Haar measure on U(N). Given a metric space (M, d) where d denotes
the metric on the set M, a function f : M → R is L-lipschitz if for all
x, y ∈ M, |f(x) − f(y)| ≤ L · d(x, y). The following inequality involving Lips-
chitz continuous functions captures the strong concentration of Haar measure.
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Theorem 2 ([Mec19]). Given N1, N2, . . . , Nk ∈ N, let X = U(N1)
⊕ · · · ⊕

U(Nk) be the space of block diagonal unitary matrices with blocks of size
N1, N2, . . . , Nk. Let ν = ν1 × · · · × νk be the product of Haar measures on X.
Suppose that f : X → R is L-Lipshitz with respect to the Frobenius norm. Then
for every t > 0,

Pr
U←ν

[f(U) ≥ EV ←ν [f(V )] + t] ≤ exp(− (N − 2)t2

24L2
),

where N = min N1, . . . , Nk.

Lemma 1 ([Kre21]). Let A(·) be a quantum algorithm that makes T queries
to an oracle, and let |ψ〉 be any input to A(·). Define f(U) = Pr[AU (|ψ〉) = 1].
Then, f is 2T -Lipshitz with respect to the Frobenius norm.

3.4 Quantum Pseudorandomness

The notion of pseudorandom quantum states was introduced in [JLS18a]. The
following is a formal definition. We use σd to denote the Haar measure on d-
dimensional pure quantum states.

Definition 1 (Pseudorandom Quantum State (PRS)). A Pseudorandom
Quantum State (PRS) is a pair of QPT algorithms (GenKey,GenState) such that
the following holds. There exists n : N → N, and a family {Kλ}λ∈N of subsets of
{0, 1}∗ such that:

– GenKey(1λ) → k: Takes as input a security parameter λ, and outputs a key
k ∈ Kλ.

– GenState(k) → |PRS(k)〉: Takes as input a key k ∈ Kλ, for some λ, and
outputs an n(λ)-qubit state. We additionally require that the state on input k
be unique, and we denote this as |PRS(k)〉.

Moreover, the following holds. For any (non-uniform) QPT quantum algorithm
A, and any m = poly, there exists a negligible function negl such that, for all
λ ∈ N,
∣
∣
∣
∣
∣

Pr
k←GenKey(1λ)

[A
(|PRS(k)〉⊗m(λ)

)

= 1] − Pr
|ψ〉←σ

2n(λ)

[A
(|ψ〉⊗m(λ)

)

= 1]

∣
∣
∣
∣
∣
≤ negl(n).

Definition 2 (Pseudorandom unitary transformations (PRU)
([JLS18a])). Let n : N → N. Let {Uλ}λ∈N be a family of unitaries where Uλ

is a family of n(λ)-qubit unitaries {Uk}k∈{0,1}λ . We say that {Uλ}λ∈N is pseu-
dorandom if the following conditions hold:

1. (Efficient computation) There is a QPT algorithm G that implements Uk on
input k, meaning that for any n-qubit input |ψ〉, G(k, |ψ〉) = Uk|ψ〉.

2. (Computationally indistinguishable) For any QPT algorithm A(·), there exists
a negligible function negl such that, for all λ,

∣
∣
∣
∣

Pr
k←{0,1}λ

[AUk(1λ) = 1] − Pr
U←μ2n

[AU (1λ) = 1]
∣
∣
∣
∣
≤ negl(λ).
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4 On Quantum Oracle Separations and Black-Box
Constructions

In this section, we clarify what we mean by a “black-box construction” of prim-
itive Q from primitive P when the primitives involve quantum algorithms (and
possibly quantum state outputs). We also clarify the relationship between a
quantum oracle separation of P and Q and the (im)possibility of a black-box
construction of one from the other. To the best of our knowledge, while black-
box separations in the quantum setting have been the topic of several recent
works, a somewhat formal treatment of the terminology and basic framework is
missing. This section also appears verbatim in the concurrent work [CCS24].

In the quantum setting, it is not immediately obvious what the correct notion
of “black-box access” is. There are a few reasonable notions of what it means
for a construction to have “black-box access” to another primitive. We focus on
three variants: unitary access, isometry access, and access to both the unitary
and its inverse.

The summary is that, similarly to the classical setting, a quantum oracle
separation of primitives P and Q (i.e. a quantum oracle relative to which P
exists but Q does not) implies the impossibility of a black-box construction of Q
from P, but with one caveat: the type of oracle separation corresponds directly
to the type of black-box construction that is being ruled out. For example, the
oracle separation needs to be “closed under giving access to the inverse of the
oracle”, i.e. the separation needs to hold relative to an oracle and its inverse.
We start by introducing some terminology.

Terminology. A quantum channel is a CPTP (completely-positive-trace-
preserving) map. The set of quantum channels captures all admissible “physical”
processes in quantum information, and it can be thought of as the quantum ana-
logue of the set of functions f : {0, 1}∗ → {0, 1}∗.

For the purpose of this section, a quantum channel is specified by a fam-
ily of unitaries {Un}n∈N (where Un acts on an input register of size n, and a
work register of some size s(n)). The quantum channel maps an input (mixed)
state ρ on n qubits to the (mixed) state obtained as follows: apply Un(·)U†

n to
ρ ⊗ (|0〉〈0|)⊗s(n); measure a subset of the qubits; output a subset of the qubits
(measured or unmeasured). We say that the family {Un}n∈N is a unitary imple-
mentation of the quantum channel. We say that the quantum channel is QPT
if it possesses a unitary implementation {Un}n∈N that is additionally a uniform
family of efficiently computable unitaries. In other words, the quantum channel
is implemented by a QPT algorithm.

One can also consider the family of isometries {Vn}n∈N where Vn takes as
input n qubits, and acts like Un, but with the work register fixed to |0〉s(n), i.e.
Vn : |ψ〉 �→ Un(|ψ〉|0〉⊗s(n)). We refer to {Vn}n∈N as the isometry implementation
of the quantum channel.

We will also consider QPT algorithms with access to some oracle O. In this
case, the unitary (resp. isometry) implementation {Un}n∈N should be efficiently
computable given access to O.
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Before diving into formal definitions, a bit informally, a primitive P can
be thought of as a set of conditions on tuples of algorithms (G1, . . . , Gk). For
example, for a digital signature scheme, a valid tuple of algorithms is a tuple
(Gen,Sign,Verify) that satisfies “correctness” (honestly generated signatures
are accepted by the verification procedure with overwhelming probability) and
“security” (formalized via an unforgeability game). Equivalently, one can think
of the tuple of algorithms (G1, . . . , Gk) as a single algorithm G (with an addi-
tional control input).

A thorough treatment of black-box constructions and reductions in the clas-
sical setting can be found in [RTV04]. Our definitions are a quantum analog
of those in [RTV04]. They follow the latter style whenever possible, and they
depart from it whenever necessary.

Definition 3. A primitive P is a pair P = (FP ,RP)8 where FP is a set of
quantum channels, and RP is a relation over pairs (G,A) of quantum channels,
where G ∈ FP .

A quantum channel G is an implementation of P if G ∈ FP . If G is addi-
tionally a QPT channel, then we say that G is an efficient implementation of
P (in this case, we refer to G interchangeably as a QPT channel or a QPT
algorithm).

A quantum channel A (usually referred to as the “adversary”) P-breaks G ∈
FP if (G,A) ∈ RP . We say that G is a secure implementation of P if G is an
implementation of P such that no QPT channel P-breaks it. The primitive P
exists if there exists an efficient and secure implementation of P.

Let U be a unitary (resp. isometry) implementation of G ∈ P. Then, we say
that U is a unitary (resp. isometry) implementation of P. For ease of exposition,
we also say that quantum channel A P-breaks U to mean that A P-breaks G.

Since we will discuss oracle separations, we give corresponding definitions relative
to an oracle. Going forward, for ease of exposition, we often identify a quantum
channel with the algorithm that implements it.

Definition 4 (Implementations relative to an oracle). Let O be a unitary
(resp. isometry) oracle. An implementation of primitive P relative to O is an
oracle algorithm G(·) such that GO ∈ P9. We say the implementation is efficient
if G(·) is a QPT oracle algorithm.

Let U be a unitary (resp. isometry) implementation of GO. Then, we say
that U is a unitary (resp. isometry) implementation of P relative to O.

Definition 5. We say that a primitive P exists relative to an oracle O if:

(i) There exists an efficient implementation G(·) of P relative to O, i.e. GO ∈ P
(as in Definition 4).

8 Here FP should be thought of as capturing the “correctness” property of the prim-
itive, while RP captures “security”.

9 We clarify that here GO is only allowed to query the unitary O, not its inverse.
However, as will be the case later in the section, O itself could be of the form
O = (W, W −1) for some unitary W .
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(ii) The security of GO holds against all QPT adversaries that have access to O.
More precisely, for all QPT A(·), (GO, AO) /∈ RP .

There are various notions of black-box constructions and reductions (see, for
example, [RTV04]). Here, we focus on (the quantum analog of) the notion of a
fully black-box construction. We identify and define three analogs based on the
type of black-box access available to the construction and the security reduction.

Definition 6. A QPT algorithm G(·) is a fully black-box construction of Q
from unitary access to P if the following two conditions hold:

1. (black-box construction with unitary access) For every unitary implementa-
tion U of P, GU is an implementation of Q.

2. (black-box security reduction with unitary access) There is a QPT algorithm
S(·) such that, for every unitary implementation U of P, every adversary A
that Q-breaks GU , and every unitary implementation Ã of A, it holds that
SÃ P-breaks U .

Definition 7. A QPT algorithm G(·) is a fully black-box construction of Q
from isometry access to P if the following two conditions hold:

1. (black-box construction with isometry access) For every isometry implemen-
tation V of P, GV is an implementation of Q.

2. (black-box security reduction with isometry access) There is a QPT algo-
rithm S(·) such that, for every isometry implementation V of P, every adver-
sary A that Q-breaks GV , and every isometry implementation Ã of A, it holds
that SÃ P-breaks V .

Definition 8. A QPT algorithm G(·) is a fully black-box construction of Q
from P with access to the inverse if the following two conditions hold:

1. (black-box construction with access to the inverse) For every unitary imple-
mentation U of P, GU,U−1

is an implementation of Q.
2. (black-box security reduction with access to the inverse) There is a QPT

algorithm S(·) such that, for every unitary implementation U of P, every
adversary A that Q-breaks GU,U−1

, and every unitary implementation Ã of
A, it holds that SÃ,Ã−1 P-breaks U10.

We now clarify the relationship between a quantum oracle separation of prim-
itives P and Q and the (im)possibility of a black-box construction of one from
the other.

The following is a quantum analog of a result by Impagliazzo and
Rudich [IR89] (formalized in [RTV04] using the above terminology).

10 One could define even more variants of “fully black-box constructions” by separating
the type of access that G has to the implementation of P from the type of access
that S has to A (currently they are consistent in each of Definitions 6, 7, and 8).
Here, we choose to limit ourselves to the these three definitions.
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Theorem 3. Suppose there exists a fully black-box construction of primitive Q
from unitary (resp. isometry) access to primitive P. Then, for every unitary
(resp. isometry) O, if P exists relative to O, then Q also exists relative to O.

This implies that a unitary (resp. isometry) oracle separation (i.e. the existence
of an oracle relative to which P exists but Q does not) suffices to rule out a fully
black-box construction of Q from unitary (resp. isometry) access to P.

Proof (Proof of Theorem 3). We write the proof for the case of unitary access
to P. The proof for the case of isometry access is analogous (replacing unitaries
with isometries). Suppose there exists a fully black-box construction of Q from
P. Then, by definition, there exist QPT G(·) and S(·) such that:

1. (black-box construction) For every unitary implementation U of P, GU is an
implementation of Q.

2. (black-box security reduction) For every implementation U of P, every adver-
sary A that Q-breaks GU , and every unitary implementation Ã of A, it holds
that SÃ P-breaks U .

Let O be a quantum oracle relative to which P exists. Since, by Definition 5,
P has an efficient implementation relative to O, there exists a uniform family
of unitaries U that is efficiently computable with access to O, such that U is a
unitary implementation of P. Moreover, U (or rather the quantum channel that
U implements) is a secure implementation of P relative to O.

We show that the following QPT oracle algorithm G̃(·) is an efficient imple-
mentation of Q relative to O, i.e. G̃O ∈ Q. G̃O runs as follows: implement GU

by running G, and simulate each call to U by making queries to O. Note that
G̃(·) is QPT because U is a uniform family of efficiently computable unitaries
given access to O. Since G̃O is equivalent to GU , and GU ∈ Q (by property 1
above), then G̃O ∈ Q.

We are left with showing that G̃O is a secure implementation relative to O,
i.e. that there is no QPT adversary A(·) such that AO Q-breaks G̃O. Suppose for
a contradiction that there was a QPT adversary A(·) such that AO Q-breaks G̃O

(which is equivalent to GU ). Then, by property 2, SAO P-breaks U . Note that
adversary SAO

can be implemented efficiently with oracle access to O, because
both S(·) and A(·) are QPT. Thus, this contradicts the security of U relative to
O (formally, of the quantum channel that U implements).

Similarly, we state a version of Theorem 3 for fully black-box constructions
with access to the inverse.

Theorem 4. Suppose there exists a fully black-box construction of primitive Q
from primitive P with access to the inverse. Then, for every unitary O, if P
exists relative to (O,O−1), then Q also exists relative to the oracle (O,O−1).

Proof. The proof is analogous to the proof of Theorem3. The only difference is
that now G(·) additionally makes queries to the inverse of the unitary implemen-
tation U of P. Since U−1 can be implemented efficiently given access to (O,O−1),
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we can now define an efficient implementation G̃(·) of P relative to (O,O−1).
Proving that G̃O,O−1

is a secure implementation of P relative to (O,O−1) also
proceeds analogously.

5 Quantum Public Key Digital Signatures

In this section, we define QDS schemes with quantum public keys (and classical
secret key and signatures). Going forward, unless we specify otherwise, we use
the term QDS to refer to this type of signature scheme.

Definition 9. A Quantum Digital Signature scheme (QDS) is a tuple of algo-
rithms (SKGen,PKGen,Sign,Verify) satisfying the following:

– SKGen(1λ) → sk: is a QPT algorithm that takes as input 1λ, and outputs a
classical secret key sk. We assume that sk has length λ.

– PKGen(sk) → |pk〉: is a deterministic algorithm that takes as input a secret
key sk, and outputs the quantum state |pk〉.11 We additionally require |pk〉
to be fixed given sk, i.e. the algorithm SKGen is deterministic (it consists of
a fixed unitary quantum circuit acting on the input sk, and some auxiliary
registers).12

– Sign(sk,m) → σ: is a QPT algorithm that takes as input a secret key sk
and a classical message m from some message space (that may depend on
the security parameter), and outputs a classical signature σ. For a security
parameter λ, we denote by Mλ the corresponding message space.

– Verify(|pk〉,m, σ) → accept/reject: is a QPT algorithm that takes as input a
public key |pk〉, a message m, and a candidate signature σ, and outputs accept
or reject.

We require the following “correctness” property. There exists a negligible function
negl such that, for all λ ∈ N, the following holds except with probability negl(λ)
over sampling sk ← SKGen(1λ). For all m ∈ Mλ,

Pr[V er(PKGen(sk), Sign(sk,m)) = 1] ≥ 1 − negl(λ).

If there is a function � : N → N, such that, for all λ, Mλ is the set of strings
of length �(λ), then we say that the scheme is a QDS for messages of length �(λ).

For simplicity, we will consider QDS where each Mλ is the set of strings of
a certain length.
11 To clarify, |pk〉 is allowed to be an arbitrary pure state (not necessarily a standard

basis state).
12 We include this requirement so that the notion of “quantum” public key is a little

more faithful to the spirit of a classical public key. This requirement ensures that
the party in possession of the secret key can generate multiple copies of the corre-
sponding public key. Note that for a completely classical digital signature scheme
this requirement is without loss of generality, since any randomness used in the
generation procedure can be included in the secret key.
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Multi-time Security. The notion of security that we focus on in this work is
the standard “multi-time” security. The latter allows the adversary to make
an arbitrary polynomial number of queries to a signing oracle, before having
to produce a valid signature of an “unqueried” message. Formally, multi-time
security is defined in terms of the following security game between a challenger
C and an adversary A.

1. C runs sk ← SKGen(1λ).
2. A receives |pk〉⊗t(λ) (for some polynomially-bounded function t that depends

on A).
3. For each i ∈ {1, . . . t}, A sends a message mi to C; C runs σi ← Sign(mi, sk),

and sends σi to A.
4. A sends (m,σ) to C such that m /∈ {m1, . . . mt}.
5. C outputs 1 iff Verify(|pk〉,m, σ) accepts.

Let multi-time(λ,A) be a random variable denoting the output of the game
above.

Definition 10 (multi-time security). A QDS scheme satisfies multi-time
security if, for all QPT adversaries A, there exists a negligible function negl
such that

Pr[multi-time(λ,A) = 1] = negl(λ). (3)

In this work, we consider QDS schemes relative to some oracle O. In this
setting, the syntax and security definitions are identical to the ones given in this
section, except that all of the algorithms, including the adversary, have access
to O.

6 Oracle Separation of Quantum Digital Signatures
and PRS

In this section, we describe an oracle relative to which PRS exist, and a QDS
scheme that satisfies multi-time security (Definitions 9 and 10) does not. Most
of this section is dedicated to proving the latter. For the rest of the section,
unless we mention otherwise, any QDS scheme that we consider has a quantum
public key and classical signatures. We also restrict our attention to multi-time
security.

The Separating Oracle. The oracle is similar to the one used by Kretschmer in
[Kre21]. The oracle O consists of a pair of oracles (U ,Q), where Q is a classical
oracle solving a fixed EXP-complete problem, and U is a collection of Haar-
random unitaries {U�}�∈N, where each U� is an indexed list of 2� Haar-random
unitaries acting on � qubits.

In this section, we show the following two theorems.

Theorem 5. With probability 1 over U , there exists a family of PRUs relative
to (U ,Q).
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Theorem 6. Let � : N → N be such that �(λ) ≥ 2·log(λ) for all sufficiently large
λ. Then, relative to (U ,Q), there does not exist a QDS scheme for messages of
length �(λ) (where λ is the security parameter).

As mentioned previously, we can also show that, relative to (U ,Q), QDS
schemes for shorter message length do not exist under a slightly different unforge-
ability definition than Definition 10. In this definition, for the adversary to suc-
ceed, it suffices to produce a valid signature that has not been previously pro-
duced by the challenger (even if this is the signature of a previously queried
message).

6.1 Existence of PRS Relative to the Oracle

Theorem 5 follows from the fact that an appropriate family of pseudorandom
unitaries (PRU) exists relative to O. The latter was shown by Kretschmer13

[Kre21].
The construction of the PRU family is very natural. For input length λ, the

family is precisely Uλ. This is a PRU family on n(λ) = λ qubits. For the proof,
we refer the reader to Theorem 32 in [Kre21]. For any n(λ) ≥ λ, we can construct
a corresponding PRU family {U ′

λ} on n(λ) qubits by taking U ′
λ = Un(λ). Security

follows analogously.
Now, a PRU family {Uλ}λ∈N on n(λ) qubits immediately implies a PRS with

output length n(λ) as follows. Let Uλ = {Uk}k∈{0,1}λ . Then, for k ∈ {0, 1}λ, one
defines |PRS(k)〉 = Uk|0〉.

The rest of this section, is dedicated to proving Theorem6.

6.2 Simulating Haar Random Unitaries

Before describing an adversary that, with query-bounded access to (U ,O), breaks
the security of any QDS scheme, we need to introduce a crucial procedure that
allows an adversary to “simulate” certain kinds of interactions with the oracle
U , by only making a small number of queries to U . This simulation procedure
was introduced by Kretschmer [Kre21]. We give a high-level description first.

Kretschmer’s Simulation Procedure: a High-Level Description. The
key property of the Haar measure that makes the following simulation possible
is its strong concentration, which we describe informally. Let C be a fixed binary-
output quantum circuit that makes T queries to a Haar random unitary on n
qubits (i.e. on a Hilbert space of dimension 2n). Then, with high probability
over sampling a pair of Haar random unitaries U,U ′, the output distributions

13 Kretschmer shows this for a slightly different oracle (U , Q), where U is the same,
but Q is a PSPACE oracle, instead of an EXP oracle. The proof is analogous. The
only step in the proof where this comes into play is in Lemma 31 from [Kre21] which
essentially provides a lower bound on the number of queries to U . Crucially this
lower bound holds against any unbounded quantum algorithm.
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of the circuits CU and CU ′
(say on the |0〉 input) are within small TV distance.

Quantitatively, for any δ > 0,

Pr
U,U ′←μ2n

[∣
∣
∣Pr[CU (|0〉) = 1] − Pr[CU ′

(|0〉) = 1]
∣
∣
∣ ≤ δ

]

≤ exp
(

−Ω

(
2n · δ2

T 2

))

.

(4)
For example, when T = poly(n), and δ is as small 2−c·n for c < 1

2 , the upper
bound is doubly exponentially small in n. Thus, the concentration is strong
enough to support a union bound over all standard basis inputs. So, with over-
whelming probability over U and U ′, the output distributions of CU and CU ′

on
all standard basis inputs are within a small constant TV distance of each other.

How does this help an adversary for a QDS scheme? Suppose the adversary is
trying to perform a brute-force search over inputs to a circuit C (for example the
V erify circuit of a QDS scheme, in the hope of finding an accepting input). This
search would normally require exponentially many queries to U (since there are
exponentially many possible inputs to the circuit). The concentration property
tells us that we can ignore the particular oracle U , and instead replace queries
to U with queries to a family of freshly sampled Haar unitaries (or T -designs)
by paying only a small cost in TV distance.

There is only one issue. Recall that U is a family of unitaries {U�}�∈N, where
each U� is an indexed list of 2� Haar-random unitaries acting on � qubits. When
the dimension is small, relative to the number of queries, e.g. the number of
qubits is � = o(log T ), the concentration property no longer holds (or rather
the upper bound in (4) becomes trivial)! Fortunately, this issue can be circum-
vented because, for small enough dimension, the unitaries can be “learnt” to high
precision efficiently by performing process tomography. More precisely, process
tomography allows one to learn an arbitrary unitary on a space of dimension d
by making only poly(d) queries. Thus, let λ be a security parameter. Then, uni-
taries in U�, for � = O(log λ), can be learnt with only poly(λ) queries. Moreover,
notice that when � = O(log λ), there are only a total of 2� = poly(λ) unitaries
in U�, and so one can learn all of them with a total of only poly(λ) time and
queries. On the other hand, unitaries in U� for � ≥ c · log λ, for a large enough
constant c, enjoy a strong enough concentration, and can thus be replaced with
fresh Haar unitaries, or T -designs, at a small cost in TV distance.

To summarize, let C be a quantum circuit on inputs of size λ. Suppose C
makes poly(λ) queries to U . With high probability over U , the output distribution
of C on all standard basis inputs can be simulated to within a small constant
in TV distance with only poly(λ) queries to U by:

– Using T -designs to replace the oracle calls to U�, for large enough � (such as
� ≥ c · log λ), for some large enough constant c). This perfectly simulates T
queries to a freshly sampled family U�, and, by the concentration property,
this in turn approximates the original output distribution of each run to



On Black-Box Separations of Quantum Digital. . . 309

within a small δ, where we can take δ to be a small constant14. This step
does not require any queries to U .

– Efficiently learning all of the unitaries in U�, for all small enough � (e.g.
� ≤ Θ(log λ)). This step requires poly(λ) time and queries to U .

Kretschmer’s Simulation Procedure: a Formal Description. Before for-
mally describing the simulation procedure, we introduce the necessary lemmas
relating to process tomography and t-designs. For a unitary U , we let U(·)U†

denote the quantum channel ρ → UρU†.

Process Tomography We focus on process tomography for a unitary channel.
In this setting, the algorithm is given black-box access to a unitary Z. After a
number of queries to Z, the algorithm should output a classical description of a
unitary Z̃ with the goal of minimizing the following quantity:

E

[∥
∥
∥Z(·)Z† − Z̃(·)Z̃†

∥
∥
∥

�

]

.

In [HKOT23], the authors describe an algorithm with the following guarantees.
This algorithm is used as a sub-routine in Kretschmer’s simulation procedure.15

Theorem 7 ([HKOT23]). There is a quantum algorithm that, given ε, η ∈
(0, 1), as well as black-box access to an unknown d-dimensional unitary Z ∈ U(d),
makes O(d2

ε log(1/η)) queries to the black box and outputs a classical description

of a unitary Z̃ ∈ U(d) such that Pr
[∥
∥
∥Z(·)Z† − Z̃(·)Z̃†

∥
∥
∥

�
≤ 3ε

]

≥ 1−η. The gate

complexity of this algorithm is poly(d, 1/ε, log(1/η))

Approximate T Designs. An ε-approximate quantum unitary t-design is a dis-
tribution over unitaries that “ε-approximates” a Haar random unitary, when
considering their action via a t-copy parallel repetition.

Definition 11. (Approximate Unitary Design [BHH16]) Let ε ∈ [0, 1], t ∈ N. A
probability distribution S over U(N) is an ε-approximate unitary t-design if:

(1 − ε)EU←μN
[(U(.)U†)⊗t] � EU∼S [(U(.)U†)⊗t] � (1 − ε)EU←μN

[(U(.)U†)⊗t],

where B � A means that B − A is positive semidefinite.

It is well-known that there are efficient constructions of such unitary t-designs.

14 Note that we cannot take δ to be exponentially small in λ here because � could be
as small as c · log λ.

15 The original result of [HKOT23] is for η = 1
3
, but this can be boosted to any η

at a cost of factor of log(1/η) in the number of queries, and gate complexity (see
Proposition 2.4 in [HKOT23]).
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Lemma 2. ([BHH16]). There exists m : N → N, such that the following holds.
For each n, t ∈ N, and ε > 0, there is a poly(n, t, log(1ε ))-time classical algorithm
A that takes m(n) bits of randomness as input, and outputs a description of a
unitary quantum circuit on n qubits such that the output distribution of A is an
ε-approximate unitary t-design (over U(2n)).

An ε-approximate unitary t-design S is said to be phase-invariant if, for any uni-
tary U in the support of S, U and ωU are sampled with the same probability,
where ω is the (t + 1)-th root of unity. The following lemma says that replac-
ing the Haar measure with a phase-invariant ε-approximate unitary t-design is
undetectable to any algorithm that makes only t queries to the Haar random
unitary.

Lemma 3. ([Kre21]). Let S be a phase-invariant ε approximate unitary t-
design over U(N), and let D(·) be any t-query quantum algorithm. Then,

(1 − ε) Pr
U←μN

[DU = 1] ≤ Pr
U←S

[DU = 1] ≤ (1 + ε) Pr
U←μN

[DU = 1]

(where in the above, D(·) is also allowed to make queries to controlled-U).

We are now ready to describe Kretschmer’s simulation procedure formally.
For convenience, we denote the simulation procedure as Sim-Haar. Formally,
Sim-Haar takes as input a description of a circuit C(·) that makes queries to U
(and possibly some other oracle Q), as well as some other parameters that we
will describe shortly. It outputs a circuit C ′ that does not make queries to U
(but possibly to Q). Here is a formal description.

In the following lemma, U is as in Algorithm 1, and Q is any other fixed
oracle.

Lemma 4 ([Kre21]). Let η ∈ N and δ ∈ (0, 1/3). Let Sim-Haarη,δ denote Algo-
rithm1 where the inputs η and δ are fixed. Let C(·) be a binary-output quantum
circuit that uses space s and makes T queries to (U ,Q). Then, Sim-HaarUη,δ(C)
runs in time poly(η, s, T, 1

δ ), and, with probability at least 1− 2e−η over the ran-
domness of Sim-Haarη,δ and the sampling of U , we have that, for all x ∈ {0, 1}n

(where n is the length of inputs to C),
∣
∣
∣ Pr[C ′Q(|x〉) = 1] − Pr[CU,Q(|x〉) = 1]

∣
∣
∣ ≤ 3δ + e− η

2 .

Proof. Recall that d = log(192 1
δ2 (η + s)T 2 +2), and |x〉 is a computational basis

state that CU,Q takes as input. We define the following sequence of “hybrids”.
These are probability distributions, where the first is the output distribution of
circuit CU,Q(|x〉), and the last is the output distribution of circuit C ′Q(|x〉). We
show that each two consecutive distributions are close. Let x ∈ {0, 1}n.

1. H1: CU,Q(|x〉).
2. H2: C2(|x〉), where C2 is identical to CU,Q except that, for all � ∈ [d + 1, s],

U� is replaced by a freshly sampled family of 2� Haar random unitaries.
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Algorithm 1. Sim-Haar(·)

Oracle access: The algorithm has query access to an oracle U = {U�}�∈N, where each
U� is a list of 2� different �-qubit unitary transformations (and possibly to another
oracle Q).
Input: A quantum circuit C(·) using space s that makes T queries to U (and possibly
to another oracle Q), η ∈ N, and δ ∈ (0, 1/3).
We denote the unitaries in the list U� as {Uk�}k∈{0,1}� . Let d = log(192 1

δ2
(η+s)·T 2+2).

For l ∈ [s]:

– If � ∈ [d], view the list U� as a unitary on a larger space that includes a control
register for the index k. Classically simulate U� by running the process tomography
algorithm from Theorem 6 on inputs ε = δ

T
and μ = 1

d
e−2(η+s). This produces

estimates Ũ� such that ‖Ũ�(·)Ũ�
† − U�(·)U�

†‖� ≤ δ
T

with probability at least 1 −
1
d
e−2(η+s). From Theorem 6, this can be done, for each �, with a number of queries

that is O
(

22�T
δ

· log( 1
e−η )

)
≤ O

(
22dT

δ
log( 1

e−η )
)

≤ O(T3η2

δ3
) and running time

poly(�, T/δ).
– Otherwise, if � ∈ [d + 1, s], do the following. Let ε = δ

s2s . Let m : N → N be as in
Lemma 2. Let A be the “unitary design sampler” algorithm from Lemma 2 with
parameters ε, n = �, and t = T . Sample f� : {0, 1}� → {0, 1}m(l) from a 2T -wise
independent family of functions. Set Ũk� = A(f�(k)).

Output: The quantum circuit C′ defined as follows. C′ is identical to C except that,
for each � and k ∈ {0, 1}�, all queries to Uk� are replaced with a direct application of
the unitary Ũk� defined earlier. Thus C′ makes no queries to U (but still makes queries
to Q, if C does).

3. H3: C3(|x〉), where C3 is sampled as follows. Let A be the algorithm from
Lemma 2 that samples from a phase invariant ε-approximate unitary T -
design, where ε = δ

s2s . For � ∈ [d + 1, s], sample a function g� : {0, 1}� →
{0, 1}m(�) uniformly at random. C3 is identical to C2 except that, for k ∈
{0, 1}�, we replace queries to Uk� with queries to A(g�(k)).

4. H4: C4(|x〉), where C4 is sampled in the same way as C3 except that we
replace g� (which was previously sampled uniformly at random) with f� :
{0, 1}� → {0, 1}m(�), sampled from a 2T -wise independent function family.

5. H5: C5(|x〉), where C5 is sampled in the same way as C4 except that, for
� ∈ [d], queries to U� are replaced by queries to Ũ�, obtained via the process
tomography algorithm from Theorem 7 with parameters ε = δ

T , and μ =
1
de−2(η+s). Note that this circuit is exactly C ′Q(|x〉).

Let f(U) = Pr[CU,Q(|x〉) = 1]. Lemma 1 implies that this function is 2T -
Lipshitz. Invoking the strong concentration of the Haar measure in Theorem 2
with t = δ and L = 2T , we have that, for any standard basis input |x〉,

Pr
U,U′[| Pr[CU,Q(|x〉) = 1] − Pr[CU′,Q(|x〉) = 1]| ≥ δ] ≤ exp(− (2d − 2)δ2

24(2T )2
) ≤ e−2(η+s),
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where the last inequality follows from the definition of d. By an averaging argu-
ment and a straightforward calculation, the latter implies that, in fact,

Pr
U

[∣
∣ Pr[CU,Q(|x〉) = 1] − Pr[C2(|x〉) = 1]

∣
∣ ≥ δ + e−η−s

]

≤ e−η−s

(where the main difference from the previous expression is that the probability
over U ′ has been absorbed inside C2).

Now, C3 replaces every unitary Uk� for � ∈ [d + 1, s] and k ∈ {0, 1}� with
A(g�(k)). Using Lemma 3, the total change in acceptance probability is

s∑

�=d+1

∑

k∈{0,1}�

δ

s2s
≤ δ.

Thus,
∣
∣ Pr[C3(|x〉) = 1] − Pr[C2(|x〉) = 1]

∣
∣ ≤ δ.

From [Zha12], we know that T queries to a random function are perfectly indis-
tinguishable from queries to a 2T -wise independent family of functions. Thus,
we have

Pr[C4(|x〉) = 1] = Pr[C3(|x〉) = 1].

From Theorem 7, for each � ∈ [d], with probability at least 1 − 1
de−2(η+s) (over

the randomness of the process tomography algorithm), we have that ‖Ũ�(·)Ũ�
† −

U�(·)U�
†‖� ≤ δ

T . Thus, by a union bound, with probability ≥ 1 − e−2(η+s) (over
the randomness of the process tomography), we have that, for all � ∈ [d],

‖Ũ�(·)Ũ�
† − U�(·)U�

†‖� ≤ δ

T
.

Since C5 and C4 only make T queries to U , it follows, by triangle inequalities
and Fact 1, that

∣
∣ Pr[C5(|x〉) = 1] − Pr[C4(|x〉) = 1]

∣
∣ ≤ δ.

Adding up differences in acceptance probabilities (and adding up the probabil-
ity losses) we get that, with probability at least 1 − (e−η−s + e−2(η+s)) over
the randomness of U , and the randomness in the process tomography (i.e. the
randomness of Sim-Haarη,δ),

∣
∣
∣ Pr[CU,Q(|x〉) = 1] − Pr[C ′Q(|x〉) = 1]

∣
∣
∣ ≤ 3δ + e− η

2 .

Finally, taking a union bound over all standard basis inputs |x〉, we have that,
with probability at least 1−2s·(e−η−s+e−2(η+s)) ≥ 1−2e−η over the randomness
of U , and the randomness of Sim-Haarη,δ), for all standard basis inputs |x〉,

∣
∣
∣ Pr[CU,Q(|x〉) = 1] − Pr[C ′Q(|x〉) = 1]

∣
∣
∣ ≤ 3δ + e− η

2 , (5)

as desired.
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6.3 An Adversary Breaking Any QDS Scheme Relative
to the Oracle

In this section, we prove Theorem 6. Concretely, we describe an adversary that,
relative to (U ,Q) (where (U ,Q) is defined at the start of Sect. 6), breaks any
QDS scheme for messages of length �(λ) for any � such that �(λ) ≥ c · log(λ) for
large enough λ. We show, for example, that one can take c = 2 (although our
analysis is not tight).

We describe our adversary in Sect. 6.3, and we provide the analysis in
Sect. 6.3. For a more informal overview see the technical overview (Sects. 2.1
and 2.2).

The Adversary. Let (SKGenU,Q,PKGenU,Q,SignU,Q, V erifyU,Q) be a QDS
scheme. We take the length of the secret key to be the security parameter λ.

A behaves as follows on input 1λ (technically A also receives polynomially
many copies of |pk〉, but it does not need them).

1. Let t = 40λ. A samples messages m1, . . . ,mt ← Mλ, and queries the chal-
lenger at these messages. The messages are sampled uniformly at random
(possibly with repetitions) subject to the condition that

⋃

i∈[t]{mi} �= M.
Let σ1, . . . , σt be the signatures returned by the challenger.

2. Define the circuit V erPKGen(·)(·, ·, ·) to be such that

V erPKGenU,Q(sk,m, σ) := V erifyU,Q(PKGen(sk),m, σ).

A obtains V erPKGen′(·)(·, ·, ·) ← Sim-HaarU,Q
λ, 1

300−e− λ
2
(V erPKGen), where

V erPKGen′(·)(·, ·, ·) is a circuit that makes queries to Q (but not to U).
Here, as earlier, the notation Sim-Haarη,δ refers to running algorithm Sim-Haar
(from Algorithm 1) on the fixed inputs η and δ. Going forward, for ease of
notation, we simply denote this circuit by V erPKGen′.

3. Define the circuit V erPKGenSign(·)(·, ·, ·) to be such that

V erPKGenSignU,Q(sk,m, sk′) := V erifyU,Q(PKGen(sk),m,Sign(sk′,m)).

A
obtains V erPKGenSign′(·)(·, ·, ·) ← Sim-HaarU,Q

λ, 1
300−e− λ

2
(V erPKGenSign).

Note that V erPKGenSign′(·)(·, ·, ·) is a circuit that makes queries to Q (but
not to U). Going forward, for ease of notation, we simply denote this circuit
by V erPKGenSign′.

4. At this point, A invokes Q. For simplicity, we will describe Q’s behaviour as
a probabilistic exponential time algorithm. However, formally, Q is a deter-
ministic function that, on input the instance of a fixed EXP-complete search
problem, returns the solution. So, formally,

– A also provides the randomness as input to Q (and this is fine since the
algorithm we describe only uses a polynomial length random string).
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– A first computes a reduction from the search problem P solved by the
algorithm to the fixed EXP-complete problem, and maps the original input
to the corresponding input according to the reduction.

From here on, we will not consider these two formalities.
A provides {mi, σi}i∈[t], V erPKGen′, V erPKGenSign′ as input to Q, which
returns a set candidates as in Algorithm 2 below.

Algorithm 2.

Input: {mi, σi}i∈[t], V erPKGen′, V erPKGenSign′.
1. Initialize Consistent = ∅. For sk ∈ {0, 1}λ:

• If Pr[V erPKGen′(sk, mi, σi) = 1] ≥ 9/10 for all i ∈ [t], update Consistent ←
Consistent ∪ {sk}18

.
2. Let S1 = Consistent, and candidates = ∅. For j ∈ [λ2]:

• Initialize stingyj = ∅. For sk ∈ Sj :
∗ Let friendssk = ∅.
∗ For each sk′ �= sk ∈ Sj , do the following:

· Count the number of m ∈ M such that
Pr[V erPKGenSign′(sk, m, sk′) = 1] > 1

10
. If this is at least

1
10

· |M|, update friendssk ← friendssk ∪ {sk′}.
∗ If |friendssk| ≤ 1

2
· |Sj |, then stingyj ← stingyj ∪ {sk}.

• Initialize goodSignerj = ∅. For sk ∈ Sj :
∗ Let acceptsk,j = ∅.
∗ For sk′ �= sk ∈ Sj , do the following:

· Count the number of m ∈ M such that
Pr[V erPKGenSign′(sk′, m, sk) = 1] ≥ 1

10
(note that the role of

sk and sk′ is flipped compared to the definition of friendssk). If this
is at least 1

10
· |M|, update acceptsk,j ← acceptsk,j ∪ {sk′}.

∗ If acceptsk,j = Sj \ {sk}, update

goodSignerj ← goodSignerj ∪ {sk} .

• Let Sj+1 = stingyj ∩ goodSignerj . If Sj+1 = ∅, halt and output candidates.
Otherwise, sample sk ← Sj+1. Update candidates ← candidates ∪ {sk}.

3. Output candidates.

16 Recall that V erPKGenSign′ makes queries to Q. Nonetheless, the problem of com-
puting whether Pr[V erPKGenSign′(sk′, mi, σi) = 1] ≥ 9

10
can still be cast as an

EXP problem: this is the problem of computing whether the magnitude squared of a
particular entry of a vector, obtained by performing (exponentially-sized) matrices-
vector multiplications, is ≥ 9

10
. The problem can be cast in this way because each

query to Q that the algorithm makes is a multiplication by an (exponential-sized)
unitary that corresponds to solving Q’s EXP-complete problem (on inputs of a cer-
tain polynomial size). Note that computing whether an entry of the resulting vector
is greater or equal to some rational number can be done deterministically.
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5. Let Mqueried =
⋃

i∈[t]{mi}. A samples sk ← candidates, m ← M \ Mqueried,
and runs
σ ← SignU,Q(sk,m). A outputs (m,σ).

The Analysis. Please see the full version of the paper for the analysis.

6.4 Why Our Attack Does Not Work for QDS with Quantum
Secret Key And/Or Signatures

One of the main questions left open by this work is whether there exists a black-
box construction from PRS of a QDS scheme with quantum public keys and
quantum secret keys and/or signatures. Our attack from the previous subsection
crucially only applies to QDS schemes with quantum public key but classical
secret key and signatures. The main issue in extending this attack is a bit subtle.
The issue is that in Lemma 4, which is based on the strong concentration of the
Haar measure, the closeness guarantee of Lemma 4 holds for all standard basis
inputs to the circuits. Crucially, it does not hold for all possible quantum state
inputs. This is because, the proof of Lemma4 relies on a union bound, over all
standard basis inputs, to obtain Eq. (5). This gives a useful bound because the
set of standard basis inputs is of size “only” 2n, where n is the input-size of the
circuit. However, it is unclear how to argue similarly when the union bound is
over quantum states, since there are infinitely many of them. One could hope
to define an ε-net for the set of quantum states (for some sufficiently small ε),
and apply a union bound over the states in the ε-net. Unfortunately, the number
of states in the ε-net is doubly exponential (even when ε is a constant)! This
is too large for a union bound to provide a non-trivial bound. So it seems that
the strong concentration of the Haar measure is not quite strong enough for the
current simulation technique to be useful in this setting.

Remark 2. As mentioned earlier, our oracle separation does extend to a
restricted kind of QDS scheme with quantum secret keys. Specifically, if the
QDS scheme is such that SKGen outputs a quantum state, but does not query
U , then (a slight variation on) our attack still works. The point is that if SKGen
does not query U at all, then the set of possible secret keys |sk〉 is “only” of
size 2poly(λ) (rather than being doubly exponential in an ε-net): these are all of
the post-measurement states that can result from running a poly-size quantum
circuit and making a partial measurement on a subset of the qubits. Thus, a
union bound is indeed still useful, and one can adjust the failure probability of
Sim-Haar appropriately (while maintaining polynomial runtime) based on the
size of the circuit for SKGen.
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Abstract. We initiate the study of the black-box complexity of private-
key functional encryption (FE). Of central importance in the private-key
setting is the inner-product functionality, which is currently only known
from assumptions that imply public-key encryption, such as Decisional
Diffie-Hellman or Learning-with-Errors. As our main result, we rule out
black-box constructions of private-key inner-product FE from random
oracles. This implies a black-box separation between private-key inner-
product FE from all symmetric-key primitives implied by random oracles
(e.g., symmetric-key encryption and collision-resistant hash functions).

Proving lower bounds for private-key functional encryption schemes
introduces challenges that were absent in prior works. In particular, the
combinatorial techniques developed by prior works for proving black-
box lower bounds are only useful in the public-key setting and predicate
encryption settings, which all fail for the private-key FE case. Our work
develops novel combinatorial techniques based on Fourier analysis to
overcome these barriers. We expect these techniques to be widely useful
in future research in this area.

Keywords: Black-box impossibility · Functional encryption

1 Introduction

1.1 Background and Main Question

A major goal in cryptography is to identify minimal assumptions sufficient
for realizing cryptographic primitives. Functional encryption (FE) [19,30,34] is
a vast generalization of standard encryption whereby secret key holders can
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decrypt a given ciphertext to various corresponding functions of its underlying
plaintext. In particular, secret keys are associated with functions, and a secret key
holder for a function f can learn f(x) from an encryption of x. Security notions
for FE capture the intuitive idea that secret keys for functions f1, . . . , fw should
reveal only what can already be learned from the outputs of these functions on
the underlying plaintexts.

For functional encryption, if the number of corruptions is a priori bounded
such that the size of the system parameters can depend on this bound, the min-
imal complexity required is well-understood. In particular, one can build public-
key (resp., private-key) bounded-collusion FE for any function family from the
minimal assumption that CPA-secure public-key (resp., private-key) encryption
schemes exist [11,25,33].

However, things are unclear in the unbounded collusion case, where an adver-
sary can obtain (a.k.a., corrupt) secret keys for many functions of her choosing.
It is known that functional encryption with unbounded collusions for arbitrary
polynomial-sized circuits implies Indistinguishability Obfuscation (iO) [10,15].
Therefore, it is unlikely that we can build unbounded functional encryptions
from plain CPA-secure encryption schemes. However, the question remains if,
for some less expressive families of functions, unbounded functional encryptions
can be built from minimal assumptions. Thus, much research has been devoted
to realizing and improving the efficiency of unbounded FE for specific restrictive
functionalities such as identity-based encryption [17], attribute-based encryp-
tion [34], predicate encryption [28], inner-product FE [2], quadratic FE [12], and
attribute-weighted sums [6].

Private Key vs Public Key: For most advanced encryption systems (e.g., key-
dependent message (KDM) security [16,20], homomorphic encryption [23]) build-
ing private-key schemes appears to be as much challenging as their public-key
counterparts, and sometimes even in a provable way [32]. For FE, the situation
seems to be different. For example, consider identity-based encryption (IBE) [17],
which corresponds to point functions defined as Fid(id′,m) = m if id = id′, and
Fid(id′,m) = ⊥, otherwise.1 IBE is so far only possible in a black-box way from
pairings/LWE, and is known to be black-box impossible from trapdoor permu-
tations (TDPs) [18] or generic groups [31,35,39]. On the other hand, FE for
point functions in the private-key setting can be trivially built from pseudo-
random functions (PRFs) [24] as follows. Let the master secret key msk be a
PRF key, and let k[id′] := PRF(msk, id′) be a secret key for a point id′. Define
Enc(msk, (id′,m)) as Encpriv(k[id′],m), where k[id′] = PRF(msk, id′), and where
Encpriv is the encryption function of a CPA-secure private-key encryption scheme.

What makes the above private-key construction possible are two points:
(a) that a master secret key can implicitly generate exponentially many pri-
vate keys and (b) each ciphertext can be decrypted by exactly one secret key,
the same identity. In particular, the above observation readily generalizes to

1 The standard security notion for IBE allows the ciphertext is allowed to leak id.
IBEs that also hide the identity are called anonymous.
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building private-key FE for any function family F under which for any plaintext
x, for all but a polynomial number (in the security parameter κ) of keys f ∈ F ,
f(x) = ⊥. For encrypting x, if f1, . . . , fpoly(κ) are the only functions for which
fi(x) �= ⊥ for i ∈ [poly(κ)], then encrypt fi(x) for every i under PRF(msk, fi),
the secret key for fi. The size of the final ciphertext remains polynomial because
at most a polynomial number of fi(x) values are encrypted.

Thus, unlike in the public-key setting, for which we have lower bounds on
FE for certain function families (e.g., IBE) [18,29] and a better understand-
ing of the hierarchy between different functionalities (e.g., separations between
IBE and more expressive functionalities such as attribute-based and predicate
encryption [26]), our understanding of FE in the private-key setting is lacking. In
particular, the lower bounds in the public key setting fail in the private setting,
due to the positive result above and due to the more technical reason that in the
private-key setting, encryptions are made relative to master secret keys, capable
of generating exponentially many private keys. But in the public-key setting,
encryptions are made relative to master public keys, which are bound to encode
at most polynomially many public keys. We will elaborate more on these later.

Motivated by the above discussion, a seemingly basic characterization of
what FE families can be built from OWFs in the private-key setting is missing.
Therefore, the research direction our work aims to make progress on is:

For what function families F is private-key FE for F
(im)possible from one-way functions?

In this work, we take the first step in this research direction. In particular, we
consider the inner product functionality [2], where for a modulus q and dimen-
sion n, a function from the family is associated with y ∈ Z

n
q and is defined

as fy(x) = 〈x,y〉 for all x ∈ Z
n
q . Inner-product is a simple and fundamen-

tal operation in both theory and practice, and there is a large body of work
on this functionality and variants/extensions, e.g. [1–5,7–9,9,12,14,21,22]. This
functionality is especially attractive in the private-key setting because it can be
function-hiding [14], namely, the key for fy can hide y (to the extent possible
given the inner products).However, the only known constructions of private-key
IPFE, even without function-hiding, are based on algebraic assumptions (e.g.,
DDH/LWE), starting with the work of [2].2

While most positive results focus on IPFE for restricted inner-products (i.e.,
where there is a polynomial number of possible inner-products recovered by
decryption), we focus on the unrestricted setting. In particular, such a scheme is
known from class groups [21]. The unrestricted setting is arguably more natural,
as the restricted setting came about as a result of limitations of the proposed
constructions, not any external desire for achieving it. This brings us to the main
question of this work:

Is private-key inner-product FE black-box possible from one-way functions?
2 Note [2] construct public-key schemes, which trivially imply private-key ones. Later

works starting with [14] explicitly address the private-key setting.
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We answer this question negatively in this work. The challenge we overcome
in answering the above question is that all existing ‘combinatorial’ techniques
employed in all the black-box impossibility results in the public-key setting (e.g.,
for IBE [18,29] and ABE [26]) completely fail in the private-key setting (see
Sects. 1.3 and 2 for further discussions.) Thus, our work departs significantly
from prior works and develops new combinatorial and other proof techniques to
answer the above question.

1.2 Our Results

We prove that building private-key FE for inner-product functions (IPFE) is
black-box impossible from OWFs, or more generally from any assumptions that
hold relative to a random oracle (RO)—e.g., collision-resistant hash functions
(CRHFs), KDM-secure private-key encryption. We stress that our result does
not require function-hiding for IPFE and holds relative to seemingly minimal
formulations of its security.

Technically, we prove our result by showing that private-key inner-product
FE (IPFE) cannot be constructed in the information-theoretic random oracle
model [27]. Central to our impossibility proofs is a combinatorial lemma such
that if proved for a function family, then we will have a black-box impossibility
for that function family from ROs. We show that the combinatorial lemma holds
for the inner-product functionality using techniques from Fourier analysis and
covering problems in linear subspaces. The characterization of this combinatorial
lemma and the proof of the lemma for inner products are the main novelties of
our work, and will hopefully pave the way for characterizing FE functionalities
provably impossible from ROs.

The main motivation behind the above question is to initiate the study of the
black-box complexity of private-key functional encryption. Moreover, our work
will facilitate future efforts to understand the black-box complexity of variants of
IPFE. For example, function-hiding IPFE is so far only known from pairings [14],
and we have limited impossibility results for it from lattice assumptions [36,37].
However, we do not have any impossibility results for it in the generic-group
model (GGM) without pairings. Some of the challenges that appear in ruling out
function-hiding IPFE in the GGM also emerge in our setting, so we are hopeful
that our work will also be useful for proving such an impossibility result.

1.3 Novelty, Comparison to Prior Work and Open Problems

As mentioned earlier, there are impossibility results for predicate encryption (PE)
schemes in the public-key setting [18,26,29]. But all these results crucially make
use of the public-key setting, and fail in the private-key setting (c.f., the positive
construction of private-key IBE from OWFs). Second, our results concern FE
schemes that are of fine-grained access (i.e., that each decryption reveals some
partial information about the plaintext), whereas previous impossibility results
concern only PE schemes, which are of the all-or-nothing nature.3 Ruling out
3 That is, decryption reveals either the entire plaintext or nothing about it.
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fine-grained FE schemes present additional challenges, as explained below. For
example, for all we know IPFE might be possible from CPA-secure encryption
schemes because IPFE is not know to imply any PE schemes that are ruled
out from CPA-secure schemes. For instance, we know how to build IPFE from
black-box DDH [2], but we have black-box impossibility results for IBE from
DDH [31,35,39]. This suggests that building IPFE might be ‘easier’ than IBE,
or than other related PE primitives.

Private-Key vs Public-Key. Let us illustrate why at a technical level the PE
impossibility results of [18,26,29] fail in the private-key setting. In the public-
key version for IBE, encryptions are made under mpk, which can encode at most
polynomially-many base public keys (call this Property (*) below), while in
the private-key version, encryptions are made under msk, which can potentially
encode exponentially-many secret keys. We mentioned this point before. The
above public-key impossibility results crucially rely on (*), implying that at
most polynomially-many public keys pk1, . . . , pkt can be embedded into mpk.
Specifically, if one corrupts q � t identities and learns their secret keys, one
has learned enough trapdoors associated with pki to be able to decrypt for
an uncorrupted identity. But this intuition fails in the secret key setting as
exemplified earlier.

The results of [26] shows that threshold predicate encryption is black-box
impossible from IBE. This work gives an impossibility from IBE, a primitive for
which the master secret key can generate exponentially-many trapdoors. But the
main difference between [26] and ours is that in [26], too, they crucially rely on
the public-key setting, used to argue that a master public key for the threshold
FE can encode at most polynomially-many public-keys.

In light of the above, it is an open problem if, and to what extent, the PE
impossibility results of [18,26,29] generalize to the secret-key setting. This ten-
sion between private-key and public-key concerns both the predicate encryption
and our impossibilities for FE.

