
Elette Boyle
Mohammad Mahmoody (Eds.)

LN
CS

 1
53

67

22nd International Conference, TCC 2024
Milan, Italy, December 2–6, 2024
Proceedings, Part IV

Theory
of Cryptography

Lecture Notes in Computer Science 15367
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Elette Boyle · Mohammad Mahmoody
Editors

Theory
of Cryptography
22nd International Conference, TCC 2024
Milan, Italy, December 2–6, 2024
Proceedings, Part IV

Editors
Elette Boyle
NTT Research
Sunnyvale, CA, USA

Reichman University
Herzliya, Israel

Mohammad Mahmoody
University of Virginia
Charlottesville, VA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-78022-6 ISBN 978-3-031-78023-3 (eBook)
https://doi.org/10.1007/978-3-031-78023-3

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-78023-3

Preface

The 22nd Theory of Cryptography Conference (TCC 2024) was held during December
2–6, 2024, at Bocconi University in Milano, Italy. It was sponsored by the International
Association for Cryptologic Research (IACR). The general chair of the conference was
Emmanuela Orsini.

The conference received 172 submissions, of which the Program Committee (PC)
selected 68 for presentation, giving an acceptance rate of 39.5%. Each submission was
reviewed by at least three PC members in a single-blind process. The 50 PC members
(including PC chairs), all top researchers in our field, were helped by 185 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the tenth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2004: “Notions of Reducibility between
Cryptographic Primitives,” by Omer Reingold, Luca Trevisan, and Salil P. Vadhan. The
award committee recognized this paper “for providing a rigorous and systematic taxon-
omy of reductions in cryptography, and in particular coining fully black-box reductions
and motivating their use in barrier results.”

We are greatly indebted to the many people who were involved in making TCC 2024
a success. Thank you to all the authors who submitted papers to the conference and to the
PC members for their hard work, dedication, and diligence in reviewing and selecting
the papers.We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. Finally, thank you to the
general chair Emmanuela Orsini and her team at Bocconi University, as well as to the
TCC Steering Committee.

October 2024 Elette Boyle
Mohammad Mahmoody

Organization

General Chair

Emmanuela Orsini Bocconi University, Italy

Program Committee Chairs

Elette Boyle Reichman University, Israel & NTT Research,
USA

Mohammad Mahmoody University of Virginia, USA

Steering Committee

Yuval Ishai Technion, Israel
Huijia (Rachel) Lin University of Washington, USA
Tal Malkin Columbia University, USA
Jesper Buus Nielsen Aarhus University, Denmark
Krzysztof Pietrzak Institute of Science and Technology Austria,

Austria
Manoj M. Prabhakaran IIT Bombay, India
Salil Vadhan Harvard University, USA

Program Committee

Prabhanjan Ananth UC Santa Barbara, USA
Benny Applebaum Tel Aviv University, Israel
Amos Beimel Ben-Gurion University of the Negev, Israel
Chris Brzuska Aalto University, Finland
Yilei Chen Tsinghua University, China
Ran Cohen Reichman University, Israel
Geoffroy Couteau CNRS, IRIF, Université Paris Cité, France
Itai Dinur Ben-Gurion University of the Negev, Israel
Yevgeniy Dodis New York University, USA
Stefan Dziembowski University of Warsaw & IDEAS NCBR, Poland
Nils Fleischhacker Ruhr University Bochum, Germany

viii Organization

Chaya Ganesh Indian Institute of Science, Bangalore, India
Aarushi Goel NTT Research, USA
Siyao Guo NYU Shanghai, China
Mohammad Hajiabadi University of Waterloo, Canada
Carmit Hazay Bar-Ilan University, Israel
Justin Holmgren NTT Research, USA
Aayush Jain Carnegie Mellon University, USA
Zhengzhong Jin Northeastern University, USA
Dakshita Khurana University of Illinois at Urbana-Champaign, USA
Susumu Kiyoshima NTT Social Informatics Laboratories, Japan
Lisa Kohl CWI Amsterdam, Netherlands
Ilan Komargodski Hebrew University of Jerusalem, Israel & NTT

Research, USA
Eyal Kushilevitz Technion, Israel
Huijia (Rachel) Lin University of Washington, USA
Alex Lombardi Princeton University, USA
Fermi Ma Simons Institute and UC Berkeley, USA
Hemanta K. Maji Purdue University, USA
Giulio Malavolta Bocconi University, Italy & Max Planck Institute,

Germany
Noam Mazor Tel Aviv University, Israel
Pierre Meyer Aarhus University, Denmark
Ryo Nishimaki NTT Social Informatics Laboratories, Japan
Omer Paneth Tel Aviv University, Israel
Krzysztof Pietrzak Institute of Science and Technology Austria,

Austria
Manoj Prabhakaran IIT Bombay, India
Willy Quach Weizmann Institute of Science, Israel
Divya Ravi University of Amsterdam, Netherlands
Alon Rosen Bocconi University, Italy and Reichman

University, Israel
Lior Rotem Stanford University, USA
Peter Scholl Aarhus University, Denmark
Sruthi Sekar IIT Bombay, India
Luisa Siniscalchi Technical University of Denmark, Denmark
Eliad Tsfadia Georgetown University, USA
Prashant Nalini Vasudevan National University of Singapore, Singapore
Muthu Venkitasubramaniam Georgetown University, USA
Mingyuan Wang UC Berkeley, USA
Daniel Wichs Northeastern University & NTT Research, USA
Takashi Yamakawa NTT Social Informatics Laboratories, Japan

Organization ix

Additional Reviewers

Behzad Abdolmaleki
Anasuya Acharya
Amit Agarwal
Divesh Aggarwal
Andris Ambainis
Gilad Asharov
Thomas Attema
David Balbás
Laasya Bangalore
James Bartusek
Tyler Besselman
Rishabh Bhadauria
Kaartik Bhushan
Alexander Bienstock
Aniruddha Biswas
Alexander Block
Jeremiah Blocki
Katharina Boudgoust
Nicholas Brandt
Rares Buhai
Alper Cakan
Matteo Campanelli
Ran Canetti
Rutchathon Chairattana-Apirom
Benjamin Chan
Anirudh Chandramouli
Rohit Chatterjee
Megan Chen
Jessica Chen
Binyi Chen
Arka Rai Choudhuri
Sandro Coretti-Drayton
Quand Dao
Pratish Datta
Giovanni Deligios
Marian Dietz
Fangqi Dong
Nico Döttling
Ehsan Ebrahimi
Christoph Egger
Saroja Erabelli
Grzegorz Fabiański
Pooya Farshim

Giacomo Fenzi
Ben Fisch
Pouyan Forghani
Cody Freitag
Phillip Gajland
Karthik Gajulapalli
Rachit Garg
Sanjam Garg
Riddhi Ghosal
Satrajit Ghosh
Suparno Ghoshal
Niv Gilboa
Eli Goldin
Tian Gong
Junqing Gong
Jiaxin Guan
Aditya Gulati
Taiga Hiroka
Iftach Haitner
David Heath
Aditya Hegde
Hans Heum
Minki Hhan
Yao-ching Hsieh
Zihan Hu
Jihun Hwang
Yuval Ishai
Abhishek Jain
Daniel Jost
Eliran Kachlon
Fatih Kaleoglu
Chethan Kamath
Simon Kamp
Julia Kastner
Shuichi Katsumata
Hannah Keller
Hamidreza Amini Khorasgani
Taechan Kim
Elena Kirshanova
Ohad Klein
Karen Klein
Dimitris Kolonelos
Chelsea Komlo

x Organization

Manu Kondapaneni
Venkata Koppula
Alexis Korb
Nishat Koti
Roman Langrehr
Seunghoon Lee
Keewoo Lee
Zeyong Li
Yunqi Li
Hanjun Li
Xiao Liang
Fuchun Lin
Chuanwei Lin
Haoxing Lin
Yao-Ting Lin
Tianren Liu
Jiahui Liu
Chen-Da Liu-Zhang
Zhenjian Lu
Donghang Lu
Vadim Lyubashevsky
Ulysse Léchine
Nir Magrafta
Bernardo Magri
Nathan Manohar
Xinyu Mao
Marcin Mielniczuk
Ethan Mook
Tomoyuki Morimae
Changrui Mu
Saachi Mutreja
Anne Müller
Varun Narayanan
Barak Nehoran
Ky Nguyen
Hai Hoang Nguyen
Guilhem Niot
Oded Nir
Aysan Nishaburi
Mahak Pancholi
Aditi Partap
Anat Paskin-Cherniavsky
Rutvik Patel
Shravani Patil
Sikhar Patranabis

Alice Pellet-Mary
Paola de Perthuis
Naty Peter
Spencer Peters
Bertram Poettering
Guru Vamsi Policharla
Alexander Poremba
Luowen Qian
Rajeev Raghunath
Debasish Ray Chawdhuri
Hanlin Ren
Doreen Riepel
Ron D. Rothblum
Adeline Roux-Langlois
Lawrence Roy
Elahe Sadeghi
Pratik Sarkar
Rahul Satish
Benjamin Schlosser
Akash Shah
Jad Silbak
Mark Simkin
Fabrizio Sisinni
Tomer Solomon
Fang Song
Katerina Sotiraki
Noah Stephens-Davidowitz
Gilad Stern
Björn Tackmann
Kel Zin Tan
Er-cheng Tang
Athina Terzoglou
Jean-Pierre Tillich
Pratyush Ranjan Tiwari
Daniel Tschudi
Prashant Vasudevan
Ivan Visconti
Benedikt Wagner
William Wang
Benjamin Wesolowski
Jiawei Wu
David Wu
Yu Xia
Zhiye Xie
Jeff Xu

Organization xi

Anshu Yadav
Sophia Yakoubov
Chao Yan
Yibin Yang
Xiuyu Ye

Eylon Yogev
Albert Yu
Ilias Zadik
Runzhi Zeng

Contents – Part IV

Obfuscation and Homomorphism

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 3
Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan

Towards General-Purpose Program Obfuscation via Local Mixing 37
Ran Canetti, Claudio Chamon, Eduardo R. Mucciolo,
and Andrei E. Ruckenstein

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 71
Pierre Meyer, Claudio Orlandi, Lawrence Roy, and Peter Scholl

Key-Homomorphic and Aggregate Verifiable Random Functions 98
Giulio Malavolta

More Efficient Functional Bootstrapping for General Functions
in Polynomial Modulus . 130

Han Xia, Feng-Hao Liu, and Han Wang

Multi-party Computation

A Note on Low-Communication Secure Multiparty Computation
via Circuit Depth-Reduction . 167

Pierre Charbit, Geoffroy Couteau, Pierre Meyer, and Reza Naserasr

General Adversary Structures in Byzantine Agreement and Multi-party
Computation with Active and Omission Corruption . 200

Konstantinos Brazitikos and Vassilis Zikas

Secure Computation with Parallel Calls to 2-Ary Functions 234
Varun Narayanan, Shubham Vivek Pawar, and Akshayaram Srinivasan

Efficient Secure Communication over Dynamic Incomplete Networks
with Minimal Connectivity . 266

Ivan Damgård, Divya Ravi, Lawrence Roy, Daniel Tschudi,
and Sophia Yakoubov

xiv Contents – Part IV

Adaptive Security, Erasures, and Network Assumptions
in Communication-Local MPC . 293

Nishanth Chandran, Juan Garay, Ankit Kumar Misra, Rafail Ostrovsky,
and Vassilis Zikas

Information-Theoretic Cryptography

Perfectly-Secure MPC with Constant Online Communication Complexity 329
Yifan Song and Xiaxi Ye

Statistical Layered MPC . 362
Giovanni Deligios, Anders Konring, Chen-Da Liu-Zhang,
and Varun Narayanan

An Improvement Upon the Bounds for the Local Leakage Resilience
of Shamir’s Secret Sharing Scheme . 395

Dustin Kasser

Information-Theoretic Multi-server Private Information Retrieval
with Client Preprocessing . 423

Jaspal Singh, Yu Wei, and Vassilis Zikas

Asynchronous Agreement on a Core Set in Constant Expected Time
and More Efficient Asynchronous VSS and MPC . 451

Ittai Abraham, Gilad Ashsarov, Arpita Patra, and Gilad Stern

Secret Sharing

Distributing Keys and Random Secrets with Constant Complexity 485
Benny Applebaum and Benny Pinkas

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes
via Chow Parameters Approximation . 517

Oriol Farràs and Miquel Guiot

New Upper Bounds for Evolving Secret Sharing via Infinite Branching
Programs . 548

Bar Alon, Amos Beimel, Tamar Ben David, Eran Omri,
and Anat Paskin-Cherniavsky

Secret-Sharing Schemes for High Slices . 581
Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Contents – Part IV xv

Homomorphic Secret Sharing with Verifiable Evaluation . 614
Arka Rai Choudhuri, Aarushi Goel, Aditya Hegde, and Abhishek Jain

Author Index . 651

Obfuscation and Homomorphism

Indistinguishability Obfuscation
from Bilinear Maps and LPN Variants

Seyoon Ragavan , Neekon Vafa(B) , and Vinod Vaikuntanathan

MIT CSAIL, Cambridge, USA
{sragavan,nvafa,vinodv}@mit.edu

Abstract. We construct an indistinguishability obfuscation (IO)
scheme from the sub-exponential hardness of the decisional linear prob-
lem on bilinear groups together with two variants of the learning parity
with noise (LPN) problem, namely large-field LPN and (binary-field)
sparse LPN. This removes the need to assume the existence pseudoran-
dom generators (PRGs) in NC0 with polynomial stretch from the state-
of-the-art construction of IO (Jain, Lin, and Sahai, EUROCRYPT 2022).
As an intermediate step in our construction, we abstract away a notion
of structured-seed polynomial-stretch PRGs in NC0 which suffices for
IO and is implied by both sparse LPN and the existence of polynomial-
stretch PRGs in NC0.

As immediate applications, from the sub-exponential hardness of the
decisional linear assumption on bilinear groups, large-field LPN, and
sparse LPN, we get alternative constructions of (a) fully homomor-
phic encryption (FHE) without lattices or circular security assumptions
(Canetti, Lin, Tessaro, and Vaikuntanathan, TCC 2015), and (b) perfect
zero-knowledge adaptively-sound succinct non-interactive arguments for
NP (Waters and Wu, STOC 2024).

1 Introduction

Indistinguishability obfuscation (iO) [BGI+12] is a probabilistic polynomial-
time algorithm O that takes as input a circuit C and outputs an (obfuscated)
circuit Ĉ ← O(C; r) satisfying three properties: (a) functionality: C and Ĉ com-
pute the same function; (b) efficiency: O runs in polynomial time; in particular,
the size of O(C) is polynomially related to that of C; and (c) security: for any two
circuits C1 and C2 that compute the same function (and have the same size),
the distributions O(C1) and O(C2) are computationally indistinguishable. While
the utility of the iO definition was not clear for a while, a large body of results
building on the breakthrough work of Sahai and Waters [SW14] changed all of
that and showed that iO is indeed a “central hub” of cryptography, implying the
existence of a vast swathe of cryptographic primitives, both old and new, as well
as new insights in complexity theory.

The first iO candidate (without a security reduction) was constructed by
Garg, Gentry, Halevi, Raykova, Sahai, and Waters in [GGH+13]. Nearly a decade
of work later, Jain, Lin, and Sahai [JLS21] showed how to construct IO assuming
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 3–36, 2025.
https://doi.org/10.1007/978-3-031-78023-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_1&domain=pdf
http://orcid.org/0009-0007-9628-2258
http://orcid.org/0000-0002-0555-4200
http://orcid.org/0000-0002-2666-0045
https://doi.org/10.1007/978-3-031-78023-3_1

4 S. Ragavan et al.

the sub-exponential hardness of four rather different, but reasonable and well-
founded, computational problems:

1. the decisional linear problem on symmetric bilinear groups of prime order p;1
2. the learning parity with noise (FieldLPN) problem over exponentially large

fields Zp where the noise rate is 1/nδ, n being the LPN dimension and δ > 0
being any constant;

3. the existence of a Boolean pseudorandom generator in NC0 with polynomial
stretch, namely stretching n bits to n1+ε bits for some constant ε > 0; and

4. the learning with errors (LWE) problem with a sub-exponential modulus-to-
noise ratio.

The subsequent work by the same authors [JLS22] eliminated assumption (4),
namely the LWE assumption.

Given how central iO is to theoretical computer science as a whole, it is
important to understand the minimal assumptions required to construct it.

This Work: iO from Bilinear Maps and LPN Variants. We make progress in con-
structing iO from weaker assumptions by getting rid of assumption (3) above,
namely the existence of a pseudorandom generator in NC0 with polynomial
stretch. Instead, our construction relies on assumption (1), together with two
variants of the learning parity with noise problem: the first being assumption
(2) as used in [JLS21,JLS22], and the second is the hardness of the sparse learn-
ing parity with noise (SparseLPN) problem over Z2.

The sub-exponential sparse learning parity with noise (SparseLPN) assump-
tion says that there exist constants ε, δ ∈ R

+, t ∈ N and, letting m = n1+ε

and η = 1/nδ, a distribution2 D over matrices A ∈ Z
m×n
2 with t-sparse rows

such that for any p.p.t. adversary A,

|Pr [A(A,As ⊕ e) = 1] − Pr [A(A,u) = 1]| ≤ exp(−nΩ(1)).

where the probability is over A ← D, s ← Z
n
2 , e ← Bern(η)m and u ← Z

m
2 .

A few words about the SparseLPN assumption are in order. First of all, vari-
ants of the SparseLPN problem have been studied in many works in the cryp-
tography, constraint satisfaction, as well as the average-case complexity liter-
ature [Gol00,CM01,Fei02,Ale11,MST06,AOW15,AL18,KMOW17,ADI+17]. In

1 [JLS21] relies on the symmetric external Diffie-Hellman (SXDH) assumption on
asymmetric bilinear prime-order groups, but [JLS22] as well as our work rely on
the DLIN assumption on symmetric bilinear prime-order groups.

2 For technical reasons, in the sub-exponential regime, we do not require D to be
efficiently sampleable, but we do require that there be an efficient sampler D′ that
is in some sense Ω(1)-close to D. In the negligible but not sub-exponential regime,
we can (plausibly) sample good A efficiently by using a sampler of Applebaum and
Kachlon [AK23]. For more details, see Sects. 2.3 and 3.3 and Appendix A of the full
version [RVV24].

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 5

fact, it has been used to build several cryptographic objects, including public-
key encryption, cryptography with constant computational overhead, multi-
party homomorphic secret sharing, and pseudorandom correlation generators
[Ale11,AIK08,IKOS08,ABW10,BCGI18,DIJL23,DJ24]. Secondly, we note that
the parameter regime we require for our SparseLPN assumption seems quantita-
tively weaker than the one required for public-key encryption.

In particular, Applebaum, Barak, and Wigderson [ABW10] show how to build
public-key encryption from a variant of SparseLPN where the sparsity, noise rate,
and number of samples are all related.3 In comparison, we do not require any
such relation between these parameters.

With that said, we now state our main theorem.

Theorem 1 (Informal). Under the sub-exponential hardness of assumptions
(1) and (2) and the SparseLPN assumption, there exists an iO scheme.

Similarly to SparseLPN, assumption (2), namely FieldLPN for any inverse
polynomial noise rate, is also weaker than public-key encryption to the best of
our knowledge, as the (natural finite-field analog of the) public-key encryption
in [Ale11] requires O(1/

√
n) noise rate. Therefore, the only one of these assump-

tions that implies public-key encryption is assumption (1), the decisional linear
problem on symmetric bilinear groups of prime order.4

Isn’t This Easy? At first sight, it might appear that the SparseLPN assumption
directly gives us a polynomial-stretch pseudorandom generator computable in
NC0 (assumption 3) which, together with assumptions 1 and 2, is sufficient for the
[JLS22] construction. In fact, Applebaum, Ishai, and Kushilevitz [AIK08] show
how to build a linear-stretch PRG in NC0 from this assumption. For [JLS22], we
need a polynomial-stretch PRG in NC0, so it would be natural to try to extend
the result of [AIK08] to handle polynomial stretch. Unfortunately, as [AIK08]
mention, their techniques do not yield a PRG in NC0 with superlinear stretch,
let alone polynomial stretch.

Let us see what goes wrong with the direct construction. To be more precise,
consider the function (family) gA : Fn

2 × F
�
2 → F

m
2 for a t-sparse matrix A, that

3 More precisely, their construction can be adapted to work for constant sparsity t,
noise rate o(1/nδ), and m = n1+(t/2−1)(1−δ) samples. In Appendix A of the full
version [RVV24], we provide a summary of the existing cryptanalysis on SparseLPN,
and explain why this separation between parameter regimes may be inherent.

4 We remark that it may be possible to also instantiate the iO construction assuming
sparse LPN over Zp instead of standard FieldLPN, so that our construction would
rely on just DLIN as well as the SparseLPN assumption over both Z2 and large fields
of prime order. For this variant of SparseLPN over Zp, we need sparsity t = ω(1)
to allow for an arbitrary polynomial number of samples. Since the sub-exponential
SparseLPN assumption over Zp does not hold with all but sub-exponential probability
over the randomness of uniform sparse A (for t = no(1)), this would require checking
that the PPE construction by [JLS22] can be made compatible with our use of FE
combiners. For simplicity, we do not pursue this generalization in the current version.

6 S. Ragavan et al.

is, where each row of A has exactly t non-zero entries:

gA(s, r) = As+ BinSampp(r) mod 2,

where BinSampp(r) outputs a vector e ∈ F
m
2 such that if r is a uniformly random

vector, then each entry of e is an independent Bernoulli random variable with
parameter p. If BinSampp(r) can be implemented as an NC0 function, we will have
a polynomial-stretch PRG computable in NC0 from the SparseLPN assumption,
and we would be done.

This turns out to be impossible. By standard results in the analysis of Boolean
functions, any function f : {0, 1}n → {0, 1} that outputs a sample from Bern(η)
given a uniformly random input r ← {0, 1}n must have locality Ω(log 1/η); in
particular, if η = o(1), as is needed for polynomial stretch, the locality is ω(1),
which is insufficient in the construction of [JLS22].

Our Idea. In the outline above, there is no need to choose r from the uniform
distribution; indeed, the distribution of r can be arbitrary, it turns out, subject
to three constraints:

(a) r shouldn’t be too long;
(b) expanding r into the Bernoulli e should be doable with a degree-O(1) poly-

nomial over Z; and
(c) r can be sampled by a circuit whose size is sublinear in the PRG output

length.

We note in passing that if it were for conditions (a) and (b) alone, one way
to come up with such a distribution of r is to start with a Bernoulli e and
to compress it using low-rank matrices, much the same way as [JLS21,JLS22].
Multiplying out the low-rank matrices ensures that expanding r to e can be done
in degree 2. Assuming sub-exponential LWE in addition, we could recover the
iO result [GKP+13,LPST16].

To avoid the need for LWE and the bootstrapping results of [GKP+13,
LPST16], we instead implicitly sample e by sampling the list of entries where it is
nonzero (which will be sublinear in the length of e), and then directly construct
the compressed representation using low-rank matrices as in [JLS21,JLS22].
Doing this with a sublinear-time RAM program is relatively straightforward,
but some care is needed to show that this can be implemented as a sublinear-
size circuit.

More generally, we abstract away our needs from sparse LPN into two sep-
arate objects that are both weaker than the existence of a polynomial-stretch
PRG in NC0.

Theorem 2 (Informal, following [JLS22]). There exists an iO scheme under
assumptions (1) and (2) as well as the existence of

(a) any “structured-seed” polynomial-stretch Boolean PRG computable by degree-
O(1) polynomials over Z with an arbitrarily small polynomial locality (see
Sect. 2 and Definition 7 for a formal definition); and

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 7

(b) any linear stretch Boolean PRG in NC0.

Both the SparseLPN assumption as well as the existence of Boolean PRGs in
NC0 imply the existence of both objects (a) and (b) above. Our theorem is thus
a common generalization of both [JLS22] and our result, a fact that we hope will
be useful in further constructions of iO from fewer and/or simpler assumptions.

Generalizing SparseLPN and poly-stretch PRGs in NC0. In fact, objects (a) and
(b) can be constructed from a much more general assumption, which we refer to
as “local functions with noise” or LFN.5 Informally, the LFN assumption states
that we can efficiently sample a Boolean function f : Zn

2 → Z
m
2 with locality t =

O(1) such that f(s) ⊕ e looks pseudorandom, where s ← Z
n
2 , e ← Bern(n−δ)m,

and m = n1+ε. Alternatively, one can view this assumption as a strengthening
of the hardness of n−δ-refutations for balanced random constraint satisfaction
problems (CSPs). We refer the reader to Sect. 3.4 for details.

Note that the LFN assumption is implied by either PRGs in NC0 or SparseLPN:
when we do not have any noise, it is the former, and when the function f is
linear, it is the latter. Another possible instantiation of LFN is to use Goldreich’s
PRG [Gol00] with additional noise of rate n−δ.

1.1 Consequences

A rich line of work initiated by [SW14] has shown a plethora of applications of iO
to other problems in cryptography. As a result, our construction implies instan-
tiations of these cryptographic primitives from sets of assumptions that were not
previously known, in particular the sub-exponential hardness of assumptions (1)
and (2) and the SparseLPN (or LFN) assumption. We list some of these below,
following [JLS22].

– Fully homomorphic encryption (FHE), noting that bilinear DLIN implies a
perfectly rerandomizable encryption scheme [CLTV15].

– Adaptively sound perfectly zero-knowledge succinct non-interactive argument
(SNARG) system for any NP language in the CRS model, with CRS length
poly(λ + |C|). Here, we define C to be the NP verification circuit [SW14,
WW24a,WW24b].

– Public-key functional encryption for Turing machines that is fully succinct
and adaptively secure against unbounded collusions [AS16]. Full succinct-
ness means that the runtime of encrypting an input x ∈ {0, 1}∗ is simply
poly(λ, |x|), independent of the size and the runtime of the Turing machine
being evaluated on x.

– Witness encryption for any NP language, as a special case of iO for P/poly.
– Secret sharing for any monotone function in NP [KNY17].
– Multiparty non-interactive key exchange in the plain model (without trusted

setup) [BZ14,KRS15].

5 We thank Aayush Jain, Rachel Lin, and an anonymous TCC reviewer for suggesting
this generalization.

8 S. Ragavan et al.

– Sender deniable encryption [SW14], and fully deniable interactive encryp-
tion [CPP20].

– Constant-round concurrent zero-knowledge proofs for all of NP [CLP15].

In addition, assuming the polynomial hardness of assumptions (1) and (2) and
the SparseLPN assumption (over the explicit distribution of sparse A matrices
given by [AK23]; see Sect. 3.3), we obtain the following (by polynomial hardness,
we mean that p.p.t. adversaries in any of the assumptions achieve negligible
advantage):

– Public-key functional encryption for polynomial-size circuits that is adaptively
secure against unbounded collusions and fully succinct, i.e., the runtime of
encrypting an input x is independent of the size of the circuit being evaluated
on x [GS16,LM16,ABSV15,KNTY19]. This follows from our construction in
Sect. 7.2 of the full version [RVV24] of PKFE for polynomial-size circuits that
is selectively secure with a single key and weakly succinct.

– As a special case of the above, attribute-based encryption for polynomial-size
circuits.

– Hardness of PPAD [AKV04,BPR15,GPS16,HY20,KS20].

Organization of the Paper. In Sect. 2, we provide a technical outline of our
construction. In Sect. 3, we set up some notation and formally introduce our
LPN, SparseLPN, and LFN assumptions. In Sect. 4, we give the construction of
structured-seed PRGs from LFN; this is one of the main modifications we make
to the construction of [JLS22]. We refer the reader to Sect. 5 onwards in the full
version [RVV24] for all remaining details; we first closely follow the constructions
and analysis by [JLS22] of ARE,PRE,PKFE, and then make a white-box modifi-
cation to the SKFE combiner by [JMS20] to bootstrap this to sub-exponentially
secure SKFE, which can then be bootstrapped to iO [KNT22].

2 Technical Overview

Our starting point is the construction of iO from [JLS22]. Most of our construc-
tion follows exactly the same template as in [JLS22], with the main exception
being that we replace the polynomial-stretch PRG in NC0 with weaker forms of
pseudorandomness. Our main idea can be split into two:

1. The requirement of a polynomial-stretch PRG in NC0, as needed in framework
of [JLS22], can be replaced with two weaker objects: (a) a linear -stretch PRG
in NC0, and (b) a polynomial-stretch structured-seed PRG (SPRG), which we
define shortly.

2. We can build both such PRGs from the assumption that LFN holds for some
fixed constant locality, some fixed polynomial number of samples, and some
fixed inverse polynomial error rate. A linear-stretch PRG in NC0 from LFN
comes from a straightforward modification of [AIK08]. We sketch how to
construct a polynomial-stretch SPRG from LFN later in this section.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 9

Informally (ignoring some technicalities), the definition of an SPRG with poly-
nomial stretch is as follows. We say G is an SPRG (with polynomial stretch and
outputs in {0, 1}m) if there is a randomized Boolean circuit SdSamp with the
following properties:

1. Pseudorandomness over seeds from SdSamp, which says

{G(seed) | seed ← SdSamp(m)} ≈c Um,

where Um is the uniform distribution over {0, 1}m, and SdSamp is supported
on {0, 1}m1−Ω(1)

;
2. The randomized circuit SdSamp has size m1−Ω(1); and
3. G can be written as a polynomial of total degree d = O(1) over Z with locality

O(mτ) for arbitrarily small constant τ > 0.

This relaxes the notion of a PRG in NC0 with polynomial stretch in two main
ways: (1) the seed does not have to be uniformly random (just sampleable with
sublinear efficiency), and (2) the locality can be an arbitrarily small polynomial
in m, as long as the degree of the polynomial over Z is bounded by a constant
d = O(1). We emphasize that our degree condition is over Z, but we require
pseudorandomness over {0, 1}m.

Comparison with Structured-Seed PRGs in [JLS21]. We note that the iO con-
struction of [JLS21] relies on another notion of structured-seed PRG that is
incomparable to ours. Most importantly, we require SdSamp to have circuit size
m1−Ω(1), while [JLS21] imposes no such requirement. This is because [JLS21]
ultimately constructs sublinear size-succinct FE, which they then bootstrap to
sublinear time-succinct FE assuming LWE [GKP+13,LPST16] before finally
bootstrapping to iO [AJ15,BV18]. We do not rely on LWE, so SdSamp must
itself have an efficient circuit.

Secondly, [JLS21] allows SdSamp to generate a public and a private seed, and
requires that decompression be degree 2 in the private seed and degree O(1) in
the public seed. In our case, it suffices for decompression to have degree O(1),
so we do not need to work with a public seed. In the other direction, it will be
important to us for technical reasons that the locality of G can be bounded by
an arbitrarily small polynomial in its output length, whereas [JLS21] does not
require any such restriction.

Finally, we construct SPRG assuming only LFN. It can also be trivially instan-
tiated from a (polynomial-stretch) PRG in NC0. In contrast, the [JLS21] construc-
tion of their notion of structured-seed PRG requires both a (polynomial-stretch)
PRG in NC0 and LPN over Zp.

2.1 Weakening the Polynomial-Stretch PRG in NC0 in [JLS22]

Before describing why these weaker forms of pseudorandomness are sufficient to
replace the polynomial-stretch PRG in NC0 in [JLS22], we briefly summarize the
overall template in [JLS22].

10 S. Ragavan et al.

The starting point in [JLS22] is the notion of partially-hiding functional
encryption (PHFE) [GVW15], which can be built from the DLIN assumption on
symmetric bilinear groups of prime order [JLS19,GJLS21,Wee20]. This gives a
special form of functional encryption (FE), where function keys can be given
to functions that are degree-2 (over Zp) over the secret input SI, but allowed
to be degree-O(1) (or more generally, NC1) over a public input PI that the FE
scheme does not need to hide. If one could turn this into a sublinear time-succinct
FE scheme for all polynomial size circuits (with sub-exponential security), then
using known bootstrapping results [BV18,AJ15,KNT22], one gets iO. By time-
succinct, we mean that the time to generate a ciphertext (or more accurately,
the size of the circuit generating the ciphertext) should be sublinear in the size of
the circuit given in the function keys. More precisely, to handle function keys for
circuits C : {0, 1}n → {0, 1}m of size s, we require the time to compute FE.Enc
(more accurately, the circuit size) to be s1−Ω(1) · poly(n, λ).

This is a stronger notion than size-succinct FE, which only requires that
the size of the ciphertext (i.e., output length of FE.Enc) be sublinear, with no
sublinear constraint on the time needed to generate the ciphertext. For size-
succinct FE, we only know how to get iO from additionally assuming the learning
with errors assumption (LWE) [LPST16,GKP+13], which we do not want to rely
on.

Jain, Lin, and Sahai [JLS22] then define a cryptographic object called a
Preprocessed Randomized Encoding (PRE), which exactly converts the PHFE as
described above into a time-succinct FE for all polynomial size circuits, resulting
in a construction of iO. Roughly speaking, PRE splits up the computation of a
given circuit C on an input x into 2 steps: (a) a preprocessing step, that needs
to be time-succinct, generating (PI,SI) from x, and (b) an encoding step, which
is degree (O(1), 2) in (PI,SI) (i.e., total degree O(1) in PI and total degree 2
in SI), that outputs a randomized encoding of C(x). One can directly plug this
into a PHFE to get time-succinct FE for all polynomial-size circuits (assuming
the PHFE encryption time is linear, which it is).

To build PRE, which is sufficient for iO as explained above, [JLS22] build
it modularly from two objects that they construct: a Preprocessed Polyno-
mial Encoding (PPE), and an Amortized Randomized Encoding (ARE). Roughly
speaking, PPE preprocesses any x into (PI,SI) in such a way that any degree-
O(1) computation on x (over Zp) is turned into a degree-(O(1), 2) computation in
(PI,SI). Crucially, this preprocessing step is time-succinct. [JLS22] show how to
build PPE directly from (standard) LPN over Zp with polynomially many sam-
ples and any inverse polynomial error rate, by constructing a special-purpose
homomorphic encryption scheme tailored to constant-degree computations.

Their last missing piece, ARE, generates a (binary) randomized encoding of
computing a circuit C on input x (e.g., using Yao’s garbled circuits [Yao86]) in
such a way that the encoding algorithm has constant locality, i.e., is in NC0.
Since the encoding algorithm is in NC0, taking the multilinear representation
over Z, this directly becomes a degree-O(1) computation over Z and hence Zp.
Plugging such an ARE into PPE directly gives PRE, as desired. (For simplicity,

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 11

we gloss over the amortization constraint here, which allows their composition
with PPE to be time-succinct.)

One important property here is that Yao’s garbled circuits needs pseudoran-
domness in two ways:

1. For computing the garbled tables in Yao’s garbled circuits, the encoding and
decoding requires computing a length-doubling PRG to preserve pseudoran-
domness of unused entries in the garbled tables. To retain O(1)-degree over Z
in the encoding, [JLS22] assumes the existence of a polynomial-stretch PRG
in NC0, which, in particular, gives a linear-stretch PRG in NC0.

2. The wire labels in the garbled circuit need to be random and hidden. Since
PPE does not guarantee any function privacy, we need to hide this randomness
in the input to PPE. To retain time-succinctness of PPE preprocessing, the
randomized encoding uses a polynomial-stretch PRG by including the seed
as part of the input to PPE. To retain O(1)-degree over Z, [JLS22] assumes
the existence of a polynomial-stretch PRG in NC0 so that the encoding is still
O(1)-degree over Z. (For technical reasons, for time-succinctness, when using
the PPE, we need the number of monomials to be arbitrarily close to linear
in the output length of the randomized encoding.)

This is exactly the place where we can use weaker forms of pseudorandomness
than a polynomial-stretch PRG in NC0. To solve Item 1, we can directly use a
linear-stretch PRG in NC0, and to solve Item 2, we can exactly use our notion of a
structured-seed PRG. As explained above, being degree O(1) over Z is sufficient,
and to retain time-succinctness, we need to make sure that PRE, and therefore
ARE, can sample these seeds in a time-succinct way. This is exactly the constraint
we have on seed sampling in an SPRG.

We briefly explain why an SPRG alone (i.e., without the standard linear-
stretch PRG) is insufficient. For Yao’s garbled circuit evaluation, we need com-
posability of the linear-stretch PRG, as we feed the outputs of the the linear-
stretch PRG as an input to the PRG in the next gate of the circuit. Unfortu-
nately, having a structured seed ruins this composability, as sampling the seed
from (unstructured) PRG output need not be degree O(1). Alternatively, for the
polynomial-stretch PRG, we only need to evaluate it once, so there is no need for
composability; the seed sampling can just happen once at the PRE preprocessing
level, as long as it is time-succinct.

More generally, taking a step back, we view our definition of SPRG as nat-
urally fitting into the [JLS22] paradigm. Just as in [JLS22], we separate the
computation (in this case, PRG evaluation) into 2 steps: (1) an efficient pre-
processing step (i.e., in a time-succinct way), and (2) computing degree-O(1)
polynomials on top of the preprocessing. We exactly harness this flexibility that
is built into the [JLS22] framework to build our SPRG.

We summarize our construction and how it compares with the construction
of [JLS22] in Fig. 1.

12 S. Ragavan et al.

Fig. 1. Flowchart depicting our technical outline to get to iO, following the framework
of [JLS22]. The prefix CF stands for “combiner-friendly”, and we inherit the notions
of PPE (Preprocessed Polynomial Encoding), ARE (Amortized Randomized Encod-
ing), PRE (Preprocessed Randomized Encoding), PHFE (Partially Hiding Functional
Encryption), and PKFE (Public-Key Functional Encryption) from [JLS22]. Our obser-
vation is that [JLS22] ultimately needs two abstractions from their PRG in NC0, namely
a poly-stretch degree-O(1) structured-seed PRG, and a linear-stretch PRG in NC0. We
show in this work that these two abstractions can also be instantiated assuming LFN,
thus providing an alternate construction of iO. Note that everything here needs to be
sub-exponentially secure to get to iO. We provide more details on the bootstrapping
involved in the final arrow in Fig. 2, and refer the reader to the full version [RVV24]
for details.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 13

2.2 Our SPRG Construction from LFN

In this section, we explain how we construct the two weaker pseudorandom
objects that we need, namely a linear-stretch PRG in NC0 and a polynomial-
stretch structured-seed PRG. It has been shown by [AIK08] that the SparseLPN
assumption implies the existence of a linear-stretch PRG in NC0. However, as the
authors of [AIK08] mention, their techniques do not yield a PRG in NC0 with
superlinear stretch, let alone polynomial stretch. The proof by [AIK08] also works
for the more general LFN assumption which is why we are able to rely on this
assumption. For simplicity, we focus on the particular case of SparseLPN for the
remainder of the technical overview, but we emphasize that everything below
goes through in the exact same way for LFN.

As explained in Sect. 2.1, we observe that the polynomial-stretch PRG would
only be needed to generate pseudorandom bits to use instead of randomness for
Yao’s garbled circuits [Yao86]; it does not matter whether the seed is uniformly
random or has some structure. SparseLPN appears like a natural candidate for
this functionality: given a secret vector s ∈ Z

n
2 and a sparse (hence, structured)

error vector e ∈ Z
m
2 , it expands s to gA(s, e) := As ⊕ e ∈ Z

m
2 , where {gA}A

would comprise a candidate SPRG family. The map s 	→ As has locality O(1)
due to the row sparsity of A, and hence it has degree O(1) over Z. (We remark
that s 	→ As is linear over Z2, but this in and of itself does not imply anything
nontrivial about its degree over Z.) Similarly, the map (As, e) 	→ As ⊕ e has
locality 2 and hence also has degree O(1) over Z. It follows that gA has locality
O(1) (and hence degree O(1) over Z).

However, there remains the conundrum of how the error vector should be
handled. If the error vector is included as-is in the structured seed, the resulting
“SPRG” would map m+n to m bits and hence not even be expanding. Instead, we
could try to sample e using a polynomially smaller number of uniformly random
bits. However, by standard facts from the analysis of Boolean functions, it is
impossible to generate samples from Bern(η) for η = o(1) from any O(1)-degree
or NC0 function over Z from uniformly random bits, regardless of locality [O’D14,
e.g., Exercise 1.11].

Instead, we approach this problem by compressing the error vector into some
ẽ ∈ {0, 1}m′

, where m′ = m1−Ω(1), such that the decompression map ẽ 	→ e
has degree O(1) over Z. Since e is polynomially sparse, we can use the beautiful
idea given by [JLS21,JLS22] of using low-rank matrix decompositions. We now
provide an overview of this technique.

Given the SparseLPN noise rate η = m−Ω(1), we can set parameters 	, L such
that L
 1/η is a small polynomial in m and 	 · L2 = m. We can accordingly
reorganize the entries of e ∈ {0, 1}m into 	 matrices M1, . . . ,M� ∈ {0, 1}L×L ⊆
Z

L×L. For each i, the entries in Mi are independently sampled Bernoulli random
variables with probability η. Hence the expected number of nonzero entries in Mi

is L2η
 L. In particular, the rank of Mi over Z will be at most L′ = O(L2η). We
can hence write each Mi = Ui ·Vi where Ui,V�

i ∈ Z
L×L′

(in fact, {0, 1}L×L′
),

and finally output {(Ui,Vi)}i∈[�] as the compressed error ẽ. Decompression can

14 S. Ragavan et al.

be done in degree 2 over Z, and the size of ẽ is O(· L · L′) = O(· L3η) =
O(m1−Ω(1)).

This would appear to immediately give us a SPRG from SparseLPN. The
problem is that although this structured seed is polynomially smaller than m,
the time taken to construct it could be polynomial in m (in particular, it would
have to be at least Ω(m) just to read e). Instantiating the [JLS22] scheme with
this construction would yield a sublinear size-succinct FE scheme, where the
ciphertexts are succinct but we do not impose a constraint on the time taken
to generate them. This would have to first be bootstrapped to sublinear time-
succinct FE [GKP+13,LPST16] assuming LWE, which can then be bootstrapped
to iO [BV18,AJ15,KNT17,KNT22]. Ideally, we would want to construct iO
without the need for LWE and the bootstrapping results of [GKP+13,LPST16].

To do this, we need to sample ẽ with a circuit of size m1−Ω(1). In par-
ticular, we cannot even explicitly sample e ∼ Bern(η)m. Instead, we implic-
itly sample it as follows: we first sample its Hamming weight which will be
wt = O(mη) = O(m1−Ω(1)) with all but sub-exponentially small probability.
Then, rather than sampling e in its entirety, we simply sample the list of loca-
tions where e is nonzero. This information is sufficient to directly construct the
matrices {Ui,Vi}i∈[�]. This will be doable in time wt·poly(logm) = O(m1−Ω(1)).

As in [JLS22], we need to take particular care to ensure that our algorithm is
implementable with a sublinear-size circuit, rather than a RAM program (this is
because the bootstrapping results of [BV18,AJ15,KNT17,KNT22] impose this
requirement on the encryption of the FE, which is where our SPRG will sample
its structured seed). Fortunately, this is not too difficult and follows using sim-
ilar approaches to those used by [JLS22]; at a high level, our algorithm can be
decomposed into sorting steps [AKS83] and O(1)-tape Turing machine compu-
tations [PF79], both of which are known to be achievable using circuits with low
overheads.

We make some remarks comparing our use of the techniques by [JLS22]
for compressing with low-rank matrices and doing this with a sublinear-time
circuit, with how they were originally used in [JLS22]. Firstly, while we use
these techniques to instantiate the SPRG (which is intended to replace the PRG
in NC0 used by [JLS22]), these techniques were originally used by [JLS22] to
instantiate Preprocessed Polynomial Encodings (PPE) assuming LPN over Zp.
We make black-box use of their PPE construction, and hence our construction
implicitly relies on these techniques in two different places: our SPRG and the
PPE of [JLS22].

Secondly, our use of these techniques is simpler than that of [JLS22]. This is
because the sparse vector that we need to compress has very little structure: its
entries are simply i.i.d. Bernoulli random variables. On the other hand, the vector
that [JLS22] needs to compress is also polynomially sparse but is highly struc-
tured; it contains information about how LPN errors propagate through homo-
morphic evaluations in the special-purpose homomorphic encryption scheme that
they use. Keeping track of these errors requires much more careful bookkeeping
than we need for our purposes. Although technically their construction also only

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 15

requires the results of [PF79,AKS83], they crucially rely on the observation that
these results can be used to efficiently make batched non-adaptive RAM queries
to a database [JLS22, Lemma 4.6], whereas our construction does not need such
complex functionality.

2.3 Our Use of FE Combiners

Let SparseMat(t, n,m) denote the set of matrices A ∈ Z
m×n
2 whose rows all have

sparsity exactly t. An “ideal” version of the SparseLPN assumption would say we
have the sub-exponential indistinguishability

{(A,u = As ⊕ e) | A ← SparseMat(t, n,m), s ← Z
n
2 , e ← Bern(η)m}

≈c {(A,u) | A ← SparseMat(t, n,m),u ← Z
m
2 }.

However, for t = O(1), this is false. In particular, with at least 1/poly(n) prob-
ability, there exist two identical rows of A, implying there is an (efficiently
computable) vector of sparsity 2 in the left kernel of A. By left-multiplying this
vector with u, this can be used to break indistinguishability when η = o(1).

For A that do not have such sparse vectors in the left kernel (more formally,
when the dual distance of A is large; see Appendix A of the full version), there
are no known attacks that work with better than sub-exponential advantage.
For the negligible (but not sub-exponential) security regime, [AK23] gives an
efficient sampler for sparse matrices A for which negligible security is plausi-
ble. Therefore, there is no issue with the above-mentioned template to instan-
tiate negligible-secure sublinear-time (single-key) public-key FE. This allows for
a simpler construction of public-key FE and its downstream applications in the
negligible (but not sub-exponential) security regime.