Functional Encryption vs Predicate Encryption. As mentioned earlier, the key
difference between FE and PE is the partial decryption vs. full decryption
natures of these primitives. Consequently, the security game of FE puts more
restrictions on the set of keys that the adversary is allowed to corrupt during a
successful attack. Hence, the ‘combinatorial’ techniques employed in the black-
box impossibility result must be proven in a more stringent setting obeying such
restrictions. We explain the difference between our combinatorial lemma and
those of prior works in detail in Sect. 2.2.

Open Problems. The main problem left open by our work is to prove black-
box impossibilities in the private-key setting for other FE functionalities. One
concrete functionality that we were not able to handle is fuzzy FE [34]. Here
plaintext and secret key vectors are all in Z

n
2 and F (x,v) = 1 if the Hamming

distance between v and x is at least ηn (for some fixed η < 1), and F (x,v) =
0, otherwise. Note that each decryption reveals some information about the
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plaintext x (because the decryption either outputs zero or one). Just like for
our impossibility result, coming up with appropriate combinatorial lemmas and
proving them will be the main challenges here.

It would also be interesting to see if and how the black-box impossibility
results of [26] for PE extend to the private-key setting. In general, understand-
ing the black-box complexity of PE primitives in the private-key setting is a
worthwhile goal.

Finally, as we mentioned, it is an intriguing open problem if we can extend
our results to rule out the existence of function-hiding private-key IPFE in the
GGM without pairings. Similarly, it would be interesting to extend our results
to rule out black-box constructions of restricted IPFE from OWFs.

2 Technical Overview

A private-key IPFE relative to a random oracle O for vectors in Z
n
q is given by

EO := (KGenO,EncO,DecO), satisfying the following properties.4 Let w = w(κ)
be the length of a master-secret key, where κ is the security parameter. The
algorithm KGenO(msk,v) outputs a vector secret key sk[v]. One can use msk to
encrypt a plaintext vector x as C ← EncO(msk,x). Finally, decrypting C using
sk[v] as DecO(sk[v], C) returns 〈v,x〉. ——— We require the following weak
notion of indistinguishability security (See Definition 2 for more details.) An
adversary submits (non-adaptively, at once) t vectors v1, . . . ,vt, where t = t(κ)
can be an arbitrarily-large polynomial, as well as a challenge secret-key vector
v∗. It is required that v∗ /∈ Span (v1, . . . ,vt), where Span () denotes the linear
span of the corresponding vectors. In response, the adversary receives the secret
keys {sk[vi]}i∈[t] for these t vectors, as well as t ciphertexts C1, . . . , Ct of t
random plaintexts x1, . . . ,xt sampled by the challenger, and m1, . . . , mt, formed
as follows:

– If the challenge bit b = 0, mi = 〈v∗,xi〉 for i ∈ [t].
– If b = 1, mi ← Zq for all i ∈ [t].

The adversary should be able to guess the value of b only with a probability
negligibly greater than 1/2. Note that the adversary is not given the underlying
plaintexts x1, . . . ,xt.

Breaking EO relative to ROs. Let EO := (KGenO,EncO,DecO) be a candidate
IPFE. Here we describe an adversary BrkO that makes a polynomial number of
queries to O, and then analyze its advantage. The attack is based on a polynomial
t(κ), instantiated later.

The adversary BrkO chooses the challenge secret key vector v∗ uniformly
at random from Z

n
q , chooses a random (n − 1)-dimensional subspace S sub-

ject to v∗ /∈ S and chooses v1, . . . ,vt uniformly at random from S. Let
4 There is also an additional SetupO algorithm, that generates a master secret key
msk. But we can remove this algorithm because an msk can be a uniformly random
string from an appropriate space {0, 1}w, for some w = w(κ).
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({sk[vi]}i∈[t], {Ci}i∈[t], {mi}i∈[t]) be the variables returned to BrkO, as per the
description of the game above. Also, suppose xi is the underlying plaintext vec-
tor for Ci. The adversary should determine if mi’s are totally random values, or
are the inner products of xi with v∗.

Simple Case: Enc makes no O queries. To lay out our main techniques and to
point out the challenges, let us make an overly simplifying assumption that Enc
makes no queries. This is not a reasonable assumption, but we start with this
assumption to describe our main techniques—later, we show how to remove this
assumption using our combinatorial lemmas. Equipped with this assumption, we
show how to design Brk to break the IPFE scheme by making a polynomial num-
ber of queries, and by making some other computation that takes exponential
time but involves no queries. This will be sufficient for a black-box impossibility
proof because ROs are OWFs against any adversary that can run in exponential
time but which can make at most a polynomial number of queries. In particular,
it shows that the adversary Brk, which breaks the IPFE scheme, cannot be used
as a black-box to break the one-wayness of the oracle O.

Let Sg be the set of the query-answer (Q-A) pairs made to generate the chal-
lenge secret key sk[v∗] ← KGen(msk,v∗) and ρ the bit-length of the description
of such a set for any vector secret key. Moreover, let μ be the length of a vector
secret key. The adversary BrkO attacks the scheme as follows.

(i) If there exists a secret key sk ∈ {0, 1}μ and Sg ∈ {0, 1}ρ such that the
following condition holds, return 0; otherwise, return 1:

(a) DecO′
(sk, Ch) = mh for all h ∈ [t], where O′ is defined as follows. If the

query appears in the set Sg, respond to it accordingly, else, respond with
a random value.

Note that Brk makes no queries to the oracle O at all—simulating the query
responses based on Sg and random values, without invoking O itself. (The fact
that Brk makes no queries is because of the above two simplifying assumptions.)
Let us analyze the advantage of Brk.

Challenge Bit b = 0: Suppose E is (1 − α)-correct, meaning that for any oracle
O, and for any secret-key vector v, the following holds. If we generate msk, sk[v]
(a secret key for v) and C (a ciphertext for a random plaintext vector x) all
at random, the probability that 〈v,x〉 = DecO(sk[v], C) is at least 1 − α. (See
Definition 1.) We show when b = 0, Brk outputs 0 with probability at least
(1 − α). To see this, we argue that Condition (i)a will hold with probability at
least (1−α) when sk is set to sk[v∗]. The non-triviality of this lies in the fact that
decryption is performed relative to O′, and not relative to O itself. But since
Enc makes no queries at all, and since we try all possible Sg—the set of Q-A
pairs made to build sk[v∗] ← KGenO(msk; r)—had we run everything relative to
O′ instead (under the same randomness), we would have gotten the same sk[v∗]
and C, and hence DecO′

(sk, Ci) should output mi with the same probability.

Challenge Bit b = 1: We argue that in this case BrkO outputs 1 with all but
negligible probability. Fix a secret key sk and a set Sg. Since b = 1, all mi’s
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are chosen at random, and so the probability that DecO′
(sk, Ch) = mh for all

h ∈ [t] is at most 1
qt . By the union bound over all sk, the probability that Brk

mistakenly outputs 0 is at most 2μ+ρ

qt . By choosing t large enough, this probability
will become negligible.

EncO making O queries. We now show how to lift the assumption, that EncO

makes no O queries. Let us re-run the previous description of Brk (Step (i)a)
to see where it fails when Enc makes O queries. Our analysis for b = 0 fails:
because a query made during DecO′

(sk[v∗], Ch) might be one that was asked
before when generating Ch ← EncO(msk,xh), and if O′ replies to it randomly,
we will have an inconsistency (i.e., we cannot argue the simulated decryption
DecO′

(sk[v∗], Ch) outputs mh when b = 0). Letting Qh be the set Q-A pairs
made during the generation of Ch ← EncO(msk,xi), we should somehow learn
all those Q-A pairs in Qh that also appear during DecO(sk[v∗], Ch). Fix the index
h below. Consider the following strategy for decrypting the hth ciphertext.

1. For all i ∈ [t], run DecO(sk[vi], Ch), and record all Q-A pairs in the set Sg.
2. Perform Step (i) from before.

The intuition is that if t is large enough and if a query is to appear dur-
ing DecO(sk[v∗], Ch), then it should have also appeared during one of the
DecO(sk[vi], Ch) executions in Step 1, except with small probability. However,
proving this leads to the following challenge: the vector v∗ is sampled from the
entire space Z

n
q , while vi vectors are sampled from an (n − 1)-dimensional sub-

space, leading to sk[v∗] having a different distribution from sk[vi]. The above
statement would have been easy to prove if all of vi’s were picked from the entire
space Z

n
q , but that is not the case here.

The above challenge is about a covering problem. Suppose � queries are made
during C ← EncO(msk,x). (We replace Ch with C for better readability.) Let
us number these queries as 1, . . . , �. Consider a function F : Zn

q → 2[�], where
j ∈ F (y) if Query j appears during the decryption of DecO(sk[y], C), where
sk[y] ← KGenO(msk,y). Here 2[�] denotes the set of subsets of [�]. We would like
to prove that with high probability F (v∗) ⊆ ∪iF (vi), where v∗ is the challenge
secret key vector, and vi’s are the vectors from the (n−1)-dimensional subspace,
whose secret keys are given to Brk.

We abstract out the above problem as a combinatorial lemma.

Lemma 1 (Combinatorial Lemma). Let n = n(κ) � 3 be such that 1
qn is

negligible. Let � = �(κ) be an arbitrary polynomial. Let F : Zn
q → 2[�] be an

arbitrary function, assigning a subset of [�] to every vector. Then, for all large
enough polynomial values of t = t(κ), with overwhelming probability

F (y∗) ⊆
t⋃

i=1

F (yi), (1)

where y∗ ← Z
n
q , and y1, . . . , yt are sampled as follow: sample an (n − 1)-

dimensional subspace V ⊆ Z
n
q uniformly at random conditioned on y∗ /∈ V and

then sample y1, . . . , yt uniformly at random from V .
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2.1 Proof of the Combinatorial Lemma

In this overview we will focus on the case q = 2. In the main part of the paper,
we will prove the same result for any prime q with slightly looser bounds.

A simpler problem. Before describing how to prove this result, we focus on a
related but simpler problem: We show that there is no polynomial � that satisfies
the above condition is violated in a worst-case sense. In other words, there exists
no polynomial � and F : Zn

2 → 2[�] such that for every y∗ and every (n − 1)-
dimensional subspace V with y∗ /∈ V we have

F (y∗) �⊆
⋃

y∈V

F (y). (2)

We will refer in the following to the set [�] as colors and to F as a coloring
of the vectors in Z

n
q . A simple coloring strategy that satisfies Condition (2) is

to set � = 2n − 1 and assign each non-zero vector one individual color. Another
simple strategy is to also use � = 2n − 1 and pick for every (n − 1)-dimensional
subspace one new individual color and add it to the colorings of each vector not
contained in the subspace.

We show that using � � 2n − 1 colors is necessary to satisfy Condition (2) by
a double-counting argument on the vectors y∗ and (n−1)-dimensional subspaces
V with y∗ /∈ V .

For a vector y∗ and an (n − 1)-dimensional subspace V we say the color cl is
useful for (y∗, V ) if y∗ /∈ V , cl ∈ F (y∗) and cl /∈ ⋃

y∈V F (y). Condition (2) says
for every combination of y∗ and V we need at least one useful color.

In Z
n
2 , each (n − 1)-dimensional subspace is uniquely defined by a non-zero

vector; i.e., the subspace that is orthogonal to the underlying non-zero vector.
Thus, we have 2n − 1 different (n − 1)-dimensional subspaces. Each subpsace V
has 2n−1 different vectors y∗ not contained in V . Thus, the number of triples
(V,y∗, cl) where cl is useful for (y∗, V ) is at least (2n − 1)2n−1. We now use
another way of counting to argue the number of such triples is at most �2n−1,
implying � � 2n − 1.

Fix a color cl. We argue that the color cl is useful for at most 2n−1 different
combinations (y∗, V ), implying the number of such triples as above is at most
�2n−1. Let S be the set of all the (n − 1)-dimensional subspaces V such that
there exists at least one y� with cl being useful for (y∗, V ). Then, no vector in
U :=

⋃
V ∈S V has the color cl and, in the worst case, every vector in Z

n
2 \ U has

the color cl. Each of the subspaces V ∈ S can be described by one linear equation,
i.e. for each V ∈ S we can pick a vector xi such that V = {v | 〈xi,v〉 = 0},
because V is (n − 1)-dimensional. When we have t := |S| subspaces, we get at
least d � �log2(t) linear independent equations. Let x1, . . . ,xd be the vectors
representing these linear independent equations. In order for a vector y∗ to be
in Z

n
2 \ U , it is necessary that

〈y∗,x1〉 �= 0 ∧ · · · ∧ 〈y∗,xd〉 �= 0.
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Since we are working over Z2, this is equivalent to

〈y∗,x1〉 = 1 ∧ · · · ∧ 〈y∗,xd〉 = 1.

This version shows us that Z
n
2 \ U is contained in an (n − d)-dimensional affine

subspace of Zn
2 and thus there can be at most 2n−d vectors in Z

n
2 \ U . Thus the

number of combinations for which a color can be useful is at most t · 2n−d �
2d · 2n−d = 2n. Since we need for each of the combination at least one useful
color, we need at least

� � (2n − 1)2n−1

2n
=

(2n − 1)
2

colors.

In the main body we enhance this argument and observe that not every
combination of x1, . . . ,xt is allowed. Concretely, we show that they must be
a sum-free set. This can be used to improve the bound on the dimension to
d � �log2(t) + 1, which then implies � � 2n − 1.

We present a formal proof for the case Z2 in the full version. A formal proof
for Zq is given in Sect. 4.

The Combinatorial Lemma over Z2. Next, we sketch how to generalize the worst-
case arguments to the average case, as required by Lemma 1. In this setting we
are restricted to use � = poly(κ) different colors and we have to argue that we will
hit with noticeable probability a vector y∗ and an (n − 1)-dimensional subspace
V /� y∗ such that every color that appears in y∗ also appears in many vectors
in V . The latter condition will ensure that if we sample y1, . . . ,yt from V (for a
large enough polynomial t), they will satisfy Condition (1) with high probability.

We assume here that every color in F (y∗) is used often in the whole space
Z2 (concretely, in at least 2n−1/� vectors). With noticeable probability (here: at
least 1/2), this is satisfied when picking y∗ uniformly at random.

We then prove that a color that appears that often in the whole space must
also appear often (concretely in 2n−3/� vectors) in all but negligible many (n−1)-
dimensional subspaces. The argument for this is a generalization of the simpler
problem we described above and uses the Fourier transform for hypercubes.

We present a formal proof for the Combinatorial Lemma over Z2 in the full
version.

On Generalizing to any Prime Modulus q. Generalizing our results to arbitrary
prime moduli q is non-trivial. This can be best seen when focusing on the simpler
problem we described in the beginning. Recall that there we needed to count the
number of vectors that are non-orthogonal to every vector in a fixed set of vectors.
We used there that

〈y∗,x1〉 �= 0 ∧ · · · ∧ 〈y∗,xd〉 �= 0

is equivalent to
〈y∗,x1〉 = 1 ∧ · · · ∧ 〈y∗,xd〉 = 1
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and thus the solutions are an (n−d)-dimensional subspace. Over Zq, it seems that
this problem does not have a nice algebraic structure. Of course, we could use

〈y∗,x1〉 ∈ Z
∗
q ∧ · · · ∧ 〈y∗,xd〉 ∈ Z

∗
q (3)

instead. However, this makes the resulting bound worse by a factor of (q − 1)d

and the result is no longer useful. The reason the (almost) tight bound from
before becomes here very loose is that many of the vectors satisfying Eq. (3)
will in fact be orthogonal to one of the linear combinations of x1, . . . ,xd.5 We
prove results for Zq that are similar to Z2, but use different techniques. The
main technique is to use the Cauchy-Schwartz inequality to get a lower bound
on the “overlap” of many (n−1)-dimensional subspaces, which then again allows
us to argue that if many vectors are colored in the whole subspace Z

n
q , in almost

all (n − 1)-dimensional subspaces many vectors are colored.
We present a formal proof for the Combinatorial Lemma over Zq in Sect. 4.

2.2 Comparison with Prior Combinatorial Lemmas

Katz and Yerukhimovich [29] generalize the results of Boneh et al. [18] to rule out
a broader class of PE primitives from trapdoor permutations. Here is a simplified
version of the combinatorial lemma of [29, Lemma 1].

If there exists predicates f1, . . . , fq together with attributes A1, . . . , Aq such
that for all i: fi(Ai) = 1 but fi+1(Ai) = . . . = fq(Ai) = 0, then they show
an impossibility. The idea is to corrupt all they keys for (i + 1, . . . , q) and use
the info to decrypt for Ai. And [29] shows that certain predicates (e.g., IBE,
broadcast encryption) satisfy this property, using the Pigeonhole principle. The
above property can be established also for zero inner-product encryption (where
the predicate is satisfied iff the inner product is zero). Let fi = (idi, 1) and
let Ai = (−1, idi), allowing one to rule out public-key inner-product predicate
encryption from PKE.

However, for FE, the combinatorial lemma becomes much more complicated,
both in terms of its description and also establishing it for a functionality. The
main reason is: under PE, only certain decryptions reveal information about
the plaintext (an all-or-nothing property), whereas under FE, all decryptions
do. For instance, extending the above combinatorics, established for zero inner-
product encryption as above, to IPFE faces the following challenge: the vector
Ai will be the whole plaintext vector, and we must make sure for all i, the vector
fi is not in the span of (fi+1, . . . , fq). This will limit how large q can become,
while being able to make q arbitrarily large was crucial in the arguments of [29].
Thus, we need to come up with a more specialized combinatorial lemma. And we
cannot establish the resulting combinatorial lemma using simple combinatorial
techniques anymore (e.g., the pigeonhole principle as in [18,29]) and need more
advanced tools.
5 This also happens with q = 2 for sums of x1, . . . ,xd with an even number of sum-

mands. However, this costs us there only a factor of 2 and we manage to get ride of
this factor by using that x1, . . . ,xt has to be sum-free.
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3 Preliminaries

Notation. We use κ to denote the security parameter. We use [n] := {1, . . . , n}
for n ∈ N and 2S to denote the power set of S.

Lemma 2. Let X1, . . . , Xt+1 be independent, Bernoulli random variables, where
Pr[Xi = 1] = p, for all i � t + 1. Then

Pr[X1 = 0 ∧ · · · ∧ Xt = 0 ∧ Xt+1 = 1] � 1
t

.

We give the definitions for private-key IPFE schemes relative to an oracle. As we
mentioned, we consider unrestricted IPFE where there is no restriction on the
number of possible inner-products recovered by decryption. We do not explicitly
mention this point in the remainder of the paper.

A private-key IPFE scheme EO = (KGenO,EncO,DecO) is given by three
algorithms. We assume without loss of generality that a master secret key is
chosen uniformly at random from {0, 1}w, for some w := w(κ). Moreover, we
assume Zq is the underlying field.

– KGenO(msk,v): On input a master secret key msk and a vector v, the key
generation algorithm outputs a secret key sk[v].

– EncO(msk,x): On input a master secret key msk and a vector x, the encryp-
tion algorithm outputs a ciphertext C.

– DecO(sk[v], C): On input a secret key sk[v] and a ciphertext C, the decryption
algorithm outputs y ∈ Zq.

We require the following properties.

Definition 1 (IPFE Correctness). Fix an oracle O. We say an oracle-aided
IPFE (KGenO,EncO,DecO) is ν-correct for dimension n relative to O, if for
any key vector v ∈ Z

n
q , the following experiment outputs one with probability at

least ν. Sample msk uniformly at random, sk[v] ← KGenO(msk,v), x ← Z
n
q and

C ← EncO(msk,x). The experiment outputs one if 〈v,x〉 = DecO(sk[v], C).

Next, we give a definition for selective-security for a private-key IPFE below.

Definition 2 (IPFE Security). We work with a selective-security definition
for IPFE. Fix a dimension n. The adversary designates a challenge secret-key
vector v∗ (sent to the challenger) and the adversary can make two types of
queries, as follows, but all the adversary’s queries should be made non-adaptively
at once. The challenger starts by sampling a master secret key msk and a chal-
lenge bit b ← {0, 1} uniformly at random.

– Key Queries: The adversary submits a vector v and receives a secret key for
v ← KGen(msk,v).

– Inner-Product Queries: Upon calling this oracle, the challenger samples w ←
Z

n
q and returns (Enc(msk,w),m∗) to the adversary, where m∗ = 〈w,v∗〉 if

b = 0, and m∗ is chosen freshly for each query if b = 1.
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We say an adversary A is admissible if A makes all its queries non-adaptively
at once, and if v∗ /∈ Span (v1, . . . ,vt), where v1, . . . ,vt are all the adversary’s
key queries. We say a private-key IPFE is selectively secure if any admissible
PPT adversary A has at most 1/2 + negl(κ) advantage in guessing the value of
b.

Our IPFE definition is strictly weaker than standard ones [2], making our
impossibility result stronger. Specifically, ours requires security only for random
plaintext vectors, while the standard ones concern all vectors. Our definition is
implied by the standard definitions via a simple hybrid argument. To see why
it is strictly weaker, change a given scheme E = (KGen,Enc,Dec) meeting the
standard definitions into a scheme E ′ = (KGen′,Enc′,Dec′) so that Enc′(msk, e1)
outputs Enc(msk, e1)‖e1, where e1 is the first unit vector, and Dec′ is defined
accordingly. The rest of the scheme remains the same. The new scheme satisfies
our notion but not the standard ones. Intuitively, it satisfies ours because we
only need security with respect to random plaintext vectors.

4 The Combinatorial Problem over Zq

Lemma 3. Fix n = n(κ) and suppose q−n ∈ negl(κ) and n � 3. Let � = poly(κ),
q be a prime number and F : Zn

q → 2[�]. Fix a constant c. Then, there exists a
polynomial t = t(κ) such that with probability at least 1 − κ−c

F (y∗) ⊆
t⋃

i=1

F (yi),

where y∗ ← Z
n
q , and we sample a random (n−1)-dimensional subspace V subject

to y∗ /∈ V and we sample y1, . . . ,yt all uniformly at random from V .

The following theorem is the key tool in proving the above Lemma.

Theorem 1. For any subset S ⊆ Z
n
q with |S| = p ·qn, there exists at most 4q/p2

(n − 1)-dimensional subspaces h of Zn
q with

|S ∩ h| � |S|
2q

=
p

2
qn−1.

Proof (of Lemma 3 using Theorem 1). Fix a mapping F : Zn
q → 2[�]. We will

refer to the set [�] as the set of colors and say that F colors each vector of Zn
q .

For a color cl, let F−1(cl) = {y | cl ∈ F (y)}. We say that a color cl is
p-heavy if |F−1(cl)| � p · qn. For V ⊆ Z

n
q , we say that cl is p-heavy in V if

|F−1(cl) ∩ V | � p · |V |. We use the heaviness threshold

p =
1

2�κc
.

For uniformly random y∗ the probability that F (y∗) contains a non-p-heavy
color is less than

� · 1
2�κc

=
1
2κc

.
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The rest of the proof assumes all colors in F (y∗) are p-heavy.
Now, for a uniformly random subspace V ∗ conditioned on y∗ /∈ V ∗ we can

claim that, with overwhelming probability, all colors cl ∈ F (y∗) are also (p/2)-
heavy in V ∗. This is because applying Theorem 1 with S := F−1(cl) shows that
if cl is p-heavy in the entire space, there exist at most 4q

p2 (n − 1)-dim subspaces
where cl is not p/2-heavy in those subspaces. Here we are using the fact that an
(n−1)-dim subspace has qn−1 elements. Applying the union bound for all colors
in F (y∗) shows that the number of (n − 1)-dimensional subspaces S where at
least one color of F (y∗) is not (p/2)-heavy in S (“bad subspaces”) is at most

|F (y∗)|4q
p2

� 4�q
p2

= 16�3qκ2c.

The number of (n − 1)-dimensional subspaces containing y∗ is qn−1−1
q−1 , because

each such subspace can be identified with an n − 2-dimensional subspace in the
n − 1-dimensional quotient space (Zn

q )/〈y∗〉. Thus, the total number of (n − 1)-
dimensional subspaces not containing y∗ is qn−qn−1

q−1 . Hence, by sampling one of
these subspaces uniformly at random, we hit a bad subspace with probability

16�3qκ2c(q − 1)
qn − qn−1

=
16�3κ2c(q − 1)
qn−1 − qn−2

,

which is negligible in κ since n � 3 and q−n is negligible.
We now analyze the probability of F (y∗) ⊆ ⋃t

i=1 F (yi) when setting t =
�2κ/p. In the following, the probability is taken over the choice of y∗,y1, . . . ,yt.

Pr[∀cl ∈ F (y∗) ∃i ∈ [t] : cl ∈ F (yi)] = 1 − Pr[∃cl ∈ F (y∗)∀i ∈ [t] : cl /∈ F (yi)]
� 1 − � max

cl∈F (y∗)
Pr[∀i ∈ [t] : cl /∈ F (yi)]

� 1 − �
(
1 − p

2

)t

� 1 − �e−t· p
2 = 1 − �e−κ.

The last inequality follows from 1 − p
2 � e− p

2 (the Bernoulli inequality) and
taking both sides to the t-th power. ��
Proof (of Theorem 1). Bennett proved an existence-only version of Theorem 1
[13, Lemma 4.1]. The following proof follows Bennett’s ideas.

Let H be the set of (n − 1)-dimensional subspaces h of Zn
q with

|S ∩ h| � |S|
2q

.

Fix a bijection φ : [qn] → Z
n
q and define the vectors u,v ∈ R

(qn) via

ui =

{
1 if φ(i) /∈ S

0 otherwise
and vi = |{h ∈ H | φ(i) ∈ h}|.

For a set Y ⊆ Z
n
q we use χY to denote the characteristic function of Y .
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We get

〈u,u〉 =
∑

x/∈S

12 = qn − |S| = qn(1 − p)

〈v,v〉 =
∑

x∈Zn
q

(
∑

h∈H

χh(x)

)2

=
∑

h1,h2∈H

∑

x∈Zn
q

χh1(x)χh2(x) � qn−1|H| + qn−2|H|2.

In the last inequality we use that
∑

x∈Zn
q

χh(x)χh(x) = qn−1 and for h1 �= h2

we have
∑

x∈Zn
q

χh1(x)χh2(x) � qn−2.

Each h ∈ H has by definition |S ∩ h| � |S|
2q and thus |(Zn

q \ S) ∩ h| =

qn−1 − |S ∩ h| � qn−1 − |S|
2q which gives us

〈u,v〉 =
∑

x/∈S,h∈H

χh(x) � |H|
(

qn−1 − |S|
2q

)
= |H|qn−1

(
1 − p

2

)
.

Applying the Cauchy-Schwartz inequality to the vectors u and v gives us
〈u,v〉2 � 〈u,u〉·〈v,v〉. Plugging in the bounds from above leads to the following
inequality

|H|2q2n−2
(
1 − p

2

)2

� qn(1 − p)(qn−1|H| + qn−2|H|2)

⇐⇒ (1 − p)

qn−2
(
1 − p

2

)2 � |H|2
(qn−1|H| + qn−2|H|2) =

|H|
qn−2(q + |H|)

⇐⇒ (1 − p)
(
1 − p

2

)2 � |H|
(q + |H|)

⇐⇒ 1 − (1 − p)
(
1 − p

2

)2 � 1 − |H|
(q + |H|) =

q

(q + |H|) � q

|H|

⇐⇒ |H| � q

1 − (1−p)

(1− p
2 )

2

=
q
(
1 − p

2

)2
(
1 − p

2

)2 − (1 − p)
=

4q
(
1 − p

2

)2

p2

⇐⇒ |H| � 4q
p2

.

��

5 Separating IPFE from OWFs

The definition below gives a procedure that allows one to sample a random vector
v∗ together with t random vectors from a random (n − 1)-dimensional subspace
of Zn

q which does not span v∗.
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Definition 3 (Sampling Spanning Vectors). The procedure (v1, . . . ,vt,
v∗) ← SubSpcSamp(Zn

q , t) works as follows. Sample a random vector v∗ ← Z
n
q ,

and sample a random (n − 1)-dimensional subspace S of Zn
q subject to v∗ /∈ S.

Sample v1, . . . ,vt uniformly at random from S. The sampling procedure of
SubSpcSamp can be performed in poly(n, t, log q) time.

Description of the Attack. Let EO := (KGenO,EncO,DecO) be a candidate
IPFE construction for vectors in Z

n
q . Assume without loss of generality that

EO is (1 − 1
2κ )-correct.6 Our goal is to remove O queries from the decryption

algorithm DecO, while impacting correctness and security only minimally. In
order to do this, if one knows the set Qs of all the Q-A pairs asked during the
generation of a secret key sk[v] and the set Qe of all the Q-A pairs formed to
generate a ciphertext C, then one can remove O queries from Dec(sk[v], C) as
follows: if an issued query appears in Qs ∪Qe, reply to it accordingly; else, reply
with a random response, without calling O. In fact, this argument still holds if
we just know the subset Qe ∩ Qd, where Qd is the set of Q-A pairs that appear
during Dec(sk[v], C).

The adversary will then decrypt all the ciphertexts obtained via the inner-
product queries with all secret keys it received and store all Q-A pairs that
appeared during this process in a set L. The combinatorial Lemma from the
previous section guarantees that with high probability Qe ∩ Qd ⊆ L, if the
number of keys and ciphertexts is large enough.

Finally, the adversary makes a brute-force search over sk[v∗] and the set Qs

and check each candidate by decrypting all challenge ciphertexts without asking
any queries.

The Attack in Detail.
Attack 2 Let EO := (Setup,KGenO,EncO,DecO) be an IPFE. We give a poly-
nomial query adversary BrkO which breaks the security of EO.

Parameters. The adversary’s algorithm is based on integers t and η, instanti-
ated later. Also, let μ := μ(κ, n) be the bit size of a secret key, generated by
KGenO(msk, ∗) and ρ := ρ(κ, n) the bit size of a the Q-A pairs of all queries
made during secret key generation.7

Phase 1: Corrupting Keys and Setting Up the Challenge.

1. Sample (v1, . . . ,vt,v∗) ← SubSpcSamp(Zn
q , t). The vector v∗ will be the chal-

lenge secret-key vector.
2. For all i ∈ [t], make a key query vi to receive sk[vi].
3. For all i ∈ [η] make an inner-product query to receive (Ci,mi), where recall

that mi ∈ Zq.
6 If the scheme is 1/2 + 1

poly(κ)
correct, we can boost its correctness all the way up

to (1 − 1
2κ ) by encrypting the vector many times and taking the majority during

decryption..
7 The assumption that the length of a secret key and and the Q-A pairs is a fixed

function of κ and n is without loss of generality.
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Phase 2: Learning Important Decryption Queries.

1. Let L := ∅. For all i ∈ [t] and all j ∈ [η], execute DecO(sk[vi], Cj) and add all
the Q-A pairs to the set L.

Phase 3: Leveraging the Set of Learned Q-A Pairs to Decrypt. In this phase, Brk
uses the set L to break the security game. In this phase, Brk does not make any
queries to O.

1. If there exists sk ∈ {0, 1}μ and a set of Q-A pairs Qs ∈ {0, 1}ρ such that for all
h ∈ [η], DecO′

(sk, Ci) = mi, where O′ is a random oracle sampled uniformly
at random on-the-fly subject to being consistent with L and Qs, return 0; else,
return 1.

We now show how to set the parameters, and then discuss the effectiveness
of the attack.

Parameters 3 (Setting the parameters). Set the parameters as follows.

– Set η such that η � κ + μ + ρ.
– Let � be the number of queries made by EncO(msk, ·); i.e., the number of

queries made to generate each of C1, . . . , Cη in the attack above. Choose a
constant c such that κc � 2ηκ. Choose t based on � and κ−c as per Lemma 3.

Lemma 4. Let BrkO be as in Attack 2, and let b′ be the output of BrkO. Suppose
n � 3 and qn ∈ ω(poly(κ)). We have Pr[b′ = 0 | b = 0] � 1 − 1

κ .

Proof. First, recall that EO has correctness 1− 1
2κ (c.f. the footnote of Page 16).

Let sk[v∗] be the secret key for v∗ relative to the real oracle O, namely sk[v∗] ←
KGenO(msk,v∗). By correctness of EO, for each h ∈ [η], with probability at least
1− 1

2κ , DecO(sk[v∗], Ch) = mh. We claim that performing the decryption relative
to O′ (as opposed to the real oracle O) does not impact the decryption result
much. In particular, for any h ∈ [η],

Pr[DecO′
(sk[v∗], Ch) = mh] � 1 − 1

2κ
− κ−c. (4)

Thus, the probability that Brk mistakenly outputs one when b = 0 is at
most η( 1

2κ + κ−c). This is because Brk goes through all choices of vector secret
keys and Q-A pairs, hitting sk[v∗] and Qs at some point. The reason that the
multiplicative factor η appears is that we require for all h ∈ [η], the decryption
result be mh. (Line 1 of Phase 3 of Brk’s procedure.) Since by Parameters 3,
κc � 2ηκ

Pr[b′ = 1 | b = 0] � η

(
1
2κ

+ κ−c

)
� η

(
1
2κ

+
1

2ηκ

)
� 1

κ
, (5)

for all large enough κ.
To argue about Eq. 4, fix h ∈ [η]. Let S0 and S1 be the set of Q-A pairs

made during the generation of sk[v∗] and during the generation of Ch ←
EncO(msk,xh). Define the event Bad as follows.
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– Bad: the event that a query in S1 \ L is asked during the decryption of
DecO(sk[v∗], Ch), where recall that the set L is defined in Step 1 of Phase
2 of Brk’s procedure.

If Qs = S0 and Bad holds, then the decryption execution of DecO′
(sk[v∗], Ch)

proceeds identically to that of DecO(sk[v∗], Ch). Thus, we show Pr[Bad] � κ−c,
which implies

Pr[DecO′
(sk[v∗], Ch) = mh] � Pr[DecO(sk[v∗], Ch) = mh] − κ−c

� 1 − 2−κ − κ−c,

as desired.
By Lemma 3 we obtain Pr[Bad] � κ−c. To see this, set � to be the number of

queries in S1. (Parameters 3.) Name these queries as 1, . . . , �. Let F : Zn
q → 2[�]

be a function, where F (y) contains those queries in [�] that appear during the
decryption of DecO(sk[y], Ch), where sk[y] ← KGenO(msk,y). Now by Lemma 3
the set L contains all the queries in ∪i∈[t]F (vi), except with probability at most
1
κc . The proof is now complete. ��

Lemma 5. Let BrkO be as in Attack 2, and let b′ be the output of BrkO. Then,
Pr[b′ = 1 | b = 1] � 1 − 2μ+ρ−η. By setting the parameters as in Parameters 3
(specifically that η � κ + μ + ρ), Pr[b′ = 1 | b = 1] � 1 − 2κ.

Proof. Fix a vector secret key sk ∈ {0, 1}μ and a set of Q-A pairs Qs ∈ {0, 1}ρ.
For any i ∈ [η], the probability that DecO′

(sk, Ci) = mi is at most 1/2 because
the righthand side is completely independent of the lefthand side (because b = 1;
see Definition 2). Thus, the probability that for all i ∈ [η], DecO′

(sk, Ci) = mi is
at most 1

2η . Doing a union bound over all vector secret keys sk ∈ {0, 1}μ and all
Q-A pairs Qs ∈ {0, 1}ρ, the probability that Brk outputs zero is at most 2μ+ρ−η.
The proof is now complete. ��

Putting together the above lemmas, we achieve the final impossibility result.

Theorem 4. Suppose n � 3 and qn is super-polynomial in the security parame-
ter. There exists no black-box construction of IPFE for dimension n and modulus
q from any primitive that exists relative to a random oracle.

The condition of qn being super-polynomial in κ in the above theorem is
necessary. For example, there exists trivial black-box IPFE constructions for Zn

2

from OWFs, where n = log κ, as follows. Let the master secret key be a PRF
key, and let the secret key for a vector be the PRF output for that vector. When
encrypting a plaintext vector x under msk, encrypt the result of 〈x,v〉 under
the corresponding secret key for v, for all v. The size of the ciphertext remains
polynomial.
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A The Combinatorial Problem over Z2

Proving the combinatorial problem over Z2 is significantly easier than over Zq

for any prime q. Thus, we present it separately for Z2.

A.1 Existential Version

As a warm-up, we prove a weaker statement that just establishes the existence
of vectors y∗,y1, . . .yt with the desired properties.

Lemma 6. Fix n = n(κ) ∈ ω(log κ). For � = poly(κ) and any map F : Zn
2 → 2[�]

there exists t = poly′(κ), y1, . . . ,yt,y∗ ∈ Z
n
2 with

y∗ /∈ Span (y1, . . . ,yt) and F (y∗) ⊆
t⋃

i=1

F (yi)

when κ is sufficiently large.

The proof uses the following result of [38] on the maximal size of sum-free sets in
finite groups. A subset S of a finite group is sum free, if there exist no a, b, c ∈ S
with a + b = c.

Lemma 7. [38] The maximal size of a sum-free subset S ⊆ Z
n
2 , n � 1 is 2n−1.

Yap [38] proves a bound for arbitrary finite abelian groups. We use this to prove
the following theorem, which is the existence-only analog of Thm. 6.

Theorem 5. For every non-empty subset S ⊆ Z
n
2 , n � 1, there are at most

2n−1/|S| subspaces V ⊆ Z
n
2 of dimension n − 1 with V ∩ S = ∅.

Proof. Let t be the number of subspaces of dimension (n−1) that do not contain
any of the vectors in S. Each such subspace V can be described by a vector v
as follows: V = {v | 〈x,v〉 = 0}. So let x1, . . . ,xt be the vectors describing all
the subspaces V with V ∩ S = ∅. No subset of 3 of these vectors can be colinear:
Assume there exists indices i, j, k ∈ [t] with xi + xj = xk. Then for every vector
v ∈ Z

n
2 we have 〈xi,v〉 = 0 or 〈xj ,v〉 = 0 or (〈xi,v〉 = 1 and 〈xj ,v〉 = 1). In

the last case 〈xk,v〉 = 〈(xi+xj),v〉 = 0. This means every vector v is contained
in the subspace associated to xi, xj or xk and thus S would have to be empty.
This is a contradiction.

Lemma 7 implies that the vectors x1, . . . ,xt must contain at least d :=
�log(t + 1) linear independent vectors. Let this be without loss of general-
ity x1, . . . ,xd. Clearly, every vector v ∈ S must satisfy 〈xi,v〉 = 1. At most
2n−d � 2n−(log(t)+1) = 2n−1/t can satisfy this equation. Thus |S| � 2n−1/t
which can be rearranged to t � 2n−1/|S|. ��
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The proof uses two facts that are specific to Z2:

1. The union of three subspaces, where each one is orthogonal to one of the
three vectors xi,xj ,xk with xi + xj = xk, is all of Z2.

2. For fixed vectors x1, . . . ,xt the set

{v | ∀i ∈ [t] : 〈v,xk〉 �= 0}
is an affine subspace of Zn

2 .

In particular that the set is in the second point seems to be algebraically much
more complicated over Zq.

We next give a proof of Lemma 6 using Thm. 5. This part can be easily
generalized to Zq.

Proof (Proof of Lemma 6). First of all, note that the requirement that t is
polynomial is not necessary here: If there exists y∗ and an (n − 1)-dimensional
subspace V ∗ with y∗ /∈ V ∗ and F (y∗) ⊆ ⋃t

i=1 F (yi), we can set t := |F (y∗)| � m
and pick for each color cl ∈ F (y∗) a vector yi.

We prove the Lemma with the double counting technique.
We count the number triples (cl,y∗, V ) ∈ [�] × Z

n
q × 2Z

n
q such that

1. y∗ /∈ V ,
2. V is an (n − 1)-dimensional subspace,
3. cl ∈ F (y∗), and cl /∈ ⋃

y∈V F (y).

We say that a triple is valid, if it satisfies all of the above conditions. To satisfy
the condition in the lemma, for every y∗ and V that satisfy 1 and 2, there must
be at least one valid triple. We have 2n − 1 choices for a non-zero vector y∗ and
then 2n−1 choices for V such that 1 and 2 are satisfied. Thus there must be at
least (2n − 1) · 2n−1 valid triples.

On the other hand, if a color is used for s vectors, by Thm. 5 there are at
most 2n−1/s (n − 1)-dimensional subspaces not containing any vector having
this color. Thus, for a fixed color there can be at most 2n−1 contributions.

This leads to the following inequality

�2n−1 � (2n − 1) · 2n−1 ⇐⇒ � � (2n − 1).

Since � grows only polynomial in κ but 2n grows exponential in κ, this inequality
can not hold for sufficiently large κ. ��

A.2 Probabilistic Version

We now give the proof for the probabilistic version over Z
n
2 . The proof uses

Fourier transforms, but the techniques do not seem to extend beyond q > 2.
To prove our impossibility result, we need to strengthen the theorem in two

ways:

1. The vector y∗ needs to be uniformly random.
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2. The vectors y1, . . . ,yt have to be efficiently sampleable without knowing F .

This is formalized by the following lemma:

Lemma 8. Fix n = n(κ) ∈ ω(log κ). Let � = poly(κ). Fix a constant c. Then,
there exists a polynomial t = t(κ) such that with probability at least 1 − n−c

F (y∗) ⊆
t⋃

i=1

F (yi),

where y∗ ← Z
n
2 , and we sample a random (n−1)-dimensional subspace V subject

to v∗ /∈ S and we sample y1, . . . ,yt all uniformly at random from V .

This lemma can be proven as Lemma 3, but we can replace Thm. 1 (that is
used for the proof) with the following version that has an easier proof and gives
a slightly better bound at the cost of being specific for Z2.

Theorem 6. For any subset S ⊆ Z
n
2 , there exist at most 2n+2

|S| linear subspaces
V of dimension n − 1 such that

|S ∩ V | � 1
2

· |S|
2

.

To prove Theorem 6 we recall the Fourier transform for Boolean hypercubes.

Definition 4 (Fourier Transform). For any function f : Zn
2 → R, its Fourier

coefficient f̂(u) for any u ∈ Z
n
2 is defined as

f̂(u) =
1
2n

·
∑

x∈Z
n
2

(−1)〈x,u〉 · f(x).

Theorem 7 (Parseval’s Identity)
∑

x∈Z
n
2

f(x)2 = 2n ·
∑

u∈Z
n
2

f̂(u)2.

Proof (of Theorem 7)

∑

u∈Z
n
2

f̂(u)2 =
∑

u∈Z
n
2

⎛

⎝ 1
2n

·
∑

x∈Z
n
2

(−1)〈x,u〉 · f(x)

⎞

⎠
2

=
1
22n

∑

u,x,y∈Z
n
2

(−1)〈x,u〉 · (−1)〈y,u〉 · f(x) · f(y)

=
1
22n

∑

x,y∈Z
n
2

f(x) · f(y) ·
∑

u∈Z
n
2

(−1)〈x+y,u〉

=
1
22n

∑

x∈Z
n
2

f(x)2 · 2n =
1
2n

∑

x∈Z
n
2

f(x)2

��
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We are now ready for the proof.

Proof (of Theorem 6). Let f be the indicator function for S. We know
∑

x∈Z
n
2

f(x)2 = |S|.

By Theorem 7,
∑

u∈Z
n
2

f̂(u)2 =
|S|
2n

.

Observe that,
∑

u �=0n

f̂(u)2 =
|S|
2n

−
( |S|
2n

)2

� |S|
2n

.

For every non-zero u, let Vu denote the subspace orthogonal to u. Observe that,

f̂(u) =
|S ∩ Vu| − |S \ Vu|

2n
=

2 · |S ∩ Vu| − |S|
2n

.

Hence,

|S ∩ Vu| � 1
2

· |S|
2

=⇒ f̂(u)2 �
( |S|
2n+1

)2

.

The number of such u can be upper bounded by

2n+2

|S| .

��
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Abstract. The BUFF transform, due to Cremers et al. (S&P’21), is
a generic transformation for digital signature scheme, with the purpose
of obtaining additional security guarantees beyond unforgeability: exclu-
sive ownership, message-bound signatures, and non-resignability. Non-
resignability (which essentially challenges an adversary to re-sign an
unknown message for which it only obtains the signature) turned out to
be a delicate matter, as recently Don et al. (CRYPTO’24) showed that
the initial definition is essentially unachievable; in particular, it is not
achieved by the BUFF transform. This led to the introduction of new,
weakened versions of non-resignability, which are (potentially) achiev-
able. In particular, it was shown that a salted variant of the BUFF trans-
form does achieves some weakened version of non-resignability. However,
the salting requires additional randomness and leads to slightly larger
signatures. Whether the original BUFF transform also achieves some
meaningful notion of non-resignability remained a natural open ques-
tion.

In this work, we answer this question in the affirmative. We show
that the BUFF transform satisfies the (almost) strongest notions of non-
resignability one can hope for, facing the known impossibility results.
Our results cover both the statistical and the computational case, and
both the classical and the quantum setting. At the core of our analysis
lies a new security game for random oracles that we call Hide-and-Seek.
While seemingly innocent at first glance, it turns out to be surprisingly
challenging to rigorously analyze.

1 Introduction

Digital Signatures and the BUFF Transform. Digital signatures are at the
very heart of modern cryptography. The gold standard security notion for digi-
tal signature schemes is (strong) unforgeability against chosen message attacks.
However, in certain applications, additional security properties are desirable,
c© International Association for Cryptologic Research 2025
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or even necessary. For example, [17] showed that the “Dynamically Recreatable
Key” protocol [18] is insecure if the signature scheme used in the protocol does
not additionally offer some sort of non-malleability property that, informally,
requires it to be hard to turn a signature for an unknown message into a sig-
nature for the same message but under a different public key (with a possibly
known secret key), in other word, it should be hard to re-sign an unknown mes-
sage. This property was named non-resignability in [17], and formally defined
later in [10], along with two more properties: exclusive ownership and message-
bound signatures. On top, [10] introduced a generic transformation, the BUFF
transform, which can be applied to any signature scheme, and it was argued that
the transformed signature scheme then satisfies these three additional properties
(in the random oracle model). The transform is very simple: instead of signing
the message m, a BUFF-transformed signature scheme signs the hash H(pk,m)
of the public key and the message, and this hash value is also appended to the
signature.

Motivated by the fact that the NIST call for additional post-quantum signa-
tures [20] explicitly mentioned the above as “additional desirable security proper-
ties ”, several of the NIST post-quantum signature submissions have the BUFF
transform built in, or mention the possibility of applying the BUFF transform
to the proposed scheme.

Recent Development. Somewhat surprisingly given the apparently clear situ-
ation around the BUFF transform, the recent work [13] showed that the question
of defining and achieving non-resignability is actually more subtle. Concretely,
it was shown that non-resignability, as defined in [10], is almost unachievable as
a matter of fact, both in the plain model and in the random oracle model.1 In
particular, it follows that the BUFF transform does not achieve non-resignability
(as defined in [10]). The apparent contradiction to the positive claim from [10]
comes from the fact that the proof in [10] relied on a non-malleability claim for
the random oracle that was taken from [4], and which turned out to be false.

Towards showing a positive result, [13] introduced NRH,⊥, a weaker version
of the original definition of non-resignability (in the ROM), and they showed
that a salted version of the BUFF transform satisfies NRH,⊥. The situation is
actually more complicated in that the non-resignability definition involves an
entropy condition, of which one can consider a statistical or a computational
variant. While the impossibility of [13] holds for both, the positive result on
NRH,⊥ for the salted BUFF transform holds for the statistical variant only, and
provably not for the computational variant.2

In reaction to the negative results from (an early version of) [13], the
authors of [10] updated their paper to [11] by weakening their definition of

1 There are hypothetical signature schemes to which the attack from [13] does not
apply, though we are not aware of any natural scheme for which that is the case.

2 We note that the statistic and the computational variants of NRH,⊥ are incompara-
ble: in the computational case, the adversary is restricted in its computational power
but is bound to a weaker entropy condition.
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non-resignability and tried to argue that the (original) BUFF transform sat-
isfies their weakened definition; however, their argument relies on an assumption
that is shown to be false in [13].

Thus, the bottom line is that the following question has remained open:

Does the BUFF transform satisfy some
non-trivial notion(s) of non-resignability?

Our Results. In this work, we answer the above question in the affirmative.
Concretely, we introduce yet another variant of non-resignability, sNRH,⊥, and
we show that the (original) BUFF transform satisfies sNRH,⊥, both in the sta-
tistical setting, where the entropy condition holds statistically and adversaries
may be computationally unbounded, and in the computational setting, where the
entropy condition holds computationally and adversaries have bounded comput-
ing power only.

In the statistical setting, sNRH,⊥ is strictly stronger than NRH,⊥; in the
computational setting, the two notions are (probably) incomparable, yet sNRH,⊥

is strictly stronger than the notion considered in [11]. Therefore, given that [13]
showed that the BUFF transform does not satisfy NRH,⊥ in the computational
setting, our results appear to be the best we can hope for towards proving positive
results on the non-resignability of the BUFF transform.

Our approach is inspired by the proof in [13] for the salted BUFF transform.
Indeed, on the technical level, we can recycle and adjust some of the arguments,
although we avoid the detour via some tailor-made non-malleability property for
the random oracle. The crucial part of course is when [13] exploits the salt that
originates from the salted BUFF transform, which we cannot do, given that we
consider the original, unsalted variant. Instead, we capture the crucial, missing
piece in the form of a particular, simple game in the random oracle model, which
we call Hide-and-Seek, and we reduce the non-resignability property of the BUFF
transform to the hardness of winning Hide-and-Seek. In essence, the game asks
to find x when given H(x) and query-bounded access to H, where x may be
chosen arbitrarily dependent on H subject to the condition that it is hard to
guess when given access to H only, i.e., without being given H(x).

Despite its simplicity and harmless appearance, this game turns out to be
surprisingly tricky to analyze. Thus, the technical core of this work is in analyzing
Hide-and-Seek and showing that it is hard to win, both in the statistical and in
the computational setting, and both in the classical and in the quantum ROM.

Related Work. The relevance of the BUFF security notions can be traced to
attacks [3,17], which exploit the absence of additional security properties like
exclusive ownership, message-bound signatures, and non-resignability. The for-
mer security notion (exclusive ownership) was first mentioned by Pornin and
Stern [21] which can further be traced back to [6,19]. Along with defining exclu-
sive ownership, Pornin and Stern also give three generic transformations that
achieve exclusive ownership. The other security notions (message-bound signa-
tures and non-resignability) were formalized in [10].



350 J. Don et al.

In very recent work, Aulbach et al. [2] analyzed the BUFF security of
the schemes submitted to the recent NIST standardization process for post-
quantum signature schemes [20], though considering an even weaker notion of
non-resignability than NRH,⊥ (where there is no auxiliary information at all).

Also very recently, Düzlü et al. [14] reconsider the BUFF security notions
for Falcon [22], exploiting the particular form of a Falcon signature, and they
argue that all that is needed is to replace the hash H(r,m) in a Falcon signature
computation by H(r, pk,m); thus, the hash can be “recycled” (this was argued
in [10] already), but also, it does not need to be appended to the signature
as in the BUFF transform (in line with the lighter transform by Pornin and
Stern [21]). Regarding non-resignability, they consider the variant from [11],
which is weaker than NRH,⊥, but relax the HILL entropy requirement to a bound
on the computational unpredictability, which makes the definition stronger in that
aspect. Thus, strictly speaking, the considered variant is incomparable with the
computational versions of NRH,⊥ and sNRH,⊥.

2 Preliminary

We start by briefly spelling out the notions of guessing probability and min-
entropy, and recalling the random oracle model. Then, we introduce sNRH,⊥,
the variant of non-resignability we consider in this paper. Finally, we recall the
BUFF transform, as introduced in [10].

2.1 Guessing Probability and Min-Entropy

For a random variable X over a finite set X , the guessing probability and the
min-entropy are respectively defined as

guess(X) := max
x

Pr[X =x] and H∞(X) := − log
(
guess(X)

)

where here and in the remainder, log is the binary logarithm. For random vari-
ables X and Y over respective finite sets X and Y, the conditional guessing
probability is defined as

guess(X | Y ) :=
∑

y

Pr[Y =y]max
x

Pr[X =x | Y =y] .

It is well known that guess(X | Y ) = maxf Pr[X = f(Y )], where the maxi-
mization is over all (deterministic or randomized) functions f : Y → X . In line
with the unconditional case above, the conditional min-entropy is then given by
H∞(X | Y ) := − log

(
guess(X | Y )

)
.

2.2 The Random-Oracle Model

Throughout, we consider the random oracle model (ROM) [5], i.e., we consider
a uniformly randomly function H : X → Y, where X and Y are suitably chosen,
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finite sets, and algorithms are (only) given oracle access to H. By default, we
consider algorithms to be classical and thus make classical queries to H; however,
we also consider the quantum setting, in which case we then explicitly refer to
quantum queries and/or the quantum random oracle model (QROM) [7]. In some
case, we also consider an algorithm that can make an unbounded number of
queries to H, in which case it then is irrelevant if these are classical or quantum.

2.3 Non-resignability

Let S = (KGenH ,SignH ,VrfyH) be a signature scheme, where we make explicit
that we consider schemes in the random oracle model, and thus key-generation,
signing, and verification are given oracle access to H. As usual, we require
KGenH , SignH , and VrfyH to be PPT, and it is understood that KGenH takes the
unary representation of λ as input, where λ is the security parameter. By default,
we denote the message space by M and the public-key and secret-key spaces by
PK and SK, respectively. Without loss of generality, we assume that the public
key pk can be efficiently computed from its corresponding secret key sk.

In this work, we consider a new variant of non-resignability, denoted sNRH,⊥.
It is similar in spirit as NRH,⊥ introduced in [13]; in particular, a crucial aspect
is that aux is not given access to H, but we additionally provide the adversary
with the secret key sk, and we adjust the entropy condition correspondingly (see
below for a more detailed comparison). The security game is shown in Fig. 1. It
is played by randomized oracle algorithms3,

DH : SK → M and AH : SK × SGN × AUX → PK × SGN
given query access to H, referred to as adversaries, and a randomized algorithm
aux : SK × M → AUX with no access to H, referred to as hint function.4

Fig. 1. Our new variant of the non-resignability game sNRH,⊥.

While playing sNRH,⊥, we consider restricted (S-dependent) classes of adver-
saries with a give bound h on the entropy

H∞
(sk,pk)←KGenH

m←DH (sk)

(m | H, sk, aux(sk,m)) ≥ h . (1)

3 Here and in the remainder, we borrow from set notation to indicate the input and
output space of (oracle) algorithms. In case of an algorithm that takes no input, we
write the singleton set {⊥} as domain.

4 The hint function may be randomized, but we refer to it as a function for convenience.
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For now we only consider the statistical variant, where we take an arbitrary but
fixed security parameter for S, where D, A and aux may be computationally
unbounded and we only limit their query complexity, and where the entropy
requirement holds statistically, i.e., as in (1). The computational setting is han-
dled later in Sect. 5; there, D,A and aux are restricted to be (uniform or non-
uniform) PPT algorithms, and the entropy requirement is expressed via HILL
entropy (which causes some complications given that (1) conditions on the entire
function table of H).

Informally, we say that a signature scheme S = (KGen,Sign,Vrfy) is non-
resignable if for all D, A and any hint function aux that satisfy the statistical
entropy condition (1) for sufficiently large h, the probability of winning the
sNRH,⊥ game, i.e.,

AdvsNRH,⊥
(D,A, aux) := Pr

[
1 = sNRH,⊥

S (D,A, aux)
]

,

is small.
The recent developments have shown that formalizing non-resignability is

a non-trivial task, and different weaker variants of the original (unachievable)
version have been proposed. We quickly discuss here how sNRH,⊥ relates to
those variants; namely, we show that is stronger than the versions proposed
in [13] and [11].

Comparison with Non-resignability from [13]. The difference to NRH,⊥ as defined
in [13] is that sNRH,⊥ provides the D, A and the hint function aux with the secret
key sk, whereas NRH,⊥ only provides the public key pk (recall that we assume
that pk can be computed from sk). This of course gives more power to the
adversary. The other difference lies in the entropy requirement: for NRH,⊥, the
message is required to have high entropy conditioned on pk (and aux) only, i.e.,

H∞(m | H, pk, aux(pk,m)) ≥ h

whereas sNRH,⊥ requires (1) to hold, which conditions on sk instead; this seems
to be a stronger restriction, but we observe that for m ← D(pk), produced by a
D that only gets the public key as input (as in NRH,⊥),

H∞(m | H, pk, aux(pk,m)) = H∞(m | H, sk, aux(pk,m))

since sk → (H, pk, aux(pk,m)) → m forms a Markov chain then. This implies
that any attack against NRH,⊥ can be cast as an attack against sNRH,⊥ with
the same entropy bound, making the latter a stronger security notion.

Comparison with Non-resignability from [11]. We first note that [11] defines
non-resignability only in the computational setting, so we compare it with the
computational version of sNRH,⊥. While we have postponed the exact definition
to Sect. 5, the high level reasoning can still be understood. First of all, in [11] the
side information on m (given by aux in our case) is required to be computationally
independent of m, which is equivalent to allowing no side information at all
when considering computationally bounded adversaries. Furthermore, in line
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with sNRH,⊥, the entropy condition (though phrased in terms of HILL entropy)
is required to hold when conditioning on the secret key sk. But on the other hand
and in the spirit of NRH,⊥, the adversaries are only given pk as input, and not
sk. Altogether, this makes their notion weaker than our computational version
of sNRH,⊥, which provided sk as input to the adversaries.

2.4 BUFF Transformation

The BUFF transform, as proposed in [10], transforms any signature scheme S
into another signature scheme BUFF[S,H]. The transformation is described in
Fig. 2; in essence, BUFF[S,H] signs a message m by signing the hash H(pk,m)
and additionally appending this hash value to the signature.

Fig. 2. The signature scheme BUFF[S, H] = (KGen′H , Sign′H ,Vrfy′H), obtained from
applying the BUFF transform to S = (KGenH , SignH ,VrfyH).

Here and in the remainder when considering the BUFF transform, we take it
as understood that the random oracle H : X → Y has fitting domain and range,
i.e., X ⊇ K × M and Y ⊆ M, so that the BUFF transform is well defined.

3 Hide-and-Seek and the Non-resignability of BUFF

Our goal is to prove the non-resignability (in the sense of sNRH,⊥) of the BUFF
transform, which signs a message m by signing H(pk,m), with the hash value
then appended to the signature. Clearly, for this non-resignability to hold, it must
necessarily be hard to recover m from H(pk,m). This hardness may look trivial
at first glance, since H is (typically) compressing, and modeled as a random
oracle; however, it turns out to be not trivial at all. The reason is that in the
sNRH,⊥ game, m is produced arbitrarily and dependent on H, with the only
promise being that m is hard to guess from scratch (i.e., when H(pk,m) is not
given).

In this section, we formally capture (a particular formulation of) this hardness
via a game, which we call Hide-and-Seek, and we show that hardness of winning
Hide-and-Seek is sufficient for proving the non-resignability of the BUFF trans-
form. The main technical challenge then lies in proving that Hide-and-Seek is
hard to win, which we do in Sect. 4.

Throughout the remainder, let X ,Y, and Z be finite non-empty sets, and let
H : X → Y be the random oracle.
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3.1 The Hide-and-Seek Game

The Hide-and-Seek game is played by two adversaries D and A: the (possibly
query-unbounded) hider DH : {⊥} → X × Z, and the query-bounded seeker
AH : Y × Z → X that is allowed to make at most q queries to H. First, DH

chooses a challenge x ∈ X together with a hint z ∈ Z and “hides” x as H(x), and
then AH is supposed to find x from H(x) and z. The game is formally specified
as follows:

HnSH(D,A):
1: (x, z) ← DH

2: return x = AH(H(x), z)

In line with the entropy condition in sNRH,⊥, we require x to be statistically
hidden given H and z. I.e., we require that

guess(x |H, z) ≤ ε (2)

for some small ε > 0. Informally, we say that the random oracle H satisfies the
Hide-and-Seek property, or HnSH for short, if for every such pair of D,A as
above, the winning probability, given as

AdvHnSH

(D,A) := Pr
[
1 = HnSH(D,A)

]
= Pr

(x,z)←DH

[
x = AH(H(x), z)

]
,

is small.
As mentioned above already, what is tricky about this game is that x (and z)

may depend arbitrarily on H, subject to the bound (2) on the guessing probabil-
ity. Because of this, known results on inverting the random oracle do not apply,
and it may not be fully clear whether we can actually expect it to be hard to
win, i.e., that there is no sneaky way to win the game. We discuss this in more
detail in Sect. 4, where we then analyze Hide-and-Seek and prove that it is hard
to win after all.

3.2 Reducing sNRH,⊥ of BUFF to Hide-and-Seek

In the following statement, we reduce the sNRH,⊥ security of the BUFF trans-
form BUFF[S,H] of a signature scheme S = (KGenH ,SignH ,VrfyH) to the hard-
ness of winning the Hide-and-Seek game HnSH . In the lemma statement, the
parameters qK and qS refer to (an upper bound on) the number of queries to H
that KGenH and SignH perform.

Lemma 1. Let DH : SK → M and AH : SK × SGN × AUX → PK × SGN
be sNRH,⊥-adversaries against BUFF[S,H] for some aux : SK × M → AUX ,
making at most qD and qA queries to H, respectively. Then there exists a hider
D̄ : {⊥} → X × Z and a seeker Ā : Y × Z → X with Z = SK × AUX , where Ā
makes at most qA + qS queries to H, and such that

H∞
(x,z)←D̄H

(x | H, z) = H∞
(sk,pk)←KGenH

m←DH (sk)

(m | H, sk, aux(sk,m)) (3)

and
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AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ (qA + qS) · AdvHnSH

(D̄, Ā) + qKε +
qD + 1

|Y| , (4)

where ε := 2−H∞(x|H,z). In the case A makes quantum queries to H, then

AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ 2(qA + qS) ·

√
AdvHnSH

(D̄, Ā) + qKε +
qD + 1

|Y| ,

(5)

holds in place of (4), and Ā then makes quantum queries as well.
Furthermore, in the computational setting when considering a non-fixed secu-

rity parameter and PPT algorithms D and A, then D̄ and Ā are PPT as well.

The intuition behind the proof is as follows. Consider the sNRH,⊥ game. Due
to the assumed hardness of Hide-and-Seek, A cannot recover m from its input
and thus makes no query to H that has m as suffix. But then it cannot gather
any information on H(pk′,m) for any pk′, and thus it will not be able to output
y′ = H(pk′,m) for any pk′. Formally, we have to make sure that A gets no
information on y′ via its input, which is controlled by KGen and D, which may
query H on H(pk′,m) for any pk′. This is taken care of in our formal proof
below.

Proof. In Fig. 3 we define a hybrid sequence reducing the sNRH,⊥ property of
BUFF[S,H] to the HnSH property of H. To start with, we note that the adversary
(D,B) playing G0 is identical to (D,A) playing sNRH,⊥

BUFF[S,H].
The G0 to G1 hop. The only difference between G0 and G1 is whether B is
given oracle access to the original random oracle H, or the reprogrammed oracle
H[(·,m) 
→ ⊥] and replies with ⊥ to any query that has suffix m.

Consider the hider D̄ and seeker Ā, where D̄ samples (sk, pk) ← KGenH and
m ← DH(sk) and returns

x := (pk,m) and z := (sk, aux(sk,m)) ,

and on input H(x) = H(pk,m) and z, the seeker Ā samples a random index
i ← [qA + qS ], runs

BH(sk,H(pk,m), aux(sk,m)) = AH
(
sk,

(
H(pk,m),SignH(sk, y)

)
, aux(sk,m)

)

internally, but then looks at / does a full measurement of the i-th query to obtain
(pk∗

i ,m
∗
i ), and returns (pk,m∗

i ). It is clear by construction that z ∈ SK × AUX ,
and (3) immediately follows from the fact that pk can be derived from sk, and
so

H∞(x | H, z) = H∞(pk,m | H, sk, aux(sk,m)) = H∞(m | H, sk, aux(sk,m)) (6)

as claimed. It also follows from construction that D̄ and Ā preserve the efficiency
of D and A. In terms of query complexity, Ā makes at most qA+qS queries to H.
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Fig. 3. Hybrid steps reducing sNRH,⊥
BUFF[S,H] to HnSH when D is classical, i.e., (5), (4).

In the derivations below we drop the parameter k for notational convenience.

In the case where A makes classical queries, there is no difference in the two
games when B makes no query to a point where the two oracles differ, and thus

Pr [1 ← G0] ≤ Pr [1 ← G1] + Pr
[
∃ i ∈ [qA + qS ] s.t. m∗

i = m
]

≤ Pr [1 ← G1] + (qA + qS) · AdvHnSH

(D̄, Ā) .

In the quantum case, the same kind of guarantee follows from the O2H lemma [1,
Theorem 3], which gives us that

Pr [1 ← G0] ≤ Pr [1 ← G1] + 2(qA + qS) ·
√

Pr [m∗
i = m]

≤ Pr [1 ← G1] + 2(qA + qS) ·
√
AdvHnSH

(D̄, Ā) .

The G1 to G2 hop. The difference between G1 and G2 is that the latter aborts if
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KGenH ever makes a query of the form (·,m). Given that m is produced given
(H, sk) but independent of KGen’s qK queries conditioned on (H, sk), and m
satisfies (1) for h := log(1/ε), we have

Pr [1 ← G1] ≤ Pr [1 ← G2] + Pr [G2 abort] ≤ Pr [1 ← G2] + qKε .

The G2 to Gi
3 hop. Assume without loss of generality that D never repeats its

queries (k1,m1), . . . , (kqD ,mqD ). Note that the queries of A in G1 are blocked
at (·,m), and the game aborts if KGen ever queries (·,m). Since, conditioned
on KGen not querying with (·,m), k′ �= k and (k′,m) �= (ki,mi) for all
i, the output H(k′,m) is uniformly random and independent of A’s input
(sk,H(pk,m), aux(sk,m)) together with the oracle H[(·,m) 
→ ⊥] it has access
to, we have

Pr [1 ← G2] ≤ Pr

[
∃i ∈ [qD] s.t. (k′,m) = (ki,mi)

1 ← G2

]

+ Pr

⎡

⎢
⎣ 1 ← G2

∣
∣
∣
∣
∣
∣
∣

KGen not querying (·,m)
(k′,m) �= (ki,mi) ∀i ∈ [qD]

k′ �= k

⎤

⎥
⎦

≤
∑

i∈[qD]

Pr
[
1 ← Gi

3

]
+ 1/|Y| .

The Gi
3 to Gi

4 hop. Because of the extra condition (pk′,m′) = (pki,mi) in Gi
3,

replacing pk′ with pki and m′ with mi as in Gi
4, does not change the winning

probability. We further drop the condition (pk′,m′) = (pki,mi), which does not
decrease the winning probability.

Finally, it remains to upper bound the winning probability of Gi
4 for each

i ∈ [qD]. By a lazy sampling argument, we note that conditioned on KGen
not querying with (·,mi) and pki �= pk, the output H(ki,mi) is uniform and
independent of (H[(·,mi) 
→ ⊥], k,H(k,mi), aux(mi)), and hence, y′ generated
by AH[(·,mi) 	→⊥](k,H(k,mi), aux(mi)) is equal to H(ki,mi) with probability at
most 1/|Y|, i.e.

Pr
[
1 ← Gi

4

] ≤ 1/|Y| ,

which concludes (4), (5). ��
Remark 1. We point out that the claim on D̄ and Ā be PPT if D and A are,
fails to hold when aiming for a variant of Lemma 1 that considers NRH,⊥ instead
of sNRH,⊥. The reason is that, on input H(pk,m) and z, the seeker Ā needs to
run A on a signature of H(pk,m), which it can do efficiently if given sk (which
is part of z here, exploiting that D is given sk), but not if only given pk. This
is the reason why in the computational setting, treated in Sect. 5, our proof for
showing that BUFF satisfies sNRH,⊥ does not carry over to NRH,⊥ (in line with
the counter example given in [13]).
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3.3 Main Result

By means of the above reduction to HnS and the analysis of HnS in the upcoming
section, we obtain the following main result on the non-resignability of the BUFF
transform BUFF[S,H] of any signature scheme S = (KGenH ,SignH ,VrfyH). In
the theorem statement, the parameters qK and qS refer to (an upper bound on)
the number of queries to H that KGenH and SignH perform. The theorem is
obtained via plugging in Theorem 2 and 3 into Lemma 1 with some simplifica-
tion to the obtained upperbounds. For completeness, we spell out its proof in
Appendix A.

Theorem 1. Let DH : SK → M and AH : SK × SGN × AUX → PK × SGN
be sNRH,⊥-adversaries against BUFF[S,H] for some aux : SK × M → AUX ,
making at most qD and qA queries to H, respectively, where (1) is satisfied for
h such that 0 < ε := 2−h ≤ 1

2 . Then

AdvsNRH,⊥
BUFF[S,H](D, A, aux) ≤ 8(qA + qS + 1)2 log

( |SK| · |AUX |
ε

)
ε + qKε +

qD + 1

|Y| ,

and in the case A makes quantum queries to H, then

AdvsNRH,⊥
BUFF[S,H](D,A, aux)

≤ O

(√(
log

|SK| · |AUX |
ε

+ qA + qS

)
(qA + qS)3ε

)

+ qKε +
qD + 1

|Y| ,

where the asymptotic bound holds as min(1/ε, qA) → ∞, and the constants are
absolute constants.

Remark 2. In the case where D makes quantum queries to H, we expect a similar
argument as in the proof of [13, Theorem 15] applies (resulting in adjusted
bounds).

4 Analyzing Hide-and-Seek

As explained above, the technical core of proving the non-resignability property
of the BUFF transform consists of analyzing the Hide-and-Seek game. Con-
cretely, our goal is to show that the probability

Pr
[
x = AH(H(x), z)

]

is small, for any query-unbounded algorithm DH that produces a pair (x, z) such
that guess(x | H, z) ≤ ε holds, and for any query-bounded algorithm A.

Below in Sect. 4.2, we first consider the case of an A that makes classi-
cal queries to the random oracle H; later we also consider the case of quan-
tum queries, which introduces additional challenges. We note that since D has
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unbounded query complexity, it is irrelevant whether those are classical or quan-
tum; D may inspect the entire function table anyway.5 We also emphasize that
we do not restrict the computational complexity of D or A.

Before jumping into the analysis though, we discuss the game a bit further,
and in particular we look into the simple(r) variant where x is uniformly random
and independent of H, and z is fixed.

4.1 Special Case: Uniform Challenges

What makes the game challenging to analyze is that the challenge x (and the
hint z) may be arbitrarily correlated with H, as long as guess(x | H, z) ≤ ε. For
instance, given a function H : X → X , the hider D can pick a challenge x that
satisfies H(x) = x, and the seeker A can simply output H(x). Although this is
not a valid attack under the condition guess(x | H, z) ≤ ε, because a random
function H : X → X typically does not have many fixed points, this example
suggests that one cannot argue that H(x) reveals no information about x.

In the special case where x is uniform and independent of (H, z) and z is fixed,
it is straightforward to show that any A making at most q classical queries to
the random oracle H satisfies

Pr
[
x = AH(H(x), z)

] ≤ (q + 1)
|X | .

In addition, even if the hint z can depend on H, tight bounds are known in the
literature: the probability that a q-query seeker A succeeds is in the order of at
most q log |Z|/|X | if A is classical [9,12], or of at most q(q + log |Z|)/|X | if A
can make quantum queries [8].

However, in the general case, where the only guarantee about x is that
guess(x | H, z) ≤ ε for some ε < 1, the strong bounds above do not apply.
Nevertheless, in the remaining of this section, we will show how to reduce the
tricky general case to the uniform-challenge case.

Inspired by [8], we will actually reduce the general case to the “multi-
instance” case with uniform challenges and an independent hint. In particular,
consider challenges xu

1 , . . . , xu
k that are sampled uniformly and independently

from X , and a fixed hint z◦ ∈ Z that does not depend on xu
1 , . . . , xu

k and H.
Then for any seeker that attempts to solve all k challenges with the hint z◦, it
is not hard to prove the following lemma. For completeness we give the proof in
Appendix B.

Lemma 2. For every oracle algorithm AH : Y × Z → X that makes at most q
classical queries to H,

Pr
[∀i ∈ [k] : xu

i = AH(H(xu
i ), z◦)

] ≤ k!
(q + 1)k

|X |k ,

where A is independently re-executed for each i.

5 For the purpose of proving Theorem 1, it would be sufficient to restrict the seeker D
to be query bounded as well; however, interestingly, we need the result for a query
unbounded D for the computational case (see Sect. 5 and Remark 5).
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The case where A can make quantum queries to H is more involved, but has
been studied in [8].

Lemma 3 (Corollary of [8, Lemma 5.2]). For every oracle algorithm AH :
Y × Z → X that makes at most q quantum queries to H,

Pr
[∀i ∈ [k] : xu

i = AH(H(xu
i ), z◦)

] ≤ O

(
kq + q2

|X |
)k

as min(k, q, |X |) → ∞ ,

where A is independently re-executed for each i, and the constants in the asymp-
totic bound are absolute constants.

4.2 The Classical Case

The following provides a bound on the Hide-and-Seek property of the random
oracle for a classical seeker A.

Theorem 2 (The RO satisfies HnSH , classically). Let D : {⊥} → X × Z
and A : Y × Z → X be HnSH-adversaries satisfying (2) for some 0 < ε < 1,
where A makes q classical queries to H. Then we have

AdvHnSH

(D,A) ≤ 2(q + 1)
(
log |Z| + log(1/ε) + 1

)
ε + ε .

Our strategy is to turn a successful HnSH seeker A into a similarly successful
guesser G that tries to guess x from H and z. Since such a successful guesser
cannot exist by (2), no successful A can exist.

Proof. Given that A is classical here, we may assume it to be deterministic. For
any fixed choices H◦ and z◦, we can thus define the set

S(H◦, z◦) := {x◦ ∈ X |AH◦
(H◦(x◦), z◦) = x◦}

of all x◦ on which A succeeds.
Following the above strategy for proving the claimed statement, we consider

the following guesser G. On input H and z, it samples and outputs a uniformly
random x̂ ∈ S(H, z) as guess for x (with the convention that x̂ = ⊥ in case S
is empty). We can then lower bound the success probability of G as follows, for
any positive T ∈ Z.

Pr[x̂ = x] ≥ Pr[x̂ = x ∧ |S| ≤ T ]

≥ 1
T

Pr[AH(H(x), z) = x ∧ |S| ≤ T ]

≥ 1
T

(
Pr[AH(H(x), z) = x] − Pr[|S| > T ]

)
,

where for the second inequality we exploit that for any fixed choices of H,x, and
z, if |S| ≤ T then Pr[x̂ = x] = 1/|S| ≥ 1/T whenever x ∈ S, i.e. AH(H(x), z) =
x, and 0 otherwise, and so the inequality is obtained by averaging over the choices
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of H, x, and z. The last inequality is by union bound. Rearranging the terms,
we thus have

AdvHnSH

(D,A) ≤ T · Pr[x̂ = x] + Pr[|S| > T ] ≤ Tε + Pr[|S| > T ] . (7)

In order to control Pr[|S| > T ], we introduce

σ(H◦, z◦) := Pr
[
xu = AH◦

(H◦(xu), z◦)
]

=
|S(H◦, z◦)|

|X | (8)

where xu ← X , and we observe that, for any positive k ∈ Z,

σ(H◦, z◦)k = Pr
[
xu

i = AH◦
(H◦(xu

i ), z◦) ∀i ∈ [k]
]

where xu
1 , . . . , xu

k ← X . What we are actually interested in is the average over
the choice of H and z. Towards this end, we note that

E[σ(H, z)k] = Pr
[
xu

i = AH(H(xu
i ), z) ∀i ∈ [k]

]

=
∑

z◦
Pr

[
z = z◦ ∧ xu

i = AH(H(xu
i ), z◦) ∀i ∈ [k]

]

≤
∑

z◦
Pr

[
xu

i = AH(H(xu
i ), z◦) ∀i ∈ [k]

]
(9)

≤ |Z| · k!(q + 1)k

|X |k ,

where the last inequality is by Lemma 2. Thus

E[|S(H, z)|k] = |X |k · E[σ(H, z)k] ≤ |Z| · k!(q + 1)k ,

and so by Markov’s inequality,

Pr
[|S(H, z)| > 2k(q + 1)

] ≤ E
[|S(H, z)|k]

(
2k(q + 1)

)k
≤ |Z|

2k
≤ ε

where the final inequality is achieved by choosing k =
⌈
log |Z|+log(1/ε)

⌉
. Thus,

setting T = 2k(q + 1) and plugging into (7) we obtain that

AdvHnSH

(D,A) ≤ Tε + Pr[|S| > T ]

≤ 2(q + 1)
(
log |Z| + log(1/ε) + 1

)
ε + ε .

This proves the claim. ��

4.3 A Bound for the Quantum Case

The following provides a bound on the Hide-and-Seek property of the random
oracle for a quantum seeker A.
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Theorem 3 (The RO satisfies HnSH , quantumly). Let D : {⊥} → X × Z
and A : Y × Z → X be HnSH-adversaries satisfying (2) for some 0 < ε < 1,
where A makes q quantum queries to H. Then we have

AdvHnSH

(D,A) ≤ O
(
(log |Z| + log(1/ε) + q)qε

)

as min(1/ε, |Z|, q) → ∞, where the constants in the asymptotic bound are abso-
lute constants.

The proof here follows very closely the proof for the classical case, except that
we use Lemma 3 to bound the multi-instance game for a quantum algorithm.
Furthermore, some additional changes are needed since we cannot assume A to
be deterministic anymore.

Proof. Here, for any H◦ and z◦, we define the following “weighted set”

S∗(H◦, z◦) :=
{(

x◦, wH◦,z◦(x◦)
) ∣
∣ x◦ ∈ X}

,

where each element x◦ comes with a weight, given by

wH◦,z◦(x◦) := Pr
[
x◦ = AH◦

(H◦(x◦), z◦)
]
.

The total weight of S∗(H◦, z◦) is defined as W (S∗(H◦, z◦)) :=
∑

x◦ wH◦,z◦(x◦).
Here, we consider the guesser G that, on input H and z, chooses its guess x̂

by picking it from X according to the renormalized weights, i.e., according to
the distribution

pH,z(x̂) :=
wH,z(x̂)

W (S∗(H, z))
.

We observe that this generalizes the approach in the previous section where
A may assumed to be deterministic. All weights are then 0 or 1, giving rise to
the set S in the proof of Theorem 2 when keeping only the elements with weight
1, and the total weight of S∗ then matches up with |S|, and x̂ is then uniformly
random in S.

We proceed by following that approach, with obvious changes. Namely, first
we note that

Pr[x̂ = x] ≥ Pr[x̂ = x ∧ W (S∗(H, z)) ≤ T ]

≥ 1
T

Pr[AH(H(x), z) = x ∧ W (S∗(H, z)) ≤ T ]

≥ 1
T

(
Pr[AH(H(x), z) = x] − Pr[W (S∗(H, z)) > T ]

)
,

where here, for the second inequality, we exploit that for any fixed choices of
H,x and z, if W (S∗(H, z)) ≤ T then Pr[x̂ = x] = pH,z(x) ≥ wH,z(x)/T , and
so the inequality is obtained by averaging over these choices. Rearranging the
terms, we have

AdvHnSH

(D,A) ≤ Tε + Pr[W (S∗(H, z)) > T ] . (10)
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In order to control Pr[W (S∗(H, z)) > T ], we introduce

σ(H◦, z◦) := Pr
[
xu = AH◦

(H◦(xu), z◦)
]

=
W (S∗(H◦, z◦))

|X | (11)

where xu ← X . Recycling the line of reasoning in the previous section, we observe
that, for any positive k ∈ Z,

σ(H◦, z◦)k = Pr
[
xu

i = AH◦
(H◦(xu

i ), z◦) ∀i ∈ [k]
]

where xu
1 , . . . , xu

k ← X , and that

E[σ(H, z)k] = Pr
[
xu

i = AH(H(xu
i ), z) ∀i ∈ [k]

]

=
∑

z◦
Pr

[
z = z◦ ∧ xu

i = AH(H(xu
i ), z◦) ∀i ∈ [k]

]

≤
∑

z◦
Pr

[
xu

i = AH(H(xu
i ), z◦) ∀i ∈ [k]

]
(12)

≤ |Z| · Ck (k + q)kqk

|X |k ,

for some absolute constant C, and k, q, |X | large enough, where the last inequality
is now by Lemma 3, given that A is quantum. Thus

E[W (S∗(H, z))k] = |X |k · E[σ(H, z)k] ≤ |Z| · Ck(k + q)kqk ,

and so by Markov inequality,

Pr
[
W (S∗(H, z)) > 2C(k + q)q

] ≤ E
[
W (S∗(H, z))k

]

(
2C(k + q)q

)k
≤ |Z|

2k
≤ ε

where the final inequality is achieved by choosing the minimum possible k ≥
log |Z| + log(1/ε). Thus, setting T = 2C(k + q)q and plugging into (10) we
obtain that

AdvHnSH

(D,A) ≤ Tε + Pr[W (S∗(H, z)) > T ]

≤ O
(
(log |Z| + log(1/ε) + q)qε

)
.

This proves the claim. ��

5 Non-resignability in the Computational Setting

Here, we want to extend our result on non-resignability of the BUFF transform
to the computational setting, where D,A and aux are polynomially bounded,
and where the entropy requirement (1) holds computationally only; the latter is
the reason why the computational case does not follow directly from the statis-
tical case. In order to capture the entropy requirement (1) in the computational
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setting via HILL entropy, we need the notion of the HILL entropy in the ROM,
as introduced in [13], which we briefly recall below.

Here and for the remainder of this section, we take it as understood that the
domain and co-domain of H : X → Y may depend on the security parameter λ;
for simplicity, we leave this dependency implicit. Moreover, we assume the co-
domain of H to be super-polynomially large, i.e., |Y| ≥ λω(1). For simplicity, we
restrict to asymptotic bounds below.

5.1 HILL Entropy in the ROM

The HILL entropy [15,16] is introduced as a computational analogue of min-
entropy. For a pair of random variables (X,Y ), we say that X has high condi-
tional HILL entropy given Y , if there is another random variable Z, such that
(X,Y ) and (Z, Y ) are computationally indistinguishable, and yet Z has high
min-entropy given Y .

However, expressing (1) naively using HILL entropy is problematic, since H,
which is conditioned on, is too large for a computationally bounded distinguisher
to even read. Because of this reason, [13] introduced the notion of HILL entropy
in the ROM, where instead of conditioning on H, the distinguisher (that tries
to distinguish (X,Y ) and (Z, Y )) is given bounded oracle access to H. We recall
(the asymptotic version of) the formal definition.

Definition 1. Let (Xλ, Yλ) be a pair of (possibly H-dependent) random vari-
ables for each λ. We say that X = {Xλ}λ has k(λ) bits of conditional HILL
entropy given Y = {Yλ}λ in the ROM, denoted by

HILLH
∞(X | Y ) ≥ k(λ) ,

if for every λ there exists a random variable Zλ with H∞(Zλ | Yλ,H) ≥ k(λ),
and so that {(Xλ, Yλ)}λ and {(Zλ, Yλ)}λ are computationally indistinguishable
for oracle algorithms.

Remark 3. Following the standard definition, computationally indistinguisha-
bility holds for non-uniform PPT distinguishers; this then allows us to consider
non-uniform PPT (oracle) algorithms D and A below. If instead we consider
computationally indistinguishability for uniform PPT distinguishers only then
below D and A need to be restricted to uniform PPT algorithms as well. Simi-
larly, if we allow the distinguisher to be quantum, then D and A below may be
quantum as well.

5.2 Achieving sNRH,⊥ in the Computational Setting

Here, we consider the computational variant of sNRH,⊥, where we restrict
DH ,AH and aux to be PPT (oracle) algorithms. Furthermore, the entropy
requirement (1) is replaced by
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HILLH
∞

(sk,pk)←KGenH

m←DH (sk)

(m | sk, aux(sk,m)) ≥ ω(log λ) , (13)

and we then naturally demand that the game sNRH,⊥ can be won with negligible
probability negl(λ) only.

Remark 4. Interestingly, and maybe somewhat surprisingly, in the computa-
tional setting sNRH,⊥ does not imply NRH,⊥, in contrast to the statistical setting,
as explained in Sect. 2.3. Indeed, [13] showed that the BUFF transform does in
general not satisfy NRH,⊥ in the computational setting, while below we show that
it does satisfy sNRH,⊥. See Remark 1 for why our proof does not carry over to
NRH,⊥. We suspect that the two notions are incomparable in the computational
setting.

We get the following positive result on the computational sNRH,⊥ security
of the BUFF transform BUFF[S,H].

Theorem 4. Let S = (KGen,SignH ,VrfyH) be a signature scheme in ROM,
where KGen makes no query to H, and let BUFF[S,H] be the signature scheme
obtained by applying the BUFF transform. Then for every PPT hint function
aux, and for any PPT adversaries DH ,AH against sNRH,⊥

BUFF[S,H] that satisfy
(13), we have

AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ negl(λ) .

In spirit, we can recycle Lemma 1 to reduce the computational variant of
sNRH,⊥ to the computational variant of Hide-and-Seek, and then we show in
Lemma 4 that the latter is hard as well, which follows rather directly from the
statistical hardness and the definition of the HILL entropy.

Proof. Take (D̄, Ā) as in Lemma 1, for which

AdvsNRH,⊥
BUFF[S,H] ≤ poly(λ) · AdvHnSH

(D̄, Ā) + negl(λ) ,

where we exploit that the numbers of queries made by Sign, D, and A are
bounded by their (polynomial) running times, respectively, and that the additive
term qKε in (5) vanishes due to the assumption that KGen makes no query to H.
Hence it suffices to control the HnSH advantage of (D̄, Ā).

Towards this end, we first note that, by inspecting the construction of D̄ with
x = (pk,m) and z = (sk, aux(sk,m)), the HILL entropy variant of (3) follows:

HILLH
∞

(x,z)←D̄H

(x | z) ≥ k(λ) ⇐⇒ HILLH
∞

(sk,pk)←KGenH

m←DH (sk)

(m | sk, aux(sk,m)) ≥ k(λ) ,

where the equivalence is due to the public key pk being efficiently derivable
from its corresponding secret key sk, and so (6) also holds for the HILL entropy.
Combining the above with (13), we obtain

HILLH
∞

(x,z)←D̄H

(x | z) ≥ ω(log λ) .
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Moreover, by Lemma 1, D̄ : {⊥} → X × Z with Z = SK × AUX . Hence

log |Z| = log |SK| + log |AUX | ≤ poly(λ)

due to both KGen and aux being poly-time. Finally, Lemma 1 ensures that Ā is
PPT whenever A is, which is satisfied by assumption. Thus, the assumptions for
Lemma 4 below (the hardness of Hide-and-Seek in the computational setting)
are all satisfied, and so

AdvHnSH

(D̄, Ā) ≤ negl(λ) ,

which concludes the proof. ��
The following provided the computational hardness of Hide-and-Seek.

Lemma 4. Let DH : {⊥} → X ×Z and AH : Y ×Z → X be adversaries against
HnSH , with A being PPT, log |Z| < poly(λ), and

HILLH
∞

(x,z)←DH

(x | z) ≥ ω(log λ) .

Then AdvHnSH

(D,A) ≤ negl(λ).

Proof. Let (x, z) ← DH . Via the entropy condition, there is an (H-dependent)
random variable x∗ ∈ X such that guess(x∗ | H, z) ≤ negl(λ) and moreover
(x∗, z) and (x, z) are computationally indistinguishable. Without loss of gener-
ality, we may assume (x∗, z) is sampled via a (possibly unbounded) hider D∗H .
Now, inspect the displayed games HnSH(D,A) and HnSH(D∗,A) below.

HnSH(D,A)
1: (x, z) ← DH

2: return x = AH(H(x), z)

HnSH(D∗,A):
1: (x∗, z) ← D∗H

2: return x∗ = AH(H(x∗), z)

By the computational indistinguishability, it follows that

|AdvHnSH

(D,A) − AdvHnSH

(D∗,A)| ≤ negl(λ) .

Finally, we can apply Theorem 3 to the HnSH adversaries D∗ and A, which satisfy
the statistical entropy condition, and so we have AdvHnS(D∗,A) ≤ negl(λ). This
concludes the proof. ��
Remark 5. Interestingly, towards proving sNRH,⊥ of the BUFF transform in the
statistical setting, as we did earlier in the paper, it would have been sufficient to
show that the random oracle satisfies (the statistical variant of) HnS for a query
bounded hider D. However, for the above line of reasoning in the computational
setting, it is essential that Theorem 2 holds for a query unbounded hider; indeed,
above, x∗ may be arbitrarily dependent on H, and so might not be producible
by a query bounded hider D∗.
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6 Conclusion

In the light of recent negative result on the notion of non-resignability in general,
and the non-resignability of the BUFF transform in particular, we re-establish
the non-resignability property for the original BUFF transform for the (almost)
strongest notions of non-resignability that do not contradict any negative result.
Our results cover both the statistical and the computational case, and both the
classical and the quantum setting. This answers the pressing question left open
in the recent works on the non-resignability of the BUFF transform.

One small gap that remains open from our work is to weaken the HILL
entropy requirement in the computational setting to computational unpredictabil-
ity, as considered in [14]. Having large HILL entropy implies computational
unpredictability, but not the other way round. Thus, whether the BUFF trans-
form satisfies the computational variant of sNRH,⊥ when the HILL entropy
requirement is relaxed to computational unpredictability, remains open.
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A Proof of Theorem 1

Proof. In the classical case, combining Lemma 1 and Theorem 2, for Z = SK ×
AUX and q = qA + qS we obtain

AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ q · 4(q + 1)(log |Z| + log(1/ε) + 1)ε + qKε +

qD + 1
|Y|

≤ 8(q + 1)2
(
log |Z| + log(1/ε)

)
ε + qKε +

qD + 1
|Y| ,

where the second inequality exploits that log(1/ε) ≥ 1. This concludes the clas-
sical bound.

Similarly, in the quantum case, combining Lemma 1 and Theorem 3, for
Z = SK × AUX and q = qA + qS we obtain

AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ 2q ·

√
O

(
(log |Z| + log(1/ε) + q)qε

)
+ qKε +

qD + 1
|Y|

≤ O
(√

(log |Z| + log(1/ε) + q)q3ε
)

+ qKε +
qD + 1

|Y| as min(1/ε, |Z|, q) → ∞,

where the constants in the asymptotic bounds are absolute constants. Hence,
there are absolute constants n,C ≥ 2 such that

AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ C

√
(log |Z| + log(1/ε) + q)q3ε + qKε +

qD + 1
|Y| ,
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whenever min(1/ε, |Z|, q) ≥ n. In order to get a bound even when |Z| < n, we
increase |AUX | to n|AUX | without actually changing the algorithm aux, and
so get

AdvsNRH,⊥
BUFF[S,H](D,A, aux) ≤ C ·

√(
log

|SK| · n|AUX |
ε

+ q

)
q3ε + qKε +

qD + 1
|Y|

≤ C
√

2 ·
√(

log
|SK| · |AUX |

ε
+ q

)
q3ε + qKε +

qD + 1
|Y|

whenever min(1/ε, q) ≥ n, where the second inequality is via q +log n ≤ q +n ≤
2q. Finally, since q ≥ qA, the boundary condition of the above inequality can be
relaxed to min(1/ε, qA) ≥ n. This concludes the proof. ��

B Proof of Lemma 2

Proof. First, we note that the input z◦ can be omitted, as it can be hardwired
into A.

For the case k = 1, consider H ′ to be a fresh random oracle, independent
of H. Then, the distributions of AH(H(xu)) and AH′

(H(xu)) coincide, unless a
query of A to H happens to be a query on xu, which happens with probability
at most q

|X | . Thus

Pr
[
xu = AH(H(xu))

] ≤ Pr
[
xu = AH′

(H(xu))
]
+

q

|X | ≤ q + 1
|X | .

For the case k > 1, instead of considering AH(H(xu
k)), the run of A on the

k-th instance, we consider a run of AH
k (H(xu

k), Tk−1), specified as follows. Ak is
given as additional input the collection Tk−1 of transcripts of the runs of A on
the previous instances xu

1 , . . . , xu
k−1; this includes each instance xu

i and its hash
H(xu

i ), as well as all the hash queries and responses of these k − 1 runs of A.
Ak then simply runs A, but whenever A is about to query H on an input that
is contained in Tk−1, it reads out the hash from there, instead of querying H.
AH

k (H(xu
k), Tk−1) then obviously behaves identically to AH(H(xu

k)). Further-
more, conditioned on any fixed Tk−1, the distributions of AH

k (H(xu
k), Tk−1) and

AH′
k (H ′(xu

k), Tk−1) coincide, where again H ′ is a fresh random oracle, unless xu
k

happens to be contained in Tk−1, which happens with probability (k−1)(q+1)
X .

Thus,

Pr
[
xu

k = AH(H(xu
k)) | xu

i = AH(H(xu
i ))∀ i < k

]

= Pr
[
xu

k = AH
k (H(xu

k), Tk−1)
∣
∣ xu

i = AH(H(xu
i ))∀ i < k

]

≤ Pr
[
xu

k = AH′
k (H ′(xu

k), Tk−1)
∣
∣ xu

i = AH(H(xu
i ))∀ i < k

]
+ (k − 1)

q + 1
|X |

≤ k
q + 1
|X |
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where the last inequality follows from the fact for any fixed choice of Tk−1, we are
back to the case k = 1 due to the freshness of H ′. Multiplying these probability
gives the claimed bound. ��
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Abstract. Multi-signature schemes are gaining significant interest due
to their blockchain applications. Of particular interest are two-round
schemes in the plain public-key model that offer key aggregation, and
whose security is based on the hardness of the DLOG problem. Unfortu-
nately, despite substantial recent progress, the security proofs of the pro-
posed schemes provide rather insufficient concrete guarantees (especially
for 256-bit groups). This frustrating situation has so far been approached
either by relying on the security of seemingly-stronger assumptions or by
considering restricted classes of attackers (e.g., algebraic attackers, which
are assumed to provide an algebraic justification of each group element
that they produce).

We present a complementing approach by constructing multi-
signature schemes that satisfy two relaxed notions of security, whose
applicability nevertheless ranges from serving as drop-in replacements
to enabling expressive smart contract validation procedures. Our first
notion, one-time unforgeability, extends the analogous single-signer
notion by considering attackers that obtain a single signature for some
message and set of signers of their choice. We construct a non-interactive
one-time scheme based on any ring-homomorphic one-way function,
admitting efficient instantiations based on the DLOG and RSA assump-
tions. Aggregated verification keys and signatures consist of two group
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elements and a single group element, respectively, and our security proof
consists of a single application of the forking lemma (thus avoiding the
substantial security loss exhibited by the proposed two-round schemes).
Additionally, we demonstrate that our scheme naturally extends to a t-
time scheme, where aggregated verification keys consist of t + 1 group
elements, while aggregated signatures still consist of a single group
element.

Our second notion, single-set unforgeability, considers attackers that
obtain any polynomial number of signatures but are restricted to a single
set of signers of their choice. We transform any non-interactive one-time
scheme into a two-round single-set scheme via a novel forking-free con-
struction that extends the seminal Naor-Yung tree-based approach to the
multi-signer setting. Aggregated verification keys are essentially identi-
cal to those of the underlying one-time scheme, and the length of aggre-
gated signatures is determined by that of the underlying scheme while
scaling linearly with the length of messages (noting that long messages
can always be hashed using a collision-resistant function). Instantiated
with our one-time scheme, we obtain aggregated verification keys and
signatures whose lengths are completely independent of the number of
signers.

1 Introduction

A multi-signature scheme [IN83,BN06] enables any set of signers, within a large
and potentially permissionless system, to jointly produce a compact signature on
a given message. Research on the design and analysis of multi-signature schemes
has recently gained significant renewed interest, as such schemes were found par-
ticularly suitable for blockchain applications. These range from drop-in replace-
ments for standard signatures (e.g., [BDN18,MPS+19]), to smart contracts with
expressive multi-owner validation procedures (e.g., [BWG+21,Arg22,Sta23]).

Two Breakthroughs: Plain PK Model and Key Aggregation. The high-
level of suitability exhibited by multi-signatures to blockchain applications fol-
lows mostly due to two major breakthroughs. First, Bellare and Neven [BN06]
showed that multi-signature schemes can provide security in the plain public-
key model, capturing a realistic and permissionless environment, while not com-
promising on practicality. Specifically, in this model, each signer locally pro-
duces their signing and verification keys, without engaging in an interactive
key-generation process with other signers or with a registration authority, and
without augmenting verification keys with proofs of knowledge that need to
be individually verified by all other signers. Second, Boneh, Drijvers and Neven
[BDN18] and Maxwell, Poelstra, Seurin and Wuille [MPS+19] showed that multi-
signature schemes can support non-interactive aggregation of verification keys
(in the plain public-key model). Therefore, once an aggregated verification key
has been verified to correspond to a particular set of signers, any dependence on
the number of signers during all future signature verifications may be completely
eliminated. This essentially turns the verification of multi-signatures as practical
as (and even fully compatible with) that of standard signatures.
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Following up on earlier constructions (e.g., [OO91,LHL94,MOR01,Bol03,
LOS+06,BGO+07,RY07] and the references therein), this significant progress
has led to a host of recent multi-signature schemes [DEF+19,NRS+20,AB21,
BD21,NRS21,BTT22,DOT+22,FSZ22,LK23,PW23,TZ23]. Of particular inter-
est in the blockchain setting are two-round schemes in the plain public-key model
whose security is based on the hardness of the discrete logarithm (DLOG) prob-
lem in prime-order groups, as such schemes may admit practical implementations
over standard elliptic curves, such as Secp256k1 or Curve25519.

Concrete Security Guarantees in 256-bit Groups? As observed by Bellare
and Dai [BD21] (and most recently also by Pan and Wagner [PW23]), despite
the substantial recent efforts, the existing proofs that base the security of the
proposed two-round schemes in the plain public-key model on the hardness of
the DLOG problem provide rather insufficient concrete guarantees in 256-bit
groups. As common for DLOG-based signatures, these proofs of security are
based on the classic forking lemma [PS00,BN06], but instead of relying on a
single application of the lemma, they rely on two nested applications – leading
to a substantial loss in the provable concrete security.

At a high level, under the widely-accepted assumption that the success prob-
ability of any t-time algorithm in solving the DLOG problem in a group of order
p is at most t2/p [Sho97], proofs of security that rely on two nested applications
of the forking lemma seem limited to bounding the success probability of t-time
attackers with roughly

(
t2/p

)1/4. For a 256-bit prime p, such a bound falls short
of providing sufficient concrete security guarantees, especially when compared
to the

(
t2/p

)1/2 bound resulting from a single application of the forking lemma
(as is the case, for example, with Schnorr signatures, and more generally with
signature schemes obtained from identification protocols via the Fiat-Shamir
transform [FS86,Sch91,AAB+02,KMP16]).1

This frustrating situation has so far been approached for DLOG-based
schemes in the plain public-key model via two relaxations: Either relying on
the security of a recently-introduced stronger variant of the DLOG assump-
tion (the interactive XIDL assumption introduced by Bellare and Dai [BD21]),
or by proving security with respect to restricted classes of attackers [AB21,
BD21,NRS21,LK23] (most notably, algebraic attackers, which are assumed to
provide an algebraic justification of each group element that they produce
[FKL18,AHK20,BFL20,FPS20,MTT19,RS20]). On the one hand, these relax-
ations have indeed led to tighter concrete security bounds. On the other hand,
however, the extent to which the concrete security bounds resulting from these
relaxations capture the security of the relevant schemes relative to hardness of
the DLOG problem, is naturally rather limited.

1 For simplicity, in the above discussion we did not include additional factors that
depend on the number of random-oracle queries and signing queries issued by attack-
ers, but rather focused mainly on the dependence on the order p of the group.
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1.1 Our Contributions

We present a complementing approach for designing multi-signature schemes
in the plain public-key model and obtaining a better understanding of their
security: Instead of relying on recently-introduced assumptions or considering
restricted classes of attackers via the algebraic group model, we construct multi-
signature schemes that satisfy relaxed notions of security. Our approach relaxes
the full-fledged notion of security for multi-signature schemes in the plain public-
key model by restricting attackers’ abilities to obtain signatures of their choice.
This leads us to formalizing two notions of security, one-time unforgeability and
single-set unforgeability, and to construct schemes that satisfy them. Although
our notions are not as strong as the full-fledged one, their applicability never-
theless ranges from serving as drop-in replacements to enabling expressive smart
contract validation procedures, as we discuss in Sect. 1.2.

One-Time Multi-signatures. Our notion of one-time unforgeability naturally
extends the analogous single-signer notion to the multi-signer setting by consid-
ering attackers that obtain a single signature for some message and set of signers
of their choice. We construct a multi-signature scheme satisfying this notion of
security in the random-oracle model based on any ring-homomorphic one-way
function, admitting instantiations based on the DLOG and RSA assumptions
[CD98,CFG+15].2

Our scheme’s aggregated verification keys consist of two group elements,
and when compared to the known two-round multi-signature schemes that sat-
isfy the full-fledged notion of security for such schemes based on the hard-
ness of the DLOG problem without relying on the algebraic group model
[BD21,NRS21,TZ23], our scheme offers:3 (1) non-interactive signing, (2) aggre-
gate signatures that consist of a single group element, and (3) security proof that
consists of a single application of the forking lemma and thus avoids the sub-
stantial security loss resulting from two nested applications (without restricting
adversaries to algebraic ones). In particular, when relying on the hardness of the
DLOG problem, we recover the above-discussed

(
t2/p

)1/2 bound, similarly to
single-signer Schnorr signatures. Although here we focus mainly on the depen-
dence on the order p of the group, we note that our concrete bound includes
additional terms that depend on the number of random-oracle queries issued by
attackers. In addition, we demonstrate that our scheme naturally extends to a
t-time scheme, where aggregated verification keys consist of t+1 group elements,
while aggregated signatures still consist of a single group element.

Single-Set Multi-signatures. Our notion of single-set unforgeability considers
attackers that obtain any polynomial number of signatures for messages of their
choice, but are restricted to requesting all of these signatures with respect to
2 We note that a notion of one-time unforgeability in the context of aggregate signa-

tures was introduced by Boneh and Kim [BK20], as we discuss in Sect. 1.2.
3 It is not clear how to compare the efficiency and concrete security guarantees of our

one-time scheme to those of schemes that satisfy the full-fledged notion of security
for multi-signature schemes. See Sect. 1.3 for more details.
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a single set of signers. In this context, a single set of signers corresponds to a
single vector of verification keys, which may be adversarially chosen based on the
public parameters of the scheme and on the honestly-generated verification key
that is attacked. As we discuss in Sect. 1.2, this notion already suffices for various
applications of multi-signatures, such as validating blockchain transactions in a
wide range of settings.

We show that any one-time multi-signature scheme with non-interactive sign-
ing can be transformed into a scheme satisfying our notion of single-set unforge-
ability, where the signing process of the resulting scheme consists of two rounds.
Our transformation is obtained via a tree-based construction that relies on stan-
dard cryptographic tools, most notably on a non-interactive zero-knowledge
proof system (we rely on these standard tools for overcoming the challenges
that arise when extending the seminal Naor-Yung tree-based signature scheme
[NY89] to the multi-signer setting).4

The length of the resulting scheme’s verification keys and aggregated veri-
fication keys is independent of the number of signers, and the keys themselves
are essentially identical to those of the underlying one-time scheme. The length
of the resulting scheme’s signatures and aggregated signatures is also indepen-
dent of the number of signers, and determined by that of the underlying scheme
while scaling linearly with the length of messages (�λ-bit signatures for �-bit
messages, where λ is the security parameter, as in the Naor-Yung transforma-
tion5). Instantiated with our one-time scheme, we obtain verification keys and
signatures whose lengths are completely independent of the number of signers.

Our transformation demonstrates that at least for short messages there is
no inherent and significant security loss when transforming one-time multi-
signatures into single-set multi-signatures, and that our security loss essen-
tially matches that of transforming single-user one-time signatures into re-usable
ones.6 Finally, We note that in the single-signer setting, tree-based signatures
that utilize one-time signatures were initially mostly of foundational interest,
whereas additional substantial efforts have demonstrated their practical appli-
cability (see, for example, [BHH+15,AE18,BHK+19,HK22,KHR+22] and the
references therein).

One-Time Multi-signatures: Structure vs. Hardness. Revisiting our one-
time multi-signature scheme, it is quite noticeable that whereas one-time single-
4 We emphasize that we rely on standard non-interactive zero-knowledge proofs, which

can be realized based on well-studied falsifiable assumptions, and that we do not
rely on succinct non-interactive arguments of knowledge (SNARKs) [Mic00,Gro10,
GW11,BCI+13,BCS16]. In particular, we do not have any requirements regarding
the length of the resulting proofs (they are not included in our signatures, and only
play an intermediate role) and do not assume any form of proofs of knowledge.

5 Without loss of generality, � ≤ λ as otherwise longer messages can first be hashed
using a collision-resistant function.

6 The work of Blazy, Kakvi, Kiltz, and Pan [BKK+15] presented a construction of
re-usable signatures with a tight security reduction. However, their starting point
was not a one-time signature scheme, but rather a Chameleon hash function, which
is a significant more structured object.
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signer signatures can be constructed based on any one-way function [Lam79],
our multi-signer scheme is based on the more structured notion of a ring-
homomorphic one-way function. Although such functions admit realizations
based on standard number-theoretic assumptions [CD98,CFG+15], this raises
the question of whether one-time multi-signatures require more structured forms
of cryptographic hardness when compared to one-time single-signer signatures.