However, to bootstrap to iO, one needs sub-exponential security. Unfor-
tunately, there is no known algorithm to efficiently sample these good A
with plausible sub-exponential security.6 Thus, our sparse LPN assump-
tion has the flavor that there exist not necessarily efficiently sampleable
distributions GoodSparseMat(t, n,m) and BadSparseMat(t, n,m) such that
SparseMat(t, n,m) can be written as a mixture of GoodSparseMat(t, n,m) and
BadSparseMat(t, n,m), with weight at least μ = Ω(1) on GoodSparseMat(t, n,m),
and that (sub-exponential) indistinguishability holds with respect to A ←
GoodSparseMat(t, n,m). The issue is that we only know how to efficiently sample

6 The [AK23] sampler plausibly samples sub-exponentially secure A (i.e., with suffi-
cient dual distance) with negligible probability. Hence we could also get a construc-
tion of “iO with public parameters” that is plausibly sub-exponentially secure with
all but negligible probability over the selection of public parameters. However, we
believe that our iO construction with combiners has the advantages of a) not requir-
ing public parameters; b) being truly sub-exponentially secure; and c) being more
robust to further cryptanalysis of SparseLPN beyond the linear test framework that
might break the [AK23] sampler, for example. Moreover, we obtain all these benefits
without requiring any additional assumptions.

16 S. Ragavan et al.

from SparseMat(t, n,m), but we can claim sub-exponential security only when
sampling from GoodSparseMat(t, n,m).

To address this problem, there are two natural approaches:

Idea 1 The first idea would be to combine SPRG outputs using the standard XOR
approach: given sparse LPN matrices A1,A2, . . . ,At, we could instead
consider a “combined SPRG” that independently calls SPRG.SdSamp t
times to obtain (structured) seeds r1, . . . , rt, then at the decompression
stage computes

⊕t
i=1 SPRG.Eval(Ai, ri). This will be secure as long as at

least one of the sparse LPN matrices A1, . . . ,At is “good.”
The problem we now face is that if we want one of the sparse LPN
matrices to be good with all but a sub-exponentially small probability, t
will have to be λΩ(1), resulting in the degree of the SPRG decompression
growing too fast.
On the other hand, if t = O(1), then the SPRG decompression will still
be constant degree. Jumping ahead, this observation will turn out to be
helpful for us, even though this idea on its own will not directly achieve
sub-exponential security.

Idea 2 Alternatively, we could instantiate polynomially many copies of our final
FE scheme and plug these into an unconditional FE combiner [ABJ+19,
JMS20].
The central problem with this approach is that the combiner of [JMS20]
does not directly preserve sublinear time-succinctness of the FE. In
their construction, their first step is to use O(1)-nested FE candi-
dates [ABJ+19], which is a direct construction of an FE combiner for
O(1) candidates. Informally, for a constant B = O(1), B-nesting FE can-
didates {FEi}i∈[B] refers to the following construction. To encrypt, set

FENest.Enc(x) = FEB .Enc(· · · (FE2.Enc(FE1.Enc(x))) · · ·).

To produce a function key FENest.KeyGen(MSK, C), one releases SKB ,
defined by the following iterative process: SK1 = FE1.KeyGen(MSK1, C),
and for i ∈ [B − 1], Gi = FEi.Dec(SKi, ·), where SKi+1 =
FEi+1.KeyGen(MSKi+1, Gi). Since there is no constraint on the size of
the decryption circuits, there is no guarantee that we get time succinct-
ness.

However, it turns out that we can integrate these two ideas by making white-box
use of the results of [JMS20]. Let’s first recall the ideas underlying their combiner.
Given candidate FE schemes {FEi}i∈[t], the combiner of [JMS20] comprises two
steps:

1. They first use a naive 3-nesting-based approach to construct FE schemes
{FEi1,i2,i3}i1,i2,i3∈[t]. The only structure they need here is the existence of
an index i∗ ∈ [t] such that the schemes {FEi∗,i2,i3} , {FEi1,i∗,i3} , {FEi1,i2,i∗}
are all secure. However, this is the part of their construction that does not
preserve sublinear time-succinctness.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 17

2. They then use these nested FE candidates to compute a transcript of an
“input-local” semi-honest t-party secure multi-party computation (MPC) pro-
tocol, with up to t − 1 corrupted parties. Roughly speaking, for i ∈ [t], each
party Pi gets an XOR secret share xi of the input x, and they together run the
MPC protocol for outputting C(x1 ⊕ · · · ⊕xt) for a given circuit C. Each bit
of the transcript depends only on 3 parties (and their correlated randomness),
and they use the nested FE candidates to compute each bit of the transcript,
from which the MPC output can be recovered. As long as there is some i∗ ∈ [t]
such that all 3-nested FE candidates that include i∗ are secure, then they can
argue security of the overall FE scheme. By instantiating this template with a
special form of Yao’s garbled circuits [Yao86,GS22,GIS18] and the [GMW87]
MPC protocol, the efficiency can be made linear in the circuit size, which is
sufficient to preserve time-succinctness. (They rely only on the existence of
one-way functions, in particular by instantiating the correlated randomness
model with PRFs.)
Another way to view this step is that it bootstraps the 3-nesting construc-
tion, which is secure provided at least one of 3 FE schemes is secure, to a FE
scheme which is secure provided at least one of poly(λ) FE schemes is secure.
Crucially, this bootstrapping preserves succinctness.

Our observation is that Step 1 does not specifically need to use 3-nesting to
construct the schemes {FEi1,i2,i3}. Rather, all they need is:

1. the property that if at least one of FEi1 ,FEi2 ,FEi3 is secure, then FEi1,i2,i3 is
secure; and

2. the property that the encryption of FEi1,i2,i3 is sublinear time-succinct.

We formalize these properties through the notion of a combiner-friendly secret-
key functional encryption scheme (CFSKFE). A CFSKFE scheme samples B
common reference strings in a setup phase, and then uses all of the crs’s in
KeyGen,Enc and Dec. If at least one of the crs’s results in a sub-exponentially
secure FE scheme, then the CFSKFE instantiated with these three crs’s should
also be sub-exponentially secure. Jumping ahead, we remark that for us, the
crs’s will be the SparseLPN A matrices and a good crs will be one sampled from
GoodSparseMat. Furthermore, setting B = 3 will suffice for us. To construct such
a CFSKFE, we can simply use Idea 1 above, namely combine FE instances at the
SPRG level, to instantiate the scheme FEi1,i2,i3 . Since there are only O(1) many
FE schemes being combined in this way, the degree of SPRG decompression will
now remain O(1).

Once we have such a CFSKFE, it can replace Step 1 in [JMS20], and can then
be be bootstrapped to handle poly(λ) many crs’s using Step 2 of [JMS20], while
preserving sublinearity. Now we only need at least one of poly(λ) many crs’s to
be sub-exponentially secure, which will hold with all but sub-exponentially small
probability.

To make this combiner statement modular and potentially useful to down-
stream works, in Theorem 7.7 of the full version, we state a more general version

18 S. Ragavan et al.

of the FE combiner result given by [JMS20] that now preserves succinctness, as
long as the underlying FE candidates have this “combiner-friendliness.”

Since the construction of [JMS20] restricts attention to secret-key FE com-
biners, we ultimately obtain a (sub-exponentially) secure secret-key FE scheme
that only supports single function queries. At a high level, our construction (like
the construction of [JLS22]) does not support multiple function queries because
the SPRG seeds would then be reused across multiple uses of Yao’s garbled cir-
cuit construction [Yao86]. Finally, we bootstrap this construction to iO using
results of [KNT17,KNT22]. We note that the other bootstrapping results we
are aware of would not suffice for our purposes; the results of [BV18,AJ15] con-
sider public-key FE, while the result of [BNPW20] considers secret-key FE but
requires security with polynomially many function queries. It is plausible that
the [JMS20] combiner can be directly made to work for public-key FE, but for
simplicity, we use it as is.

We summarize our bootstrapping pipeline using combiners in Fig. 2.

3 Preliminaries

3.1 Notation

For any positive integer n, we let Un denote the uniform distribution over strings
in {0, 1}n. Let Binom(n, p) denote the binomial distribution that counts the num-
ber of successes in n independent Bernoulli trials with probability p. Wherever
we work with polynomials in this paper, we assume they are represented as a
list of monomial-coefficient pairs.

Throughout the paper, by a p.p.t. algorithm or adversary, we mean a non-
uniform probabilistic polynomial time algorithm.

Definition 1 (Indistinguishability). We say that two ensembles of distri-
butions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are indistinguishable if for all p.p.t.
adversaries A, there exists a negligible function negl such that for all sufficiently
large λ ∈ N,

∣

∣

∣

∣

Pr
x←Xλ

[A(1λ, x) = 1] − Pr
y←Yλ

[A(1λ, y) = 1]
∣

∣

∣

∣

≤ negl(λ).

Moreover, we say two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are sub-
exponentially indistinguishable if there exists a real number c > 0 such that for
all p.p.t. adversaries A,

∣

∣

∣

∣

Pr
x←Xλ

[A(1λ, x) = 1] − Pr
y←Yλ

[A(1λ, y) = 1]
∣

∣

∣

∣

≤ exp(−λc).

As short hand, we sometimes use the notation ≈c to denote indistinguishability,
where the parameters are clear from context.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 19

3.2 Locality and Degree

For finite sets A and B and a function f : An1 → Bn2 , we will use the notation

f(x) = (f1(x), · · · , fn2(x)),

where for all j ∈ [n2], fj : An1 → B. For x ∈ An1 and a subset S ⊆ [n1], we will
let x|S ∈ A|S| denote the restriction of x to indices in S.

Fig. 2. Flowchart depicting our method for bootstrapping combiner-friendly PKFE
(public-key functional encryption) to iO. We rely on a white-box modification of the
SKFE (secret-key functional encryption) combiner constructed by [JMS20], to construct
a single-key SKFE that is sub-exponentially secure with all but sub-exponentially small
probability. This can then be bootstrapped to iO as shown by [KNT22]. Here, 1-secure
(single-key) SKFE is simply (single-key) SKFE; we call it 1-secure just to compare to
the other objects. Also, CFHSS refers to a combiner-friendly homomorphic secret shar-
ing, as needed in the unconditional SKFE combiner [JMS20]. Note that everything
here needs to be sub-exponentially secure to get to iO. In the negligible but not sub-
exponential regime, one can efficiently sample (plausibly) secure A for SparseLPN effi-
ciently using [AK23], so one can go straight to secure PKFE without any consideration
of combiners or combiner-friendliness, as in Fig. 1.

20 S. Ragavan et al.

Definition 2 (Locality). For n1, n2 ∈ N, finite sets A and B, and functions
f : An1 → Bn2 , we define the locality of f , loc(f), to be the maximum possible
of input variables that any output coordinate depends on. More formally,

loc(f) := max
j∈[n2]

min
{

k ∈ N : ∃S ⊆ [n1], |S| = k,

∃ ̂fj : A|S| → B s.t. ∀x ∈ An1 , fj(x) = ̂fj(x|S)
}

.

By the union bound, we immediately have the following useful lemma.

Lemma 1. For n1, n2, n3 ∈ N, finite sets A1, A2, A3, and functions f : An1
1 →

An2
2 and g : An2

2 → An3
3 , we have

loc(g ◦ f) ≤ loc(g) · loc(f).

Definition 3 (Degree). For a multivariate polynomial f : Zn → Z, we let
deg(f) denote the total degree of f . For a multi-output multivariate polynomial
f : Zn1 → Z

n2 , we let
deg(f) := max

j∈[n2]
deg(fj).

We recall a standard bound on the degree of a composition of polynomials.

Lemma 2. For n1, n2, n3 ∈ N and polynomials f : Zn1 → Z
n2 and g : Zn2 →

Z
n3 , we have

deg(g ◦ f) ≤ deg(g) · deg(f).

3.3 LPN and Sparse LPN

Before defining our version of the sparse learning parity with noise (LPN)
assumption, we first define the learning parity with noise (LPN) assumption,
as used in [JLS22]. Let Bern(Zq, η) denote the distribution that is 0 with proba-
bility 1 − η and a uniformly random non-zero element of Zq with probability η.
For q = 2, this corresponds exactly to Bern(η).

Definition 4. We say that (sub-exponential) LPN over large fields is true if
the following holds. There exists a constant δ ∈ (0, 1) such that for all constants
β1, β2 > 0 such that q = q(n) is a prime number of nβ1 bits and m = m(n) = nβ2 ,
the following two distributions are (sub-exponentially) indistinguishable:

{

(A,b = As+ e) | A ← Z
m×n
q , s ← Z

n
q , e ← Bern(Zq, n

−δ)m
}

n∈N
,

{

(A,u) | A ← Z
m×n
q ,u ← Z

m
q

}

n∈N
.

We define LPN only with respect to large fields because that is our only
use for it (more specifically, for the construction of Preprocessed Polynomial
Encodings (PPE) in [JLS22]).

We now introduce our SparseLPN assumption. Let SparseMatq(t, n,m) denote
the set of all matrices A ∈ Z

m×n
q such that every row of A has exactly t

non-zero entries. For sparsity t = O(1), since a uniformly random row-sparse

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 21

matrix A is “bad” (i.e., has small dual distance) with noticeable probability
1/poly(n), we only require the indistinguishability to hold with respect to some
distribution of “good” sparse matrices GoodSparseMatq(t, n,m) supported on (a
subset) of SparseMatq(t, n,m), as long as these good matrices are reasonably
“dense” among the set of all sparse matrices.7 Unfortunately, we do not know
how to efficiently sample from such a GoodSparseMatq(t, n,m) that has plausible
sub-exponential security, as is needed to bootstrap to iO [BV18,AJ15,KNT22].
Instead, we will sample A from SparseMatq(t, n,m) in our constructions and then
use an unconditional FE combiner [ABJ+19,JMS20] to get true sub-exponential
security. We note that this issue also comes up in [JLS22] if instantiating the
PRG in NC0 with Goldreich’s PRGs [Gol00] (see [JLS22, Remark 3.1]). More
explicitly, we will assume that we can write the uniform distribution over
SparseMatq(t, n,m) as a mixture of (not necessarily efficiently sampleable) dis-
tributions GoodSparseMatq(t, n,m) and BadSparseMatq(t, n,m), with the weight
on GoodSparseMat being Ω(1).

In general, our construction does not use any particular property of
the uniform distribution over SparseMatq(t, n,m), and as such, the distri-
bution over SparseMatq(t, n,m) can be replaced with any efficiently sam-
pleable distribution EffSparseMatq(t, n,m) over sparse matrices that satis-
fies the above assumption. For the case of sub-exponential security, we set
EffSparseMatq(t, n,m) = SparseMatq(t, n,m) only for concreteness. Addition-
ally, even though GoodSparseMatq(t, n,m) is not explicit, our constructions
will be explicit because they use EffSparseMatq(t, n,m). (That being said, one
can specify a plausible “explicit” distribution for GoodSparseMatq(t, n,m), but
we do not know how to efficiently sample from it; see Appendix A of the
full version.) However, for negligible (but not sub-exponential) security in the
case of Z2, then there is an efficiently computable candidate distribution for
GoodSparseMat2(t, n,m) [AK23], which we denote by AKSparseMat2(t, n,m). We
define SparseLPN in a generic way using EffSparseMat, to allow us to instantiate
the assumption in different ways depending on whether we want negligible or
sub-exponential security.

Definition 5. We say that the (sub-exponential) SparseLPN assumption over
Zq is true if the following holds: there exist constants t ∈ N, δ ∈ (0, 1),
and ε > 0, an efficiently sampleable distribution EffSparseMatq(t, n,m) sup-
ported on a subset of SparseMatq(t, n,m), and (not necessarily efficiently sam-
pleable) distributions GoodSparseMatq(t, n,m),BadSparseMatq(t, n,m) such that
for m = m(n) = n1+ε and η = η(n) = n−δ, the following distributions are

7 As a motivating example, for q = 2, the probability that two rows of A are the same
is at least 1/poly(n) if the sparsity t is constant. This immediately gives a vector
with Hamming weight 2 in the left kernel of A, breaking security.

22 S. Ragavan et al.

(sub-exponentially) indistinguishable:
{

(A,b = As+ e (mod q))
∣

∣

∣

∣

A ← GoodSparseMatq(t, n,m),
s ← Z

n
q , e ← Bern(Zq, η)m

}

n∈N

,

{(A,u) | A ← GoodSparseMatq(t, n,m),u ← Z
m
q }n∈N,

as well as the mixture condition that

EffSparseMatq(t, n,m)
= μ · GoodSparseMatq(t, n,m) + (1 − μ) · BadSparseMatq(t, n,m),

for some μ = μ(n) where μ = Ω(1). Here, this equality refers to equality of
distributions as a mixture distribution.

If q is unspecified, we take it to mean q = 2, but more generally, we allow
q = q(n) to be a function of n.

For simplicity, without loss of generality, we will assume that the noise rate
η is the inverse of a power of 2 (with exponent O(log n)). To summarize, we
have two distinct instantiations of the SparseLPN assumption depending on the
security regime and modulus:

– If we only require negligible security and are restricting attention to q = 2,
then we could plausibly take μ = 1 and instantiate EffSparseMat2(t, n,m) =
AKSparseMat2(t, n,m).

– If we require sub-exponential security, then we can plausibly take μ = Ω(1)
and instantiate EffSparseMatq(t, n,m) = SparseMatq(t, n,m).
Note that for t ≥ 3, choosing GoodSparseMatq(t, n,m) to be matrices with
sufficiently large dual distance, which has density 1 − 1/poly(n) within
SparseMatq(t, n,m), the best known p.p.t. distinguishing attacks have sub-
exponential advantage, as does any linear test. As such, we view setting
μ = Ω(1) as reasonably mild.

We refer to Appendix A of the full version [RVV24] for more detailed cryptanal-
ysis on the assumption.

3.4 Relaxing Sparse LPN to LFN

It turns out that we can really work with an even more general assumption than
the SparseLPN assumption. The SparseLPN assumption informally says that a
noisy version of s 	→ As (mod 2) is indistinguishable from random. However,
neither our construction nor the results by [AIK08] relies on the fact that this
map is linear over Z2; we only need its locality. Motivated by this, we can for-
mulate a more general assumption as follows. Let LocalFunction(t, n,m) denote
the collection of all functions f : Zn

2 → Z
m
2 such that each output entry of f

depends on at most t inputs.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 23

Definition 6. We say that the (sub-exponential) local functions with noise
(LFN) assumption is true if the following holds: there exist constants t ∈ N, δ ∈
(0, 1), and ε > 0, an efficiently sampleable distribution EffLocalFunction(t, n,m)
supported on a subset of LocalFunction(t, n,m), and (not necessarily efficiently
sampleable) distributions GoodLocalFunction(t, n,m),BadLocalFunction(t, n,m)
such that for m = m(n) = n1+ε and η = η(n) = n−δ, the following distributions
are (sub-exponentially) indistinguishable:

{

(f,b = f(s) ⊕ e)
∣

∣

∣

∣

f ← GoodLocalFunction(t, n,m),
s ← Z

n
2 , e ← Bern(η)m

}

n∈N

,

{(f,u) | f ← GoodLocalFunction(t, n,m),u ← Z
m
2 }n∈N,

as well as the mixture condition that

EffLocalFunction(t, n,m)
= μ · GoodLocalFunction(t, n,m) + (1 − μ) · BadLocalFunction(t, n,m),

for some μ = μ(n) where μ = Ω(1). Here, this equality refers to equality of
distributions as a mixture distribution.

More generally, we say the μ-LFN assumption is true to explicitly set μ, in
case it is not set to be Ω(1).

We remark that the above definition abuses notation and uses f to refer
to both the function and a description of it; any local function has an efficient
description.

Note that this assumption is simultaneously a generalization of SparseLPN
(over Z2) and the existence of a polynomial-stretch PRG in NC0: for SparseLPN,
the local function f is linear over F2, and for the poly-stretch PRGs in NC0,
there is no noise (i.e., η = 0), so there is an immediate reduction to LFN that
adds noise. As such, this assumption is weaker than both SparseLPN and the
existence of PRGs in NC0. One other special case of our assumption that might
be of interest is instantiating Goldreich’s PRG [Gol00] with additional Bern(n−δ)
noise.

Finally, we remark that the LFN assumption can be viewed as a statement
about Boolean t-local constraint satisfaction problems (CSPs), where the spe-
cific type of CSP can be baked in to the definition of GoodLocalFunction. The
assumption is that a random t-local CSP with n inputs and m clauses that is
(1 − n−δ)-satisfiable is indistinguishable from a truly random CSP on n inputs
and m clauses (i.e., the m output bits are chosen independently and uniformly
at random). In the case of SparseLPN, the analogous CSP problem is t-XOR.
(Note that this assumption can only possibly hold if the CSP is balanced in the
sense that every clause is 0 or 1 with equal probability for a uniformly random
input in Z

n
2 ; otherwise, examining the Hamming weight of the m output bits

would provide a trivial distinguisher.)

24 S. Ragavan et al.

4 Structured-Seed PRGs

The construction of iO by [JLS22] uses the existence of a sub-exponentially
secure polynomial-stretch Boolean PRG in NC0. Our central observation is that
a weaker primitive suffices for the purposes of their construction, and that this
primitive is achievable under the LFN assumption. As it turns out, this primitive
is closely related to the structured-seed PRGs (SPRG) defined and constructed
by [JLS21]. We provide definitions below in a way that captures our construction,
and we provide a comparison with the definition and construction of [JLS21]
afterwards.

Definition 7. A structured seed PRG (SPRG for short) consists of the following
p.p.t. algorithms:

– I ← IdSamp(1mSPRG): the generation algorithm takes as input the output length
mSPRG in unary. It outputs a function index I.

– seed ← SdSamp(mSPRG): the preprocessing algorithm takes as input the
desired output length mSPRG in binary and outputs a binary string seed. The
reason that mSPRG is given in binary is that we will require the size of SdSamp

to be m
1−Ω(1)
SPRG ; note that we abuse notation and do not require this algorithm

to run in polynomial time in log(mSPRG).
– s ← Eval(I, seed): deterministically outputs a string s ∈ Z

mSPRG .

Intuitively, seed can serve as a compressed version of the SPRG output such that
decompression can be described by a low-degree polynomial. In other words, we
would like Eval to be such that computing Eval(I,SdSamp(mSPRG)) works just
as well as computing PRG(Un) for some n = m

1−Ω(1)
SPRG , for the purposes of the iO

construction of [JLS22]. We next state the properties capturing this intuition:

Definition 8. We say a SPRG satisfies (perfect) correctness if we have
Eval(I, seed) ∈ {0, 1}mSPRG for all I, seed in the support of IdSamp,SdSamp respec-
tively. (Note that this is not obvious, since the polynomial computing Eval is
over Z.)

Definition 9. We say SPRG is (sub-exponentially) μ(mSPRG)-secure if there
exist distributions GoodIdSamp(1mSPRG) and BadIdSamp(1mSPRG) such that both
of the following are true:

– The following distributions are (sub-exponentially) indistinguishable:
{

(I,Eval(I, seed))
∣

∣

∣

∣

I ← GoodIdSamp(1mSPRG),
seed ← SdSamp(mSPRG)

}

mSPRG∈N
{

(I, s)
∣

∣

∣

∣

I ← GoodIdSamp(1mSPRG),
s ← UmSPRG

}

mSPRG∈N

– We have μ = Ω(1) and the following two distributions are identical:
• Sample I ← IdSamp(1mSPRG).

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 25

• With probability μ, sample I ← GoodIdSamp(1mSPRG). With probability
1 − μ, sample I ← BadIdSamp(1mSPRG).

Definition 10. We say that an SPRG satisfies ε-sublinear efficiency if SdSamp
is computable by a uniformly efficiently generatable randomized circuit of size at
most O(m1−ε

SPRG).

Definition 11. We say that a SPRG satisfies degree d and τ -local decompres-
sion if each entry of the output of Eval(I, ·) is expressible as a uniformly efficiently
generatable polynomial over Z satisfying the following two requirements:

– Its total degree (over Z) is at most d (which we will later require to be O(1)).
– It depends on at most O(mτ

SPRG) entries of seed.

We now point out some of the differences between our definition and the defini-
tion used in [JLS21]:

– The most significant difference is that we require SdSamp to satisfy sublinear
efficiency. In contrast, [JLS21] is not concerned with the efficiency of SdSamp,
but instead requires only that its output seed be small. (At the core, this is
because the construction of [JLS21] is only aiming for sublinear size-succinct
functional encryption; this is then bootstrapped to sublinear time-succinct FE
assuming LWE [LPST16,GKP+13]. However our construction, like the later
construction of [JLS22], does not assume LWE and hence needs to achieve
sublinear time-succinctness directly.)

– The construction of [JLS21] allows SdSamp to generate a public and a private
seed such that security still holds when the distinguisher is given the public
seed. The reason for this is that they require Eval to be degree 2 in the private
seed.
In our case, we have some more freedom because it suffices for Eval to have
degree O(1), hence we do not need to work with a public seed.

– On the other hand, the fact that Eval has low locality is important for our
use case, whereas locality is not important for [JLS21].

– [JLS21] assumes the polynomial computing Eval is over Zp rather than Z,
where p is a prime determined by other components of their iO construction.
This is a minor difference; we could also have defined SPRG to work over Zp

rather than Z, but elected to work with Z to emphasize that our construction
does not depend on the prime p at all.

It should also be noted that our SPRG and its application to iO is not analogous
to that of [JLS21]; it is closer to the application of an NC0 PRG in [JLS22].
To illustrate this, note firstly that the construction of [JLS21] of SPRG assumes
both LPN over Zp and the existence of a polynomial-stretch PRG in NC0. This
is the only place in the iO construction of [JLS21] where LPN over Zp is used.
In contrast, the construction of [JLS22] and our modification of it will use LPN
over Zp elsewhere, namely to hide the circuit C and PRG seed with a special-
purpose homomorphic encryption scheme which will homomorphically carry out
Yao’s garbling procedure [Yao86].

26 S. Ragavan et al.

Secondly, the notion of SPRG that we need for our purposes is actually weaker
than a polynomial-stretch PRG in NC0. Indeed, we can directly construct a simple
SPRG given a sub-exponentially secure PRG G in NC0 from n bits to mSPRG bits,
provided mSPRG = n1+Ω(1):

– IdSamp deterministically outputs I = ⊥.
– SdSamp simply outputs a uniform r ← Un.
– Eval(I, r) just directly evaluates G(r).

SdSamp runs in size n which is sublinear in mSPRG, and Eval has locality O(1)
which implies that it satisfies low-degree and τ -local decompression with τ = 0.
Moreover, this construction is clearly 1-secure.

We now formally state the theorem implied by our construction:

Theorem 4.1. Assume the (sub-exponential) LFN assumption holds for n and
m := mSPRG = n1+ε. Then, there exists constants ν > 0 and d ∈ N such that
for any constant τ > 0, there exists a perfectly correct (sub-exponentially) Ω(1)-
secure SPRG satisfying ν-sublinear efficiency with degree d and τ -local decom-
pression.

4.1 SPRG Construction Details

In essence, we will use LFN as our SPRG and we will compress the sparse error
vector e using low-rank decompositions of sparse matrices, as in [JLS21,JLS22].
We begin by setting up some parameters and notation:

– Let γ = δ/(1 + ε). Note that the noise rate η = n−δ = m−γ
SPRG. We also write

η = 2−b for b ∈ N bounded by O(logmSPRG).
– Set a constant parameter α ∈ (γ/2, 3γ/4) such that 2α − γ < τ .
– Let L = �mα

SPRG� and 	 = �m1−2α
SPRG�. Note that 2mSPRG ≥ 	 · L2 ≥ mSPRG.

– Let β ∈ (0, α − γ/2) be a constant, and let ρ = mβ
SPRG be a slack parameter.

Additionally, let L′ = �L2m−γ
SPRG + ρ · Lm

−γ/2
SPRG�. Note that L′ = O(m2α−γ

SPRG +
m

β+α−γ/2
SPRG) = O(m2α−γ

SPRG) = O(mτ
SPRG).

– Let φ be a canonical injective map that maps 	 · L2 ≥ mSPRG items into 	
matrices {Mi}i∈[�] of size L × L. That is, for j ∈ [· L2], φ(j) = (j1, (j2, j3)),
where item j is mapped to matrix j1 ∈ [] and element (j2, j3) ∈ [L] × [L] of
the matrix. As noted by [JLS22], this map can be computed with a circuit of
size poly(log(· L2)) = poly(logmSPRG), by first dividing j ∈ [· L2] by 	 and
setting the remainder as j1. Then the quotient can be further divided by L,
yielding a quotient and remainder which can be used as (j2, j3).
For convenience, we also use ψ to denote the second half of this injective map,
namely the part that maps j ∈ [L2] to (j2, j3) ∈ [L] × [L].

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 27

Our construction is described in Fig. 3.

Fig. 3. Our SPRG construction.

Security: The main observation is the following lemma:

Lemma 3. The probability that the number of nonzero entries in any Mj is out-
side the range [L2m−γ

SPRG−ρ·Lm
−γ/2
SPRG, L2m−γ

SPRG+ρ·Lm
−γ/2
SPRG] is O(exp(−m

Ω(1)
SPRG)).

Proof. It suffices to show the result for a fixed j ∈ []; the conclusion would then
follow from a union bound since 	 = m

O(1)
SPRG. Following Claim 4.2 in [JLS22], this

follows from a straightforward Chernoff bound. For each j2, j3 ∈ [L], let Xj2,j3

be 1 if Mj [j2, j3] = 1 and 0 otherwise. Then the Xj2,j3 ’s are i.i.d. samples from

28 S. Ragavan et al.

Bern(m−γ
SPRG). Hence their sum has expectation L2m−γ

SPRG. A Chernoff bound then
tells us that:

Pr

⎡

⎣

∣

∣

∣

∣

∣

∣

∑

j2,j3∈[L]

Xj2,j3 − L2m−γ
SPRG

∣

∣

∣

∣

∣

∣

≥ ρ

Lm
−γ/2
SPRG

· L2m−γ
SPRG

⎤

⎦

≤ 2 exp

⎛

⎝−
(

ρ

Lm
−γ/2
SPRG

)2

· L2m−γ
SPRG

3

⎞

⎠

= 2 exp
(

−ρ2

3

)

,

which implies the conclusion since ρ = mβ
SPRG. Note the Chernoff bound applies

in this setting because ρ

Lm
−γ/2
SPRG

= O(mβ−α+γ/2
SPRG) ∈ (0, 1). ��

It follows that that the e used when constructing the Uj ,Vj matrices is sta-
tistically close to an honest sample from Bern(η)mSPRG with statistical distance
bounded by O(exp(−m

Ω(1)
SPRG)). Security is now immediate from the LFN assump-

tion; we will take GoodIdSamp to sample f ← GoodLocalFunction(t, n,mSPRG)
and BadIdSamp to sample f ← BadLocalFunction(t, n,mSPRG).

Low-degree and τ -local decompression: We begin by observing that for any posi-
tive integer k, any function F : {0, 1}k → {0, 1} can be computed by a multilinear
polynomial over Z (which hence has total degree at most k). We now argue step
by step:

– The ith entry of f(r) is a function of t entries of r. By our observation, this
is expressible as a polynomial over Z evaluated on r with locality and total
degree at most t.

– For each j ∈ [mSPRG], the jth entry of e is Mj1 [j2, j3] where φ(j) =
(j1, (j2, j3)). This is in turn equal to (Uj1 · Vj1)[j2, j3] =

∑

i∈[L′] Uj1 [j2, i] ·
Vj1 [i, j3]. As a function of all the entries of the matrices Uj1 and Vj1 , this
has degree 2 and locality O(L′) = O(mτ

SPRG).
– Each entry of f(r) ⊕ e is the XOR of one entry from each of f(r) and e.

By the aforementioned observation, this is expressible as a polynomial over
Z evaluated on f(r) and e with locality and total degree ≤ 2.

Putting these together and using Lemmas 1 and 2 implies that each entry of
Eval(I, seed) is expressible as a polynomial over Z in the entries of seed with
total degree at most 4t = O(1) and locality O(mτ

SPRG). Note importantly that
our bound 4t on the degree comes directly from the parameters in the LFN
assumption and is hence independent of τ .

4.2 Sublinear-Time Seed Sampling

It remains to argue the sublinear efficiency of SdSamp. We begin with some lem-
mas about circuit implementability that will be helpful throughout this section.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 29

Circuit Implementability Lemmas. Our circuit constructions build on two
well-known primitives, which we state below. We then sketch the lemmas that
we will need, and refer the reader to the full version [RVV24] for proofs. We
begin by recalling a result about circuits for sorting [AKS83]:

Lemma 4 ([AKS83], as stated in Lemma 4.4 of [JLS22]). Suppose we have
N strings of size B bits and a comparator circuit ψ : {0, 1}B×{0, 1}B → {0, 1} of
size Tψ. Then these strings can be sorted with respect to the comparison function
computed by ψ with a uniformly efficiently generatable circuit of size O(N · B ·
Tψ · poly(log(N · B · Tψ))).

We also recall the following lemma that will enable us to work with constant-tape
Turing machines instead of circuits:

Lemma 5 ([PF79], as stated in Lemma 4.5 of [JLS22]). For any Turing
machine M with O(1) tapes running in time T (n) on inputs of length n, there
exists an efficiently generatable Boolean circuit family {Cn}n∈N

where Cn takes n
bits of input, produces the same output, and has O(T (n) · poly(log T (n))) gates.

We now present some simple sampling lemmas that we will use in Sect. 4.2 to
implicitly sample the error vector e in sublinear size.

Lemma 6. Let N be a positive integer. Let D be any distribution supported
on {0, 1, . . . , N − 1}. Then for any ε > 0, there exists a (randomized) cir-
cuit of size O(N1+ε) that generates a sample from D with statistical error
O(exp(−NΩ(1))). (In other words, the distribution of the circuit’s output is sup-
ported on {0, . . . , N − 1} and has statistical distance O(exp(−NΩ(1))) from D.)

Moreover, if D is the uniform distribution on {0, 1, . . . , N − 1}, there exists
such a circuit of size only O(N ε).

Additionally, if pi := PrX∼D[X = i] is uniformly and efficiently computable
(represented as a rational number) for all i ∈ [0, N − 1], then this circuit is
uniformly and efficiently generatable.

Proof. Provided in the full version [RVV24, Lemma 4.5]. ��
Finally, we show that polynomially sparse Hamming slices can be sampled

with a sublinear-size circuit:

Lemma 7. Let δ ∈ (0, 1) be a constant and N, k be positive integers such
that k ≤ O(N1−δ). Then there exists a (randomized) circuit of size O(N1−δ/4)
that takes k as input and outputs a sample from a distribution over subsets of
{0, 1, . . . , N − 1} of size at most k, that has statistical distance O(exp(−NΩ(1)))
from the uniform distribution over all subsets of size exactly k.

The set will be output as a list, padded with ⊥ to some length N ′′ = O(N1−δ).
(We do not require that the list be sorted, or that the order of the elements in
the list is distributed in any specific way.)

Proof. Provided in the full version [RVV24, Lemma 4.7]. ��

30 S. Ragavan et al.

Implementation of SdSamp. We need to implement SdSamp using a circuit
with size sublinear in mSPRG, so we cannot afford to sample the Bernoulli error
vector directly. Instead, we will first sample its Hamming weight for each of the
	 buckets, and then sample the set of positions where it is 0.

To this end, let D be the distribution of x ← Binom(L2, η) =
Binom(L2,m−γ

SPRG) conditioned on x ∈ [L2m−γ
SPRG − ρ · Lm

−γ/2
SPRG, L2m−γ

SPRG +
ρ · Lm

−γ/2
SPRG]. By Lemma 3, this is O(exp(−m

Ω(1)
SPRG))-close in statistical dis-

tance to Binom(L2,m−γ
SPRG). Moreover, let D′ be the translated distribution

D − �L2m−γ
SPRG − ρ · Lm

−γ/2
SPRG�. This is just for compatibility with Lemma 6.

For each j ∈ [], our goal is to independently sample matrices Uj ,Vj ∈ Z
L×L′

such that the entries of Uj · Vj are independent samples from Bern(η) (up to
sub-exponential statistical error). We do this as follows:

1. Using Lemma 6, sample k′ ← D′.
2. Compute k = k′ + �L2m−γ

SPRG − ρ · Lm
−γ/2
SPRG�. Note by definition of D that we

must have k ≤ L′ = O(m2α−γ
SPRG) = O(L2(1−γ/2α)).

3. Hence using Lemma 7, we can sample a subset S ⊆ {

0, 1, . . . , L2 − 1
}

of size
c ≤ k, padded on the right to length L′ ≥ k with ⊥ symbols.
With all but sub-exponential probability, we will have c = k and S will be a
uniform sample from subsets of

{

0, 1, . . . , L2 − 1
}

of size exactly k. Label the
elements of S as (s1, s2, . . . , sc).

4. For each i ∈ [c], compute (xi, yi) = ψ(si), so that xi, yi ∈ [L]. Let ui ∈ Z
L

be 1 in position xi and 0 everywhere else, and similarly let vi ∈ Z
L be 1 in

position yi and 0 everywhere else. Once again, we pad these arrays on the
right to length L′ with ⊥ symbols.

5. Define Uj =
[

u1 . . . uc 0L×(L′−c)
]

and V�
j =

[

v1 . . . vc 0L×(L′−c)
]

.

Once we have done this for each j ∈ [], we can just sample r ← Un directly and
output (r, {Uj ,Vj}j∈[�]).
Correctness: First, we address the statistical errors incurred from calls to Lem-
mas 6 and 7. In the calls to Lemma 6, we are taking N = L′ − (L2m−γ

SPRG −
ρ · Lm

−γ/2
SPRG) = Θ(ρ · Lm

−γ/2
SPRG) = Θ(mβ+α−γ/2

SPRG) = Θ(mΩ(1)
SPRG). Hence the sta-

tistical error is O(exp(−m
Ω(1)
SPRG)). In the calls to Lemma 7, we are taking

N = L2 = Θ(m2α
SPRG), so here also we incur statistical error is O(exp(−m

Ω(1)
SPRG)).

We make at most 	 < mSPRG calls to each of these lemmas, so the total statistical
error will remain sub-exponentially small.

Up to the statistical error mentioned above, we have sampled the Hamming
weight k ← Binom(L2,m−γ

SPRG) and then sampled a uniformly random subset of
{

0, 1, . . . , L2 − 1
}

of size k. This is clearly equivalent to including each element
of

{

0, 1, . . . , L2 − 1
}

in S independently with probability η each.
Finally, we argue that Uj · Vj is 1 in row x and column y if ψ−1(x, y) ∈ S

and 0 otherwise. This will complete our argument. Indeed, we have Uj · Vj =
∑k

i=1 uiv�
i . The matrix uiv�

i is 1 in row xi and column yi and 0 everywhere
else. Since s1, . . . , sc are distinct and hence the tuples (xi, yi) are distinct, our
claim follows.

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 31

Even in the case where we encounter some statistical error when calling
Lemmas 6 and 7, we will always sample a collection (s1, . . . , sc) of c ≤ L′ distinct
elements of

{

0, 1, . . . , L2 − 1
}

, for some c. It then follows that all entries of Uj ·Vj

will still be 0 or 1, which ensures perfect correctness of our SPRG construction.

Uniform Generatability: The only thing that needs to be addressed is the
call to Lemma 6, for which we need to check that the histogram of D′ can be
efficiently computed. To do this, it clearly suffices to efficiently compute the
histogram of Binom(L2,m−γ

SPRG); we can then apply the necessary conditioning
to recover a histogram for D, and finally translate it to obtain a histogram for
D′. This histogram is characterized by the following identity:

Pr
[

X = i |X ← Binom(L2,m−γ
SPRG)

]

=
(

L2

i

)

· (

m−γ
SPRG

)i · (

1 − m−γ
SPRG

)L2−i

=
(

L2

i

)

· (

2−b
)i · (

1 − 2−b
)L2−i

=
(

L2

i

)

· 2−bL2 · (

2b − 1
)L2−i

.

It is now clear that this is computable in time poly(mSPRG); the binomial coeffi-
cients

(

L2

i

)

can all be computed in time poly(L) = poly(mSPRG) e.g., by iterating
through Pascal’s triangle. Since b ≤ O(logmSPRG), we have 2b−1 ≤ poly(mSPRG).

The value
(

2b − 1
)L2−i can hence be computed exactly, e.g., via repeated squar-

ing; note importantly that the bit length of this number will always be at most
L2 · O(logmSPRG) = poly(mSPRG). Finally, the factor of 2−bL2

can be easily han-
dled by bit shifting, noting again that bL2 = poly(mSPRG).

Sublinear Efficiency: We first argue that for any fixed j ∈ [], Uj and Vj can
be sampled with a randomized circuit of size O(m2α−Ω(1)

SPRG):

– The initial call to Lemma 6 sets N = Θ(mβ+α−γ/2
SPRG) = O(m2α−γ

SPRG). It follows
by Lemma 6 that this can be done with a circuit of size O(m2α−γ/2

SPRG).
– Calculating k from k′ is a straightforward addition of integers that are at

most L2, so this is doable with a circuit of size poly(logmSPRG).
– The call to Lemma 7 takes N = L2 = O(m2α

SPRG), so it follows that this can
be done with a circuit of size O(L2(1−γ/(8α))) = O(m2α−γ/4

SPRG).
– Computing c and then (xi, yi) = ψ(si) for all i ∈ [c] is doable with a circuit

of size L′ · poly(logmSPRG) = O(m2α−γ/2
SPRG).

– Given an integer j ∈ [L] as input, there exists a circuit of size O(L·poly(logL))
to compute a vector in Z

L that is 1 in position j and 0 everywhere else. Indeed,
this can be done on a two-tape Turing machine in O(L · poly(logL)) time:
one tape will store j and the second tape will store the output. The head on
the second tape can pass over the output while decrementing the value on
the first tape after each step, and write a 1 on the second tape if the first
tape’s value is exactly 0 and write a 0 otherwise. Our claim now follows from
Lemma 5.

32 S. Ragavan et al.

It follows that assembling the matrices Uj and Vj is doable with a circuit of
total size O(L′ ·L ·poly(logL)) = O(m3α−γ

SPRG ·poly(logmSPRG)) ≤ O(m2α−γ/5
SPRG).

Hence the total circuit size for sampling Uj ,Vj for all j ∈ [] is O(·m2α−γ/5
SPRG) =

O(m1−γ/5
SPRG). Finally, sampling r ← Un and adding that to the output is doable

with a circuit of size O(n) = O(m1/(1+ε)
SPRG) = O(m1−Ω(1)

SPRG). Note importantly that
the size of our circuit is determined by γ = δ/(1+ ε) and ε, which come directly
from the parameters in the LFN assumption and are hence independent of τ .
This completes our proof that SdSamp is implementable with a sublinear-time
circuit, and hence Theorem 4.1.

Acknowledgements. We thank Aayush Jain, Rachel Lin, and an anonymous TCC
reviewer for suggesting the generalization from sparse LPN to LFN. We addition-
ally thank Rachel Lin for answering our questions about the constructions by [JLS21,
JLS22]. The first author was supported by an Akamai Presidential Fellowship. The sec-
ond author’s research was supported by NSF fellowship DGE-2141064 and by the grants
of the third author. The third author’s research was supported in part by DARPA under
Agreement No. HR00112020023, NSF CNS-2154149, a grant from the MIT-IBM Wat-
son AI, a grant from Analog Devices, a Microsoft Trustworthy AI grant, a Thornton
Family Faculty Research Innovation Fellowship from MIT and a Simons Investigator
Award. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United
States Government or DARPA.