Addressing this fundamental question, we prove that one-time multi-
signature schemes satisfying a natural property (which is satisfied by our one-
time scheme) cannot be constructed in a fully black-box manner based on one-
way functions. An interesting question for further research is whether this can
be circumvented via a seemingly less-natural construction.

1.2 Overview of Our Approach

In this section we first briefly discuss the applicability of schemes that satisfy our
notions of security. Then, we present a high-level overview of our constructions.

The Applicability of One-Time and Single-Set Multi-signatures. Our
relaxed notions naturally serve as intermediate notions for obtaining a better
understanding of the concrete security of full-fledged multi-signatures. At the
same time, a direct application of one-time multi-signatures is for validating one-
time transactions, such Bitcoin UTXOs [Nak09] (as described by Boneh and Kim
[BK20] in the somewhat incomparable context of one-time aggregated signatures,
which we discuss below). Specifically, a UTXO is spent after validating one or
more signatures with respect to the verification keys committed in the UTXO.
Once spent, it cannot be spent again, and the funds are transferred to a different
UTXO. Thus, using a one-time multi-signature scheme for UTXOs can eliminate
any dependence on the number of signers during verification, and to reduce both
communication and storage cost. This comes at the cost of not using the same
signing key for more than one UTXO, and this can be managed, for example,
by deriving any number of one-time signing keys via a single master key for a
pseudorandom function (thus, the one-time signing keys need not be stored, but
can instead be reproduced upon demand).

A somewhat less direct application of one-time multi-signatures is for val-
idating standard (i.e., reusable) transactions via account abstraction (e.g.,
[BWG+21,Arg22,Sta23]). At a high level, account abstraction (among its vari-
ous features) enables smart contracts to offer arbitrary validation logic. Already
in the single-signer setting, consider a smart contract whose storage includes
a one-time verification key, and whenever the user provides a transaction they
provide a signature with respect to the currently-stored verification key both
on the provided input to the smart contract and on a newly-generated one-time
verification key that the contract will store instead of its current one. This is
motivated by the textbook path-based construction of signatures from one-time
signatures [KL21], which is typically presented as a warm-up for the classic
Naor-Yung tree-based construction [NY89]. Unlike the textbook construction,
here the verification time and signature length do not scale with the number
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of previously-generated signatures, since each newly-generated verification key
replaces its predecessor in the contract’s storage.7 Such a mechanism extends to
the multi-signer setting in various ways using a one-time multi-signature scheme,
where each transaction additionally updates the stored aggregated verification
key. Here, the advantages of using a one-time multi-signature scheme with non-
interactive signing and concrete security guarantees based on the hardness of
the DLOG problem may be significant.

Finally, for our notion of single-set multi-signatures, where an adversary may
observe any polynomial number of signatures for a single set of signers, account
abstraction is again useful. Specifically, for any smart contract whose trans-
actions require validating multiple signers, as long as each signer allocates a
contract-specific signing key that is not used for any other purpose, then single-
set security suffices (and there is no need for any key updates as with one-time
multi-signatures). As discussed above, such contract-specific keys can be derived
via a single master key, and thus do not have to be explicitly stored.

Our One-Time Multi-signature Scheme. The starting point of our one-time
scheme is the Schnorr-based one-time signature scheme designed by Bellare and
Shoup [BS08], which was extended by Boneh and Kim [BK20] to DLOG-based
and lattice-based one-time aggregate signature schemes. Recall that aggregate
signature schemes enable to aggregate signatures on any set of messages, whereas
multi-signature schemes enable to aggregate signatures on the same message. As
a result, the schemes of Boneh and Kim do not support aggregation of verification
keys, and their verification time scales linearly with the number of signers. We
use a different aggregation method that is tailored to aggregating signatures on
the same message. Once such an aggregated key has been verified to correspond
to a particular set of signers (e.g., in a preliminary phase as discussed above
for blockchain transactions), this enables us to guarantee that the signing and
verification operations are independent of the number of signers.

Our scheme is based on the abstract notion of a ring-homomorphic one-way
function, introduced by Catalano, Fiore, Gennaro and Vamvourellis [CFG+15].
At a high level, we consider an efficiently-computable homomorphism f : X → Y
for cyclic groups X and Y that allows computing linear operations “in the expo-
nent” over a ring K = Zq for some prime q (in the DLOG-based instantiation,
the prime q corresponds to the order of the cyclic groups8, but in the RSA-based
instantiation this is not the case – see Sect. 2.1 for a formal definition).

7 It should be noted that, over time, such a mechanism may run into various syn-
chronization issues since each signing key can be used only once. Such issues can be
dealt with either by using a t-time multi-signature scheme, or by using a recovery
mode (again, enabled by account abstraction) that allows key updates via a standard
multi-signature scheme. Assuming that such issues are hopefully not-too-frequent,
the overall efficiency of the validation procedure would be determined by that of the
one-time scheme.

8 In the DLOG-based instantiation, the homomorphism is simply the group exponen-
tiation operation relative to a given generator.
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Each signer in our scheme samples x, r ← X , and sets sk = (x, r) and
vk = (X,R) = (f(x), f(r)) as their signing key and verification key, respec-
tively. Then, a vector �vk = ((X1, R1), . . . , (Xn, Rn)) of verification keys, cor-
responding to n signers, is aggregated by computing aggvk = (aggX, aggR) =
(
∏n

i=1 Xai
i ,

∏n
i=1 Rai

i ), where (a1, . . . , an) = H1

(
�vk

)
for a hash function H1. For

any message m and vector �vk of verification keys, each signer computes a sig-
nature σi = ri + H0 (m, aggvk) · xi for a hash function H0, and signatures are
similarly aggregated by computing aggσ =

∑n
i=1 ai · σi. In turn, this enables to

verify an aggregate signature aggσ with respect to an aggregated verification key
aggvk = (aggX, aggR) by checking whether f(aggσ) = (aggX)H0(m,aggvk) · aggR.

Our security proof models the hash function H0 and H1 as random oracles,
and reduces the task of breaking the one-time unforgeability of the scheme to
that of breaking the one-wayness property of the ring-homomorphic function
(see Definition 2.1). Specifically, given any attacker for our scheme, we construct
an inverter that is given X = f(x) for a randomly chosen x, and outputs a
pair (x′, d) such that f(x′) = Xd and d �= 0 (note that, in the DLOG-setting
d can always be efficiently inverted, and thus without loss of generality d = 1,
but in the RSA-setting this is not the case). At a very high level, our proof
programs the random oracle H0 for embedding the value X in the honestly-
generated verification key given as input to the attacker, while generating R in
a way that would be consistent with the response to the attacker’s single signing
query. Then, the proof relies on a single application of the forking lemma using
the random oracle H1 for resampling the value of ai that corresponds to position
of the honestly-generated verification key in the aggregated verification key with
respect to which the attacker produces a forgery. Given two such forgeries, we
are then able to efficiently produce x′ and d as required. The proof naturally
contains a variety of challenges for implementing this high-level idea, and we
refer the reader to Sect. 4 for a complete and formal description.

From One-Time to Single-Set Multi-signatures. As mentioned above, our
approach is inspired by the Naor-Yung transformation of a one-time signature
scheme into a reusable one [NY89]. Recall that, in the Naor-Yung transformation,
the signer implicitly holds a binary tree of exponential size, where each node
of the tree is associated with a pair of one-time signing and verification keys.
Specifically, for signing �-bit messages, the tree has 2� leaves, where each leaf and
each internal node α ∈ {0, 1}≤� ∪ {ε} is associated with a pair (skα, vkα) of one-
time keys.9 The keys skε and vkε corresponding to the root ε serve as the signing
key and verification key, respectively, and all other keys (and randomness that
may be needed for using them) do not have to be explicitly generated or stored,
but rather can be produced whenever needed using a pseudorandom function
whose key is additionally included in the signing key.

For signing a message m ∈ {0, 1}�, the signer first uses the signing key skm

associated with the leaf correspond to the binary string m for signing the message

9 We denote by {0, 1}≤� the set of all binary strings of length at most �, and by ε the
empty string.
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m itself. Then, it uses the signing keys positioned on the path connecting the
root ε to the leaf m for certifying the path: For every j ∈ {0, . . . , � − 1}, the
signer uses the key skm|j associated with the internal node corresponding to the
binary string m|j to sign the concatenation of the two verification keys vkm|j0
and vkm|j1 corresponding to its two children in the tree.10 This makes sure that
each signing key is used at most once, thus enabling to rely on the one-time
security of the underlying scheme.

Equipped with the Naor-Yung transformation, let us attempt extending it
to the multi-signer setting. As in the single-signer setting, suppose that each
signer implicitly holds a tree, where each node α ∈ {0, 1}≤� ∪ {ε} is associated
with a pair (skα, vkα) of keys for a one-time multi-signature scheme. The keys
skε and vkε corresponding to the root ε again serve as the signing key and
verification key, respectively, and all other keys are similarly generated using
a pseudorandom function upon demand. Note that this structure enables to
aggregate the root verification keys vk(1)ε , . . . , vk(n)ε of any n signers by using the
key-aggregation algorithm of the underlying one-time scheme. More generally, it
enables to aggregate not only the root keys, but to implicitly define an aggregated
tree. In the aggregated tree, each node α ∈ {0, 1}≤� ∪ {ε} is associated with an
aggregated verification key aggvkα that is obtained by aggregating the one-time
verification keys vk(1)α , . . . , vk(n)α associated with the node α in the n individual
trees.

This observation leads to the following elegant, yet insecure, two-round sign-
ing protocol. For signing a message m with respect to signers with root verifica-
tion keys vk(1)ε , . . . , vk(n)ε , each signer first sends all other signers the 2� verifica-
tion keys on the path leading from the signer’s root to the leaf m. At this point,
all signers know the verification keys vk

(i)
m|jb for all i ∈ [n], j ∈ {0, . . . , � − 1}

and b ∈ {0, 1}. This enables each signer to compute the aggregated verification
keys aggvkm|jb along the path from the root to the leaf m in the aggregated tree.
Now, for each level j ∈ {0, . . . , � − 1}, each signer uses their one-time signing
key sk

(i)
m|j to non-interactively compute a signature σ

(i)
m|j on the concatenation of

the two aggregated verification keys aggvkm|j0 and aggvkm|j1 with respect to the

signer set vk
(1)
m|j , . . . , vk

(n)
m|j . Finally, each signer uses their one-time signing key

sk(i)m to compute a signature σ
(i)
m on the message m with respect to the signer set

vk(1)m , . . . , vk(n)m . These signatures are then aggregated for each level j ∈ {1, . . . , �}
to produce a signature that consists of � aggregated one-time signatures. Note
that both the length of the resulting signature and the time required to verify it
scale linearly with the length of the message (as in the Naor-Yung scheme), but
are completely independent of the number n of signers.

At this point, we would like to argue that since each one-time signing key is
used at most once, then we can rely on the security of the underlying one-time
multi-signature scheme to claim that our tree-based scheme is secure against
attackers issuing any polynomial number of signing queries. This argument fails,
10 We denote by m|j the leftmost j bits of a binary string m (where m|0 = ε), and we

denote by m|jb the binary string obtained by concatenating the strings m|j and b.
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however, if the attacker can request signatures with respect to more than one set
of signers. The reason is that different sets of signers induce different aggregated
trees. Consider an adversary that requests a signature from some signer i with
respect to a set S, and then requests a signature from the same signer i with
respect to a different set S ′. The first signature includes a signature with respect
to the one-time signing key sk(i)ε on information derived from the aggregated tree
corresponding to S, and the second signature includes a signature with respect to
the same one-time signing key sk(i)ε on information derived from the aggregated
tree corresponding to S ′. Since the underlying scheme is only guaranteed to be
one-time secure, the security of the tree-based construction breaks down.

Still, one might hope that the construction is secure as long as the attacker
issues signature queries with respect to a single set of signers, eliminating the
issue we just described. This coincides with our single-set notion of security.
However, this is not the case. This added restriction is insufficient because a
root verification key may be used by malicious signers for different trees. That
is, a malicious signer can still send different verification keys in the first round
of two invocations of the signing protocol. This again results in two distinct
aggregated trees (even though the two invocations of the signing protocol share
the same set of signers).

We resolve this additional challenge by identifying signers not only with
their root verification key, but also with a commitment containing a key for
a pseudorandom function from which their entire tree is derived. Now, in the
first round of the signing protocol, each signer sends all one-time verification
keys on the path from their root to the respective leaf, while augmenting each
such key with a non-interactive zero-knowledge proof asserting that it has been
generated correctly. From a foundational standpoint, such proofs can be based
on the existence of trapdoor functions11 [FLS90]. For practical instantiations,
these NIZK proofs can be based on one of the many recent efficient protocols12.
Crucially, these proofs are not included as part of the resulting signature, but
rather only serve as “proofs of semi-honest behavior” that enable each signer to
continue to the second round of the signing protocol. This describes the high-
level intuitive structure of our scheme, and we refer the reader to Sect. 5 for a
complete and formal description.

1.3 Related Work

DDH-Based Multi-signatures. Whereas most of the work on multi-
signatures in prime-order groups focused on DLOG-based schemes, several
schemes were suggested also based on the DDH assumption (e.g. [LYG19,FH21,
TSS+23,PW23]). As in the single-signer setting, DDH-based signatures may
lead to tighter reductions. Although, when implemented in concrete groups,

11 Technically speaking, these have to be certifiably injective and doubly-enhanced
[BY96,Gol11,GR13,CL18].

12 See [GS08,Gro16,BBB+18,BSBH+18,GWC19,CHM+20,XZS22,GLS+23] and the
many references therein for a highly non-exhaustive list of examples.
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such schemes typically do not offer the same efficiency guarantees as DLOG-
based ones.

DLOG-Based Two-Round Multi-signatures. Existing DLOG-based two-
round multi-signature schemes can be roughly divided into three categories: (1)
schemes whose security is established in the algebraic group model [AB21,BD21,
NRS21,LK23], (2) schemes whose security is established based on interactive
variants of the DLOG problem (without relying on the algebraic group model)
[BD21,NRS21], and (3) schemes whose security is established based on the stan-
dard DLOG problem (again, without relying on the algebraic group model)
[BD21,NRS21,TZ23]. As discussed in Sect. 1.1, it is challenging to compare the
efficiency and concrete security guarantees of our one-time scheme to those of the
existing DLOG-based schemes, as these schemes satisfy the full-fledged notion
of security for multi-signature schemes. If any comparison can be made, it would
seem essential for focus on category 3, since the schemes in categories 1 and 2
seem to inherently avoid nested applications of the forking lemma.

Focusing on category 3, the schemes of Bellare and Dai [BD21], Nick, Ruffing
and Seurin [NRS21], and Tessaro and Zhu [TZ23] rely on two nested applications
of the forking lemma (whereas we rely on a single application), their verification
keys consist of a single group element (whereas our verification keys consist of
two group elements), and their signatures consist of two, two and three group
elements, respectively (whereas our signatures consist of a single group element).

Synchronized Multi-signatures. A substantially different tree-based app-
roach, both in terms of its goals and in terms of its structure, was recently pre-
sented by Fleischhacker, Simkin and Zhang [FSZ22]. They constructed a lattice-
based multi-signature scheme in the synchronized model, where it is assumed
that signers share a global notion of time, and the signing algorithm takes the
current time step as an additional input. Most notably, it is additionally assumed
that no signer signs more than one message per time step, and the goal is to
aggregate signatures for the same message and same time step, without knowing
the set of signers in advance. Thus, a signature may be aggregated together with
those of any subset of other signers. As noted by Fleischhacker et al. such flexibil-
ity seems particularly useful in the blockchain setting for the task of confirming
newly-generated blocks: Block validators may be synchronized by the number
of the block that they sign, each validator does not sign more than one block
in each time period, and validators do not know which of the other potential
validators will actually participate.

In contrast to the synchronized model, we design our scheme in the plain
public key model [BN06], where there is no global notion of time (or any other
form of synchronization), and we aim at aggregating signatures not for a given
time step but rather for a given set of signers that is specified during the signing
process. In particular, our scheme guarantees that a signature may be aggregated
only with a specific set of signers that is provided to the signing algorithm as
input, while keeping the verification time independent of the number of signers.

From the technical perspective, as discussed above, our approach relies on
trees of exponential size, which are never explicitly constructed in their entirety.
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Each of the exponential number of leaves corresponds to a message-dedicated
verification key for a one-time multi-signature scheme, and the path leading to
each leaf is constructed upon demand using a pseudorandom function. In con-
trast, for supporting T time periods, Fleischhacker et al. explicitly sample T key
pairs, and then compute a homomorphic Merkle tree with the corresponding T
verification keys as its leaves. As a result, their scheme seems limited to sup-
porting only a polynomial number T of time periods, and the efficiency of their
key-generation algorithm scales linearly with T .

Finally, we note that since messages in their scheme are not signed with
respect to a given set of signers (but rather a signature can be aggregated
together with those of any subset of other signers), the notion of security
required from their one-time primitive does not explicitly consider multiple sign-
ers. Specifically, Fleischhacker et al. introduce a notion of single-signer one-time
key-homomorphic signatures, whereas we explicitly introduce a notion of one-
time multi-signatures satisfying security guarantees tailored to the multi-signer
setting, and our tree-based construction can rely on any multi-signature scheme
that satisfies it.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
main basic notions and the cryptographic primitives and tools that are used in
this work. In Sect. 3 we formalize the notions of one-time and single-set security
for multi-signature schemes. Then, in Sects. 4 and 5 we present our one-time and
single-set multi-signature schemes, respectively, and state their security. Due to
space limitations, we refer the reader to the full version of this work for some of
our contributions (including formal proofs of security).

2 Preliminaries

In this section we present the main basic notions and the cryptographic prim-
itives and tools that are used in this work. For an integer n ∈ N we denote by
[n] the set {1, . . . , n}. For a distribution X we denote by x ← X the process of
sampling a value x from the distribution X. Similarly, for a set X we denote by
x ← X the process of sampling a value x from the uniform distribution over X .

2.1 Ring-Homomorphic One-Way Functions

Our construction of a one-time multi-signature scheme relies on the notion of
ring-homomorphic one-way functions, introduced by Catalano, Fiore, Gennaro
and Vamvourellis [CFG+15]. This notion was presented by Catalano et al. as part
of their framework for algebraic one-way functions, which is closely-related to
the notion of group-homomorphic one-way functions introduced by Cramer and
Damg̊ard [CD98]. The notion considers function families F = (Setup,Eval) where
for any λ ∈ N and for any function index Ind produced by F.Setup(1λ) it holds
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that F.Eval(Ind, ·) : XInd → YInd is an efficiently-computable homomorphism
for cyclic groups XInd and YInd that allows computing linear operations “in the
exponent” over a ring KInd. For our purposes, we consider the specific case where
KInd = Zq for some prime q = q(Ind), and note that already this case captures the
known constructions based on the hardness of the discrete-logarithm problem
(i.e., the exponentiation function in a cyclic group) and RSA problem (i.e., the
RSA function) as we discuss below [CD98,CFG+15].

As formalize by Catalano et al. [CFG+15], such a function family F is ring
homomorphic if there exists an efficient algorithm Eval′ such that for any λ ∈ N,
Ind produced by Setup(1λ), generators h1, . . . , hm ∈ XInd, vector of elements

W = (W1, . . . ,W�) ∈ X �
Ind where Wi = h

ω
(1)
i

1 · · · hω
(m)
i

m · Ri, for some Ri ∈ XInd

and some integers ω
(j)
i ∈ Z (note that this decomposition may not be unique),

and vector of integers α ∈ Z
�, it holds that

Eval′(Ind,A,W ,Ω,α) = h
〈ω (1),α〉
1 · · · h〈ω (m),α〉

m

�∏

i=1

Rαi
i

where A = (A1, . . . , Am) ∈ Ym
Ind is such that Ai = FInd (hi) ,Ω =

(
ω
(j)
i

)

i,j
∈

Z
�×m, and each product

〈
ω(j),α

〉
in the exponent is computed over the ring

KInd.
In terms of one-wayness, Catalano et al. formalized the following notion of

flexible one-wayness, asking that given X = FInd(x) for a uniformly distributed
x ∈ XInd, it should be infeasible to output x′ ∈ XInd and d ∈ KInd such that
FInd(x′) = Xd and d �= 0KInd

.

Definition 2.1. A ring-homomorphic function family F = (Setup,Eval) is flex-
ible one-way if for every probabilistic polynomial-time algorithm A there exists
a negligible function ν(·) such that

Advhom-ow
F,A (λ) def= Pr

[
A(Ind,X) = (x′, d) s.t.

FInd(x′) = Xd and d �= 0KInd

]
≤ ν(λ),

where Ind ← Setup(1λ), x ← XInd and X = FInd(x).

Note that if KInd = Zq, where q is the order of Xλ, then the above definition
is equivalent to the standard notion of one-wayness. In particular, the hardness
of computing discrete logarithms in cyclic groups is equivalent to the flexible
one-wayness of the group exponentiation function in such groups. In addition,
Catalano et al. [CFG+15] showed that the RSA function x → xe mod N in
the subgroup QRN ⊂ Z

∗
N of quadratic residues (where N is the product of two

“safe primes” and thus QRN is cyclic) is flexible one-way based on the RSA
assumption. In this case, KInd = Ze for any prime e ≥ 3.

2.2 The Forking Lemma

The proof of security for our one-time multi-signature scheme relies on the
“forking lemma” of Bellare and Neven [BN06] (following Pointcheval and Stern
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[PS00]). Let q ≥ 1 be an integer, and let H, X and Y be a sets such that |H| ≥ 2.
Let A be a randomized algorithm that on input (x,�h) ∈ X × Hq returns either
a pair (i, y) ∈ [q] × Y or the dedicated symbol ⊥. Let FA be an algorithm that
takes inputs in X and returns either an output (y, y′) ∈ Y2 or the dedicated
symbol ⊥, and is defined as follows:

1. Sample random coins ρ ← {0, 1}∗ for A.
2. Sample h1, . . . , hq ← H and compute out1 = A(x, h1, . . . , hq; ρ).
3. If out1 = ⊥ then return ⊥, and otherwise let out1 = (i, y).
4. Sample h′

i, . . . , h
′
q ← H and compute out2 = A(x, h1, . . . , hi−1, h

′
i, . . . , hq; ρ).

5. If out2 = ⊥ then return ⊥, and otherwise let out2 = (i′, y′).
6. If i′ = i and hi �= h′

i then return (i, y, y′), and otherwise return ⊥.

The following lemma, due to Bellare and Neven [BN06], relates the probabil-
ity that FA successfully provides an output (other than ⊥) to the corresponding
probability of A.

Lemma 2.2 ([BN06]). For any algorithm A and for any distribution D over X
it holds that

Pr
x←D

[FA(x) �= ⊥] ≥ ε ·
(

ε

q
− 1

|H|
)

,

where
ε = Pr

x←D
�h←Hq

[
A

(
x,�h

)
�= ⊥

]
.

3 One-Time and Single-Set Security for Multi-signature
Schemes

In this section we formalize our two notions of security for multi-signature
schemes. These notions are obtained by relaxing the notion of security for multi-
signature schemes, formalized by Bellare and Neven [BN06] and recently refined
by Bellare and Dai [BD21], by restricting adversaries’ abilities to obtain signa-
tures of their choice. In what follows we briefly recall the syntax and correctness
requirement of multi-signature schemes, and then formally present our notions
of security in Sects. 3.1 and 3.2.

A multi-signature scheme is a six-tuple Π = (Setup,KG,KAgg,Sign,SAgg,
Verify) of polynomial-time algorithms. The setup algorithm Setup receives as
input the unary representation of the security parameter λ ∈ N and outputs
public parameters pp. The key-generation algorithm KG receives as input the
public parameters pp, and outputs a signing key sk and a verification key vk.
The key-aggregation algorithm KAgg is a deterministic algorithm that takes as
input the public parameters pp and a vector of verification keys �vk, and outputs
an aggregated verification key aggvk.13 For schemes with non-interactive signing,
13 For our framework we view collections of verification keys as vectors and not sets.

Note that any set can be uniquely transformed into a vector by determining an order
among its elements (e.g., lexicographic order).
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the signing algorithm Sign receives as input the public parameters pp, a signing
key sk, a vector �vk of verification keys, and a message m that is taken from a mes-
sage space M, and outputs a signature σ. For schemes with interactive signing,
the signing algorithm defines an interactive protocol by additionally receiving
as input at each round the relevant party’s internal state the communication
produced by all other parties. The signature-aggregation algorithm SAgg is a
deterministic algorithm that takes as input the public parameters pp, a vector
of verification keys �vk, and a vector of signatures �σ, and outputs an aggregated
signature σ. Finally, the verification algorithm Verify receives as input the pub-
lic parameters pp, an aggregated verification key aggvk, a message m and an
aggregated signature σ, and outputs either 0 or 1.

In terms of correctness, we consider the following standard requirement,
which we formalize for simplicity for schemes with non-interactive signing and
then discuss its extension to schemes with interactive signing:

Definition 3.1. A multi-signature scheme Π = (Setup,KG,KAgg,Sign,SAgg,
Verify) with non-interactive signing over a message space M = {Mλ}λ∈N is
perfectly correct if for any polynomial n = n(·), security parameter λ ∈ N, and
message m ∈ Mλ it holds that

Pr
[
Verify

(
pp,KAgg

(
pp, �vk

)
,m,SAgg

(
pp, �vk, �σ

))
= 1

]
= 1

for �vk = (vk1, . . . , vkn) and �σ = (σ1, . . . , σn), where the probability is taken over
the choice of pp ← Setup(1λ), and over the choices of (ski, vki) ← KG(pp) and
σi ← Sign

(
pp, ski, �vk,m

)
for every i ∈ [n].

The above definition extends to schemes with interactive signing by letting
(σ1, . . . , σn) denote the local output of each party in the interactive signing
protocol, where each party i ∈ [n] is provided with

(
pp, ski, �vk,m

)
as input. We

refer the reader to the work of Bellare and Dai [BD21] for a formal treatment of
the correctness requirement for schemes with interactive signing.

A standard relaxation of the above definition allows for a negligible error
probability. Concretely, our single-set multi-signature scheme presented in Sect. 5
provides perfect correctness whenever the vector �vk consists of distinct verifica-
tion keys. Since essentially any notion of security for signature schemes guaran-
tees that collisions among honestly-generated verification keys may occur only
with a negligible probability, this yields at most a negligible error probability.

3.1 One-Time Unforgeability

For presenting the notion of one-time unforgeability for multi-signature schemes,
we focus on multi-signature schemes with non-interactive signing, and note that
the following treatment naturally extends to schemes with interactive signing
(our one-time multi-signature scheme in Sect. 4 has non-interactive signing).

This notion of security captures attacks in which an adversary may obtain a
single signature of their choice. Specifically, we consider a security experiment in
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which the adversary first receives the public parameters pp of the scheme and an
honestly-generated verification key vk. Then, the adversary may issue a single
signing query for some message m with respect to some set of signers indicated
via a vector �vk = (vk1, . . . , vkn) of verification keys. Both the message m and
the vector �vk of verification keys may be arbitrarily chosen (in polynomial time)
by the adversary based on the public parameters and the honest verification
key. Next, the adversary obtains a signature σ ← Sign(pp, sk, �vk,m) produced
using the signing key sk corresponding to the honest verification key vk (note
that if vk /∈ �vk then the signing algorithm may be defined to output ⊥), and
the adversary’s goal is to output a non-trivial forgery ( �vk∗,m∗, aggσ∗). The non-
triviality of the forgery is reflected in the fact that vk ∈ �vk∗ and ( �vk∗,m∗) �=
(�vk,m) (i.e., it could not have been directly obtained as the result of the signing
query), and that the aggregated signature aggσ∗ verifies correctly for the message
m∗ with respect to the aggregate verification key corresponding to �vk∗.

Definition 3.2. Let t = t(λ) and ε = ε(λ) be functions of the secu-
rity parameter λ ∈ N. A non-interactive multi-signature scheme Π =
(Setup,KG,KAgg,Sign,SAgg,Verify) is one-time (t, ε)-unforgeable if for any
algorithm A = (A1, A2) that runs in time at most t it holds that

Adv1TimeMS
Π,A (λ) def= Pr

[
Exp1TimeMS

Π,A (λ) = 1
]

≤ ε(λ)

for all sufficiently large λ ∈ N, where the experiment Exp1TimeMS
Π,A (λ) is defined as

follows:

1. pp ← Setup(1λ).
2. (sk, vk) ← KG(pp).
3.

(
�vk,m, st

)
← A1(1λ, pp, vk).

4. σ ← Sign
(
pp, sk, �vk,m

)
.

5.
(

�vk∗,m∗, aggσ∗
)

← A2(st, σ).
6. If the following conditions are satisfied then output 1 and otherwise output 0:

(a) vk ∈ �vk∗.
(b)

(
�vk∗,m∗

)
�=

(
�vk,m

)

(c) Verify
(
pp,KAgg

(
�vk∗

)
,m∗, aggσ∗

)
= 1.

In some cases we omit the parameters t and ε corresponding to the run-
ning time and success probability of adversaries, respectively, and consider
polynomial-time adversaries with negligible success probabilities. In addition,
when considering schemes whose security is analyzed in the random-oracle model
[BR93], we augment all algorithms (including the adversary) with access to the
random oracle, introduce an additional parameter qH that upper bounds the
number of direct random-oracle queries issued by the adversary, and consider all
probabilities also over the randomness of the oracle.
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3.2 Single-Set Unforgeability

Our notion of single-set unforgeability for multi-signature schemes considers
adversaries that obtain any polynomial number of signatures of their choice
but are restricted to requesting all of these signatures with respect to a single
set of signers. In this context, a single set of signers corresponds to a single vec-
tor of verification keys, which may be adversarially chosen based on the public
parameters of the scheme and on the honestly-generated verification key that
the adversary is attacking.

Looking ahead, our construction of a multi-signature scheme that provides
single-set security consists of a two-round signing protocol: Each party sends
one message to all other parties, receives one message from all other parties, and
then produces their output. Following Bellare and Dai [BD21], for formalizing the
security of schemes with an interactive signing protocol, adversaries are provided
access to a stateful signing oracle that enables to initiate sessions and to continue
previously-initiated ones. Specifically, given a multi-signature scheme Π with a
two-round signing protocol Sign = (Sign1,Sign2), we denote by OSign(pp, sk, �vk, ·)
the corresponding stateful signing oracle that is provided to the adversary, where
pp denotes the public parameters, sk denotes the signing key corresponding to
the honestly-generated verification key vk given as input to the adversary, and �vk
denotes the vector of verification keys corresponding to the single set of signers
chosen by the adversary. For this oracle, an adversary may issue two types of
queries:

– Session-initiation queries: On query a message m, the oracle first assigns a
unique session identifier sid (e.g., in an incremental manner) and computes
(msg1, st) ← Sign1

(
pp, sk, �vk,m

)
. Then, it locally stores the pair (sid, st) and

outputs (sid,msg1).
– Communication queries: On query a pair (sid,msg2), the oracle first

retrieves the stored pair (sid, st), and then computes and outputs out ←
Sign2 (st,msg2). If no stored pair exists for the session identifier sid then the
oracle outputs ⊥.

Definition 3.3. Let t = t(λ), qsign = qsign(λ), and ε = ε(λ) be functions
of the security parameter λ ∈ N. A non-interactive multi-signature scheme
Π = (Setup,KG,KAgg,Sign,SAgg,Verify) is single-set (t, qsign, ε)-unforgeable if
for any algorithm A = (A1, A2) that runs in time at most t and issues at most
qsign signing queries, it holds that

AdvSSetMS
Π,A (λ) def= Pr

[
ExpSSetMS

Π,A (λ) = 1
]

≤ ε(λ)

for all sufficiently large λ ∈ N, where the experiment ExpSSetMS
Π,A (λ) is defined as

follows:

1. pp ← Setup(1λ).
2. (sk, vk) ← KG(pp).
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3.
(

�vk, st
)

← A1(1λ, pp, vk).

4.
(

�vk∗,m∗, aggσ∗
)

← A
OSign(pp,sk,�vk,·)
2 (st).

5. If the following conditions are satisfied then output 1 and otherwise output 0:
(a) vk ∈ �vk∗.
(b) �vk∗ �= �vk or A2 did not query OSign(pp, sk, �vk, ·) with m∗.

(c) Verify
(
pp,KAgg

(
�vk∗

)
,m∗, aggσ∗

)
= 1.

As noted in Sect. 3.1, when considering schemes whose security is analyzed
in the random-oracle model [BR93], we augment all algorithms (including the
adversary) with access to the random oracle, introduce an additional parameter
qH that upper bounds the number of direct random-oracle queries issued by the
adversary, and consider all probabilities also over the randomness of the oracle.

4 One-Time Multi-signatures via Ring Homomorphic
One-Way Functions

In this section we describe our construction of a one-time multi-signature scheme
and prove its security (in the full version of this work we also show that our con-
struction naturally extends to a t-time multi-signature scheme without intro-
ducing any additional assumptions). Our construction is parameterized by the
security parameter λ ∈ N and by an integer n = n(λ) determining an upper
bound on the size of supported signer sets. The construction relies on the fol-
lowing building blocks:

– A ring-homomorphic one-way function F = (F.Setup,F.Eval). As formal-
ized in Sect. 2.1 following Catalano et al. [CFG+15], recall that for any
λ ∈ N and for any function index Ind produced by F.Setup(1λ) it holds that
F.Eval(Ind, ·) : XInd → YInd is a homomorphism for cyclic groups XInd and
YInd that allows computing linear operations “in the exponent” over a ring
KInd = Zq for some prime q = q(Ind) ≥ K(λ), where q is at most the order of
the cyclic groups. For simplifying our notation, for any function index Ind we
let FInd(·) = F.Eval(Ind, ·).

– Hash functions H0 and H1 that will be modeled, for the security analysis, as
random oracles. For any function index Ind of the ring-homomorphic function
F we assume that H0 : Mλ×YInd×YInd → KInd and H1 : (YInd × YInd)

n → K
n
Ind,

where M = Mλ is the supported message space of the constructed multi-
signature scheme (we can choose, for example, Mλ = {0, 1}λ). In terms of
input lengths, this means that we assume sufficiently long input lengths for
H0 and H1. In terms of output lengths, recall that KInd = Zq for some prime
q, where q is at most the order of the cyclic groups. In practice, this can be
realized in a standard manner by producing sufficiently-long outputs using
a cryptographic hash function, and then reducing the results modulo q to
obtain a statistically-small error.
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In what follows we first describe our one-time scheme, denoted 1T, and then
prove its correctness and security. For simplicity and for avoiding the introduc-
tion of additional notation, when describing the scheme and proving its security
we assume that all signer sets are of size n = n(λ), but we note that an upper
bound on the size of supported signer sets would suffice. In addition, we note
that, in practice our scheme does not essentially require any setup. Specifically,
when realizing the ring-homomorphic one-way function via group exponentiation
in a prime-order group [CD98,CFG+15], the function index Ind consists of the
description of the group, which is typically fixed (e.g., standard 256-bit curves
such as Secp256k1 or Curve25519).

The scheme 1T = (Setup,KG,KAgg,Sign,SAgg,Verify)

Setup(1λ ). On input 1λ the setup algorithm samples Ind ← F.Setup(1λ) and
outputs pp = Ind.

KG(pp). On input pp as above, the key-generation algorithm samples x, r ←
XInd, computes X = FInd(x) and R = FInd(r), and then outputs (sk, vk) =
((x, r) , (X, R)).

KAgg
(
pp, �vk

)
. On input pp as above and �vk = (vk1, . . . , vkn), where vki =

(Xi, Ri) for every i ∈ [n], the key-aggregation algorithm computes

(a1, . . . , an) = H1

(
�vk

)
∈ K

n
Ind

aggX =
n∏

i=1

Xai
i ∈ YInd

aggR =
n∏

i=1

Rai
i ∈ YInd,

and outputs aggvk = (aggX, aggR).

Sign
(
pp, sk, �vk, m

)
. On input pp as above, sk = (x, r), �vk and m ∈ Mλ, the

signing algorithm is defined as follows:
1. If (FInd(x),FInd(r)) /∈ �vk then output ⊥.

2. Otherwise, compute aggvk = KAgg
(
pp, �vk

)
, and output

σ = r + H0 (m, aggvk) · x ∈ XInd.

SAgg
(
pp, �vk, �σ

)
. On input pp as above, �vk and �σ = (σ1, . . . , σn), the signature-

aggregation algorithm computes (a1, . . . , an) = H1

(
�vk

)
∈ KInd and outputs

aggσ =
∑n

i=1 ai · σi ∈ XInd.

Verify (pp, aggvk, m, aggσ). On input pp as above, aggvk = (aggX, aggR), m
and aggσ, if

FInd(aggσ) = (aggX)H0(m,aggvk) · aggR
then the verification algorithm outputs 1 and otherwise it outputs 0.
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Correctness. Fix any λ ∈ N, any public parameters pp = Ind, and any vector of
verification keys �vk = (vk1, . . . , vkn). For every i ∈ [n] let vki = (Xi, Ri), where
Xi = FInd(xi) and Ri = FInd(ri). Then, for any message m it holds that

FInd(aggσ) = FInd

(
n∑

i=1

ai · ri + H0 (m, aggvk) ·
n∑

i=1

ai · xi

)

=

(
n∏

i=1

FInd(xi)ai

)H0(m,aggvk)

·
(

n∏

i=1

FInd(ri)ai

)

= (aggX)H0(m,aggvk) · aggR ,

where (a1, . . . , an) = H1

(
�vk

)
, and thus the scheme provides perfect correctness.

Security. The following theorem (which is proved in the full version of this
work) establishes the security of our scheme based on that of the underling
ring-homomorphic one-way function (recall Definition 2.1):

Theorem 4.1. Let A be a probabilistic polynomial-time algorithm that issues
qH0 = qH0(λ) and qH1 = qH1(λ) queries to the oracles H0 and H1, respectively.
Then, there exists a probabilistic polynomial-time algorithm I such that for every
λ ∈ N it holds that

Adv1TimeMS
1T,A(λ) ≤ (qH0 )

2 · qH1 · n ·
(√

Advhom-ow
F,I (λ) +

(qH0 )
2 + (qH1 )

2

K(λ)
+

1

K(λ)

)

5 From One-Time to Single-Set Multi-signatures

In this section we show that any one-time multi-signature scheme with non-
interactive signing can be transformed into a multi-signature scheme that sat-
isfies our notion of single-set unforgeability with a two-round signing protocol.
Our construction relies on the following building blocks:

– A multi-signature scheme 1T = (1T.Setup, 1T.KG, 1T.KAgg, 1T.Sign,
1T.SAgg, 1T.Verify) that is one-time unforgeable with non-interactive sign-
ing over a message space M = {Mλ}λ∈N. For simplicity we assume that
Mλ = {0, 1}� for some polynomial � = �(λ), and that � is sufficiently large
for enabling the scheme to sign, for example, the concatenation of two ver-
ification keys produced by its key-generation algorithm (otherwise, we can
additionally rely on a collision-resistant hash function in the standard “hash-
then-sign” manner). In addition, since the scheme has non-interactive signing,
we assume without loss of generality that its signing algorithm is determin-
istic.

– A pseudorandom function PRF = (PRF.KG,PRF.Eval), where for each λ ∈ N

and for each key k produced by PRF.KG(1λ) it holds that PRF.Eval(k, ·) :
{0, 1}≤�(λ) → {0, 1}�′(λ), and �′(λ) is the length of the internal random string
sampled by the key-generation algorithm 1T.KG.
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– A collision-resistant hash function CRH = (CRH.KG,CRH.Eval). As noted
below, our usage of a collision-resistant hash function is in fact not required,
and is done for providing a more direct proof of security.

– A non-interactive statistically-binding commitment COM = (COM.Setup,
COM.Commit,COM.Verify).

– A non-interactive simulation-sound zero-knowledge proof system ZK =
(ZK.Setup,ZK.P,ZK.V,ZK.Sim1,ZK.Sim2) for the language L = {Lλ}λ∈N,
where

Lλ =

⎧
⎨

⎩

(
pp1T, crscom,

com, x, vk

)
:

∃ (decom, kPRF, sk) s.t.
COM.Verify (crscom, com, decom, kPRF) = 1 and

(sk, vk) = 1T.KG(pp1T;PRF.Eval(kPRF, x))

⎫
⎬

⎭
.

Note that even if the security of the scheme 1T is proved in the random-oracle
model, then as long as the key-generation algorithm 1T.KG does not access
the random oracle (as with our scheme in Sect. 4), then L is an NP-language
(assuming, of course, that COM is a standard-model commitment scheme, and
that PRF is a standard-model pseudorandom function [Nao91,Gol01]). In this
case, the single-set security of our construction is proved in the random-oracle
model.

For presenting our scheme, we denote by ε the empty string, we denote by
m|i the leftmost i bits of a binary string m (where m|0 = ε), and we denote by
m|ib the binary string obtained by concatenating the strings m|i and b.

The scheme Π = (Setup,KG,KAgg,Sign,SAgg,Verify)

Setup(1λ ). On input 1λ the setup algorithm computes

pp1T ← 1T.Setup(1λ)

crsZK ← ZK.Setup(1λ)

crsCOM ← COM.Setup(1λ)

kCRH ← CRH.KG(1λ),

and returns pp = (pp1T, crsZK, crsCOM, kCRH).

KG(pp). On input pp as above, the key-generation algorithm computes

(skε, vkε) ← 1T.KG(pp1T)

kPRF ← PRF.KG(1λ)

(com, decom) ← COM.Commit (crsCOM, kPRF) ,

and returns sk = (skε, vkε, kPRF, com, decom) and vk = (vkε, com).

KAgg
(
pp, �vk

)
. On input pp as above and

�vk =
((

vk(1)ε , com(1)
)

, . . . ,
(
vk(n)

ε , com(n)
))
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the key-aggregation algorithm computes

aggvkε = 1T.KAgg
(
pp1T,

(
vk(1)ε , . . . , vk(n)

ε

))

tag�vk = CRH.Eval
(
kCRH, �vk

)
,

and returns aggvk =
(
aggvkε, tag�vk

)
.

Sign
(
pp, sk, �vk, m

)
. On input pp as above, sk = (skε, vkε, k, com, decom), �vk and

m ∈ {0, 1}�, the signing algorithm proceeds as follows:

1. Let �vk =
((

vk
(1)
ε , com(1)

)
, . . . ,

(
vk

(n)
ε , com(n)

))
. If there is no index i ∈

[n] for which (vkε, com) =
(
vk

(i)
ε , com(i)

)
or there is more than one such

index, then abort. Otherwise, denote by k∗ ∈ [n] the unique such index.

2. For any j ∈ {0, . . . , � − 1} and b ∈ {0, 1} compute

(
sk

(k∗)

m|jb, vk
(k∗)

m|jb

)
= 1T.KG(pp1T;PRF.Eval(k, m|jb))

π
(k∗)

m|jb = ZK.P
(
crsZK,

(
pp1T, crscom, com, m|jb, vk(k

∗)

m|jb

)
,

(
decom, k, sk

(k∗)

m|jb

))

and send
{(

vk
(k∗)

m|jb, π
(k∗)

m|jb

)}
j∈{0,...,�−1},b∈{0,1}

to all other parties.

3. Upon receiving
{(

vk
(i)

m|jb, π
(i)

m|jb

)}
i∈[n]\{k∗},j∈{0,...,�−1},b∈{0,1}

from all

other parties, if there exists (i, j, b) ∈ ([n] \ {k∗})×{0, . . . , � − 1}×{0, 1}
for which vk

(i)

m|jb = vk
(k∗)

m|jb or

ZK.V
(
crsZK,

(
pp1T, crscom, com(i), m|jb, vk(i)m|jb

)
, π

(i)

m|jb

)
= 0

then abort. Otherwise, compute

�vkm|jb =
(
vk

(1)

m|jb, . . . , vk
(n)

m|jb

)
for all j ∈ {0, . . . , � − 1} and b ∈ {0, 1}

aggvkm|jb = 1T.KAgg
(
pp1T, �vkm|jb

)
for all j ∈ {0, . . . , � − 1}

and b ∈ {0, 1}
σ
(k∗)

m|j = 1T.Sign
(
pp1T, sk

(k∗)

m|j , �vkm|j ,
(
aggvkm|j0, aggvkm|j1

))

for all j ∈ {0, . . . , � − 1}
tag�vk = CRH.Eval

(
kCRH, �vk

)

σ(k∗)
m = 1T.Sign

(
pp1T, sk(k

∗)
m , �vkm,

(
m, tag�vk

))

and output

σ(k∗) =

({(
σ
(k∗)

m|j , vk
(k∗)

m|j0, vk
(k∗)

m|j1
)}

j∈{0,...,�−1}
, σ(k∗)

m

)
.
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SAgg
(
pp, �vk, �σ

)
. On input pp as above, �vk and �σ =

(
σ(1), . . . , σ(n)

)
where

σ(i) =

({(
σ
(i)

m|j , vk
(i)

m|j0, vk
(i)

m|j1
)}

j∈{0,...,�−1}
, σ(i)

m

)

for every i ∈ [n], the signature-aggregation algorithm computes

aggvkm|jb = 1T.KAgg
(
pp1T,

(
vk

(1)

m|jb, . . . , vk
(n)

m|jb

))
for all j ∈ {0, . . . , � − 1}

and b ∈ {0, 1}
aggσm|j = 1T.SAgg

(
pp1T, �vkm|j ,

(
σ
(1)

m|j , . . . , σ
(n)

m|j
))

for all j ∈ {0, . . . , �},

and outputs

aggσ =

({(
aggσm|j , aggvkm|j0, aggvkm|j1

)}
j∈{0,...,�−1}

, aggσm

)
.

Verify(pp, aggvk, m, aggσ). On input pp as above, aggvk =
(
aggvkε, tag�vk

)
, m ∈

{0, 1}� and aggσ, where

aggσ =

({(
aggσm|j , aggvkm|j0, aggvkm|j1

)}
j∈{0,...,�−1}

, aggσm

)
,

the verification algorithm outputs 1 if and only if the following two require-
ments are satisfied:
1. 1T.Verify

(
pp1T, aggvkm|j ,

(
aggvkm|j0, aggvkm|j1

)
, aggσm|j

)
= 1 for

every j ∈ {0, . . . , � − 1}.

2. 1T.Verify
(
pp1T, aggvkm,

(
m, tag�vk

)
, aggσm

)
= 1.

The following theorem (which is proved in the full version of this work)
captures the security of the scheme Π based on that on its underlying building
blocks. Here, we note that our usage of a collision-resistant hash function for
computing the tags tag�vk = CRH.Eval

(
kCRH, �vk

)
is in fact not required, and is

done for providing a more direct proof of security. Specifically, we could have
instead used tag�vk = aggvkε, and rely on the fact that the key aggregation of
any one-time multi-signature scheme is collision resistant (see the full version for
more details).

Theorem 5.1. Let εbinding = εbinding(λ), qSign = qSign(λ) and � = �(λ) be func-
tions of the security parameter λ ∈ N, and let A be a probabilistic polynomial-time
algorithm that issues qSign signing queries for �-bit messages. Then, assuming
that COM is εbinding-statistically binding, there exist probabilistic polynomial-time
algorithms B1, . . . , B6 such that for every λ ∈ N it holds that

AdvSSetMS
Π,A (λ) ≤ εbinding(λ) + AdvzkZK,B1

(λ) + AdvhidingCOM,B2
(λ)

+AdvprfPRF,B3
(λ) + AdvssZK,B4

(λ) + AdvcrhCRH,B5
(λ)

+ (2 · � · qSign + 1) · Adv1TimeMS
1T,B6

(λ).
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Abstract. Software watermarking allows for embedding a mark into
a piece of code, such that any attempt to remove the mark will ren-
der the code useless. Provably secure watermarking schemes currently
seems limited to programs computing various cryptographic operations,
such as evaluating pseudorandom functions (PRFs), signing messages,
or decrypting ciphertexts (the latter often going by the name “traitor
tracing”). Moreover, each of these watermarking schemes has an ad-hoc
construction of its own.

We observe, however, that many cryptographic objects are used as
building blocks in larger protocols. We ask: just as we can compose
building blocks to obtain larger protocols, can we compose watermark-
ing schemes for the building blocks to obtain watermarking schemes for
the larger protocols? We give an affirmative answer to this question,
by precisely formulating a set of requirements that allow for composing
watermarking schemes. We use our formulation to derive a number of
applications.

1 Introduction

Watermarking is an old idea, which aims to embed a mark in some object, such
that any attempt to remove the mark destroys the object. In software watermark-
ing, this means embedding a mark into program code, such that any attempt to
remove the code will make the code useless. Such watermarking aims to deter
piracy by identifying the source of pirated software. Recently, software water-
marking has become an active area of research within cryptography, with numer-
ous positive results for watermarking cryptographic functionalities, such as trap-
door functions [Nis13], pseudorandom functions [CHN+16,KW17,GKWW21],
decryption [CFNP00] (under the name “traitor tracing”), and more [GKM+19].

In this work, we initiate the study of composing watermarked functionalities.
That is, if a cryptographic primitive A (or perhaps several primitives) is used
to build a primitive B, can we use a watermarking scheme for A to realize
a watermarking scheme for B? Our aim is to show when such a composition
is possible, based on properties of the construction and security proof for B
using A.
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1.1 Motivation

Abstractions are central to cryptography, as they allow for decomposing various
tasks into smaller building blocks, which can then be instantiated independently.
The literature is full of results that show how to generically realize one abstrac-
tion assuming solutions to one or more input abstractions.

Given that cryptographic primitives are often composed, and that most
watermarking schemes with provable security are for cryptographic primitives,
an interesting question is whether watermarking schemes can be composed. To
the best of our knowledge, this question has not been previously asked. In con-
trast, existing watermarking schemes are each developed “from scratch.” Even if
the underlying techniques are similar, watermarking schemes for different prim-
itives must go through separate constructions and security proofs. This can be
a time-consuming process.

What Does it Mean to Watermark a PRF? As a running example throughout
this introduction, we will use pseudorandom functions (PRFs), which are one of
the main workhorses in symmetric key cryptography, and are used as a central
component in many higher-level protocols. In [CHN+16], the authors show how
to watermark the evaluation procedure for a certain class of PRFs. We point
out, however, that PRFs are typically not considered a cryptographic end goal,
but rather a tool used to build other cryptographic notions. So what, then, is
the utility of watermarking a PRF?

Another fundamental question is the following: for important reasons that we
will not get into here, the watermarking guarantee proved by [CHN+16] (and
all subsequent work on watermarking PRFs) is weaker than one may expect.
Namely, they show that it is impossible to remove the mark without causing
the program to fail on random inputs. Certain PRFs called “weak PRFs” are
only guaranteed secure when the adversary sees evaluations on random inputs,
and so for this reason may authors (e.g. [GKWW21,MW22,KN22]) refer to such
a scheme as watermarking “weak PRFs.” Weak PRFs can be used as building
blocks for many applications, though not as many as ordinary PRFs. In the
context of using PRFs as a building block, what is implication of watermarking
a weak PRF?

Composition of Watermarking Schemes. Our thesis is that watermarking, at
least in many cases, should be defined and executed in such a way as to be com-
posable, allowing watermarking schemes for building blocks to generically imply
watermarking schemes for higher-level protocols. Watermarking a weak PRF,
for example, should generically enable watermarking for many applications of
weak PRFs, such as CPA-secure symmetric encryption. Naturally, a more ambi-
tious goal is: watermarking a message-authentication code scheme or a digital
signatures scheme, when composed with a watermarkable PRF scheme, should
lead to a watermarkable CCA-secure SKE scheme.

Not all Compositions Support Watermarking. Certainly, not all composition
results from cryptography can be used to compose watermarking schemes. For
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example, pseudorandom functions can be built from any pseudorandom gener-
ator (PRG) [GGM86]. But this does not seem to yield a viable path toward
constructing a watermarking scheme for PRFs. After all, what would it even
mean to watermarking a PRG, given that the evaluation algorithm for the PRG
is public?

1.2 Overview of Our Results

Defining Watermarking Security. Most cryptographic primitives are defined by
an interactive game between an adversary A and challenger. Given a security
game, we can translate the game into a watermarking definition, as follows. The
attacker gets a watermarked secret key, and then tries to produce a program
A. We say that A is “good” if it can win the security game with non-negligible
advantage. We then require the existence of a tracing algorithm, which can
extract the mark from any good program A produced by the adversary. In the
case of watermarking public key decryption functionalities, our notion corre-
sponds exactly to existing notions of traitor tracing, since the security game
is non-interactive. However, for other primitives, our definition is potentially
stronger than existing notions: existing notions only ask for mark extraction for
non-interactive programs A that can evaluate some function, whereas we must
extract from any A which wins a security experiment, which is potentially inter-
active. The strengthened definitions will be crucial for our composition theorem,
which we now describe.

Composition Theorem. Our first result is a composition theorem, which gives
conditions under which a construction of a target primitive P from input prim-
itives P1, · · · , Pk can be turned into a compiler for watermarking schemes.

Theorem 1 (Main Theorem (Informal)). If the construction of a target
primitive P from input primitives P1, · · · , Pk satisfies some given conditions and
the watermarking schemes for P1, · · · , Pk satisfy the above watermarking security
definition, then we can compose the construction to watermarking schemes for
P1, · · · , Pk, black-boxly into a watermarking scheme for P that satisfies the above
watermarking definition.

Our conditions apply to a large class of constructions. They are, very roughly,
as follows:

– The construction of P from P1, · · · , Pk is black-box. Moreover, the secret key
sk for P is sk = (sk1, · · · , skk) where ski is the secret key for Pi.

– The security proof for P turns an adversary A for P into adversaries
A1, · · · , Ak for P1, · · · , Pk, respectively, such that if A has non-negligible
advantage, so does at least one of the Pi. Typical proofs in cryptography
utilizing hybrid proofs will usually have this form.

– Moreover, we require a property of the security proof, which we call a
“watermarking-compatible reduction”. This is a rather technical definition,
but roughly we allow the security games for P, P1, · · · , Pk to consist of two
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phases, where the adversary’s winning condition is only dependent on the
second phase. We require that the reduction respects the phases, in the sense
that the second stages of A1, · · · , Ak only depend on the second stage of A.

– Depending on the construction and reduction, not all input primitives
P1, · · · , Pk have to be watermarkable to give a watermarking construction
for the target primitive P . That is, we can compose the “plain” constructions
of these input primitives with the watermarkable versions of the other input
primitives to give a watermarkable construction for P .

– If all input primitives (that need to be watermarkable) have collusion-resistant
watermarking security, the resulting watermarkable P also satisfies collusion-
resistant security. If all input primitives can be traced using only a public
key, the same is true of P .

Many reductions in the literature are watermarking-compatible. For example,
consider constructing CPA-secure symmetric encryption from weak PRFs. Here,
the first stage for CPA-security consists of all queries occurring prior to the
challenge query, and the second stage consists of the challenge query and all
subsequent queries. The winning condition does not depend on any first stage
CPA queries (or second stage). The first and second stages for the weak PRF
are just two rounds of queries to the weak PRF oracle, and here again the
win condition does not depend on the actually queries. Thus, this reduction is
watermarking compatible.

A non-example would be many proofs involving signatures as the target prim-
itive P . The issue is that, the winning condition for a signature scheme security
game is that the adversary produces a “new” signature on a message that was
not seen in a previous query. But checking this win condition requires knowing
all the queries. So if there is a first phase where the attacker can make signature
queries, then the win condition is not solely dependent on the second stage. If
we let the winning condition depend only on the second stage, the adversary can
trivially win by querying a signature in the first stage and give it to the second
stage adversary as the final output.

Applications. We demonstrate that many well-known cryptographic construc-
tions have watermarking-compatible reductions, and therefore we can compose
the watermarkable constructions of the input primitives to obtain watermark-
able constructions of the target primitive. Within the scope of this work, we give
the following examples:

– Two most simple examples are:
• Watermarkable CPA-secure secret-key encryption scheme from water-

markable weak PRF
• Watermarkable CCA2-secure secret-key encryption scheme from water-

markable weak PRF and watermarkable MACs.
– Some more advanced examples are:

• Watermarkable CCA2-secure public-key encryption from watermarkable
selectively secure identity based encryption and strong one-time signa-
tures, which can in turn be based on LWE. Here, the strong one-time
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signature we need is a “plain scheme” which does not need to be water-
markable.

• Watermarkable CCA2-secure PKE from watermarkable CPA-secure PKE
and NIZK (without watermarking), which can in turn be based on LWE
too.

• Watermarkable weak pseudorandom permutation from watermarkable
weak PRF.

• Watermarkable CCA2-secure hybrid encryption scheme from watermark-
able CCA2-secure PKE and CCA2-secure SKE (without watermarking).

Additionally, we show that all the input primitives (weak PRF, CPA-secure
PKE, selective IBE, signatures, etc.) in the above examples have construc-
tions that satisfy our security definition for watermarking. We can obtain
these constructions by using or modifying the existing watermarking schemes
in [GKM+19,GKWW21,MW22]. Therefore, the above composed schemes all
have concrete constructions.

We also briefly discuss how the functional encryption construction in
[GKP+13] is also watermarking compatible. We cannot possibly elaborate all
the concrete examples of watermarking compatible reductions within the scope
of this work, but given our generic framework of composition, one can easily
verify whether a construction is watermarking compatible by looking into its
security proof.

1.3 Other Related Work

[Nis20] presents a general framework for constructing watermarking schemes for
any primitive which admits a certain “all-but-one” reduction. The work and
ours focus on different aspects of watermarking: theirs is focused on construct-
ing watermarking schemes in the first place, whereas our composition theorem
shows how to combine watermarking schemes. We also note that the framework
in [Nis20] seems very much tied to the collusion-free setting, whereas ours is much
more general, and can accommodate collusions if the input tracing mechanisms
are collusion resistant.

1.4 Technical Overview

Watermarking. We first briefly recall the definition of watermarking a cryp-
tographic primitive: in a watermakrable cryptographic scheme, apart from the
usual evaluation algorithms (such as key generation, encrypt, decrypt or sign and
verify), it additionally has a Mark algorithm and an Extract algorithm (as well as
the corresponding marking and extraction keys). The Mark algorithm allows one
to embed a mark into the secret key used to evaluate the cryptographic function-
ality; the Extract key allows one to extract a mark from an allegedly marked key.
The watermarking security, usually referred to as “unremovability”, states that
given a marked secret key with an adversarially requested mark τ , the adversary
should not be able to produce a circuit that has the same functionality as the
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secret key such that the above mark τ cannot be extracted from this adversarial
circuit.

As explored in this work and some previous works ([GKM+19,GKWW21]),
one important definitional aspect in the above security lies in what we mean by
the ”adversary’s output circuit has the same functionality as the original secret
key”. We will elaborate in the following sections of the overview.

Watermarking-Compatible Reduction. Before we go into how we compose water-
marking schemes, we expand more on the type of reductions that allow us to
build a watermarking composition upon. We call these reductions watermarking-
compatible. We will then give a concrete example to help comprehension.

Consider a black-box construction of a target primitive P from input primi-
tives P1, · · · , Pk and consider a reduction algorithm B from security of P to the
security of Pi: we let both the adversary A and the reduction B be divided into
two stages. In the first stage, stage-1 adversary A1, for the security game of P ,
receives some public parameters from stage-1 B1 and makes some queries; B1

answers these queries by making queries to the oracle provided by the challenger
of the security game for Pi.

Entering the second stage, as one can expect, A1 can give an arbitrary state it
to stage-2 adversary A2. However, what B1 can give to the second stage reduction
B2 is more restricted: B1 can give all the public parameters to the second stage
but none of the queries made by A1, to B2. B2 continues to simulate the query
stage to answer A’s queries. In particular, B records A2’s queries. Note that
the challenge phase of the security game where A2 (and resp. B) receives its
challenge from the challenger always happens in stage 21.

In the final output phase, B2’s answer to the challenger in game Pi will be
dependent on (some of) the following pieces of information: challenger’s challenge
input to B2, A2’s queries made during stage 2, B2’s randomness used to prepare
the challenge input for A2 and A2’s final output.

We give some intuition on why we need B to be “oblivious” about A’s queries
in stage 1 of the above reduction. Looking forward, in the actual watermarking
(unremovability) security game, we can replace “answering A’s queries in stage
1” with a giving out a watermarked secret key to A, where B will have no idea
what inputs A has evaluated on using the key. We therefore model the reduction
as the above to capture this scenario.

Example: CCA2-Secure Secret-Key Encryption. To make the above abstract
description concrete, we take an example of the reduction from CCA2-security
to weak PRF and MAC.

We briefly recall the textbook construction: the scheme’s secret key consists
of the PRF’s secret key sk1 and MAC’s secret key sk2. The encryption algorithm,
on input message m, computes ciphertext ct = (r, ct′ = PRF.Eval(sk1, r)⊕m, sig),

1 But as we will see in some concrete examples, A can commit to some “challenge
messages” in stage 1, which will be taken into stage-2 as an “auxiliary input” and
later used by the challenger to prepare the challenge.
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where sig ← MAC.Sign(sk2, (r, ct′)). The decryption algorithm will first verify the
signature sig on (r, ct′), if yes continue to decrypt using sk1, else abort.

It’s not hard to see how the CCA2 security game can fit into the format
of a two-stage game we have depicted above: stage 1 consists simply of letting
the adversary making queries to the encryption and decryption oracles. Entering
stage 2, the adversary A is allowed to make more queries and then submits the
challenge plaintexts; then A receives challenge ciphertexts from the challenger.
A continues to make more admissible queries and finally outputs its answer.

By viewing the security game in two stages, we will recall the security proof
for CCA2 security. The proof can go through a case-by-case analysis:

1. In case 1, in stage 2 of the CCA2 security game, there is a decryption query
from A of the form ct = (ct0, σ), such that it has never been the output of an
encryption query. Also, the decryption oracle did not output ⊥ on this query.

2. In case 2, there is no such decryption query in stage 2.

In the first case, we can do a reduction to unforgeability of MAC:

– AMAC samples its own PRF secret key sk1. For stage 1: For any encryption
query from stage-1 adversary, A1, stage-1 reduction A1

MAC will simulate the
response as follows: it will compute the ct0 part of ciphertext and then query
the signing oracle MAC.Sign(sk2, ·) in the security game GMAC. For any decryp-
tion query, A1

MAC will query the verification oracle MAC.Verify(sk2, ·) first and
decrypt those whose response is not ⊥.

– After entering stage 2, for any encryption or decryption query from A2, A2
MAC

will still simulate the response as the above. Recall that A2
MAC will not get to

see any queries made in stage 1 and A2
MAC will record all queries from A2.

– In the challenge phase, A2 sends in challenge messages (m0,m1); A2
MAC flips

a coin b ← {0, 1}, prepares and sends the signed encryption ct∗ of mb to A2.
A2

MAC continues to simulate the encryption and decryption oracles for A2, on
queries ct �= ct∗.

– In the end, A2
MAC will look up A2’s queries: find a decryption query ct =

(ct′, σ) such that it has never been the output of an encryption query and the
decryption oracle did not output ⊥ on this query. A2

MAC output (ct′, σ) as its
forgery.

In the second case, we consider a reduction APRF to the weak pseudoran-
domness of the PRF. In the following reduction, for he sake of simplicity, let’s
consider a variant of the weak PRF game: the adversary APRF is given adaptive
query access to an oracle F : {0, 1}n → {0, 1}m that computes a PRF function;
there will be a challenge phase where a challenge input r∗ is sampled at random;
APRF will receive one of (r∗, F (r∗)) or (r∗, y ← {0, 1}m) at random and try to
tell which one it receives2.

– In stage 1: APRF samples its own MAC key sk2. For any encryption query
from A1, A1

PRF will simulate the response as follows: it will query the PRF
2 Watermarkable weak PRF with this type of security can be constructed in

[GKM+19].
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oracle F (·) := PRF.Eval(sk1, ·) on a fresh r of its own choice. After obtaining
(r, F (r)), APRF signs the message (r, F (r)⊕m) using sk2 and sends the entire
ciphertext to A.
Similarly, for decryption queries, APRF first verifies the signature and then
queries F (·) oracle to decrypt.

– After entering stage 2, for any encryption query from A2, A2
PRF will still

simulate the response as the above. Recall that A2
PRF will not get to see any

queries made in stage 1.
– In the challenge phase, A2

PRF will receive a challenge input-output pair (r∗, y∗)
from the weak PRF challenger: r∗ ← {0, 1}�, y∗ ∈ {0, 1}� where y∗ is either
PRF.Eval(sk1, r∗) or uniformly random.

– A2 sends in challenge messages, (m0,m1); A2
PRF flips a coin b ← {0, 1} and

sends ct = (r∗, y∗ ⊕ mb, σ
∗) to A2.

– If A2 guesses the correct b, then A2
PRF output 0, for “y∗ is PRF.Eval(sk1, r∗)”,

else A2
PRF output 1, for “y∗ is uniformly random”.

Note that in the above reductions, both APRF and AMAC do not need the
stage-1 queries from A to help them win their own games.

Definition and Composition Framework of Watermarking. Now we relate the
above reduction to the watermarking goal: in our watermarking (i.e. unremov-
ability) security game for primitive P , the watermarking adversary A acts like
a “stage-1” adversary in the original security game for the underlying primitive
P. Then A produces a program C —-this signifies the end of “stage 1” of the
security game.

A notable feature of our extraction algorithm is the following. The adver-
sarial program C produced by A will be treated as a stage-2 adversary by the
extraction algorithm: the extraction algorithm will try to extract a watermark
by having only black-box access to C. Since C is supposed to function like a
stage-2 adversary that wins the security game of P , the extraction procedure
ensures C operates properly by simulating the stage-2 security game for C.

Finally, A wins if C is a “good” program in winning the corresponding secu-
rity game for P , but no valid watermarks can be extracted from C.

Suppose a target primitive P can be built from input primitives P1, · · · , Pk

via watermarking-compatible reductions, and each watermarking scheme for Pi

satisfies our definition, then we can compose the watermarkable versions of
P1, · · · , Pk to give a watermarkable P .

The composition construction works roughly as follows:

1. A watermarkable P ’s key generation algorithm is similar to the unwater-
markable (plain) construction of P : by generating all keys of P1, · · · , Pk and
concatenate them, for secret/public keys respectively. The extra step is that
now we also concatenate the marking keys and extraction keys generated from
the watermarkble P1, · · · , Pk.

2. How P evaluates is exactly the same as in the plain construction of P form
P1, · · · , Pk: by running the P1, · · · , Pk algorithms as black-box subroutines.
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3. To watermark P , we simply watermark the secret keys of the P1, · · · , Pk

respectively. The watermarked key for P is then just the concatenation of
the watermarked keys for P1, · · · , Pk. Since the construction is black-box
and assumes the key is just a tuple of keys for P1, · · · , Pk, the evaluation
with watermarked keys is still the same, running the evaluation algorithm
with black-box from subroutines P1, · · · , Pk, except now with the marked
keys respectively. We obtain correctness (functionality-preserving property),
following from the correctness of the plain construction and functionality
preserving properties of watermarkable P1, · · · , Pk.

4. In order to extract a mark, we turn any pirated algorithm A for P into
pirated algorithm A1, · · · , Ak for P1, · · · , Pk. We do this by applying the
security reduction for P to the pirated algorithm A, and let A1, · · · , Ak be
the adversaries produced by the reduction. We then interpret A1, · · · , Ak as
pirated programs for P1, · · · , Pk, and attempt to extract the mark from each
of them. Note that any mark extraction algorithm is supposed to use only
the input-output behavior of the pirate program.
The guarantee of the reduction is that one of these pirated programs Ai must
actually be a “good” program in the security game for the corresponding
primitive Pi, which means that mark extraction must succeed for that Ai.
The security proof therefore shows that we are guaranteed to extract some
mark3.

Formalizing this composition takes some care, as we need to ensure that the
mark extraction algorithm has the ability to actually transform A into each of
the Ai. There are a couple issues with getting this to work:

– In a reduction, it is typically assumed that, when the reduction is attacking
Pi, it has access to the keys for Pj , j �= i. This access is often used to simulate
the view of A when constructing Ai. In our watermarking construction, we
therefore need to ensure that the tracing algorithm has this information.

– Security proofs often work via hybrid arguments that change various terms.
Importantly, the hybrid arguments get to simulate the entire game. For us,
however, we only get to simulate the second stage of the game; the first stage
has actually already been fixed by the time the adversary produces its pirated
program A. So we have to ensure that the tracing algorithm can carry out the
reduction to create a program Ai, even though it cannot simulate the entire
security experiment from the very beginning.

Our definition and proof take care of these issues and more, to give a com-
position theorem that applies any time our criteria are met.

Note that the restriction to games where the winning condition is indepen-
dent of the first stage seems necessary. This is because the adversary actually

3 The Extract algorithm assumes the (input) adversarial circuit to be possibly stateful
and interactive, but does not require any input circuit to be stateful and interactive.
For example, an honestly generated watermarked circuit is not stateful or interactive
in our construction.
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gets in its possession a watermarked key, which lets it compute the various cryp-
tographic functions of the key. For example, in the case of digital signatures, the
adversary can actually compute signatures for itself. In the case of encryption,
the adversary can encrypt and decrypt messages. Moreover, there is no way to
track what the adversary is doing, since it is all happening internally to the
adversary rather than being explicitly queried (suppose for example, that the
adversary signs a few messages, but has its entire state encrypted under a fully
homomorphic encryption (FHE) scheme so that the signature and message being
signed are all “under the hood” of the FHE scheme). We model this ability by
having a first stage of the security experiment where the adversary can freely
query the functionalities, but then do not have the win condition depend on
those queries.

Watermarking Composition Example: CCA2-Secure SKE. Now we demonstrate
how the above abstract watermarking composition works by using the concrete
example of a CCA2-secure SKE built from weak PRF and MAC again.

Consider having input constructions as watermarkable weak PRF and water-
markable MAC which satisfies our syntax and unremovability security require-
ments, a watermarking CCA-secure scheme consists of several algorithms:
WMSetup,Enc,Dec,Mark,Extract. The WMSetup generates the secret key, mark-
ing key and extraction key by concatenating the corresponding keys from the
PRF and MAC. The marking algorithm is on input sk = (skPRF, skMAC) and
watermarking message τ , output s̃k = (s̃kPRF ← PRF.Mark(skPRF, τ), s̃kMAC ←
PRF.Mark(skMAC, τ)).

Finally, the Extract algorithm is slightly more complex: on input extraction
key xk = (xkMAC, xkPRF) and a circuit C, do both of the following:

1. Create a circuit CPRF:
– Simulate the stage-2 CCA2-security for C (as described in our previous

paragraph on watermarking-compatible reduction from CCA2 security to
PRF). Note that just as a real reduction CPRF is only hardcoded with the
MAC extraction key xkMAC (unless the underlying watermarkable PRF
scheme has a public extraction key), which enables it to simulate the
signing and verification of MAC; to compute the part that involves the
PRF evaluation oracle, CPRF need to make external queries to some “chal-
lenger” to get answers.
How CPRF uses C to get its final output is exactly the same as in
the watermarking-compatible reduction from CC SKE to weak PRF we
described.

After CPRF is created, the extraction algorithm uses the watermark-
able PRF’s extraction algorithm to extract a mark from CPRF: τ/⊥ ←
PRF.Extract(xkPRF, CPRF). Note that the “external queries” made by the cir-
cuit will be answered now by the PRF.Extract(xkPRF, ·) algorithm, because it
treats CPRF as a stage-2 adversary in the weak pseudorandomness security
game and uses the extraction key xkPRF to simulate the game.

2. Create a circuit CMAC:
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– Simulate the stage-2 CCA2-security for C (as described in our previous
paragraph on watermarking-compatible reduction from CCA2 security to
MAC). Note that just as a real reduction CMAC is only hard-coded with
the PRF extraction key xkPRF, which enables it to simulate the oracles
of PRF; to compute the part that involves the MAC signing/verifying
oracles, CMAC need to make external queries to some “challenger” to get
answers.
How CMAC uses C to get its final output is exactly the same as in
the watermarking-compatible reduction from CCA SKE to MAC we
described.

After CMAC is created, the extraction algorithm will use the watermark-
able MAC’s extraction algorithm to extract a mark from CMAC: τ/⊥ ←
MAC.Extract(xkMAC, CPRF). Note that the “external queries” made by the
circuit will be answered by the algorithm MAC.Extract(xkMAC, ·) algorithm,
because it treats CMAC as a stage-2 adversary in the MAC security game and
uses the extraction key xkMAC to simulate the game.

We say that the adversary A wins the watermarkable CCA2-secure SKE’s
unremovability game if no (previously queried) watermark can be extracted from
either of the above circuits CPRF, CMAC created during the extraction algorithm
and C is a “good” program in winning the CCA2 security game. The intuition
for the security proof is relatively straightforward: if C is a “good” program for
winning CCA2-security game, then at least one of CPRF and CMAC must be a
“good” program for winning its corresponding security game pf weak PRF or
MAC, by the property of the reduction.

For instance, imagine a reduction algorithm BPRF to the unremovability of
watermarkable PRF: BPRF will simulate the marking query stage for A by making
marking queries to the marking oracle of the weak PRF challenger, along with
the MAC key it sampled on its own. Note that the evaluation queries to the
PRF evaluation oracle can now be replaced by having access to a marked PRF
key. After A outputs circuit C, BPRF simply creates the same circuit C ′

PRF as
the CPRF created in the above extraction algorithm. If the CPRF circuit created
in the extraction is ”good” at winning the weak pseudorandomness game, then
so is C ′

PRF. Since we cannot extract a watermark from CPRF, neither can we
extract from C ′

PRF because they have the same input-output behavior when
using the same C as its subroutine black-boxly. The same argument applies to
the reduction to unremovability of watermarkable MAC.

More Advanced Watermarking Constructions with “Unwatermarkable” Build-
ing Blocks. The watermarking reduction in the above example of CCA2-secure
SKE is relatively straightforward to acquire. Some similar construction exam-
ples include a watermarkable weak PRP from watermarkable weak PRF (see full
version for details).

However, there exist various constructions that look markedly distinct from
the above example of CCA2-secue SKE and may be much more involved.
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More importantly, some constructions have building blocks which are cryp-
tographic primitives that don’t make sense to watermark, for instance, a non-
interactive zero knowledge proof scheme. Nevertheless, we show that a large class
of them can be watermarking-compatible and in many scenarios, we simply do
not need to watermark all the building blocks.

We briefly discuss two examples on a high level:

– CCA-secure PKE from IBE and One-Time Signatures The first exam-
ple is the CCA2-secure PKE from selectively secure IBE and one-time signa-
tures by [BCHK07].
In the original scheme, the encryption samples a fresh signature sign-
ing/verification key pair (sk, vk), compute an IBE ciphertext by using the
vk as the identity, then signs this ciphertext using signing key sk, and finally
outputs the IBE ciphertext, the signature and vk.
To decrypt, one first verifies the signature under vk, if valid then derives an
identity-embedded decryption key from the IBE master secret key using vk
as the identity and decrypt the ciphertext.
Note that in this scheme, the keys for one-time signatures are only sampled
“online” upon every encryption algorithm and how to watermark such keys is
not well-defined. However, as it turns out—we don’t have to watermark the
signing key in our composed construction. A watermarkable CCA2-secure
PKE using the above construction only has to watermark the IBE secret key.
The security proof would show that a successful unremovability adversary
can help us either break the unremovability security of the watermark IBE
scheme or break the strong one-time unforgeability security of the signature
scheme. In other words, leveraging the “plain” security of the one-time sig-
nature scheme suffices for the composed watermarking scheme.
In more detail, we can show the following: the pirated algorithm C pro-
duced by an adversary is a “good” program for breaking the CCA-security
and meanwhile no watermark can be extracted from C. However, it does not
help us win the selective IBE CPA-security game. Then, simply following
the hybrid argument in the security analysis of the CCA-secure PKE itself,
we observe that C must be breaking the security of the one-time signature
scheme. Thereby, we can use C black-boxly to create a reduction for the
one-time signature scheme.

– CCA-secure PKE from CPA-secure PKE and NIZK A second exam-
ple is the [NY90] CCA-secure PKE scheme built from CPA-secure PKE and
a non-interactive zero-knowledge proof scheme (NIZK). The encryption algo-
rithm encrypts a message twice under two different public keys and uses a
NIZK proof to prove that they encrypt the same message.
The watermarkable version of the above construction does not watermark the
NIZK scheme, but only the two decryption keys of the PKE scheme. How the
NIZK scheme is used in the watermarking scheme is less obvious to see: intu-
itively, the extraction algorithm will try to create two circuits that break the
underlying CPA security game of the PKE, with the corresponding keys. If
we look carefully into the proof for the [NY90] scheme, to make this reduction
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go through, one has to first work in a hybrid game where the real NIZK proof
in the challenge ciphertext is replaced with a simulated proof. Our extrac-
tion algorithm thereby uses such a simulated proof when interacting with the
input circuit C. The security of NIZK helps us say that if C is “good” in the
original CCA-security game, so will C be good in the game simulated by the
extraction algorithm.

To summarize, we only have to watermark the secret keys of input primitives
Pi which have their keys generated in the main Key Generation algorithm of
the target primitive P and have their secret keys used during the evaluation
algorithm of P . If an input primitive has its keys sampled “freshly” during every
invocation of P ’s evaluation algorithms or sampled in key generation, but not
used in P ’s evaluation algorithm (e.g. only used in the security proof instead),
then we don’t need a watermarkable version of Pi to build a watermarkable P .
Leveraging Pi’s original security property suffices.

More advanced examples include the functional encryption from attribute-
based encryption, FHE and garbled circuits in [GKP+13], where we only have
to watermark the ABE scheme; a hybrid CCA-secure encryption scheme from
CCA-secure PKE and CCA secure SKE, where we only have to watermark the
PKE scheme. We refer the readers to the construction and discussions of these
examples in the full version.

2 Definitions: General Cryptographic Primitive
and Watermarking-Compatible Constructions

2.1 General Cryptographic Primitive

In this section, we present syntax and definitions for a general cryptographic
primitive. The notations and definitions formalized in this section will assist the
demonstration of our generic watermarking framework.

General Cryptographic Primitive Syntax. A cryptographic primitive P =
(KeyGen,SecEval,PubEval) consists of the following algorithms:

– KeyGen(1λ) → (sk, pk): is a (randomized) algorithm that takes a security
parameter λ and interacts with an adversary A: (sk, pk) ← (A ⇔ KeyGen(1λ))
where sk is some secret information unknown to A, and A can get some public
information pk from the interaction.

– SecEval(sk, pk, x ∈ X ) → y ∈ Ys : a secret-evaluation algorithm that takes in
the secret information sk, public information pk and some input x from input
space X , and output a value y ∈ Ys.

– PubEval(pk, x ∈ X ) → y ∈ Yp : a public-evaluation algorithm that takes in
the public information pk and some input x from input space X , and output
a value y ∈ Yp.
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More generally, the KeyGen algorithm can generate several secret keys
sk1, · · · , sk� for some polynomial �. There will be � different secret algorithms
{SecEvali(ski, pk, x ∈ Xs,i)}i∈[�] and (some constant) m different public algo-
rithms {PubEvalj(pk, x ∈ Xp,j)}j∈[m]. For example, an identity-based encryption
scheme can have two decryption algorithms, one using the master secret key, the
other with a secret key embedded with an identity.

However, without loss of generality, we will make two simplifications:

– All algorithms have their input space padded to be the same length as X ;
– We view all secret algorithms {SecEvali(ski, pk, x ∈ Xs,i)}i∈[�] as one algo-

rithm SecEval(sk, pk, ·) that will take in an index i ∈ [�] to decide which mode
to use, similarly for public algorithms. But we will assume such an index
specification to be implicit and omit the use of indices in the algorithm to
avoid an overflow of letters.

Occasionally, we denote all the algorithms ({SecEvali(ski, pk, x ∈ Xs,i)}i∈[�],
{PubEvalj(pk, x ∈ Xp,j)}j∈[m]) as a combined functionality hardcoded with the
corresponding keys Eval(pk, sk). We call it Eval for short.

Correctness for Predicate FR Before going into the correctness property, we first
define a notion important to our generic definition:

Definition 1 (Predicate). A predicate F (C, x, z1, · · · , zk, r) is a binary out-
come function that runs a program C on a some input x to get output y, and out-
puts 0/1 depending on whether (x, y, z1, · · · , zk, r) ∈ R for some binary relation
defined by R. The randomness of input x, program C both depend on randomness
r. . z1, , zk are auxiliary inputs that specify the relation.

A correctness property of a primitive P with respect to predicate FR says
that

Definition 2 (Correctness for Predicate FR). P satisfies correctness if
there exists some function ε = ε(λ) ∈ [0, 1] so that for all λ ∈ N, x ∈ X 4:

Pr
r←Dr,(sk,pk)←KeyGen(1λ)

[FR(Eval, pk, sk, x, r) = 1] ≥ 1 − ε.

The randomness used in checking the predicate is sampled from a distribution
Dr. We can simply take Dr to be the uniform distribution, which can be mapped
to any distribution we need when computing the predicate.

All ε within the scope of this work is negligible in λ.

Remark 1. To further explain the above correctness property, we consider
the following (abstract) example. Given Eval = ({SecEvali(ski, pk, x ∈
X )}i∈[�], {PubEvalj(pk, x ∈ X}j∈[m]) , FR samples input x ∈ X using the first
part of r; then it runs algorithm (supposing randomized, using part 2 of string

4 For a cryptographic primitive P , there can be many different correct properties, each
defined with respect to a different predicate.
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r) SecEval1(sk1, pk, x) to give some outcome y1; then runs (supposing determin-
istic) PubEval1(pk1, y1) to give outcome y2; check if (x, y1, y2) ∈ R; output 1 if
yes, 0 otherwise.

A concrete example is a public key encryption scheme: the predicate is
encrypting a message x using r and then decrypting it to check if one can recover
the original message.

Game-Based Security. A security property of the cryptographic primitive P is
described by a interactive procedure GP between a challenger and adversary A.

GP will involve KeyGen,SecEval,PubEval as its subroutines. GP outputs a
bit 1 if the game is not aborted and a certain condition has been met at the end
of the game; else it outputs 0.

The security of a primitive P with respect to GP says: For all λ ∈ N, there
exists some function η = η(λ) such that for all admissible A , there exists a
function negl(λ):

Pr[GP (1λ,A) = 1] ≤ η + negl(λ)

where η is the trivial probability for any admissible A to make GP output 1 and
the probability is over the randomness used in GP .

2-Stage Game-Based Security. To be compatible with the context of watermark-
ing, we will view the game GP as a 2-stage security game. 2-stage game-based
security is a central notion that connects a prmitive’s “plain security’ to its
watermarking security.

The KeyGen procedure and a first part of the interactions between the chal-
lenger and A are taken out of the original game and executed as a first stage
G1

P . Then, G2
P denotes the rest of the game and will take in parameters (sk, pk)

generated in stage 1 as well as some auxiliary input.

Definition 3 (2-Stage Game-Based Security.). A security property of the
cryptographic primitive P is described by a stage-1 (possibly interactive) key
generation procedure a challenger and adversary A1 followed by a fixed-parameter
game G2

P between a challenger and adversary A2.
We denote G1

P (1λ,A1) as the first stage adversary A1 interacting a challenger
which runs the KeyGen(1λ), SecEval,PubEval algorithm; together they output a
key pair (sk, pk) and some auxiliary parameters aux which will be later used in
the game GP . A1 only gets pk, aux but may make arbitrary polynomial number of
admissible queries to oracles provided by the challenger during the interaction.

The stage-2 game challenger G2
P is parametrized by inputs sk, pk, aux gener-

ated during stage 1 and will involve SecEval,PubEval as its subroutines. Stage-2
adversary A2 gets an arbitrary polynomial size state st from stage 1 A1. G2

P

outputs a bit 1 if the game is not aborted and a certain condition has been met
at the end of the game; else it outputs 0.
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The security of a primitive P with respect to GP says: there exists some
function η = η(λ) such that for all admissible A = (A1,A2) and any non-
negligible γ = γ(λ), there exists a function negl(λ) for all λ ∈ N:

Pr[A2(st) is γ-good in G2
P (sk, pk, aux, ·) : {(sk, pk), aux, st} ← G1

P (A1, 1
λ)] ≤ negl(λ)

where A2 is said to be γ-good if:

Pr[G2
P (sk, pk, aux,A2) = 1] ≥ η + γ

where η is the trivial probability for any admissible A to make GP output 1 and
the probability is over the randomness used in KeyGen and by GP .

Remark 2. While some readers may find the introduction of parameter γ in the
above 2-stage game confounding, we would like to make a note that the above
two definitions are essentially equivalent.

An alternative way of stating the 2-stage game security would be: there exists
some function η = η(λ) such that for all admissible A = (A1,A2), there exists
two negligible functions negl1(λ), negl2(λ) such that for all λ ∈ N:

Pr[Pr[G2
P (sk, pk, aux,A2(st)) = 1]

≤ η + negl1(λ) : {(sk, pk), aux, st} ← G1
P (A1, 1λ)] ≥ 1 − negl2(λ)

Remark 3 (Division into a 2-stage Game). How we divide a security game into
two stages depends on the application and suppose that the game GP has dif-
ferent stages by its definition, the way we divide stage-1 and 2 is usually not the
same as in the original definition of GP . We will see examples later.

In most settings, stage-1 game G1
P only involves running the key generation

KeyGen and letting A1 make some queries. In a few special settings, A1 needs
to commit to some challenge messages which will be put into aux and be part
of the input to stage 2. Examples include the challenge attribute/identity in
an attribute/identity-based encryption, because the queries made in the first
stage need to go through the ”admissibility” check that depends on A’s choice
of challenge messages.

Remark 4. In the rest of this work, it is usually clear from the context which
stage of GP we are refering to because G2

P will take in paramters sk, pk, aux while
the entire game GP takes in only security parameter 1λ. Plus G1

P is seldomly
used explicitly in our language. Occasionally we will omit the superscript and
slightly abuse the notation to denote G2

P as GP (sk, pk, aux, ·)

For our convenience in later notations, we also give the following simple
definition:

Definition 4 (Stage-2 Game View). The stage-2 G2
P can also output a view

view(sk, pk, aux,A2) that is the transcript of interaction of A2 with the challenger
in G2

P , including the final output.

Remark 5. We make a few notes on the scope of security games we consider in
this work:
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1. We mainly focus on game-based (and falsifiable) security notions within the
scope of this work. We need the challenger in the security to be efficient for
the watermarking construction to be efficient.

2. All the admissible adversary need to be PPT. We do not consider secu-
rity models other than polynomially bounded in time/circuit size (such as
bounded storage).

2.2 Watermarking-Compatible Construction of Cryptographic
Primitive

In this section, we characterize what type of black-box cryptographic construc-
tions are watermarking compatible. As we will see in later sections, watermarking
compatible constructions allow us to give a watermarking scheme for the tar-
get primitive constructed, black-boxly from the watermarking schemes of the
building blocks.

Outline and Intuition. Let use denote P as the target, or outcome primitive
built in a construction. Let Pi, i ∈ [k] denote each underlying primitive we use
to build P .

Intuitively, one expects to watermark all underlying building blocks to ensure
watermarking security of the target primitive P . As discussed in our techni-
cal overview section “More advanced watermarking constructions with unwater-
marked building blocks”, many constructions possess building blocks of primi-
tives that do not need to be watermarkable to ensure the watermarkability of
the final target primitive.

Here, we discuss the matter in more details: we need the partitioning for
primitives in {Pi}i∈[k] into S and S̄. These primitives in these two sets will
play different roles when we construct the watermarking scheme for the target
primitive P : the primitives in set S need to be watermarkable and those in
set S̄ do not need to be watermarkable. The reasoning is that the primitives
in set S will have their secret keys generated during the Key Generation of
the target primitive P , but primitives in set S̄ will only have their secret keys
generated freshly during every run of SecEval or PubEval algorithm of the target
primitive P .

A simple example is CCA2-secure PKE scheme based on IBE and one-time
signatures, which we discussed in the technical overview. During the encryp-
tion algorithm, one generates fresh one-time signature keys and the message is
encrypted with the one-time signature’s verification key as the identity. There-
fore, the one-time signature in the above construction belongs to set S̄ because
its keys are only generated during the encryption algorithm.

In the watermarking construction for P , the KeyGen,PubEval,SecEval algo-
rithms will follow from the plain construction for P from primitives in set S and
S̄. Therefore, we cannot watermark the keys for the primitives in set S̄ because
their keys are not generated when we give out the watermarked key (which only
contains keys in set S) to a user. We therefore distinguish these two sets in
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our presentation for watermarking-compatible construction in this section and
watermarkable implementation in Sect. 3.2.

Moreover, looking forward: we will observe that we indeed do not need water-
marking security (i.e. unremovability) for the primitives in set S̄, to achieve
watermarking security for the target primitive P. We only need to rely on their
“plain security” (e.g. unforgeability for a signature scheme, IND-CPA-security
for an encryption scheme).

Notations. Now we give formalization for the above outline.
Suppose a cryptographic primitive P is constructed black-boxly from prim-

itives P1, P2, · · · , Pk in the following way, where Pi, Pj , i �= j are allowed to be
the same primitive.

– Let S be some fixed subset of [k] defined in the construction. S specifies two
ways of using primitive Pi. The major difference is: for primitives Pi, i ∈ S,
the algorithm KeyGen(1λ) will compute Pi.KeyGen(1λ) and the secret keys
Pi.sk generated will be used in the secret evaluation algorithm wSecEval.
Without loss of generality, we let the first |S| number of Pi’s be those corre-
sponding to the set S.

– For primitives Pi, i /∈ S, the algorithm KeyGen(1λ) will not compute
Pi.KeyGen(1λ). They will either (1) have their keys generated freshly upon
every run of SecEval or PubEval (2) will have a reference string (which can be
viewed as a public key) generated during KeyGen(1λ), but have no secret keys
or their secret keys will not be used in the SecEval algorithm of the target
primitive P .

– For the sake of formality, we make a further division of the set S̄ into
TS , TP , TK . They perform slightly different functionalities in the construc-
tion.

• Let TS ∈ [k] denote the set of indices i where Pi’s keys will be generated
during the secret evaluation algorithm SecEval;

• Let TP ∈ [k] denote the set of indices i where Pi’s keys will be generated
during the public evaluaton algorithm PubEval;

• Let TK denote the set of indices i where Pi have no secret keys/secret
keys are not used in SecEval and will have a public reference string (which
can be viewed as a public key) generated during KeyGen(1λ).5.

Watermarking-Compatible Construction Syntax

KeyGen(1λ) → (sk, pk):

5 As we will see, primitives in Tk will have their secret keys (called trapdoors td here)
used only in the security proofs.

Looking forward: the sets TS , TP will play the same role in the watermarking
reduction, and the set TK will incur a slightly different argument but will essentially
play the same role as the other primitives in set S̄. That is, only their plain security
is required to achieve the watermarking security of the target primitive P .
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1. compute (ski, pki) ← Pi.KeyGen(1λ) for all i ∈ S; compute (pki, tdi) ←
Pi.KeyGen(1λ) for all i ∈ TK .

2. output sk = ({ski}i∈S); pk = ({pki}i∈S∪TK
).

SecEval(sk, pk, x ∈ X ) → y ∈ Ys : is an algorithm that
1. uses Pi.SecEval(ski, pki, ·), i ∈ S as subroutines.
2. uses Pi.PubEval(pki, ·), i ∈ S ∪ TK as subroutines.
3. computes (skj , pkj) ← Pj .KeyGen(1λ) for some j ∈ TS (can include these

pkj generated as part of the output).
PubEval(pk, x ∈ X ) → y ∈ Yp : is an algorithm that

1. uses Pi.PubEval(pki, ·), i ∈ S ∪ TK as subroutines.
2. computes (skj , pkj) ← Pj .KeyGen(1λ) for all j ∈ TP (may include these

{pkj}j generated as part of the output).

We say the construction is watermarking compatible if the above construction
of P satisfies:

1. Correctness of Construction: the above construction of P satisfies a cor-
rectness property defined by predicate FR. Moreover, the proof of this correct-
ness property follows from correctness properties of P1, · · · , Pk for predicates
FRi

respectively.
2. Security of Construction: The above construction satisfies security

defined with game GP . The security can be proved from the security proper-
ties of P1, · · · , Pk with respect to some game GP1 , · · · , GPk

3. Watermarking Compatible Reduction: The above security proof is
of the following format, which we call Watermarking-Compatible Reduction,
shown below.

Among the above 3 properties, the first two are natural properties that come
with any black-box cryptographic constructions with provable security and cor-
rectness. We will focus on discussing property 3.

Watermarking Compatible Reductions. On a high-level, a watermarking-
compatible reduction is essentially a natural security reduction, except with the
following feature: we view both the security game GP for the target security
primitive P and the security game GPi

for the input primitive Pi as two-stage
games defined in Definition 3. The supposed adversary A for GP will just be
any usual PPT adversary. But we restrict the reduction in stage 2 to be “obliv-
ious” about the queries made by A in stage 1: that is, it cannot pass on any
queries made by A to the stage 2 reduction but we should nevertheless make the
reduction go through successfully.

We divide our watermarking compatible reductions into two types. Type 1
reduction captures the reduction from breaking the security of P to breaking the
security of a primitive Pi, i ∈ S, i.e. the primitives that have their secret keys
generated in the KeyGen algorithm and used in the SecEval algorithm of P .

Type 2 reduction accordingly captures the reduction from breaking the secu-
rity of P to breaking the security of a primitive Pi, i ∈ S̄.
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The main difference is in how they are used in proving the unremovability
security in the composed watermarking scheme. In the actual watermarking
unremovability, type 1 reduction is supposed to be oblivious about the queries
made by the adversary and will eventually lead to breaking the unremovability of
the underlying primitive; type 2 reduction operates similarly but will eventually
lead to breaking the plain security of the underlying primitive.

Watermarking-Compatible Reduction Type 1. First we consider reductions for
primitives Pi for i ∈ S.

1. Consider a reduction to Pi for the j-th Pi ∈ S; let Ai = (A1
i ,A2

i ) be the
two-stage adversary for the 2-stage game of primitive Pi defined in Definition
3.

2. Ai receives public key pki

3. Ai prepares (skj , pkj) ← KeyGenj(1λ) for all j �= i, j ∈ S and Ai sends all
({pkj}j∈S) to A1.

4. Ai simulates the security game GP for P with A, while being the adversary
in game GPi

.
– In stage 1, A1

i provides the oracles needed for game G1
P and answer A1’s

queries as follows:
• For any (admissible) queries in the game G1

P , if ski is required to
compute the answer for the query, Ai can use the oracles provided in
game G1

Pi
. To answer the entire query, Ai may finish the rest of the

computation using {skj}j �=i.
• If only {skj}j �=i are needed, Ai answers the queries by itself.

– During the interaction of stage-1 game, A1 and A1
i generates an auxiliary

information aux which is public to both of them.
– Upon entering stage 2, A1 generates an arbitrarily polynomial-size state

st and gives it to A2.
– Ai also enters its second stage A2

i . A2
i also receives all of

({skj}j �=i, {pk}i∈S , aux) from But A2
i does not obtain any of A1’s queries

in stage 1.
– A2

i simulates the stage-2 game G2
P for A2, using the above strategy as

A1
i uses. Note that the oracle operations done by A2

i and the conditions
on admissible queries cannot be dependent on of A1’s queries in stage 1,
because A2

i cannot see these queries.
– A2

i also records all of A2’s queries.
– In the challenge phase of G2

Pi
A2

i receives a challenge input inpi from the
challenger.

– In GP ’s challenge phase, A2
i samples some randomness r and prepares a

challenge input inp for A using r and inpi. A2
i sends inpi to A2.6

– A2
i continues to simulate the oracles needed in G2

P game for A2 if there
are further query stages.

6 Note that GP ’s challenge phase may be before, after or concurrent with GPi ’s chal-
lenge phase depending on the reduction. Similarly, the challenge A2 receives may be
dependent on inp.
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5. Ai computes an efficiently computable function fi(out, r,Q, inpi) on input of
A2’s final answer out, the randomness used to prepare A2’s challenge input,
A2’s queries Q and Ai’s challenge input inpi, and gives it to the challenger of
primitive Pi.

Remark 6. In the actual watermarking unremovability reduction, A1
i will receive

a watermarked secret key ˜ski and simulate the queries required using the oracles
in game G1

Pi
with ˜ski instead.

More generically, we can also model the queries made by A1 in stage 1, related
to the keys in the set S, {ski}i∈S as some arbitrary polynomial size (admissible)
leakage on these keys. In the plain security reduction, such leakage correspond
to A1’s adaptive queries made to the oracles provided. In the watermarking
unremovability game, it corresponds to admissible marking queries where we
give out marked secret keys.

Watermarking-Compatible Reduction Type 2. Watermarking-compatible reduc-
tion type 2 operates essentially the same as the above reduction for Pi but for
some i /∈ S.

The main difference is that in the actual watermarking unremovability secu-
rity game, in order to simulate oracle queries for G1

P , the stage 1 reduction A1
i

will actually need oracles in the game G1
Pi

. Naturally, this is because the prim-
itives in set S̄ are not watermarked in the watermarking composition and the
corresponding reduction will not get a watermarked key from the challenger, but
only the oracles provided in the plain security game of GPi

. Even though this
also means that the reduction A1

i gets to observe A1’s queries (using the oracles
of the game GPi

) in the actual watermarking security game, and can make use of
them in stage 2, A1

i does not need to make any of such queries to the challenger
since the keys of any primitive in set S̄ will only be sampled online by A1

i itself.
Meanwhile, A2

i should still not inherit any queries related to the ”watermarked”
primitives in set S since in the real watermarking unremovability game, A2

i is
not supposed to see them.

1. Consider doing reduction to Pi for some Pi, i /∈ S; let Ai = (A1
i ,A2

i ) be
the two-stage adversary for primitive Pi, where the stages are defined by
Definition 3.

2. Ai receives public key pki from the challenger.
3. Ai prepares (sk�, pk�) ← P�.KeyGen(1λ) for all � ∈ S Ai sends all ({pk�) to

A1.
4. Ai simulates the security game GP for P with A:

– In stage-1 game G1
P , for any (admissible) queries if sk�, � ∈ S is required

to compute the answer for the query, Ai can answer the query since it
possesses the keys {sk�}�∈S .
The secret keys of primitives {Pj}j /∈S are all sampled freshly upon every
run of wSecEval(sk, pk, ·) (or sampled freshly in wPubEval(pk, ·)), which
A1

i can do it on its own.
– During the interaction of stage-1 game, A1 and A1

i generates an auxiliary
information aux which is public to both of them.



Composability in Watermarking Schemes 421

– Entering stage 2, A1 generates an arbitrarily polynomial-size state st and
gives it to A2.
Ai also enters its second stage A2

i . A2
i also receives all of

({sk�}�∈S , {pk�}�∈S , aux) but does not obtain any of A1’s queries involv-
ing the use of {sk�}�/∈S .

– A2
i continues to provide the oracles needed for game G2

P and answer
A2(st)’s queries using the above strategy as A1

i uses.
– A2

i also records all of A2’s queries.
– In the challenge phase of GPi

, A2
i receives a challenge input inpi from the

challenger.
– In G2

P ’s challenge phase, A2
i samples some randomness r and prepares a

challenge input inp for A using r and inpi. A2
i sends inpi to A2.

– A2
i continues to simulate the oracles needed in G2

P game for A2 if there
are further query stages

5. Ai computes an efficiently computable function fi(out, r,Q, inpi) on input of
A2’s final answer out, its queries Q and Ai’s challenge input inpi and secrret
radomness r, and gives it to the challenger of primitive Pi.

Properties of Watermarking-Compatible Reductions. We further give some prop-
erties of watermarking-compatible reduction. These properties come with any
natural black-box security roof with hybrid argument and reductions. We present
them here for the sake of convenience and use them as facts later.

Fact 1 (Reduction Property 1). A watermarking-compatible reduction
guarantees that: if there exists some A such that the advantage of A2 win-
ning the game GP is non-negligible, i.e. Pr[GP (1λ, A) = 1] ≥ η + γ where η
is the trivial winning probability and γ is non-negligible in λ, then there exists
some i ∈ [k] such that Ai, using the above reduction strategy, wins GPi

with
some non-negligible advantage γi.

Remark 7. The above property follows naturally from any hybrid argument of
proof.

If using the language of the 2-stage security game: If there exists some adver-
sary A = (A1,A2) such that for some non-negligible ε and some non-negligible
γ, we have:

Pr
[
Pr[G2

P (sk, pk, aux,A2(st))= 1] ≥ η + γ : {(sk, pk), aux, st} ← G1
P (A1, 1λ)

]
≥ ε

Then there exists some i ∈ [k] such that Ai = (A1
i ,A2

i ), using the above reduc-
tion strategy, such that for some non-negligible γi, εi, we have:

Pr
[
Pr[G2

Pi
(ski, pki, aux, A

2
i (st)) = 1] ≥ η + γi : {(ski, pki), aux, st} ← G1

Pi
(A1

i , 1
λ)

]
≥ εi.

Fact 2 (Reduction Property 2). For all i ∈ S, once give the secret key Pi.sk
in the clear, there exists a PPT algorithm Ti that wins the security game GP

with probability 1.
Additionally, such a Ti can be used black-boxly by the watermarking-

compatible reduction algorithm Ai to win the security game GPi
with noticeable

probability.
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Reduction Function. Recall that in the end of the reduction, Ai computes an
efficiently computable function fi(out, r,Q, inpi) on input of A2’s final answer
out, the randomness used to prepare A2’s challenge input, A2’s queries Q and
Ai’s challenge input inpi, and gives it to the challenger of primitive Pi.

For convenience, we will refer to the function fi used by the reduction as
reduction function.

Remark 8 (Reduction Function). We refer to the above function fi used by the
reduction as reduction function.

Remark 9 (Special Primitives in TK). The role of the primitives in the set TK

may be confusing to the readers at this point. We make some further explanation.
As we go into later sections and go into examples (see full version for details ),
its role will become clear.

More specifically, Tk only contains the simulation-based primitives P� where

1. there exists an efficient simulator algorithm such that the output of
P�.PubEval(P�.pk, ·) is indistinguishable from the output of the simulator
Sim(P�.td, ·). Their secret key (trapdoor td) will only come up in the security
proof for P .

2. In the security proof for P , the rest of the hybrid arguments and reduction
happen in a hybrid world where we have already invoked the above security
for P�.

The one example primitive in the set TK we use within this work is a NIZK
scheme with a trapdoor. Its “keys” (the common reference string CRS, and trap-
door td) are generated in the main key generation algorithm, but the trapdoor
is not used in any of SecEval,PubEval, and only in the security proof.

3 Watermarking Composition Framework

3.1 Definition: Watermarkable Implementation of a Cryptographic
Primitive

In this section, we will define what we call a “watermarkable implementation” of
a cryptographic primitive P . We distinguish it from the usual naming (“water-
markable P”) because of some differences in syntax and definition. But we will
sometimes use watermarkable P in our work for convenience. Please note that
all “watermarkable P” used in the technical part of this work refers to a water-
markable implementation of a cryptographic primitive P defined below.

On a high-level, a watermarkable implementation of P differs from most
existing watermarking definition in two aspects:

1. Unremovability security: A pirate circuit produced by the adversary in the
unremovability security game is considered to function successfully as long as
it can break the security game GP .

2. Extraction algorithm syntax: the extraction key used to extract a watermark
is able to simulate the game GP for the underlying “plain security” of P .

In more detail, a watermarkable implementation of a cryptographic primitive
has the following syntax and properties.
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Watermarkable Primitive Syntax A watermarkable primitive WP for a crypto-
graphic primitive P with a security game GP consists of the following algorithms:

WMSetup(1λ) → (sk, pk,mk, xk): on security parameter, outputs a secret key sk,
public key pk, marking key mk, extraction key xk.

wSecEval(sk, pk, x): takes in the secret information sk, public information pk and
some input x from input space X , and output a value y ∈ Ys.

wPubEval(pk, x ∈ X ): takes in the public information pk and some input x from
input space X , and output a value y ∈ Yp.

Mark(mk, sk, τ ∈ MMark) → skτ : takes in marking key mk, a secret key sk and a
message τ ∈ MMark; output a marked key skτ

7.
Extract(xk, pk, aux, C) → τ ∈ MMark/	τ ∈ Mk

Mark/⊥: on input extraction key
sk, public key pk, auxiliary information aux and circuit C, outputs a mark
message τ ∈ Mτ or a tuple of marked messages 	τ ∈ Mk

τ where k is a con-
stant/small polynomial parameter related to the concrete watermarking con-
struction.

Remark 10. The Extract algorithm is allowed to output a tuple of marks when
working on adversarial programs, when the watermarkable implementation is one
that comes from composing underlying watermarking implementations. More
details to be discussed later in Sect. 3.2.

Remark 11. The extraction algorithm takes in the public key pk (which is not
a limitation because it’s public) and an auxiliary input aux. As we will see in
the concrete examples, depending on the security game of the primitives we
watermark, we may need Extract to take in some aux or may not.

When it is clear from the context that there is no public key or auxiliary
information for Extract to take, we will omit them from the input parameters
for notation cleanness.

Remark 12. There can be several different (constant number of) wSecEval and
wPubEval. As aforementioned, we view all secret algorithms as one algorithm
SecEval(sk, pk, ·) that will take in an index i ∈ [�] to decide which mode to use,
similarly for public algorithms. We thus also use sk to denote ({ski}i∈[�].

Let us denote Eval = (wSecEval,wPubEval).