References

[ABJ+19] Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From
FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A.
(eds.) TCC 2019. LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36030-6_9

[ABSV15] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective
to adaptive security in functional encryption. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7_32

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Schulman, L.J. (edr.) Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-
sachusetts, USA, 5-8 June 2010, pp. 171–180. ACM (2010)

[ADI+17] Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure
arithmetic computation with constant computational overhead. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8

[AIK08] Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators
with linear stretch in NC0. Comput. Complex. 17(1), 38–69 (2008)

[AJ15] Ananth, P., Jain, A.: Indistinguishability Obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6_15

https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 33

[AK23] Applebaum, B., Kachlon, E.: Sampling graphs without forbidden sub-
graphs and unbalanced expanders with negligible error. SIAM J. Comput.
52(6), 1321–1368 (2023)

[AKS83] Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In:
Johnson, D.S., et al. (eds.) Proceedings of the 15th Annual ACM Sympo-
sium on Theory of Computing, 25-27 April 1983, Boston, Massachusetts,
USA, pp. 1–9. ACM (1983)

[AKV04] Abbot, T., Kane, D., Valiant, P.: On algorithms for Nash equilibria.
Unpublished manuscript, pp. 1 (2004)

[AL18] Applebaum, B., Lovett, S.: Algebraic attacks against random local func-
tions and their countermeasures. SIAM J. Comput. 47(1), 52–79 (2018)

[Ale11] Alekhnovich, M.: More on average case vs approximation complexity.
Comput. Complex. 20(4), 755–786 (2011)

[AOW15] Allen, S.R., O’Donnell, R., Witmer, D.: How to refute a random CSP. In:
Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October 2015,
pp. 689–708. IEEE Computer Society (2015)

[AS16] Ananth, P., Sahai, A.: Functional encryption for turing machines. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
125–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49096-9_6

[BCGI18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In:
Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, 15-19 October 2018, pp. 896–912. ACM
(2018)

[BGI+12] Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44647-8_1

[BNPW20] Bitansky, N., Nishimaki, R., Passelegue, A., Wichs, D.: From Cryptomania
to Obfustopia through secret-key functional encryption. J. Cryptol. 33(2),
357–405 (2020)

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a Nash equilibrium. In: 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 1480–1498. IEEE (2015)

[BV18] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. J. ACM 65(6), 39:1–39:37 (2018)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44371-2_27

[CLP15] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 287–307. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_14

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7_19

https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19

34 S. Ragavan et al.

[CM01] Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) Mathematical Foundations of Com-
puter Science 2001, 26th International Symposium, MFCS 2001 Marianske
Lazne, Czech Republic, 27-31 August 2001, Proceedings, LNCS, vol. 2136,
pp. 272–284. Springer, Heidelberg (2001)

[CPP20] Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 807–835. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56784-2_27

[DIJL23] Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret shar-
ing and sublinear MPC from sparse LPN. In: Handschuh, H., Lysyanskaya,
A. (eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual Interna-
tional Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
20-24 August 2023, Proceedings, Part II, LNCS, vol. 14082, pp. 315–348.
Springer, Switzerland (2023). https://doi.org/10.1007/978-3-031-38545-
2_11

[DJ24] Dao, Q., Jain, A.: Lossy cryptography from code-based assumptions.
IACR Cryptol. ePrint Arch., pp. 175 (2024)

[Fei02] Feige, U.: Relations between average case complexity and approximation
complexity. In: Reif, J.H. (ed.) Proceedings on 34th Annual ACM Sym-
posium on Theory of Computing, 19-21 May 2002, Montréal, Québec,
Canada, pages 534–543. ACM (2002)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pp. 40–49.
IEEE Computer Society (2013)

[GIS18] Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic
and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6_5

[GJLS21] Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from
simple-to-state hard problems: new assumptions, new techniques, and sim-
plification. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12698, pp. 97–126. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-77883-5_4

[GKP+13] Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V. and Zel-
dovich, N.: Reusable garbled circuits and succinct functional encryption.
In: Boneh, D., Roughgarden, T., Feigenbaum, J., (eds.) Symposium on
Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1-4
June 2013, pp. 555–564. ACM (2013)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho,
A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pp. 218–229. ACM (1987)

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
IACR Cryptol. ePrint Arch., p. 63 (2000)

[GPS16] Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hard-
ness of finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5_20

https://doi.org/10.1007/978-3-030-56784-2_27
https://doi.org/10.1007/978-3-030-56784-2_27
https://doi.org/10.1007/978-3-031-38545-2_11
https://doi.org/10.1007/978-3-031-38545-2_11
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-77883-5_4
https://doi.org/10.1007/978-3-030-77883-5_4
https://doi.org/10.1007/978-3-662-53008-5_20

Indistinguishability Obfuscation from Bilinear Maps and LPN Variants 35

[GS16] Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption
with polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 419–442. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53644-5_16

[GS22] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. J. ACM, 69(5), 36:1–36:30 (2022)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for cir-
cuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7_25

[HY20] Hubácek, P., Yogev, E.: Hardness of continuous local search: query com-
plexity and cryptographic lower bounds. SIAM J. Comput. 49(6), 1128–
1172 (2020)

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with
constant computational overhead. In: Dwork, C. (ed.) Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, 17-20 May 2008, pp. 433–442. ACM (2008)

[JLS19] Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions
for IO. IACR Cryptol. ePrint Arch., p. 1252 (2019)

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pp. 60–73, New York,
NY, USA (2021). Association for Computing Machinery

[JLS22] Jain, A., Lin, H.,D Sahai, A.: Indistinguishability obfuscation from LPN
over F_p, dlin, and prgs in nc0. In: Dunkelman, O., Dziembowski, S. (eds.)
Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I, LNCS,
vol. 13275, pp. 670–699. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-06944-4_23

[JMS20] Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption,
unconditionally. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 141–168. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1_6

[KMOW17] Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower
bounds for refuting any CSP. In: Hatami, H., McKenzie, P., King, V.
(edis.) Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, 19-23 June
2017, pp. 132–145. ACM (2017)

[KNT17] Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation
for all circuits from secret-key functional encryption. IACR Cryptol. ePrint
Arch., p. 361 (2017)

[KNT22] Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key
functional encryption. J. Cryptol. 35(3), 19 (2022)

[KNTY19] Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure
and succinct functional encryption: improving security and efficiency,
simultaneously. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 521–551. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8_17

[KNY17] Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. J. Cryptol.
30(2), 444–469 (2017)

https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-030-45721-1_6
https://doi.org/10.1007/978-3-030-45721-1_6
https://doi.org/10.1007/978-3-030-26954-8_17
https://doi.org/10.1007/978-3-030-26954-8_17

36 S. Ragavan et al.

[KRS15] Khurana, D., Rao, V., Sahai, A.: Multi-party key exchange for unbounded
parties from indistinguishability obfuscation. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 52–75. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48797-6_3

[KS20] Komargodski, I., Segev, G.: From Minicrypt to Obfustopia via private-key
functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7_5

[LM16] Li, B., Micciancio, D.: Compactness vs collusion resistance in functional
encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986,
pp. 443–468. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53644-5_17

[LPST16] Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized
encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9_5

[MST06] Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in nc0.
Random Struct. Algorithms 29(1), 56–81 (2006)

[O’D14] O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press
(2014)

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J.
ACM 26(2), 361–381 (1979)

[RVV24] Ragavan, S., Vafa, N., Vaikuntanathan, V.: Indistinguishability obfusca-
tion from bilinear maps and LPN variants. IACR Cryptol. ePrint Arch.,
pp. 856 (2024)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed) Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pp. 475–484. ACM (2014)

[Wee20] Wee, H.: Functional encryption for quadratic functions from k -lin, revis-
ited. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550,
pp. 210–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64375-1_8

[WW24a] Waters, B., Wu, D.J.: Adaptively-sound succinct arguments for NP from
indistinguishability obfuscation. IACR Cryptol. ePrint Arch., pp. 165
(2024)

[WW24b] Waters, B., Wu, D.J.: A pure indistinguishability obfuscation approach to
adaptively-sound SNARGs for NP. IACR Cryptol. ePrint Arch., pp. 933
(2024)

[Yao86] Yao, A.C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986, pp. 162–167. IEEE Computer Society (1986)

https://doi.org/10.1007/978-3-662-48797-6_3
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8

Towards General-Purpose Program
Obfuscation via Local Mixing

Ran Canetti1,2(B), Claudio Chamon1,2, Eduardo R. Mucciolo1,2,
and Andrei E. Ruckenstein1,2

1 Boston University, Boston, USA
canetti@bu.edu

2 University of Central Florida, Orlando, USA

Abstract. We explore the possibility of obtaining general-purpose
obfuscation for all circuits by way of making only simple, local, function-
ality preserving random perturbations in the circuit structure. Towards
this goal, we use the additional structure provided by reversible circuits,
but no additional algebraic structure. Our approach is rooted in statisti-
cal mechanics and can be thought of as locally “thermalizing” a circuit
while preserving its functionality.

We analyze the security of this approach in two steps. First, we provide
arguments towards its security for a relatively simple task: obfuscating
random circuits of bounded length. Next we show how to construct indis-
tinguishability obfuscators for all (unbounded length) circuits given an
obfuscator for random reversible circuits of bounded length. Here secu-
rity is proven under a new assumption regarding the pseudorandomness
of sufficiently-long random reversible circuits.

Our specific candidate obfuscators are very simple and relatively effi-
cient: the obfuscated version of an n-wire, m-gate (reversible) circuit with
security parameter κ has n wires and O(κm) gates. We hope that our
initial exploration will motivate further study of this alternative path to
program obfuscation (and, consequently, to cryptography in general).

1 Introduction

Program obfuscation [Had00,BGI+01,BGI+12], namely the ability to efficiently
purturb a program in a way that preserves its functionality but hides “all other
information” about the program, is an intriguing beast. At first, perturbing - or
randomizing - the internal structure of a program may appear to be rather mun-
dane and inconsequential. However, with the right formalization of “sufficiently
perturbed”, program obfuscation has proven to be immensely powerful.

As shown in [BGI+01,BGI+12], in general any polysize representation of
a program, even a “perfectly randomized” one, gives significantly more com-

This work is supported by NSF grants 2428487 and 2428488, DARPA grants
HR00112020021 and HR00112020023 (R.C.), DOE Grant DE-FG02-06ER46316 (C.C.),
and a Grant from the Mass Tech Collaborative Innovation Institute (A.E.R.). R.C.,
C.C., and A.E.R. also acknowledge the Quantum Convergence Focused Research Pro-
gram, funded by the Rafik B. Hariri Institute at Boston University.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 37–70, 2025.
https://doi.org/10.1007/978-3-031-78023-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_2

38 R. Canetti et al.

putational power than black-box access to the function computed by the pro-
gram. However, the more modest goal of perturbing the program just to the
point of making the perturbed versions of any two equal-length, functionally
equivalent programs indistinguishable is potentially obtainable and has proven
to be immensely powerful. Indeed, while the ability to obfuscate general pro-
grams to that level (namely obtaining Indistinguishability Obfuscation (IO)
[BGI+01,BGI+12]) does not imply any computational hardness in and of itself
(Indeed, if P=NP then IO exists), IO for all circuits combined with the mere
assumption that P�=NP implies public key encryption, trapdoor permutations,
general secure multiparty computation, non-interactive zero knowledge, succinct
non-interactive arguments, and deniable encryption to name only very few, see
e.g. [SW14,GGHR14,BPW16]. When combined with lossy one way functions, it
gives also fully homomorphic encryption, collision resistant hashing, and more
[CLTV15].

The history of attempts at constructing general purpose program obfuscators,
starting from the breakthrough works of [SW14,GGSW13], is intriguing as well.

In the “first generation” constructions such as [GGSW13,BGK+14,AB15]
[GGH15] the obfuscated program typically follows the instruction structure of
the the plaintext program without modification, while using algebraic struc-
tures to perform the instructions “homomorphically” while hiding them from an
adversary who runs the program and sees the entire execution trace. However,
the analyses of these first generation constructions was invariably incomplete,
often by way of relying on an idealized version of a core primitive, and indeed
explicit attacks have been demonstrated against many proposed instantiations
of these candidates (e.g., [CGH+15,CVW18,CHVW19]).

The “second generation” constructions (starting from [BV15,AJS15,
LPST16]) take a different approach: Rather than directly follow the steps of the
input program, the obfuscated program is treated as a “compressed store” of
“garbled programs”, namely, obfuscated programs that are valid only for a single
input. Given an input, the overall obfuscated program first gradually “uncom-
presses” the garbled program for that input, and then runs this garbled program
to obtain the desired output. A number of more recent IO candidate construc-
tions, including the breakthrough works of Jain, Lin and Sahai [JLS21] that pro-
vide the first IO schemes whose security is proven based on relatively well under-
stood assumptions, as well as [GP21,WW21,DQV+21,KNT22,RVV24] and oth-
ers, use that structure.

This two-stage structure is, however, a bit roundabout and results in pro-
hibitively high space and time overhead relative to the complexity of the plaintext
program, rendering general program obfuscation a purely theoretical primitive.

1.1 This Work

We explore a new approach to constructing general-purpose program obfuscation.
The idea is very simple: Repeatedly perform random local perturbations of the
given program, while guaranteeing that each perturbation preserves the overall
functionality of the program. The overarching hope is that, while individual

Towards General-Purpose Program Obfuscation via Local Mixing 39

perturbations can be easily undone, the aggregate effect of the perturbation
process will be that of converging to a distribution over programs that hides
(or even completely destroys) the structure of the original program—all while
preserving functionality.

Of course, significantly more detail and structure are needed in order to turn
this very high-level idea ideal into a concrete proposal. Here one must also keep
in mind the long list of failed attempts at using such techniques to provide “white
box security” for programs that are accessible to an adversary (see e.g. [Wik24]).

The structure we employ is that of reversible computation, where the number
of state variables remains fixed throughout the computation, and each individual
computational step can be reversed (namely, undone) in a single step. Specifically,
we concentrate on reversible circuits, where state variables correspond to wires,
and a computational step corresponds to a gate that applies a permutation to
the current state.

It is stressed that, while reversible circuits are often studied because of
their physical properties (say for energy efficiency or quantum computation
[Ben73,Tof80]), here the motivation to consider reversible circuits is purely cryp-
tographic. Specifically, we use the algebraic structure provided by the fact that
reversible circuits consist of sequences of permutations to argue that appropri-
ately chosen local perturbations of the circuit structure are likely to have a
global effect that is hard to reverse and is likely to make the obfuscated versions
of any two same-size, functionally equivalent programs indistinguishable. More
specifically, our construction and analysis proceeds in two main steps:

– The first step describes a candidate scheme (or, rather, a meta-scheme) for
obfuscating bounded-length random circuits. These are n-wire circuits that
consist of m gates (where m is some fixed polynomial in the security parame-
ter) and each gate is chosen independently at random from a fixed set of gates.
While we only provide informal arguments for the security of this scheme, we
do rigorously formulate a notion of security, Random Input and Output (RIO)
obfuscation, that we conjecture to be satisfied by our scheme.

– The second step constructs an IO scheme for all circuits (not necessarily
reversible), given any RIO obfuscator. We prove security of this construc-
tion under a new intractability assumption on the distribution of random
reversible circuits.

We start the exposition of our results with a brief overview of reversible
circuits, followed by an exposition of our intractability assumptions regarding
the same. Next we review our definition of RIO obfuscation and how we use it
to construct an IO scheme for all circuits. Finally, we sketch our candidate RIO
obfuscator and the arguments for its security.

1.2 Reversible Circuits and Their Pseudorandomness Properties

Reversible circuits. Recall that reversible circuits have a fixed number, n, of wires
(or, binary state variables), and each gate γ computes a permutation on the n-
bit state. The permutation PC computed by C = γ1 . . . γm is the composition of

40 R. Canetti et al.

the individual permutations, PC = Pγm
◦ . . . ◦ Pγ1 , or, in other words, C(x) =

γm(. . . γ1(x) . . .). We restrict our attention to Toffoli gates, namely gates of the
form γi,j,k,f (s1 . . . sn) = (s′

1 . . . s′
n) where s1 . . . sn is the old state, s′

1 . . . s′
n is the

new state, i, j, k are distinct indices in [n], f : {0, 1}2 → {0, 1}, s′
i = si+f(sj , sk),

and s′
i′ = si′ for all i′ �= i [Tof80].

We first argue that restricting attention to obfuscation of reversible circuits
of the above form does not limit the generality of the treatment. Indeed, the set
Bn of gates of the above form generates the alternating group A2n of even permu-
tations over {0, 1}n (see e.g. [CG75,Bro04]). Furthermore, any (non-reversible)
circuit can be embedded in a reversible circuit while preserving both the func-
tionality and the complexity of the original circuit (see e.g. [Tof80]).1

On the other hand, reversible circuits have some attractive properties which
are essential for our treatment:

Limited Independence and Pseudorandomness. The model enables for a natural
notion of random circuits of certain dimensions (say, numbers of wires and gates),
which is efficiently samplable. Furthermore, the fact that all gates compute per-
mutations makes it plausible that the permutation computed by a random n-
wire, m-gate circuit has some randomness properties, and that the “level of ran-
domness” increases monotonically with m. (Natural distributions over general
Boolean circuits do not appear to exhibit such properties.) Indeed, the pseudo-
randomness of random reversible circuits has been the focus of much study over
the past decades, with some very new and exciting progress.

Gowers [Gow96] shows that Cn,m, the family of n-wire, m-gate circuits is
ε-close to being strongly t-wise independent whenever m = Ω(n3t3 log(ε−1)).
Hoory et al. [HMMR05] and later Brodsky and Hoory [HB05] improve this bound
to m = Ω(n3t2 + n2t log(ε−1)). Very recently, He and O’Donnell [HO24] and
Gretta, He and Pelecanos [GHP24] have further improved the bound to m =
Õ(nt log(ε−1)). (We note that, while Gowers considered all 8!

(
n
3

)
permutations

on 3 wires as base permutations, all other works mentioned above consider the
same set Bn of base permutations considered here.)

Gowers conjectured that the family of permutations defined by m-gate
reversible circuits on n wires might be pseudorandom (in the cryptographic
sense) for some m = poly(n).2 In fact, his construction can be viewed as the
“quintessential block cipher” where each base permutation is an independently

1 More specifically, any circuit C with α input wires, β output wires, μ NAND gates
and width ω can be transformed to a reversible circuit C′ on n = α+β +δ wires and
m gates, where n = O(ω) and m = O(μ), and where C′(x, y, 0δ) = (x, C(x) + y, 0δ)
for any x ∈ {0, 1}α, y ∈ {0, 1}β . While known constructions are only guaranteed to
preserve functionality when some of the input wires are set to 0 and may thus not be
sufficient for the purpose of program obfuscation. To address this issue, we give an
“obfuscation compatible” transform with the additional guarantee that C′(x, y, z) =
(x, y, z) whenever z �= 0δ (see [CCMR24]).

2 The conjecture is actually only implicit in [Gow96]. It is made explicit in Barak’s
survey [Bar17].

Towards General-Purpose Program Obfuscation via Local Mixing 41

chosen “S-Box” and the key essentially specifies the schedule and ordering of S-
boxes to be applied. Indeed, the main conceptual difference between the Gowers
construction and modern block ciphers such as AES is the use of a key schedule
that significantly reduces the overall key size. (AES and other block ciphers con-
tain additional linear operations over the entire state; however as evidenced by
the t-wise independence results mentioned above, the Gowers construction effec-
tively approximates such operations as well.) The t-wise independence of AES
and the pseudorandomness of the Gowers construction have also been studied
in [LTV21,LPTV23,HO24].

Rerandomiability. Reversible circuits appear to be readily amenable to
functionality-preserving rerandomization via local perturbations. We discuss this
property at length later on, and only note at this point that all base permuta-
tions β ∈ Bn are inverses of themselves, namely ββ = In, where In denotes the
identity permutation on {0, 1}n. This also means that, for any circuit C on n
wires, the circuit C|C† computes In, where C† has the gates of C in reverse order
and | denotes circuit concatenation. In fact, the set of n-gate reversible circuits
with set B of base gates can be viewed as the Free Group FB over alphabet
B. Furthermore, the operation of evaluating a circuit can be viewed as a group
action of FB on the Alternating group A2n of even permutations on {0, 1}n. The
kernel of this action is the set of identity circuits and the cosets are the sets of
functionally equivalent circuits. This algebraic structure provides a basis for our
obfuscation scheme based on local perturbations, described in Sects. 1.5 and 6.

White-box Pseudorandomness. while the pseudorandomness properties of the
permutations computed by random reversible circuits may be intriguing, they
do not suffice for our needs. Here instead we are concerned with adversaries that
have full access to the circuit description, and can mount attacks that combine
the circuit’s functionality and structure.

The good news about random reversible circuits is that their “internal struc-
ture” appears to be largely uncorrelated with their functionality, in the sense that
even very large portions of a sufficiently long random circuit remain pseudoran-
dom even given oracle access to the overall circuit. For instance, let m∗ denote
the number of gates that suffices for Gower’s conjecture to hold with respect
to some number of wires n and security parameter κ. (For notational simplicity
we assume n = κ). Now, let C

R← Cn,m for some m > 2m∗, and let Ci denote
the circuit C without the m∗-gate sub-circuit that starts at gate i. It is easy
to see that the following is implied by Gower’s conjecture, for any i: Polytime
adversaries that are given i, oracle access to C and a challenge (m − m∗)-gate
circuit C ′, cannot tell significantly better than a random guess whether C ′ = Ci,
or else C ′ is an independently chosen random circuit, i.e. C ′ R← Cn,m−m∗ .3

3 Indeed, an algorithm A that guesses correctly for some i can be used to break

Gower’s conjecture: Given oracle access to an unknown function F , choose P0, P1
R←

Cn,i, S0, S1
R← Cn,m−m∗−i and b

R← {0, 1}, run A on input (i, P0, S0), and answer
each oracle query x of A with Sb(F (Pb(x)). If A guesses b correctly then guess that
F is taken from Gower’s PRF, else guess that F is a random permutation.

42 R. Canetti et al.

Furthermore, it is only natural that this same property—pseudorandomness
of large circuit segments—would extend also to sufficiently long random circuits
with some fixed functionality. For instance, let EP,m denote the set of all m-gate
circuits that compute permutation P , let C

R← EIn,2m∗ , and let C[1,m∗] denote the
m∗-gate prefix of C. While C[1,m∗] is statistically far from a random n-wire, m∗-
gate circuit, it appears plausible that the two distributions are indistinguishable.

By the same token, it seems plausible that

C : C
R← EIn,2m∗

c≈ C|C ′ : C
R← Cn,m∗ ;C ′ R← EC†,m∗ ,

namely that a random 2m∗-gate identity circuit is indistinguishable from a ran-
dom m∗-gate circuit C followed by the inverse of another random m∗-gate circuit
C ′ that’s functionally equivalent to C. (We use EC,m as a shorthand for EPC ,m,
where PC is the permutation computed by circuit C.) Indeed, here we have two
instances of the previous distribution, where the instances are correlated only
via the permutation PC .4

Taking this logic a step further, let C be an arbitrary, potentially highly
structured m-gate circuit, and let C

R← EC,m′ be a random m′-gate circuit that
is functionally equivalent to C, where m′ ≥ 2m∗m. Then it is plausible that any
(m′ − m∗)-gate portion of C is indistinguishable from a random circuit of the
same length. Furthermore, let C1,C2 be m1-gate prefix and m2-gate suffix of C,
m1 + m2 = m. Then it seems plausible that:

C : C
R← EC,2m∗m

c≈ C1|C2 :

C1
R← E(C1|R),2m∗m1 ;C2

R← E(R†|C2),2m∗m2 ;R
R← Cn,m∗ ,

namely that a random 2m∗m-gate circuit that’s functionally equivalent to C
is indistinguishable from a random 2m∗m1-gate circuit C1 that computes the
permutation C1|R for a random m∗-gate circuit R, followed by a random 2m∗m2-
gate circuit C2 that computes R†|C2. We call this assumption the Split-Circuit
Pseudorandomness (SCP) assumption (see also Fig. 1).5

Discussion. We stress that the SCP assumption may not be efficiently falsifiable
even if false. This is so since it considers indistinguishability of distributions

4 One consequence of the correlation is that here m∗ needs to be large enough not
only to make Gower’s conjecture work, but also to make sure that two random
instantiations of the same permutation look sufficiently different from each other.
However, this distinction appears to become moot when m∗ = Ω̃(|Bn|). See more
discussion within.

5 The constant 2 above is clearly arbitrary and was only used to underline the pro-
gression of the logic underlying the assumption. Also, the above formulation actually
corresponds to a strong version of the SCP assumption, whereas a somewhat weaker
version suffices for our treatment. See more details within.

Towards General-Purpose Program Obfuscation via Local Mixing 43

Fig. 1. The Split Circuit Pseudorandomness (SCP) assumption. Circuit C (top left) is
an arbitrary n-wire, m-gate reversible circuit. Circuits C1 and C2 at the top right are
the m1-gate prefix and m2-gate suffix of C (with m1 + m2 = m), and R is a random
m#-gate circuit, where m# depends only on n and the security parameter, while m
is an arbitrarily large polynomial. Circuits C1|R and R†|C2 at the bottom right are
random m#m1-gate and m#m2-gate circuits that are functionally equivalent to C1|R
and R†|C2, respectively. The assumption states that the concatenation of these two
circuits is computationally indistinguishable from a random m#m-gate circuit that’s
functionally equivalent to C (bottom left), in spite of the fact that each one of C1|R
and R†|C2, taken separately, computes a pseudorandom permutation.

which are not known to be efficiently samplable. In fact, many of these distribu-
tions are not even efficiently recognizable - e.g. we don’t have a feasible way to
know for sure that a given circuit computes even the identity permutation.

At the same time, this assumption is a fairly minimal instantiation of a more
general intuition regarding the pseudorandomness of sufficiently long random
circuits with fixed functionality. This intuition essentially states that there exist
n∗

κ,m∗
κ ∈ poly(κ) such that for any large enough value of the security parameter

κ, any m ≥ m∗
κ, and any fixed circuit C ∈ Cn∗

κ,m, a random O(m∗
κm)-gate

circuit C that is functionally equivalent to C essentially renders “all information
on both the structure and functionality of short and medium range segments
of C” inaccessible to polytime observers, while keeping the overall functionality
intact.

We note that the SCP assumption appears closely related - at least in spirit -
to assumptions regarding the hardness of distinguishing between random strings
with different Kolmogorov (respectively, MCSP) complexities (see e.g. [LP20,
LP21,IRS22,BLMP23,ILW23]). While some initial connections are made within,
further exploration and exploitation of these apparent connections may be of
independent interest.

1.3 New Notions of Security for Circuit Obfuscation

Next, we sketch the definition of RIO obfuscation (which relaxes IO). We also
define another variant, called random output (RO) obfuscation, which will be use-
ful for presenting and analyzing our constructions. (As we’ll see, RO obfuscation

44 R. Canetti et al.

for some circuit classes will provide stronger guarantees than IO for these classes;
still, IO for all circuits and RO for all circuits will end up being equivalent.)

Let Cn denote the set of all n-wire reversible circuits. A transformation
O : Cn → Cn is functionality-preserving if O(C) and C are functionally equivalent
for any C ∈ Cn.

A functionality-preserving transformation O : Cn → Cn, is a random output
indistinguishability (RO) obfuscator for a set C ⊆ Cn of circuits and inner-
stretch function ξ if there exists an efficient “post-processing algorithm” π such
that for any m-gate circuit C ∈ C we have:

O(C)
c≈ π(Ĉ) : Ĉ

R← EC,ξ(n,m).

It can be verified that if ξ(n,m) = m then RO obfuscation coincides with
standard indistinguishability obfuscation (IO). (In particular, in this case we can
set π = O without losing generality.) When ξ(n,m) > m, RO obfuscation for
some classes of circuits becomes non-trivial to obtain even in situations where
IO for these classes is trivial (e.g. when the input circuit C is the only one
with the same size and functionality in that class). Furthermore, together with
the SCP assumption, RO obfuscation with large inner-stretch (namely, when
ξ(n,m) = Ω(m∗m)) guarantees that both the structure and the functionality
of any not-too-large portion of C are essentially lost. Still, observe that RO
obfuscation for any class of circuits can be constructed from IO for all circuits,
by appropriately padding the input circuit before obfuscating it.

A functionality-preserving transformation O : Cn → Cn, is a random input
and output (RIO) obfuscator with respect to Cn,m if the following two require-
ments hold:6

1. (O(C), O(C)) : C
R← Cn,m

c≈ (O(C), O(C ′) : C
R← Cn,m;C ′ R← EC,m

2. For any “advice” function Z with poly-length output we have

O(C), Z(P(C1, C2))
c≈ O(C ′), Z(P(C1, C2))

where C
R← Cn,m, C ′ R← EC,m, P(C) denotes the permutation computed by

circuit C, and C1 and C2 are the m/2-gate prefix and suffix of C, respectively.

The two requirements from an RIO obfuscator are incomparable and capture
different security aspects: The first requirement makes sure that two obfuscated
versions of the same random circuit C do not look “too much alike” relative to
the obfuscated versions of two random circuits C,C ′ with the same functionality
and length.

The second requirement makes sure that O(C) remains indistinguishable
from O(C ′) even when given arbitrary polysize advice that’s computed given
the permutations computed by C1 and C2, the first and second halves of C.
6 For simplicity we present here the definition only for the special case where there is

no inner-stretch requirement and the input is uniform. A more general formulation
appears within.

Towards General-Purpose Program Obfuscation via Local Mixing 45

Note that in the left hand side distribution, the permutation computed by C1 is
the same as the permutation computed by the first half of the obfuscated circuit
C. In contrast, in the right hand side experiment the permutation computed
by the first half of the obfuscated circuit C ′ is different than the permutation
computed by C1.

It is stressed that neither of the two RIO requirements considers a distin-
guisher that has access to the input circuit C. This stands in sharp contrast to
the case of IO (and RO) where the distinguisher sees both C and O(C), making
RIO potentially easier to obtain—not only than IO, but also than IO for random
circuits.

1.4 From RIO to RO for All Circuits

We show:

Theorem 1 (Informal). If there exist RIO obfuscators for Cn,m∗ , where n,m∗

satisfy the SCP assumption, then there exists an RO obfuscator O with large
inner-stretch for all circuits in Cn. Furthermore, if C has m gates then O(C)
has poly(m∗)m gates.

For the construction, we first construct the following building blocks (See
Fig. 2):

– A random identity generator (RIG), which is an RO obfuscator for the identity
permutation with inner-stretch 2m∗. This is done by choosing C

R← Cn,m∗ ,
then sampling C ′, C ′′ R← O(C) where O is an RIO obfuscator, and finally
outputting C ′|C ′′†. Security is proven using the RIO security of O and the
SCP assumption.

– A gate obfuscator GO, namely an RO obfuscator for β, per each gate β ∈ Bn.
This can be done simply by sampling random identities using the previous
step, until an identity circuit that starts with β is sampled. Then, remove the
leading β gate (or alternatively replace it with an identity gate) and output
the result.

– A procedure for “soldering” RO-obfuscated circuits, namely combining an
RO obfuscator O1 for a circuit C1 and an RO obfuscator O2 for a circuit C2

into an RO obfuscator for the circuit C1|C2. The idea is again simple: Let
C̃1

R← O1(C1), C̃2
R← O2(C2). Now, let C̃1 = C1,1|C1,2 and C̃2 = C2,1|C2,2,

where C1,2 and C2,1 have m∗-gates each. Now, compute G
R← O(C1,2|C2,1)

where O is an RIO obfuscator, and output the circuit C1,1|G|C2,2. Security
is proven based on the security properties of the building blocks, using the
SCP assumption. (While the proof is conceptually straightforward, care has
to be taken to the fact that several of the intermediate distributions are not
efficiently samplable.)

Now, to obfuscate a circuit C = γ1 . . . γm, first sample Γi
R← GO(γi) for i = 1..m,

and then solder the circuit pieces one by one: Let C1 = Γ1, and for i = 2..m let
Ci be the result of soldering Ci−1 and Γi. Finally output Cm.

46 R. Canetti et al.

Fig. 2. The building blocks for constructing RO obfuscation for all reversible circuits
from RIO obfuscation for bounded length random circuits. The first building block is
random identity generators (RIGs), constructed by concatenating two RIO-obfuscated
versions of a random circuit, one in reverse. The second building block is RO obfus-
cators for single gates, constructed by sampling a RIG with the desired first gate and
removing that gate. The third building block is soldering RO-obfuscated versions of
circuits C1 and C2 into an RO-obfuscated version of C1|C2 by concatenating the indi-
vidual obfuscations and re-obfuscating the circuit segment around the seam. These
basic building blocks are then iterated to solder obfuscated versions or arbitrarily long
circuits.

The use of RO obfuscation with large inner-stretch for the intermediate steps
in the obfuscation process (rather than, say, plain IO) is critical for this approach
to work. In particular, we critically use the fact that, after each step, the inter-
mediate circuit Ci has essentially lost “all polynomially accessible information”
on its structure (i.e. on γ1 . . . γi) other than the overall functionality of γ1 . . . γi.
This may be viewed as evidence for the power of RO obfuscation.

1.5 Constructing RIO Obfuscators

Reversible circuits admit a wide variety of functionality preserving local pertur-
bations. For instance, given a circuit C = γ1 . . . γi . . . γi+� . . . γm one can replace
a circuit segment γi . . . γi+� with any circuit C ′ = γ′

1 . . . γ′
�′ that is function-

ally equivalent to γi . . . γi+� (i.e. PC′ = Pγi...γi+�
), obtaining a perturbed cir-

cuit C ′′ = γ1 . . . γi−1|C ′|γi+�+1 . . . γm that is functionally equivalent to C (i.e.
PC′′ = PC). When
,
′ are small enough (say, constants), it is possible to sam-
ple uniformly from all - or sufficiently many -
′-gate circuits that are functionally
equivalent to any given
-gate circuit so as to make for effective randomization
of that particular segment. It is thus tempting to explore the possibility that the
space of functionally equivalent circuits within a given length is ergodic—namely
that iterative replacements of randomly chosen small circuit segments with ran-
dom functionally equivalent alternative segments may provide more global mix-

Towards General-Purpose Program Obfuscation via Local Mixing 47

ing (and hence obfuscation) properties. Note that this mixing approach can be
viewed as a recipe for generating random elements in a group presentation where
the underlying alphabet is the set of base gates, and the set of generating words
consist of the initial circuit, plus a sufficiently large set of identity circuits.

One drawback of a literal implementation of this idea is that much of the
randomness in a random circuit can be effectively “factored out”, say via effi-
ciently computable cannonical representations of circuits. For instance, note that
many pairs of gates β, β′ ∈ Bn commute, namely Pββ′ = Pβ′β . (In fact, all but
O(1/n) of them do.) Thus applying the above process with segments of size up to
o(

√
n) and
′ =
 will end up only re-ordering commuting gates, almost always.

However, such re-randomization is easily factored out by using a cannonical rep-
resentation that fixes the order for each pair of commuting gates (say, starting
from the left and using some lexicographic ordering of the gates).

A natural approach to get around the above “attack” is to consider circuit
segments that are not consecutive: for instance, pick a random gate γi in the
circuit and a random direction (left/right), and let γj be the nearest gate in that
direction that “collides” (i.e., does not commutes) with γi. Then remove γi and
γj , and replace them by a functionally equivalent sequence of gates (say, as in
Fig. 3), placed anywhere between locations i and j. Such a strategy may appear
harder to reverse, but it is again ultimately reversible (at least in and of itself)
since it leaves behind clusters of “collision debris” gates that are relatively easy
to identify.

A more general issue with naive realizations of local rerandomization of cir-
cuit segments is that, for most
-gate circuits C, the set EC,� is relatively small.
(As we demonstrate within, this is in fact a general property that holds for all
values of
; but it is perhaps most prominent when
 is small.) This means that,
when
 =
′ the above process may again not provide sufficient randomization.
On the other hand, when
 <
′, the circuit would continually grow in size, which
means that there is little hope to reach any stationary distribution—or to even
to guarantee more basic mixing properties such as having each segment in the
final circuit depend on all gates in the original circuit.

Furthermore, it is unlikely to be the case any two functionally equivalent
circuits of the same size are connected via a “path”, or sequence of polynomially
many local transformations that are quaranteed to be functionality preserving.
Indeed, if this were the case, then we would have a polysize witness for the fact
that two circuits are functionally equivalent, implying NP=coNP. (Note that this
rules out the very existence of such a sequence, not just the feasibility of finding
one. This observation is a slight variant of a more general result by Goldwasser
and Rothblum [GR14], which demonstrates, in a similar way, that perfect IO for
all circuits implies NP = coNP.)

Still, these arguments leave open the possibility that a somewhat more
nuanced or structured local perturbation process could actually provide sufficient
“confusion and diffusion” so as to satisfy the relatively weak requirements of RIO
obfuscation for random circuits that have sufficiently many gates so as to make
the Gowers conjecture hold.

48 R. Canetti et al.

Fig. 3. Some possible replacements for the case of �out = 2 (namely, colliding pairs of
gates), for the special case where the control function is φ(a, b) = ab (namely, logical
conjunction). A gate is depicted as a vertical line connecting several wires, where the
control wires are identified by black dots and the active wire is identified via a circle.
Panels (a) and (b) show possible replacements for one-headed collision, i.e. for the case
where the active wire of one gate is also a control wire of the other gate. Panels (c)
and (d) correspond to a two-head collision, when the active wires of both gates are
also control wires of the other gate. Notice that in panels (a) and (c) the circuit on
the right includes a 3-control gate. As shown in panel (e), this 3-control gate can be
decomposed into four base gates, while using an additional wire (to be chosen out of
the n−4 remaining wires in the circuit). Overall, in case (c) the figure depicts 62

(
n−4
2

)

replacement circuits.

We heuristically propose such a process. First, we formulate a representation
of circuits that facilitates generalizing the above “colliding gates” method to
identifying sets of nearby (albeit not necessarily consecutive) gates that form
structured sub-circuits that are amenable to rerandomization.

Second, we split the mixing process into two stages. In the first, “inflationary”
stage, the size
out of the sub-circuits to be replaced is a relatively small constant,
and the size
in of the replacement circuit is only slightly larger - just enough
for effective re-randomization of the structure of the replaced sub-circuit while
preserving its functionality. In the second, “kneading” stage, the size
knd of the
replacement circuit is set to be identical to the size of the circuit to be replaced,
and both are set to be significantly larger than
in—say
knd = Θ(log log n), where
n is the number of wires.

In a nutshell, the rationale here is the following. The inflationary stage adds
a significant amount of “random redundancy” to the circuit. (We measure the
“level of redundancy” in a circuit by way of the “complexity gap”, or the differ-

Towards General-Purpose Program Obfuscation via Local Mixing 49

ence between the number of gates in the circuit and the number of gates in the
smallest functionally equivalent circuit.) As noted above, this stage alone does
not suffice since the complexity gap is concentrated in small sub-circuits of the
overall circuit and may thus still be identifiable and removable with feasible com-
putational overhead. Still, the structure of the replaced sub-circuits enables the
kneading stage to spread the already-existing complexity gap over successively
larger sub-circuits, thus making it computationally hard to localize and remove.

We provide more detailed rationale within. It is stressed however that the
analysis is far from rigorous, and that the proposed process is merely an explo-
ration meant to demonstrate the viability of the approach rather than well-
analyzed candidate circuit obfuscator. We leave further analysis to future work.

1.6 Related Work

The randomizing power of permutation groups is not new to cryptography, with
a prominent examples being the seminal work of Kilian that shows how to use
Barrington’s S5 representation of branching programs to randomize general NC1

computations [Bar86,Kil88]. Kilian’s randomization technique has been widely
used, including in early candidate obfuscation schemes [CV13].

Alagic, Jeffery and Jordan [AJJ14] use the randomizing power of permutation
groups (in the more restricted context of Braid permutations) to show uncon-
ditional “partial inditinguishability obfuscation” mechanisms for programs that
are within the same equivalence class of a certain normal-form representation.

Chamon, Muccciolo and Ruckenstein [CMR22] study pseudorandomness
properties of random reversible circuits, and provide evidence that as little as
m = O(n log n) gates suffice for the family Cn,m to be an SPRP, when n is taken
to be the security parameter.

Chamon et al. [CJMR22] use local perturbation techniques of a different
flavor of the ones proposed here to construct a candidate “homomorphic pseudo-
random permutation family” and use it as a basis for a symmetric homomorphic
encryption scheme. It is stressed though that the security requirements needed
in that application are significantly weaker than the ones needed for general
program obfuscation, or even RIO obfuscation.

Finally, [CRMC23] takes a thermodynamic approach to circuit complexity,
and in particular studies mixing of polynomial-sized reversible circuits of a given
functionality through the iterative equilibration of concatenated short subcir-
cuits described via local equilibrium distributions of reversible gates. In partic-
ular, that work uses the thermodynamics framework to argue that the set of
functionally equivalent reversible circuits of some size is partitioned to sectors
where each sector is ergodic with mixing time that’s polynomial in the circuit
size. In other words, that work suggests that viability of the local mixing app-
roach as an obfuscation method reduces to the indistinguishability of random
circuits from different sectors.

50 R. Canetti et al.

2 Reversible Boolean Circuits

This section recalls the model of reversible Boolean circuits and its relationship
with standard Boolean circuits.

A reversible Boolean circuit C on n wires consists of a sequence of permu-
tations C = γ1 . . . γm where each γi is a permutation on {0, 1}n, taken from a
predetermined set B of base permutations. The permutation PC computed by
C is the composition of the individual permutations, PC = γm ◦ . . . ◦ γ1, or in
other words C(x) = γm(. . . γ1(x) . . .).

We concentrate on circuits where the base permutations consist of applying a
Toffoli gate to three chosen wires, where a Toffoli gate is a permutation on {0, 1}3
of the form τφ(a1, a2, a3) = (a1 + φ(a2, a3), a2, a3) where φ : {0, 1}2 → {0, 1} is
the control function of the gate. (We often refer to the three wires of a Toffoli
gate as pins, where the first pin is active and the second and third pins are
non-active.) That is, we consider the set of base permutations defined by

Bn = {βw1,w2,w3,φ : w1, w2, w3 ∈ [n]3, w2 �= w1 �= w3, w2 �= w3, φ : {0, 1}2 → {0, 1}}

where βw1,w2,w3,φ(x1 . . . xn) = y1 . . . yn such that (yw1 , yw2 , yw3) =
τφ(xw1 , xw2 , xw3), and yj = xj for each j ∈ [n] \ {w1, w2, w3}. (We note that, as
defined above, Bn is actually a multi-set since βw1,w2,w3,φ and βw′

1,w′
2,w′

3,φ′ may
well describe the same permutation. In fact, while there are 16 different control
functions φ, there are roughly 8n3 different base permutations overall. For con-
venience we use the convention where only a single representative of each base
permutation is used, i.e. bn

def= |Bn| ≈ 8n3. However this convention does not
appear essential for the treatment.)

The natural evaluation of C = γ1 . . . γm, where each γi = βw1,i,w2,i,w3,i,φi
, on

input x = x1, ..., xn ∈ {0, 1}n is described iteratively as follows. For j = 1..n we
have x

(0)
j = xj , and for each i = 1..m we have (x(i)

1 . . . x
(i)
n = γi(x

(i−1)
1 . . . x

(i−1)
n).

The value of wire j after gate i is defined as x
(i)
j . It may be useful to envision

reversible circuits as a sequence of n horizontal parallel wires, where each gate
connects three wires, and where the computation proceeds from left to right.

Since all base permutations (or, gates) are even, reversible circuits can only
compute even permutations on {0, 1}n. Still, considering only circuits of the
above form does not limit the generality of the treatment. Indeed, the set Bn of
gates generates all even permutations over {0, 1}n, namely the alternating group
A2n (see e.g. [CG75,Bro04]).

Furthermore, any circuit C with α input wires, β output wires, μ NAND gates
and width ω can be transformed to a reversible circuit C ′ on n = α+β +δ wires
and m gates, where n = O(ω) and m = O(μ), and where C ′(x, y, 0δ) = (x,C(x)+
y, 0δ) for any x ∈ {0, 1}α, y ∈ {0, 1}β (see e.g. [Ben73,Tof80,Ben89,Bro04]). In
the Appendix we show how to “harden” the standard transformation so as to
guarantee that C ′(x, y, z) = (x, y, z) for z �= 0δ, and how to use the hardened

Towards General-Purpose Program Obfuscation via Local Mixing 51

transform to show that obfuscation of reversible circuits suffices for general-
purpose obfuscation of all circuits7.

Let C† denote the natural inverse (or, “reverse”) of circuit C. That is, if
C = γ1, ..., γm then C† = γm, ..., γ1. Indeed, note that PC|C† = PC†|C = In,
where In denotes the identity permutation on {0, 1}n. This is so since the base
permutations are the inverses of themselves, i.e. Pβ|β = In for all base permu-
tations β. (Here ‘|’ denotes the natural concatenation, or composition, of gates
or circuits.) Let Cn,m denote the set of all m-gate circuits on n wires, and let
Cn =

⋃
m>0 Cn,m.

For a circuit C = γ1 . . . γm, let |C| = m denote the number of gates in C.
For i, l ∈ [m], let C[i,l] = γi . . . γi+l(mod m) denote the l-gate segment of C that
starts at the ith gate, taken modularily; in particular, i < 0 refers to m − i. We
also use C[i,∗] as a shorthand for C[i+1,m−i].

A note about asymptotics. Throughout we treat n, the number of wires, m, the
number of gates, and the runtimes of adversaries as functions of (specifically,
polynomials in) the security parameter κ. We will also be mostly interested in
the regime where m is polynomial in n. While our treatment is mostly asymptotic
in κ, a non-asymptotic treatment with concrete values can be naturally derived.

2.1 Reversible Circuits as a Free Group

The set Cn of circuits with the set Bn of base gates can be viewed as the free
group FBn

of reduced strings (namely, strings where any two consecutive iden-
tical characters are eliminated) over the alphabet Bn, with the group operation
being the standard concatenation followed by reduction. One can then define the
following natural action of FBn

on the alternating group A2n (namely the group
of all even permutations on {0, 1}n): for a circuit C ∈ FBn

and permutation
π ∈ A2n , let Eval(C, π) = π′ ◦ π where π′ = PC . That is, Eval(C, π) returns
the permutation that first computes π and then evaluates C on the result. It
is easy to see that Eval is a group action whose kernel is the set of all iden-
tity circuits, and where each coset consists of all functionally equivalent circuits.
Viewed in this way, program obfuscation is the problem of efficiently generating
a pseudorandom sample from the coset of a given circuit (restricted to some
given length).

3 Hardness Assumptions

This section presents and motivates the hardness assumptions used in this
work. We start off with a reminder of the standard definition of computational
7 Note that not all 16 control functions are needed for completeness to hold. In fact,

the functions φ(x, y) = xy, φ(x, y) = x, φ(x, y) = 1 suffice. However, considering all
16 control functions will be convenient for our treatment. In particular, this way the
value of the active wire of τφ for a random control function is uniformly distributed
regardless of the values of the input wires. Furthermore, having the identity as a base
permutation (with φ(x, y) = 0) will be convenient as well. This set of permutations
is also the one considered by Brodsky and Hoory [HMMR05,HB05].

52 R. Canetti et al.

indistinguishability, and a natural extension thereof. Let A = {Aκ}κ∈N and
B = {Bκ}κ∈N be distribution ensembles. (More precisely, we think of each Aκ

(resp., Bκ) as a sampling algorithm. The distribution is defined via the proba-
bility of obtaining each possible output value when running the algorithm on an
input which is drawn uniformly from {0, 1}†.) A and B are said to be computa-

tionally indistinguishable, denoted A c≈ B, if there exists a negligible function ε(κ)
such that for any polysize family of distinguishing algorithms D = {Dκ}κ∈N and
all large enough values of κ it holds that Prob[Dκ(Aκ) = 1] − Prob[Dκ(Bκ) =
1] < ε(κ).

3.1 On the Distribution of Functionally Equivalent Reversible
Circuits

We first take a moment to define a measure of complexity for reversible circuits
and then use it to estimate the sizes and makeup of the clusters of functionally
equivalent reversible circuits of a given length. This detour will be useful both as
a basis for our hardness assumptions, and as a basis for the local perturbation
mechanisms developed in Sect. 6.

For a permutation P ∈ A2n , let EP,m denote the set of all m-gate circuits that
compute P , namely EP,m = {C ∈ Cn,m : PC = P}. Slightly abusing notation,
for a circuit C we let EC,m = EP(C),m.

We would like to estimate the size of EC,m. Towards this, we define the Com-
putational Complexity CC(P) of a permutation P as the number of gates in
the smallest circuit that computes P . Similarly, let CC(C) = CC(PC) denote
the number of gates in the smallest circuit that computes PC . The complexity
gap of an m-gate circuit C is defined to be CG(C) = m − CC(C).

While CC(C) is clearly distinct from the Kolmogorov complexities of string
representations of a circuit C, these notions have many similarities. For one, it
is easy to see that bm > |EP,m| > b

1
2 (m−CC(P)) for any permutation P , where

b ≈ 8n3 is the number of base permutations:

Claim. For any circuit C ∈ Cn and any m we have bm > |EC,m| > b
1
2 (CG(C)).