Correctness. The construction should satisfy “unmarked” correctness for
unmarked keys: a watermarkable implementation of P is said to be correct with

7 In defintions in the watermarking literature, the output of Mark is the program
wSecEval(skτ , pk, ·). Since conventionally by Kerkhoff’s principle, the evaluation algo-
rithm itself is public, giving out only the marked secret key is equivalent to giving
out the program, we give out the key for convenience that come up later. There
are watermarking schemes where the evaluation algorithm may be different when
running on a marked key; in that case we can consider wSecEval to have two modes,
one for unmarked keys one for marked keys.
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respect to predicate FR if there exists a negligible function negl(·) such that for
all λ ∈ N, x ∈ X :

Pr[FR(Eval, pk, sk, x, r) = 1 : (sk, pk) ← WMSetup(1λ), r ← Dr] ≥ 1 − negl(λ).

where the probability is taken over randomness used in WMSetup and Dr. Recall
that randomness r is used in checking whether the predicate FR(Eval, pk, sk, x, r)
is satisfied Definition 1 and Dr can be simply taken to be the uniform distribu-
tion.

Functionality Preserving vs. Exact Functionality Preserving. We present both
definitions of functionality-preserving for the sake of comprehensiveness because
they have both appeared in watermarking literatures. Before [GKM+19], the
watermarking literature mainly used exact functionality preserving only. While
it is not particularly vital to the contributions in this work, we would like to
mention that exact functionality preserving is a stronger notion. For some of
the underlying building blocks we use, only constructions under the relaxed
functionality-preserving definition are known, for example the watermarkable
signature scheme in [GKM+19].

Functionality Preserving. The functionality-preserving property says: if for a
predicate FR, the underlying primitive P satisfies he correctness in Definition 2,
then there exists a negligible function negl(λ) ssuch that for all λ ∈ N, x ∈ X :

Pr
[
FR(Eval, pk, s̃k, x, r) = 1 :

(sk, pk, xk,mk) ← WMSetup(1λ)
s̃k ← Mark(mk, sk, τ), r ← Dr

]
≥ 1 − negl(λ).

Exact Functionality Preserving. The exact functionality preserving is a stronger
property that: there exists a negligible function negl(λ) such that for all λ ∈
N, x ∈ X , τ ∈ Mτ :

Pr

[
wSecEval(s̃k, pk, x) = SecEval(sk, pk, x) :

(sk, pk, xk,mk) ← WMSetup(1λ)

s̃k ← Mark(mk, sk, τ)

]

≥ 1 − negl(λ).

(1)

Correctness of Extraction There exists a publicly known efficient algorithm T
and a negligible function negl(λ) such that for all λ ∈ N, for all τ ∈ Mτ :

Pr
[
Extract(xk, T (skτ , ·)) = τ :

(sk, pk, xk,mk) ← WMSetup(1λ)
s̃k ← Mark(mk, sk, τ)

]
≥ 1 − negl(λ)

Security with Security Game GP . The watermarkable primitive WP sat-
isfies the same security defined by the security game GP for P , except
that the subroutines used in GP , KeyGen,SecEval,PubEval are replaced with
WMSetup,wSecEval,wPubEval respctively. The Extract,Mark algorithms and
keys are ignored in the context of these games.
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Watermarking Security Compatible with a Security Game. Now we present the
unremovability security of the watermarking implementation for primitive P.

Informally, the security guarantees that: any PPT adversary A, when given
the watermarked key(s), generates a pirate circuit C∗; if C∗ can win the security
game GP with some non-negligible advantage, then we must be able to extract
a (previously queried) watermark from C∗.

Definition 5 (γ-Unremovability with Game GP ). We say a watermarkable
implementation of P is γ-unremovable if:

For every stateful γ-unremovable admissible PPT adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, the following holds:

Pr
[
Extract(xk, pk, aux, C∗) /∈ Q :

(sk, pk,mk, xk) ← WMSetup(1λ)
(aux, C∗) ← AMark(mk,sk,·)(1λ, pk)

]
≤ negl(λ)

Q denotes the set of f marks queried by A to the marking oracle Mark(mk, sk, ·),
G1

P is the stage 1 of a security game GP , as defined in Definition 3.
We call a PPT adversary A as γ-unremovable admissible if A’s output C∗ is

an admissible adversary in the stage-2 security game G2
P and is γ-good, where

γ-good is defined as:

Pr[G2
P (sk, pk, aux, C∗) = 1] ≥ η + γ

Here, η is the trivial success probability for any admissible adversary in GP .
The randomness over testing whether C∗ is γ-good is the randomness used

answering any oracle queries from C∗ and preparing the challenge for C∗, in the
stage-2 security game G2

P .
To match our syntax, we denote Extract(xk, pk, aux, C∗) /∈ Q to mean that:

1. If Extract(xk, pk, aux, C∗) outputs a single mark τ ∈ Mτ/τ = ⊥, it is consid-
ered to be not in the query set Q if and only if τ /∈ Q.

2. If Extract(xk, pk, aux, C∗) outputs a tuple of marks 	τ = (τ1, · · · , τk), where
each τi ∈ Mτ/τi = ⊥, it is considered not in the query set Q if and only if
for all i, τi /∈ Q.

For more discussions on the above definition, we refer to the full version of
the paper.

Definition 6 (Strong Unremovability). We say a watermarking implemen-
tation of P satisfies strong unremovability if it satisfies γ-unremovability for any
non-negligible γ.

We leave more remark on the unremovability definition to the full version.

Security Game Simulation Property of the Extraction Key We additionally
require the extraction key Extract to be able to simulate the (stage-2) security
game G2

P for the primitive P to be watermarked.
Consider the security game GP for the underlying primitive P : GP =

(G1
P , G2

P ) is an interactive game between a challenger and admissible A =
(A1,A2). Recall that in the stage-2 Definition 3 G2

P can output a view
view(sk, pk, aux,A2) (Definition 4).
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Definition 7 (Extraction key simulation property). The extraction key
simulation property of the extraction key says that: given (sk, pk, aux) ←
G1

P (A1, 1λ) where we use WMSetup(1λ) to obtain (sk, pk, xk) in G1
P , there

exists a PPT simulator Sim(xk, pk, aux,A2) ( where Sim interacts with
A2 black-boxly) that outputs a simulated view viewSim(xk, pk, aux,A2), such
that for any λ ∈ N, for any admissible A in GP , the distributions
viewG2

P
= {view(sk, pk, aux,A2)} and viewSim = {viewSim(xk, pk, aux,A2)} are

perfectly/statistically/computationally indistinguishable.

Extraction Syntax: Simulation of Security Game GP inside Extract. Following
the above property, we require that the Extract algorithm in a watermarkable
implementation of a primitive P follows a specific format: it simulates the stage-2
security game G2

P for any input circuit, while trying to extract a mark.
Extract Algorithm

On input (xk, pk, aux) and a program C:
– Run an algorithm E where E uses the following subroutine (for possibly
poly(λ)) many times):

• Use (xk, pk, aux) to simulate the stage-2 game G2
P (sk, pk, aux, C) for

primitive P , running C black-boxly by treating C as the stage-2
adversary A2 defined in Definition 3.

• If C is non-interactive (i.e. C does not make any queries or respond to
interaction in the challenge phase of G2

P ), then E samples challenge
inputs on its own and runs C on them.

– E can take any of C’s outputs, including C’s queries made during the
above simulated game, as inputs to compute the extraction algorithm’s
final output.

– Output a watermark τ ∈ Mτ or ⊥

Examples of Extraction Algorithm that Simulates a Security Game. It is not
hard to create an extraction algorithm with the above syntax and simulation
capability. In fact, some existing works have already built watermarking schemes
that have Extract algorithm with such a format.

– To enable the extraction key to simulate the security game, a naive solution
in the private extraction case is to simply let xk contain the secret key sk.
One example is the extraction algorithm in a watermarkable signature scheme
(see the full version ). To answer the signature queries for the pirate program,
the extraction key is the signing key.

– In some other scenarios, we don’t need the secret key to simulate the security
game and one can even have public extraction.
For example, a CPA secure PKE scheme. Another example is when we can
sample from the input-output space of the evaluation oracles without having
the actual key: in the weak PRF setting (with non-adaptive queries), we can
simply answer its queries by sampling. In [GKWW21], one can use indistin-
guishability obfuscation to build such a sampler, so that we have watermark-
able weak PRF with public extraction.
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See the full version for more discussions on the extractability of watermarks,
simulation property of the extraction key and additional definitions such as
meaningfulness and collusion resistance.

3.2 Watermarking Composition: Target Primitive from Input
Primitives

In this section, we show that if primtivive P is built from P1, · · · , Pk where
the security can be shown via a watermarking-compatible reduction, we can
construct a watermarkable implementation of P , named WP to satisfy defini-
tion in 3.1, from existing watermarkable implementations of P1, · · · , Pk called
WP1,WP2, · · · ,WPk, satisfying definition in 3.1. We will still refer to P as the
target primitive and P1, · · · , Pk as input primitives.

Outline and Intuition. On a high level, the watermarking scheme of the target
primitive P simply follows the construction of plain P from the plain underlying
building blocks in terms of evaluation algorithms SecEval,PubEval. Correctness
and functionality-preserving compose in a relatively natural way.

To mark a key of P , the marking algorithm concatenates the marked keys of
all underlying Pi that need to be marked. To extract a mark, we attempt to run
the extraction algorithm of all underlying Pi on the input circuit. If any valid
mark is extracted, then the circuit is considered marked.

In particular, the extraction algorithm will treat the circuit as an adversary
in the stage-2 security game of P and turns it black-boxly into a reduction for
the security game of each underlying Pi, one by one and then run the underlying
extraction algorithm of Pi on it.

In order to remove a mark from a P ’s key, the adversary A must remove all
marks from each Pi’s key. Meanwhile, the pirate program still needs to win the
security game of P , then we must be able to use to break the unremovability of
at least one underlying Pi. In more generic scenarios, the pirate program made
by A may not break any unremovability security of watermarkable building
blocks, but get around the task of removing marks by breaking the security of
some unwatermarked building blocks. By similar means, we can use the pirate
program to build our reduction to the security of these unwatermarked building
blocks. By the properties of the watermarking-compatible reduction (Sect. 2.2)
that P ’s construction satisfies, the above analysis is exhaustive.

Construction of WP. Similar to the description of construction in Sect. 2.2, we
recall the following notations:

– Let S ⊂ [k] be a fixed set used in P ’s construction from P1, · · · , Pk, where
the primitives Pi with i ∈ S’s keys will be generated in the KeyGen algorithm
of P . Without loss of generality, we let the first |S| number of Pi’s be those
corresponding to the set S.

– Let TS ∈ [k] denote the set of indices i where Pi’s keys will be generated
during SecEval; Let TP ∈ [k] denote the set of indices i where Pi’s keys will
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be generated during PubEval. Let TK denote the set of indices i where Pi’s
secret key (we call trapdoor td) will be generated during KeyGen(1λ) but will
not be used in P ’s algorithms.

– Without loss of generality, we sometimes assume a numbering on the primi-
tives so that the first |S| primitives are in the set S.

WMSetup(1λ) → (sk, pk, xk,mk) :
1. compute (ski, pki, xki,mki) ← WPi.WMSetup(1λ) for all i ∈ S.
2. compute (pk�, td�) ← P�.KeyGen(1λ) for all � ∈ TK ;
3. output sk = (skj1 , · · · , sk|S|); pk = (pk1, · · · , pk|S|), {pk�}�∈Tk

));
xk = (xk1, · · · , xk|S|, {td�}�∈Tk

);mk = (mk1, · · · ,mk|S|)
wSecEval(sk, pk, x):

1. parse input sk = (sk1, · · · , sk|S|); pk = (pk1, · · · , pk|S|, {pk�}�∈Tk
)).

2. wSecEval(sk, pk, ) is the same algorithm as P.SecEval(sk, pk, ·) in the con-
struction of P from P1, · · · , Pk, except that Pi.SecEval(ski, ·) is replaced
with WPi.wSecEval(ski, ·) for i ∈ S. Overall, wSecEval(sk, pk, ) is an algo-
rithm that:
(a) uses WPi.wSecEval(ski, pki, ·), i ∈ S as subroutines.
(b) uses WPi.wPubEval(pki, ·), i ∈ S ∪ Tk as subroutines.
(c) computes (skj , pkj) ← Pj .KeyGen(1λ) for some j ∈ TS ( and may

include these pkj generated as part of the output).
wPubEval(pk, x)

1. parse input pk = (pk1, · · · , pk|S|, {pk�}�∈Tk
).

2. wPubEval(pk, ) is the same algorithm as P.PubEval(pk, ·) in the construc-
tion of P from P1, · · · , Pk, except that Pi.PubEval(pki, ·) is replaced with
WPi.wPubEval(pki, ·) for i ∈ S ∪ Tk. Overall, wPubEval(sk, pk, ·) is an
algorithm that:
(a) uses WPi.wPubEval(pki, ·), i ∈ S as subroutines.
(b) uses WPi.wPubEval(pki, ·), i ∈ S as subroutines.
(c) computes (skj , pkj) ← Pj .KeyGen(1λ) for some j ∈ TP ( and may

include these pkj generated as part of the output).
Mark(mk, sk, τ ∈ MMark) → skτ

1. parse mk = (mk1, · · · ,mk|S|); sk = (sk1, · · · , sk|S|); pk =
(pk1, · · · , pk|S|, {pk�}�∈Tk

).
2. Compute ski,τ ← WPi.Mark(mki, ski, τ) for all i ∈ S.
3. output s̃k = (sk1,τ , · · · , sk|S|,τ )

Extract(xk, pk, aux, C) → τ ∈ MMark/	τ ∈ M|S|
Mark/⊥ :

1. parse xk = (xk1, · · · , xk|S|, {td�}�∈TK
); aux = (aux1, · · · , aux|S|); pk =

(pk1, · · · , pk|S|, {pk�}�∈Tk
).

2. Initialize an empty set 	τ .
3. For each i ∈ S:

(a) prepare the following circuit Ci using black-box access to C.
i. Ci uses ({xkj}j∈S,j �=i, {td�}�∈TK

) and external queries to simulate
security game G2

P (sk, pk, aux, C) for C8:
8 Ci can also have xki if the watermarkable implementation WPi has a public extrac-

tion key. In this case, Ci also does not need to make external queries.
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– For any (admissible) queries in the stage-2 game G2
P

(sk, pk, aux, C), if the oracles provided in security game
GPi

(ski, pki, auxi, ·) is required to compute the answer for the
query, Ci can will make a query to an external challenger. To
answer the entire query, Ci may finish the rest of the compu-
tation using ({xkj}j �=i, {td�}�∈Tk

).
– If only {xkj}j �=i are needed to answer a query, Ci answers it by

itself.
ii. Ci records queries from C into a set QC .
iii. Ci receives its challenge input inpi from the interaction with an

external challenger, samples a random string r, and prepares a
challenge input inp for C using inpi and r.

iv. If there is a query phase after the challenge phase, Ci continues to
simulate the oracles required using {xkj}j �=i and external queries
to a challenger.

v. After C makes its final output out, Ci computes the function
fi(out, r,Qc, inp) where fi is the reduction function (Remark 8)
used in watermarking-compatible reduction of P to Pi. Output
the result of this computation.

(b) compute τi/⊥ ← WPi.Extract(xki, Ci).
(c) add τi(or ⊥) to the tuple 	τ , and go to step 2 with i := i + 1.

4. Output
– 	τ = (τ1, · · · , τ|S|) if ∃i, j where τi �= τj ;
– else if τi = τj = τ(or ⊥) for all i, j, output τ (or ⊥ resp.).

We refer the proof of correctness, functionality-preserving, watermarking
security and more discussions for the full version.
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Nico Döttling1 , Jesko Dujmovic1,2(B) , and Antoine Joux1

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
jesko.dujmovic@cispa.de

2 Saarland University, Saarbrücken, Germany

Abstract. Timed cryptography has initiated a paradigm shift in the
design of cryptographic protocols: Using timed cryptography we can
realize tasks fairly, which is provably out of range of standard crypto-
graphic concepts. To a certain degree, the success of timed cryptography
is rooted in the existence of efficient protocols based on the sequential
squaring assumption.

In this work, we consider space analogues of timed cryptographic
primitives, which we refer to as space-hard primitives. Roughly speaking,
these notions require honest protocol parties to invest a certain amount of
space and provide security against space constrained adversaries. While
inefficient generic constructions of timed-primitives from strong assump-
tions such as indistinguishability obfuscation can be adapted to the
space-hard setting, we currently lack concrete and versatile algebraically
structured assumptions for space-hard cryptography.

In this work, we initiate the study of space-hard primitives from con-
crete algebraic assumptions relating to the problem of root-finding of
sparse polynomials. Our motivation to study this problem is a candi-
date construction of VDFs by Boneh et al. (CRYPTO 2018) which are
based on the hardness of inverting permutation polynomials. Somewhat
anticlimactically, our first contribution is a full break of this candidate.
However, we then revise this hardness assumption by dropping the per-
mutation requirement and considering arbitrary sparse high degree poly-
nomials. We argue that this type of assumption is much better suited for
space-hardness rather than timed cryptography. We then proceed to con-
struct both space-lock puzzles and verifiable space-hard functions from
this assumption.

1 Introduction

Timed Cryptography. Traditionally, in public key cryptography [DH76], the abil-
ity to decrypt ciphertexts which have been generated with a public key pk is tied
to the possession of a secret key sk corresponding to pk. Likewise, generation
of signatures with respect to a verification key vk is tied to the possession of
corresponding signing key. Timed cryptography [RSW96] adds a twist to this
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E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15366, pp. 431–459, 2025.
https://doi.org/10.1007/978-3-031-78020-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78020-2_15&domain=pdf
http://orcid.org/0000-0002-5914-7635
http://orcid.org/0000-0003-1043-5094
http://orcid.org/0000-0003-2682-6508
https://doi.org/10.1007/978-3-031-78020-2_15
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rigid paradigm: Rather than the possession of a secret key, investing time facil-
itates the decryption of a ciphertext or generation of signature. In other words,
time-lock encryption allows to encrypt to the future.

This enables new applications both in theory and practice: Timed commit-
ments [BN00] facilitate e.g. fair exchange and fair coin-toss in the two party
setting, notions which have been shown to be beyond reach of standard crypto-
graphic notions [Cle86]; Likewise, from a more practical angle time-lock puzzles
play a crucial role in the design of public randomness beacons, a crucial compo-
nent in the design of distributed ledgers (see e.g. [KWJ23]).

Verfiable Delay Functions. Boneh et al. [BBBF18] introduced the notion of ver-
ifiable delay functions (VDFs), which can be loosely thought of as the timed
analogue of digital signatures: Computing a VDF output together with a cer-
tificate of its validity takes a long time T , whereas verification of a certificate
can be performed rapidly, that is in time poly(λ, log(T )). VDFs are likewise
powerful tools in the construction of randomness beacons and consensus proto-
cols, as they e.g. facilitate techniques such as self-selection [CM19] and proofs
of replication [ABBK16].

Boneh et al. [BBBF18] provide both generic and concrete constructions of
VDFs. The generic constructions are obtained by combining specific sequen-
tial functions, such as iterated hashing, with incrementally verifiable computa-
tion [Val08,BCCT13].

Alas, when it comes to concrete assumptions, VDFs in particular and timed
cryptography in general rest on a rather narrow foundation; most candidates
of time-lock puzzles and verifiable delay functions are tied to the sequential
squaring assumption in groups of unknown order. Bitansky et al. [BGJ+16]
showed that by relying on indistinguishability obfuscation, timed primitives can
be realized assuming the minimal assumption that inherently sequential prob-
lems exist. As this construction relies on very heavy theoretical tools, its appeal
is currently limited to the domain of pure theory. Another significant candi-
date are verifiable delay functions from isogenies [DMPS19]. Proofs of sequen-
tial [MMV13,CP18,DLM19] can be seen as a more lightweight alternative to
VDFs and are achievable from potentially weaker assumptions. However, PoSW
lack a uniqueness property, which makes them unsuitable for many of the more
advanced applications of VDFs.

The concrete VDF candidates given in [BBBF18] constitute a notable excep-
tion from the sequential squaring blueprint. These candidates are based on a
novel family of hardness assumptions relating to the inversion of rational func-
tions of high degree.

Space-Hard Cryptography. Conceptually, there is nothing intrinsically special
about the computational resource of time. Hence, a natural conceptual next step
is to consider more general computational resources. In fact, there is a growing
body of works investigating the notion of memory or space-hard functions [Per09,
AS15,AB16,ACP+17,BP17,ABB22,AGP24].
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In this work, we are concerned with both space-lock puzzles, the space-
analogue of time-lock puzzles, and verifiable space-hard functions, the analogue
of VDFs.

Syntactically, we define a space-lock puzzle to consist of two algorithm Gen
and Solve. Gen takes as input a space parameter S and a message m and outputs
a puzzle p, whereas Solve takes a puzzle p and outputs a message m. In terms of
efficiency, we require that Gen runs in time and space poly(λ, log(S)), whereas
Solve runs in space S. In terms of security, we require that any algorithm run-
ning in time poly(λ, S) having access to space of size at most S1−ε has at most
negligible advantage guessing an encrypted bit.

A verifiable space-hard function syntactically consists of two algorithms Eval
and Verify (potentially along with a setup algorithm producing public parame-
ters). Eval takes a space parameter S and a value x and outputs a value y and
a certificate π, whereas Verify takes inputs x, y and a certificate π and out-
puts either accept or reject. In terms of efficiency, we require that Eval runs in
space S, whereas Verify runs in time and space poly(λ, log(S)). In terms of secu-
rity, we require computational uniqueness and space-hardness. Computational
uniqueness requires that no algorithm running in time and space poly(λ, S) can
produce a verifying tuple x, y′, π′ with y′ �= y, where (y, π) = Eval(S, x). Space-
hardness requires that no algorithm running in time poly(λ, S) and space S1−ε

finds y with non-negligible probability.
In terms of assumptions and constructions, the design-space of space-hard

cryptography is comparatively much less explored than that of timed cryptog-
raphy. In terms of generic constructions, a closer look at the time-lock puzzle
construction given in [BGJ+16] reveals that this construction can be adapted to
space-lock puzzles, i.e. we can construct a space-lock puzzles assuming iO and,
additionally, the minimal assumption that inherently space-hard computations
exist.

However critically, there are currently no algebraically structured candidates
for efficient space-lock puzzles.

1.1 Our Results

In this work, we take a first step in studying efficient space-hard primitives from
algebraic assumptions relating to the solvability of sparse univariate polynomials
of large degree. The contributions of our work are two-fold:

1. As a first contribution, we provide an efficient attack against the specific
proposal of the “Inverting Injective Rational Maps” Assumption of Boneh et
al. [BBBF18]. While we do not break the assumption in its most general form,
we demonstrate a full break on their suggested candidate, which indicates that
the assumption stands on brittle ground. A major challenge towards instan-
tiating the general assumption is finding suitable families of injective rational
maps, and [BBBF18] suggested a family of rational functions of (large) degree
d constructed by [GM97]. In [BBBF18] it was conjectured that this family
cannot be inverted in time and space poly(log(d)) (i.e. by circuits of size
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poly(log(d))). We provide and implement an algorithm which inverts these
rational functions in time and space poly(log(d)), thus falsifying the main
candidate instantiation of the Inverting Injective Rational Maps assumption.
We remark that this VDF was a weak VDF to begin with, i.e. algorithms
that run in time poly(log(d)) and space O(dc) for some c ≥ 1 were known and
discussed in [BBBF18]. The main innovation of this part of our work is that
our attack runs in both time and space poly(log(d)).

2. In Sect. 4 we introduce and discuss a new algebraically structured space-
hardness assumption which we refer to as the sparse root finding (SRF)
assumption. Building on this, in Sect. 5 we provide a construction of spacelock
puzzles from the SRF assumption, whereas in Sect. 6 we construct a verifiable
space-hard function from the SRF assumption.

1.2 Our Techniques

Invertibility of Guralnick Müller Polynomials. As mentioned above, Boneh et
al. [BBBF18] provided a concrete candidate for a VDF based on Guralnick-
Müller permutation polynomials [GM97]. These are defined via rational functions
fμ,q over a finite field Fpm and parametrized by an element μ ∈ Fpm and a (large)
degree parameter q = pr (for some r < m). Both μ and q need to obey some
additional constraints to ensure that the function is a permutation. The function
fμ,q(X) is then given by

fμ,q(X) =
(Xq − μX − μ)(Xq − μX + μ)q + ((Xq − μX + μ)2 + 4μ2X)(q+1)/2

2Xq
.

Notice that this function is neither linear nor affine, consequently at a first
glance one may reasonably conjecture that it takes space proportional to q to
invert it on random inputs. In fact, [BBBF18] provide a survey of cryptanalytic
techniques to invert rational functions and argue why these techniques fail for
the case of Guralnick-Müller polynomials. This includes inversion of extremely
sparse polynomials, linear algebraic attacks, as well as attacks against so-called
exceptional polynomials, which remain permutations when considered as rational
functions over the extension field Fpm′ for infinitely many choices of the degree
m′. Boneh et al. [BBBF18] conjecture that inverting a function fμ,q for a ran-
domly chosen μ ∈ Fpm (under some constraints) takes time polynomial in the
degree parameter q.

Yet, our first contribution in this work is a full break of this assumption.
Interestingly, we draw the mathematical tools for this attack from the original
work of Guralnick and Müller [GM97]. We observe the following: While the
function fμ,q itself is not affine, the problem of inverting fμ,q on a target t ∈ Fpm

can be embedded into a linear system of higher degree. Specifically, [GM97]
provides us with the following property of fμ,q: If θ is q − 1-st root of μ in
the algebraic closure of Fpm , then there exist efficiently computable coefficients
A0, B0, B1, B2 (depending on a and t) in an extension of Fpm such that

∏

i∈Fq

(fμ,q(X + iθ) − t) = Xq3
+ B2X

q2
+ B1X

q + B0X + A0. (1)
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Consequently, any solution ξ ∈ Fpm of fμ,q(ξ) = t is also a solution to the
right-hand side of Eq. (1), i.e. such a solution satisfies

ξq3
+ B2ξ

q2
+ B1ξ

q + B0ξ + A0 = 0. (2)

Now observe that Eq. (2) is in fact a linear equation system (as exponentiation
with q is a Frobenius action). Hence we can efficiently compute a solution space
using standard linear algebra techniques. In Theorem 2 in Sect. 3 we show that,
except with negligible probability over the choice of t, the system (2) possesses
a unique solution, hence our attack succeeds. Furthermore, our experiments in
MAGMA (see Sect. A) demonstrate that this attack is indeed practical.

Space-Hardness from Inverting Sparse Polynomials. Guralnick-Müller polyno-
mials are one specific instance of the more general problem of finding roots of
sparse polynomials1, a problem which we will refer to as Sparse Root Finding
(SRF).

As [BBBF18] note, their root-finding-based candidate achieves only a mild
form of sequentiality to begin with. In fact, a moderate polynomial increase in
parallel computation power will enable a solver to find roots significantly faster.
On the other hand, however, the space-hardness of these problems seems to be
much more robust, as all known algorithms for this type of problem consume a
large amount of space, in fact an amount of memory that scales linearly with
the degree of the polynomial.

This is the starting point for the constructive results in this work. In a
nutshell, we consider the problem of inverting sparse, high degree polynomi-
als but drop the requirement that the polynomial needs to act as a permutation.
Hence, the resulting problem carries significantly less structure than e.g. invert-
ing Guralnick-Müller polynomials and does not provide an obvious angle for
cryptanalysis.

More importantly, by basing our constructions on the problem of root-finding
for general sparse polynomials, we can achieve a win-win scenario:

– If our assumptions hold, we obtain practically efficient candidates for space-
hard cryptography

– While we do not provide a worst-to-average case reduction, refuting our
assumptions would constitute a considerable advance in the algorithmic state-
of-the art of polynomial factorization algorithms, as it is a long open problem
to design polynomial factorization algorithms which leverage sparsity (in a
non-extreme parameter regime).

Space-Lock Puzzle. Building Space-Lock Puzzles from the assumption that SRF
is space-hard in sparse high-degree polynomials is fairly straight forward. To
generate a puzzle for a random message m, generate a random sparse polynomial
f(X) with high degree and a random constant coefficient. Now, we know that

1 More generally, we can consider this as finding roots of structured polynomials which
possess a compact representation and can be evaluated quickly.
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f(X) − f(m) has a root at m and can be output as a space-lock puzzle for m.
There are two minor problems with this construction. First, we might want to
create a puzzle for a non-random message, which we can resolve by using hybrid
encryption. Second, there might be polynomials f(X)−f(m) with multiple roots.
We can fix this problem by padding the message and checking for the correct
padding after solving the puzzle.

Verifiable Space-Hard Functions. We start by discussing our construction of ver-
ifiable space-hard functions from SRF. As we let go of the permutation require-
ment of the polynomials, we need to work harder to make this function verifiable.
Our technical tool to achieve this is a novel and efficient special-purpose proof
system for certifying the greatest common divisor between the polynomial f(X)
and Xp − X. This is sufficient, as given this gcd one can quickly and space-
efficiently find the roots of f(X).

For the purpose of this outline, assume that we have cheap way to prove
equations over high-degree and possibly dense polynomials. We will later explain
how to carry out these checks. We make use of the fact that the greatest common
divisor between a polynomial f(X) and Xp − X is constant degree with high
probability over the choice of a random sparse polynomial f(X). Note that this
gcd allows us to immediately compute the roots of f(X) in Fp. Our proof system
establishes that some constant degree polynomial g(X) is the gcd of f(X) and
Xp − X in two phases. In the first phase, the prover computes f ′(X) = Xp − X
mod f(X) via square and multiply. Each step of this computation is defined by
a simple polynomial equation (X2n mod f(X)) · ((X2n mod f(X)) = (X2n+1

mod f(X)) + h(X)f(X) for some polynomial h(X).
In the second phase, we use that gcd(Xp − X, f(X)) = gcd(f ′(X), f(X))

and compute g(X) = gcd(f ′(X), f(X)) together with its Bézout coefficients
a(X), b(X) via the extended Euclidean algorithm. The greatest common divisor
is unique, up to normalization, hence we require the prover to normalize this
polynomial. The verifier can easily check this property by checking that the
leading coefficient is 1. Bézouts identity guarantees that for all ā(X), b̄(X) we
have ā(X)f ′(X) + b̄(X)f(X) is a multiple of gcd(f ′(X), f(X)). Further, the
verifier can check whether g(X) = a(X)f ′(X)+b(X)f(X) is a divisor, by making
sure that f(X) mod g(X) = 0 and Xp − X mod g(X) = 0. Now we have
verified that g(X) is a divisor of f(X) and f ′(X) and that g(X) is a multiple of
the their greatest common divisor, therefore, it is a greatest common divisor.

So far we have skipped over the issue of how we can verify polynomial equa-
tions, when the polynomials have representations that are bigger than the ver-
ifier’s space. Polynomial commitments such as [KZG10] would be the perfect
tool for this but its common reference string scales with the degree of the poly-
nomials, which we want to avoid. Instead we commit to evaluation of these
polynomials at specific points, which in fact defines a Reed-Solomon code. We
then use interactive oracle proofs of proximity to establish that the commit-
ments are indeed close to a codeword of the corresponding Reed-Solomon code.
To check the equations we pick a few random positions of the codeword and
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check whether the equations hold at these positions. We can then use the the
Schwartz-Zippel lemma to argue soundness of the polynomial equations.

1.3 Open Problems

We consider it to be an interesting question to investigate whether it is possible
to intrinsically and flexibly tie the resources of space and time in a puzzle or
verifiable time-space hard function. That is, is it possible to force the puzzle
solver to spend S space for T time? Here S and T are adjustable parameters.
This concept may be most closely captured by the concept of sustained space
complexity [ABP18].

We believe any solution to this problem that goes beyond taking a sequen-
tial function that has a scalable domain and generically applying incrementally
verifiable computation to it might be of big interest. An example for such a func-
tion is sequential squaring over a modulus that scales with the space parameter.
More specifically the function could be on input x ∈ [2λ] compute h((Ns − x)2

T

mod Ns) where h is some compressing function to reduce the size of the result.

1.4 Related Work

There are many works in memory restricted cryptography such as memory-
hard functions and various forms of proof of space. Memory-hard functions are
functions that are only computable with a large amount of memory accesses. The
measure that many works use is called cumulative memory complexity. These
functions are used to reduce the effectiveness of building application specific
integrated circuits (ASICs) or field programmable gate arrays (FPGA) for brute
force attacks because these excell at computation and do not have a faster way
of accessing memory than off-the-shelf CPUs. Memory-hard functions are used
in password hashing, proof of work, and other applications where the goal is to
make computation expensive. The first memory-hard function was proposed by
Percival in 2009 [Per09]. So far, all memory hard functions [Per09,AS15,AB16,
ACP+17] use graphs with special structure and iteration of a function to force
anyone trying to evaluate the function to do a lot of memory accesses.

Our functions are hard in a slightly different way. We are trying to increase
the amount of maximum storage that is necessary to compute the function,
which we call space hardness. A space-lock puzzle closely resemble trapdoor
memory-hard function [AGP24], asymmetrically memory-hard functions [BP17]
and memory-hard puzzles [ABB22], but under the notion of memory hardness.

We introduce space-hard functions and their verifiable counter part. Veri-
fiable space-hard functions are a space-analogue of verifiable delay functions.
We heavily deviate from the design space of memory-hard functions as most
constructions are based on the random oracle model. Therefore, using incremen-
tally verifiable computation to verify their evaluation requires proving statements
over random oracle, which is concretely inefficient and conceptually unsatisfying.
Indeed, [ABFG14] show how to verify that the function used much memory, but
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not that the output is correct. [DFKP15] further extend the notion to proof of
space, where the prover executes a memory-hard function and then regularly
gets queried to prove that he maintains a large amount of the computation in
his memory. For an excellent overview on the topic, we refer to [RD16], as they
detail the different notions and their relations.

Our verifiable space-hard function follows a similar design principle as the
weak verifiable-delay function suggested by [BBBF18]. They suggest that invert-
ing a fast to evaluate high degree permutation polynomial requires a lot of
sequential computation. We instead conjecture and use the space-hardness of
the same computation. Because we, however, want to move away from permu-
tation polynomials to less structured polynomials our constructions require a
special purpose proof system.

Indeed, verifiable space-hard functions can be though of as a space-analogue
of verifiable delay functions [LW17,BBBF18,Wes19,Pie19,HHK+22,HHKK23]
and space-lock puzzles as a space-analogue of time-lock puzzles [RSW96].

2 Preliminaries

2.1 Notation

We use the Landau notation to describe the asymptotic behavior of functions.
We write f(x) = O(g(x)) if there exists a constant c such that |f(x)| ≤ c|g(x)|
for all x larger than some constant x0. Further we write f(x) = o(g(x)) if
limx→∞ f(x)/g(x) = 0. We use the notation [n] to denote the set {1, . . . , n}. We
use the notation poly to denote a polynomial. With negl we denote a negligible
function, which is a function that is asymptotically smaller than the inverse of
any polynomial. We use the notation λ to denote the security parameter.

2.2 Finite Fields

For a prime-power q = pk we denote the finite field of size q by Fq. We call
p the characteristic of Fq. Recall a few basic facts about finite fields. For a
field Fq of characteristic the polynomial functions x �→ xpi

are called Frobenius
automorphisms and it holds that xq = xpk

= x for all x ∈ Fq. Hence, the q roots
of the polynomial Xq − X are precisely all the elements in Fq. Consequently, if
x is in an extension field of Fq and xq − x = 0, then it must hold that x ∈ Fq.
Likewise, the q − 1 roots of the polynomial Xq−1 − 1 are exactly all non-zero
elements in Fq.

2.3 Polynomials

We call the variable for polynomials X and a polynomial is usually denoted
like this f(X) or in explicit form, e.g. X + X2. We call a value x a root of a
polynomial f(X) if f(x) = 0. The degree of a polynomial f(X) is the highest
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power of X that appears in f(X). A polynomial is called monic if the coefficient
of the highest power of X is 1.

Recall that a univariate polynomial f(X) is square-free if and only if it holds
that gcd(f(X), f ′(X)) = 1, where f ′(X) is the formal derivative of f(X) in X.

Lemma 1 (Polynomial Identity Lemma). [Sch80,Zip79,DL78] Let f(X) be
a polynomial of degree d over a field Fq. Let S ⊆ Fq be a set of size s. Then for
a random x ←$ S we have f(x) = 0 with probability at most d/s.

Lemma 2 (Bézout’s Identity for Polynomials). Let f(X) and g(X) of
degree d1 and d2 be two polynomials with greatest common divisor d(X). Then
there exist polynomials a(X) and b(X) such that a(X)f(X)+ b(X)g(X) = d(X)
and deg(a(X)) < d2 and deg(b(X)) < d1. Moreover, for all ā(X), b̄(X) then
polynomials of the form ā(X)f(X)+ b̄(X)g(X) are exactly the multiples of d(X).

Lemma 3 (Vandermonde Matrix Invertible). Over any field F the Van-
dermonde matrix ⎛

⎜⎜⎜⎝

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

⎞

⎟⎟⎟⎠

is invertible if the xi are distinct.

2.4 Codes

A code C is a set of codewords. A code is called linear if it is a vector space
over a finite field Fq. The distance of a code is the minimum Hamming distance
between any two distinct codewords. The distance of a code is denoted by δ. A
code is called an [n, k, δ] code if it has length n, dimension k, distance δ, and
relative distance δ/n. A Reed-Solomon code is a linear code that is defined by
evaluating a polynomial at a set of points. The code is defined by a polynomial
f(X) of degree k − 1 and a set of points x1, . . . , xn. The codewords are then the
evaluations of f(X) at the points x1, . . . , xn. The distance of a Reed-Solomon
code is n − k + 1. We call the Reed-Solomon code evaluated at a set of points
L with polynomials of degree d RS[L, d]. The field this code is over will be clear
from the context.

2.5 Combinatorics

H is family of strongly universalt hash functions [WC81] that map from X to
Y if for any distict x1, . . . , xt ∈ X, and any possibly non-distinct y1, . . . , yt ∈ Y ,
we have that

Prh←$H [h(x1) = y1, . . . , h(xt) = yt] = |Y |−t.

We detail the first two Bonferroni inequalities.

Lemma 4 (Bonferroni Inequalities). [Bon36] Let A1, . . . , An be events. We
have

∑
i∈[n] Pr[Ai] − ∑

i∈[n],j∈[i−1] Pr[Ai ∩ Aj ] ≤ Pr[∪i∈[n]Ai] ≤ ∑
i∈[n] Pr[Ai].
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2.6 IOP

An interactive oracle proof (IOP) [BCS16] combines the powers of an interactive
proof and a probabilistically checkable proof. It is a proof system where a prover
and a verifier interactively exchange messages. The prover sends long strings
that the verifier does not have to read entirely. The verifier only sends random
challenges to the prover and checks the consistency of the responses. Formally:

Definition 1 (IOP). An IOP with soundness error β for a language L with
witness relation R is defined by a tuple of algorithms IOP = (P,V) defined with
the following two properties:

Completeness For all (x,w) ∈ R:

Pr

⎡

⎢⎢⎢⎢⎢⎣
Vπ1,...,πt(x, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P(x,w)

π2 ← P(x,w, ρ1)
...

πt ← P(x,w, ρ1, . . . , ρt−1)

⎤

⎥⎥⎥⎥⎥⎦

is 1.
Soundness For all x /∈ L and all unbounded provers P∗:

Pr

⎡

⎢⎢⎢⎢⎢⎣
Vπ1,...,πt(x, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P∗(x)

π2 ← P∗(x, ρ1)
...

πt ← P∗(x,w, ρ1, . . . , ρt−1)

⎤

⎥⎥⎥⎥⎥⎦

is ≤ β

IOPP. An interactive oracle proof of proximity (IOPP) is an IOP related notion
where the prover is given a word of some code to which the verifier has query
access. The prover then wants to convince the verifier that the word is close to
a codeword of some code C. Formally:

Definition 2 (IOPP). An IOPP for a code C with distance δ and soundness
error β is defined by a tuple of algorithms IOPP = (P,V) defined with the fol-
lowing two properties:

Completeness For all c ∈ C:

Pr

⎡

⎢⎢⎢⎢⎢⎣
Vc,π1,...,πt(w, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P(c)

π2 ← P(c, ρ1)
...

πt ← P(c, ρ1, . . . , ρt−1)

⎤

⎥⎥⎥⎥⎥⎦

is 1.
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Soundness. For all c is at distance ≥ δ from C and all unbounded provers P∗:

Pr

⎡

⎢⎢⎢⎢⎢⎣
Vc,π1,...,πt(w, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P∗(w)

π2 ← P∗(w, ρ1)
...

πt ← P∗(w, ρ1, . . . , ρt−1)

⎤

⎥⎥⎥⎥⎥⎦

is ≤ β.

There exist an IOPPs for Reed-Solomon codes [BBHR18,ACY23,ACFY24].

Combiner. Beyond IOPPs, we actually use the batch IOPPs as defined in
Arnon et al. [ACFY24]. Specifically, we use a procedure Combine with the fol-
lowing properties. It takes as input a natural number d∗, some random field
element r, m functions f1, . . . , fm and corresponding degrees d1, . . . , dm. If fi

is a univariate polynomial of degree di and di ≤ d∗ for all i ∈ [m] then
Combine(d∗, r, (fi, di)i∈[m]) is a degree d∗ univariate polynomial. Further if for
some distance parameter δ, rate ρ, and error err we have if

Prr←$F[Δ(Combine(d∗, r, (fi)i∈[m]),RS[L, d∗]) ≤ δ] > err

then there exists S ⊂ L with |S| ≥ (1 − ρ) · |L|, and for all i ∈ [m] exists a
u ∈ RS[L, di] with fi(S) = u(S). For guidance on how to choose the parameters
we refer to [ACFY24].

3 Inverting the Guralnick–Müller Permutation
Polynomial

In 1997, Guralnick and Müller [GM97] introduced a family of permutation poly-
nomials that were later proposed as a candidate for building a verifiable delay
function [BBBF18]. In this proposal it is crucial that inverting the polynomial
is not easy. Guralnick–Müller polynomials do not seem as easy to invert as per-
mutation polynomials from other families.

In this Section, we show – using the properties established by Guralnick and
Müller – that, on the contrary, they can be easily inverted. As a consequence,
they should not be used as a building block for verifiable delay functions.

We start by recalling the definition of the Guralnick–Müller polynomials and
some of their relevant properties. We use the original notations of [GM97] rather
the notations from [BBBF18].

3.1 Notations and Known Facts

Let K be a finite field of characteristic p. A polynomial in K[X] is called excep-
tional if it acts as a permutation on infinitely many finite extensions of K.
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Theorem 1 ((Part of) Theorem 1.4 of [GM97]). Let K be a finite field of
characteristic p. Let q be a power of p. Given μ ∈ K, set:

aμ(X) = X2q − 2μXq+1 + 2μXq + μ2X2 + 2μ2X + μ2.

Define:

fμ(X) =
aμ(X)(q+1)/2 + (Xq − μX + μ)q(Xq − μX − μ)

2Xq
.

Then fμ is exceptional over K provided that μ is not a (q − 1)-st power in K Fq.

Remark 1. At first glance, fμ(X) is defined as a rational fraction. However, its
numerator is divisible by Xq, so fμ(X) is a polynomial of degree q2.

We use the following property of fμ.

Proposition 1 (Proposition 3.4 of [GM97]). Let t be a variable and set Y =
Xq −μX and δ = (t2 − 4μ2q+1)(q−1)/2. Let θ denote a (q − 1)-st root of μ in K̄.
Then ∏

i∈Fq

(f(X + iθ) − t) = H(Y ),

where H(Y ) = Y q2
+ A2Y

q + A1Y + A0. The coefficients A0, A1, A2 ∈ K are
given by

A2 =
tq − δt

2μq
,

A1 = −μqδ,

A0 = − tq + (t − 2μq+1)δ
2

+ μq2
.

3.2 Inversion in the Context of VDFs

In the setting of verifiable delay functions, the authors of [BBBF18] consider
the use of the Guralnick–Müller on a fixed field where it acts as a permutation.
More precisely, they take q = pr and consider the family fμ on Fpn . Without
loss of generality we may assume that r and n are co-prime. If they are not let g
denote their greatest common divisor. Then both q and pn are powers of pg, with
coprime exponents. In the sequel, we change r and n and consider the following
case:

q0 = pg, q = qr
0, and Q = qn

o .

Assume now that we want to solve the equation fμ(x) = t for some given
target t in FQ and some solution x also in FQ. As a direct consequence of
Proposition 1, x has to be a root of:

H(Xq − μX) = Xq3
+ B2 Xq2

+ B1 Xq + B0 X + A0, (3)
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with:
B2 = A2 − μq2

, B1 = A1 − μqA2, and B0 = −μA1.

Since Eq. (3) is affine, it is easy to solve using standard techniques. More
precisely, we use the action of Frobenius to amplify this equation in an affine sys-
tem of n equations in n variables. First, we define each variable Xi as Xqi

0 . Since
we look for a solution in FQ, we have the constraint Xn = X0 and similarly
Xi = Xi mod n for any i. Let d be an integer modulo n, by raising Eq. (3) to the
power qd

0 we obtain (by linearity of Frobenius) that:

Xd+3r + B
qd
0

2 Xd+2r + B
qd
0

1 Xd+r + B
qd
0

0 Xd = −A
qd
0

0 .

Taken these n equations together, we obtain a linear system and can recover
the desired value x as the value of X0 in the solution.

3.3 Efficiency of the Algorithm

The hardness assumption in [BBBF18] assumes that inverting the Guralnick–
Müller polynomial costs at least q2 operations in FQ. Our algorithm falsifies
this assumption. Indeed, its most time consuming part is the resolution of the
linear system. Using Gaussian elimination, it can be achieved in n3 arithmetic
operation over FQ. Thus, its bit complexity is Õ(n4 log q0).

Note that a more careful implementation can instead solve a linear system of
the same dimension over Fq0 , thus reducing the bit complexity to Õ(n3 log q0).

It would be tempting to consider the use of faster linear algebra in this
algorithm. However, this is not really useful, since there exists a faster algorithm
that uses only O(n) arithmetic operations in FQ to invert the Guralnick–Müller
polynomial.

3.4 Correctness of the Algorithm

In order to establish the correctness of our algorithm, we will need the following
additional lemma which describes the result of the FQ-Frobenius action on θ,
which is a q − 1-st root of μ.

Lemma 5. Let μ ∈ K be as in Theorem 1 and let θ be a q − 1-st root of μ. Let
|FQ| = |Fq · K| = qn. Then it holds that

θqn

= μ
qn−1
q−1 θ.

Furthermore, given that θ /∈ Fq · K, it holds that 1 �= μ
qn−1
q−1 ∈ Fq.

Proof. First recall that qn−1
q−1 =

∑n−1
i=0 qi is indeed an integer. Furthermore, since

θ is a q − 1-st root of μ it holds that

θq = θq−1 · θ = μ · θ.
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Hence, by iterating this identity we obtain via induction that

θqn

= (θq)qn−1

= (μ · θ)qn−1

= μqn−1 · θqn−1

= μqn−1 · μ
qn−1−1

q−1 · θ

= μqn−1 · μ
∑n−2

i=0 qi · θ

= μ
∑n−1

i=0 qi · θ

= μ
qn−1
q−1 · θ,

where the inductive step happens from the third to the fourth equality. For the
second part of the statement, observe that as μ ∈ K ⊆ Fq · K it holds that

(μ
qn−1
q−1 )q−1 = μqn−1 = 1,

i.e. μ
qn−1
q−1 ∈ Fq. Finally note that μ

qn−1
q−1 = 1 would imply that

θqn − θ = 0,

i.e. θ ∈ Fq ·K. But this immediately contradicts the assumption that θ /∈ Fq ·K.

The following theorem establishes that our algorithm always returns the
correct solution given that the coefficient A1 = −μqδ is non-zero. Note that
δ = (t2 − 4μ2q+1)(q−1)/2 is non-zero whenever t �= ±2 (

√
μ)2q+1. If

√
μ /∈ K

this event never happens, otherwise if
√

μ ∈ K the event that t = ±2 (
√

μ)2q+1

happens with negligible probability 2/|K|, given that t is distributed uniformly
on K. Note further that in the [BBBF18] scheme the input t is chosen uniformly
random.

Theorem 2. Let H(Y ) = Y q2
+ A2Y

q + A1Y + A0 as in Proposition 1. Given
that the coefficient A1 of H(Y ) is non-zero, the equation H(Xq − μX) = 0 has
a unique solution in K.

Proof. First off, note that since f is permutation on K, by Proposition 1 the
system H(Xq − μX) = 0 has at least one solution. Observe first that given that
A1 �= 0, the polynomial H(Xq −μX) is square free, i.e. over its algebraic closure
it splits into distinct linear factors. This holds as its formal derivative is −μA1,
which is non-zero given that A1 �= 0.

Assume towards contradiction that H(Xq − μX) = 0 has two distinct solu-
tions x �= x′ in K. Thus, by Proposition 1 there exist i, i′ ∈ Fq such that x + iθ
and x′ + i′θ are both roots of f(X) − t, i.e.

f(x + iθ) − t = 0
f(x′ + i′θ) − t = 0.
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Observe that not both i and i′ can be 0, as otherwise x and x′ would be two
distinct roots of f(X) − t in K, which contradicts the permutation property of
f . Without loss of generality, assume that i �= 0 and set z = x + iθ. We claim
that x + iμ

qn−1
q−1 θ is also a root of f(X) − t, as

0 = (f(z) − t)qn

= f((x + iθ)qn

) − t

= f(x + iθqn

) − t

= f(x + iμ
qn−1
q−1 θ) − t.

Here the second equality follows as f(X)−t is in K[X], the third equality follows
as x, i ∈ Fq · K, and the last equality follows by the first item of Lemma 5.

Now set i∗ = i · (μ
qn−1
q−1 − 1) which is a non-zero element of Fq by Lemma 5.

We claim that z is also a root of f(X + i∗θ), as

f(z + i∗θ) = f(x + iθ + i · (μ
qn−1
q−1 − 1)θ) = f(x + iμ

qn−1
q−1 θ) = 0.

Consequently, z is a zero of both f(X) − t and f(X + i∗θ) − t, and therefore
X − z divides both f(X)− t and f(X + i∗θ)− t, and therefore, as i∗ �= 0 it holds
that (X − z)2 divides

∏
j∈Fq

(f(X + jθ) − t) = H(Xq − μX) (by Proposition 1).
But this contradicts the square-freeness of H(Xq − μX), which concludes the
proof.

3.5 Implementation

We provide Magma code for the attack in Appendix A.

4 Space-Hardness of Root-Finding

We conjecture that root-finding for polynomials over a big finite field requires
a lot of space. As far as we are aware of, all root finding algorithms [Ber70,
CZ81] [VZGS92,Sho93,KS95,KU11,GNU16] in a finite field Fp for large p and
comparatively smaller degree d, start by computing Xp − X mod f(X). For a
discussion of recent results, see [GNU16]. In general, this polynomial Xp − X
mod f(X) is a dense polynomial of degree d − 1, whose representation requires
d elements in Fp. For this reason, we conjecture a minimal space of d for any
algorithm with a runtime o(p). Proving this conjecture wrong would greatly
advance the state of the art concerning polynomial factorization.

Assumption 1 (Sparse Root-Finding (SRF)). We define the space-
hardness of finding a root in a polynomial from distribution Dλ,S as follows:
Root-Finding is hard with a gap ε < 1 if there exists a polynomial S̃(·) such that
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for all polynomials S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space bound
Sε(λ) there exists a negligible function negl such that for all λ ∈ N:

Pr

[
f(x∗) = 0

∣∣∣∣
f(X) ← Dλ,S(λ)

x∗ ← Aλ(f(X))

]
= negl(λ)

We also define a space-hardness assumption for the problem of computing the
greatest common divisor of a polynomial and Xp − X.

Assumption 2 (Sparse GCD Computation). We define the space-hardness
of gcd computation from distribution Dλ,S as follows: gcd computation is hard
with a gap ε < 1 if there exists a polynomial S̃(·) such that for all polynomials
S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space bound Sε(λ) there exists
a negligible function negl such that for all λ ∈ N:

Pr

[
g(X) = gcd(f(X),Xp − X)

∣∣∣∣
f(X) ← Dλ,S(λ)

g(X) ← Aλ(f(X))

]
= negl(λ)

Lemma 6. If root-finding is hard with gap ε < 1 then gcd computation is hard
with gap ε < 1.

Proof. Given an adversary A that breaks Assumption 2 we construct an adver-
sary A′ that breaks Assumption 1.

A′(f(X)):
– Let g(X) ← A(f(X)) where g(X) is an n-degree polynomial.
– Factor g(X) into degree 1 polynomials X − h1, . . . , X − hn using the

Cantor-Zassenhaus algorithm.
– Return h1.