Proof. The upper bound is immediate. For the lower bound, observe that for
any sequence of base permutations β1 . . . βl where l = (CG(C))/2, the circuit
Cβ1β1 . . . βlβl is functionally equivalent to C.

Furthermore, for almost all circuits in Cn,m we have bm > |EC,m| >

bm−CC(C)
log b −o(1):

Claim. For all but an ε-fraction of the circuits C ∈ Cn,m we have |EC,m| >

bm−CC(C)
logb −log(εm log b).

Proof. Note that any string σ = {0, 1}s can be interpreted as a description of
a reversible circuit σ̂ on n wires and m gates where s = m log b. (Recall that
b ≈ 8n3 is the number of base permutations.) Furthermore, for any such n,m,

Towards General-Purpose Program Obfuscation via Local Mixing 53

the string σ is fully determined via a circuit δ of size CC(σ̂) that’s function-
ally equivalent to σ̂, plus the ordinal of σ̂ among all m-gate circuits that are
functionally equivalent to σ̂. This means that K(σ) ≤ CC(σ̂) + log(|Eσ̂,m|), or
equivalently that

|Eσ̂,m| ≥ 2K(σ)−CC(σ̂) = b
1

log b (K(σ)−CC(σ̂)) = b
m
s (K(σ)−CC(σ̂)

log b)

where K(σ) denotes the Kolmogorov complexity of σ. The bound follows by
noting that K(σ) > s − log(εs) for all but εs of the strings σ ∈ {0, 1}s.

Put together, Claims 3.1 and 3.1 says that, while for a random m-gate circuit
C, the size of EC,m is only moderate, the size of EC,m′ grows exponentially in m′,
for any given C.

Another conclusion from this state of affairs is that |{C ∈ Cn,m : CC(C) =
m}|b−m ≤ negl(m), namely that the fraction of m-gate circuits whose computa-
tional complexity is m, out of all m-gate circuits, tends to zero rather quickly as
m grows (see more discussion in [CRMC23].) This fact becomes handy in Sect. 6.

3.2 Hardness Assumptions Regarding Random Reversible Circuits

We present the hardness assumptions used in this work. The presentation builds
on the motivation given in the Introduction. Further motivation is provided
by presenting a sequence of gradually stronger assumptions culminating in the
assumptions we actually use later on. This presentation will hopefully provide
additional evidence for the viability of the main assumption (Assumption 4).

Limited Independence. We start by recalling the works that serve as the math-
ematical and intuitive basis for our analysis. Intrigued by the potential pseu-
dorandomness of random reversible circuits, Gowers [Gow96] showed that Cn,m,
the family of m-gate permutations on n wires, is ε-close to being strongly t-wise
independent for any t < 2n and m = O(n3t3 log(ε−1)). That is, for any sequence
of distinct values x1 . . . xt ∈ {0, 1}n, and for C

R← Cn,m, the statistical distance
between C(x1) . . . C(xt) and a random sequence of distinct values r1 . . . rt, is at
most ε. Hoory et al. [HMMR05] and later Brodsky and Hoory [HB05] improve
this bound to m = O(n3t2 + n2t log(ε−1)). Very recently, He and O’Donnell
[HO24] and Gretta, He and Pelecanos [GHP24] have further improved the bound
to m = Õ(nt log(ε−1)). (We note that, while Gowers considered all 8!

(
n
3

)
per-

mutations on 3 wires as base permutations, all other works mentioned above
consider the same set Bn of base permutations considered here.)

Pseudorandomness. Gowers conjectured that the family of permutations defined
by m-gate reversible circuits on n wires might be pseudorandom (in the cryp-
tographic sense) for some m = poly(n). This construction can be viewed as the
“quintessential block cipher” where each base permutation is an independently
chosen “S-Box” and the key essentially specifies the schedule of which S-boxes
to use. Indeed, the main difference between the Gowers construction and mod-
ern block ciphers such as AES is the key schedule that significantly reduces the

54 R. Canetti et al.

key size. (AES and other block ciphers contain additional linear operations over
the entire state; however as evidenced by the k-wise independence results men-
tioned above, the Gowers construction effectively approximates such operations
as well.) The k-wise independence of AES and the pseudorandomness of the
Gowers construction have been studied in [LTV21,LPTV23,HO24]. We adopt
this conjecture as a starting point for our investigation:

Definition 1 (Strong Pseudorandom Permutations (SPRPs)). An
ensemble F = {Fκ}κ∈N of circuit families, where the family Fκ ⊂ Cnκ

consists
of circuits on nκ wires, is a strong pseudorandom permutation family if
there exists a negligible function ν(κ) such that for any family of polynomial-size
adversaries A = {Aκ}κ∈N, and all large enough value of κ we have

Prob[AC,C†
κ = 1 : C

R← Fκ] − Prob[AP,P −1

κ = 1 : P
R← A2nκ] < ν(κ). (1)

Here A2n denotes the set of even permutations on the set {0, 1}n and poly(κ)
denotes the set of polynomials in κ. Next we state Gowers’ conjecture from the
Introduction):

Assumption 1 (Polysize random reversible circuits are SPRPs [Gow96]). There
exist n∗

κ, m∗
κ ∈ poly(κ) such that the ensemble F = {Fκ}κ∈N where Fκ = Cn∗

κ,m∗
κ

is an SPRP.

We note that, while our analysis remains valid for any polynomial values of
n∗

κ,m∗
κ, the assumption does not appear to be easy to refute even for relatively

shallow circuits with n∗
κ = Θ(κ) and m∗

κ = Θ̃(κ). Additional argumentation
for the viability of this assumption for the case where m∗

κ = Θ̃(n∗
κ) appears in

[CMR22].

Pseudorandomness of correlated SPRPs. As a first step towards presenting our
main assumption regarding pseudorandomness of split random circuits with fixed
functionality, we demonstrate that a milder form of that assumption actually fol-
lows from a mild extension of Assumption 1. Rather than considering only the
family of all circuits of a given lenth, the extension considers circuits that are
sufficiently long prefixes of a sufficiently long random circuit that computes some
fixed permutation. Specifically, let Q = {Qκ}κ∈N with Qκ ∈ Cn∗

κ,mκ
be an ensem-

ble of circuits, and let C
R← EQκ,m be a random m-gate circuit that computes

Qκ, where m ≥ mκm∗
κ for a “long enough cushion” m∗

κ, akin to the number of
gates needed to obtain pseudorandomness in Assumption 1. We assume that, for
any
 such that m∗

κ ≤
 ≤ (mκ − 1)m∗
κ, the
-gate prefix of C is an SPRP:

Assumption 2 (Prefixes of Random Circuits with Fixed Functionality are
SPRPs). There exist n∗

κ,m∗
κ ∈ poly(κ) such that for any ensemble Q =

{Qκ}κ∈N of circuits with Qκ ∈ Cn∗
κ,mQκ

for mQκ
∈ poly(κ), and any mκ,
κ

such that mκ ≥ mQκ
m∗

κ and m∗
κ ≤
κ ≤ mκ − m∗

κ, the ensemble {Gκ}κ∈N

where Gκ = {C[1,�κ] : C ∈ EQκ,mκ
} is an SPRP.

Towards General-Purpose Program Obfuscation via Local Mixing 55

We note that circuits drawn from Gκ (for some fixed Qκ) are in general
statistically far from random
κ-gate circuits.8 Still, it appears that Assumption
2 is only a mild generalization of Assumption 1.

An immediate consequence from Assumption 2 is that, for any ensemble of
fixed circuits {Qκ}κ∈N where Qκ ∈ Cn∗

κ,mQκ
, polysize adversaries can distinguish

between the following two cases only with negligible advantage.

Oracle Access to a Prefix and Remainder of a Random Circuit for
Qκ: The adversary has oracle access to C1, C2 (and their inverses), where
C = C1|C2 is a random mκ-gate circuit for Qκ ∈ A2n∗ (κ), where |C1| =
κ,
and where n∗

κ,m∗
κ,mκ,
κ satisfy the length requirements of Assumption 2.

Oracle Access to two SPRPs that Jointly Compute Qκ: Let
{Q1,κ, Q2,κ}κ∈N be an ensemble of pairs of circuits where Qκ = Q1,κ|Q2,κ,
and let F = {Fκ}κ∈N be an SPRP ensemble where Fκ ⊆ Cn∗ . The adver-
sary has oracle access to P1, P2 (and their inverses), where P1 = Q1,κ|C and
P2 = C†|Q2,κ, and C

R← Fκ.

That is:

Claim. Let n∗
κ,m∗

κ ∈ poly(κ) and Q = {Qκ}κ∈K be as in Assumption 2 with
Qκ = Q1,κ|Q2,κ, and let F = {Fκ}κ∈N where Fκ ⊂ Cn∗

κ
be an SPRP. Then

for any mκ,
κ s.t. mQκ
m∗

κ ≤ mκ and m∗
κ ≤
κ ≤ mκ − m∗

κ there exists a
negligible function ν(κ) such that for any family of polynomial-size adversaries
A = {Aκ}κ∈N, and all large enough value of κ we have

Prob[AC1,C†
1 ,C2,C†

2
κ = 1 : C ∈ EQκ,mκ

;C1 = C[1,�κ], C2 = C[�κ,∗]] − (2)

Prob[AP1,P −1
1 ,P2,P −1

2
κ = 1 : C

R← Fκ;P1 = Q1,κ|C;P2 = C†|Q2,κ] < ν(κ).

Proof. Since {Fκ}κ∈N is an SPRP ensemble then so is the ensembles {P1,κ|C :
C

R← Fκ}κ∈N. It follows that:

Prob[A
C1,C

†
1

κ = 1 : C ∈ EQκ,mκ ; C1 = C[1,�κ]]− Prob[A
P1,P

†
1

κ = 1 : P1
R← Fκ] < ν(κ).

The claim follows by observing that oracle access to the last two oracles in
(2), namely either C2, C

†
2 in the left hand side experiment or P2, P

−1
2 in the

8 As a simple example, compare a random n-wire, 2m-gate circuit R that computes the
identity permutation In to a circuit C1|C2 where C1 is a random m-gate circuit and
C2 is a random m-gate circuit such that C1|C2 computes In. Observe that R1, the m-
gate prefix of R, is more likely to compute a permutation that’s computed by many
m-gate circuits, or in other words a permutation with smaller circuit complexity
than C1. (Indeed, let α ∈ Cn,m. Then Pr[C1 = α] = b−m (where b is the number
of gates on n wires), whereas Pr[R1 = α] is the number of m-gate circuits R2

such that Pα|R2 = In divided by the number of 2m-gate identity circuits, namely
|Eα,m|/|EIn,2m|. By Claim 3.1, for most α the latter probability is proportional to
b−CC(α).).

56 R. Canetti et al.

right hand side experiment, can be emulated given oracle access to the first
two oracles in that experiment and advice in the form of a polysize circuit CQκ

that computes Qκ. (Specifically, let O1, O2, O3, O4 denote the four oracles. Then,
O3(x) = CQκ

(y) where y = O2(x). Similarly, O4(x) = O1(y) where y = C†
Qκ

(x).)

Pseudorandomness of Split Random Ciruits with Fixed Functionality. We now
turn to considering observers that, rather than only having oracle access to the
permutations in (2), have access to a random circuit (of a certain size) that com-
putes each permutation. Clearly, having access to a polysize circuit that com-
putes a permutation provides significantly more “computational power” than
oracle access to the permutation (for one, the permutation is now easily dis-
tinguishable from a random permutation). Still, intuitively, the added power
provided by sufficiently long random circuits that compute the two permuta-
tions in question (either PC1 ,PC2 or alternatively P1, P2) should not be of any
help in distinguishing (2). This intuition is formalized in the next assumption,
which states that for any ensemble of fixed permutations {Qκ}κ∈N, which are
defined by way of an ensemble of pairs of polysize circuits {P1,κ, P1,κ}κ∈N where
Pi,κ ∈ Cnκ,mi,κ

, i = 1, 2, and PP1,κ|P1,κ
= Qκ, polysize adversaries can distin-

guish between the following distributions only with negligible advantage.

– A circuit of the form Ĉ1|Ĉ2 where Ĉ1 is a random
1,κ-gate circuit that
computes PP1,κ|C , where C

R← Fκ for an SPRP ensemble {Fκ}κ∈N, where

1,κ is larger than (m1,κ + |C|) by a sufficiently large margin, Ĉ2 is a random

2,κ-gate circuit that computes PC†|P2,κ

and
2,κ is larger than (m2,κ + |C|)
by a sufficiently large margin.

– A random (
1,κ +
2,κ)-gate circuit Ĉ that computes Qκ.

A bit more formally:

Assumption 3 (Split Pseudorandom Circuits are Pseudorandom (SPCP)). For
any SPRP ensemble F = {Fκ}κ∈N where Fκ ⊂ Cnκ,mκ

there exist m#
κ ∈ poly(κ)

such that for any ensemble of pairs of circuits Q = {P1,κ,P2,κ}κ∈N where
Pi,κ ∈ Cnκ,mi,κ

, and any
1,κ,
2,κ where
i,κ ≥ mi,κm#
κ , i = 1, 2, we have:

{Ĉ1|Ĉ2 : C
R← Fκ; Ĉ1

R← E(P1,κ|C),�1,κ
; Ĉ2

R← E(C†|P2,κ),�2,κ
}κ∈N

c≈
{Ĉ : Ĉ

R← E(P1,κ|P2,κ),�1,κ+�2,κ
}κ∈N. (3)

In the present work we only need a restricted variant of this assumption,
where F is the family of all m∗

κ gate circuits from Assumption 1. Still, the more
general statement appears to more closely match the intuition for the nature of
the hardness.

Finally, we combine Assumptions 1 and 3 to one:

Assumption 4 (Split Circuit Pseudorandomness (SCP):). There exist n∗
κ, m∗

κ ∈
poly(κ) that satisfy Assumption 1, as well as m#

κ ∈ poly(κ) that satisfies Assump-
tion 3 with respect to the SPRP in Assumption 1.

Towards General-Purpose Program Obfuscation via Local Mixing 57

We also consider a somewhat stronger variant of the SCP assumption, where
m∗

κ = m#
κ . To see why this variant is stronger, consider again the case of com-

paring a random nκ-wire, m#
κ gate identity circuit R

R← EInκ m#
κ

to the split

version C ′|C ′′† : C
R← Cnκ,m∗

κ
;C ′, C ′′ R← EC,m#

κ
, and recall that, when m∗

κ = m#
κ ,

the split version tends to be skewed towards circuits C whose computational
complexity is higher than that of R1, the m∗

κ-gate prefix of R, or in other words
|EC,m∗

κ
| < |ER1,m∗

κ
. (See the exposition in Footnote 8.) This also means that

C ′′ is likely to be “more similar” to C ′ than R2 to R1, making distinguishing
R from C ′|C ′′† potentially easier than distinguishing R1 from C ′ alone. When
m#

κ grows relative to m∗
κ, this discrepancy tapers off and CC(C) (which is at

most m∗
κ) eventually drops below CC(R1) (which keep growing with m#

κ). Fur-
thermore, the discrepancy between |EC,m∗

κ
| and |ER1,m∗

κ
| is prominent only when

m∗
κ < b. When m∗

κ b, e.g. m∗
κ = Ω(n4), we have that |EC,m∗

κ
| is sufficiently

large so as to make the discrepancy moot.9

On the other hand, we note that this somewhat stronger assumption enables
demonstrating that a weaker variant of RIO obfuscation suffices for obtaining
full-fledged obfuscation for all circuits.

Assumption 5 (Strong Split Circuit Pseudorandomness (SSCP):). Assumption
4 holds with m∗

κ = m#
κ .

4 Notions of Obfuscation for Reversible Circuits

A (randomized) transformation O : Cn → Cn on reversible circuits has stretch σ
if for any C ∈ Cn,m we have O(C) ∈ Cn,m+σ(n,m). O is said to be functionality
preserving on a set C of circuits if PO(C) = PC for any C ∈ C. An obfuscator
O = {Oκ}κ∈N for C = {Cκ}κ∈N is an ensemble of transformations on reversible
circuits where Oκ is functionality preserving on Cκ. We start by recalling the
standard definition of Indistinguishability obfuscation (IO):

Definition 2 (Indistingiushability Obfuscation (IO):). An obfuscator
O = {Oκ}κ∈N is an indistingusihability obfuscator (IO) for C = {Cκ}κ∈N

if for any ensemble of pairs of circuits {C0,κ, C1,κ}κ∈N that are equal size (i.e.,
C0,κ, C1,κ ∈ Cκ ∩ Cnκ,mκ

for some nκ,mκ) and functionally equivalent (i.e.
PC0,κ

= PC1,κ
for all κ), we have

{Oκ(C0,κ)}κ∈N
c≈ {Oκ(C1,κ)}κ∈N.

An alternative and equivalent formulation of this definition requires that
Oκ(C) ≈c RC for any circuit C ∈ Cκ, where RC is a circuit drawn from some
(not necessarily efficiently computable) reference distribution that depends
only on PC and the size of C:
9 Observe that the computational complexity of a random n=wire, m=gate circuit C

is at most Θ̃(m/n2). Indeed, it is easy to verify that a each gate γi cancels out with
an earlier identical gate γj = γi for some j < i with probability Θ(n−2). By Claim

3.1, this means that if C
R← Cn,n4 then |EC,n4 | > bn2

.

58 R. Canetti et al.

Definition 3 (IO - alternative formulation:). An obfuscator O =
{Oκ}κ∈N is an indistingusihability obfuscator (IO) for C = {Cκ}κ∈N if
there exists a (not necessarily polytime) sampling algorithm D such that for any
ensemble C = {Cκ}κ∈N of circuits such that Cκ ∈ Cκ ∩ Cnκ,mκ

we have:

{Oκ(Cκ)}κ∈N
c≈ {R : R

R← D(κ,mκ,PCκ
)}κ∈N.

Claim. An obfuscator satisfies Definition 3 for an ensemble C of circuits iff it
satisfies Definition 2 for C. �

This alternative formulation provides a stepping stone towards presenting
two new notions of obfuscation that will be key to our construction and analysis:
Random Output (RO) and Random Input (RI) obfuscation.

4.1 Random Output Obfuscators

In the rest of this work we will be mostly interested in obfuscators where the out-
put distribution D is of a particular form. Ideally, we would have liked to require
that the distribution D(n,m,P) be the uniform distribution over EP,m′ for some
m′ ≥ m. However, this may be over-restrictive, as it may set an unnecessarily
high bar for obfuscation schemes. (For instance, the local random perturbations
technique of Sect. 6 may well be a secure obfuscation scheme for random circuits
even if it outputs circuits that are distinguishable from random ones.) We thus
settle for the following relaxation: We allow distributions D(κ,m,P) where the
output circuit is the result of applying some polytime post-processing algorithm
to a circuit Ĉ drawn uniformly from EP,m′ for some m′ ≥ m. Indeed, on the one
hand this relaxation allows obfuscation mechanisms that fall short of generating
circuits that match a specific distribution, and on the other hand it still guaran-
tees that π(Ĉ) is independent of the original circuit C, other than having access
to P = P(C).

In some cases we will make the additional requirement that the post-
processing algorithm be applied separately to different segments of Ĉ, e.g.
π = (π1, π2) where π(Ĉ1|Ĉ2) = π1(Ĉ1)|π2(Ĉ2). This additional requirement will
be used, together with Assumption 4, to argue that that a certain segment of
an obfuscated circuit is “computationally independent” even from the overall
functionality of the circuit.

Definition 4 (Random Output Obfuscators). An IO obfuscator O =
{Oκ}κ∈N for C = {Cκ}κ∈N is a Random Output Indistinguishability
(RO) obfuscator with inner-stretch function ξ : N3 → N and post-processing
algorithm π : Cnκ

→ Cnκ
if for any ensemble {Cκ}κ∈N of circuits where

Cκ ∈ Cκ ∩ Cnκ
we have:10

{Oκ(Cκ)}κ∈N
c≈ {π(Ĉ) : Ĉ

R← ECκ,ξ(κ,nκ,|Cκ|)}κ∈N.

10 Note that the overall stretch of O is the composition of the inner-stretch function
ξ and the stretch of the post-processing algorithm π. That is, if π : Cnκ,m′

κ
→

Cnκ,τ(κ,n,m′
κ) then the stretch of O is σ(κ, nκ, mκ) = τ(κ, nκ, ξ(κ, nκ, mκ)).

Towards General-Purpose Program Obfuscation via Local Mixing 59

The inner-stretch function ξ captures the “effective stretch” of the obfuscator.
That is, if O has inner stretch ξ and C̃ = Oκ(C), where C ∈ Cn,m, then C̃
provides “effectively the same obfuscation guarantees” as would a random circuit
in EC,ξ(κ,n,m). This is so in spite of the fact that O might have longer stretch,
and C̃ might not look random at all. In particular, note that RO obfuscation
where ξ(κ, nκ,mκ) − mκ = Ω(κ) provides a meaningful security guarantee (and
may be challenging to obtain) even when the input circuit is the only circuit
with the same functionality and length in the class C. (In particular recall that,
by Claim 3.1, for each Cκ ∈ Cκ ∩ Cnκ,mκ

we have that the size of CCκ,ξ(κ,nκ,mκ)

is exponential in κ.) In contrast, plain IO is meaningless in such cases.

Separable RO obfuscators. The following variant of RO obfuscators will be useful
for our soldering-based construction. An RO obfuscator O is called mκ-left-
separable if:

1. The computational complexity of the mκ-gate prefix of obfuscated circuits is
not too high: for any C, CC((Oκ(C))[1,mκ]) ≤ mκ/2.

2. The post-processing algorithm is of the form π = (π1, π2) where π(C) =
π1(C[1,mκ])|π2(C[mκ,∗]).

Right-separable obfuscators are defined analogously. (Formally, obfuscator O
is mκ-right-separable if O† is left-separable, where f†(C) = (f(C†))† for a
function f : C → C.) An mκ-separable obfuscator is both mκ-left-separable
and mκ-right-separable.

Observe that if O = {Oκ}κ∈N is an mκ-left-separable RO obfuscator then
O† = {O†

κ}κ∈N is an m′
κ-right-separable RO obfuscator (and vice versa).

4.2 Random Input and Output Obfuscators

Here we consider obfuscators (namely, functionality preserving transformations
on circuits) where security is required only with respect to circuits drawn from a
specific distribution. Furthermore, in contrast with IO where security must hold
against an observer who sees both the plaintext circuit and the obfuscated circuit,
here the observer sees only one or more obfuscated circuits, plus some limited
auxiliary information on the plaintext circuit. More specifically, we consider two
alternative (and incomparable) security requirements, made with respect to a
circuit C chosen from some base distribution Rκ over Cnκ,2mκ

, and an output
distribution D(κ, 2mκ,PC):

1. Two obfuscated versions C should not look “too much alike” compared to two
independent draws from the underlying distribution D(κ, 2mκ,PC). In other
words, the observer should not be able to distinguish between two obfuscated
versions of C and two draws from D(κ, 2mκ,PC).

2. An obfuscated version of C should hide the “midway functionality” of C,
namely the permutation computed by the first mκ-gate block of of C. More
specifically, the observer should not be able to distinguish between an obfus-
cated version of C and a circuit drawn from D(κ, 2mκ,PC), even when given

60 R. Canetti et al.

circuits Ĉ1, Ĉ2 computed as follows. Let Z1, Z2 be two fixed circuits (which
are tantamount to an “auxiliary input”), let C = C1|C2 where |C1| = mκ,
and let Ĉ1

R← E(Z1|C[1,m]),λκ|Z1|), Ĉ2
R← E(C[m,∗]|Z2),λκ|Z2| and sufficiently large

“leeway” λκ. (That is, Ĉ1 is a sufficiently long random circuit that’s function-
ally equivalent to Z1|C[1,m]. Similarly, Ĉ2 is a sufficiently long random circuit
that’s functionally equivalent to C[m,∗]|Z2.) The rationale here is that Ĉ1 and
Ĉ2 essentially give the observer only the ability to evaluate Z1|C[1,m] and
C[m,∗]|Z2 (and their inverses) on inputs of its choice.

More formally:

Definition 5 (Random Input (RI) Obfuscators). O = {Oκ}κ∈N is Ran-
dom Input (RI) obfuscator for nκ, 2mκ, input distribution ensemble R =
{Rκ}κ∈N where Rκ ⊆ Cnκ,2mκ

, and output distribution D, if:

I.
⎧
⎪⎨

⎪⎩
(C1, C2) : C

R← Rnκ,2mκ
;

C1, C2
R← Oκ(C)

⎫
⎪⎬

⎪⎭
κ∈N

c≈

⎧
⎪⎨

⎪⎩
(Ĉ1, Ĉ2) : C

R← Rκ;

Ĉ1, Ĉ2
R← D(κ, nκ, 2mκ,PC)

⎫
⎪⎬

⎪⎭
κ∈N.

II. There exists a leeway function λκ ∈ poly(κ) such that for any two circuit
ensembles Z1 = {Z1,κ}κ∈N,Z2 = {Z2,κ}κ∈N with Zi ∈ Cnκ,mi,κ

for some mi,κ,
i = 1, 2, and any λ ≥ λκ we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Oκ(C), Ĉ1, Ĉ2) :

C
R← Rκ;

Ĉ1
R← EP(C[1,mκ]|Z1,κ

),m1,κλ;

Ĉ2
R← E(PZ2,κ|C[mκ,∗]

),m2,κλ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
κ∈N

c≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ĉ, Ĉ1, Ĉ2) :

C
R← Rκ; Ĉ

R← D(κ, nκ, 2mκ, PC);

Ĉ1
R← EP(C[1,mκ]|Z1,κ

),m1,κλ;

Ĉ2
R← E(PZ2,κ|C[mκ,∗]

),m2,κλ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
κ∈N.

Definition 6 (Random Input & Output (RIO) Obfuscators). An RI
obfuscator O = {Oκ}κ∈N for nκ,mκ is Random Input Output (RIO) with
inner-stretch function ξ : N3 → N and post-processing algorithm π : Cnκ

→ Cnκ

if its output distribution D is of the form D(κ, nκ,mκ, P) = π(C) for C
R←

EP,ξ(κ,nκ,mκ).

Requirements (I) and (II) appear to be incomparable. Furthermore, each use
of RIO obfuscators within our construction needs only one of the two require-
ments, with respect to a specific input distribution. This means that in principle
one could have two different constructions of RIO obfuscation, where each con-
struction is geared towards realizing only one of the two requirements. Still, the
rationale for the validity of the obfuscation algorithm described in Sect. 6 applies
in the same way to both properties (see discussion there).

Towards General-Purpose Program Obfuscation via Local Mixing 61

5 From RIO Obfuscation to RO for All Circuits

This section presents the construction of RO obfuscators for all circuits from RIO
obfuscators. More specifically, Let n∗

κ,m∗
κ,m#

κ be length functions that satisfy
Assumption 4. Our starting point is two obfuscators, O1 and O2, such that:

– O1 is an RIO obfuscator that satisfies property I with respect to the uniform
input distribution C

R← Cn∗
κ,m∗

κ
, with inner-stretch ξ(κ, n∗

κ,m∗
κ) = m#

κ and
with post-processing algorithm π.

– O2 is an an RIO obfuscator that satisfies property II with respect to the input
distribution C = π(C ′)|π†(C ′′) : C ′, C ′′ R← Cn∗

κ,m∗
κ

and leeway λκ ≤ m#
κ .

That is, we show:

Theorem 2. Let n∗
κ,m∗

κ,m#
κ be length functions that satisfy Assumption 4. If

there exist algorithms O1, π,O2 such that:

– O1 satisfies property I of RIO obfuscation for input distribution ensemble
{C : C

R← Cn∗
κ,m∗

κ
}κ∈N, with inner-stretch ξ(κ, n∗

κ,m∗
κ) = mκ ≥ m#

κ and
post-processing algorithm π,

– O2 is an an RIO obfuscator that satisfies property II with respect to the input
distribution C = π(C ′)|π†(C ′′) : C ′, C ′′ R← Cn∗

κ,m∗
κ

and leeway λκ ≤ m#
κ .

then there exists an RO obfuscator O for all reversible circuits. Furthermore, the
inner-stretch of O for m-gate circuits is Ω(m#

κ m).

An overview of the obfuscation algorithm appears in the Introduction. We
present the construction and its analysis in four steps. First, we show how to
construct RO obfuscators for the identity function, with some specific parameters.
(We call such obfuscators pseudrandom identity generators.)

Next we use random identity generators to construct RO obfuscators for
single gate circuits.

Nest we show how to use RIO obfuscators with the above parameters to
combine, or “solder” obfuscated circuits to obtain obfuscated versions of the
concatenation of these circuits.

Next we combine the last two steps to construct full-fledged RO obfuscation
for all reversible circuits.

The Appendix of [CCMR24] demonstrates how indistinguishability obfusca-
tor for all Boolean circuits can be obtained using an indistinguishability obfus-
cator for all reversible circuits.

5.1 Random Identity Generators

Random identity generators (RIGs) are separable RO obfuscators for the identity
permutation with specific parameters: Let Inκ

denote the identity permutation
on nκ wires. An (nκ,mκ)-RIG is an mκ-separable RO obfuscator for Inκ

with
inner-stretch ξ(κ, nκ, 1) ≥ 2mκ.

62 R. Canetti et al.

In other words, an RIG is a sampling algorithm that, given κ, generates
circuits that are indistinguishable from π(C), where C is a random circuit with
nκ wires and 2mκ gates that computes the identity permutation, and π is a
post-processing algorithm. Furthermore, π is of the form π = (π1, π2) where
π1 is applied to C[1,mκ] and π2 is applied to C[mκ,∗], and the computational
complexities of both C[1,mκ] and C[mκ,∗] are less than mκ/2,

Definition 7 (Random Identity Generators). An algorithm {Gk}κ∈N is
an (nκ,mκ)-RIG if it is an mκ-separable RO obfuscator for {Inκ

}κ∈N, with
inner-stretch ξ(κ, nκ, 1) ≥ 2mκ.

Let n∗
κ,m∗

κ,m#
κ be length functions that satisfy Assumption 4. We construct

an (n∗
κ, 2mκ)-RIG Gκ given an obfuscator O that satisfies property I of RIO

obfuscation (see Definition 5) for uniformly chosen inputs in Cn∗
κ,m∗

κ
, with inner-

stretch ξ such that ξ(κ, n∗
κ,m∗

κ) = mκ where mκ ≥ m#
κ . The construction is

straightforward:

1. Sample C
R← Cn∗

κ,m∗
κ

2. Sample C ′, C ′′ R← Oκ(C)
3. Output C ′|C ′′†.

We show:

Claim. Let n∗
κ,m∗

κ,m#
κ be length functions that satisfy Assumption 4, and let

O = {Oκ}κ∈N satisfy property I of RIO obfuscation for input distribution Rκ =
Cn∗

κ,m∗
κ
, and with inner-stretch ξ(κ, n∗

κ,m∗
κ) = mκ where mκ ≥ m#

κ . Then G =
{Gk}κ∈N described above is an (n∗

κ,mκ)-RIG.

Proof. We show that Gκ is an mκ-separable RO obfuscator for the identity func-
tion {In∗

κ
}κ∈N, with inner-stretch ξ(κ, n∗

κ, 1) = 2mκ, and with post-processing
algorithm π′ = (π, π†). That is, we show:

{C : C
R← Gκ}κ∈N = {C ′|C ′′† : C

R← Cn∗
κ,m∗

κ
;C ′, C ′′ R← Oκ(C), }κ∈N

c≈ (6)

{π(C ′)|π(C ′′)† : C
R← Cn∗

κ,m∗
κ
;C ′, C ′′ R← EC,mκ

}κ∈N
c≈ (7)

{π(Î[1,mκ])|(π(Î[mκ,∗]))† : Î
R← EIn∗

κ
,2mκ

}κ∈N . (8)

Indistinguishability of experiment (6) and experiment (7) follows directly
from the RIO security of O (property I). Indistinguishability of experiment (7)
and experiment (8) follows from Assumption 4. Indeed, by Assumption 1, {C :
C

R← Cn∗
κ,m∗

κ
}κ∈N is an SPRP. Since |C ′| = |C| = mκ ≥ m#

κ , we can use
Assumption 3 to conclude that:

{C ′|C ′′ : C
R← Cn∗

κ,m∗
κ
;C ′, C ′′ R← EC,mκ

}κ∈N
c≈ (9)

{Ĵ[1,mκ]|(Ĵ[mκ,∗])† : Ĵ
R← EIn∗

κ
,2mκ

}κ∈N .

Now, an algorithm Aκ that distinguishes between experiments (7) and (8)
can be used to distinguish between the two distributions in (9): Given a circuit

Towards General-Purpose Program Obfuscation via Local Mixing 63

C ∈ Cn,2mκ
, output Aκ(π(C[1,mκ])|π†(C[mκ,∗])). Observe that if C was drawn

from the l.h.s. distribution in (9) then Aκ’s input is drawn from (7) and if C was
drawn from the r.h.s. distribution then Aκ’s input is drawn from (8). The claim
follows by transitivity of computational indistinguishability, along with verifying
that Gκ is indeed both mκ-right-separable and mκ-left-separable.

Directly Generating Random Identities? We note that there may well be other
ways to construct RIGs, other than using an RIO obfuscator that satisfies prop-
erty I. Indeed, functionality-reserving obfuscation may not be needed at all;
instead one might opt to “jointly generate” two circuits that are functionally
equivalent and look sufficiently random otherwise. In fact we are not aware of
any “barrier” to having statistically secure RIGs.

5.2 RO Obfuscation of Single Gates

Next we show how to use a random identity generator G to construct RO obfus-
cators of single gates, namely RO obfuscators GO = {GOκ}κ∈N for the set
C = {Bκ}κ∈N, where Bκ is the set of base permutations on κ wires. That is, given
any base permutation β ∈ Bκ, algorithm GOκ(β) samples circuits that are indis-
tinguishable from π(C) for a random circuit C

R← Eβ,mκ
for some mκ ∈ poly(κ)

and post-processing algorithm π with length and separability requirements that
are similar to those of random identity generators (RIGs): GOκ should have
inner-stretch ξ where ξ(κ, κ,mκ) = 2mκ with mκ ≥ m∗

κ; furthermore, it should
be mκ-separable.

Definition 8 (Gate Obfuscators.). An algorithm GO = {GOk}κ∈N is an
mκ-gate obfuscator if, for any β ∈ Bκ}, we have that GOκ(βκ) is an mκ-
separable RO obfuscator for βκ, with inner-stretch ξ(κ, κ, 1) ≥ 2mκ.

The construction is simple: GOκ(β) keeps sampling identity circuits using
Gκ until the first gate in the generated circuit is β. Once this happens, GO
replaces that first gate with the identity gate βI and outputs the resulting circuit.
Note that in order for GOκ(β) to terminate in polynomial time we need to
further assume that the circuits generated by Gκ start with β with polynomial
probability. The random identity generators constructed in this work satisfy this
property unconditionally.

Claim. Let {Gκ}κ∈N be an (κ,mκ)-random identity generator such that
Prob[C[1,1] = β : C

R← Gk] ∈ poly(κ) for all β ∈ Bκ. Then GO is an mκ-
gate-obfuscator.

Proof. To see that GOκ(β) is an mκ-separable RO obfuscator for β, let π =
(π1, π2) be the post-processing algorithm guaranteed by Definition 7, such that

{C
R← Gκ}κ∈N

c≈ {π1(C[1,mκ])|π2(C[mκ,∗]) : C
R← EIκ,2mκ

}κ∈N. (10)

64 R. Canetti et al.

Consider the post-processing algorithm π = (π′
1, π2) where π′

1(C) = βI |π1(β|C).
We argue that

{βI |C[1,∗] : C
R← Gκ s.t. C[1,1] = β}κ∈N

c≈ (11)

{π′
1(C[1,mκ])|π2(C[mκ,∗]) : C

R← Eβ,2mκ
s.t. C[1,1] = β}κ∈N.

Indeed, an algorithm Aκ that distinguishes between the two distributions in
(11) can be used to distinguish between the two distributions in (10): given a
circuit C, if C[1,1] = β, output Aκ(βI |C[1,∗]); else, output a random bit. Observe
that if C was drawn from the l.h.s. distribution in (10) then, whenever C[1,1] = β,
we have that C[1,∗] is drawn from the l.h.s. distribution in (11). If C was drawn
from the r.h.s. distribution in (10) then, whenever C[1,1] = β, we have that C[1,∗]
is drawn from the r.h.s. distribution in (11).

We note that both the efficiency and security of GO can be significantly
improved with little effort: Once the first base permutation β′ = (w′

1, w
′
2, w

′
3, φ)

in the sampled circuit has the same control function φ as the given β =
(w1, w2, w3, φ), can remove β′ and then”rotate” the remaining circuit so that
the wires w′

1, w
′
2, w

′
3 will become w1, w2, w3. That is, if the sampled circuit is

of the form β′|C then output the circuit C ′ that is the result of renaming the
wires in C via the permutation σ = (w1, w

′
1)(w2, w

′
2)(w3, w

′
3) on [n]. This way,

the random identity generator needs to be run at most 16 times in expectation
(assuming that the control function of the first gate is distributed uniformly).
The expected number of samples needed can be further reduced (for “nice” post-
processing functions) by noting that any circular shift of an identity circuit is
an identity circuit.

5.3 Soldering Obfuscated Circuits

Next we show how to combine (or, “solder”) obfuscated circuits to obtain obfus-
cated versions of the concatenation of these circuits. Specifically, let n∗

κ,m∗
κ,m#

κ

satisfy Assumption 4 and let C1 = {C1,κ}κ∈N,C2 = {C2,κ}κ∈N be ensembles
of sets of circuits such that Ci,k ∈ Cn∗

κ,mi,κ
for i = 1, 2. Consider the following

building blocks, with respect to some mκ ≥ max(m∗
κ,m#

κ):

– an mκ-right-separable RO obfuscator RO1 for ensemble C1, with post-
processing algorithm π1 = (π1,1, π1,2) and inner-stretch ξ1 such that
ξ1(κ, n∗

κ,m) ≥ mκm,
– an mκ-left-separable RO obfuscator RO2 for ensemble C2, with post-

processing algorithm π2 = (π2,1, π2,2) and inner-stretch ξ2 such that
ξ2(κ, n∗

κ,m) ≥ mκm,
– an RIO obfuscator O that satisfies Property II with leeway function λκ ≤ mκ,

for auxiliary circuits C†
1,κ, C†

2,κ, and for input distribution ensemble:

{(π1,2(Ĉ1,2)|π2,1(Ĉ2,1)) : (12)

C1,2, C2,1
R← Cn∗

κ,m∗
κ
; Ĉ1,2

R← EC1,2,mκ
; Ĉ2,1

R← EC2,1,mκ
}κ∈N. (13)

Towards General-Purpose Program Obfuscation via Local Mixing 65

We use RO1, RO2, O to construct an RO obfuscator RO1|2 for the ensemble
C = {Cκ}κ∈N, where each circuit C ∈ Cκ is of the form C = C1|C2 where
C1 ∈ C1,κ and C2 ∈ C2,κ. Given a circuit C = C1|C2 ∈ Cκ, obfuscator RO1|2,κ

proceeds as follows (see also Fig. 4):

1. Sample C̃1
R← RO1,κ(C1) and C̃2

R← RO2,κ(C2).
2. Let τi,j denote the stretch of the post-processing algorithm πi,j , let ti,j =

τi,j(κ, n∗
κ,mκ), and let C1,1 = (C̃1)[1,−t1,2], C1,2 = (C̃1)[−t1,2,∗], C2,1 =

(C̃2)[1,t2,1], C2,2 = (C̃2)[t2,1,∗].
Sample G

R← Oκ(C1,2|C2,1).
3. Output C1,1|G|C2,2.

Fig. 4. Soldering RO-obfuscated circuits: The operation of obfuscator RO1|2 given
circuits C1 and C2.

Claim. Let n∗
κ,m∗

κ,m#
κ satisfy Assumption 4, and let mκ ≥ m#

κ . For i = 1, 2,
let Ci = {Ci,κ}κ∈N be a circuit ensemble where Ci,k ∈ Cn∗

κ,mi,κ
, and let

ROi = {ROi,κ}κ∈N be an RO obfuscator for Ci with inner-stretch ξi such
that ξi(κ, n∗

κ,m) = mκm and with post-processing algorithm πi = (πi,1, πi,2);
furthermore, RO1 is mκ-right-separable and RO2 is mκ-left-separable. Let O
be an RIO obfuscator functionξ3 and with post-processing algorithm π3, for
the input distribution ensemble in (12). Then RO1|2 defined above is an RO
obfuscator for the circuit ensemble {C1,κ|C2,κ}κ∈N, with inner-stretch function
ξ(κ, n∗

κ,m) = mκ(m − 2) + ξ3(κ, n∗
κ, 2mκ) and post-processing algorithm

π(C) = π1(C[1,ξ1(κ,n∗
κ,m1,κ)−mκ])|

π3(C[ξ1(κ,n∗
κ,m1,κ)−mκ+1,ξ3(κ,n∗

κ,2m∗
κ)]

)|π2(C[−(ξ2(κ,n∗
κ,m2,κ)−mκ),∗]).

Furthermore, if RO1 is mκ-left-separable then so is RO1|2. If RO2 is mκ-right-
separable then so is RO1|2.

See proof in [CCMR24].

66 R. Canetti et al.

5.4 RO for All Circuits

The RO obfuscator for all circuits combines a single gate obfuscator GO with
the soldering process in the natural way. Specifically, consider the append-and-
solder obfuscator AS that, to obfuscate an n-wire, m-gate circuit C = γ1 . . . γm

with security parameter κ, proceeds as follows:

1. Let n∗
κ,m∗

κ,m#
κ satisfy Assumption 4. Without loss of generality assume that

n = n∗
κ. (If n < n∗

κ then embed the circuit in n∗
κ wires. If n > n∗

κ then proceed
with the smallest κ′ > κ such that n ≤ n∗(κ′).)

2. Let GO be a (n∗
κ,mκ)-gate obfuscator for mκ ≥ max(m∗

κ,m#
κ). For each gate

γi, i = 1 . . . m, let Γi
R← GO(γi) be a 2mκ-gate circuit such that PΓi

= γi.
3. Solder the circuits Γ1 . . . Γm one by one, using an RIO obfuscator O for the

input distribution ensemble in (12). That is:
(a) Let C1 = Γ1.
(b) For

i = 2..m, let Ci = (Ci−1)[1,−t1,κ]|Oκ((Ci−1)[−t1,κ,∗]|(Γi)[1,t2,κ])|(Γi)[t2,κ,∗]
be the result of soldering Ci−1 and Γi, where t1,κ and t2,κ are the lengths
of the left and right margins for soldering, namely π1 : Cn∗,mκ

→ Cn∗
κ,t1,κ

and π2 : Cn∗,mκ
→ Cn∗

κ,t2,κ
, where π = (π1, π2) is the post-processing

algorithm of GOκ.
4. Output Cm.

It follows from Claim 5.3 that AS is an mκ-separable RO obfuscator for all
reversible circuits, with inner-stretch ξ(κ, n,m) ≥ mκm. When GO is instan-
tiated via the RIG and RIO described in Sects. 5.2 and 5.1 above, Theorem 2
follows from Claims 5.1 and 5.2.

Furthermore, observe that the stretch of AS grows only linearly in m. Specif-
ically, it follows from Claim 5.3 that |Ci| = |Ci−1| + σ2(κ, n∗

κ, t1,κ + t2,κ),
where σ2(κ, n∗

κ,m∗
κ) is the overall stretch of the RIO obfuscator used in

the soldering operation. When instantiating the construction with the single-
gate obfuscator and random identity generator described in Sects. 5.2 and 5.1,
based on an RIO obfuscator with stretch σ1(κ, n∗,m∗

κ), we obtain |Cm| ≤
mσ2((κ, nκ, 2σ1(κ, nκ,m∗

κ)), where n∗
κ,m∗

κ are length functions that satisfy
Assumption 4.

Finally, straightforward hybrids argument demonstrates that the security
level of AS decreases only linearly in the number of gates. That is, to guarantee
distinguishing probability of at most ε between an obfuscated m-gate circuit C
and a circuit drawn from DPC ,|C|, it suffices to use building blocks (RIO and
GO obfuscators) with security Ω(ε/m).

Towards General-Purpose Program Obfuscation via Local Mixing 67

6 Constructing RIO Obfuscators

This section presents a general approach for constructing RIO obfuscators,
along with a family of candidate RIO obfuscators that may be a viable basis
for RO (and in particular IO) obfuscators for all circuits as in Theorem 2.

This section, as well as the open problems section and the appendix
have removed from this version due to page limits. These sections appear in
[CCMR24].

Acknowledgements. We thank Luowen Qian for participating in early stages of this
research, and the TCC’24 reviewers for their insightful comments. R.C. also thanks Nir
Bitansky, Shafi Goldwasser and Omer Paneth for very helpful discussions.