The factors of g(X) can only be of degree 1 because Xp − X only factors
of degree 1. The Cantor-Zassenhaus [CZ81] algorithm has space-complexity
O(n log p) [Sho93] and runs in poly(n, log p).

We require these assumptions for two different but related applications, which
we will detail in later chapters. One is a space lock puzzle and the other a
verifiable space-hard function. For the space lock puzzle we only really require
that the polynomials by the distributions are fast to evaluate and that root-
finding is space-hard.

In general, we will stick with prime order fields because they tend to have
less structure, which might protect them against structural attacks. We will also
try to impose as little structure as possible on the polynomials. In order to make
proofs over the these fields better we choose FFT-friendly fields.

A natural candidate is the distribution of random sparse polynomials. We
make sure that the lowest two monomials are random for better estimation of
number of roots. More formally, we define the distribution Dλ,S as follows:

Definition 3 (Random Sparse Polynomial (with Uniform Constant
and Linear Coefficient)). Pick a prime p ∈ Ω(2λ), degree d ∈ Ω(S), and
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number of non-zero monomials k ∈ Ω(λ). Operations happen over Fp. Output
the following univariate (the variable is X) polynomial

a0 + a1X +
∑

i∈[k−2]

aiX
ei + Xd

For uniformly random ai ←$ Fq and ei ←$ [d − 1].

We prove these polynomials define a family of strongly universal2 hash func-
tions [WC81].

Lemma 7. For any polynomial h(X), any distict x1, . . . , xt ∈ Fp, and any pos-
sibly non-distinct y1, . . . , yt ∈ Fp, we have that

Pra0,...,at−1←$Fp
[h(x1) + l(x1) = y1, . . . , h(xt) + l(xt) = yt] = p−t

where l(X) =
∑

i∈[t] ai−1X
i−1.

Proof. The statment h(x1) + l(x1) = y1, . . . , h(xt) + l(xt) = yt is equivalent to
the this linear system of equations:

⎛

⎜⎝
1 x1 . . . xt−1

1 h(x1)
...

...
...

...
...

1 xt . . . xt−1
t h(xt)

⎞

⎟⎠

⎛

⎜⎜⎜⎝

a0

...
at−1

1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎝
y1
...
yt

⎞

⎟⎠ ⇔

⎛

⎜⎝
1 x1 . . . xt−1

1
...

...
...

...
1 xt . . . xt−1

t

⎞

⎟⎠

⎛

⎜⎝
a0

...
at−1

⎞

⎟⎠ =

⎛

⎜⎝
y1 − xd

1
...

yk − xd
k

⎞

⎟⎠

The matrix is a Vandermonde matrix, which is invertible. Therefore, multiplica-
tion by it is a bijection. Because a0, . . . , at−1 are uniformly random, the proba-
bility of the system of equations to hold is p−t.

Via a inclusion-exclusion argument, we can upper bound the probability of the
polynomial having no roots.

Lemma 8. For any polynomial h(X) and uniform a0, a1 ←$ Fp we have a0 +
a1X + h(X) no roots with probability ≤ 1/2.

Proof. We have

Pra0,a1 [∨x∈Fp
(a0 + a1x + h(x) = 0)]

≥
∑

x∈Fp

Pra0,a1 [a0 + a1x + h(x) = 0] (4)

−
∑

x1<x2∈Fp

Pra0,a1 [∧x∈{x1,x2}(a0 + a1x + h(x) = 0)]

=1 −
∑

x1<x2∈Fp

1/p2 (5)

≥1/2
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Inequality 4 follows from a Bonferroni inequality 4 and equality 5 follows from
Lemma 7.

We need the following basic fact.

Lemma 9. The size of the image of a polynomial h(X) corresponds to the num-
ber of a0 ∈ Fp for which the polynomial h(X) − a0 has a root in Fp.

Proof. If there exists an x ∈ Fp such that h(x) = a0 then h(X) − a0 has a root
in Fp and vice versa.

Lemma 10. For any polynomial h(X) and uniform a1 ←$ Fp it holds with
probability > 1 − 1/

√
2 that h(X) + a1X has a image of size > p(1 − 1/

√
2).

Proof. Fix a polynomial h(X). By Lemma 8 we know that the number of a0, a1 ∈
Fp for which the polynomial f(X) = a0 + a1X + h(X) has no root is at most
p2/2. Therefore, by a pidgeon-hole argument there are < p/

√
2 choices of for a1

such that there exist > p/
√

2 choices of a0 such that a0+a1X+h(X) has no root.
This means that there are > p − p/

√
2 choices for a1 such that ≤ p/

√
2 choices

for a0 such that a0 + a1X + h(X) has no root. Therefore, there are > p − p/
√

2
choices for a1 such that > p − p/

√
2 choices for a0 such that a0 + a1X + h(X)

has a root. The statement follows by Lemma 9.

Lemma 11. Fix a polynomial h(X). The statistical distance between (a1, h(x)+
a1x) and (a1, y) where a1, x is uniformly random over Fp and y is uniformly
random from the image of h(X) + a1X is > 1.5 − 2/

√
2.

Proof. By Lemma 10 h(X) + a1X has a image of size > p(1 − 1/
√

2) with
probability 1 − 1/

√
2. For the rest of this analysis we assume to be in this case.

Picking a random x and evaluating h(X)+a1X on it is the same as sampling
the output uniformly random from the multiset image of h(X) + a1X (the mul-
tiset where each element y has the multiplicity of the number of elements such
that the element evaluates to y). This multiset has size p.

We now convert the multiset image to set by enumerating the multiplicities
of each element and call this set M. E.g. a multiset {8, 8, 8, 13, 55, 55} would
turn into a set of tuples {(8, 1), (8, 2), (8, 3), (13, 1), (55, 1), (55, 2)}. We do the
same thing to the image of h(X) + a1X and call it D. However because it is a
set it only ever has multiplicity one. So we would turn the set {8, 13, 55} into
{(8, 1), (13, 1), (55, 1)}. By the definition of these sets D ⊆ M. Because M is of
size p and D is of size > p(1−1/

√
2) sampling a random element from M will be

in D with probability > 1 − 1/
√

2. Therefore, for a 1 − 1/
√

2 fraction of random
choices in sampling x at random and then evaluating h(x)+a1x behaves exactly
as sampling uniformly random from the image. Thus, the statistical distance is
> (1 − 1/

√
2)2 = 1.5 − 2/

√
2.

For our verifiable space-hard functions, we also want to have tight bound
on the number of roots of these polynomials. A natural candidate for this is a
distribution over permutation polynomials. In previous chapters we showed how
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to efficiently invert the specific set of Guralnick-Müller permutation polynomials
[GM97], which [BBBF18] suggested as a time-lock puzzle. As we leveraged the
specific structure of these polynomials for our attack, we believe it to be prudent
to stay away from permutation polynomials.

If we instead use random sparse polynomials in our verfiable space-hard func-
tions, we would want to have a good bound on the number of roots of these
polynomials. The work of [Kel16] conjectures that the number of roots in a ran-
dom sparse polynomial is O(k log p), which would be good enough for as this
also implies that the probability of sampling a polynomial without roots is not
overwhelming.

To have a lower probability of sampling a polynomial without roots that we
can even prove, we suggest the distribution of polynomials which are the sum
of a dense low-degree polynomial and a single high-degree monomial. We define
the distribution Dλ,S as follows:

Definition 4 (Low-Degree Dense). Pick a prime p ∈ Ω(2λ), degree d ∈
Ω(S), and number of non-zero monomials k such that k log k − 2k ≥ λ. Opera-
tions happen over Fp.

a0 +
∑

i∈[k−1]

aiX
i + Xd

For uniformly random ai ←$ Fq.

Lemma 12. For a polynomial f(X) sampled from distribution Dλ,S we have
f(X) has at least k (as in Definition 4) roots with probability ≤ 2−λ.

Proof. A polynomial having k roots equivalent to the statement that there exists
a set of λ distinct points x1, . . . , xk ∈ Fp such that the polynomial evaluates to
zero at these points. There are

(
p
k

)
much sets. For each of those sets, the proba-

bility that the polynomial evaluates to zero at these points is p−k by Lemma 7.
Therefore, by union bound the probability that the polynomial evaluates to zero

at any set of k distinct points is ≤ (p
k)
pk ≤ p(p−1)···(p−k+1)

k!·pk ≤ 1
k! ≤ 2−λ. The last

inequality follows from Stirling’s approximation and our choice of k relative to λ.

5 Space-Lock Puzzle from SRF

We define space-lock puzzles analogously to time-lock puzzles but the resource
we restrict is not sequential time but space.

Definition 5 (Space-Lock Puzzle). A space-lock puzzle (SLP) with message
space {0, 1}n is a tuple of three algorithms SLP = (Setup, Gen, Solve) defined as
follows:

pp ← Setup(1λ, S): The setup algorithm Setup takes as input a security parameter
1λ and a space bound S and outputs public parameters pp.
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p ← Gen(pp,m): The puzzle generation algorithm Gen takes as input public
parameters pp and a message m and outputs a puzzle p.

m ← Solve(pp, p): The solving algorithm Solve takes as input a puzzle p and
outputs a message m.

Statistical Correctness: SLP = (Setup,Gen,Solve) is statistically correct if for
all polynomials S(·) there exists a negligible function negl s.t. for all n, λ ∈ N

and m ∈ {0, 1}n :

Pr

[
m �= Solve(pp, p)

∣∣∣∣
pp ← Setup(1λ, S(λ))

p ← Gen(pp,m)

]
≤ negl(λ)

Efficiency: There exists a polynomial poly such that for all n, λ, S ∈ N, and
m ∈ {0, 1}n the runtime (and therefore space usage) of pp ← Setup(1λ, S)
and p ← Gen(pp,m) is ≤ poly(λ, n, log S).

Security: SLP is secure with gap ε < 1 if there exists a polynomial S̃(·) such
that all polynomials S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space
bound Sε(λ) there exists a negligible function negl s.t. for all n, λ ∈ N:

Pr

⎡

⎢⎢⎣b = Aλ(st, p)

∣∣∣∣∣∣∣∣

pp ← Setup(1λ, S(λ))
(m0,m1, st) ← Aλ(pp)

b ←$ {0, 1}
p ← Gen(pp,mb)

⎤

⎥⎥⎦ ≤ 1/2 + negl(λ)

We present the first space-lock puzzle based on the space hardness of finding
roots of polynomials.

Construction 1 (Space-Lock Puzzle). Let Dλ,S be a distribution of polyno-
mial that are fast to evaluate and where finding roots is space-hard. Further,
H : Fq → {0, 1}λ+n, where n is the size of the message space then the following
defines a space-lock puzzle.

Setup(1λ, S): Return (λ, S).
Gen(pp,m):

– Sample a degree S polynomial f(X) ∈ Dλ,S.
– Sample a uniformly random element z ←$ Fq.
– Let y = f(z).
– Return (f(X), y,H(z) ⊕ (0λ||m)).

Solve(p = (f(x), y, c)):
– Compute Z, the set of roots of the polynomial f(X) − y.
– For z∗ ∈ Z:

• Compute m̃ ← H(z∗) ⊕ c.
• If the first λ bits of m̃ are all 0 return the rest of m̃

Theorem 3. Construction 1 is a space-lock puzzle under the assumption that
the SRF assumption 1 holds for polynomials with uniform linear coefficient.

Proof. The proof follows from lemmas 13 to 15.
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Lemma 13 (Statistical Correctness). Construction 1 is statistically correct.

Proof. Because f(X) − y has degree S it has at most S roots. We know that
f(z) = y, therefore, z is a root of f(X) − y. Because H is a random oracle we
have that for all z∗ ∈ Z \ {z} the probability that the first λ many bits of m̃
are 0λ is 2−λ. Therefore, Solve outputs m with all but probability ≤ S(λ) · 2−λ,
which is negligible in λ.

Lemma 14 (Efficiency). Construction 1 is efficient.

Proof. The properties of Dλ,S tell us that evaluating f(X) on z can be done in
poly(λ, log S). It follows that Gen runs in time and space poly(λ, log S).

Lemma 15 (Security). Construction 1 is secure under the SRF assumption 1
for polynomials with uniform linear coefficient.

Proof. To break security of the Construction 1 the adversary has to compute z
given f(X) and y otherwise he has no way of computing H(z).

y is computed by evaluating a f(X) at a uniform position. By Lemma 12
this is at constant c statistical distance from sampling y uniformly at random
from the image of f(X). This is the same as sampling f(X) and y uniformly
at random under the condition that f(X) − y has a root. Lemma 8 tells us
that polynomial with uniform constant coefficient have no root with probability
≤ 1/2. Therefore, any adversary that breaks the security of Construction 1 with
probability ε breaks the SRF assumption with probability cε/2.

6 Verifiable Space-Hard Function from SRF

The definition of verifiable space hard function is similar to the definition of
verifiable delay function but instead of a sequential time bound we have a space
bound.

Definition 6 (Verifiable Space-Hard Function). A verifiable space-hard
function (VSHF) with domain space X, codomain Y, and proof space Π has
the following algorithms:

pp ← Setup(1λ, S): The setup algorithm Setup takes as input a security parameter
λ and a space bound S and outputs public parameters pp.

(y, π) ← Eval(pp, x): The evaluation deterministic algorithm Eval takes as input
public parameters pp and outputs a function output y and a proof π ∈ Π.

b ← Verify(pp, x, y, π): The verification algorithm Verify takes as input public
parameters pp, a function input x ∈ X, a function output y and a proof
π ∈ Π and outputs a bit b.

it has the following properties:

Correctness: VSHF = (Setup,Eval,Verify) is correct if for all λ, S ∈ N and
x ∈ X we have Verify(pp, x, y, π) = 1 for pp ← Setup(1λ, S) and (y, π) ←
Eval(pp, x).
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Space Hardness: VSHF = (Setup,Eval,Verify) is sound with entropy E and
a gap ε < 1 if there exists a polynomial S̃(·) such that for all polynomials
S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space bound Sε(λ) there
exists a negligible function negl such that for all λ ∈ N, x ∈ X:

Pr

[
Eval(pp, x) = (y, π)

∣∣∣∣
pp ← Setup(1λ, S(λ))

(x, y) ← Aλ(pp)

]
≤ 2−E + negl(λ)

Computational Uniqueness: VSHF = (Setup, Eval, Verify) is computationally
unique if for all PPT adversaries A there exists a negligible function negl s.t.
for all λ ∈ N and x ∈ X :

Pr

⎡

⎣Verify(pp, x, y∗, π∗) = 1 ∧ y∗ �= y

∣∣∣∣∣∣

pp ← Setup(1λ, S(λ))
(x, y∗, π∗) ← Aλ(pp)
(y, π) ← Eval(pp, x)

⎤

⎦ ≤ negl(λ)

Efficiency: There exists a polynomial poly such that for all λ, S ∈ N, π ∈ Π,
and x ∈ X the runtime (and therefore space usage) of pp ← Setup(1λ, S) and
Verify(pp, x, y, π) is ≤ poly(λ, log S).

We now show how to construct a verifiable space-hard function. We follow
the same basic idea as the weak verifiable delay function of [BBBF18] but we
require more care because we do not rely on permutation polynomials.

We present the function as an IOP, but the proof can be made non-interactive
using the Fiat-Shamir heuristic and Merkle trees [BCS16].

Construction 2 (Verifiable Space-Hard Function). Let (P,V) be an IOPP
for Reed-Solomon codes that evaluates the polynomials at points L and has a
negligible soundness error. It proves a string x is at constant relative distance
from a Reed-Solomon codeword (degree d polynomials).

We also use the combine procedure form Sect. 2.6.
Our verifiable space-hard function does not require any setup.

Eval(S, x):
– Let f(X) = H(x).
– Let the degree of f(X) be d.
– Let (pi)i∈{0}∪[
log p�] be the binary decomposition of p.
– Let m0(X) = X and v0(X) = Xp0 .
– For i ∈ [�log p�]:

• Compute mi(X) = mi−1(X) · mi−1(X) mod f(X).
• Compute ei(X) = (mi−1(X) · mi−1(X) − mi(X))/f(X)
• Compute vi(X) = vi−1(X) · mpi

i (X) mod f(X).
• Compute wi(X) = (ii−1(X) · mpi

i (X)(X))/f(X)
• Send mi(X), ei(X), vi(X), and wi(X) evaluated at L to the verifier.

– Compute g(X), the gcd of v
log p�(X) − X and f(X) together with their
Bézout coefficients a(X), b(X).

– Send a(X) and b(X) evaluated at L to the verifier.
– Pick a uniformly random field element r ←$ Fp.



Space-Lock Puzzles and Verifiable Space-Hard Functions from Root-Finding 453

– Run c(X) ← Combine(d, r, (mi(X), d − 1)i∈{0}∪[
log p�], (ei(X), d −
2)i∈{0}∪[
log p�], (vi(X), d − 1)i∈{0}∪[
log p�], (wi(X), d − 2)i∈{0}∪[
log p�],
(a(X), d − 1), (b(X), d − 2)).

– Send c(X) evaluated at L to the verifier.
– Run P to prove that c(X) is at a constant relative distance from a poly-

nomial of degree d.
– Return function output y = g(X)

leading coefficient of g(X) .
Verify(x, y = g(X)):

– Let f(X) = H(x).
– If g(X) is not monic return 0.
– Run V to verify that c(X) is at a constant relative distance from a poly-

nomial of degree d.
– Let (pi)i∈{0}∪[
log p�] be the binary decomposition of p.
– Sample a random set R ⊂ L of size λ.
– For r ∈ R:

• Read m0(r) and v0(r) from the prover string.
• If m0(r) �= r return 0.
• If v0(r) �= rp0 return 0.

– For i ∈ [�log p�]:
• For r ∈ R:

∗ Read (mi−1, mi(r), ei(r), vi−1(r), vi(r), wi(r)) from the prover
string.

∗ If mi−1(r)2 �= mi(r) + ei(r) · f(r) return 0.
∗ If vi−1(r) · mi(r)pi �= vi(r) + wi(r) · f(r) return 0.

– For r ∈ R:
• If a(r) · (v
log p�(r) − r) + b(r) · f(r) �= g(r) return 0.

– If f(X) mod g(X) �= 0 or Xp − X mod g(X) �= 0 return 0.
– Return 1.

Remark 2. Note, the above function does not have high output entropy because
f(X) does not have any roots with ≤ 1/2 probability. This is required by many
applications and can easily be fixed by repetition.

Theorem 4. Construction 2 is a verifiable space-hard function.

Proof. Follows from Lemmas lemmas 16 to 18 and Corollary 1.

Lemma 16. [Correctness] Construction 2 is correct.

Proof. Because the prover divides g(X) by its leading coefficient it outputs a
monic polynomial. All the checks made by V pass, which follows from the cor-
rectness of (P,V). For i ∈ {0} ∪ [�log p�] it holds that mi(X) = X2i mod f(X).
We also have for i ∈ [�log p�] it holds mi−1(X)2 = mi(X)+f(X)ei(X). Similarly,
for binary decomposition (pi)i∈{0}∪[
log p�] of p we have

vi(X) =
∏

i∈{}∪[
log p�]
X2ipi mod f(X)
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and
wi(X) =

∏

i∈{}∪[
log p�]
X2ipi/vi(X).

Therefore, evaluating all these polynomial at the point r still makes these equa-
tions hold.

By definition of a common divisor g(X) divides v
log p�(X) − X and f(X).
Because v
log p�(X)−X = Xp−X mod f(X) we get if g(X) divides v
log p�(X)−
X and f(X) it also divides Xp − X. The Bézout coefficients have the property
that a(X) · (v
log p�(X)−X)+ b(X) · f(X) = g(X). Therefore, each check passes
if π is honestly generated.

Lemma 17. [Efficiency] Construction 2 is efficient.

Proof. We require from Dλ,S that with all but negligible probability f(X) has a
polynomial number of roots. For polynomials where the λ low order monomials
are dense (see Definition 4) this follows from Lemma 12. Therefore, the degree of
g(X) is polynomial in λ. Reading the prover string for each polynomial at ≤ 2λ
many locations is in poly(λ). If we have an IOPP for Reed-Solomon codes where
the verifier runs in time poly(λ, log S), then the verifier of the entire protocol
runs in time poly(λ, log S).

Lemma 18. [Computational Uniqueness] The Construction 2 is computation-
ally unique.

Proof. Assume there exists an S ⊂ L with |S| ≥ (1 − δ) · |L| such that

– for all (mi(X))i∈{0}∪[
log p�], there exists a m̂i(X) ∈ RS[L, d−1] with mi(S) =
m̂i(S),

– for all (ei(X))i∈{0}∪[
log p�], there exists a êi(X) ∈ RS[L, d − 2] with ei(S) =
êi(S),

– for all (vi(X))i∈{0}∪[
log p�], there exists a v̂i(X) ∈ RS[L, d − 1] with vi(S) =
v̂i(S),

– for all (wi(X))i∈{0}∪[
log p�], there exists a ŵi(X) ∈ RS[L, d−2] with wi(S) =
ŵi(S),

– there exist â(X) ∈ RS[L, d−1] and b̂(X) ∈ RS[L, d−2] with a(S) = â(S) and
b(S) = b̂(S).

By Hoeffding’s inequality we have that Pr(||S ∩ R| − λ(1 − δ)| ≥ λ(1 − δ)/2) ≤
2 exp(−2λ((1 − δ)/2)2). Since δ is constant, we have that with all but negligible
probability |S ∩ R| ≥ λ(1 − δ)/2. Each polynomial equation we check is at most
of degree 2d. Therefore, we get via polynomial identity lemma 1 if a polynomial
equation does not hold then evaluating the polynomial at a random point on
S and then checking holds with probability 2d/|S|, which, again, is constant.
Because we run this test |S ∩ R| many times we detect it with all but negligible
probability.

From these equations follows that v̂
log p�(X) − X = Xp − X mod f(X).
Therefore, gcd(v̂
log p�(X)−X, f(X)) = gcd(Xp−X, f(X)). By Bézout’s identity
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for all a′(X), b′(X) we have a′(X) · (v̂
log p�(X)−X)+ b′(X) · f(X) is a multiple
of gcd(v̂
log p�(X), f(X)). So, the check a(X) · (v̂
log p�(X) − X) + b(X) · f(X) =
g(X) verifies that g(X) is a multiple of gcd(Xp − X, f(X)). The checks f(X)
mod g(X) = 0 and Xp − X mod g(X) = 0 verify that g(X) is a divisor of
f(X) and Xp − X. Therefore, g(X) is a greatest common divisor of f(X) and
Xp −X. The gcd is unique up to multiplication by a field element, which is why
we require g(X) to be monic.

If our initial assumption does not hold, then by the soundness of Combine,
detailed in Sect. 2.6, we get that c(X) is far from RS[L, d]. By the soundness of
the IOPP that checks that c(X) is close to the code this can only happen with
negligible probability.

Remark 3. With access to a extractable polynomial commitment scheme the
above construction can be made much simpler by replacing the IOPPs with the
polynomial commitment. Then we only need to check the polynomials at one
location instead of λ many locations.

Corollary 1 (Space Hardness). Construction 2 is space-hard.

Proof. Under Assumption 2 for polynomials that are dense in the low degrees 4
space-hardness follows directly from computational uniqueness.
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A Implemented Attack

It follows an implementation of the attack we describe in Sect. 3. The code is
written in Magma.

//Parameters
p:=101;
s:=pˆ3;
n:=11;
q:=pˆn;

GFq<a>:=GF(q);
GFpol<X>:=PolynomialRing(GFq);

//Definition of the polynomial
function PermEval(mu,x)
a:=xˆ(2∗s)−2∗mu∗xˆ(s+1)+2∗mu∗xˆs+muˆ2∗xˆ2+2∗muˆ2∗x+muˆ2;
return (aˆ((s+1) div 2)+(xˆs−mu∗x+mu)ˆs∗(xˆs−mu∗x−mu))/(2∗xˆs);

end function;
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//Generating the polynomial
//Checking mu is correct (this part is slow).
//Indeed, this is not even part of the attack;
//this defines the function we are trying to invert.
//Can be skipped as mu is likely to be correct.
notfound:=true;
while notfound do
mu:=Random(GFq);
if #Roots(Xˆ(s−1)−mu) eq 0 then
notfound:=false;

end if;
end while;
input:=Random(GFq);
target:=PermEval(mu,input);

//Attack starts here
delta:=(targetˆ2−4∗muˆ(2∗s+1))ˆ((s−1) div 2);
A2:=(targetˆs−delta∗target)/(2∗muˆs);
A1:=−muˆs∗delta;
A0:=−targetˆs/2−((target−2∗muˆ(s+1))/2)∗delta+muˆ(sˆ2);
B2:=A2−muˆ(sˆ2);
B1:=A1−A2∗muˆs;
B0:=−mu∗A1;
M:=ZeroMatrix(GFq,n,n);
for i:=0 to n−1 do

M[i+1,i+1]:=B0ˆ(sˆi);
M[i+1,(i+1) mod n+1]:=B1ˆ(sˆi);
M[i+1,(i+2) mod n+1]:=B2ˆ(sˆi);
M[i+1,(i+3) mod n+1]:=1;

end for;
Q:=[];
for i:=0 to n−1 do
Append(˜Q,−A0ˆ(sˆi));

end for;
V:=Vector(Q);
M:=Transpose(M);
S:=Solution(M,V);

if (S[1] eq input) then
print ”Correct input recovered!”;

end if;
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Abstract. A Timed Commitment (TC) with time parameter t is hid-
ing for time at most t, that is, commitments can be force-opened by any
third party within time t. In addition to various cryptographic assump-
tions, the security of all known TC schemes relies on the sequentiality
assumption of repeated squarings in hidden-order groups. The repeated
squaring assumption is therefore a security bottleneck.

In this work, we give a black-box construction of TCs from any time-
lock puzzle (TLP) by additionally relying on one-way permutations and
collision-resistant hashing.

Currently, TLPs are known from (a) the specific repeated squaring
assumption, (b) the general (necessary) assumption on the existence of
worst-case non-parallelizing languages and indistinguishability obfusca-
tion, and (c) any iteratively sequential function and the hardness of the
circular small-secret LWE problem. The latter admits a plausibly post-
quantum secure instantiation.

Hence, thanks to the generality of our transform, we get i) the first
TC whose timed security is based on the existence of non-parallelizing
languages and ii) the first TC that is plausibly post-quantum secure.

We first define quasi publicly-verifiable TLPs (QPV-TLPs) and con-
struct them from any standard TLP in a black-box manner without rely-
ing on any additional assumptions. Then, we devise a black-box commit-
and-prove system to transform any QPV-TLPs into a TC.

1 Introduction

Time-lock puzzles (TLPs) introduced by Rivest, Shamir, and Wagner [RSW96]
allow one to commit to a message by generating a message-dependent puzzle
that ensures the message remains hidden for a certain time. In particular, a TLP
consists of a puzzle generation algorithm Gen and a solving algorithm Solve. On
input a message m and a time parameter t, Gen generates a puzzle z. On input
an honestly-generated puzzle z, Solve retrieves the message m. A TLP must
satisfy (1) correctness: Solve always recovers the correct message from honestly-
generated puzzles (2) hardness: the message remains hidden for any massively
parallel adversary running in time much less than t and (3) efficiency: while
Solve runs in time t, Gen must run in time polylog(t).

In [RSW96], a very efficient construction whose security is based on the
repeated squaring assumption is proposed. This assumption states that given a
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group element g, an integer t, and an RSA modulus N , it is hard to compute
g2

t

mod N . The puzzle of [RSW96] works as follows: Gen(t,m) outputs z =
(m + g2

t

mod N, g,N), while Solve computes g2
t

to extract m. We stress that
while correctness of TLPs guarantees solvability for honestly generated puzzles,
it guarantees nothing for maliciously crafted puzzles. Furthermore, a TLP per
se does not come with an algorithm that decides whether a TLP is honestly
generated or not. For example, given the puzzle of [RSW96], one can retrieve m
via t repeated squarings modular N , but cannot efficiently verify whether N is
an RSA modulus or not.

A standard commitment scheme is a 2-phase interactive protocol between a
sender and a receiver such that at the end of the commit phase, the sender is
bound to a message m (binding) and the receiver learns nothing about m (hid-
ing). In the open phase, the sender reveals m to the receiver, which either accepts
or rejects. Boneh and Naor [BN00] introduced timed commitments (TCs) which
add a time dimension to standard commitments and overcome the limitations
of TLPs. In a TC with time parameter t, the commit phase can be force-opened
in sequential time t without executing the efficient open phase. This is useful
in scenarios where the sender refuses to run the open phase. As a result, the
message m is only guaranteed to remain hidden for time at most t.

A TC must satisfy (standard) binding, t-hiding, publicly-verifiable forced
openings, and well-formedness. t-hiding requires that a massively parallel (adver-
sarial) receiver running in time much less than t learns nothing about the com-
mitted message. Well-formedness requires that if the commit phase terminates
successfully, the receiver is guaranteed that the commitment can be forced-open
in time t via a force-open algorithm. Publicly-verifiable forced openings guarantee
that the force-open algorithm, in addition to m, outputs a proof π that allows
anyone in possession of the transcript of the commit phase to quickly verify that
m is the committed message. A TC must also be efficient, meaning that the
commit phase must take time polylog(t).

Similar to TLPs hardness, t-hiding of TCs guarantees that the secrecy of m
is preserved for a certain amount of time t. The main difference between TLPs
and TCs is that, unlike TCs, TLPs fall short of providing public verifiability
and well-formedness. That is, TLPs do not provide any means of verifying the
correctness of solutions without re-solving the puzzle, and furthermore, puzzles
are not guaranteed to be solvable in time t when maliciously generated.

Known TCs and their Limitations. Various constructions of TCs [BN00,KLX20,
TCLM21,CJ23] have been proposed. Some of them feature useful additional
properties such as non-interactive commit phase and CCA security [KLX20,
TCLM21,CJ23], or homomorphic properties [TCLM21,CJ23]. Later, we discuss
these constructions in the related work section. Nevertheless, they all follow
a similar blueprint. To achieve t-hiding, all these constructions rely, in a non-
black box way, on the repeated-squaring-based puzzle of [RSW96]. They ensure
well-formedness by proving in zero knowledge (ZK), with either a proof system
for NP or with one tailored to the specific language of interest, that the TLP
was computed correctly. Moreover, to achieve public verifiability, they crucially
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rely on repeated squaring. For example, a common technique to ensure public
verifiability [TCLM21,CJ23,FKPS21,BDD+21,BDD+23] is to exploit proofs of
exponentiation (e.g., [Pie19,Wes19]) which allow to efficiently check that a value
y is equal to g2

t

modulo N without executing t squarings.
Consequently, all known TC constructions are based on the single repeated

squaring assumption. This limitation is significant as it is known that repeated
squaring is not necessary to obtain TLPs. Indeed, Bitansky et al. constructed
TLPs based on the existence of worst-case non-parallelizing languages and suc-
cinct randomized encodings [BGJ+16]. Non-parallelizing languages are neces-
sary for timed-based primitives, such as TLPs and TCs, and are implied by the
repeated squaring assumption [BGJ+16,JMRR21].

1.1 Our Contributions

The state of affairs in which all known TCs rely on the single sufficient-but-not-
necessary assumption of repeated squarings in unknown-order groups is rather
unsatisfactory and creates a single point of failure. In this work, we diverge
from all known designs of TCs and give a black-box transformation of any TLP
into a TC. By black-box we mean that the TLP (and any other underlying
cryptographic primitive) is used only as an oracle. There has been a signifi-
cant amount of research dedicated to obtaining black-box constructions for vari-
ous cryptographic primitives [IKLP06,CDMW09,PW09,LP12,GLOV12,Kiy14,
HV16,KOS18,Kiy20,COS22]. The benefit of the black-box approach is imme-
diate: basing TCs on TLPs in a black box manner widens the class of known
constructions of TCs and allows translating advances in TLPs to TCs. Further-
more, black-box constructions have the advantage that their complexity does not
depend on the complexity of the implementation of the underlying primitives1.

More specifically, we make the following contributions:

– We provide a formal definition of timed commitments. Previous works either
gave a rather high-level description of such properties [BN00], or were tailored
to the non-interactive setting [KLX20,CJ23].

– Along the way, we define and construct quasi publicly verifiable time-lock
puzzles (QPV-TLPs), a novel tool we believe could be of independent interest.
Roughly, a QPV-TLP is a TLP where the receiver, if the puzzle is well-formed,
is able to provide a convincing proof of correctness of the solution which can
be quickly verified. We show how to lift any TLP to a QPV-TLP with black-
box use of the TLP itself and without relying on any additional assumptions.

– Relying on QPV-TLPs, we construct a black-box TC assuming the existence
of TLPs, collision-resistant hash functions, and one-way permutations. Our
construction has a five-round commit phase and a non-interactive open phase.

1 To better understand this aspect consider a TC which uses a generic (non-black-box)
ZK protocol to prove that the circuit computing a TLP was correctly executed. The
complexity of this TC would crucially depend on the number of gates of such circuit.
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Additionally binding, well-formedness, and public verifiability of forced open-
ings hold w.r.t. unbounded adversaries. Our construction does not require
any setup.

– By weakening the well-formedness guarantee to computational, we can get
a TC assuming the existence of TLPs and one-way functions. Since TLPs
imply one-way functions [BGJ+16], this shows that TLPs imply TCs. Thus,
instantiating the TLP with the one of [BGJ+16], we get the first TC whose
timed security relies on the weakest complexity assumption of the existence
of worst-case non-parallelizing languages. This comes at the cost of the strong
cryptographic assumption of indistinguishability obfuscation [BGI+01].

– Using the recent TLP of [AMZ24] as a building block in our transform, we get
the first post-quantum secure TC: [AMZ24] constructs TLPs2 whose security
relies on any iteratively sequential function f and the hardness of the circular
small-secret LWE problem. By instantiating f based on [LM23], their TLP is
plausibly post-quantum secure.

1.2 Technical Overview

A straw-man approach to generically construct a TC from a TLP is the following.
To achieve well-formedness, the sender proves with a generic ZK proof system
that the TLP is correctly computed. To get public verifiability, the receiver
uses a succinct non-interactive argument (SNARG) to prove that it solved the
TLP correctly. SNARGs succinctness guarantees that verifying the proof is much
faster than solving the puzzle. Apart from being non-black-box, this construc-
tion has other shortcomings. Indeed, known SNARGs (for P) require setups
(e.g., [CJJ22,HJKS22,CGJ+23,Kiy23]) and the only general assumption they
are known from is iO [SW14,WW24]. Additionally, SNARGs are only computa-
tionally sound, thus constructing a TC following this approach will inherently
give computational public verifiability, unlike our construction that achieves it
against unbounded adversaries. We propose a different approach that guarantees
public verifiability by lifting the TLP to a QPV-TLP, and proves well-formedness
in a black-box way.

Publicly Verifiable Time-Lock Puzzles. Publicly verifiable time-lock puzzles (PV-
TLPs), introduced by Freitag et al. [FKPS21], are an intermediate notion
between TLPs and TCs. Unlike TCs, PV-TLPs are not guaranteed to be well-
formed. However, after having solved the puzzle, whether the puzzle has a solu-
tion m or not, the solver produces a proof allowing anyone to efficiently verify
that m is the correct solution or that the puzzle is malformed. PV-TLPs are
a good candidate building block to construct TCs as the public verifiability of
the TC essentially follows from that of the underlying PV-TLP. Unfortunately,

2 In the TLP constructions of [AMZ24], if a one-time public-coin setup is allowed,
the TLP generation runs in time polylog(t), otherwise it runs in time

√
t. The

(in)efficiency of puzzle generation of the TLP translates to the (in)efficiency of the
commit phase of our TC construction.
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all known PV-TLPs [FKPS21,BDD+21,BDD+23] are based on the repeated
squaring assumption and random oracles.

Quasi Publicly Verifiable Time-Lock Puzzles. We notice that the property of
providing a proof that is convincing even for invalid puzzles is not necessary to
construct a TC. Indeed, to satisfy well-formedness the TC has to prove that
the underlying TLPs are correctly generated, meaning that the receiver will not
have to solve invalid puzzles. Therefore, we introduce the notion of quasi publicly
verifiable time-lock puzzles (QPV-TLP), where the receiver is only guaranteed
to produce a convincing proof when the puzzle is well-formed. Remarkably, this
simple modification allows us to rely exclusively on the existance of TLPs. We
point out that QPV-TLPs are different from one-sided3 PV-TLPs, which are also
only known from repeated squaring [FKPS21]. Even though they both provide
sound proofs only for well-formed puzzles, one-sided PV-TLPs are additionally
required to output accepting proofs for malformed puzzles while still remaining
sound w.r.t. honest puzzles. We remark that our QPV-TLP is perfectly sound
while PV-TLPs are only computationally sound [FKPS21,BDD+21,BDD+23].

Our QPV-TLP. Our QPV-TLP is very straightforward. Given any TLP, to
generate a puzzle for a message m and time t, we compute z = (z0, z1) where
z0 := Gen(t,m; r0) and z1 := Gen(t, r0; r1) with random coins r0, r1. To solve z,
we solve z0 and z1 in parallel using Solve, and output m as the message, and r0
as the proof. To verify the correctness of a claimed message, it suffices to check
that z0 = Gen(t,m; r0). If a puzzle is correctly generated, the solver is always
able obtain the message and convincing proof. Additionally, our QPV-TLP is
perfectly sound. This follows from the fact that TLPs are injective, and thus z0
cannot belong to the support of both Gen(t,m0) and Gen(t,m1) with m0 �= m1.

TLPs as Over-Extractable Commitments. As pointed out in [LPS17], TLPs can
be related to the notion of extractable commitments [PW09] with over-extraction.
A commitment scheme is said to be extractable if there exists an efficient extrac-
tor that, having black-box access to a malicious sender that successfully termi-
nates the commit phase, extracts the committed value. An extractable commit-
ment suffers from over-extraction if the extractor may output an arbitrary value
when the commitment is invalid.4 TLPs can be seen as over-extractable commit-
ments where extraction is carried out in straight-line by brute-forcing the puzzle,
but there is no guarantee on the extracted value if the puzzle is malformed.

Goyal et al. [GLOV12] constructed weakly extractable commitments which
are extractable in a weaker sense meaning that the extraction can fail with
probability 1/2 but without over-extraction. To commit to a message m, the

3 One-sided PV-TLPs are a weaker primitive than PV-TLPs. They are defined and
constructed in [FKPS21]. They use a one-sided PV-TLP and a random oracle to get
a PV-TLP.

4 We say that a commitment invalid if it does not have any valid decommitment.
Otherwise, the commitment is valid.
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sender computes a 2-out-of-2 secret sharing of m and commits to the shares sep-
arately using a statistically binding commitment. Then, the receiver challenges
the sender to open one of the two commitments. The commit phase terminates
successfully if and only if the sender correctly decommits the challenged com-
mitment. To extract the committed value, it suffices to rewind the sender so that
it decommits both commitments and to then reconstruct the message starting
from the revealed shares. If the sender does not provide a valid decommitment,
the extractor outputs ⊥, denoting that the extraction was not successful.

As a starting point to get well-formedness, we can apply the above idea by
replacing the statistically binding commitment with a TLP. When challenged
to open a puzzle, the sender provides the message and randomness used to
generate the puzzle. The receiver then checks that on input the message and
the randomness, the TLP generation algorithm Gen gives the same puzzle. To
extract the committed value, it suffices to solve the unopened puzzle. Unlike
[GLOV12], our extraction strategy still suffers from over-extraction. Indeed, our
extraction proceeds in straight-line and, since there is no efficient way to decide
whether a TLP is malformed, it could be possible to extract a garbage value.
Nonetheless, the probability of over-extracting is now at most 1/2.

A Black-Box Proof of Well-Formedness. A natural idea to amplify the success
probability of the extraction is parallel repetition. The committer samples λ
different 2-out-of-2 secret sharings of m and commits to them in 2λ TLPs. Then,
the receiver asks the sender to open one of the two commitments for each of the λ
repetitions. However, a cheating sender could use a different message in different
repetitions, making a successful commit phase meaningless. We address this issue
by proving, using a black-box commit-and-prove system, that the TLPs across
the different repetitions all commit to the same message m.

In a black-box commit-and-prove system, a sender commits to a message
m so that later it can prove a predicate φ over the committed m in ZK with
black-box use of cryptographic primitives. Constant-round black-box commit-
and-prove systems [GLOV12,KOS18,Kiy20,COS22] can be constructed using
the powerful MPC-in-the-head paradigm introduced by Ishai et al. [IKOS07]. Let
us first briefly describe how to construct a black-box commit-and-prove system
with constant soundness error using a 3-party 2-private MPC protocol (e.g.,
[GMW87]). The sender first commits to the shares of a 3-out-of-3 secret sharing
of m := m1 ⊕ m2 ⊕ m3. Then, to prove that the committed message satisfies
a predicate φ, the sender runs in its head the MPC protocol computing the
functionality φ′(m1,m2,m3) := φ(m1 ⊕ m2 ⊕ m3) and commits to the resulting
MPC views. Then, the receiver asks the sender to decommit to the shares mi,mj

and to the views viewi, viewj for random i, j with i �= j. The receiver checks that
(1) the decomittment information are correct, (2) viewi and viewj are consistent
with each other and the output is 1 in both views, and (3) for δ ∈ {i, j}, mδ is
the input of party δ in viewδ. Constant soundness follows from the binding of
the commitment and the perfect correctness of the MPC, while ZK follows from
the perfect 2-privacy of the MPC.
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To get our TC, we start from the above protocol and modify it as follows: (1)
to allow the receiver to force-open the commitment, we commit to the shares of
the message with a TLP, (2) we repeat in parallel the above black-box commit-
and-prove and define φ as the predicate that ensures that the same message
is committed across all repetitions. To define the predicate, we use a clever
technique proposed by Khurana et al. [KOS18]. Instead of committing to m, the
sender commits to m||r, where r is some random value. The receiver replies with a
random value α, and the sender sends γ := rα+m to the receiver. We set φ(m||r)
as the predicate checking that γ is computed correctly. By the Schwartz-Zippel
lemma, if m||r �= m′||r′ then rα+m �= r′α+m′ with overwhelming probability.
Therefore, the fact that γ is a global value guarantees consistency of the message
committed across the repetitions.

The resulting TC consists of five rounds, the first two of which are dedicated
to defining φ and committing to (the shares of) m||r, while the last three consist
of the black-box commit-and-prove showing that φ(m||r) = 1 in all repetitions.

Intuitively, well-formedness follows from the fact that an accepting commit
phase indicates that the vast majority of the unopened TLPs across the repeti-
tions are well-formed, and that they all open to the same message. Thus, when
solving all the unopened puzzles, the receiver would retrieve the committed mes-
sage in many repetitions. Additionally, the use of a QPV-TLP instead of a regular
TLP immediately gives public verifiability of forced openings. The resulting TC
achieves t-hiding only in the presence of an honest receiver. Intuitively, this is
because the underlying black-box commit-and-prove is only honest-verifier ZK.
Nonetheless, we can get full-fledged t-hiding with a minor modification to the
protocol following the approach of Goldreich and Kahan [GK96] to lift an honest-
verifier ZK proof to a ZK proof. Namely, we make the receiver commit, with a
two-round statistically hiding commitment, to all of its challenges in the second
round and to reveal them in the fourth round. Notice that this modification does
not increase the number of rounds.

Public Verifiability Flavors and Efficiency of Forced Openings. Our TC achieves
a very strong flavor of public verifiability. Namely, given an arbitrary transcript of
the commit phase, which can even be generated by a computationally unbounded
malicious sender without interacting with a receiver, we require that it is infea-
sible to provide two valid force-open proofs for different messages. As a result,
the receiver needs to solve all the puzzles during the force-open phase.

However, we can formulate a weaker but meaningful notion that enables a
much more efficient force-open procedure. In particular, instead of an arbitrarily
generated transcript of the commit phase, we consider a commitment from an
accepting commit phase that the malicious sender run with an honest receiver.
The well-formedness proof contained in the transcript guarantees that the vast
majority of the repetitions contain the same message and, more importantly, the
value γ can be used to check whether the message extracted from a repetition is
consistent with the ones contained in the other (unsolved) puzzles. Thus, as soon
as the receiver finds a repetition where the extracted message is consistent with γ,
it will be sure that m is committed in the vast majority of repetitions. Therefore,



Black-Box Timed Commitments from Time-Lock Puzzles 467

the force-open procedure can output mi||ri together with the proof of the QPV-
TLP solved from the i-th repetition. Due to the perfect correctness of the MPC, it
is easy to show that, with overwhelming probability, λ − O(log2(λ)) repetitions
are correctly computed. Thus, the probability that the receiver samples more
than log(λ) repetitions such that γ �= αri + mi or the unsolved QPV-TLP is
malformed is negligible.

The above observation is also made in [KOS18], where the extractor of their
black-box commit-and-prove stops rewinding the prover as soon as it can extract
a message that is consistent with γ from one of the repetitions. Interestingly, this
feature of the extraction strategy used in the security proofs of [KOS18] can be
exploited to improve the concrete efficiency of our TC. Indeed, in our case the
extraction happens in straight-line and it is part of the actual protocol.

TLPs Imply TCs. In this work, we have focused on getting a TC whose security
guarantees (except t-hiding) hold against unbounded adversaries. Our TC relies
on TLPs, collision-resistant hashing, and one-way permutations.

However, by weakening the well-formedness guarantee to computational, it
is possible to get a t-hiding TC without relying on statistically hiding commit-
ments. For example, we can use the technique shown in Sect. 4.1.2 of [CLP20]
(which is inspired by [Lin13]) to lift honest-verifier ZK arguments to ZK. The
idea is to replace the challenge sent by the receiver in the fourth round of our
honest-receiver construction by a coin tossing protocol. The result of such coin
tossing is used as the receiver’s challenge to finalize the remaining execution.
The coin tossing protocol is based on the extractable commitment of Sect. 4 of
[PW09] which allows the simulator to extract the receiver’s share and bias the
coin tossing to its advantage. In this coin tossing, the receiver first commits to
a random string using the extractable commitment, the sender replies with its
random share, and the receiver opens the commitment. The final challenge is
computed by xoring the two shares.

The extractable commitment of [PW09] is a black-box construction from sta-
tistically binding commitments. By instantiating the statistically binding com-
mitments in the resulting TC as a two-round protocol from one-way functions,
we get a TC whose only assumption is the existence of TLPs, since TLPs imply
one-way functions [BGJ+16]. As a result, by instantiating the TLP with the one
of [BGJ+16] we get the first TC from general assumptions. Namely, the weakest
timed assumption of the existence of worst-case non-parallelizing languages, in
addition to indistinguishability obfuscation.

This alternative transformation to lift honest-verifier ZK to ZK leads to a
constant increase of the number of rounds in the resulting TC. For the sake
of clarity, since the main focus of our work is not to minimize the number of
rounds, we have here illustrated a simple approach to base TCs solely on TLPs.
Nonetheless, it is conceivable that ZK delayed-input black-box commit-and-prove
[KOS18,COS22] could be applied in our setting as well, allowing to have TCs
solely based on TLPs in five rounds. Indeed, in delayed-input ZK protocols the
predicate to be proved can be decided even in the last round of the protocol.
Therefore, the ZK delayed-input black-box commit-and-prove can start right
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away, in parallel with the exchange of messages used to decide the predicate
in our TC. The constructions of [KOS18,COS22] are ZK arguments with four
rounds, which become five when the underlying statistically binding commit-
ments are instantiated from one-way functions instead of one-way permutations.

A Remark on Strongly Extractable Commitments. Strongly extractable com-
mitments (sExtCom) are extractable commitments (ExtCom) that do not suffer
from over-extraction [Kiy14]. In an sExtCom, if the extractor outputs ⊥ it means
that the commitment is invalid. We stress that in an sExtCom, a successful com-
mit phase does not guarantee that the commitment is valid, which is required by
TCs. Therefore, even though there exist black-box techniques to get an sExtCom
from an ExtCom (e.g., [LP12,Kiy14]), they generally do not give a TC when the
ExtCom is replaced with a TLP.

1.3 Related Work

Timed Commitments. The first (interactive) timed commitment was proposed by
Boneh and Naor [BN00]. Their TC relies on a less standard assumption, stronger
than repeated squaring, called the generalized Blum-Blum-Shub assumption.
Katz et al. [KLX20] introduced and constructed non-interactive TCs. Their TC
is also non-malleable under a CCA-like notion. Their TC relies on repeated
squaring and uses generic non-interactive zero knowledge (NIZK) to prove well-
formedness. It requires a trusted setup and it is inefficient as committing takes
time t. Additionally, it does not provide public verifiability of forced openings.
Thyagarajan et al. [TCLM21] constructed the first CCA-secure non-interactive
TC with transparent setup. Their construction is based on the repeated squar-
ing assumption in class groups and is also linearly homomorphic. Its security
is proven in the random oracle model. Chvojka and Jager [CJ23] proposed sev-
eral CCA-secure non-interactive TCs, which all require a trusted setup. They
provided constructions with either linear or multiplicative homomorphisms. All
their constructions rely on the repeated squaring assumption.

Publicly Verifiable Time-Lock Puzzles. Freitag et al. [FKPS21] introduced pub-
licly verifiable time-lock puzzles (PV-TLPs). Their PV-TLP is non-malleable5
and it is based on strong trapdoor VDFs which are only known from repeated
squaring [Pie19]. Additionally, they require the (non-programmable auxil-
iary input) random oracle model and a mild form of setup. Baum et al.
[BDD+21,BDD+23] formalize the security of timed primitives in the UC frame-
work [Can01]. They construct PV-TLPs based on the (programmable) random
oracle model and strong trapdoor VDFs. They prove that their UC notion can
only be achieved in the (programmable) random oracle model.

5 We refer the reader to [FKPS21] for a comparison between their non-malleability
notions and the CCA-like notion of [KLX20].
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2 Preliminaries

Notation. We use N to denote the set of natural numbers. Let n ∈ N, we denote
the set {1, . . . , n} as [n]. For a finite set S, we let s ← S denote the sampling of
s uniformly at random from S. Let A be a probabilistic algorithm, by y ← A(x)
we denote that y is the output of A on input x, while by y = A(x; r) we denote
that y is the output of A when it is run with input x and random coins r. We
model multi-stage algorithms A := (A0,A1, . . . ,Ak) as stateful algorithms, i.e.,
Ai receives the state of Ai−1. However, when the state contains data of interest
that we wish to highlight, we give it explicitly and keep the rest of the state
implicit. For a tuple of interactive randomized algorithms (S,R), let

– (ys, yr) ← 〈S(xs) ↔ R(xr)〉 denote the interactive protocol between S and
R on private inputs xs and xr, respectively. Their respective private outputs
are ys and yr.

– yr ← outR(〈S(xs) ↔ R(xr)〉) denote the private output of R in the protocol.
– trans(〈S(xs) ↔ R(xr)〉) denote the transcript of the protocol, i.e., all the

messages S and R exchanged during the protocol.
– viewR(〈S(xs) ↔ R(xr)〉) denote the view of R in the protocol, i.e., all inputs,

incoming and outgoing messages, and random coins of R during the protocol.

2.1 Timed Commitments

A timed commitment (TC) is an interactive protocol between a sender S and a
receiver R defined as follows. We define some specific properties of TCs. Sound-
ness guarantees that after a valid commit phase the force-open algorithm will
give the committed message m and a convincing proof for m, public verifiabil-
ity guarantees that, for any arbitrary commitment, it is unfeasible to provide
two accepting force-open proofs w.r.t. different messages, and t-hiding guaran-
tees that a massively parallel malicious receiver running in time less than t learns
nothing about the committed message. We formalize the TC definition of [BN00]
and give different flavors of some of their notions.

Definition 1. A tuple of PT algorithms (S,R,FOpen,FVerify) where S =
(Sc,So) and R = (Rc,Ro) are the (stateful) sender and (stateful) receiver respec-
tively, is an (interactive) timed commitment scheme for message and commit-
ment spaces M = (Mλ)λ∈N, C = (Cλ)λ∈N such that ⊥ /∈ Mλ ∪Cλ if the following
holds:

1. Commit Phase: (dec, com) ← 〈Sc(1λ, t,m) ↔ Rc(1λ, t)〉: On common input a
security λ and a time parameter t, the receiver Rc runs an interactive protocol
with the sender Sc, which has a message m ∈ Mλ as additional input. Rc

outputs a commitment com ∈ Cλ ∪ {⊥} and Sc outputs a decommitment dec.
(If com �= ⊥, the commit phase is valid, otherwise, it is invalid.)

2. Open Phase: m′ ← outRo(〈So(dec) ↔ Ro(com)〉): The sender So on input a
decommitment dec, and the receiver Ro on input a commitment com, run an
interactive protocol which results in Ro outputting a message m′ ∈ Mλ ∪{⊥}.
(m′ �= ⊥ indicates a valid open phase, otherwise, it is invalid.)
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3. (m,π) ← FOpen(1λ, 1t, com): On input a security parameter λ, a time param-
eter t, and a commitment com, it outputs a message/proof pair (m,π).