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 21

[AJJ14] Alagic, G., Jeffery, S. and Jordan, S.P.: Circuit obfuscation using braids.
In: Flammia, S.T., Harrow, A.W. (eds.) 9th Conference on the Theory of
Quantum Computation, Communication and Cryptography, TQC 2014,
21-23 May 2014, Singapore, LIPIcs, vol. 27 , pp. 141–160. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2014)

[AJS15] Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indis-
tinguishability obfuscation from non-compact functional encryption. IACR
Cryptol. ePrint Arch., pp. 730 (2015)

[Bar86] Barrington, D.A.: Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. In: Hartmanis, J. (ed.) Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, 28-30 May
1986, Berkeley, California, USA, pp. 1–5. ACM (1986)

[Bar17] Barak, B.: The complexity of public-key cryptography. In: Tutorials on
the Foundations of Cryptography. ISC, pp. 45–77. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57048-8 2

[Ben73] Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17,
525–532 (1973)

[Ben89] Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J.
Comput. 18(4), 766–776 (1989)

[BGI+01] Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BGI+12] Boaz et al.: On the (Im)possibility of obfuscating programs. J. ACM, 59(2),
6:1–6:48 (2012)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 13

https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-319-57048-8_2
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-55220-5_13

68 R. Canetti et al.

[BLMP23] Ball, M., Liu, Y., Mazor, N., Pass, R.: Kolmogorov comes to cryptomania:
on interactive Kolmogorov complexity and key-agreement. In: 2023 IEEE
64th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 458–483 (2023)

[BPW16] Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
474–502. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49096-9 20

[Bro04] Brodsky, A.: Reversible circuit realizations of Boolean functions. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 67–
80. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-
3 8

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. IACR Cryptol. ePrint Arch., pp. 163 (2015)

[CCMR24] Canetti, R., Chamon, C., Mucciolo, E., Ruckenstein, A.: Towards general-
purpose program obfuscation via local mixing. Cryptology ePrint Archive,
Paper 2024/006 (2024)

[CG75] Coppersmith, D., Grossman, E.: Generators for certain alternating groups
with applications to crytography. SIAM J. Appl. Math. 29(4), 624–627
(1975)

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 12

[CHVW19] Chen, Y., Hhan, M., Vaikuntanathan, V., Wee, H.: Matrix PRFs: construc-
tions, attacks, and applications to obfuscation. In: Hofheinz, D., Rosen, A.
(eds.) TCC 2019. LNCS, vol. 11891, pp. 55–80. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36030-6 3

[CJMR22] Chamon, C., Jakes-Schauer, J., Mucciolo, E.R., Ruckenstein, A.E.:
Encrypted operator computing: an alternative to fully homomorphic
encryption. CoRR, abs/2203.08876 (2022)

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 19

[CMR22] Chamon, C., Mucciolo, E.R., Ruckenstein, A.E.: Quantum statistical
mechanics of encryption: reaching the speed limit of classical block ciphers.
Ann. Phys. 446, 169086 (2022)

[CRMC23] Chamon, C., Ruckenstein, A.E., Mucciolo, E.R., Canetti, R.: Circuit com-
plexity and functionality: a thermodynamic perspective. arXiv preprint
arXiv:2309.05731, 2023

[CV13] Canetti, R., Vaikuntanathan, V.:D Obfuscating branching programs using
black-box pseudo-free groups. IACR Cryptol. ePrint Arch., pp. 500 (2013)

[CVW18] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 20

[DQV+21] Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D.: Suc-
cinct LWE sampling, random polynomials, and obfuscation. In: Nissim,
K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 256–287. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-90453-1 9

https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/1-4020-8141-3_8
https://doi.org/10.1007/1-4020-8141-3_8
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-030-36030-6_3
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
http://arxiv.org/abs/2309.05731
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-030-90453-1_9

Towards General-Purpose Program Obfuscation via Local Mixing 69

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from
lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 20

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol.
8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54242-8 4

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Symposium on Theory of Computing Conference, STOC
2013, Palo Alto, CA, USA, 1-4 June 2013, pp. 467–476 (2013)

[GHP24] Gretta, L., He, W., Pelecanos, A.: More efficient k-wise independent
permutations from random reversible circuits via log-sobolev inequalitie,
manuscript (2024)

[Gow96] Gowers, W.T.: An almost m-wise independed random permutation of the
cube. Comb. Probab. Comput. 5, 119–130 (1996)

[GP21] Gay, R., Pass, R.: Indistinguishability obfuscation from circular security.
In: Khuller, S., Williams, V.V. (eds.) STOC 2021: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, 21-25
June 2021, pp. 736–749. ACM (2021)

[GR14] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptol.
27(3), 480–505 (2014)

[Had00] Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 34

[HB05] Brodsky, A., Hoory, S.: Simple permutations mix even better (2005)
[HMMR05] Hoory, S., Magen, A., Myers, S., Rackoff, C.: Simple permutations mix

well. Theor. Comput. Sci. 348(2):251–261 (2005). Automata, Languages
and Programming: Algorithms and Complexity (ICALP-A 2004)

[HO24] He, W., O’Donnell, R.: Pseudorandom permutations from random
reversible circuits (2024)

[ILW23] Ilango, R., Li, J., Williams, R.R.: Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. Electron. Colloquium Comput. Com-
plex. TR23-038 (2023)

[IRS22] Ilango, R., Ren, H., Santhanam, R.: Robustness of average-case meta-
complexity via pseudorandomness. In: Leonardi, S., Gupta, A. (eds.)
STOC 2022: 54th Annual ACM SIGACT Symposium on Theory of Com-
puting, Rome, Italy, 20-24 June 2022, pp. 1575–1583. ACM (2022)

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: Khuller, S., Williams, V.V. (eds.) STOC 2021:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, 21-25 June 2021, pp. 60–73. ACM (2021)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.)
Proceedings of the 20th Annual ACM Symposium on Theory of Comput-
ing, May 2-4, 1988, Chicago, Illinois, USA, pp. 20–31. ACM (1988)

[KNT22] Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key
functional encryption. J. Cryptol. 35(3), 19 (2022)

[LP20] Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity. In:
Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, 16-19 November 2020, pp. 1243–
1254. IEEE (2020)

https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/3-540-44448-3_34

70 R. Canetti et al.

[LP21] Liu, Y., Pass. R.: Cryptography from sublinear-time average-case hardness
of time-bounded Kolmogorov complexity. In: Khuller, S., Williams, V.V.
(eds.) STOC 2021: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, Virtual Event, Italy, 21-25 June 2021, pp. 722–735. ACM
(2021)

[LPST16] Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation
with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G.,
Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8 17

[LPTV23] Liu, T., Pelecanos, A., Tessaro, S., Vaikuntanathan, V.: Layout graphs,
random walks and the t-wise independence of SPN block ciphers. In: Hand-
schuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023
- 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III, LNCS, vol.
14083, pp. 694–726. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-38548-3 23

[LTV21] Liu, T., Tessaro, S., Vaikuntanathan, V.: The t-wise independence
of substitution-permutation networks. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 454–483. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8 16

[RVV24] Ragavan, S., Vafa, N. and Vaikuntanathan, V.: Indistinguishability obfus-
cation from bilinear maps and LPN variants. Theory of Cryptography
Conference (TCC) (2024)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Shmoys, D.B. (ed.) STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pp. 475–484. ACM (2014)

[Tof80] Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10003-2 104

[Wik24] Wikipedia contributors: White-box cryptography — Wikipedia, the free
encyclopedia (2024). [Online; accessed 24-September-2024]

[WW21] Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling.
In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-77883-5 5

https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-031-38548-3_23
https://doi.org/10.1007/978-3-031-38548-3_23
https://doi.org/10.1007/978-3-030-84259-8_16
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5

Rate-1 Arithmetic Garbling From
Homomorphic Secret Sharing

Pierre Meyer(B), Claudio Orlandi, Lawrence Roy, and Peter Scholl

Aarhus University, Aarhus, Denmark
{pierre.meyer,orlandi,peter.scholl}@cs.au.dk

Abstract. We present a new approach to garbling arithmetic circuits
using techniques from homomorphic secret sharing, obtaining construc-
tions with high rate that support free addition gates. In particular, we
build upon non-interactive protocols for computing distributed discrete
logarithms in groups with an easy discrete-log subgroup, further demon-
strating the versatility of tools from homomorphic secret sharing. Relying
on distributed discrete log for the Damgård-Jurik cryptosystem (Roy and
Singh, Crypto ‘21), whose security follows from the decisional composite
residuosity assumption (DCR), we get the following main results:

– Two ciphertexts per multiplication, from IND-CPA security
of Damgård-Jurik. Assuming the Damgård-Jurik cryptosystem is
semantically secure (which follows from DCR), there is a garbling
scheme for circuits with B-bounded integer arithmetic using only
two ciphertexts per multiplication. The total bit-size of the resulting
garbled circuit is:

(n + 2s× + 2D×) · (ζ + 1) · logN

where n is the number of inputs, s× is the number of multiplications,
D× is the multiplicative depth of the circuit, N is an RSA modulus
and Nζ−1 is roughly the bound B on the magnitude of wire values
in the computation.

– One ciphertext per multiplication, from KDM security of
Damgård-Jurik. Assuming the Damgård-Jurik encryption scheme
remains secure given encryption of the key and its inverse, the con-
struction achieves rate-1. The total bit-size of the resulting garbled
circuit is:

(n + s× + 1) · (ζ + 1) · logN

where the parameters are as above, except Nζ−2 is the magnitude
bound.

As a side result, we show that our scheme based on IND-CPA security
achieves rate 3/5 for levelled circuits.

1 Introduction

Garbled circuits are a tool commonly used in protocols for secure two-party
computation and other cryptographic applications. Starting with the work of
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 71–97, 2025.
https://doi.org/10.1007/978-3-031-78023-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_3

72 P. Meyer et al.

Yao [Yao82], most constructions of garbled circuits are in the setting of Boolean
circuits: they transform a description of a circuit C : {0, 1}n → {0, 1} into
a garbled circuit ̂C, together with some input encoding information L =
{Li,0, Li,1}n

i=1. For an input x, an evaluator can use the garbled circuit together
with the subset of encoded inputs Lx := {Li,xi

}i to learn C(x), but nothing else
about the circuit or the input (besides some structure of C). Yao’s construction,
and most subsequent works, incur a multiplicative overhead O(λ) in the security
parameter λ, meaning that the size of ̂C is O(λ) times larger than the number
of gates in the original circuit C.

To garble a function containing arithmetic operations such as integer addition
and multiplication, traditionally one would have to first express these operations
as Boolean circuits and then garble the resulting circuit. Known circuits for �-
bit integer multiplication have size O(� log �), and more commonly O(�2), which
adds a large overhead to the size of the garbled circuit for these types of opera-
tions. This changed with the work of Applebaum, Ishai and Kushilevitz [AIK11],
who gave the first direct methods for garbling arithmetic computations. They
presented constructions in the model of arithmetic circuits for bounded integer
computation, where there exists a (possibly exponential) bound B ∈ N such that
for any set of admissible inputs, no wire value in the computation exceeds B in
absolute value.

Their main construction builds upon information-theoretic techniques for
garbling low-depth arithmetic circuits, and combines this with the learning with
errors assumption to support arbitrary polynomial-size circuits. They give an
alternative construction (with larger overhead) based solely on one-way func-
tions, which combines classical Boolean garbled circuits with the Chinese remain-
der theorem.

Rate of Arithmetic Garbling. An important efficiency metric of a garbling scheme
is the rate, which measures its bandwidth efficiency. In the model of B-bounded
integer computation, where the bit-length of wire values is � = log(2B + 1), for
a circuit with n inputs and |C| gates and garbled circuit of size size(̂C) bits, the
rate is roughly captured by the quantity

rate =
(|C| + n)�

size(̂C) + size(L)

We focus on measuring the rate as the circuit size tends towards infinity faster
than the number of inputs, with worst-case circuits consisting of e.g. predomi-
nantly multiplication gates. We are also interested in the asymptotic behaviour
of the rate as � tends to ∞.

Using Yao’s scheme, one can build an arithmetic garbling scheme with rate
O(1/(λ log �)) via asymptotically efficient (yet impractical) multiplication algo-
rithms, or O(1/(λ�)) with schoolbook multiplication, relying only on the exis-
tence of one-way functions. The LWE-based construction of [AIK11] achieves
constant rate for constant-degree polynomials, while for general circuits obtains
rate O(1/λLWE), where λLWE is the underlying LWE dimension. In very recent

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 73

work, Heath [Hea24] gave the first construction of arithmetic garbling with rate
O(1/λ) that solely relies on “Minicrypt”-style assumptions, in this case a circular
correlation-robust hash. Another recent work of Li and Liu [LL24] obtains rate
O(1/(λ�0.5)) in the random oracle model, as well as a construction with rate
O(log �/(λ�)) that supports free addition, matching the asymptotic efficiency
of a construction from [BMR16], whilst additionally supporting improved bit
decomposition gates.

The first constant-rate arithmetic garbling scheme for bounded integer com-
putations was constructed by Ball, Li, Lin and Liu [BLLL23], under the deci-
sional composite residuosity (DCR) assumption. Their construction uses the
Damgård-Jurik [DJ01] extension of Paillier encryption [Pai99] to construct a
more efficient key extension gadget than the LWE-based one of [AIK11], such
that each garbled addition or multiplication gate requires only a constant num-
ber of Damgård-Jurik ciphertexts. When the integer bit-length is sufficiently
large, Damgård-Jurik ciphertexts have rate 1− ε, which leads to a constant-rate
garbling scheme.

1.1 Related Work

Goldwasser et al. [GKP+13] constructed reusable garbled circuits based on the
subexponential learning with errors assumption, which was later improved to
be compact by Boneh et al. [BGG+14]. Compactness means that the size of
the garbled circuit only scales polynomially with the depth of the circuit and
not its size (assuming the cleartext circuit is known to the evaluator). This
leads to a garbling scheme for Boolean or arithmetic circuits with rate better
than 1. However, as observed in [BLLL23], the dependence on the circuit depth
and security parameter are both very large (n6) and the construction relies on
heavy machinery including fully homomorphic encryption and attributed-based
encryption, using subexponentially hard LWE.

The work of [BLLL23] additionally includes constructions of arithmetic gar-
bling for modulo p computations, instead of bounded integers. They present con-
structions based on LWE and DCR, however, both with a low rate in Õ(1/λ).
Li and Liu [LL24] also presented constructions based on LWE and DCR, and
in particular showed how to obtain free addition under DCR, albeit with worse
communication for multiplication gates than [BLLL23]. Both of these works also
present constructions that support bit-decomposition gadgets for mixing Boolean
and arithmetic computations in the same circuit.

Using bilinear maps, [FMS19] gave a construction of arithmetic garbling for
inner products with constant rate. Their construction can be bootstrapped to
polynomial-sized circuits using the CRT-based compiler of [AIK11], however,
this results in a poor rate.

Recently, Hazay and Yang [HY24] investigated the feasibility of maliciously
secure garbling, building on the semi-honest construction of [BLLL23].

74 P. Meyer et al.

1.2 Our Contributions

We introduce a new approach to garbling arithmetic circuits using techniques
from homomorphic secret sharing [BGI16,OSY21,RS21]. Unlike prior construc-
tions [AIK11,BLLL23], which rely on the linearly homomorphic properties of
Damgård-Jurik or LWE encryption, we additionally exploit methods for com-
puting distributed discrete logarithms in groups with an easy discrete-log sub-
group. Through this, we depart from the approach of combining an information-
theoretic randomized encoding with a key-extension gadget [AIK11,BLLL23],
instead giving direct constructions of arithmetic garbling with high rate.

We present two main constructions with security based on the Damgård-Jurik
encryption scheme: (1) a construction with rate 1, based on the key-dependent
message (KDM) security of Damgård-Jurik, and (2) a construction with rate
1/2, based on the decisional composite residuosity assumption (i.e. the IND-CPA
security of Damgård-Jurik). The former result is the first rate-1 construction of
arithmetic garbled circuits that does not rely on heavy tools such as attribute-
based encryption. Both constructions also enjoy free addition gates.

The asymptotic efficiency of our constructions is compared with prior works
in Table 1. We also give concrete examples for � ≈ logN bits, where N is the
RSA modulus, The concrete values for the rate of the [BLLL23] constructions
come from [BLLL23, Table 3], which uses an integer bound of B ≈ 4000 bits
and a 4096-bit Paillier modulus N . Notice that our two constructions achieve
concrete rates of 1/4 and 1/6 using the same parameters. As � grows larger, the

Table 1. Summary of bounded integer arithmetic garbling schemes for �-bit integers.
N is an RSA modulus, c > 1 is a constant, ε is a constant approaching zero as � → ∞.
“Strong DCR” is a variant of DCR combined with a DDH-like assumption with small
exponent

Construction Security Rate Free addition

[AIK11] LWE Θ(1/λLWE) ✗

Yao+[HVDH21] OWF Θ(1/λ log �) ✗

[BMR16,LL24] RO Θ(log �/λ�) ✓

[Hea24] CCR hash Θ(1/λ) ✗

[BLLL23] DCR Θ(1/c)
✗

(e.g. � ≈ logN) 1/36

[BLLL23] strong DCR Θ(1/c)
✗

(e.g. � ≈ logN) 1/24

Section 4.1 DCR + KDM 1 − ε
✓

(e.g. � ≈ logN) 1/4

Section 4.2 DCR 1/2 − ε
✓

(e.g. � ≈ logN) 1/6

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 75

rate of our schemes quickly approaches 1 and 1/2, for instance when � ≈ 12000
and logN ≈ 2000, we obtain respective rates 1/2 and 3/10. Meanwhile, the
constructions from [BLLL23] have rate 1/12 at best.

2 Technical Overview

Given x ∈ Z, we call “subtractive shares of x”, denoted 〈x〉1 and 〈x〉0, values
which satisfy 〈x〉1 − 〈x〉0 = x. We further use 〈x〉 to mean “either 〈x〉1 or 〈x〉0,
as clear from context”. In particular, if the evaluator and the garbler hold 〈x〉1
and 〈x〉0 respectively, then having parties compute f(〈x〉) means having them
compute f(〈x〉1) and f(〈x〉0) respectively.

In Sect. 2.1, we present a simple, warm-up construction that shows how to
build high-rate arithmetic garbled circuits using efficient distributed discrete
logarithm (DDLog) algorithms. In Sect. 2.2, we describe an optimised scheme,
which achieves rate-(1−ε) if the DDLog’s underlying encryption scheme is secure
against key-dependent messages (KDM-secure). In Sect. 2.3, we instantiate this
optimised construction using the Damgård-Jurik cryptosystem (and associated
DDLog). In Sect. 2.4, we provide a rate- 1−ε

2 garbling scheme, relying only on
semantic security (and not KDM-security) of Damgård-Jurik.

2.1 Arithmetic Garbled Circuits Through the Lense
of Homomorphic Secret Sharing

We build arithmetic garbled circuits following the definitional template intro-
duced by Applebaum, Ishai, and Kushilevitz [AIK11]. The garbler (who knows
the circuit but not its inputs) generates a global key k and a wire-dependent
key Kx for each wire x. Each wire x is then associated with the label Lx =
k · x + Kx. Note that this can also be interpreted as a secret-sharing 〈k · x〉
where 〈k · x〉1 = Lx is known to the evaluator and 〈k · x〉0 = Kx is known
to the garbler. We will exploit this duality to use techniques originating in the
homomorphic secret-sharing (HSS) domain to construct our garbling schemes.

Jumping ahead, the evaluator must be able to retrieve the values correspond-
ing to the labels of the output wires. To allow this, we let the garbler sample
k as a vector whose first coordinate is 1: it now follows that for each wire x,
Lx.fst = x + Kx.fst. For each output value z, including Kz.fst in the garbled
circuit therefore allows the evaluator to retrieve z from Lz. As it turns out,
defining k like this also helps us with the gate-by-gate evaluation.

The wire-dependent key Kx is instead generated uniformly at random for
each input x, and then the garbler proceeds to define the other keys in a gate-
by-gate fashion. Considering the “HSS viewpoint”, our task can then be viewed as
having garbler and evaluator non-interactively convert subtractive shares 〈k · x〉
and 〈k · y〉 into subtractive shares 〈k · g(x, y)〉 for any given gate g ∈ {+,−,×}.

If g is an addition gate with output z = x+ y, the garbler can simply define
their share Kz as Kz := Kx + Ky. This allows the evaluator to compute their

76 P. Meyer et al.

share Lz = Lx + Ly, which equals k · (x + y) + (Kx + Ky). From the HSS
viewpoint, this works since 〈x + y〉 = 〈x〉 + 〈y〉.

If g is a multiplication gate with output z = x ·y, we will exploit the following
identity:

k · z = kx · y = (kx + Kx) · (y + Ky.fst) − kx · (Ky.fst) (1)
− y · Kx − Kx · (Ky.fst)

= Lx · (Ly.fst) − kx · (Ky.fst) − y · Kx − Kx · (Ky.fst) (2)

The terms Lx · (Ly.fst) and Kx · (Ky.fst) can be computed locally by the
evaluator and garbler respectively, but neither can compute kx·(Ky.fst) or y·Kx.
We therefore let the garbler provide appropriate encodings of (Ky.fst) and Kx

as part of the garbled circuit, so that the evaluator can compute shares of these
terms, by solving the distributed discrete logarithm problem (DDLog).

Share Conversion from Distributed Discrete Logarithm. Without going
into details, for now we assume the existence of a deterministic algorithm DDLog,
that both the garbler and the evaluator can locally execute, satisfying the fol-
lowing property (for some appropriately chosen encryption scheme):

Let c = Encpk(A) be an encryption of A with decryption key sk, and 〈sk·B〉
a sharing (over Z) of sk·B, then DDLog(c〈sk·B〉) = 〈sk·AB〉 is a subtractive
share (over Z) of sk · AB.
In particular, if c is an encryption of sk−1 (with the inverse taken with
respect to the plaintext modulus) then it holds that DDLog(c〈sk·B〉) is a
substractive share (over Z) of B.

(The reader already familiar with homomorphic secret sharing literature may
pause here, as it is more usual for DDLog(Encpk(A)〈sk·B〉) to be a share of AB,
not sk · AB.)

Garbling a Multiplication Gate. We first specify how k is defined: the gar-
bler samples a keypair (sk, pk) associated with a DDLog-compatible encryption
scheme, then sets k ← (1, sk). To garble a multiplication gate with input wire
keys Kx,Ky, the garbler computes the following ciphertexts and adds them to
the garbled circuit1:

c
$← Encpk(sk−1), cy

$← Encpk(Ky.fst), and cx
$← Encpk(Kx) .

Using this, the garbler and evaluator can do the following:

1. With their shares 〈sk · x〉 (namely, Kx.snd and Lx.snd) and ciphertext cy

encrypting Ky.fst, run DDLog to obtain shares 〈sk · x · Ky.fst〉.
2. Using shares 〈sk · x · Ky.fst〉 and c encrypting sk−1, run DDLog to get shares

〈x · Ky.fst〉.
1 Note that the first two ciphertexts encrypt scalars, while the last encrypts a tuple.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 77

3. Concatenate the resulting shares 〈x · Ky.fst〉 and 〈sk · x · Ky.fst〉, to get 〈kx ·
Ky.fst〉.

Similarly, they can:

4. Use their shares 〈sk · y〉 (namely, Ky.snd and Ly.snd) and the encryption cx

of Kx, and run DDLog to compute shares 〈sk · y · Kx〉.
5. Use shares 〈sk ·y ·Kx〉 and the encryption of sk−1, the parties compute shares

〈y · Kx〉.
If the garbler and the evaluator define Kz and Lz respectively by offsetting

Kx · (Ky.fst) and Lx · (Ly.fst) by their shares of kx · Ky.fst (step 3) and y · Kx

(step 5), then, by Eq. (2), the invariant “Lz = k · z + Kz” is maintained.

Summarising, the garbled circuit contains one globally reusable ciphertext (c,
the encryption of sk−1), one ciphertext cx per left input-wire to a multiplication,
one ciphertext cy per right input-wire to a multiplication, and one mask Kz.fst
per output. Overall, provided the encryption scheme has rate-1, the garbling
scheme has rate close to 1/2 (provided the secret key is small enough compared
to the ring over which the circuit’s arithmetic is performed2) and achieves free
addition.

2.2 Achieving Rate-1

We now show how the above (sketch of a) construction can be adapted to achieve
rate-1, while preserving free addition. There are two key ideas. The first is an
alternative identity to Eq. (2) which breaks the asymmetry between the left
and right wires of multiplication gates, which means all ciphertexts are of the
same form. The second is exploiting linear homomorphism of the underlying
encryption scheme in order to halve the number of ciphertexts: In the previous
construction, the garbled circuit includes one ciphertext for each input wire to
a multiplication gate. In the following, the garbled circuit only contains one
ciphertext for each multiplication gate (which this time depends on the output
wire of the gate), as well as one ciphertext per input wire.

In the rate-1 construction, k ← sk, Lx and Kx (for each wire x) are now
scalars satisfying k · x = Lx − Kx. We handle addition gates exactly as before.
To understand how we support multiplications, consider Eq. (4):

sk2 · z = sk · x · sk · y = (sk · x + Kx) · (sk · y + Ky) − sk · x · Ky (3)
− sk · y · Kx − Kx · Ky

= Lx · Ly − sk · x · Ky − sk · y · Kx − Kx · Ky (4)

Including encryptions of Kx and Ky in the garbled circuit allows the garbler and
evaluator to use DDLog to compute shares 〈sk ·x ·Ky〉 and 〈sk ·y ·Kx〉 since they
hold shares 〈sk · x〉 (namely, Lx and Kx) and 〈sk · y〉 (namely, Ly and Ky). In
2 We need authenticated shares of wire values (i.e. 〈sk ·w〉) to fit in the plaintext space.

78 P. Meyer et al.

turn, using Eq. (4), the garbler and the evaluator can compute shares 〈sk2 · z〉
(recall that the garbler can compute Kx · Ky and the evaluator can compute
Lx · Ly). Finally, including an encryption of sk−1 in the garbled circuit allows
the parties to use their shares 〈sk2 ·z〉 and DDLog to compute shares 〈sk·z〉: these
shares define Kz and Lz. Furthermore, if z is an output gate, the parties can use
DDLog once more, again with the encryption of sk−1, to compute shares 〈z〉; as
before, if the garbler publishes its share of z then the evaluator can reconstruct
the value of z from the label Lz.

One question remains: how do we obtain the encryptions of Kx and Ky for
each multiplication gate z = x×y, without publishing two ciphertexts per gate?
By definition, Kx+y := Kx+Ky, and therefore if the encryption scheme supports
linear homomorphism, the parties can use encryptions of Kx and Ky to generate
an encryption of Kx+y. So, it is enough for the garbler to send an encryption
of Kw for each w which is either an input to the circuit or the output of a
multiplication gate: the parties can then proceed in a gate-by-gate fashion to
reconstruct all the necessary ciphertexts.

2.3 Concrete Instantiation Using the Damgård-Jurik encryption
scheme [DJ01]

Recall that, in the Damgård-Jurik cryptosystem [DJ01], the public key is an
RSA modulus N = p · q (where p and q are large primes) while the secret
key is its Euler totient sk = (p − 1) · (q − 1). The scheme is parameterised by
an integer ζ ≥ 2: the plaintext space is Z/Nζ

Z, while the ciphertext space is
Z/N ζ+1

Z. The encryption scheme therefore has rate 1/(1 + 1/ζ) . The scheme
is also linearly homomorphic, and Roy and Singh [RS21] showed there exists a
DDLog algorithm satifying the requirements from Sect. 2.1)3, so it can be used
to instantiate the arithmetic garbled circuit described in Sect. 2.2. Because we
need to fit (shares of) sk · w in the plaintext space (of size Nζ) for each wire
w (and sk = (p − 1) · (q − 1) ≤ p · q = N), we can set parameters so the
arithmetic is performed over a ring of size Nζ−1. However, we cannot use this
entire plaintext space, due to a failure probability in DDLog when the underlying
plaintexts are too large. This means we get a garbling scheme for B-bounded
integer computation, where B ≈ N ζ−1/2κ and κ is a statistical correctness
parameter (ensuring correctness with probability 1− 2−κ per gate). Overall, the
garbling scheme of Sect. 2.2 has rate (ζ − 1)/(ζ + 1). We can therefore achieve
rate-(1 − ε) for an arbitrarily small constant ε.

Figure 1 summarises how the garbler and the evaluator perform multiplica-
tions in the rate-1 garbling scheme of Sect. 2.2 as instantiated with Damgård-
Jurik (which we assume to be KDM-secure) and Roy-Singh’s DDLog. For clarity,
the figure shows the roles of the two parties as symmetric, but recall that we
are instantiating a garbling scheme, where the garbler can perform all of their

3 That is, if c is an encryption of y under public key N , and 〈sk · x〉 is a share of sk · x,
then DDLog(c〈sk·x〉) is a share of sk · xy.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 79

Fig. 1. Operations performed by the garbler (resp. evaluator) to convert their keys
(resp. labels) for wires x and y into a key (resp. label) for wires z = x · y. This requires
KDM-security of Damgård-Jurik encryption; (sk, N) is the secret/public key pair.

garbling operations first, send the garbled circuit to the evaluator, who then
evaluates the gates.

2.4 Removing the Circular-Security Assumption

The security of the scheme in Sect. 2.3 relies on assuming security of the underly-
ing encryption scheme against key-dependent message attacks (KDM-security).
Most visibly, this is because the garbled circuit contains an encryption of the
inverse of the secret key, but also because the evaluator receives encryptions
of shares of the form Encpk(Kx = 〈sk · x〉0) as well as receiving their share
Lx = 〈sk · x〉1 of this value. The evaluator may know x, and x would allow com-
puting Encpk(sk) from Encpk(Kx) because (Lx−Kx)/x = sk and Enc is additively
homomorphic. Our scheme can be adapted to instead rely on semantic security
(provably implied by the decisional composite residuosity assumption, DCR),
but at the cost of reducing the rate to 1/2 − ε.

Removing the Need for EncN (sk−1). Without circular security, we can no
longer use an encryption of sk−1 to convert authenticated wire shares 〈sk·w〉 into
plain shares 〈w〉 (which are required for output wires). Instead, following [RS21],
we will use an alternative decryption key for Damgård-Jurik, which allows to
directly obtain shares 〈w〉 from DDLog without an encryption of sk−1:

Let d ← sk · (sk−1 mod N ζ) and c be a Damgård-Jurik encryption of y
under public key N , then DDLog(c〈d·x〉) = 〈x · y〉 is a share of x · y.

80 P. Meyer et al.

Next, to use this in garbling, we will use a third multiplication identity:4

z = x · y = 〈x〉1 · 〈y〉1 − x · 〈y〉0 − y · 〈x〉0 − 〈x〉0 · 〈y〉0 (5)

Assuming the parties’ shares can be derived from their key or label for x, the
parties can locally compute the respective values 〈x〉0 · 〈y〉0 and 〈x〉1 · 〈y〉1. To
obtain the missing cross-terms, the garbler can provide EncN (〈w〉0) for each wire
w (or rather, exploiting linear homomorphism as in Sect. 2.2, one ciphertext for
each input or output of a multiplication gate is enough), allowing use of DDLog
to obtain shares of the necessary products.

The problem, however, is that we still need to get shares of d ·w for each wire
w. Trying to generate these shares in the same way as before runs again into a
circularity issue, as an identity of the form

d · z = 〈d · x〉1 · 〈y〉1 − dx · 〈y〉0 − y · 〈d · x〉0 − 〈d · x〉0 · 〈y〉0
requires the garbler to provide an encryption of 〈d ·x〉0. To bypass this problem,
we instead generate a sequence of keypairs, one per multiplicative level of the
circuit, and exploit the idea of key-switching.

Key-Switching. Let D be the multiplicative depth of the circuit. For each i ∈
[0,D], we have the garbler generate a keypair (Ni, ski) (and set di accordingly).
The idea behind key-switching is to allow the parties to convert shares of di · w
into shares of di+1 · w (then recursively of di+2 · w, etc..). This can simply be
done by having the garbler provide an encryption of di+1 under keypair (Ni, ski).
Then, the parties can compute shares:

〈di+1 · w〉 ← DDLog(c〈di·w〉
i), where ci

$← EncNi
(di+1) .

Thanks to this trick, it is now possible to build an arithmetic garbling scheme
without resorting to KDM-style assumptions, at the price of achieving a lower
rate 1

2 −ε. Getting to the final construction requires taking care of more technical
issues, which we explain in detail in Sect. 4.2.

3 Preliminaries

3.1 Arithmetic Garbled Circuits

3.1.1 Arithmetic Circuits with Bounded Integer Computation. We
use a model of arithmetic circuits consisting of addition, subtraction and (fan-in
two) multiplication gates, all computed over Z. We work in the bounded integer
computation model, where there exists a bound B = B(λ) ∈ N that bounds
the magnitude of circuit wire values. For a circuit C with n input wires, we say
that an input vector x ∈ Z

n is admissible with respect to bound B if the inputs,
outputs and every intermediate wire value obtained during the evaluation of C
are in the range [−B,B].
4 Recall, we use subtractive share notation, where 〈x〉 means that x = 〈x〉1 − 〈x〉0.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 81

3.1.2 Arithmetic Garbling. We define arithmetic garbled circuits, adapting
the definition of [BLLL23].

Definition 1 ((B-bounded) Arithmetic Garbled Circuit). A garbling
scheme for a family of circuits classes C = {Cλ}λ∈N� for B-bounded inte-
ger computation with label space L = L(λ) is a pair of p.p.t. algorithms
AGC = (AGC.Garble,AGC.Eval) with the following syntax and properties:

– Garble(1λ, C) : On input a security parameter 1λ and a circuit C ∈ Cλ with n

inputs, Garble outputs n key pairs (ki
0,k

i
1)i∈[n] ∈ L and a garbled circuit ̂C.

– Eval((Li)i∈[n], ̂C) : On input n input labels (Li)i∈[n] ∈ Ln, and a garbled
circuit ̂C, Eval outputs a value y ∈ [0, B].

– Correctness. A garbling scheme is correct if there exists a negligible function
negl such that for all λ ∈ N, every circuit C ∈ Cλ with n inputs, and every
x1, . . . , xn ∈ X n where X is the set of admissible inputs of C induced by bound
B, the following holds:

Pr
[

Eval((Li)i∈[n], ̂C) =Z C(x1, . . . , xn) :
((ki

0,k
i
1)i∈[n], ̂C) $← Garble(1λ, C)

Li ← ki
0 · xi + ki

1

]

≤ negl(λ) .

– Privacy. A garbling scheme is secure if there exist a p.p.t. simulator S such
that for all sequence of circuits {Cλ}λ∈N, where Cλ ∈ Cλ with n = n(λ)
inputs, and every admissible (with respect to B and Cλ) sequence of inputs
{(x1,λ, . . . , xn,λ)}λ∈N, the following holds:

{S(1λ, Cλ, y) : y ← Cλ(x)
}

c≈
⎧

⎨

⎩

((Li)i∈[n], ̂Cλ) :
((ki

0,k
i
1)i∈[n], ̂Cλ)

$← Garble(1λ, Cλ)
Li ← ki

0 · xi + ki
1

y ← Cλ(x)

⎫

⎬

⎭

.

To measure the efficiency of an arithmetic garbled circuit, we define its rate
as follows.

Definition 2 (Rate of Arithmetic Garbled Circuit). Let C be a class
of arithmetic circuits, let AGC be an arithmetic garbling scheme for C with B-
bounded computation, and let � = log(2B + 1). The rate of AGC for C is the
quantity:

rate = lim inf
C∈C

min
x

(|C| + n)�

size(̂C) +
∑

i size(k
i
0 · xi + ki

1)
,

where the minimum is taken over all admissible inputs to the circuit C, and the
limit infimum is taken over all circuits in C (in the sense of the limit of a net,
as we require C to form a directed set when ordered by inclusion).

82 P. Meyer et al.

We are most interested in the case where the circuit size is dominated by the
number of computation gates (including outputs, but as opposed to inputs).5
That is, we will typically be interested in classes of circuits Cf that contain
only circuits where where the number of inputs n ≤ f(|C|) for a sublinear
function f . Note that the rate is a worst-case quantity that does not account for
optimizations like free addition gates.

Previously, [BLLL23] define rate to be roughly the inverse of the above quan-
tity, meaning that typically rate ≥ 1. Our definition is more consistent with the
standard concept of the rate of an encryption scheme, which is at most 1.

When AGC supports arbitrarily large values of �, we are also interested in
the asymptotic behaviour of the rate as � tends to ∞.

3.2 Damgård-Jurik Cryptosystem

The Damgård-Jurik cryptosystem [DJ01] is a generalisation of the Paillier cryp-
tosystem [Pai99] (which, with the notation of Fig. 2, can be seen as the special
case ζ = 1).

Definition 3 (Decision Composite Residuosity Assumption (DCR),
[Pai99]). Let RSA.Gen be a polynomial-time algorithm which, on input a security
parameter λ, outputs (N, p, q) where p and q are λ-bit primes and N = pq. Let λ
be a security parameter. We say that the Decision Composite Residuosity (DCR)
problem is hard relative to modulus-sampling algorithm RSA.Gen if

{

(N,x) :
(N, p, q) $← RSA.Gen

x
$← (Z/N2

Z)×

}

c≈
{

(N,xN mod N) :
(N, p, q) $← RSA.Gen

x
$← (Z/N2

Z)×

}

.

Theorem 4 (Damgård-Jurik Cryptosystem [DJ01]). For any choice of the
parameter ζ ≥ 2, the construction of Fig. 2 is a CPA-secure linearly homomor-
phic encryption scheme if and only if the DCR assumption holds.

5 As an alternative to considering only circuits with more gates than inputs, we could
allow the garbling scheme to use “compressed inputs”. That is, if (as in in both of
our constructions) the labels can be defined by fixing ki

0 to be the same for all i,
and sampling each ki

1 pseudorandomly, then there are methods of generating the
input wire labels using only sublinear communication, such as the succinct VOLE
of [ARS24]. To reflect this, we could then modify the rate definition to not charge
for the size of the input wire labels.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 83

Fig. 2. The Damgård-Jurik cryptosystem.

3.3 IND-KDM Security

Informally, an encryption scheme is KDM-secure if it remains secure when the
plaintext messages are a function of the secret key.

Definition 5 Key-Dependent Message Security[BRS03], Special Case).
A public-key encryption scheme PKE = (KeyGen,Enc,Dec), whose private-key
and message spaces are denoted K and M respectively, is secure in the presence
of key-dependent messages with respect to function class F ⊆ K → M (or

84 P. Meyer et al.

simply F-KDM-secure) if for every p.p.t. algorithm A· with oracle queries
∣

∣

∣

∣

Pr
[

AOKDM
F,sk,0(1λ, pk) = 1: (sk, pk) $← KeyGen(1λ)

]

− Pr
[

AOKDM
F,sk,1(1λ, pk) = 1: (sk, pk) $← KeyGen(1λ)

]

∣

∣

∣

∣

≤ negl(λ) ,

where oracles OKDM
F,sk,0 and OKDM

F,sk,1 are defined in Fig. 3.

Fig. 3. Oracles used IND-KDM (Definition 5) security.

Note that in all generality, KDM-security requires we allow the plaintexts to
be functions of multiple secret keys (i.e. F ⊆ K� → M, where � is some param-
eter, polynomial in the security parameter) and the encryption to be performed
under any one of those keys. For our purposes however, it suffices to consider
the special case � = 1. In fact, whenever we use KDM-secure encryption in this
paper, it will suffice for the encryption scheme to be secure given encryptions of
linear combinations of the key, its inverse, and all constants6.

3.4 Distributed Discrete Logarithm

We recall in Fig. 4 the definition of distributed discrete logarithm function DDLog
introduced by Roy and Singh [RS21]. The properties of this function which we
use in this paper are stated in lemmata 6, 7, and 8. Note that these are imme-
diate corollaries/reformulations of [RS21, Theorem 18] and [RS21, Lemma 19].
Throughout, we use the symmetric convention for the mod operator. Namely,
“ · mod B” takes values in (−B/2;B/2]. We recall in Fig. 4 the definition of dis-
tributed discrete logarithm function DDLog introduced by Roy and Singh [RS21].
The properties of this function which we use in this paper are stated in lemmata
6, 7, and 8. Note that these are immediate corollaries/reformulations of [RS21,
6 Note that if F includes all constant functions from K to M, then F-KDM security

implies CPA security.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 85

Theorem 18] and [RS21, Lemma 19]. Throughout, we use the symmetric con-
vention for the mod operator. Namely, the function “ · mod B” takes values in
(−B/2;B/2].

Fig. 4. [RS21]’s distributed discrete logarithm for the Damgård-Jurik cryptosystem
[DJ01].

Lemma 6. For all (N,ϕ) ∈ Supp(DJ.KeyGen), for all exponents ζ ≥ 1, and for
all ciphertexts c ∈ (Z/Nζ+1

Z)× and shares (over Z) 〈xϕ〉0, 〈xϕ〉1 of some x ∈ Z

times ϕ, we have

DDLog(c〈xϕ〉1) − DDLog(c〈xϕ〉0) ≡ DJ.DecN,ζ,ϕ(c) · x · ϕ mod N ζ .

We refer to the full version of this paper [MORS24] for the proof of
Lemma 6.

Lemma 7. Let ζ ≥ 1. For all (N,ϕ) ∈ Supp(DJ.KeyGen), let ν = N−ζ mod ϕ.
For all ciphertexts c ∈ (Z/Nζ+1

Z)×, all x ∈ Z, and all shares (〈x〉0, 〈x〉1) and
(〈xν〉0, 〈xν〉1) of x and xν, we have
[

DDLog(c〈x〉1−Nζ ·〈xν〉1)−DDLog(c〈x〉0−Nζ ·〈xν〉0) ≡ DJ.DecN,ζ,ϕ(c) ·x mod N ζ .

We refer to the full version of this paper [MORS24] for the proof of
Lemma 7.

Lemma 8. For all moduli M > 1 and all modulo M shares 〈x〉0, 〈x〉1 ∈ Z/MZ

of some x ∈ Z, we have

Pr
r

$←Z/MZ

[

(〈x〉1 + r) mod M − (〈x〉0 + r) mod M = x
]

= max
(

1 − |x|
N ζ

, 0
)

.

Proof. This is essentially [RS21, Lemma 19]. �

4 Arithmetic Garbled Circuits

4.1 From KDM Security of Damgård-Jurik

We have already provided a high-level technical overview of this construction
in Sect. 2.2, and we therefore proceed below with the formal description of our
garbling scheme (Fig. 5) and its proof of correctness and security.

86 P. Meyer et al.

There is only one difficulty which is not addressed by the technical overview,
and this is the reason why our garbling scheme only supports bounded-integer
computation, and not full-blown modular arithmetic. By default, computing a
DDLog allows the parties to generate shares modulo some value, but these shares
need to then be converted into shares over Z before they can be used as input
to another DDLog operation. If the shared value is small enough (which we
guarantee by restricting ourselves to B-bounded computation) and the shares
are (pseudo)randomised (which we guarantee by having garbler and evaluator
offset their shares of each wire value using the same PRF key), then taking
these shares modulo B yields correct shares over Z. We note that this trick was
previously used in [OSY21].

Theorem 9 (AGC with one Ciphertext per Multiplication from KDM-
Secure Damgård-Jurik, via DDLog). Let λ be a security parameter. Let
ζ ≥ 2, assume the KDM-security7 of the Damgård-Jurik encryption scheme with

Fig. 5. Arithmetic garbled circuit with one ciphertext per multiplication (and free
addition) from KDM-security of Damgård-Jurik (gate-by-gate description).
7 More precisely, the theorem assumes KDM-security with respect to the class con-

taining the following functions: the inverse function, all linear combinations, and all
constant functions. Note that because the Damgård-Jurik cryptosystem is linearly
homomorphic, linear combination are well-defined.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 87

Fig. 5. (continued)

88 P. Meyer et al.

parameter ζ, and let �(λ) be the bit-length of the corresponding RSA modulus. Let
ε > 0. For every B ≤ 2(ζ−2−ε)·�(λ), the construction of Fig. 5 is an arithmetic
garbling scheme for B-bounded integer computation. Moreover, if a circuit C
has n inputs, m outputs, and s× multiplication gates then its garbled circuit has
bit-size

(n + s× + 1) · (ζ + 1) · �(λ)
︸ ︷︷ ︸

size of a DJ
ciphertext

+ m · ζ · �(λ)
︸ ︷︷ ︸

decoding material

while each input label is 2ζ · �(λ) bits.

We refer to the full version of this paper [MORS24] for the proof of
Theorem 9.

4.2 From CPA Security of Damgård-Jurik

In Sect. 4.2.1 we describe (in a “overview” style, introducing one technique at
a time) the techniques which allow us to remove the need for KDM security
assumptions. We refer to Sect. 4.2.2 for a formal treatment, with the resulting
construction described in Fig. 7.

4.2.1 Techniques to Remove Circular Security. As discussed in Sect. 2.4,
the main idea behind removing the dependence on KDM-style assumptions is
to use the powerful idea of key-switching i.e., for each layer of multiplications
in the circuit the garbler will generate a different Damgård-Jurik key-pair, and
only encrypt (functions of) the secret-key in layer i + 1 under the public key of
layer i.

Armed with this idea, there are still a few technical issues to address before
we are ready to provide our formal construction. Also, for the construction in this
section, keys and labels are defined in such a way as to maintain the invariant

Lw = (1, di) · w − Kw,

where i is the multiplicative depth of wire w.

For each addition gate z = x + y, where x, y, z are at depth i1, i2, j (with
0 ≤ i1 < j ≤ D − 1, 0 ≤ i2 < j ≤ D − 1), the parties (1) decompose their
labels/keys for x and y as 〈x〉‖〈di1 · x〉 and 〈y〉‖〈di2 · y〉, (2) perform key-
switches to generate 〈dj · x〉 and 〈dj · y〉, (3) set their label/key for z to be
(〈x〉+ 〈y〉)‖(〈dj · x〉+ 〈dj · y〉) . By linearity, these keys and labels indeed satisfy
Lz = (1, dj) · z − Kz.

For each multiplication gate z = x · y, where x, y, z are at depth i1, i2, j (with
0 ≤ i1 < j ≤ D − 1, 0 ≤ i2 < j ≤ D − 1), we exploit the identity from Eq. (5)
restated here for convenience:

z = 〈x〉1 · 〈y〉1 − x · 〈y〉0 − y · 〈x〉0 − 〈x〉0 · 〈y〉0 (6)

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 89

1. Generate 〈z〉. The garbler includes in the garbled circuit encryptions of
its shares under the public key of the final layer D i.e., ciphertexts cx

$←
EncND

(〈x〉0) and cy
$← EncND

(〈y〉0), and the parties (1) perform key switches
to generate 〈dD ·x〉 and 〈dD ·y〉, (2) compute 〈x · 〈y〉0〉 ← DDLog(c〈dD·x〉

y) and
〈y · 〈x〉0〉 ← DDLog(c〈dD·y〉

x), (3) use Eq. (6) to compute shares of z.
2. Generate 〈dj · z〉. Assume that for i ∈ [0,D − 1], the garbler provided cipher-

texts c′
i ← EncNi

(d2i+1) (these ciphertexts are to be globally reused for every
multiplication gate). The garbler performs key-switches to convert 〈di1 ·x〉0 to
〈dj ·x〉0, and then additionally provides the ciphertext ctx

$← EncNj
(〈dj ·x〉0).

The parties do the following:
(a) perform key switching to compute 〈dj−1 ·x〉, 〈dj ·x〉, 〈dj−1 ·y〉, and 〈dj ·y〉;

// Note that j > 0 .
(b) compute 〈(dj)2 · x〉 ← DDLog((c′

j−1)
〈dj−1·x〉) and 〈(dj)2 · y〉 ←

DDLog((c′
j−1)

〈dj−1·y〉);
(c) perform (D − j) key-switches using (ci)Di=j to convert 〈(dj)2 · x〉 to 〈dD ·

dj · x〉;8
(d) perform (D − j) key-switches using (ci)Di=j to convert 〈(dj)2 · y〉 to 〈dD ·

dj · y〉;
(e) compute 〈djx · 〈y〉0〉 ← DDLog(c〈dD·djx〉

y) and 〈y · 〈dj · x〉0〉 ←
DDLog(ct〈dD·y〉

x);
(f) use the identity of Eq. (7), 〈x〉, 〈y〉, 〈djx · 〈y〉0〉, and 〈y · 〈dj · x〉0〉 to

compute 〈dj · z〉.

dj · z = 〈dj · x〉1 · 〈y〉1 − djx · 〈y〉0 − y · 〈dj · x〉0 − 〈dj · x〉0 · 〈y〉0 (7)

With this approach, the garbled circuit contains two ciphertext per multipli-
cation gate (that is, cx and ctz for z = x · y), plus an additional 2D ciphertexts
used to perform key switches (that is, the encryptions of di+1 and d2i+1 under
(Ni, ski) for i ∈ [0,D − 1]).

There is a problem however with the scheme as presented. Because the di

can, in all generality, be as large as N ζ , and we need authenticated shares of
the wire values to fit in the plaintext space, it seems that we can only perform
arithmetic over F2. Fortunately, there is a simple fix to this last problem.

Replace 〈d · X〉 with 〈ν · X〉. Roy and Singh [RS21, Section 4.3] introduced
a trick in order to bypass the above problem. If (N, sk) is a keypair for the
Damgård-Jurik encryption scheme, and we define d ← sk · (sk−1 mod N ζ) and
ν ← N−ζ mod sk, then by the Chinese remainders theorem d ≡ 1−Nζν mod (sk·
N ζ). Since N ζ is public, this allows parties to locally convert ν-authenticated
shares into d-authenticated ones: 〈d · X〉 ← 〈X〉 − N ζ · 〈ν · X〉. Crucially, since
ν ≤ sk ≤ N , we can encrypt ν-authenticated shares of wire values as large as
N ζ−1. In turn the garbling scheme has rate (ζ − 1)/(2ζ + 2) (assuming that the
multiplicative depth of the circuit is significantly smaller than its size).
8 Note that 〈(dj)

2 · x〉 can be seen as 〈dj · (dj · x)〉: the leading dj is the one being
“switched out for dD”.

90 P. Meyer et al.

Fig. 6. Operations performed by the garbler (resp. evaluator) to convert their keys
(resp. labels) for wires x (at multiplicative depth �x) and y (at multiplicative depth
�y) into a key (resp. label) for wire z = f(x, y) (at multiplicative depth �z), where
f ∈ {+, ×}. This only relies on CPA-security of Damgård-Jurik encryption.

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 91

Concretely, key-switches are now performed as follows, given 〈x〉, 〈ν · x〉,
ci

def= EncNi
(νi+1):

1. compute 〈di · x〉 ← 〈x〉 − N ζ
i 〈ν · x〉;

2. compute 〈νi+1 · x〉 ← DDLog(c〈di·x〉
i);

3. optionally, use 〈x〉 again to compute 〈di+1 · x〉 and continue key-switching
recursively.

We summarise in Figs. 6a and 6b how garbler and evaluator now perform addi-
tions and multiplications.

4.2.2 Formal Construction, Theorem Statement, and Proof.

Theorem 10 (AGC with two Ciphertexts per Multiplication from
CPA-secure Damgård-Jurik, via DDLog). Let ε > 0. Let λ be a security
parameter. Let ζ ≥ 2, assume the CPA-security of the Damgård-Jurik encryption

Fig. 7. Arithmetic garbled circuit with two ciphertexts per multiplication (and free
addition) from CPA-security of Damgård-Jurik (gate-by-gate description).

92 P. Meyer et al.

Fig. 7. (continued)

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 93

Fig. 7. (continued)

94 P. Meyer et al.

Fig. 7. (continued)

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 95

Fig. 7. (continued)

scheme with parameter ζ, and let �(λ) be the bit-length of the corresponding RSA
modulus. For every B ≤ 2(ζ−1−ε)·�(λ), the construction of Fig. 7 is an arithmetic
garbling scheme for B-bounded integer computation. Moreover, if a circuit C
has n inputs, m outputs, s× multiplication gates, and has multiplicative depth
D, then its garbled circuit has bit-size

(n + 2s× + 2D) · (ζ + 1) · �(λ)
︸ ︷︷ ︸

size of a DJ
ciphertext

+m · ζ · �(λ)
︸ ︷︷ ︸

decoding
material

while each input label is 2ζ · �(λ) bits.

We refer to the full version [MORS24] for the proof of Theorem 10.

Acknowledgments. This research was supported by: the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement number 803096 (SPEC); the Danish Independent
Research Council under Grant-IDs DFF-3103-00077B (CryptoDigi) and DFF-0165-
00107B (C3PO); and the DARPA SIEVE program (contract HR001120C0085 “FRO-
MAGER”). Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of DARPA. Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).

References

[AIK11] Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits.
In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE Computer Society
Press (2011)

[ARS24] Abram, D., Roy, L., Scholl, P.: Succinct homomorphic secret sharing. In:
Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT
2024, pp. 301–330. Springer, Cham, 2024. https://doi.org/10.1007/978-3-
031-58751-1_11

https://doi.org/10.1007/978-3-031-58751-1_11
https://doi.org/10.1007/978-3-031-58751-1_11

96 P. Meyer et al.

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–
556. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_30

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4_19

[BLLL23] Ball, M., Li, H., Lin, H., Liu, T.: New ways to garble arithmetic circuits.
In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. Part II, volume 14005
of LNCS, pp. 3–34. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-30617-4_1

[BMR16] Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arith-
metic circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 565–577. ACM Press (2016)

[BRS03] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC
2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36492-7_6

[DJ01] Damgård, I., Jurik, M.: A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-44586-2_9

[FMS19] Fleischhacker, N., Malavolta, G., Schröder, D.: Arithmetic garbling from
bilinear maps. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS
2019. LNCS, vol. 11736, pp. 172–192. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29962-0_9

[GKP+13] Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh,
D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–
564. ACM Press (2013)

[Hea24] Heath, D.: Efficient arithmetic in garbled circuits. In: Joye, M., Leander,
G. (eds.) EUROCRYPT 2024. Part V, volume 14655 of LNCS, pp. 3–31.
Springer, Cham (2024). https://doi.org/10.1007/978-3-031-58740-5_1

[HVDH21] Harvey, D., Van Der Hoeven, J.: Integer multiplication in time o(nlog\, n).
Ann. Math. 193(2), 563–617 (2021)

[HY24] Hazay, C., Yang, Y.: Toward malicious constant-rate 2PC via arithmetic
garbling. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024. Part V,
volume 14655 of LNCS, pp. 401–431. Springer, Cham (2024). https://doi.
org/10.1007/978-3-031-58740-5_14

[LL24] Li, H., Liu, T.: How to garble mixed circuits that combine Boolean and
arithmetic computations. In: Joye, M., Leander, G. (eds.) EUROCRYPT
2024. Part VI, volume 14656 of LNCS, pp. 331–360. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-58751-1_12

[MORS24] Meyer, P., Orlandi, C., Roy, L., Scholl, P.: Rate-1 arithmetic garbling from
homomorphic secret-sharing. Cryptology ePrint Archive, Report 2024/820
(2024)

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-031-30617-4_1
https://doi.org/10.1007/978-3-031-30617-4_1
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-030-29962-0_9
https://doi.org/10.1007/978-3-030-29962-0_9
https://doi.org/10.1007/978-3-031-58740-5_1
https://doi.org/10.1007/978-3-031-58740-5_14
https://doi.org/10.1007/978-3-031-58740-5_14
https://doi.org/10.1007/978-3-031-58751-1_12

Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing 97

[OSY21] Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic
secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. Part I, volume 12696 of LNCS, pp. 678–708.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-
x_16

[RS21] Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR
and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84252-9_23

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November (1982)

https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/3-540-48910-x_16
https://doi.org/10.1007/3-540-48910-x_16
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-030-84252-9_23

Key-Homomorphic and Aggregate
Verifiable Random Functions

Giulio Malavolta(B)

Bocconi University, Milan, Italy

giulio.malavolta@hotmail.it

Abstract. A verifiable random function (VRF) allows one to compute a
random-looking image, while at the same time providing a unique proof
that the function was evaluated correctly. VRFs are a cornerstone of
modern cryptography and, among other applications, are at the heart
of recently proposed proof-of-stake consensus protocols. In this work we
initiate the formal study of aggregate VRFs, i.e., VRFs that allow for
the aggregation of proofs/images into a small digest, whose size is inde-
pendent of the number of input proofs/images, yet it still enables sound
verification. We formalize this notion along with its security properties
and we propose two constructions: The first scheme is conceptually sim-
ple, concretely efficient, and uses (asymmetric) bilinear groups of prime
order. Pseudorandomness holds in the random oracle model and aggre-
gate pseudorandomness is proven in the algebraic group model. The sec-
ond scheme is in the standard model and it is proven secure against the
learning with errors (LWE) problem.

As a cryptographic building block of independent interest, we intro-
duce the notion of key homomorphic VRFs, where the verification keys
and the proofs are endowed with a group structure. We conclude by dis-
cussing several applications of key-homomorphic and aggregate VRFs,
such as distributed VRFs and aggregate proof-of-stake protocols.

1 Introduction

A verifiable random function (VRF) is a keyed function that satisfies the follow-
ing cryptographic properties:

– Pseudorandomness: The evaluation of the function at any point is compu-
tationally indistinguishable from uniform, provided that the distinguisher is
not given the secret key.

– Verifiability: For any given image, there exists a unique proof of correct eval-
uation of the function that can be publicly verified, without revealing any
additional information about the secret key.

VRFs were first introduced in the work of Micali, Rabin and Vadhan [43], and
have been subject of an intense research effort. Over the years, a large amount
of VRF constructions have emerged [3,17,24,29,32,33,35,42], improving on the

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 98–129, 2025.
https://doi.org/10.1007/978-3-031-78023-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_4

Key-Homomorphic and Aggregate Verifiable Random Functions 99

original proposal in terms of computational assumptions, and concrete effi-
ciency. This progress was accompanied by a surge in applications built on top of
VRFs, such as randomness generation [17,32], e-cash [1,2], key-escrow [36], zero-
knowledge [41], network security [28], and more recently proof-of-stake [15,27]
and distributed consensus [31] protocols. Given the large applicability of this
primitive, it is safe to say that VRFs have a central role in modern cryptography.
However, somewhat surprisingly, aggregation properties of VRFs have remained
considerably understudied, and we lack even a good set of definitions for their
precise security properties. This is in stark contrast with the situation for aggre-
gate signatures [5], where aggregation algorithms and the practical benefits of
this primitive have received a lot of attention in the recent years. The goal of this
work is to fill this gap in our current understanding, and systematically study
the aggregation properties of VRFs.

1.1 Our Contributions

In this work, we initiate the formal study of aggregate VRFs. Our contributions
can be summarized as follows.

(a) Definitions. We formally define the notion of aggregate VRFs and pro-
pose new security definitions for uniqueness, binding, and pseudorandomness
(Sect. 3.3), in the presence of maliciously generated keys. The precise notions
turn out to be surprisingly subtle to identify.

(b) Pairing-Based Aggregate VRF. We present a new VRF construction
based on asymmetric bilinear pairings (Sect. 4), which satisfies the strong notion
of unique proofs (unconditionally), and pseudorandomness assuming the hard-
ness of a variant of the bilinear Diffie-Hellman problem, in the random oracle
model. Our scheme is conceptually simple and concretely efficient: All algorithms
perform only a handful of group operations and the verification is dominated by
the computation of three pairings. We propose an algorithm to aggregate VRF
images and proofs (Sect. 4.2) and we show that it preserves pseudorandomness
and (aggregate) uniqueness, in the algebraic group model [23].

(c) Lattice-Based Aggregate VRF. We present an aggregate VRF construc-
tion using general-purpose cryptographic tools (in the full version), that we can
prove secure assuming the hardness of the standard learning with errors (LWE)
problem. Our proof is in the standard model and we view this construction as
our main technical contribution.

(d) Key-Homomorphic VRF. Along the way, we introduce the notion of
key-homomorphic VRF (Sect. 3.2), which may be of independent interest. A
key-homomorphic VRF is a standard VRF, where the key space K is endowed
with a group structure, with ⊕ denoting the group operation. Given a point x,
two images y0 = Eval(k0, x) and y1 = Eval(k1, x), and two proofs π0 and π1,
there exists an efficient procedure that computes

y = Eval(k0 ⊕ k1, x) and π = Prove(k0 ⊕ k1, x).

100 G. Malavolta

We show that our pairing-based VRF is key-homomorphic for linear function
and we consider several extensions of this base construction, such as a threshold
variant (Sect. 4.4) and an anonymous version (Sect. 4.3).

(e) Applications. To substantiate the usefulness of our newly defined prim-
itives, we describe how key-homomorphic and aggregate VRFs yield protocols
for several applications (Sect. 5). For instance, we show how key-homomorphic
VRFs imply a simple distributed VRFs, key homomorphic pseudorandom func-
tions [6] with an additional verification property, and aggregate proof-of-stake
consensus protocols.

1.2 Technical Outline

We give a brief technical outline of the main ideas behind our work. We start by
describing a construction of key-homomorphic VRF and how it naturally leads
to aggregation properties. We then zoom in the security of aggregate VRFs, and
subsequently propose an alternative construction with security against the LWE
assumption. We conclude by sketching one possible application of aggregate and
key-homomorphic VRFs.

Key-Homomorphic VRF. Our starting point is a simple VRF based on asym-
metric bilinear pairings of prime order p, with generators (g1, g2) and a uniformly
sampled group element S = gs

1, that we assume to be available to all partici-
pants. We stress that, while technically our scheme requires a common reference
string to store S, the setup is completely transparent, and can be sampled with
public coins by hashing into the group. A secret-verification key pair for our
VRF is defined to be

k ←$ Zp and vk = Sk.

On the other hand, the evaluation at point x is computed by pairing:

y = e (g1,H(x))k

where H is a hash function (modeled as a random oracle) that maps bitstrings
into G2 elements. To prove that the evaluation was done correctly, one can
simply compute π = H(x)k, which can be efficiently verified to be a valid proof,
by checking

y
?= e (g1, π) and e (vk,H(x)) ?= e (S, π) .

It can be easily verified that both the proof and the image are uniquely deter-
mined by the verification key, which implies that the construction satisfies
uniqueness. We can also show that the VRF is pseudorandom, with an argument
similar to [7], with the crucial difference that we require a different variant of
the bilinear Diffie-Hellman assumption. One interesting property of this scheme

Key-Homomorphic and Aggregate Verifiable Random Functions 101

is that it is key homomorphic for linear functions. To see why, it suffices to
observe that

Eval(k0, x) · Eval(k1, x) = e (g1,H(x))k0 · e (g1,H(x))k1

= e (g1,H(x))k0+k1

= Eval (k0 + k1, x)

and similarly

Prove(k0, x) · Prove(k1, x) = H(x)k0 · H(x)k1

= H(x)k0+k1

= Prove (k0 + k1, x)

and the claim follows by linearity.

Aggregation. The scheme described above suggests a natural aggregation algo-
rithm for VRF images and proofs: Simply apply the group operation to the
images and proofs. By the key-homomorphism of the construction, the aggre-
gate is still perfectly verifiable. Unfortunately this proposal suffers from adaptive
attacks, that is, an attacker could sample maliciously one of the keys included in
the aggregate, in such a way that it cancels out the contribution of some honest
key. To make things worse, this simple solution is not even collision resistant,
since any attacker can find two different set of preimages that result in the same
aggregate image. We view these two attacks as strong indication that a different
solution is needed.

Before describing our actual solution, let us give a somewhat more detailed
account of the properties that we consider in this work for aggregate VRFs. The
first notion that we consider is that of (i) aggregate pseudorandomness, which
guarantees that any image of the aggregate VRF is still pseudorandom, so long
as at least one of the parties involved is honest. This property is useful for
protocols where the aggregate VRF is used as a random beacon, and we want it
to be unbiasable by dishonest parties. The second property that we consider is
that of (ii) aggregate binding, which states that it must be computationally hard
to find an aggregate proof for an invalid set of images. This property mimics the
collision resistance of a regular hash function, and it is important for scenarios
where proofs are aggregated, but we want to prevent the adversary from changing
the corresponding VRF images after the fact. Finally, we enforce the notion of
(iii) aggregate uniqueness, which states that for an aggregate image, there should
still exist a unique aggregate proof. I.e., the result of the aggregate algorithm is
still a VRF.

Give this premise, let us now describe our aggregation algorithm. Instead of
taking a simple product, we aggregate proofs and images by computing

ỹ =
n∏

i=1

yri
i and π̃ =

n∏

i=1

πri
i

102 G. Malavolta

where r1, . . . , rn are random coefficients computed as a deterministic function of
the input. We are then able to show that this aggregation algorithm satisfies both
of the desired properties, in the algebraic group model. We specifically mention
here that, while this approach is inspired by the work of [4], our analysis is
completely different, due to the fact that we are proving a decision property,
rather than a search property.

Aggregate VRF from LWE. The construction as described above suffers from
two drawbacks: It is proven secure in the random oracle model, and furthermore
it is broken by quantum attacks. As a contribution of independent interest,
we show a construction of an aggregate VRF (satisfying all of the properties
outlined above) from general-purpose tools, that we can prove secure assuming
the standard LWE assumption. Our scheme compiles any (non-aggregate) VRF
and uses three main ingredients:

– Function-Binding Hash: A tree-based hash function Hash, where the root
of the tree is statistically bound to any node (including intermediate ones)
of the tree. The node is fixed at setup time, and the hash satisfies mode
indistinguishability, in the sense that setups for different nodes are compu-
tationally indistinguishable. This notion is new to our work, and generalizes
recent hash functions [8,22,34] beyond one-bit predicates. As a contribution
of independent interest, we show how to build such a hash function using
rate-1 FHE [9,26].

– Somewhere Extractable Batch Arguments: Somewhere extractable batch argu-
ments (SE-BARG) for NP for batches of n-many NP statements. The some-
where extractability property says that there exists an index i ∈ {1, . . . , n}
(fixed at setup time), such that, given a trapdoor, one can extract the witness
for the i-th statement for the BARG. Furthermore, the index i is computation-
ally hidden. Such SE-BARGs can be built from a variety of assumptions [11–
13,37,46], including LWE.

– Compute-and-Compare Obfuscation: A compute and compare program, con-
sists of a function f and a target y, and accepts an input x if f(x) = y. It
is known how to obfuscate such functionalities, provided that y has enough
min-entropy conditioned on f , assuming LWE [30,47].

Armed with these tools, we can proceed to outline our aggregation algorithms.
To compress images y1, . . . , yn of a given (non-aggregate) VRF, we apply the
function

C̃ ◦ Hash(y1, . . . , yn)

where C̃ is the obfuscation of a dummy (always rejecting) circuit. On the other
hand, to aggregate proofs, we compute two separate BARGs (σ0, σ1) that cer-
tify that for each committed yi, there exists a valid VRF proof πi. Verification
simply checks the validity of the two BARGs. Aggregate binding follows natu-
rally from the collision resistance of Hash, and we discuss the proof of aggregate
pseudorandomness and aggregate uniqueness in the following.

Key-Homomorphic and Aggregate Verifiable Random Functions 103

Aggregate Pseudorandomness via Randomness Extraction. We show
that the construction is pseudorandom, as long as at least one of the input yi is
also pseudorandom. First, we switch the function Hash in binding mode for the
i-th index. In the next hybrid, we switch yi to be uniform and independently
sampled. At this point, it is tempting to conclude that, since Hash is statisti-
cally bound to yi, then its output is uniformly distributed. Unfortunately, this
intuition is flawed, since the other inputs yj �=i are chosen adversarially, and may
bias the output of Hash(y1, . . . , yn). In other words, we need to argue that Hash
acts as a randomness extractor for seed-dependent sources. This is in general
not possible, as shown by strong impossibility results on randomness extractors
for sources that may depend on the random seed [16].

This is where the obfuscation C̃ enters into the picture. To solve this conun-
drum, we proceed in two steps: First (i) we switch C̃ to be the obfuscation of
the circuit that extracts yi from Hash(y1, . . . , yn). By the extractability of the
hash function Hash, this can be implemented efficiently, given a trapdoor. The
effect of this step is to “clean up” the output of Hash(y1, . . . , yn) by adversarial
yj �=i. Next, (ii) we open up the construction of compute-and-compare obfusca-
tion [30,47] to show that, if f(x) has high entropy, then C̃(x) is statistically close
to uniform. In other words, C̃ is a good randomness extractor. This allows us to
conclude that the output of the aggregate is pseudorandom.

Aggregate Uniqueness via Proof Switching. We show that it is hard to
compute valid proofs for an aggregate y∗ �= ỹ, where ỹ is honestly computed. For
the case of our construction, this means that the two aggregate must correspond
to two different roots of the hash tree. Naively, one could hope to reduce this
property directly to the underlying VRF, by extracting two valid proofs πi and
π∗

i for two different images yi and y∗
i . However, the fact that we have two different

roots, does not mean that we have a mismatch for exactly the i-th leaf! We have
to worry about the fact that the BARG extraction may “miss” the leaf where
the mismatch starts. Our strategy to rule this out is to track down the mismatch
by iteratively moving towards it, but alternating between the two BARGs, to
make sure that we can still extract from one, while arguing indistinguishability
for the other. A pictorial description of the process is given in Fig. 1.

In more details, say that we set both BARGs to be binding for the left-most
leaf. This allows us to extract two root-to-leaf paths (path0 and path1) which,
for the sake of this overview, we always assume to be identical (it can be shown
by a reduction to collision-resistance that this condition cannot be violated). As
we discussed earlier, these root-to-leaf path must lead to a different root than
the honestly computed one. Our first observation is that the extracted root-
to-leaf paths may be identical to the one in the honest tree in the leafs, but
they must diverge at some point (as otherwise they would result in the same
root). Let N be the first differing node; in the first hybrid, we make the hash
function Hash binding to N . This allows us to freely change the index of the
two BARGs without worrying about this node having a different value, since it
is now statistically bound to the root. We then change the first BARG to be

104 G. Malavolta

Fig. 1. Example of a step of the extraction procedure for a small tree. Black nodes
indicate nodes where the two extracted paths (represented in the picture) differ from
the honest path. A dotted line around a node indicates that the hash function is
statistically bound to that node.

binding on the left-most leaf in the sub-tree spanned by N , and we can use the
other BARG to extract the path while we argue indistinguishability. We then
switch the roles of the BARGs and apply this operation again. At this point the
node N must still differ from the honestly computed one, however it must also

Key-Homomorphic and Aggregate Verifiable Random Functions 105

be the case that one of the children of N must differ from the honest root-to-leaf
path! That is, this argument has allowed us to move one level lower in the tree.
Applying this argument iteratively, we will eventually reach the case where the
differing node is a leaf, in which case we can appeal to the uniqueness of the
base (non-aggregate) VRF, and conclude our proof.

Application: Aggregate Proof of Stake. To exemplify the applicability of
aggregate VRFs, we briefly discuss how VRF can be used in proof-of-stake (PoS)
protocols to reduce the storage cost by aggregating VRF proofs. A protocol
based on similar principles was recently proposed in [21], and we recall here the
main ideas. In existing PoS protocols, such as [15,27], users upload their VRF
verification key to the blockchain. In each epoch, each user can evaluate the VRF
on the slot number (which will play the role as a unique identifier for the epoch)
to compute the corresponding image. If the image is less than (a function of)
their wealth, then that user is identified as the designated party to generate the
new block. Such party can then compute a proof to convince all the other parties
that the VRF was evaluated correctly. This way, it can be publicly verified that
the user was indeed the winner of the round.

Using a VRF that has aggregation properties, one can compress all VRF
proofs into a single one, without affecting the ability of the participants to ver-
ify that the blockchain was correctly computed: By the aggregate uniqueness
property, it is hard for any adversary to compute an aggregate proof for a false
set of values. This means that there is no need to store a VRF proof for each
epoch, instead this information can be compressed into a single group element.

1.3 Related Work

As mentioned before, VRF is a well-studied topic in cryptography, both
from a theoretical and practical angle. Thus, many constructions [3,10,17–
19,24,29,32,33,35,38,42] have emerged over the years. However, to the best of
our knowledge, no scheme that satisfies key-homomorphism (as defined in this
work) was known prior to our work. In [40] the notion of aggregation is con-
sidered in the context of VRF, except that it is in the secret key settings, i.e.,
the aggregation algorithm requires the knowledge of the secret key of the VRF.
This is in contrast with our work, where aggregation is a public procedure. The
notion of publicly aggregate VRF was concurrently and independently studied in
[14], where a construction from bilinear parings is also proposed. Their scheme is
quite different from the one we present, and in particular it does not satisfy the
key-homomorphic property (as defined in our work). On the other hand, their
construction satisfies the stronger notions of composable security and forward
secrecy.

We also mention that the notion of key-homomorphic VRF was discussed
(but not formalized) in [21] although the existence of a construction was left as
an open problem. In their work, they implicitly construct a key-homomorphic
VRF with a small domain and a small co-domain (i.e., the VRF is only defined
on a polynomial number of inputs), which suffices for their application.

106 G. Malavolta

A related notion is that of verifiable unpredictable functions (VUF), which
offers the weaker property of unpredictability, as opposed to pseudorandomness.
Although a VUF can be generically transformed into a VRF, e.g., by hashing the
image with a random oracle, this transformation does not preserve key homo-
morphism. Therefore, a key-homomorphic VUF does not immediately imply a
key-homomorphic VRF. We also mention that aggregate VUF have been studied
in the literature [5,39], but their definitions are not applicable to the notion of
VRF, due to the weaker security requirement. Besides the definitional mismatch,
building aggregate VRFs is much more complex than the case of VUF, since
aggregation must preserve (i) the pseudorandomness and the (ii) uniqueness of
the aggregate, whereas none of these properties is relevant in the context of
VUFs/signatures. Finally, we mention that key-homomorphic PRFs have been
studied [6], and we view our work as a continuation of this line of research,
answering a natural question on adding verifiability to key-homomorphic prim-
itives.

1.4 Open Problems

We hope that our work will motivate researchers to further study this crypto-
graphic object, both from a foundational and practical perspective. For instance,
it would be interesting to find a construction of key-homomorphic VRFs secure
in the standard model, or from post-quantum assumptions. Furthermore, on
the theoretical side, an interesting question is whether one can construct a key-
homomorphic/aggregate VRF (perhaps satisfying weaker security notions) in the
plain model, i.e., without any trusted setup. We also leave open the formaliza-
tion of the security of aggregate VRFs in the presence of a malicious aggregator.
On the other end of the spectrum, an interesting open question is finding more
applications of this primitive, and rigorously analyze its security in the context
of more complex protocols.

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. We say a
function f is negligible in the security parameter λ if f = λ−ω(1). We say an
algorithm is efficient if it runs in probabilistic polynomial time (PPT) in the
length of its input. For a distribution D, we write x ←$ S to denote that x is
sampled uniformly at random from D. We say that two distributions D0 and D1

are computationally indistinguishable if there exists a negligible function μ such
that for all λ ∈ N and for all PPT algorithms A it holds that

|Pr [1 ← A(x) : x ←$ D0] − Pr [1 ← A(x) : x ←$ D1]| = μ(λ).

Key-Homomorphic and Aggregate Verifiable Random Functions 107

2.1 Bilinear Groups

Let G = (p,G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) be a generator of an asym-
metric bilinear group generated by g1 and g2 of prime order p, with an efficiently
computable pairing e : G1 × G2 → GT . We also assume that it is efficient to
test whether a given element g is a member of the group G1, which is sometimes
referred to as the certified group settings, see e.g. [44] for details. We recall the
following variant of the Bilinear Diffie-Hellman (BDH) assumption.

Definition 1 (BDH Assumption). We say that a bilinear group generator
GroupGen is BDH-hard, if the following distributions are computationally indis-
tinguishable

(
g1, g2, g

a
1 , gb

1, g
a
2 , gb

2, g
c
2, e(g1, g2)

bc
a

)
≈ (

g1, g2, g
a
1 , gb

1, g
a
2 , gb

2, g
c
2, e(g1, g2)

r
)

where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, r) ←$ Z
4
p.

We also define two less standard variants of this assumption, where the adversary
is given additional extra group elements in its view. In Sect. 6, we show that both
assumptions hold unconditionally in the generic group model (GGM).

Definition 2 (Augmented BDH Assumption). We say that a bilinear
group generator GroupGen is ABDH-hard, if the following distributions are com-
putationally indistinguishable

(
g1, g2, g

a
1 , gb

1, g
a
2 , gb

2, g
c
2, e(g1, g2)

c
a , e(g1, g2)

c2
a , e(g1, g2)

bc
a

)

≈
(
g1, g2, g

a
1 , gb

1, g
a
2 , gb

2, g
c
2, e(g1, g2)

c
a , e(g1, g2)

c2
a , e(g1, g2)r

)

where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, r) ←$ Z
4
p.

Definition 3 (External-Inverted BDH Assumption). We say that a bilin-
ear group generator GroupGen is XIBDH-hard, if the following distributions are
computationally indistinguishable

(
g1, g2, g

a
1 , gab

1 , gac
1 , g

b/c
1 , gd

2 , g
dc
2

)
≈ (

g1, g2, g
a
1 , gab

1 , gac
1 , gr

1, g
d
2 , g

dc
2

)

where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, d, r) ←$ Z
5
p.

3 Definitions

We recall the notion of a verifiable random function (VRF) [43]. Informally, a
VRF is a keyed function

VRF : K × {0, 1}λ → Y
that behaves like a random function, and simultaneously allows one to verify the
validity of its outputs.

108 G. Malavolta

3.1 Verifiable Random Functions

We formally define the notion of a VRF, we adopt the standard definition [43],
except for two syntactical modifications: First, we require the verification key to
be a deterministic and bijective function of the secret key. This is needed for our
definition of aggregate pseudorandomness (Definition 9). Furthermore, we allow
for a one-time trusted setup.

Definition 4 (VRF). A verifiable random function (VRF) is a tuple of
polynomial-time algorithms with the following syntax.

– Setup(1λ): On input the security parameter 1λ, the setup algorithm returns
the common reference string crs.

– Gen(crs): On input the common reference string crs, the generation algorithm
samples a secret key k and returns k ∈ K and the verification key vk =
VKey(k), where VKey is a bijective function.

– Eval(k, x): On input the secret key k ∈ K and some point x ∈ {0, 1}λ, the
evaluation algorithm returns an image y ∈ Y.

– Prove(k, x): On input the secret key k ∈ K and some point x ∈ {0, 1}λ, the
prover algorithm returns a proof π ∈ P.

– Verify(vk, x, y, π): On input the verification key vk, some point x ∈ {0, 1}λ,
an image y ∈ Y, and a proof π ∈ P, the verification algorithm returns a bit
b ∈ {0, 1} denoting acceptance or rejection.

For correctness, we require that for all λ ∈ N, all crs in the support of Setup(1λ),
all key pairs (k, vk) in the support of the Gen(crs) algorithm, and all points
x ∈ {0, 1}λ it holds that

Verify(vk, x,Eval(k, x),Prove(k, x)) = 1.

Next, we recall the security requirements of a VRF. The first property demands
that it should be impossible to find a valid proof π∗ for an invalid image y∗.

Definition 5 (Uniqueness). A VRF satisfies uniqueness if for λ ∈ N, all crs
in the support of Setup(1λ), all verification keys vk, all points x ∈ {0, 1}λ, and
all images (y0, y1) ∈ Y2 and proofs (π0, π1) ∈ P2 it holds that

1 = Verify(vk, x, y0, π0) = Verify(vk, x, y1, π1) =⇒ y0 = y1.

Finally, we recall the standard notion of pseudorandomness, which requires that
the adversary should not be able to distinguish the output of a VRF from a
uniformly sampled function, even given access to an oracle that computes images
an proofs on arbitrary points chosen by the distinguisher.

Definition 6 (Pseudorandomness). A VRF satisfies pseudorandomness if
there exists a negligible function μ such that for λ ∈ N and all admissible PPT
adversaries A it holds that

∣∣∣∣
1
2

− Pr
[
1 ← ExpRandomA(1λ)

]∣∣∣∣ = μ(λ)

where the experiment ExpRandomA is defined as follows.

Key-Homomorphic and Aggregate Verifiable Random Functions 109

– The challenger samples a reference string crs ←$ Setup(1λ) and a key pair
(k, vk) ←$ Gen(crs) and sends (crs, vk) to A.

– A can query adaptively and at any time an oracle on input xi and receives
back from the challenger a pair (yi, πi) where yi ← Eval(k, xi) and πi ←
Prove(k, xi).

– At any point (including between evaluation queries) A can query a challenge
input x∗. The challenger flips a coin b ←$ {0, 1} and computes

{
y∗ ← Eval(k, x∗) if b = 0
y∗ ←$ Y if b = 1

.

– In the end of the experiment, A outputs a guess b∗. The experiment returns
1 if and only if b∗ = b.

Furthermore, we say that A is admissible if x∗ /∈ Q, where Q denotes the set of
points queried to the oracle as defined above.

3.2 Key Homomorphism

We define the central object of this work, namely the notion of key-homomorphic
VRF (KH-VRF). A KH-VRF is defined like a standard VRF with some addi-
tional structural properties, which allows one to meaningfully combine the
images and the proofs computed under different keys. To formally define this
notion, we will endow the key, the image, and the proof domain with a group
structure, which allows us to state this additional property.

Definition 7 (Key Homomorphism). A VRF is key homomorphic if (K,⊕),
(Y,⊗), (P,⊗) are groups and for all (k0, k1) ∈ K2 and all x ∈ {0, 1}λ it holds
that

– Eval(k0, x) ⊗ Eval(k1, x) = Eval(k0 ⊕ k1, x), and
– Prove(k0, x) ⊗ Prove(k1, x) = Prove(k0 ⊕ k1, x).

Looking ahead at our instantiation in Sect. 4, the group (K,⊕) will consist of
the additive group Zp, for some prime p, whereas (Y,⊗) and (P,⊗) will be two
multiplicative groups of order p.

3.3 Aggregation

Given the above defined homomorphic property, it is natural to derive an aggre-
gation Agg algorithm that allows us to compress n VRFs into a single one, while
at the same time outputting a proof of validity for the aggregate. We formally
define the correctness of the algorithm in the following. Importantly, we define
the algorithms to be deterministic so that running the same aggregation twice
leads to exactly the same output.

Definition 8 (Aggregation). A VRF is aggregatable if there exists a triple
of deterministic polynomial-time algorithms with the following syntax.

110 G. Malavolta

– Agg(x, {vki, yi}i=1...n): On input a point x ∈ {0, 1}λ, n verification keys
(vk1, . . . , vkn) and images (y1, . . . , yn) ∈ Yn, the aggregation algorithm out-
puts an aggregate key ṽk and an aggregate image ỹ.

– AggProve(x, {vki, πi}i=1...n): On input a point x ∈ {0, 1}λ, n verification keys
(vk1, . . . , vkn), and proofs (π1, . . . , πn) ∈ Pn, the aggregate proof algorithm
outputs an aggregate proof π̃.

– AggVerify({vki}i=1...n, x, ỹ, π̃): On input n verification keys (vk1, . . . , vkn), a
point x ∈ {0, 1}λ, and an aggregate image-proof pair (ỹ, π̃) the aggregate
verification algorithm outputs a bit b ∈ {0, 1} denoting acceptance or rejection.

The correctness of the aggregation algorithm requires that the aggregated image-
proof pair correctly verifies, provided that the inputs are all correctly formed.
More formally, we require that for all λ ∈ N, all polynomials n = n(λ), all crs
in the support of Setup(1λ), all key pairs (ki, vki) in the support of the Gen(crs)
algorithm, and all points x ∈ {0, 1}λ it holds that

AggVerify ({vki}i=1...n, x, ỹ, π̃) = 1,

where
(ṽk, ỹ) ← Agg (x, {vki,Eval(ki, x)}i=1...n)

and
π̃ ← AggProve (x, {vki,Prove(ki, x)}i=1...n) .

Next we present formal definitions for the security of aggregate VRFs. In all of
our definitions, we model the aggregation process as performed by an honest
party, and therefore we always assume that the aggregation algorithms are run
honestly. We leave the formalization of security in the presence of a malicious
aggregator as ground for future work.

Aggregate Pseudorandomness. A desirable property for an aggregate VRF
is that the output of the aggregation algorithm should still satisfy pseudoran-
domness, even if some of the keys are controlled by the adversary. It turns out
that formalizing the correct version of this property is surprisingly subtle.

To understand our definitional choice, consider the following natural (but
flawed) attempt at a formal definition: Given the adversary oracle access to the
challenge VRF, we allow the adversary to additionally return some verification
keys of its choice {vki}i=1...n, along with the corresponding image-proof pairs
{yi, πi}i=1...n. The challenger then checks whether the proofs verify, and if so it
computes either

y∗ ← Agg (x, vk, y, {vki, yi}i=1...n) or y∗ ←$ Y.

While this is a perfectly well-defined notion, we argue that this definition
is too weak, since it does not allow the adversary to set its key depending on
the honest keys. To see why this is the case, consider the simplified case where
the aggregation of images is simply their sum ỹ =

∑
i yi. The adversary may

Key-Homomorphic and Aggregate Verifiable Random Functions 111

launch an adaptive attack by setting its own verification key vk∗ depending on
the verification key of the challenger vk, in such a way that y∗ = −y. This
way, the contribution of y to the aggregate ỹ is canceled out, and the output of
the aggregation algorithm is perfectly predictable by the adversary, even before
seeing the answer to the challenge query. Nevertheless, this attacker would not
be able to win the experiment as outlined above, because it would not be able to
compute y∗ before seeing y, and thus cannot send it as part of the query to the
challenge oracle. This is a strong indication that one needs a stronger definition
of security for aggregate pseudorandomness.

To obviate this problem, our idea is to make the life of the attacker easier,
by simply delegating to the challenger the task of computing the image of a ver-
ification key sent by the adversary. In general, this is not an efficient procedure,
but we can bypass this obstacle by letting the challenger run in unbounded time.
Note that the output of this procedure is always well-defined, since the function
VKey is bijective, and therefore its inverse is uniquely determined. We present
the formal definition below.

Definition 9 (Aggregate Pseudorandomness). A VRF satisfies aggregate
pseudorandomness if there exists a negligible function μ such that for λ ∈ N and
all admissible PPT adversaries A it holds that

∣∣∣∣
1
2

− Pr
[
1 ← ExpAggRandomA(1λ)

]∣∣∣∣ = μ(λ)

where the experiment ExpAggRandomA is defined as follows.

– The challenger samples a reference string crs ←$ Setup(1λ) and a key pair
(k, vk) ←$ Gen(crs) and sends (crs, vk) to A.

– A can query adaptively and at any time an oracle on input xi and receives
back from the challenger a pair (yi, πi) where yi ← Eval(k, xi) and πi ←
Prove(k, xi).

– At any point (including between evaluation queries) A can query a challenge
input x∗ along with some challenge keys {vki}i=1...n. The challenger (ineffi-
ciently) computes ki ← VKey−1(vki) and sets yi ← Eval(ki, x

∗). Then it flips
a coin b ←$ {0, 1} and computes

{
y∗ ← Agg (x∗, vk,Eval(k, x∗), {vki, yi}i=1...n) if b = 0
y∗ ←$ Y if b = 1

.

– In the end of the experiment, A outputs a guess b∗. The experiment returns
1 if and only if b∗ = b.

Furthermore, we say that A is admissible if x∗ /∈ Q, where Q denotes the set of
points queried to the oracle as defined above.

Aggregate Binding. We also require that no attacker should be able to find
two different pre-images for a given aggregate. This property is useful in set-
tings where one stores an aggregate proof, and wants to prevent changes the

112 G. Malavolta

corresponding images after the fact. Given that the size of the aggregate is inde-
pendent of n, we can only hope to achieve a computational guarantee, where
finding collision is only computationally hard. We present a formal definition
below. We remark that, since the aggregation algorithm is deterministic, there
is no need to provide the aggregate as an input to the adversary explicitly, since
it can be recomputed given the information that the adversary already possesses.

Definition 10 (Aggregate Binding). A VRF satisfies aggregate binding if
there exists a negligible function μ such that for λ ∈ N and all PPT adversaries
A it holds that

Pr
[
1 ← ExpAggBindA(1λ)

]
= μ(λ)

where the experiment ExpAggBindA is defined as follows.

– The challenger samples a reference string crs ←$ Setup(1λ) and sends it to
A.

– A returns a point x∗, n verification keys vk1, . . . , vkn, two tuples (y1, . . . , yn)
and (y∗

1 , . . . , y
∗
n), and proofs (π1, . . . , πn).

– The challenger computes

π̃ ← AggProve (x∗, {vki, πi}i=1...n) and ỹ ← Agg (x∗, {vki, y
∗
i }i=1...n)

and outputs 1 if and only if:
{
Verify(vki, x

∗, yi, πi)
?= 1

}

i=1...n
and AggVerify ({vki}i=1...n, x, ỹ, π̃) ?= 1

and furthermore (y1, . . . , yn) �= (y∗
1 , . . . , y

∗
n).

Aggregate Uniqueness. Finally, we require that an aggregate key must also
be a valid VRF key, and in particular it must satisfy uniqueness. We formalize
this property below.

Definition 11 (Aggregate Uniqueness). A VRF satisfies aggregate unique-
ness if for λ ∈ N, all polynomials n = n(λ), all crs in the support of Setup(1λ),
all verification keys vki, and all points x ∈ {0, 1}λ, it holds that ṽk satisfies
uniqueness (Definition 5), where

(ṽk, ỹ) ← Agg (x, {vki,Eval(ki, x)}i=1...n) .

4 Key-Homomorphic VRFs from Bilinear Groups

We describe our main construction for a KH-VRF. We begin by introducing a
simple scheme with key-homomorphic properties, then we show how to extend
it to achieve several extra properties.

Key-Homomorphic and Aggregate Verifiable Random Functions 113

4.1 Base Scheme

We present our base KH-VRF in the following. The construction assumes the
existence of a hash function H where

H : {0, 1}λ → G2

is modelled as a random oracle. The algorithms are specified below.

– Setup(1λ): Sample a bilinear group

(G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ)

along with an integer s ←$ Zp. Then compute S = gs
1 and set the crs to

(g1, g2, S).
– Gen(crs): Sample k ←$ Zp and set vk to Sk. Return (k, vk).
– Eval(k, x): Compute and output

y = e (g1,H(x))k
.

– Prove(k, x): Compute and output π = H(x)k.
– Verify(vk, x, y, π): Accept if vk ∈ G1 and

e (vk,H(x)) ?= e (S, π) and y
?= e (g1, π) .

We remark that, although we described the setup algorithm as sampling the
secret integer s explicitly, an alternative (but equivalent) sampling procedure
would be to derive S by hashing into the group G1. This way, the setup can be
done in a completely transparent manner, i.e., using public random coins.

It is easy to check that the scheme is correct by simply substituting the
variables

e (vk,H(x)) = e (g1,H(x))ks = e
(
gs
1,H(x)k

)
= e (S, π)

and
y = e (g1,H(x))k = e

(
g1,H(x)k

)
= e (g1, π) .

To establish that the scheme is also key-homomorphic, it is enough to observe
that for all polynomials n = n(λ) it holds that

n∏

i=1

Eval(ki, x) =
n∏

i=1

e (g1,H(x))ki = e (g1,H(x))
∑n

i=1 ki = Eval

(
n∑

i=1

ki, x

)

and similarly

n∏

i=1

Prove(ki, x) =
n∏

i=1

H(x)ki = H(x)
∑n

i=1 ki = Prove

(
n∑

i=1

ki, x

)
.

Furthermore, the scheme satisfies uniqueness, since π is uniquely determined by
S, vk, and x.

114 G. Malavolta

Analysis. We state the main theorem of this section, namely that the base
scheme is secure if the BDH assumption holds.

Theorem 1. If the group generator GroupGen is BDH-hard, then the construc-
tion as described above satisfies pseudorandomness, in the random oracle model.

Proof. The pseudorandomness of our VRF follows from a reduction to the BDH
assumption (Definition 1). Recall that the assumption stipulates that the follow-
ing distributions are computationally indistinguishable

(
g1, g2, g

a
1 , gb

1, g
a
2 , gb

2, g
c
2, e(g1, g2)

bc
a

)
≈ (

g1, g2, g
a
1 , gb

1, g
a
2 , gb

2, g
c
2, e(g1, g2)

r
)

where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, r) ←$ Z
4
p. By a vari-

able renaming, this is equivalent to distinguishing between
(
g1, g2, g

s
1, g

ks
1 , gs

2, g
ks
2 , gz

2 , e(g1, g2)
kz

) ≈ (
g1, g2, g

s
1, g

ks
1 , gs

2, g
ks
2 , gz

2 , e(g1, g2)
r
)
.

On input a sample from either distribution, the reduction sets S = gs
1 and

vk = gks
1 , then it activates the adversary A. Let Q be the number of queries

of A to the random oracle, the reduction guesses an index i∗ ∈ {1, . . . , Q} and
simulates the oracle as follows: For i �= i∗, on input xi the reduction programs
the random oracle to

H(xi) = (gs
2)

ρi where ρi ←$ Zp.

On the other hand, on input xi∗ the reduction sets

H(xi∗) = gz
2 .