4. b := FVerify(1λ, t, com,m, π): On input a security parameter λ, a time param-
eter t, a commitment com, a message m, and a proof π, FVerify accepts (b = 1)
or rejects (b = 0).

We require correctness of honest and forced openings, soundness, public ver-
ifiability, t-hiding, and statistical binding:

– Correctness of honest openings: For every λ, t ∈ N and m ∈ Mλ,

Pr
[
m′ = m

∣∣∣∣ (dec, com) ← 〈Sc(1λ, t,m) ↔ Rc(1λ, t)〉
m′ ← outRo(〈So(dec) ↔ Ro(com)〉)

]
= 1 .

– Correctness of force openings: For every λ, t ∈ N and m ∈ Mλ,

Pr

[
FVerify(1λ, t, com, m′, π) = 1 ∧
m′ = m

∣∣∣∣ (dec, com) ← 〈Sc(1λ, t, m) ↔ Rc(1λ, t)〉
(m′, π) ← FOpen(1λ, 1t, com)

]
= 1 .

– Efficiency: FOpen runs in time t·poly(λ), while FVerify as well as Sc,So,Rc,Ro

run in time poly(log t, λ).

– Soundness: For every λ, t ∈ N and every unbounded malicious (stateful)
sender S̃ := (S̃c, S̃o), there exists a negligible function negl(·) such that

Pr

⎡
⎣ com �= ⊥ ∧
(FVerify(1λ, t, com, m, π) = 0
∨ (m′ �= ⊥ ∧ m′ �= m))

∣∣∣∣∣∣
( ˜dec, com) ← 〈S̃c ↔ Rc(1λ, t)〉
m′ ← outRo (〈S̃o( ˜dec) ↔ Ro(com)〉)
(m, π) ← FOpen(1λ, 1t, com)

⎤
⎦ ≤ negl(λ) .

– Public verifiability: For every λ, t ∈ N and every unbounded adversary A,
there exists a negligible function negl(·) such that

Pr

⎡
⎣
FVerify(1λ, t, com, m0, π0) = 1 ∧
FVerify(1λ, t, com, m1, π1) = 1 ∧
m0 �= m1

∣∣∣∣∣∣
(com, m0, π0, m1, π1) ← A

⎤
⎦ ≤ negl(λ) .

– Statistical binding: For every λ, t ∈ N and every unbounded malicious (state-
ful) sender S̃ := (S̃c, S̃o, S̃′

o), there exists a negligible function negl(·) such that

Pr

⎡
⎣ com �= ⊥ ∧

m,m′ �= ⊥ ∧
m �= m′

∣∣∣∣∣∣
( ˜dec, com) ← 〈S̃c ↔ Rc(1λ, t)〉
m ← outRo(〈S̃o( ˜dec) ↔ Ro(com)〉)
m′ ← outRo(〈S̃′

o( ˜dec) ↔ Ro(com)〉)

⎤
⎦ ≤ negl(λ) .

– t-hiding: A timed commitment is t-hiding with gap ε < 1 if there exists a poly-
nomial t̃(·), such that for every polynomial t(·) ≥ t̃(·) and every polynomial-
size distinguisher D := (Dλ)λ∈N of depth(Dλ) ≤ t(λ)ε, there exists a negligible
function negl(·) such that for every λ ∈ N and m0,m1 ∈ Mλ,

Pr
[
b′ = b

∣∣ b ← {0, 1}; b′ ← outDλ
(〈Sc(1λ, t,mb) ↔ Dλ〉) ] ≤ 1

2
+ negl(λ) .
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We also define a weaker version of t-hiding called honest-receiver t-hiding,
where the receiver is honest but curious, that is, it follows the protocol’s speci-
fication but tries to distinguish the committed value. We define honest-receiver
hiding for public-coin protocols, where the messages sent from the receiver to
the sender are sampled uniformly at random.

Definition 2 (Honest-Receiver t-Hiding). A timed commitment is honest-
receiver t-hiding with gap ε < 1 if there exists a polynomial t̃(·), such that for
every polynomial t(·) ≥ t̃(·), there exists a polynomial-size simulator Sim :=
(Simλ)λ∈N of depth(Simλ) < t(λ)ε such that for every polynomial-size distin-
guisher D := (Dλ)λ∈N of depth(Dλ) < t(λ)ε, there exists a negligible function
negl(·) such that for every λ ∈ N and message m ∈ Mλ,
∣∣Pr[Dλ(trans(〈Sc(1λ, t,m) ↔ Rc(1λ, t)〉)) = 1

] − Pr[Dλ(Simλ) = 1]
∣∣ ≤ negl(λ).

Finally, we define weak public verifiability. In the weak public verifiability
game, the commitment is not directly provided by the adversary but it is the
result of a commit phase run with an honest receiver. Notice that this weak
property basically gives the same guarantees of (regular) public verifiability when
commitment transcripts come from a trusted source.6

Definition 3 (Weak Public Verifiability). A timed commitment is weakly
publicly verifiable if for every λ, t ∈ N and every unbounded malicious (stateful)
sender S̃ := (S̃c, S̃fo), there exists a negligible function negl(·) such that,

Pr

⎡
⎣ FVerify(1λ, t, com, m0, π0) = 1 ∧

FVerify(1λ, t, com, m1, π1) = 1 ∧
com �= ⊥ ∧ m0 �= m1

∣∣∣∣∣∣
( ˜dec, com) ← 〈S̃c ↔ Rc(1λ, t)〉
(com, m0, π0, m1, π1) ← S̃fo( ˜dec)

⎤
⎦ ≤ negl(λ).

2.2 Time-Lock Puzzles

We recall the definition of time-lock puzzle given in [BGJ+16].

Definition 4 (Time-Lock Puzzles [BGJ+16]). A time-lock puzzle TLP is a
pair of algorithms (Gen,Solve) that works as follows:

– z ← Gen(1λ, t, s) is a probabilistic algorithm that takes as input a security
parameter λ ∈ N, a difficulty parameter t ∈ N, and a solution s ∈ {0, 1}λ,
and outputs a puzzle z.

– s := Solve(1λ, 1t, z) is a deterministic algorithm that takes as input the secu-
rity parameter λ, the difficulty parameter t, and a puzzle z. It outputs a solu-
tion s.

We require correctness and hardness.
6 To reduce trust one might require that, for each round, each party signs its outgoing

messages, together with all the messages (both incoming and outgoing) exchanged so
far. In this setting, the digital signatures act as a certificate to verify that the tran-
script actually comes from a protocol run by two specific parties. Another technique
to reduce trust is to use decentralized TLS oracles [ZMM+20].
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– Correctness: For every security parameter λ, difficulty parameter t, and solu-
tion s ∈ {0, 1}λ:

Pr
[
Solve(1λ, 1t, z) = s

∣∣z ← Gen(1λ, t, s)
]
= 1

– Efficiency: Gen runs in time poly(log t, λ) while Solve runs in time t ·poly(λ).
– Hardness: A time-lock puzzle TLP = (Gen,Solve) is hard with gap ε < 1

if there exists a polynomial t̃, such that for every polynomial t(·) ≥ t̃(·),
polynomial-size A := (A)λ∈N of depth(A) ≤ t(λ)ε, there exists a negligible
function negl(·), such that for every λ ∈ N, and every pair of solutions s0, s1 ∈
{0, 1}λ,

Pr
[
b ← A(z)

∣∣ b ← {0, 1}; z ← Gen(1λ, t, sb)
] ≤ 1

2
+ negl(λ).

2.3 Secure Multi-party Computation

We give a definition of secure multi-party computation protocols based on the
ones given by Ishai et al. [IKOS07]. We consider MPC protocols Πφ that realize
any deterministic N -party functionality φ whose output is a bit (received by all
parties), and we assume that every party implicitly takes the functionality φ to
be computed as input. We define the concept of consistent views as well as the
properties that Πφ has to satisfy below.

Definition 5 (Consistent Views). Let Πφ be an N -party MPC protocol for
functionality φ. We say viewi and viewj with i, j ∈ [N ] s.t. i �= j are consistent
if the outgoing messages that can be subsumed from viewi are identical to the
incoming messages contained in viewj and vice versa.

Definition 6 (Perfect Correctness). Let Πφ be an N -party MPC protocol
for functionality φ. We say Πφ has perfect correctness if for all private inputs
to the parties (x1, . . . , xN ), the probability that the output of a party in an honest
execution of Πφ is different from φ(x1, . . . , xN ) is 0.

Definition 7 (2-Privacy). Let Πφ be an N -party MPC protocol for function-
ality φ. We say Πφ has perfect 2-privacy if there exists a simulator SimMPC such
that for any input of the parties (x1, . . . , xN ) and corrupted (semi-honest) par-
ties i, j ∈ [N ], SimMPC((i, j), (xi, xj), φ(x1, . . . , xn)) is identically distributed to
the joint view (viewi, viewj).

3 Our Constructions

In Sect. 3.1, we define quasi publicly verifiable TLPs (QPV-TLPs) and we give a
black-box construction from any standard TLP in Sect. 3.2. In Sect. 3.3, we give
a black-box construction of TCs with honest-receiver t-hiding from any QPV-
TLPs. In Sect. 3.4, we lift such construction to full t-hiding. This establishes our
main result: a black-box timed commitment from any standard TLP. Finally, in
Sect. 3.5 we show a version of our TCs that features a more efficient force-open.
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3.1 Quasi Publicly Verifiable TLPs

We define the concept of quasi publicly verifiable time-lock puzzle as a time-lock
puzzle satisfying some additional properties.

Definition 8. A quasi publicly verifiable time-lock puzzle is a tuple of algorithms
(Gen,Solve,Verify) that works as follows:

– z ← Gen(1λ, t, s) is a probabilistic algorithm that on input a security param-
eter λ ∈ N, a difficulty parameter t ∈ N and a solution s ∈ {0, 1}λ, outputs a
puzzle z.

– (s, π) ← Solve(1λ, 1t, z) is a probabilistic algorithm that takes as input the
security parameter λ, the difficulty parameter t, and a puzzle z. It outputs a
solution s and a proof π.

– b := Verify(1λ, t, z, s, π) is a deterministic algorithm that on input the security
parameter λ, the difficulty parameter t, a puzzle z, a solution s, and a proof
π, outputs a bit b indicating acceptance (b = 1) or rejection (b = 0).

We require the same correctness (considering only the solution s output by
Solve), the same hardness, and same efficiency properties of a regular TLP. Addi-
tionally, we require efficient verification, completeness, and perfect soundness.

– Efficient verification: Verify runs in time poly(log t, λ).
– Completeness: For every security parameter λ, difficulty parameter t, and

s ∈ {0, 1}λ,

Pr
[
Verify(1λ, t, z,Solve(1λ, 1t, z)) = 1

∣∣z ← Gen(1λ, t, s)
]
= 1.

– Perfect soundness: For all λ, difficulty parameter t, � s0, s1 ∈ {0, 1}λ, π0, π1,
and z such that s0 �= s1∧Verify(1λ, t, z, s0, π0) = 1∧Verify(1λ, t, z, s1, π1) = 1.

3.2 Quasi Publicly Verifiable TLP from Any TLP

In this section, we show how to build a quasi publicly verifiable time-
lock puzzle TLPqpv = (Gen,Solve,Verify) from any time-lock puzzle TLP =
(TLP.Gen,TLP.Solve). The construction is given in Fig. 1.

Theorem 1. If (TLP.Gen,TLP.Solve) is a time-lock puzzle, then (Gen,Solve,
Verify) of Fig. 1 is a quasi publicly verifiable time-lock puzzle.

Remark 1. An alternative construction would be to replace z0, z1 in Fig. 1 by
z0 ← TLP.Gen(1λ, t, s||r1) and z1 := TLP.Gen(1λ, t, s; r1). This has the disad-
vantage that the solution space of z0 is twice as large as that of z1. The advantage,
however, is that one needs to only solve one puzzle (z0) and recompute z1.

Proof (of Theorem 1). Due to lack of space, we defer the proof to the full
version. ��
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Fig. 1. A black-box construction of QPV-TLP from any (standard) TLP.

3.3 Timed Commitment with Honest-Receiver t-Hiding

In this section, we give a compiler that starting from a QPV-TLP, a non-
interactive statistically binding commitment scheme SBCom = (Com,Dec), and
a secure MPC protocol Πφ for a functionality φ defined below, gives a timed
commitment with honest-receiver t-hiding. Πφ computes the following boolean
functionality

φ(α, γ, x1, x2, x3) := 1 iff γ = αr+m where m||r := x1⊕x2⊕x3 ∧ |m| = |r| (1)

where φ, α, γ are known to all parties and xi is the private input of party i.
All our underlying primitives are used in a black-box way. Furthermore, MPC

protocols are information-theoretic constructions, and black-box non-interactive
statistically binding commitments can be realized from any one-way permutation
[Gol01]. We assume that the messages to be committed to belong to a field
F ⊆ {0, 1}λ. The commit and open phases and the FOpen and FVerify algorithms
are depicted in Fig. 2 and Fig. 3 respectively.

Theorem 2. Let TLPqpv = (Gen,Solve,Verify) be a quasi publicly verifiable TLP
(Def. 8), SBCom = (Com,Dec) a non-interactive statistically binding and com-
putationally hiding commitment scheme, and Πφ a 3-party secure MPC (as
defined in Sect. 2.3) for φ defined in (1), then HRTC = (S = (Sc,So),R =
(Rc,Ro),FOpen,FVerify) defined in Fig. 2 and Fig. 3 is an honest-receiver t-
hiding timed commitment for message space Mλ = F ⊆ {0, 1}λ.

We prove Theorem 2 by proving several lemmas, one for each of the properties
required in Definition 1. Correctness of honest openings and correctness of force
openings are easily verified by inspection.

Lemma 1. HRTC is efficient if TLPqpv is a QPV-TLP.

Proof (of Lemma 1). First, FOpen runs in time t · poly(λ): its running time
is dominated by λ parallel invocations of TLPqpv.Solve, each of which runs in
time t · poly(λ). Second, FVerify runs in time poly(log t, λ): its running time is
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Fig. 2. Commit and open phases of HRTC.
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Fig. 3. FOpen and FVerify algorithms of HRTC.

dominated by O(λ) invocations of TLPqpv.Gen and TLPqpv.Verify, each of which
runs in time poly(log t, λ). Finally, Sc,So,Rc,Ro all run in time poly(log t, λ) as
all the primitives they invoke either take time poly(λ) (e.g. SBCom and MPC in
the head) or poly(log t, λ) (e.g. TLPqpv.Gen and TLPqpv.Verify). ��
Lemma 2. HRTC is sound if TLPqpv is a QPV-TLP, SBCom is a non-
interactive statistically biding commitment, and Πφ is a secure 3-party MPC.

Proof (of Lemma 2). For simplicity, in the following proof, we treat both SBCom
and TLPqpv as perfectly binding. This means that once the sender commits to a
view (with SBCom) or a share (with TLPqpv), it is impossible for the sender to
later decommit to a different value than the one initially committed to. While
TLPqpv is indeed perfectly binding (a proof of this is given in Lemma 4), SBCom
is only statistically binding. However, the statistical binding property of SBCom
ensures that each commitment defines a string such that, except with negligible
probability, only that specific string can be decommitted to later. Therefore, the
soundness error of our construction when using statistically binding commit-
ments is at most negligibly larger than that of using perfectly binding commit-
ments (i.e., this difference accounts for the negligible probability that the sender
breaks the binding of one of the commitments).

Let us call a repetition i ∈ [λ] bad if φ(α, γ, vi,1, vi,2, vi,3) = 0 or ∃u ∈ [3] s.t.
the time-lock puzzle zi,u is malformed. We argue that conditioned on com �= ⊥,
the probability that a repetition is bad at most 1

3 . First, observe that the receiver
detects a malformed puzzle with probability at least 1

3 . Indeed, the receiver
would ask the sender to provide vi,u, βi,u s.t. zi,u = TLPqpv.Gen(1λ, t, vi,u;βi,u)
with probability 1

3 (i.e., see the second verification check performed by Rc when
deciding the output of the commit phase in Fig. 2).
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Second, if φ(α, γ, vi,1, vi,2, vi,3) = 0, then the receiver will also detect it with
probability at least 1

3 . Indeed, if within a repetition φ(α, γ, vi,1, vi,2, vi,3) = 0, by
the perfect correctness of Πφ, for all choices of vi,1, vi,2, vi,3, the outputs of all
3 parties in any honest execution of Πφ must be 0. Therefore, considering the
inputs (vi,j)j∈[3] and views (viewi,j)j∈[3] committed by the sender in Step 1 and
Step 3 of the commit phase respectively, either in all the views the output is 0,
or there exists two views which are malformed (i.e., they are either inconsistent
with each other or have different inputs w.r.t. the ones committed in Step 1).
In the former case, the receiver would always reject, while in the latter it would
reject with probability at least 1

3 (i.e., see the third and fourth verification checks
performed by Rc when deciding the output of the commit phase in Fig. 2).
Therefore, the probability that, given that com �= ⊥, a repetition i ∈ [λ] is bad
is at most 1

3 .
Let us now consider the probability that, conditioned on com �= ⊥, more than

log2(λ) repetitions are bad. Such probability is at most (13 )
log2(λ) < ( 12 )

log2(λ) =
( 1λ )

log(λ), which is negligible.
Let S ⊆ [λ] be the set containing the indices of the repetitions that are

not bad. For every i ∈ S where vi,1 ⊕ vi,2 ⊕ vi,3 = mi||ri with |mi| = |ri|, it
holds that γ = αri + mi. By the Schwartz-Zippel lemma, with overwhelming
probability over the choice of α, there must exist (m, r) such that mi = m and
ri = r for all i ∈ S. Recall that ∀i ∈ S and k ∈ [3] s.t. ai, bi �= k we have that
zi,k is well-formed. The correctness and the completeness of TLPqpv guarantee
that whenever a puzzle is correctly generated, the solution/proof pair output by
TLPqpv.Solve will be accepting and will contain the committed value. Thus, since
|S| ≥ λ − log2(λ) except with negligible probability, the force open phase and
the open phase will agree on the same message m on more than λ

2 positions (i.e.,
m′ = m) and FVerify will output 1 on input the message/proof pair returned by
FOpen. ��
Lemma 3. HRTC is publicly verifiable if TLPqpv is a QPV-TLP.

Proof (of Lemma 3). Assume A outputs com = (zi,1, zi,2, zi,3, α, γ, ai, bi,
vi,ai

, βi,ai
, vi,bi

, βi,bi
)i∈[λ] and two proof/message pairs (m0, π0 = (v0

i,k, π0
i,k)i∈[λ])

and (m1, π1 = (v1
i,k, π1

i,k)i∈[λ]) with m0 �= m1 and that are accepting w.r.t. com.
This means that for more than λ/2 repetitions vi,ai

⊕ vi,bi
⊕ v0

i,k = m0||r0i
and vi,ai

⊕ vi,bi
⊕ v1

i,k = m1||r1i . Thus, there must be at least one repeti-
tion i ∈ [λ] s.t. v0

i,k �= v1
i,k and TLPqpv.Verify(1λ, t, zi,k, v0

i,k, π0
i,k) = 1 and

TLPqpv.Verify(1λ, t, zi,k, v1
i,k, π1

i,k) = 1, which contradicts the perfect soundness
of TLPqpv. ��
Lemma 4. HRTC is statistically binding if TLPqpv is a QPV-TLP.

Proof (of Lemma 4). Assume that the malicious sender provides two valid
decommitments dec0 = (v0

i,k, β0
i,k)i∈[λ] and dec1 = (v1

i,k, β1
i,k)i∈[λ] to m0 and

m1, respectively, such that m0 �= m1, for the same com = (zi,1, zi,2, zi,3, α, γ,
ai, bi, vi,ai

, βi,ai
, vi,bi

, βi,bi
)i∈[λ]. This means that for more than λ/2 repeti-

tions vi,ai
⊕ vi,bi

⊕ v0
i,k = m0||r0i and vi,ai

⊕ vi,bi
⊕ v1

i,k = m1||r1i . Thus,
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there exists at least one repetition i ∈ [λ] such that v0
i,k �= v1

i,k and zi,k =
TLPqpv.Gen(1λ, t, v0

i,k;β
0
i,k) and zi,k = TLPqpv.Gen(1λ, t, v1

i,k;β
1
i,k), which con-

tradicts the correctness of TLPqpv. Indeed, the correctness property of TLPs
guarantees that they are injective. For the reader’s convenience we report again
here the proof of this fact, as we have already shown in the proof of perfect
soundness of TLPqpv (see Sect. 3.2). Any puzzle z, even if maliciously gener-
ated, belongs to the support of TLPqpv.Gen(1λ, t, s) for at most one solution s.
Assume, for the sake of contradiction, that there exists a z belonging to the
support of both TLPqpv.Gen(1λ, t, s0) and TLPqpv.Gen(1λ, t, s1) with s0 �= s1.
Let s = TLPqpv.Solve(1λ, 1t, z). If s �= s0, this contradicts the correctness of
TLPqpv.Solve regarding puzzles in the support of TLPqpv.Gen(1λ, t, s0). If s = s0,
it contradicts the correctness of TLPqpv.Solve regarding puzzles in the support of
TLPqpv.Gen(1λ, t, s1). Hence, for any puzzle z, there exists at most one solution
s, and if a solution s exists, then s = TLPqpv.Solve(1λ, 1t, z). ��
Lemma 5. HRTC is honest-receiver t-hiding if SBCom is a non-interactive com-
putationally hiding commitment, TLPqpv is a QPV-TLP, and Πφ is a secure
3-party MPC.

Proof (of Lemma 5). The simulator Sim proceeds as follows:

1. Sample random α, γ ← F \ {0}
2. ∀i ∈ [λ] sample random ai, bi ← [3] with ai �= bi

3. ∀i ∈ [λ], j ∈ {ai, bi}, k ∈ [3] \ {ai, bi} sample vi,j ← {0, 1}2λ and set vi,k to
garbage, say vi,k = 02λ

4. ∀(i, j) ∈ [λ] × [3] sample randomness βi,j and compute zi,j := TLPqpv.Gen(
1λ, t, vi,j ;βi,j)

5. ∀i ∈ [λ], k ∈ [3] \ {ai, bi}, compute (viewi,ai
, viewi,bi

) ← SimMPC((ai, bi),
(vi,ai

, vi,bi
), 1) and set viewi,k := 0� where � is the size of a view

6. ∀(i, j) ∈ [λ] × [3] compute (ci,j , di,j) ← Com(1λ, viewi,j)
7. Output the protocol’s transcript (zi,1, zi,2, zi,3, α, ci,1, ci,2, ci,3, γ, ai, bi, vi,ai

,
viewi,ai

, βi,ai
, di,ai

, vi,bi
, viewi,bi

, βi,bi
, di,bi

)i∈[λ].

Notice the running time of Sim is essentially independent of t. We prove
indistinguishability from a regular transcript via a series of indistinguishable
hybrids.

H0 : This is identical to the sender in the commit phase of Fig. 2 except that,
instead of receiving α, (ai, bi)i∈[λ] from the receiver, the sender itself samples
samples random α ← F \ {0} and for all i ∈ [λ], ai, bi ← [3] with ai �= bi.
Formally, H0 is defined as follows:

1. Sample random r, α ← F \ {0} and set γ := rα + m
2. ∀i ∈ [λ] sample random ai, bi ∈ [3] with ai �= bi

3. ∀i ∈ [λ] sample vi,1, vi,2 ← {0, 1}2λ and compute
vi,3 = vi,1 ⊕ vi,2 ⊕ (m||r)

4. ∀i ∈ [λ], j ∈ [3], sample randomness βi,j and compute
zi,j := TLPqpv.Gen(1λ, t, vi,j ;βi,j)
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5. ∀i ∈ [λ], j ∈ [3], run Πφ in the head, with public inputs α and γ, and
vi,j as the private input to party j in the i-th execution of Πφ. Let
viewi,1, viewi,2, viewi,3 be the views of the i-th execution

6. ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ← Com(1λ, viewi,j)
7. Output the protocol’s transcript: (zi,j , α, ci,j , γ, ai, bi, vi,ai

, viewi,ai
,

βi,ai
, di,ai

, vi,bi
, viewi,bi

, βi,bi
, di,bi

)i∈[λ],j∈[3]

H1 : This is identical to H0 except that for all i ∈ [λ] and j ∈ {ai, bi}, the shares
vi,j are randomly sampled before drawing the remaining share depending on
m||r. In more details, Step 3. of H0 is modified as follows. The remaining
steps remain unchanged. Formally, H1 is defined as follows:

...
3. ∀i ∈ [λ], j ∈ {ai, bi}, k ∈ [3] \ {ai, bi}, sample vi,j ← {0, 1}2λ and set

vi,k = vi,ai
⊕ vi,bi

⊕ (m||r)
...

Hi
2 : This hybrid is parameterized by i ∈ {0, . . . , λ}. We define H0

2 := H1. For
i ≥ 1 Hi

2 be identical to Hi−1
2 except that in the i-th repetition of the

unopened party in Step 6. of H1, instead of committing to viewi,k where
k ∈ [3] \ {ai, bi}, commit to a garbage value, say 0. Formally, ∀i ∈ [λ], Hi

2 is
defined as follows:

...
6. ∀j ∈ [λ] and k ∈ [3] \ {aj , bj} :

• (cj,aj
, dj,aj

) ← Com(1λ, viewj,aj
)

• (cj,bj
, dj,bj

) ← Com(1λ, viewj,bj
)

• If j ≤ i:(cj,k, dj,k) ← Com(1λ, 0�) where � := |viewj,aj
| =

|viewj,bj
|, i.e., views are padded and are of size �.

• If j > i: (cj,k, dj,k) ← Com(1λ, viewj,k).
...

Hi
3 : This hybrid is parameterized by i ∈ {0, . . . , λ} and we define H0

3 := H2.
For i ≥ 1, Hi

3 is identical to Hi−1
3 except that in i-th repetition where

k ∈ [3] \ {ai, bi}, instead of committing with TLPqpv to the input vi,k of
the unopened party in Step 4. of Hλ

2 , we commit to a garbage value, say 0.
Formally, ∀i ∈ [λ], Hi

3 is defined as follows:

...
4. ∀j ∈ [λ] and k ∈ [3] \ {aj , bj} :

• zj,aj
:= TLPqpv.Gen(1λ, t, vj,aj

;βj,aj
)

• zj,bj
:= TLPqpv.Gen(1λ, t, vj,bj

;βj,bj
)

• If j ≤ i: zj,k := TLPqpv.Gen(1λ, t, 02λ;βj,k)
• If j > i: zj,k := TLPqpv.Gen(1λ, t, vj,k;βj,k).
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...

H4 : H4 is identical to Hλ
3 except that in Step 5. of Hλ

3 for all i ∈ [λ] we compute
the opened views as (viewi,ai

, viewi,bi
) ← SimMPC((ai, bi), (vi,ai

, vi,bi
), 1). For-

mally, H4 is defined as follows:

...
5. ∀i ∈ [λ] : (viewi,ai

, viewi,bi
) ← SimMPC((ai, bi), (vi,ai

, vi,bi
), 1)

...

H5 : H5 is identical to H4 except that γ in Step 1. is sampled uniformly at
random. Formally, H5 is defined as:

1. Sample random α, γ ← F \ {0}
...

Notice that H0 coincides with the distribution of the transcript of an honest
commit phase and H5 is identical to Sim. We now introduce the following claims.

Claim 1. H1 is perfectly indistinguishable from H0.

Claim 2. If SBCom is computationally hiding, then for every i ∈ [λ], Hi
2 is

computationally indistinguishable from Hi−1
2 .

Claim 3. If TLPqpv is hard, then for every i ∈ [λ], Hi
3 and Hi−1

3 are indistin-
guishable for every poly-size distinguisher with depth upper-bounded by tε.

Claim 4. If Πφ is perfectly 2-private, then H4 is perfectly indistinguishable from
Hλ

3 .

Claim 5. H5 is perfectly indistinguishable from H4.

Proof (of Claim 1). It follows from the fact that for any x ∈ {0, 1}2λ and all
i, j, k ∈ [3] s.t. i �= j �= k where vi, vj ← {0, 1}2λ and vk = vi ⊕ vj ⊕ x, any pair
(va, vb) with a, b ∈ [3] s.t. a �= b is uniformly distributed in {0, 1}2λ × {0, 1}2λ. ��
Proof (of Claim 2). Assume there exists a poly-sized distinguisher D which is
able to distinguish between Hi

2 and Hi−1
2 with non-negligible probability, we can

use D to build an adversary A that wins the hiding game of SBCom with the
same probability. A plays in the hiding game with m0 = viewi,k and m1 = 0�

and gets back from the challenger a commitment c. A constructs the transcript
regularly except that for the i-th repetition it sets ci,k = c. It then forwards
the transcript to D and outputs whatever D outputs. Notice that if b = 0 in
the hiding game, then A perfectly simulates Hi−1

2 , and if b = 1 then A perfectly
simulates Hi

2. Therefore, A wins the hiding game with the same probability with
which D distinguishes between Hi

2 and Hi−1
2 . ��
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Proof (of Claim 3). Assume there exists a poly-sized distinguisher D whose depth
is bounded by tε which is able to distinguish between Hi

3 and Hi−1
3 with non-

negligible probability, we can use D to build an adversary A that breaks the
hardness of TLPqpv with the same probability. A plays in the hardness game with
s0 = vi,k and s1 = 02λ and gets back from the challenger a puzzle z. A constructs
the transcript regularly except that for the i-th repetition it sets zi,k = z. It
then forwards the transcript to D and outputs whatever D outputs. Notice that
if b = 0 in the hardness game, then A perfectly simulates Hi−1

3 , and if b = 1
then A perfectly simulates Hi

3. Notice that constructing the transcript keeps the
depth of A bounded since the MPC protocol, the commitment algorithm, and the
puzzle generation algorithm all run in polynomial time essentially independent
of t. Therefore, A wins the hardness game with the same probability with which
D distinguishes between Hi

3 and Hi−1
3 . ��

Proof (of Claim 4). It directly follows from the perfect indistinguishability of a
pair of real views and a pair of simulated views of Πφ. ��
Proof (of Claim 5). It follows from the fact that for any m ∈ F and random
α, r ∈ F \ {0} the value γ = rα + m is uniformly distributed in F \ {0}. ��
The proof is concluded by observing that it simply follows from the proofs of
Claims 1 -5, since all of the hybrids are indistinguishable by a poly-size distin-
guisher whose depth is bounded by tε. ��

3.4 t-Hiding Timed Commitment

To lift our honest-receiver t-hiding timed commitment to a t-hiding timed
commitment we adopt the approach used by Goldreich and Kahan [GK96]
to get a constant-round ZK proof from a constant-round honest-verifier ZK
proof. Basically, we have the receiver commit, with a two-round statistically-
hiding commitment (SHCom), to all of its random challenges at the beginning
of the protocol, and then open these commitments in the subsequent rounds.
Two-round statistically-hiding commitments can be constructed from collision-
resistant hashing [HM96]. We describe the commit phase of our t-hiding TC in
Fig. 4.

The verification of the commit phase and its output, of the open phase, and
the FOpen,FVerify algorithms are identical to the ones described in Sect. 3.3.

Theorem 3. Let TLPqpv = (Gen,Solve,Verify) be a QPV-TLP (Def. 8),
SBCom = (Com,Dec) a non-interactive statistically binding and computationally
hiding commitment scheme, SHCom a two-round statistically hiding and compu-
tationally binding commitment scheme, and Πφ a 3-party secure MPC for func-
tionality φ defined in (1), then TC = (S = (Sc,So),R = (Rc,Ro),FOpen,FVerify),
where S and R are defined in Fig. 4 and FOpen,FVerify are defined Fig. 3, is a
(fully fledged) t-hiding timed commitment scheme (Def. 1).

We only prove t-hiding and soundness, as the proofs of public verifiability
and binding are identical to the construction in Sect. 3.3 – see Lemmas 3 and 4.
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Fig. 4. Commit phase of TC.

Lemma 6. TC is t-hiding if SBCom is a non-interactive computationally hiding
commitment scheme, SHCom is a two-round computationally binding commit-
ment scheme, TLPqpv is a quasi publicly verifiable time-lock puzzle, and Πφ is a
3-party secure MPC for functionality φ defined in (1).

Proof (of Lemma 6). Our proof strategy involves constructing a bounded-
depth simulator Sim that, with black-box access to a malicious (bounded-depth)
receiver R∗

c , is able to simulate its view. Such simulated view is indistinguish-
able from the one coming from a commit phase with an honest sender for every
possible message m ∈ Mλ. Let ≈ denote that two distributions are indistin-
guishable by a polynomial-size distinguisher whose depth is bounded by tε. We
then observe that for all m0,m1 ∈ Mλ: viewR∗

c
(〈Sc(1λ, t,m0) ↔ R∗

c (1
λ, t)〉) ≈
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SimR∗
c ≈ viewR∗

c
(〈Sc(1λ, t,m1) ↔ R∗

c (1
λ, t)〉). Therefore, viewR∗

c
(〈Sc(1λ, t,m0) ↔

R∗
c (1

λ)〉) ≈ viewR∗
c
(〈Sc(1λ, t,m1) ↔ R∗

c (1
λ)〉), i.e., the existence of this simulator

implies t-hiding. We first describe a simplified simulator Sim:

1. ∀i ∈ [λ], compute the first message σi[1] of SHCom; ∀i ∈ [λ], j ∈ [3], com-
pute zi,j := TLPqpv.Gen(1λ, t, 02λ;βi,j) for random βi,j ; send (σi[1])i∈[λ] and
(zi,j)i∈[λ],j∈[3] to R∗

c .
2. receive ∀i ∈ [λ] from R∗

c its statistically hiding commitment σi[2] to (ai, bi),
and the value α.

3. ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ← Com(1λ, 0�) ; sample a random γ ←
F \ {0}; send (ci,j)i∈[λ],j∈[3] and γ to R∗

c .
4. receive ∀i ∈ [λ] from R∗

c the decommitments yi w.r.t. σi to the challenge
indices (ai, bi); abort if any of the decommitments is not valid.

5. Rewind Phase: repeatedly rewind R∗
c back to Step 3, until R∗

c decommits
to (a′

i, b
′
i)i∈[λ] = (ai, bi)i∈[λ]. In particular, instead of Steps 3 and 4, do the

following:
(a) ∀i ∈ [λ], compute (viewi,ai

, viewi,bi
) ← SimMPC((ai, bi), (vi,ai

, vi,bi
), 1) and

viewi,k := 0� for k ∈ [3] \ {ai, bi}; ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ←
Com(1λ, viewi,j); sample a random γ ← F\{0}; send γ and (ci,j)i∈[λ],j∈[3]

to Rc.
(b) receive ∀i ∈ [λ] from R∗

c the decommitments y′
i w.r.t. σi to the challenge

indices (a′
i, b

′
i); if any of the decommitments y′

i is not valid, execute again
Step (5a) (with fresh randomness).

(c) if ∃i ∈ [λ] s.t. (ai, bi) �= (a′
i, b

′
i), output ambiguous. Otherwise, exit rewind

phase and proceed to Step 6.
6. send (vi,ai

, viewi,ai
, βi,ai

, di,ai
, vi,bi

, viewi,bi
, βi,bi

, di,bi
)i∈[λ] to R∗

c .

Akin to what happens in the the protocol by Goldreich and Kahan [GK96],
the simple simulation strategy of Sim suffers from the problem that Sim may
not terminate in expected polynomial time. The issue stems from the fact that
SBCom is only computationally hiding. Let p0 be the probability with which R∗

c

correctly decommits (σi)i∈λ when it receives commitments (ci,j)i∈λ,j∈[3] to 02λ

(i.e., Step 3). Similarly, let p1 be probability with which R∗
c correctly decom-

mits (σi)i∈λ when (some of the) (ci,j)i∈λ,j∈[3] are commitments to the output of
SimMPC as in Step 5 of Sim. Although |p0 − p1| is negligible due to the computa-
tional hiding of SBCom, this (negligible) difference in the behaviour of R∗

c may
cause Sim to run in exponential time.

To solve this issue, we can use the same technique of [GK96] to modify the
simple simulator above to ensure that it does not run for too long. This technique
involves first estimating, via a polynomial number of rewinds, the value of p0 and
using such value to limit the total the number of rewinds. Since this technique
identically applies to our setting, we omit its description and refer the reader
to [GK96,Lin16] for more details. For the rest of the proof we can ignore such
subtlety and refer to the simplified simulator above. Indeed, the modifications
introduced by the technique of [GK96] do not involve the simulation strategy
itself, but they only take care of the running time of the simulator.
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It remains to show that the output of Sim and the view of R∗
c in an interaction

with honest Sc are indistinguishable by a polynomial-size distinguisher whose
depth is bounded by tε. We show this via a sequence of indistinguishable hybrids.
Let H0 be the real world interaction between Sc and R∗

c (i.e., Fig. 4).

H1 : H1 is identical to H0 except that H1 behaves like Sim in the sense that
it runs the rewind phase in the same way as Sim, and outputs ambiguous
under the same conditions. However, H1 is provided with m, and it commits
(via TLPqpv) to an honest secret sharing of m||r and commits (via Com) to
honest views from the MPC in the head. Formally, H1 is defined as follows:

1. sample randomness r ← F \ {0}; ∀i ∈ [λ], compute the first message
σi[1] of SHCom, sample vi,1, vi,2 ← {0, 1}2λ and compute vi,3 = vi,1⊕
vi,2⊕(m||r); ∀i ∈ [λ], j ∈ [3], sample random βi,j and compute zi,j :=
TLPqpv.Gen(1λ, t, vi,j ;βi,j) ; send (σi[1])i∈[λ] and (zi,j)i∈[λ],j∈[3] to
R∗
c .

2. receive ∀i ∈ [λ] from R∗
c its statistically hiding commitment σi[2] to

(ai, bi), and the value α.
3. ∀i ∈ [λ], run Πφ in the head, with public inputs α and γ, and vi,j

as the private input to party j in the i-th execution of Πφ. Let
viewi,1, viewi,2, viewi,3 be the views of the i-th execution;

4. ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ← Com(1λ, viewi,j); send
(ci,j)i∈[λ],j∈[3] and γ := rα + m to R∗

c .
5. receive ∀i ∈ [λ] from R∗

c the decommitments yi w.r.t. σi to the
challenge indices (ai, bi); abort if any of the decommitments is not
valid.

6. Rewind Phase: repeatedly rewinds R∗
c back to Step 3.:

(a) ∀i ∈ [λ], run Πφ in the head, with public inputs α and γ, and
vi,j as the private input to party j in the i-th execution of Πφ.
Let viewi,1, viewi,2, viewi,3 be the views of the i-th execution

(b) ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ← Com(1λ, viewi,j)
i. send (ci,j)i∈[λ],j∈[3] and γ := rα + m to R∗

c .
(c) receive ∀i ∈ [λ] from R∗

c the decommitments y′
i w.r.t. σi to the

challenge indices (a′
i, b

′
i); if any of the decommitments y′

i is not
valid, execute again Step 6. (with fresh randomness).

(d) If ∃i ∈ [λ] s.t. (ai, bi) �= (a′
i, b

′
i), output ambiguous. Otherwise,

exit the rewind phase and proceed Step 7..
7. send (vi,ai

, viewi,ai
, βi,ai

, di,ai
, vi,bi

, viewi,bi
, βi,bi

, di,bi
)i∈[λ] to R∗

c .

Hi
2 : This hybrid is parameterized by i ∈ {0, . . . , λ}. We define H0

2 := H1 and let
Hi

2 be identical to Hi−1
2 except that in Step 6., Hi

2 computes (ci,δ, di,δ) ←
Com(1λ, viewi,δ) and (ci,k, di,k) ← Com(1λ, 0�) for δ ∈ {ai, bi} and k ∈ [3]
s.t. ai, bi �= k. Formally, Hi

2 is defined as follows:
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...
6. ∀j ∈ [λ] and k ∈ [3] \ {aj , bj}:

• (cj,aj
, dj,aj

) ← Com(1λ, viewj,aj
)

• (cj,bj
, dj,bj

) ← Com(1λ, viewj,bj
)

• If j ≤ i:(cj,k, dj,k) ← Com(1λ, 0�)
• If j > i: (cj,k, dj,k) ← Com(1λ, viewj,k).

...

H3 : This is identical to Hλ
2 except that in Step 6., the MPC views are simulated.

Formally, H3 is defined as follows:

...
6. ∀i ∈ [λ], compute

(viewi,ai
, viewi,bi

) ← SimMPC((ai, bi), (vi,ai
, vi,bi

), 1) and viewi,k := 0�

for k ∈ [3] \ {ai, bi}
...

Hi
4 : This hybrid is parameterized by i ∈ {0, . . . , 3λ}. We define H0

4 := H3. For
i ≥ 1, Hi

4 is identical to Hi−1
4 except that, instead of committing to a share

of m||r, all the puzzles up until the i-th of the 3λ puzzles sent in Step 1.
commit to 02λ. Hi

4 is formally defined as follows:

1. sample randomness r ← F \ {0}; ∀� ∈ [λ], compute the first message
σ�[1] of SHCom and sample v�,1, v�,2 ← {0, 1}2λ and compute v�,3 =
v�,1 ⊕ v�,2 ⊕ (m||r).
∀k ∈ [3λ]:

• u =
⌈

k
3

⌉
, δ = (k − 1) mod 3 + 1, sample randomness βu,δ

• if k ≤ i, zu,δ = TLPqpv.Gen(1λ, t, 02λ;βu,δ)
• else zu,δ = TLPqpv.Gen(1λ, t, vu,δ;βu,δ)

send (σu[1])u∈[λ] and (zu,δ)u∈[λ],δ∈[3] to R∗
c .

...

Hi
5 : This hybrid is parameterized by i ∈ {0, . . . , 3λ}. We define H0

5 := H3. For
i ≥ 1, Hi

5 is identical to Hi−1
5 except that , instead of committing to an

MPC view, all the commitments up until the i-th of the 3λ commitments
sent in Step 4. commit to 02λ. Hi

5 is formally defined as follows:

...
4. ∀k ∈ [3λ]:

• u =
⌈

k
3

⌉
, δ = (k − 1) mod 3 + 1

• if k ≤ i, (cu,δ, du,δ) ← Com(1λ, 0�);
• else (cu,δ, du,δ) ← Com(1λ, viewu,δ)

send (cu,δ)u∈[λ],δ∈[3] and γ := rα + m to R∗
c .



486 H. Abusalah and G. Avitabile

...

H6 This hybrid is identical to H3λ
5 , but γ is sampled uniformly at random.

Notice that H6 is identical to Sim. We now introduce the following claims.

Claim 6. If SHCom is computationally binding, then H1 is statistically indis-
tinguishable from H0.

Claim 7. If SBCom is computationally hiding, then for every i ∈ [λ], Hi
2 is

computationally indistinguishable from Hi−1
2 .

Claim 8. If Πφ is perfectly 2-private, then H3 is identically distributed to Hλ
2 .

Claim 9. If TLPqpv is hard, then for every i ∈ [3λ], Hi
4 and Hi−1

4 are indistin-
guishable for every poly-size distinguisher with depth upper-bounded by tε.

Claim 10. If SBCom is computationally hiding, then for every i ∈ [3λ], Hi
5 is

computationally indistinguishable from Hi−1
5 .

Claim 11. H6 is perfectly indistinguishable from H3λ
5 .

Proof (of Claim 6). Conditioned on not outputting ambiguous, the output distri-
bution of H1 is identical to H0. It remains to show that H1 outputs ambiguous
only with negligible probability. Assuming that there exists an infinite series
of inputs that makes H1 output ambiguous with non-negligible probability, one
can easily construct an adversary A for the binding of SHCom. A runs H1 on
such an input and looks for i ∈ λ s.t.(ai, bi) �= (a′

i, b
′
i) and both pairs have a

valid decommitment sent by Rc
∗ when interacting with H1. A simply re-uses

such decommitments in the binding game. The only subtlety is that H1 runs
in expected polynomial time, whereas A must run in strict polynomial time.
Nevertheless, this issue can be addressed by simply truncating H1 to twice its
expected running time. By Markov’s inequality, this adjustment decreases the
attack’s success probability against the binding of SHCom of at most 1/2, which
remains non-negligible. ��
Proof (of Claim 9). If there exists a polynomial-size distinguisher Dλ, whose
depth is bounded by tε, distinguishing with noticeable probability Hi

4 from Hi−1
4 ,

then we can use D to build a bounded-depth adversary A against the hardness
property of TLPqpv. A runs the instructions of Hi−1

4 with one change. That is,
when A has to compute the i-th puzzle at Step 1. it plays in the hardness game of
TLPqpv by sending s0 equal to a share of m||r and s1 = 02λ and uses the puzzle
z that it gets back from the challenger as the i-th puzzle of the simulation.
When the simulation concludes, then A invokes D on the output generated by
the simulator, and outputs whatever D outputs. Notice that when b = 0 in the
hardness game, A perfectly simulates Hi−1

4 , otherwise it perfectly simulates Hi
4.

Therefore, A wins the hardness game with the same probability with which D
distinguishes between Hi

4 and Hi−1
4 . The only subtlety is that Hi−1

4 runs in
expected polynomial time essentially independent of t, whereas A must run in
strict polynomial time essentially independent of t. Nevertheless, this issue can
be addressed by simply truncating the running time of Hi−1

4 . ��
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The proof of Claims 7 and 10 are analogous to the one of 2, with the only
difference that we have to truncate the running time of Hi−1

2 . The proofs of
Claims 8 and 11 are identical to the ones of 4 and 5 respectively.

The proof is concluded by observing that it simply follows from the proofs
of Claims 6 -11, since all of the hybrids are indistinguishable by a poly-size
distinguisher whose depth is bounded by tε. ��
Lemma 7. HRTC is sound if TLPqpv is a quasi publicly verifiable TLP, SBCom
is a non-interactive statistically biding commitment scheme, SHCom is a two-
round statistically hiding commitment scheme, and Πφ is a 3-party secure MPC.

Proof (of Lemma 7). The only difference with Lemma 2 is the presence of sta-
tistically hiding commitments going from the receiver to the malicious sender.
Since such commitments statistically convey no information about the receiver’s
challenges, soundness is argued similarly. ��

3.5 A More Efficient Force-Open

By carefully modifying FOpen and FVerify, we can get a much more efficient
force-open phase of our TC constructions (Sects. 3.3 and 3.4). In the modified
TC scheme, commitments can be force opened by solving log(λ), instead of λ,
puzzles. The intuition is that after a valid commit phase, the value γ can be used
to check if, after having solved the puzzle associated with a certain repetition
i ∈ [λ], the recovered message is the right one. By right we mean that the sender
did not cheat in the i-th repetition and thus the recovered message coincides
with the one committed in (the vast majority of) the other repetitions.

In a nutshell, FOpen force-opens random repetitions until it finds one where
γ is consistent with the recovered message m and the proof π given in output
by TLPqpv.Solve is accepting. Since, with overwhelming probability, there are at
most log2(λ) bad repetitions (i.e., where γ is not consistent with m or π is not
accepting) after a valid commit phase (see the proof of Lemma 2), the proba-
bility of only finding bad repetitions with more than log(λ) tries is negligible.
Whenever FOpen finds a good repetition, it outputs the repetition’s index i and
the recovered message m, along with the share and the proof given in output
by TLPqpv.Solve. Then, FVerify just verifies that: (1) m coincides with the one
reconstructed from the shares of the i-th repetition, (2) m is consistent with γ,
and (3) the proof is accepting w.r.t. the unopened puzzle of the i-th repetition.

However, this efficiency improvement comes at the price of only satisfying
weak public verifiability. Recall that in the weak public verifiability game (Def. 3),
the commitment is not directly provided by the adversary but it is the result of
a commit phase run with the honest receiver. Intuitively, we can only get weak
public verifiability with this modification because the commitment (transcript)
com could be simulated by an adversary not interacting with a receiver at all.
Therefore, every repetition could possibly contain a different message while still
being consistent w.r.t. γ. The modified FOpen and FVerify are in Fig. 5.
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Fig. 5. Modified FOpen and FVerify algorithms.

Theorem 4. Let TLPqpv = (Gen,Solve,Verify) be a quasi publicly verifiable TLP
(Def. 8), SBCom = (Com,Dec) a non-interactive statistically binding and com-
putationally hiding commitment scheme, SHCom a two-round statistically hiding
and computationally binding commitment scheme, and Πφ a 3-party secure MPC
for functionality φ defined in (1), then the scheme HRTC from Sect. 3.3 (respec-
tively TC from Sect. 3.4) where the algorithms FOpen and FVerify are modified
as reported in Fig. 5 is honest-verifier (respectively t-hiding) timed commitment
scheme with weak public verifiability.

To prove the above theorem, we only need to argue soundness and weak
public verifiability of the modified schemes. Indeed, we do not need to prove
(honest-receiver) t-hiding and binding again as these property only involve the
commit and open phases, which are left unaltered.

Lemma 8. C ∈ {HRTC,TC} where the algorithms FOpen and FVerify are mod-
ified as reported in Fig. 5 is sound if TLPqpv is a QPV-TLP, SBCom is a non-
interactive statistically biding commitment scheme, Πφ is a 3-party secure MPC.

Proof (of Lemma 8). Let us call a repetition i ∈ [λ] bad if φ(α, γ, vi,1, vi,2, vi,3) =
0 or ∃ u ∈ [3] such that the TLP zi,u is malformed. Recall that conditioned on
com �= ⊥, the probability that a repetition is bad at most 1

3 (see the proof
of Lemma 2). As a result, if the commit phase is successful, i.e., com �= ⊥,
the probability that at least log2(λ) repetitions are bad is at most (13 )

log2(λ) <

(12 )
log2(λ) = ( 1λ )

log(λ), which is negligible. Therefore, the probability that all
log(λ) samples of FOpen are bad is at most ( log

2(λ)
λ )log(λ), which is negligible7.

Let S ⊆ [λ] be the set containing the indices of the repetitions that are
not bad, from the above discussion it follows that |S| ≥ λ − log2(λ) except with
7 Notice that eliminating a bad repetition from the set of repetitions that may be

forced-open only further reduces the probability of encountering a bad repetition.
Indeed, log2(λ) < λ and n

k
> n−i

k−i
for any n, k > 1, n < k, and i ≥ 1.
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negligible probability. For every i ∈ S where vi,1⊕vi,2⊕vi,3 = mi||ri for |mi| = ri,
it holds that γ = αri + mi. By the Schwartz-Zippel lemma, with overwhelming
probability over the choice of α, there must exist (m, r) such that mi = m and
ri = r for all i ∈ S. Recall that ∀i ∈ S and k ∈ [3] s.t. ai, bi �= k we have that
zi,k is well-formed. The correctness and the completeness of TLPqpv guarantee
that whenever a puzzle is correctly generated, the solution/proof pair output by
TLPqpv.Solve will be accepting and will contain the committed value. Recall that
a successful honest open phase outputs the same message m′ in more than λ/2
repetitions. Thus, since |S| ≥ λ − log2(λ), except with negligible probability, m′

coincides with the message m output by FOpen (recall that a repetition can only
be opened in one way since TLPqpv is perfectly binding). Additionally, FVerify
outputs 1 on input the message/proof pair returned by FOpen. ��
Lemma 9. C ∈ {HRTC,TC} where the algorithms FOpen and FVerify are mod-
ified as reported in Fig. 5 is weak publicly verifiable if TLPqpv is a QPV-TLP.

Proof (of Lemma 9). Assume A outputs two accepting proof/message pairs
(m,π = (vi,k, πi,k, i, k)), and (m′, π′ = (vi′,k′ , πi′,k′ , i′, k′)) with m �= m′ for the
same com = (zi,1, zi,2, zi,3, α, γ, ai, bi, vi,ai

, βi,ai
, vi,bi

, βi,bi
)i∈[λ]. If i = i′, then

m = m′ since, due to the perfect soundness of TLPqpv, there exists only one pos-
sible share vi,k for which an accepting proof πi,k can be provided for the puzzle
zi,k. Together with vi,ai

, vi,bi
, the share vi,k fixes the message m. Let us assume

i �= i′. As already discussed above, due to the perfect soundness of TLPqpv,
within each repetition � ∈ [λ] there exists only a possible share v�,k for which
an accepting proof π�,k can be provided for the puzzle z�,k. Hence, the malicious
sender is bound to a single v�,k, which results in a single v� = v�,a�

⊕ v�,b�
⊕ v�,k

within each repetition. Thus at the end of the commit phase, the sender is bound
to a single v� in each repetition. By the Schwartz-Zippel lemma we know that,
with overwhelming probability over the choices of α, for every v� = m�||r� such
that γ = αr� + m� it must be that all m� are such that m� = m. Hence, with
overwhelming probability, the two force opening proofs provided by the adver-
sary will point to two repetition indices i and i′ which contain vi = m||r and
vi′ = m′||r′ such that m = m′. ��
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