Next, we show how the reduction simulates the queries to the VRF evaluation
oracle. Without loss of generality, we assume that the adversary already queried
the input xi to the random oracle (otherwise, the reduction can perform the
query itself before answering to A). If xi = xi∗ , the reduction aborts and returns
a random bit. Otherwise, the reduction computes

πi =
(
gks
2

)ρi and yi = e(g1, π)

by fetching the appropriate value of ρi. On input the challenge query x∗, the
reduction checks if x∗ = xi∗ and returns a random bit if this is not the case.
Otherwise, it computes

y∗ =
{
e(g1, g2)kz, e(g1, g2)r

}

i.e., it simply returns the last group element from the challenge tuple. The reduc-
tion returns whatever bit A returns.

First, observe that the reduction is efficient, as it only performs basic group
operations. Consider the case where the reduction guesses correctly the query to

Key-Homomorphic and Aggregate Verifiable Random Functions 115

the random oracle that contains the challenge input x∗. In this case, the reduction
perfectly simulates the queries to the oracle offered by the pseudorandomness
experiment, since

πi =
(
gks
2

)ρi = (gsρi

2)k = H(xi)k

and sρi is uniformly distributed in Zp. Finally, note that the case where the
last group element is uniform perfectly simulates the experiment where b = 1,
whereas in the other case

y∗ = e(g1, g2)kz = e(g1, gz
2)

k = e (g1,H(x∗))k

the view is identical for the case where b = 0. Since the reduction guesses cor-
rectly with probability at least 1/Q, which is inverse polynomial, the success
probability of the reduction in distinguishing the two distributions is at most a
polynomial factor smaller than to that of A. This contradicts the BDH assump-
tion and concludes our proof.

4.2 Aggregation

The base scheme described above enjoys useful structural properties that make
it amenable to aggregation. A naive proposal to aggregate VRF would be to
simply compute the product of the images and proofs, i.e.,

ỹ =
n∏

i=1

yi =
n∏

i=1

e (g1,H(x))ki and π̃ =
n∏

i=1

πi =
n∏

i=1

H(x)ki .

This is syntactically correct, since it corresponds to the output of the Eval and
Prove algorithms on with key k̃ =

∑n
i=1 ki. Unfortunately this simple proposal

suffers from many issues: (i) First of all, it does not achieve aggregate pseudo-
randomness, since it is vulnerable to rogue key attacks. To see why, it suffices to
observe that, on input an honest key vk = Sk, an attacker could set their key
to vk−1 = S−k (which is efficiently computable). This way, the output of the
aggregate on any input x is simply

e (g1,H(x))k · e (g1,H(x))−k = 1

which is clearly not pseudorandom. This particular problem can be fixed by
adding non-interactive zero-knowledge proof (NIZK) [20] to the public key, how-
ever the resulting VRF would no longer be key-homomorphic. Moreover, even
with the NIZK in place, (ii) this construction does not satisfy aggregate binding.
To illustrate this last point, observe that it is easy to compute an x∗ and a pair
(y1, . . . , yn) �= (y∗

1 , . . . , y
∗
n) such that

Agg (x∗, {vki, yi}i=1...n) =
n∏

i=1

yi =
n∏

i=1

y∗
i = Agg (x∗, {vki, y

∗
i }i=1...n)

by simple linear algebra. In the following, we propose a different aggregation
function that simultaneously resolves both limitations.

116 G. Malavolta

Aggregate VRF. Our approach is inspired by the work of [4], although our
construction and analysis turns out to be substantially different. We assume the
existence of two hash functions

G̃ : {0, 1}λ × G
n
1 × G

n
T → {0, 1}λ and H̃ : {0, 1}λ → Z

n
q .

modeled as random oracles. Loosely speaking, the first random oracle will be
used to sample a random seed, which is included in the proof, whereas the
second random oracle will be used to sample the coefficients for a linear combi-
nation of the VRF images. Since the output of this oracle is unpredictable to the
adversary, we will be able to show that no (efficient) adversary can cancel out
the contributions of the honest keys. Our aggregation algorithms are described
below.

– Agg(x, {vki, yi}i=1...n): Compute R ← G̃(x, vk1, . . . , vkn, y1, . . . , yn) and (r1,
. . . , rn) ← H̃(R), then return ỹ =

∏n
i=1 yri

i .
– AggProve(x, {vki, πi}i=1...n): Compute R ← G̃(x, vk1, . . . , vkn, e(g1, π1), . . . ,

e(g1, πn)) along with (r1, . . . , rn) ← H̃(R), then return (π̃ =
∏n

i=1 πri
i , R).

– AggVerify({vki}i=1...n, x, ỹ, (π̃, R)): Compute (r1, . . . , rn) ← H̃(R) and define
ṽk =

∏n
i=1 vk

ri
i . Return

1 ?= Verify(ṽk, x, ỹ, π̃) and y
?

�= 1.

Aggregate correctness follows immediately from the key homomorphic property
of our VRF, since the pair (ỹ, π̃) is a valid image-proof pair under the key
k̃ =

∑n
i=1 ki · ri, and furthermore yi = e(g1, πi). Furthermore, y = 1 only with

negligible probability. Next we show that the construction satisfies aggregate
pseudorandomness.

The Algebraic Group Model. Before delving into the proof, we recall the
basics of the algebraic group model (AGM) [23]. In the AGM, all algorithms
are treated as algebraic algorithms. That is, along with every group element
that they return, they are required to add an explanation of such element as a
linear combination of the input group elements. We define the notion of algebraic
algorithms below.

Definition 12 (Algebraic Algorithms). An algorithm A is algebraic if, for
every group element h ∈ G that it outputs, it also returns the corresponding list
of algebraic coefficients. That is

(h, c1, . . . , ct) ←$ A(h1, . . . , ht) such that h =
t∏

i=1

hci
i .

For an adversary A that has access to oracles during its runtime, we impose
the above restriction to all group elements that it sends to the oracle. Similarly,
all group elements that A receives from the oracle are treated as new inputs
to A.

Key-Homomorphic and Aggregate Verifiable Random Functions 117

We also recall the Schwartz-Zippel lemma, which is going to be useful in our
analysis.

Lemma 1 (Schwartz-Zippel). Let P ∈ F[X1, . . . , Xn] be a non-zero n-variate
polynomial over a field F of degree d. Let r1, . . . , rn be selected uniformly at
random from F, then

Pr [P (r1, . . . , rn) = 0] ≤ d

|F| .

Aggregate Pseudorandomness. We are now in the position to show that
our construction satisfies aggregate pseudorandomness in the AGM and in the
random oracle model.

Theorem 2. If the group generator GroupGen is ABDH-hard, then the construc-
tion as described above satisfies aggregate pseudorandomness against algebraic
adversaries, in the random oracle model.

Proof. The proof of aggregate pseudorandomnes consists of a reduction against
the ABDH assumption (Definition 2). Recall that, up to a variable renaming, the
assumption states that the following distributions are computationally indistin-
guishable

(
g1, g2, g

s
1, g

ks
1 , gs

2, g
ks
2 , gz

2 , e(g1, g2)
z
s , e(g1, g2)

z2
s , e(g1, g2)kz

)

≈
(
g1, g2, g

s
1, g

ks
1 , gs

2, g
ks
2 , gz

2 , e(g1, g2)
z
s , e(g1, g2)

z2
s , e(g1, g2)r

)
.

On input a sample from either distribution, the reduction sets S = gs
1 and vk =

gks
1 , then it activates the adversary A. The reduction simulates the composition

of random oracles H̃ ◦ G̃ by lazy sampling. More specifically, for any input query
q to G̃, the reduction samples a random output for H̃ on input G̃(q) and records
the pair (q, H̃(G̃(q))) as the output of the combined oracle. Note that such a
simulation fails when one of the outputs of G̃ (as defined in the simulation)
was queried to H̃ before the corresponding input is queried to G̃. However, this
happens with negligible probability by a standard birthday bound. Let Q be the
number of queries of A to the random oracle H, the reduction guesses an index
i∗ ∈ {1, . . . , Q} and simulates the oracle as follows: For i �= i∗, on input xi the
reduction programs the random oracle to

H(xi) = (gs
2)

ρi where ρi ←$ Zp.

On the other hand, on input xi∗ the reduction sets

H(xi∗) = gz
2 .

118 G. Malavolta

For the VRF evaluation oracle, we assume without loss of generality that the
adversary already queried the input xi to the random oracle. The reduction
proceeds as follows: If xi = xi∗ , the reduction aborts and returns a random bit.
Otherwise, the reduction computes

πi =
(
gks
2

)ρi and yi = e(g1, π)

by fetching the appropriate value of ρi. The challenge query of the (algebraic)
adversary is interpreted by the reduction as

(x∗, vk1, . . . , vkn) and
{

Pi such that g
Pi(1,s,ks,z)
1 = vki

}

i=1...n

where Pi is a multilinear polynomial in the variables (1, s, ks, z), in its coefficient
embedding. For notational convenience, we group the coefficients corresponding
to the variables ρ1, . . . , ρQ (which are also formal variables from the point of
view of the adversary) in the constant term. This is always possible since the
reduction samples ρi itself and therefore knows the corresponding integer in the
plain. The reduction checks if x∗ = xi∗ and returns a random bit if this is not
the case. Else it defines P0 as

P0 = (0, 0, 1, 0)

and computes

y∗ =
n∏

i=0

e(g1, g2)riPi(z/s,z,{kz,r},z2/s).

where r0, . . . , rn is the output of the random oracle H̃ ◦ G̃ on input (x∗, vk, vk1,
. . . , vkn). Finally, the reduction returns whatever bit A returns.

Note that, in case the reduction guesses correctly the query to the random
oracle that contains the challenge input x∗, the answers to the oracle queries of
the adversary are perfectly simulated by the reduction. This follows using the
same argument as in Thm. 1. Furthermore, observe that the reduction is efficient,
since it only performs basic group operations. In particular, the reduction is
supplied by the challenger all group elements needed to compute the evaluation
at the challenge point y∗.

In case where the challenge tuple contains the element e(g1, g2)kz, we argue
that the reduction perfectly simulates the view of the adversary with the bit
b = 0. To see why this is the case, it suffices to observe that

Key-Homomorphic and Aggregate Verifiable Random Functions 119

y∗ =
n∏

i=0

e(g1, g2)riPi(z/s,z,kz,z2/s)

= e(g1, g2)r0kz
n∏

i=1

e(g1, g2)riPi(z/s,z,kz,z2/s)

= e(g1,H(x∗))r0k
n∏

i=1

e(g1,H(x∗))riPi(1/s,1,k,z/s)

= e(g1,H(x∗))r0k
n∏

i=1

e(g1,H(x∗))riDLogS(vki)

= e(g1,H(x∗))r0k
n∏

i=1

e(g1,H(x∗))riVKey
−1(vki)

= Agg
(
x∗, vk, e(g1,H(x∗))k,

{
vki, e(g1,H(x∗))ki

}
i=1...n

)

which is precisely what the attacker is expecting. On the other hand, in case
the challenge tuple contains the element e(g1, g2)r, we argue that the output y∗

computed by the reduction is uniform, and therefore perfectly simulates the case
where b = 1, except with negligible probability. Let

P̃ =
n∑

i=0

riPi,

then, since Zp is a field, the y∗ computed by the reduction is uniform if and only
if the third coefficient of P̃ is non-zero. Since the tuple r0, . . . , rn is sampled uni-
formly by the reduction after the polynomials P0, . . . , Pn are fixed, by Lmm. 1,
this happens with probability at most 1/p, which is negligible.

The above argument shows that the reduction succeeds perfectly in case
of a correct guess and otherwise returns a random bit. Since this happens with
probability at least 1/Q, the success probability of the reduction in distinguishing
the two distributions is at most a polynomial factor smaller than to that of A.
This contradicts the ABDH assumption and concludes our proof.

Aggregate Uniqueness. It can be easily shown that the construction satisfies
aggregate uniqueness, unconditionally.

Theorem 3. The construction as described above satisfies aggregate uniqueness.

Proof. The proof follows immediately by observing that the aggregate verifica-
tion key

ṽk =
n∏

i=1

vkri
i = S

∑n
i=1 ki·ri = Sk̃

is a well-formed VRF key, and thus aggregate uniqueness follows from the unique-
ness of the base construction.

120 G. Malavolta

Aggregate Binding. In the following we show that the scheme satisfies aggre-
gate binding. In fact, we show a slightly stronger statement, namely that aggre-
gate binding holds against unbounded adversaries that make a polynomial num-
ber of queries to the random oracle.

Theorem 4. The construction as described above satisfies aggregate binding in
the random oracle model.

Proof. Given the aggregate secret key ṽk, the image-proof pair is unique, thus the
only way to break the aggregate uniqueness is to find a collision in the images.
That is, for any given set of verification keys vk1, . . . , vkn, the adversary must
find a point x∗ and two tuples (y1, . . . , yn) �= (y∗

1 , . . . , y
∗
n) such that

Agg (x∗, {vki, yi}i=1...n) = Agg (x∗, {vki, y
∗
i }i=1...n) .

In the following we argue that this happens only with negligible probability, over
the random choice of G̃ and H̃. Recall that the aggregation algorithm computes

(r1, . . . , rn) ← H̃
(
G̃(x, vk1, . . . , vkn, y1, . . . , yn)

)
.

and outputs ỹ =
∏n

i=1 yri
i . First, note that we can equivalently analyze the

experiment where H̃ ◦ G̃ is simulated by lazy sampling (see the proof of Thm. 2),
with only a negligible loss in the advantage. Second, observe that, except for the
tuple (y1, . . . , yn) = (1, . . . , 1), the output of the aggregation algorithm is uni-
formly distributed in G1. It follows that, for any (possibly unbounded) algorithm
making a polynomial number of queries to the random oracle, the probability of
finding a collision is negligible (in λ) by a standard birthday bound.

4.3 Anonymity

The notion of anonymity, as defined in [25] requires that the verification key of
the VRF can be updated to a new verification key

vk′ ← Update(vk, k; ρ)

where ρ denotes the random coins used by the Update algorithm, in such a way
that the updated key vk′ is not linkable to the original key vk. Furthermore, there
exists an updated proof algorithm UProve that, on input the secret key k and
the random coins ρ used during the update procedure, produces a valid proof π′

to correctly verify the image of the VRF at any point. We define more formally
the anonymity property below. Note that, compared with the syntax of [25],
we define a more permissive variant, where the update algorithm is allowed to
take as input the secret key as well. Nevertheless, this variant still suffices for all
applications presented in [25].

Definition 13 (Anonymity). A VRF satisfies anonymity if there exists a neg-
ligible function μ such that for λ ∈ N and all admissible PPT adversaries A it
holds that ∣∣∣∣

1
2

− Pr
[
1 ← ExpAnonA(1λ)

]∣∣∣∣ = μ(λ)

Key-Homomorphic and Aggregate Verifiable Random Functions 121

where the experiment ExpAnonA is defined as follows.

– The challenger samples a reference string crs ←$ Setup(1λ) and two key pairs

(k0, vk0) ←$ Gen(crs) and (k1, vk1) ←$ Gen(crs)

and sends (crs, vk0, vk1) to A.
– A outputs a challenge input x∗.
– The challenger flips a coin b ←$ {0, 1} and updates the verification key vk∗ ←

Update(vkb, kb). Denote by ρ the random coins of the Update procedure, the
challenger computes

y∗ ← Eval(kb, x
∗) and π∗ ← UProve(kb, ρ, x∗)

and sends (vk∗, y∗, π∗) to A.
– In the end of the experiment, A outputs a guess b∗. The experiment returns

1 if and only if b∗ = b.

Update Algorithm. Next, we describe an update algorithm suitable for our
construction. We stress here that the updated key belongs to a different domain
than the original key, and in particular it no longer satisfies the same homomor-
phic properties. Nevertheless, this property can still be useful in settings where
one performs the homomorphic computation before updating the key.

On input a verification key vk = Sk = gks
1 , the update algorithm Update

samples a uniform κ ←$ Zp and computes the updated key vk′ as

vk′ =
(
V = gsκ

1 , T = g
k/κ
1

)
.

The updated proof of correct evaluation π′ at point x is computed as π′ = H(x)κ

and is verified by checking the equations

y
?= e (T, π′) and e (S, π′) ?= e (V,H(x)) .

Both equations are satisfied with probability 1 since

e (T, π′) = e
(
g

k/κ
1 ,H(x)κ

)
= e(g1,H(x))k = y

and
e (V,H(x)) = e (g1,H(x))sκ = e (S, π′) .

Furthermore, for any given V and T , the value of π′ is uniquely determined.

Analysis. The following theorem shows that the update algorithm as defined
above satisfies anonymity.

Theorem 5. If the group generator GroupGen is XIBDH-hard, then the con-
struction as described above satisfies anonymity in the random oracle model.

122 G. Malavolta

Proof. Observe that the view of the adversary in the experiment with the chal-
lenge bit fixed to b = 0 consists of the tuple

(
gs
1, g

sk0
1 , gsk1

1 , gsκ
1 , g

k0/κ
1 , gz

2 , g
zκ
2 , e(g1, gzκ

2)
)

where gz
2 = H(x∗). By the XIBDH Assumption, this distribution is computa-

tionally indistinguishable from
(
gs
1, g

sk0
1 , gsk1

1 , gsκ
1 , gδ

1, g
z
2 , g

zκ
2 , e(g1, gzκ

2)
)

where δ ←$ Zp. Another invocation of the XIBDH Assumption allows us to
argue that this is computationally indistinguishable from

(
gs
1, g

sk0
1 , gsk1

1 , gsκ
1 , g

k1/κ
1 , gz

2 , g
zκ
2 , e(g1, gzκ

2)
)

which is exactly the view in the experiment with the challenge bit fixed to b = 1.

4.4 Threshold

We briefly outline how our KH-VRF immediately implies a t-out-of-n threshold
VRF, exploiting the linearity of the key to combine the construction with a linear
secret-sharing scheme. This transformation is analogous to [6] and therefore we
only provide a sketch of the scheme here, and we refer the reader to [6] for
more details. In the threshold variant, we sample a random key k ←$ Zp and we
interpret it as the constant coefficient of a degree t− 1 univariate polynomial P ,
where the rest of the coefficients are also sampled uniformly from Zp. The share
of the i-th party consists of the evaluation of the polynomial ki = P (i) at point
i. For any point x ∈ {0, 1}λ, each party publishes

yi = e(g1,H(x))ki and πi = H(x)ki .

Given t such share, it is possible to publicly reconstruct a valid image-proof pair,
by running Lagrange interpolation in the exponent, i.e., computing

y =
t∏

i=1

y
Li(0)
i and π =

t∏

i=1

π
Li(0)
i

where Li is the i-th Lagrange polynomial.

5 Applications

We discuss several motivating applications for the notion of key-homomorphic
and aggregate VRFs. In favor of a more intuitive explanation, we keep the fol-
lowing discussion at a high-level and we leave the precise formalization of the
security properties and the protocol description as ground for future work. We
stress that the purpose of this discussion is to demonstrate the usefulness and
the versatility of the notion of our VRFs, but we do not claim that our solutions
are superior in all aspects compared to existing protocols.

Key-Homomorphic and Aggregate Verifiable Random Functions 123

5.1 Distributed VRF Without a Trusted Dealer

As a warm-up application, we show how an aggregate VRF imply a simple
and efficient construction of an n-out-of-n VRF where the key is distributed
across n parties. The key generation is completely non-interactive and performed
locally by all parties, which do not be even be aware of each other’s existence.
In particular, no trusted dealer is needed to distribute the shares of the key. We
outline the protocol below.

– Local Key Generation: On input the common reference string crs, each party
simply samples a key-pair locally

(k, vk) ←$ Gen(crs)

and outputs vk.
– Shared Key Computation: The shared key pair is defined to be

k̃ =
n∑

i=1

ki and ṽk =
n∏

i=1

vki.

It is easy to see that the resulting key is well-formed by the homomorphic prop-
erty of the underlying VRF, and that each party can compute the share of the
the evaluation at any point x, once again by appealing to the linear homomor-
phism of the key. The above scheme only ensures correctness against semi-honest
parties, whereas if one wants to defend against rogue-key attacks the aggregation
function presented in Sect. 4.2 can be used.

5.2 Proof of Stake Blockchains

To see how aggregate VRF provide substantial advantages when applied to proof
of stake (PoS) protocols. The discussion here is deliberately informal, and we
refer the reader to [21] for a thorough treatment of aggregatable PoS protocols.
Recall that in a PoS protocol [15] any user in the system uploads their VRF
verification key to the blockchain. In each epoch, each user can evaluate the
VRF on the slot number (which will play the role as a unique identifier for
the epoch) to compute the corresponding image. If the image is less than (a
function of) their wealth, then that user is identified as the designated party to
generate the new block. Such party can then compute a proof to convince the all
other parties that the VRF was evaluated correctly. This way, it can be publicly
verified that the user was indeed the winner of the round. In committee-based
PoS protocols, such as Algorand [27], a similar process is performed in order to
elect members of a committee, that collectively determine the value of the next
block.

Plugging in a KH-VRF in the above protocol, we immediately obtain the
following properties:

124 G. Malavolta

1. In committee-based PoS, we can aggregate individual proofs

π̃ ← AggProve(x, {vki, πi}i=1...n)

so that the size of the proof becomes independent of the size of the committee.
By the aggregate binding of the VRF, an attacker cannot later change the
images in such a way that they will pass the aggregate verification test.

2. One does not need to store a proof for each block (which is needed to make
the blockchain publicly verifiable) but one can instead store a single proof
throughout the lifetime of the system, by recursively aggregating all of the
existing proofs. One can still verify that the images are still valid, and an
attacker cannot change images after the fact, in such a way that they will
pass the aggregate verification test (assuming that the VRF satisfies aggregate
binding).

5.3 Verifiable Symmetric-Key Proxy Re-Encryption

The work of [6] introduces the notion of key-homomorphic pseudorandom func-
tions (KH-PRF), which is analogous to KH-VRF, with the crucial difference
that there is no verification procedure for the output of the PRF. In [6] the
authors show a number of applications for this primitive, such as distributed
PRFs, symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks. Our key-homomorphic VRF construction can
be used as a drop-in replacement to augment all of these applications with an
efficient verification procedure.

To exemplify this claim, we discuss the case of symmetric-key proxy re-
encryption. Suppose we have a dataset where each message Mi ∈ GT is
encrypted as

Enc(k,Mi) = Eval(k, ni) · Mi

where ni is a public nonce associated with the i-th location. A trivial solution
to update the key k is to download the entire dataset and re-encrypt all data.
A more efficient solution is for the client to provide the server with the key
δ − k (where δ ∈ Zp is the newly sampled key). Then the server can update all
ciphertext by computing

Enc(k,Mi) · Eval(δ − k, ni) = Eval(δ, ni) · Mi = Enc(δ,Mi).

Provided that the server deletes δ − k, it is shown that this protocol satisfies
security. If we plug a key-homomorphic VRF in this template, we enable an
additional verification property: For each ciphertext, the server can efficiently
compute a proof that certifies that the update was done correctly. An external
auditor, can be convinced that cipheretexts have been correctly updated, without
the need to know the secret key δ − k.

Key-Homomorphic and Aggregate Verifiable Random Functions 125

6 Assumptions in the GGM

We briefly discuss why the assumption that we consider are true (uncondition-
ally) in the generic group model (GGM). The following discussion assumes famil-
iarity with basic concepts of the GGM, and we refer the reader to [45] for a
thorough introduction. Since both assumptions are static, it suffices to show
that there is no way to express that “target” variable τ (i.e., the group element
that is different in the two distributions) as a linear combination of other vari-
ables in GT . This is without loss of generality, since we can always move all
variables in the target group by computing all possible pairings with the given
variables. The claim then follows by Lmm. 1.

For Definition 2, the adversary’s view contain the handles corresponding to
the formal variables

(
1, a, b, c, ab, ac, bc,

c

a
,
c2

a
, τ

)
where τ =

{
bc

a
, r

}

by taking all possible pairings with the element from the source groups. Since τ
is linearly independent from all other variables, our claim follows.

For Definition 3, again moving all variables to the target group, we have that
the adversary’s view contains

(
1, a, ab, ac, d, dc, ad, adc, abd, abdc, acd, adc2, τ0, τ1, τ2

)

where

τ0 =
{

b

c
, r

}
and τ1 =

{
bd

c
, rd

}
and τ2 = {bd, rdc} .

Once again, the claim follows from the fact that τ0, τ1, τ2 are linearly independent
from the rest of the variables.

Acknowledgements. Work supported by the European Research Council through
an ERC Starting Grant (Grant agreement No. 101077455, ObfusQation).

The author wishes to thank the anonymous reviewers of TCC 2024 for their com-
ments.

References

1. Au, M.H., Susilo, W., Mu, Y.: Practical compact E-Cash. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1 31

2. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and
simulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03298-1 9

3. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

https://doi.org/10.1007/978-3-540-73458-1_31
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19

126 G. Malavolta

4. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

6. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

8. Brakerski, Z., Brodsky, M.F., Kalai, Y.T., Lombardi, A., Paneth, O.: Snargs for
monotone policy batch NP. In: Handschuh, H., Lysyanskaya, A., (eds.) Advances in
Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part
II, volume 14082 of LNCS, pp. 252–283. Springer (2023)

9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 407–437. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 16

10. Buser, M., et al.: Post-quantum verifiable random function from symmetric prim-
itives in POS blockchain. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng,
W., (eds.) Computer Security - ESORICS 2022 - 27th European Symposium on
Research in Computer Security, Copenhagen, Denmark, September 26-30, 2022,
Proceedings, Part I, volume 13554 of LNCS, pp. 25–45. Springer (2022)

11. Choudhuri, A.R., Garg, S., Jain, A., Jin, Z., Zhang, J.: Correlation intractability
and snargs from sub-exponential DDH. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptol-
ogy Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part IV, volume 14084 of LNCS, pp. 635–668. Springer (2023)

12. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 14

13. Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for P from LWE. In: 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pp. 68–79. IEEE (2021)

14. David, B., Dowsley, R., Konring, A., Larangeira, M.: MUSEN: Aggregatable key-
evolving verifiable random functions and applications. Cryptology ePrint Archive,
Paper 2024/628 (2024)

15. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

16. Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting randomness from extractor-
dependent sources. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 313–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1 12

https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-030-45721-1_12

Key-Homomorphic and Aggregate Verifiable Random Functions 127

17. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

18. Esgin, M.F., et al.: Practical post-quantum few-time verifiable random function
with applications to Algorand. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol.
12675, pp. 560–578. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
662-64331-0 29

19. Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S.: Efficient hybrid exact/relaxed lattice
proofs and applications to rounding and VRFs. In: Handschuh, H., Lysyanskaya,
A. (eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual International
Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part V, volume 14085 of LNCS, pp. 484–517. Springer (2023)

20. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,
1990, Volume I, pp. 308–317. IEEE Computer Society (1990)

21. Fleischhacker, N., Hall-Andersen, M., Simkin, M., Wagner, B.: Jackpot: Non-
interactive aggregatable lotteries. Cryptology ePrint Archive, Paper 2023/1570
(2023)

22. Freitag, C., Waters, B., Wu, D.J.: How to use (plain) witness encryption: reg-
istered ABE, flexible broadcast, and more. In: Handschuh, H., Lysyanskaya, A.
(eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryp-
tology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part IV, volume 14084 of LNCS, pp. 498–531. Springer (2023)

23. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

24. Galindo, D., Liu, J., Ordean, M., Wong, J.-M.: Fully distributed verifiable ran-
dom functions and their application to decentralised random beacons. In: IEEE
European Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria,
September 6-10, 2021, pp. 88–102. IEEE (2021)

25. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware
blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 690–719. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-
2 23

26. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 17

27. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pp. 51–68.
ACM (2017)

28. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
provably preventing DNSSEC zone enumeration. In: 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society (2015)

29. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18

128 G. Malavolta

30. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.)
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pp. 612–621. IEEE Computer Society
(2017)

31. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system (2018)

32. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 336–362.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 14

33. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 33

34. Hubácek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) Proceedings of the 2015 Confer-
ence on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
January 11-13, 2015, pp. 163–172. ACM (2015)

35. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 5

36. Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction
escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 590–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 35

37. Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments
and RAM delegation. In: Saha, B., Servedio, R.A. (eds.) Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pp. 1545–1552. ACM (2023)

38. Kohl, L.: Hunting and gathering - verifiable random functions from standard
assumptions with short proofs. In: Lin, D., Sako, K. (eds.) Public-Key Cryptogra-
phy - PKC 2019 - 22nd IACR International Conference on Practice and Theory of
Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II,
volume 11443 of LNCS, pp. 408–437. Springer (2019)

39. Kuchta, V., Manulis, M.: Unique aggregate signatures with applications to dis-
tributed verifiable random functions. In: Abdalla, M., Nita-Rotaru, C., Dahab, R.
(eds.) CANS 2013. LNCS, vol. 8257, pp. 251–270. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-02937-5 14

40. Liang, B., Banegas, G., Mitrokotsa, A.: Statically aggregate verifiable random func-
tions and application to e-lottery. Cryptogr. 4(4), 37 (2020)

41. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005). https://doi.org/
10.1007/11593447 10

42. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

43. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999,
New York, NY, USA, pp. 120–130. IEEE Computer Society (1999)

44. Scott, M.: A note on group membership tests for g1, g2 and gt on bls pairing-
friendly curves. Cryptology ePrint Archive, Paper 2021/1130 (2021)

https://doi.org/10.1007/978-3-662-49096-9_14
https://doi.org/10.1007/978-3-642-13190-5_33
https://doi.org/10.1007/978-3-662-46497-7_5
https://doi.org/10.1007/978-3-540-24676-3_35
https://doi.org/10.1007/978-3-540-24676-3_35
https://doi.org/10.1007/978-3-319-02937-5_14
https://doi.org/10.1007/978-3-319-02937-5_14
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/3-540-45708-9_38

Key-Homomorphic and Aggregate Verifiable Random Functions 129

45. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

46. Waters, B., Wu, D.J.: Batch arguments for SFNP and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II, volume
13508 of LNCS, pp. 433–463. Springer (2022)

47. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: Umans, C. (ed.) 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pp. 600–611. IEEE
Computer Society (2017)

https://doi.org/10.1007/3-540-69053-0_18

More Efficient Functional Bootstrapping
for General Functions in Polynomial

Modulus

Han Xia1,2 , Feng-Hao Liu3 , and Han Wang1,2(B)

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{xiahan,wanghan}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Washington State University, Pullman, WA, USA

feng-hao.liu@wsu.edu

Abstract. Functional bootstrapping seamlessly integrates the bene-
fits of homomorphic computation using a look-up table and the noise
reduction capabilities of bootstrapping. Its wide-ranging applications in
privacy-preserving protocols underscore its broad impacts and signif-
icance. In this work, our objective is to craft more efficient and less
restricted functional bootstrapping methods for general functions within
a polynomial modulus. We introduce a series of novel techniques, prov-
ing that functional bootstrapping for general functions can be essentially
as efficient as regular FHEW/TFHE bootstrapping. Our new algorithms
operate within the realm of prime-power and odd composite cyclotomic
rings, offering versatility without any additional requirements on input
noise and message space beyond correct decryption.

1 Introduction

Fully homomorphic encryption (FHE) has been identified as a powerful cryp-
tographic tool, allowing arbitrary computation over ciphertexts without first
decrypting it. Gentry pioneered FHE in his seminal work [33], sparking numer-
ous subsequent studies such as [5,12,13,15,16,21,22,30,35,44,45]. In addition
to theoretical progress, practical strides have been made with the development
of several useful FHE libraries along this research trajectory [3,20,24,56,57,73],
contributing significantly to potential real-world applications.

Bootstrapping with Polynomial Error Growth. As a pivotal breakthrough
introduced by Gentry in [33], bootstrapping plays a crucial role in achieving
“fully” homomorphic encryption. In a nutshell, the bootstrapping paradigm takes
as input an FHE ciphertext c ∈ Enc(m) and some bootstrapping key, and out-
puts another FHE ciphertext c′ ∈ Enc(Dec(c)) ⊂ Enc(m), with significantly
reduced noise. As homomorphic computations in current FHE schemes inevitably
incur noise, reaching a point where decryption becomes incorrect, bootstrapping
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 130–163, 2025.
https://doi.org/10.1007/978-3-031-78023-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_5&domain=pdf
http://orcid.org/0009-0001-4629-2905
http://orcid.org/0000-0003-4298-3925
http://orcid.org/0009-0008-3102-604X
https://doi.org/10.1007/978-3-031-78023-3_5

Functional Bootstrapping for General Functions in Polynomial Modulus 131

becomes the critical key that enables an arbitrary number of homomorphic oper-
ations and thus “F”-HE.

Among various FHE schemes, the work [16] showed for the first time that
bootstrapping would only incur a polynomial error growth, though their method
requires very large polynomial runtimes due to the reliance on Barrington’s The-
orem [6]. Thereafter, the work (referred to as AP14) [5] showed how to bootstrap
with error growth and runtime being both small polynomials by treating decryp-
tion as an arithmetic function. The AP14 method critically relies on the GSW
schemes [35] (known as the third generation of FHE schemes), yet their explicit
method was in the plain lattice (i.e., LWE [63]) setting, which is not expected
to be concretely efficient. Subsequently, FHEW [30] and TFHE [23] refined and
optimized the AP14 method in the ring setting, introducing substantial new
insights. These optimizations resulted in bootstrapping achievements within sub-
seconds in practical implementations. Their impact is evident in the inclusion
of these methods in various libraries, such as OpenFHE [3] and TFHE [24,73],
highlighting their tangible real-world relevance to the community.

This work focuses on the setting of (functional) bootstrapping along the line
of FHEW/TFHE, i.e., methods with polynomial error growth, which implies
smaller FHE parameters and thus smaller FHE keys. We notice that the
FHEW/TFHE computation is suited for computation expressed by boolean cir-
cuits, e.g., comparisons and decision diagram computations [11,28], with smaller
memory requirements.

Functional Bootstrapping. Following the FHEW-like framework [53] (includ-
ing FHEW [30] and TFHE [23]), the works [8,10] identified that in the power-
of-2’s cyclotomic rings, the bootstrapping method can be slightly modified
with almost no additional cost, outputting c′ ∈ Enc(f(m)) for any negacyclic
f : Zp → Zp where p is the plaintext domain1. This is called functional boot-
strapping [10,27,36,42,47,48] (or programmable bootstrapping [7,25,26]), which
integrates noise reduction and (small) look-up table computation at comparable
efficiency as the bootstrapping. A trivial way to overcome the negacyclicity is
to use only half-domain of the plaintext space [10,11,36]. However, this signifi-
cantly limits the construction of applications. To support both full-domian and
general functions, several recent works [7,26,42,47,72] have aimed for efficient
designs, which can be broadly categorized into the following two types.

– Single Input/Output: In these schemes [26,42,47,72], both the input and
output are single LWE ciphertexts. They typically require more than two calls
to the regular FHEW/TFHE bootstrapping, and some even impose additional
constraints on the noise level of the input LWE ciphertext [47,72].

– Multiple Inputs/Outputs: This framework was first introduced in [36]
and later optimized in [7,26]. It decomposes the plaintext into multiple bits
or digits2 and encrypts each segment separately. As a result, the number of

1 For commonly used FHEW/TFHE parameters [53], the plaintext domain is roughly
3-bit to 5-bit. Also notice that f might be more general that works on Zp → Zp′ ,
i.e., the output ciphertext might be associated with a different plaintext domain.

2 Here, “digits” means decomposing by another integer base B, i.e., B > 2.

132 H. Xia et al.

ciphertexts and the invocations of regular bootstrapping in these schemes
increase with the precision of the input plaintext. Moreover, to support digits
rather than just bits, there must be constraints on the input ciphertexts [7].

As functional bootstrapping has many applications, such as privacy-
preserving machine learning [42,46,49], and it can serve as an important building
block of conversion between different types of FHE schemes with high preci-
sions [47,49], it becomes an important open problem to optimize the function-
ality and efficiency of functional bootstrapping designs, either theoretically or
practically. This motivates the main question of this work.

(Main Question). Can we simultaneously eliminate all constraints of functional
bootstrapping (within a polynomial modulus) for general functions and make it
as efficient as the regular FHEW/TFHE bootstrapping?

1.1 Our Contributions

To tackle the main question, this work designs a series of new full-domain func-
tional bootstrapping algorithms for general functions that are essentially as effi-
cient as the regular FHEW/TFHE bootstrapping. We summarize as follows.

Functionality. We design three new functional bootstrapping algorithms over
general cyclotomic rings with prime, prime-power, and odd composite indices3
for single LWE input4. All of them satisfy all the following desirable properties:

– Arbitrary plaintext modulus/encoding for input ciphertext.
– No additional input noise requirement beyond correct decryption.
– General functions f : Zp → Zp′ with arbitrary positive integers p and p′.

Briefly, all of them have no restrictions on the input LWE ciphertext (with a
fixed modulus), which implies the following result:

Functional bootstrapping for general functions works for inputs that are
any valid LWE ciphertext (i.e., correctly decryptable).

Efficiency. Let n be the dimension of the input LWE ciphertext. All of our
functional bootstrapping algorithms come at the cost of n + O(log n) homo-
morphic multiplications (i.e., FHE external products). Compared to the regular
FHEW/TFHE bootstrapping that requires n homomorphic multiplications (in
the dominating “Blind Rotation” procedure), this implies that the ratio of effi-
ciency achieves 1 + o(1). In Table 1, we present a summary of our results and a
comparison with prior full-domain designs.
3 In summary, we support cyclotomic rings for two general categories – (1) odd and

(2) power-of-2 indices.
4 Our algorithms directly follow the technical line of single input/output. However,

they can also be used to remove the constraints on input noise and encoding in
schemes with multiple inputs/outputs. In other words, our optimizations lie at the
core part of functional bootstrapping algorithms and can be applied to enhance the
functionality and efficiency of all existing functional bootstrapping designs.

Functional Bootstrapping for General Functions in Polynomial Modulus 133

Table 1. Prior and our full-domain functional bootstrapping schemes for general func-
tions. The modulus of the input LWE ciphertext is q. The minimal cyclotomic index
stands for the smallest ring required for bootstrapping the input LWE ciphertext, which
directly determines the efficiency of basic ring operations. Note that Blind Rotation is
the core part that dominates the efficiency of FHEW/TFHE bootstrapping.

of
Blind
Rotations

Minimal
Cyclotomic
Index

Type of
Cyclotomic
Index

Without
Restrictions on
Input Error

[26] 2 2q Power-of-2 Yes
3 q Power-of-2 Yes

[42] 1 + dg
† q Power-of-2 Yes

[47] 2 2q Power-of-2 No∗

3 4q Power-of-2 Yes
[7] O(βdg)

� O(q) Power-of-2 Yes/No∗∗

Ours 1 + o(1) q Prime-Power‡ Yes
1 + o(1) q Composite§ Yes

† dg is the gadget decomposition dimension satisfying dg > 1.
� β is the precision (bit-length) of the input plaintext modulus. The value O(βdg) could
be even larger for relatively large β (e.g., β > 28 as reported in [7]).
‡ We support arbitrary prime-power index (including pure prime and power-of-2).
§ We only support odd composite index (see Challenge 2 in Sect. 6).
* It requires the input noise to be less than roughly half of the maximal allowable bound
(i.e., the upper bound for correct decryption). This method was also independently
discovered in [72].
** “Yes” is only for the case where each input ciphertext encrypts only a single bit.
Encrypting digits in a single ciphertext would require plaintext-ciphertext multiplica-
tion and homomorphic subtraction of the input ciphertext, which leads to the constraint
on the input noise level.

1.2 Technical Overview

In this section, we highlight some critical insights in our designs. First, we briefly
review the FHEW/TFHE (functional) bootstrapping framework.

FHEW/TFHE Framework. As discussed before, this framework takes as
input an LWE ciphertext c ∈ Enc(m) and some bootstrapping key, and aims to
output another LWE ciphertext c′ ∈ Enc(m) or c′ ∈ Enc(f(m)) with reduced
noise. We further denote c = (b,a) ∈ Zq × Z

n
q and notice that the decryption

procedure is Round ((b − 〈a, s〉 mod q)), where s is the secret key and Round(·)
is some rounding function for decoding. To achieve (functional) bootstrapping,
the framework first uses the Blind Rotation technique that produces a RLWE

ciphertext that encrypts ζ
b−〈a,s〉
q := ζα

q where ζq is a primitive q-th root of unity,
and then extracts an LWE.Enc(Round(α)) of more general LWE.Enc(f(α)) given
RLWE.Enc(ζα

q). As α is computed in the exponent of ζq’s power, it naturally
takes the modulo q.

134 H. Xia et al.

For the complexity, the Blind Rotation procedure takes n homomorphic mul-
tiplications (specifically the external products), dominating the overall complex-
ity of the bootstrapping procedure. In power-of-two cyclotomic rings, the extrac-
tion procedure can be efficiently achieved (almost free) for the cases of Round(·)
function and negacyclic functions. For general functions however, current meth-
ods use different design concepts that require more than two calls to the core
bootstrapping (Blind Rotation), and some of them even require ring extension
(see Table 1 for the minimal cyclotomic index).

Our Goal. To achieve a more efficient method, we aim to design a more powerful
and efficient function evaluation procedure than extraction, particularly at the
cost of o(n) homomorphic multiplications (external products). Combining with
one call to the Blind Rotation, this would imply the overall cost to be n + o(n)
homomorphic multiplications, meaning 1+o(1) times the regular FHEW/TFHE
bootstrapping. Below, we present our new insights on how we achieve our goal.

Our Blueprint. We aim to resolve the problem of the most general form where
the input noise is only required to be bounded by the maximal allowable value
of correct decryption, and the function has no restriction. Particularly, we first
observe that any discrete function can be expressed by the linear combination
of the equality test function: Define the equality test as EqT(ζα

q , β) that takes
some power of ζq and β ∈ Zq, and outputs 1 if α = β mod q or otherwise
outputs 0. Then any function f : Zq → Zh (for any positive integer h) can
be expressed as f(α) =

∑
β∈Zq

f(β) · EqT(ζα
q , β). Based on this idea, if there

exists such a homomorphic equality test, we can construct a function evaluation
algorithm that takes as input RLWE.Enc(ζα

q) and outputs RLWE.Enc(f(α)). So,
our remaining task is to find an equality test function that can be efficiently
computed homomorphically. In this way, the desired function can be evaluated.
Our idea exploits the technique of homomorphic equality test and the algebraic
trace over three different types of cyclotomic rings, as we elaborate below.

The Case of Prime Cyclotomic Rings. In this setting, the algebraic trace
inherently possesses properties close to what we require. Particularly, when q is
prime, the algebraic trace function has exactly two branches as follows:

TrQ(ζq)/Q(ζ
α−β
q) =

{
q − 1 if α = β mod q

−1 otherwise
.

Thus, we can use the function TrQ(ζq)/Q(·)+1 as the equality test function (scaled
by q) in the following way. Given RLWE.Enc(ζα

q), we first multiply it by
∑

β f(β)·
ζ−β
q and then perform the homomorphic trace evaluation (then plus

∑
β f(β)),

resulting in a ciphertext of RLWE.Enc
(
Tr

(∑
β ζα−β

q · f(β)
)
+

∑
β f(β)

)
. By the

linearity of trace, the resulting plaintext would be
∑

β

(
Tr(ζα−β

q) + 1
) · f(β),

and by the equality test’s property, this would be equal to q · f(α), successfully
extracting the desired term (with the scaling factor q).

The Case of Prime-Power Cyclotomic Rings. In the prime-power setting,
i.e., q = pr where p is any prime number and r > 1, the previously discussed

Functional Bootstrapping for General Functions in Polynomial Modulus 135

equality test method is no longer applicable. To handle this, we use the equality
test observed in [1] that works over arbitrary cyclotomic rings:

∑q−1
i=0 ζ

(α−β)i
q ,

which equals to q if α = β mod q or otherwise 0. To homomorphically evaluate
this equality test however, we need to overcome the following challenges.

Challenge 1. As suggested in [1], homomorphic evaluation of this equality test
requires O(q) homomorphic multiplications for a general q, which means directly
applying their method would not meet our pre-set goal. Moreover, we cannot
utilize the linearity of trace to evaluate all the equality tests in parallel, as
we did in the prime case. However, we found that in the prime-power case,
this equality test can be related to the algebraic trace and evaluated with only
O(log q) homomorphic multiplications. Our first key observation is a partition
for Zq = {0, 1, . . . , pr − 1}, which is Zq \ {0} =

⋃r
i=1 pr−i · Z

∗
pi . Then, we can

derive a new equivalent expression for the original equality test (see Lemma 5.2):

∑

i∈Zq

ζ(α−β)·i
q = 1 +

r∑

i=1

TrQ(ζpi)/Q

(
ζα−β
pi

)
, (1.1)

which relates the algebraic trace of sub-extensions to the original equality test.

Challenge 2. In the new formula, we need to compute encryptions of ζα−β
pi . How

to efficiently obtain these encryptions from RLWE.Enc(ζα
q) is a new challenge,

e.g., using O(1) homomorphic-friendly operations. To address this issue, we
observe that ζα

pi = ζpr−i·α
q = ζ

(pr−i−1)·α
q · ζα

q . Thus, we can first perform an auto-

morphism evaluation of ζq �→ ζpr−i−1
q to get RLWE.Enc

(
ζ
(pr−i−1)·α
q

)
and then

use a homomorphic multiplication with RLWE.Enc(ζα
q) to obtain RLWE.Enc(ζα

pi).

Challenge 3. If we compute all the trace of sub-extensions in the summation
separately, the overall computational complexity could become somewhat large.
Fortunately, we further observe that all the trace evaluations in the summation
are contained in the tower of field extensions Q(ζpr)/Q(ζpr−1)/ · · · /Q(ζp)/Q.
The summation can be computed by adding the encryptions of sub-ring elements
(e.g., RLWE.Enc(ζα−β

pi)) to the intermediate result during the evaluation of the
trace tower. Consequently, we only need to evaluate the trace once.

In Sect. 5, we elaborate on the new techniques we developed to overcome all
the abovementioned challenges.

The Case of Composite Cyclotomic Rings. In the composite setting, i.e.,
q = q1 · · · qk where the qi’s are distinct prime-powers pri

i for i ∈ {1, . . . , k},
we notice that all the prior methods based on algebraic trace cannot serve as
the equality test again. To achieve our goal, our key insight is to propose the
following equation with two branches for the (scaled) equality test:

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =

{
q if α = β mod q

0 if α �= β mod q
.

136 H. Xia et al.

Intuitively, this design captures the idea that α = β mod q if and only if α = β
mod qi for all the branches modulo qi by the Chinese Remainder Theorem, and
each parenthesis is an equality test from [1]. Since each qi is some prime-power,
we can combine it with Eq. 1.1 to get the following equivalent expression:

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =
k∏

i=1

⎛

⎝1 +
ri∑

j=1

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠

which relates the equality test to algebraic trace. To homomorphically compute
this equality test however, we need to tackle various challenges.

Challenge 1. While we can utilize our method for the prime-power case to handle
each branch, the outer product form seems to require additional homomorphic
multiplications on the results of several trace functions. This may incur signifi-
cant computational cost and noise blowup. To address this issue, we find a new
equivalent expression that is the sum of several trace functions (see Lemma 6.3):

k∏

i=1

⎛

⎝1 +
ri∑

j=1

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠ = 1 +
∑

w|q,w �=1

TrQ(ζw)/Q

(
ζα−β
w

)
.

Challenge 2. In the new formula, we need to compute encryptions of ζα−β
w . How

to efficiently obtain these encryptions from RLWE.Enc(ζα
q) is a new challenge.

Similar to our solution to Challenge 2 for the prime-power case, we can write
ζα
w = ζ

(q/w)·α
q = ζ

(q/w−1)·α
q · ζα

q . Unfortunately, ζq �→ ζ
q/w−1
q may not be an

automorphism when q is general, so we use a more general formula that ζα
w =

ζ
(q/w)·α
q = ζ

(q/w−c)·α
q · ζc·α

q for some c ∈ Zq. If both q/w − c and c are in Z
∗
q , we

can use two automorphism evaluations plus one homomorphic multiplication to
obtain the encryption of ζα

w. We prove that we can always find such c for any
w | q, w �= 1, q when q is an odd composite number (see Proposition 6.4).

Challenge 3. There exist many different trace computations in the summation,
some of which may not contained in a consecutive tower. It seems that we need
to perform these trace evaluations individually. To further improve efficiency,
we identify a new algebraic equation (see Lemma 6.6) that allows one single
computation of TrQ(ζq)/Q, integrating all the intermediate trace computations.

In Sect. 6, we further describe our new techniques and designs to address all
the aforementioned challenges.

Computational Complexity. In our constructions, the computational com-
plexity is dominated by the homomorphic evaluation of the algebraic trace, which
would require N − 1 homomorphic automorphism evaluations in a trivial way
where N is the degree of field extension. It is currently known that there are
two typical cases where the trace evaluation can be completed with much fewer
(e.g., O(logN)) automorphism evaluations. The first case is when the exten-
sion Q(ζq)/Q exhibits a tower structure which is widely used in [4,19,44,45].
The second case is when the extension Q(ζq)/Q is a cyclic extension (i.e., the

Functional Bootstrapping for General Functions in Polynomial Modulus 137

Galois group Gal(Q(ζq)/Q) is cyclic), which is first mentioned in [37] and gen-
eralized in [74]. These methods can be used to handle our prime-power case
(as Gal(Q(ζq)/Q) ∼= Z

∗
q is cyclic for an odd prime-power q, and a power-of-2 q

exhibits a base-2 logarithmic length tower of field extensions). It appears that
there is currently no efficient solution for the composite case.

To address this, we have found that these two approaches can be combined.
For example, suppose q = q1q2 where q1 and q2 are two distinct odd prime-
powers. Then we have the tower structure of extensions Q(ζq1q2)/Q(ζq2)/Q,
which fits the first case. Moreover, the Galois groups Gal(Q(ζq1q2)/Q(ζq2)) ∼= Z

∗
q1

and Gal(Q(ζq2)/Q) ∼= Z
∗
q2 are both cyclic, which matches the second case. Thus,

we can combine these two approaches to achieve a logarithmic complexity for
the trace evaluation of the composite case. Furthermore, we found that this
combination can be generalized to arbitrary cyclotomic extensions. We give an
informal theorem below and refer to Sect. 3.3 for details.

Theorem 1.1 (Informal). For a cyclotomic extension Q(ζm)/Q with [Q(ζm) :
Q] = N and m being an arbitrary positive integer, TrQ(ζm)/Q can be computed
with O(logN) automorphisms. In the FHE context, homomorphic evaluation of
TrQ(ζm)/Q only requires O(logN) homomorphic automorphism evaluations.

Why General Cyclotomic Rings?. Below, we discuss the rationale for con-
sidering general cyclotomic rings and further applications of our techniques.

– More Modulus/Secret Choices: In the FHEW/TFHE context, some
recent works [43,70] have explored general LWE secret key distributions (as
opposed to binary or ternary) to support more applications. In such cases,
modulus switching may cause noise explosion when the norm of the secret
key is relatively large. Hence, with the requirement that the LWE modulus q
must divide the cyclotomic index m (to ensure the embedding Zq → 〈ζm〉), a
flexible m allows for more options in the selection of q and secret key.

– Compatibility with Batch Bootstrapping: Our new algebraic insights
are compatible with the Batch Bootstrapping framework of [44,45]. As the
Batch paradigm crucially relies on tensor rings (including general cyclotomic
rings for their tensor decompositions), our findings illuminate new paths
for achieving SIMD functional bootstrapping for general functions within a
polynomial modulus. Moreover, our strategy for trace computation can be
employed in the framework to achieve the most flexible parameter choices.

– General Applications: Our new techniques are highly versatile and are
applicable to schemes like BGV [13]/BFV [12,31], which inherently require
general cyclotomic rings to support plaintext slots of finite fields or Galois
rings [34,39,65]. Additionally, our new strategies for trace computation and
new equality tests from insights on the structure of Zq and Z

∗
q may benefit

other applications that rely on related computational number theory.

1.3 Other Related Work

A recent work [48] constructs new functional bootstrapping methods based on
the BFV [12,31] scheme. However, their method would incur a super-polynomial

138 H. Xia et al.

noise growth and thus require a super-polynomial modulus, which is not within
the scope of the study in this work. Another recent work [52] improves the
parameter selection and concrete efficiency of [26,47]. However, regarding func-
tional bootstrapping for general functions, their algorithms do not show improve-
ments in asymptotic complexity and functionality. Notably, the work [41] first
discussed functional bootstrapping over general polynomial quotient rings, but
their method fails to support both full-domain and general functions.

2 Preliminaries

2.1 Notations

In this paper, we denote the set of the rational numbers by Q, the integers in
Q by Z, the real numbers by R, and the complex numbers by C. For an integer
modulus q, Zq = Z/qZ is the quotient ring of integers modulo q. We use the
representative set Zq = {0, 1, . . . , q − 1} for simplicity and let [x]q denote the
modulo q operation into Zq for an integer x. Let [n] = {1, . . . , n}, where n is
a positive integer. Notation log refers to the base-2 logarithm unless explicitly
specified otherwise. We denote [a, b] as the set [a, b] ∩ Z for any integers a ≤ b.
We denote a column vector by a bold lower-case letter, e.g. x, and xi to denote
the i-th entry of x. The transpose of x, namely the corresponding row vector, is
denoted by x	. We define the �∞-norm of x by ‖x‖∞ = maxi{|xi|}.

Given a set A and a distribution P over A, we use a ← A to denote that
a is uniformly chosen from A and a ← P to denote that a is chosen randomly
according to the distribution P.

2.2 Subgaussian Random Variables

We call a random variable X over R is subgaussian with parameter s > 0,
if for all t ∈ R, the (scaled) moment-generating function satisfies: E[e2πtX] ≤
eπs2t2 . Especially, any B-bounded symmetric random variable X(i.e., E[X] = 0
and |X| ≤ B) is subgaussian with parameter B

√
2π. Subgaussians satisfy the

following properties as discussed in [5,30]:

– Homogeneity : If X is a subgaussian variable with parameter s, then cX is
subgaussian with parameter cs for any positive c ∈ R.

– Pythagorean additivity : For si ≥ 0, and random variables Xi for i ∈ [k], if Xi

is subgaussian with parameter si conditioning on any values of X1, ...,Xi−1,
then

∑
i∈[k] Xi is subgaussian with parameter (

∑
i∈[k] s

2
i)

1/2.
– Boundedness: For any subgaussian variable X with parameter s, we have the

probability bound Pr[|X| > t] < 2 · exp(−πt2/s2).

Remark 2.1. For a subgaussian variable X with parameter δx, we have
Pr[|X| > C · δx] < 2 · exp(−π · C2) by the boundedness. Hence, by setting C
to be a proper constant, we can deduce that |X| ≤ C · δx with overwhelming
probability. For another subgaussian variable Y with parameter δy that is inde-
pendent of X, we use a subgaussian variable with parameter O(δx · δy) as an
upper bound to demonstrate the asymptotic behavior of |X · Y | in this paper.

Functional Bootstrapping for General Functions in Polynomial Modulus 139

2.3 Cyclotomic Rings

Let ζm be an m-th primitive root of unity. Then K = Q(ζm) is an algebraic
number field known as the m-th cyclotomic field, where the number m is referred
to as the cyclotomic index. From algebraic number theory, the ring of the integers
of the field K, which we usually denote by OK , is Z[ζm]. Note that we have
Z[ζm] ∼= Z[X]/(f(X)) where f(X) is the minimal polynomial of ζm with degree
N = φ(m) (the Euler’s totient of m). In the cyclotomic extension case, f(X) is
the m-th cyclotomic polynomial Φm(X) =

∏
i∈Z∗

m
(X − ωi

m) ∈ Z[X], where Z
∗
m

denotes the set of integers in Zm that are coprime to m, and ωm ∈ C is any
primitive m-th complex root of unity, e.g., ωm = e2π

√−1/m.
Let R = Z[ζm] and Rq = R/qR. Then the set {1, ζm, . . . , ζN−1

m } forms a
Z-basis of R and thus a Zq-basis of Rq. This basis is often called the power basis
of R. For a ∈ R, we can uniquely write it as a = a0 + a1ζm + · · · + aN−1ζ

N−1
m

where ai ∈ Z for i = 0, 1, . . . , N − 1. We call (a0, . . . , aN−1) the representation
or the coefficient embedding under the power basis.

Canonical Embedding.T he m-th cyclotomic number field K = Q(ζm) of
degree N = φ(m) has exactly N ring embeddings σi : K → C that fix every
element of Q. Let these embeddings be indexed by Z

∗
m. Then for i ∈ Z

∗
m, each

embedding σi is defined by σi(ζm) = ωi
m where ωm ∈ C is some fixed com-

plex primitive m-th root of unity (e.g., ωm = e2π
√−1/m). Then the canonical

embedding σ : K → C
N is defined as

σ(x) = (σi(x))i∈Z∗
m

.

Note that it is a ring homomorphism from K to C
N , where addition and mul-

tiplication in the latter are both component-wise. For a ∈ R, the canonical
embedding norm of a is defined as the �∞-norm of σ(a), namely, ‖σ(a)‖∞. It
possesses the following nice property: For a, b ∈ R, we have

– ‖σ(a + b)‖∞ ≤ ‖σ(a)‖∞ + ‖σ(b)‖∞,
– ‖σ(a · b)‖∞ ≤ ‖σ(a)‖∞ · ‖σ(b)‖∞.

Due to the independence of the representation of elements in R and the above
property, we can easily bound the canonical embedding norm for elements in
general cyclotomic rings. One can refer to [39,51] for the relation between the
canonical embedding norm and the norm under some Z-basis of R.

Algebraic Trace. For two number fields K ′ ⊂ K, suppose the field exten-
sion K over K ′ (denoted as K/K ′) is a Galois extension with the Galois group
Gal(K/K ′). Then for any element a ∈ K, the trace of a over K ′ is defined as

TrK/K′(a) =
∑

τ∈Gal(K/K′)

τ(a) ∈ K ′.

An important fact is that TrK/K′(OK) ⊆ OK′ . Moreover, the trace TrK/K′(·)
has the K ′-linearity as follows.

140 H. Xia et al.

– For a ∈ K, c ∈ K ′, we have TrK/K′(c · a) = c · TrK/K′(a).
– For a, b ∈ K, we have TrK/K′(a + b) = TrK/K′(a) + TrK/K′(b).

For a tower of number field extensions Kr/Kr−1/ · · · /K2/K1, the trace has the
following property, which is the so-called transitivity :

TrKr/K1(a) = TrK2/K1(· · · (TrKr−1/Kr−2(TrKr/Kr−1(a))) · · ·)

for any a ∈ Kr. Moreover, we have the following useful fact for computation.

Lemma 2.2 ([51]). Let m be a power of a prime p and m′ = m/p, then for
i ∈ Z,

TrQ(ζm)/Q(ζi
m) =

⎧
⎪⎨

⎪⎩

ϕ(p) · m′ if i = 0 mod m

−m′ if i = 0 mod m′ and i �= 0 mod m

0 otherwise.

2.4 (Ring) Learning with Errors

The learning with errors (LWE) problem was first introduced by Regev [63].
Before the definition of LWE, we first introduce the distribution As,χ. For a
distribution χ over Z and a vector s ∈ Z

n
q , a sample from the distribution As,χ

is of the form (b,a) ∈ Zq × Z
n
q with b = [〈a, s〉 + e]q, where a ← Z

n
q and e ← χ.

Definition 2.3 (DLWE). For a security parameter λ, let n := n(λ) be an
integer dimension, let q = q(λ) ≥ 2 be an integer modulus, and let χ = χ(λ) be
an error distribution over Z. Given some independent samples from As,χ, the
decision version of LWE, denoted by DLWEn,q,χ, is to distinguish them from the
same number of uniformly random and independent samples from Zq × Z

n
q .

The DLWEn,q,χ problem defined above is known to be at least as hard as cer-
tain lattice problems [14,59,63]. To improve the efficiency of LWE-based schemes,
the ring version of LWE, namely RLWE, was introduced [50,66]. We use the pri-
mal version of RLWE where the secret is defined in the ring rather than its dual.
More discussions on different variants of RLWE can be found in [18,29,60,61].

For a distribution χ over R and a ring element z ∈ Rq, a sample from the
distribution Az,χ is of the form (b, a) ∈ R2

q with b = a · z + e where a ← Rq and
e ← χ.

Definition 2.4 (RLWE). For a security parameter λ, let N := N(λ) be the
degree of the ring, let q = q(λ) ≥ 2 be an integer modulus, and let χ = χ(λ) be
an error distribution χ over R. Given some independent samples from Az,χ, the
decision version of RLWE, denoted by R-DLWEN,q,χ, is to distinguish them from
the same number of uniformly random and independent samples from R2

q.

There are reductions showing that the R-DLWEN,q,χ problem defined above
is at least as hard as certain computational problems in ideal lattices [50,62].

Functional Bootstrapping for General Functions in Polynomial Modulus 141

2.5 (Ring) LWE-Based Symmetric Encryption

We first review a symmetric encryption scheme based on LWE, which is the base
scheme to be bootstrapped. We use the most significant bits (MSBs) for the
plaintext encoding for ease of description. Note that the algorithms we propose
in this work are independent of the plaintext encoding methods for the input
LWE scheme. The basic definitions of LWE-based encryption are as follows.

– Encryption. Let Zt be the plaintext domain, and q be the LWE modulus.
Then the set of valid LWE ciphertexts for plaintext μ ∈ Zt under the secret
key s, denoted as LWEs(δ · μ)5 is defined as:

LWEs(δ · μ) = {([〈a, s〉 + e + δ · μ]q,a) ∈ Z
n+1
q },

where a ∈ Z
n
q and e ← χ for some typical error distribution χ over Z (e.g.,

Gaussian), and δ = � q
t � is the scaling factor.

– Decryption. A ciphertext c = (b,a) ∈ Z
n+1
q can be decrypted by computing

Dec(s, c) = Dcd([b − 〈a, s〉]q)
where Dcd : Zq → Zt is the decoding function Dcd(x) = [� t

q · x�]t.
The above notation can be extended to RLWE-based schemes. Let Rp be the
plaintext space and Q be the ciphertext modulus. Then, we define the following
set for valid RLWE encryptions of the plaintext μ ∈ Rp under the secret key z:

RLWEz(Δ · μ) =
{
([a · z + e + Δ · μ]Q, a) ∈ R2

Q

}
,

where a ∈ RQ and e ← χ for some typical error distribution χ over R (e.g.,
Gaussian), and Δ = �Q

p � is the scaling factor. Note that �·� and [·]Q for elements
in R mean coordinate-wise rounding to the nearest integer and coordinate-wise
modulo Q with respect to some fixed Z-basis of R, respectively. We use the
following notation to denote the error in a ciphertext.

Definition 2.5. For a ciphertext c ∈ RLWEz(μ), the error of c is defined as

Err(c) := 〈(1,−z), c〉 − μ.

3 Basic Homomorphic Computations

In this section, we review some necessary background on homomorphic encryp-
tion, encompassing homomorphic operations, along with some new techniques.

We start with the homomorphic operations on RLWE ciphertexts used in this
work. More operations, including the external product with Ring-GSW [23,30,
35] ciphertexts over general cyclotomic rings can be found in [44,45]. We assume
that the underlying ring for the RLWE scheme is R = Z[ζm] with N = φ(m),
and the ciphertext modulus is Q. The proofs of all lemmas, propositions, and
theorems in this section are provided in the full version.
5 An equivalent notation LWE

t/q
s (μ) is also used in the literature.

142 H. Xia et al.

3.1 BFV Homomorphic Multiplication

Let BFV.Mul(·) be a homomorphic multiplication algorithm [12,31] that takes
as input two RLWE ciphertexts ci ∈ RLWEz(Δ · μi) where i = 1, 2 and Δ :=
�Q/p�, and some relinearization key RelKey, and outputs a RLWE ciphertext
c′ ∈ RLWEz(Δ ·μ1 ·μ2). Since we will only encounter the case where the plaintext
is some root of unity, the following lemma is restricted to this case only for a
simpler error bound.

Lemma 3.1. Suppose c′ ← BFV.Mul(c1, c2) and both c1, c2 are encryptions
of roots of unity. If ‖σ(Err(c1))‖∞ and ‖σ(Err(c2))‖∞ are upper bounded by
subgaussian variables with parameter δ1, δ2, ‖σ(Err(RelKey))‖∞ = ‖σ(z)‖∞ =
O(

√
N). Then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable with

parameter O(
√
(p/Q)2δ21δ

2
2 + p2N2(δ21 + δ22) + N2 logQ).

3.2 Homomorphic Automorphism Evaluation

We also use homomorphic automorphism evaluation over general cyclotomic
rings as studied and used in [37,39,44,45]. Let EvalAuto(·) be a homomorphic
evaluation algorithm that takes as input a RLWE ciphertext c ∈ RLWEz(μ), an
automorphism τ ∈ Gal(Q(ζm)/Q) and some automorphism key AutKey, and out-
puts a RLWE ciphertext c′ ∈ RLWEz(τ(μ)). The following lemma demonstrates
the error growth in the homomorphic automorphism evaluation.

Lemma 3.2. Suppose that c′ ← EvalAuto(c, τ,AutKey). If ‖σ(Err(c))‖∞ and
‖σ(Err(AutKey))‖∞ are upper bounded by subgaussian variables with parameter
δc and δaut respectively, then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
δ2c + δ2autN logQ).

3.3 Homomorphic Trace Evaluation

By definition, the trace evaluation requires performing all automorphisms in the
Galois group Gal(Q(ζm)/Q) and summing the results, which trivially necessitates
N − 1 automorphism evaluations. However, it is currently known that there are
two typical cases where the trace evaluation can be computed with much fewer
(e.g., O(logN)) automorphism evaluations: (1) when the extension Q(ζm)/Q

exhibits a tower structure [4,19,44,45], and (2) when the extension Q(ζm)/Q is a
cyclic extension, i.e., Gal(Q(ζm)/Q) forms a cyclic group [37,74]. We first discuss
each case below in a more general style (i.e., using relative field extensions).

The Tower of Extensions Case. Suppose the tower of number field extensions
Q(ζm) = Kr/Kr−1/ · · · /K1/K0 = Q where each Ki/Ki−1 is a Galois extension
for all i ∈ [r]. For 0 ≤ j < i ≤ r, let EvalTrKi/Kj

(·) be a homomorphic evaluation
algorithm that takes as input a RLWE ciphertext c ∈ RLWEz(μ) and some auto-
morphism key AutKey, and outputs a RLWE ciphertext c′ ∈ RLWEz(TrKi/Kj

(μ)).

Functional Bootstrapping for General Functions in Polynomial Modulus 143

Then, owing to the transitivity of the trace, TrQ(ζm)/Q(μ) = TrKr/K0(μ) can be
homomorphically evaluated as follows (we omit AutKey for simplicity):

EvalTrK1/K0

(
EvalTrK2/K1

(· · ·EvalTrKr/Kr−1(c) · · ·)) .

Denote the degree of the extensions by [Ki : Ki−1] = di for i ∈ [r] (hence
N =

∏
i∈[r] di), thus the above sequence of homomorphic computation requires

only
∑

i∈[r](di−1) automorphism evaluations (−1 comes from the identity maps).
The following lemma provides the error growth of trace evaluation in this case.

Lemma 3.3. Suppose that c′ ← EvalTrKi/Kj
(c,AutKey). If ‖σ(Err(c))‖∞ and

‖σ(Err(AutKey))‖∞ are upper bounded by subgaussian variables with parameters
δc and δaut, respectively. Then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
dδ2c + (d − 1)δ2autN logQ) where d = [Ki : Kj].

The Cyclic Extension Case. Suppose the Galois extensions Q(ζm)/K/F/Q

with [K : F] = M and Gal(K/F) being a cyclic group with generator τg, then
we can write Gal(K/F) = {id = τ0

g , τg, τ
2
g , . . . , τM−1

g } where id is the identity
map. Let Tk(μ) =

∑
i∈[0,k−1] τ

i
g(μ) for μ ∈ F , then we have

Tk(μ) =

{
Tk/2(μ) + τ

k/2
g (Tk/2(μ)) if k is even

T(k−1)/2(μ) + τ
(k−1)/2
g

(
T(k−1)/2(μ)

)
+ τk−1

g (μ) if k is odd
.

Consequently, we can reduce the scale of the required automorphism summations
in a recursive way for the homomorphic evaluation of TrK/F (μ) = TM (μ). It has
been proved in [74] that the homomorphic evaluation of TM (μ) requires at most
2 logM (which is essentially O(logM)) automorphism evaluations. The following
useful fact captures the case of cyclotomic extensions.

Fact 3.4 ([69]) For a cyclotomic field extension K/F with K = F (ζt) and
[K : F] = φ(t), we have Gal(K/F) ∼= Z

∗
t , which is cyclic if and only if t =

1, 2, 4, pr, 2pr where p is an odd prime and r is some positive integer.

Let EvalTrK/F (·) be a homomorphic evaluation algorithm that takes as input
a RLWE ciphertext c ∈ RLWEz(μ) and some automorphism key AutKey, and out-
puts a RLWE ciphertext c′ ∈ RLWEz(TrK/F (μ)). The following lemma provides
the error growth of trace evaluation in the cyclic extension case.

Lemma 3.5 Suppose that c′ ← EvalTrK/F (c,AutKey). If ‖σ(Err(c))‖∞ and
‖σ(Err(AutKey))‖∞ are upper bounded by subgaussian variables with parameters
δc and δaut, respectively. Then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
Mδ2c + (M − 1)δ2autN logQ).

Our Combination. By integrating the above two methods, we can construct
efficient trace evaluation algorithms over arbitrary cyclotomic rings. Specifically,
let the cyclotomic index m be an arbitrary positive integer. By the fundamental

144 H. Xia et al.

theorem of arithmetic, we can write m =
∏

i∈[r] p
ei
i where pi’s are distinct primes,

and ei’s are positive integers. Then denote Ki = Q

(
ζ∏i

j=1 p
ej
j

)
for i ∈ [r], we

have the tower of extensions Q(ζm) = Kr/Kr−1/ · · · /K1/K0 = Q. To further
compute TrKi/Ki−1 in the tower, we have the following discussion that covers all
possible cases based on whether m is odd or even.

– Case 1: If pi �= 2 for all i ∈ [r], we have Ki = Ki−1

(
ζp

ei
i

)
which implies

Gal(Ki/Ki−1) ∼= Zp
ei
i

and thus Ki/Ki−1 is a cyclic extension by Fact 3.4.
Hence, each TrKi/Ki−1 can be computed with O (log φ(pei

i)) automorphisms,
yielding a total of

∑
i∈[r] O (log φ(pei

i)) = O(logN) for TrQ(ζm)/Q.
– Case 2: If pi = 2 for some i ∈ [r], suppose without loss of generality that p1 =

2 and K1 = Q(ζ2e1). Then we have a second layer of tower extensions: K1 =
Q(ζ2e1)/Q(ζ2e1−1)/ · · · /Q(ζ2) = Q, which implies TrK1/Q requires O(log 2e1)
automorphisms. As discussed in Case 1, each TrKi/Ki−1 requires O (log φ(pei

i))
automorphisms for i > 1, yielding a total of O(logN) for TrQ(ζm)/Q.

All these strategies can be naturally extended to homomorphic evaluations of
TrQ(ζm)/Q in the ciphertext domain for arbitrary cyclotomic index m. We use
the following theorem to summarize the above discussion.

Theorem 3.6 Suppose the underlying ring R = Z[ζm] with m being an arbitrary
positive integer. For a RLWE ciphertext c ∈ RLWEz(μ) and some automorphism
key AutKey, there exist efficient algorithms EvalTrQ(ζm)/Q(c,AutKey) that output
c′ ∈ RLWEz(TrQ(ζm)/Q(μ)) using only O(logN) automorphism evaluations.

Moreover, if ‖σ(Err(c))‖∞ and ‖σ(Err(AutKey))‖∞ are upper bounded by sub-
gaussian variables with parameters δc and δaut, respectively. Then, for both Case
1 and 2, the output error norm ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
Nδ2c + (N − 1)δ2autN logQ).

3.4 Computational Complexity

For the sake of comparison, we standardize the units of measurement for the com-
putational complexity of homomorphic operations. Same as the FHEW/TFHE
bootstrapping algorithms, the most time-consuming operation in our algorithms
is the external product [22,23,44,45]. Thus, we propose the following proposition
that demonstrates the relationship between the costs of the above homomorphic
operations and the external product.

Proposition 3.7 Suppose the same underlying ring R = Z[ζm] with the same
modulus for all homomorphic operations. We have the following approximations:

– For the same gadget decomposition base, both BFV.Mul(·) and EvalAuto(·)
require approximately 1/2 times the cost of the external product.

– For different gadget decomposition bases, both BFV.Mul(·) and EvalAuto(·)
require O(1) times the cost of the external product.

Consequently, EvalTrQ(ζm)/Q(·) requires O(logN) times the cost of the external
product for arbitrary positive integer m.

Functional Bootstrapping for General Functions in Polynomial Modulus 145

4 Functional Bootstrapping: A Warm-Up

In this section, we first review the techniques in the FHEW/TFHE bootstrap-
ping framework, clarifying the context in which our algorithm will be opera-
tional. Then, we present the core building block of our functional bootstrapping
algorithm over prime cyclotomic rings, which constitutes the simplest case.

4.1 The Functional Bootstrapping Framework

Recall the task of the functional bootstrapping – basically, the algorithm takes
input an LWE ciphertext c with some bootstrapping key and returns an LWE
ciphertext c′ that encrypts f(Dec(c)) for some pre-determinded function f .

Parameters. We first describe parameters used in the FHEW/TFHE (func-
tional) bootstrapping and this work. Note that all the parameters with magni-
tudes (i.e., n, q, t,m,Q, h) are polynomially bounded in the security parameter.

– n: The dimension of the input LWE scheme.
– q: The modulus of the input LWE scheme.
– t: The plaintext modulus of the input LWE scheme.
– s: The secret key of the input LWE scheme.
– R: The underlying ring Z[ζm] of the RLWE scheme with q | m and N := φ(m).
– Q: The modulus of the RLWE scheme.
– z: The secret key of the RLWE scheme.
– h: The plaintext modulus of the output LWE ciphertext.

The FHEW/TFHE Framework. On input an LWE ciphertext c = (b,a) ∈
LWEt/q

s (μ), the bootstrapping algorithm first performs a Blind Rotation to obtain
a RLWE ciphertext c̃ ∈ RLWEz(v · ζϕ

q) where ϕ = [b − 〈a, s〉]q and v ∈ RQ is
some encoding of the composite of a negacyclic function f : Zt → Zh and the
decoding function Dcd. The constant term (i.e., the coefficient of the basis 1)
of the plaintext of c̃ is actually Δ′ · f(Dcd(ϕ)) = Δ′ · f(μ) where Δ′ ≈ Q/h.
Thus, the algorithm proceeds a Sample Extract to obtain an LWE ciphertext
c′ ∈ LWEh/Q

z (f(μ)) where z is the coefficient vector of z. Finally, it performs a
sequence of modulus switching, key switching, and modulus switching to obtain
a ciphertext in LWEh/q

s (f(μ)). The framework is illustrated in Fig. 1. We state
the functionality and error analysis of the Blind Rotation in the following lemma
and refer to the details and proof in [23] and the full version of this work.

Lemma 4.1 (Blind Rotation [23], Adapted) For a ciphertext c = (b,a) ∈
LWEt/q

s (μ) where s ∈ {0, 1}n, there exists an algorithm BlindRotate that takes
input c and the bootstrapping key BK, and outputs a RLWE ciphertext c′ ∈
RLWEz(v · ζ

b−〈a,s〉
q) for arbitrary v ∈ RQ, requiring n times external product.

If ‖σ(Err(BK))‖∞ is upper bounded by a subgaussian variable with parameter δbk
for all i ∈ [n], then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable
with parameter O(δbk

√
nN logQ).

146 H. Xia et al.

Remark 4.2 The secret s can be ternary or general distributions as well. Sev-
eral recent results [9,43,53,70,71] show how to do Blind Rotation for these cases
with comparable (or slightly less) efficiency as the case of binary secrets.

Fig. 1. The relation of FHEW/TFHE bootstrapping framework and our algorithms.

Our Blueprint. As also depicted in Fig. 1, our approach broadly adheres to
the same line as the FHEW/TFHE framework. The sole distinction lies in that,
subsequent to obtaining the ciphertext through Blind Rotation, we construct a
series of new algorithms EvalFunc, each of which works over different cyclotomic
rings and only incurs polynomial error growth. The algorithms take as input
a ciphertext c ∈ RLWEz(v · ζϕ

q) for some v ∈ RQ and some auxiliary keys,
and output a RLWE ciphertext c′ ∈ RLWEz(f(ϕ)) for an arbitrary function
f : Zq → Zh. Let f = g ◦ Dcd for an arbitrary function g : Zt → Zh, then c′

actually encrypts f(ϕ) = g(Dcd(ϕ)) = g(μ).
Our advantage of computational efficiency stems from the fact that the algo-

rithm EvalFunc requires only O(log φ(q)) times the cost of the external prod-
uct. By adopting the typical parameter setting in FHEW/TFHE bootstrapping
that q = O(n), the overall cost is approximately n + O(log n) times the cost
of the external product. Considering that regular FHEW/TFHE bootstrapping
requires n external products plus minimal overhead, our findings suggest that
functional bootstrapping for arbitrary functions is essentially as efficient as regu-
lar bootstrapping. In other words, the ratio of efficiency between functional and
regular FHEW/TFHE bootstrapping approaches 1 + o(1).

The functional superiority, such as the support for arbitrary input plaintext
modulus/encoding and general functions, is derived from our adoption of new
equality test techniques. Specifically, our constructions rely on the fact that any
discrete function can be expressed by a linear combination of the equality test
function. Define the equality test for the exponent of ζq as

EqT(ζα
q , β) =

{
1 if α = β mod q

0 if α �= β mod q
,

then for any α ∈ Zq, we have f(α) =
∑

β∈Zq
f(β) · EqT(ζα

q , β).

Remaining Tasks. Now, our remaining task is to find efficient solutions for the
homomorphic evaluation of EqT over cyclotomic rings, based on which we can
instantiate the algorithm EvalFunc. In the following subsection, we present an
instantiation of EvalFunc over prime cyclotomic rings, and subsequently, we will
delve into other instantiations for more general cases.

Functional Bootstrapping for General Functions in Polynomial Modulus 147

Algorithm 4.1. EvalFunc(c,AutKey, f)
Parameters:

Δ: the scaling factor �Q/(h · q)� of the input encoding
Δ′: the scaling factor Δ · q ≈ Q/h of the output encoding
q: a prime number satisfying q | m
h: the plaintext modulus of the output ciphertext
v: an encoding of the function v := Δ · ∑

β∈Zq
f(β) · ζ−β

q ∈ RQ

Input:
A RLWE ciphertext c ∈ RLWEz(v · ζα

q)
The key for homomorphic automorphism evaluation AutKey
An arbitrary function f : Zq → Zh

Output: A RLWE ciphertext c′ ∈ RLWEz(Δ
′ · f(α))

1: c′ ← EvalTrQ(ζq)/Q(c,AutKey)

2: c′ ← c′ + (Δ · ∑
β∈Zq

f(β), 0)�

3: return c′

4.2 Arbitrary Function Evaluation over Prime Cyclotomic Rings

We first consider the simple case where q is prime. From Lemma 2.2, we identify
the following equation that can serve as the equality test: For any α, β ∈ Zq,

TrQ(ζq)/Q(ζ
α−β
q) + 1 =

{
q if α = β mod q

0 if α �= β mod q
. (4.1)

Then, we present the instantiation of EvalFunc in Algorithm 4.1 and its correct-
ness together with analysis in Theorem 4.3.

Theorem 4.3 Algorithm 4.1 is correct, i.e., the input-output behavior satisfies
as described. Moreover, it possesses the following properties:

– Complexity: it requires O(log φ(q)) times the cost of the external product.
– Error growth: if ‖σ(Err(c))‖∞ and ‖σ(Err(AutKey))‖∞ are upper bounded by

subgaussian variables with parameters δc and δaut. Then ‖σ(Err(c′))‖∞ is
upper bounded by a subgaussian variable with parameter

O

(√
(q − 1)δ2c + (q − 2)δ2autN logQ

)

.

Proof. A simple calculation yields that in line 2 we have c′ encrypts

TrQ(ζq)/Q

⎛

⎝Δ ·
∑

β∈Zq

f(β) · ζα−β
q

⎞

⎠ + Δ ·
∑

β∈Zq

f(β)

= Δ ·
∑

β∈Zq

f(β) · (TrQ(ζq)/Q(ζ
α−β
q) + 1

)
(by Q-linearity)

= Δ · f(α) · q (by Eq. 4.1)
= Δ′ · f(α) (by the definition of Δ′ := Δ · q)

148 H. Xia et al.

Since the errors can be upper bounded by subgaussian variables, we summarize
the corresponding subgaussian parameter in each line as follows.

– c′ in line 1: O
(√

(q − 1)δ2c + (q − 2)δ2autN logQ
)

by Lemma 3.5.
– c′ in line 2: Adding an error-free ciphertext does not affect the error.

This proves the claim of error growth. The claim of computational complexity
follows directly from Theorem 3.6 and Proposition 3.7. ��

5 The Case of Prime-Power Cyclotomic Rings

In this section, we focus on the case of prime-power cyclotomic rings, namely
q = pr for any prime number p and integer r > 1. In this case, the previously
discussed instantiation for the prime case based on trace plus one is no longer
applicable (see Lemma 2.2). Alternatively, we consider another instantiation of
equality test observed in [1] that works over arbitrary cyclotomic rings:

q−1∑

i=0

ζ(α−β)·i
q = 1 + ζα−β

q + · · · + ζ(q−1)(α−β)
q =

{
q if α = β mod q

0 if α �= β mod q
. (5.1)

To homomorphically evaluate this equality test however, we need to confront the
following challenges.

Challenge 1. As also suggested in [1], homomorphic evaluation of the above
equality test given an encryption of ζα−β

q requires O(q) homomorphic multipli-
cations for a general q (and also requires Ring-GSW encryptions), which means
directly applying their method would not meet our pre-set goal (Sect. 4.1). Addi-
tionally, this formula seems to preclude computing all the equality tests in par-
allel as we did for the prime case based on the linearity of the trace.

Solution. We will show that this goal can be achieved with only O(log φ(q))
homomorphic multiplications for the special case of prime-power cyclotomic
rings (and only requires RLWE encryption of ζα−β

q). Our approach associates
the equality test with the trace to exploit its linearity and computational effi-
ciency. As the trace TrQ(ζq)/Q(ζ

α−β
q) =

∑
i∈Z∗

q
ζ
(α−β)·i
q can handle the powers in

Z
∗
q , but the equality test requires the powers in Zq (we use the representative set

Zq = [0, q − 1]), we thus first establish the following relation between Z
∗
q (and

its subgroups) and Zq, which is actually a partition of Zq for a prime-power q.

Lemma 5.1 For any prime number p and positive integer r, we have

Zpr \ {0} =
⋃

i∈[r]

pr−i · Z
∗
pi

(
= Z

∗
pr ∪ p · Z

∗
pr−1 ∪ · · · ∪ pr−1 · Z

∗
p

)
.

Proof. By definition, Z
∗
pi is the set of all numbers in Zpi that are coprime to pi,

which is equivalent to the set of all numbers in Zpi that are not divisible by p.

Functional Bootstrapping for General Functions in Polynomial Modulus 149

Since the set of all numbers in Zpi that are divisible by p is p · Zpi−1 , we have
Zpi = Z

∗
pi ∪ p · Zpi−1 for all i ∈ [r]. Thus, by induction, we have

Zpr = Z
∗
pr ∪ p · Zpr−1

= Z
∗
pr ∪ p · Z

∗
pr−1 ∪ p2 · Zpr−2

= · · ·
= Z

∗
pr ∪ p · Z

∗
pr−1 ∪ · · · ∪ pr−1 · Z

∗
p ∪ {0},

which completes the proof. ��
Now, we are able to establish the following lemma that relates the algebraic

trace to the equality test for the prime-power case.

Lemma 5.2 For any α, β ∈ Zq where q = pr and p is any prime, we have
∑

i∈Zq

ζ(α−β)·i
q = 1 +

∑

i∈[r]

TrQ(ζpi)/Q

(
ζα−β
pi

)

Proof. We can verify that
∑

i∈Zq

ζ(α−β)·i
q = ζ(α−β)·0

q +
∑

i∈[r]

∑

j∈pr−i·Z∗
pi

ζ(α−β)·j
q (by Lemma 5.1)

= 1 +
∑

i∈[r]

∑

j∈Z
∗
pi

ζpr−i·(α−β)·j
q (modify the index j)

= 1 +
∑

i∈[r]

TrQ(ζpi)/Q

(
ζα−β
pi

)
(by � and the definition of trace)

where “�” is the fact that ζpr−i

q = ζ
q/pi

q = ζpi ∈ Z[ζpi]. ��
To homomorphically evaluate this new equation of equality test however, we
encounter the following new challenges.

Challenge 2. The input in each trace is of the form ζα−β
pi . We need to efficiently

compute this term from ζα
q , e.g., using O(1) homomorphic-friendly operations.

Solution: We present an efficient method that only takes two homomorphic-
friendly operations. Particularly, consider the automorphism τ : ζq �→ ζpr−i−1

q as

pr−i −1 ∈ Z
∗
q for i ∈ [1, r−1], and then we have ζα

pi = ζpr−i·α
q = ζ

(pr−i−1)·α
q ·ζα

q =
τ(ζα

q) · ζα
q . For the homomorphic evaluation, this requires one homomorphic

automorphism and one homomorphic multiplication, which would be roughly
O(1) homomorphic multiplication.

Challenge 3. If we compute the trace computations in the summation separately,
the overall computational complexity is

∑
i∈[r] O(log φ(pi)) = O(log2 φ(q)).

Although this is already much better than the O(q) complexity of the method
in [1], it still does not meet the requirements outlined in our blueprint (Sect. 4.1).

150 H. Xia et al.

Algorithm 5.1. EvalFunc(c,AutKey,RelKey, f)
Parameters:

Δ: the scaling factor �Q/(h · q)� of the input encoding
Δ′: the scaling factor Δ · q ≈ Q/h of the output encoding
q: a prime power q = pr for some small prime p and integer r > 1
h: the plaintext modulus of the output ciphertext

Input:
A RLWE ciphertext c ∈ RLWEz(Δ · ζα

q)
The key for homomorphic automorphism evaluation AutKey
The relinearization key for BFV multiplication RelKey
An arbitrary function f : Zq → Zh

Output: A RLWE ciphertext c′ ∈ RLWEz(Δ
′ · f(α)).

1: c′ ← c ·
(∑

β∈Zq
f(β) · ζ−β

q

)

2: c′ ← EvalTrQ(ζq)/Q(ζ
pr−1)(c

′,AutKey)
3: for i ∈ [1, r − 1] do
4: ctmp ← EvalAuto(c, ζq �→ ζpi−1

q ,AutKey)
5: ctmp ← BFV.Mul(c, ctmp,RelKey)

6: ctmp ← ctmp ·
(∑

β∈Zq
f(β) · ζ−β

pr−i

)

7: c′ ← c′ + ctmp
8: c′ ← EvalTrQ(ζ

pr−i)/Q(ζ
pr−i−1)(c

′,AutKey)
9: end for

10: c′ ← c′ + (Δ · ∑
β∈Zq

f(β), 0)�

11: return c′

Solution: We further observe that all the trace evaluations in the summation
are contained in the tower of field extensions Q(ζpr)/Q(ζpr−1)/ · · · /Q(ζp)/Q.
Hence, we can directly evaluate the trace following the tower when p is small
(e.g., p = 2, 3, and see Remark 5.4 and Sect. 6 for solutions for large p). The
summation can be computed by adding the encryptions of

∑
f(β) · ζα−β

pi to the
intermediate result during the evaluation of the trace tower. Consequently, the
overall computational complexity is reduced to O(log φ(q)) since we only need
to evaluate the trace once following the tower of field extensions.

We are now ready to present our construction. We provide the formal descrip-
tion of EvalFunc over prime-power cyclotomic rings in Algorithm 5.1 and its
correctness along with analysis in Theorem 5.3.

Theorem 5.3 Algorithm 5.1 is correct, i.e., the input-output behavior satisfies
what is described. Moreover, it possesses the following properties:

– Complexity: it requires O(log φ(q)) times the cost of the external product.
– Error growth: if ‖σ(Err(c))‖∞, ‖σ(Err(AutKey))‖∞ and ‖σ(Err(RelKey))‖∞

are upper bounded by subgaussian variables with parameters δc, δaut and δr,
respectively. Let δaut, δr, δz = O(

√
N) and assume that δc < Δ, then we have

‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable with parameter

O
(
Nh2q2.5

√
2δ2c + N2 logQ

)
.

Functional Bootstrapping for General Functions in Polynomial Modulus 151

Proof. We first analyze the ciphertext ctmp in the loop from line 3 to line 9.

– In line 4, we have ctmp ∈ RLWEz(Δ · ζ
(pi−1)·α
q) by Lemma 3.2.

– In line 5, we have ctmp ∈ RLWEz(Δ ·ζpi·α
q) ⊂ RLWEz(Δ ·ζα

pr−i) by Lemma 3.1.

– In line 6, we have ctmp ∈ RLWEz

(
Δ · ∑

β∈Zq

(
f(β) · ζα−β

pr−i

))
.

After line 9, we have the plaintext of ctmp in the i-th iteration (for i ∈ [1, r − 1])
goes through the evaluation of

TrQ(ζp)/Q

⎛

⎝· · ·TrQ(ζpr−i)/Q(ζpr−i−1)

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pr−i

)
⎞

⎠ · · ·
⎞

⎠

= TrQ(ζpr−i)/Q

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pr−i

)
⎞

⎠ . (by transitivity)

Thus, after line 10, we have that c′ encrypts

Δ ·
∑

β∈Zq

f(β) +
∑

i∈[0,r−1]

TrQ(ζpr−i)/Q

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pr−i

)
⎞

⎠

= Δ ·
∑

β∈Zq

f(β) +
∑

i∈[r]

TrQ(ζpi)/Q

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pi

)
⎞

⎠ (modify index)

= Δ ·
∑

β∈Zq

f(β) + Δ ·
∑

β∈Zq

f(β) ·
⎛

⎝
∑

i∈[r]

TrQ(ζpi)/Q

(
ζα−β
pi

)
⎞

⎠ (by Q-linearity)

= Δ ·
∑

β∈Zq

f(β) ·
⎛

⎝1 +
∑

i∈[r]

TrQ(ζpi)/Q

(
ζα−β
pi

)
⎞

⎠ (combine terms)

= Δ ·
∑

β∈Zq

f(β) ·
{

q if α = β mod q

0 if α �= β mod q
(by Lemma 5.2 and Eqs. 5.1)

= Δ · f(α) · q (only f(α) is multiplied by q, others are multiplied by 0)
= Δ′ · f(α), (by the definition of Δ′ := Δ · q)

which proves the correctness. Since the errors can be upper bounded by sub-
gaussian variables, we summarize the corresponding subgaussian parameter in
each line as follows.

– c′ in line 1: O(hδc
√

q) by the fact that ‖σ(
∑

β∈Zq
f(β) · ζ−β

q)‖∞ ≤ h
√

q.
– c′ in line 2: O(

√
pqh2δ2c + (p − 1)N2 logQ) by Theorem 3.6.

– ctmp in line 4: O(
√

δ2c + N2 logQ) by Lemma 3.2.
– ctmp in line 5: O(hqN

√
2δ2c + N2 logQ) by Lemma 3.1 and δc < Δ.

152 H. Xia et al.

– ctmp in line 6: O(Nh2q1.5
√

2δ2c + N2 logQ) by the fact that
∥
∥
∥
∥
∥
∥
σ

⎛

⎝
∑

β∈Zq

f(β) · ζ−β
pr−i

⎞

⎠

∥
∥
∥
∥
∥
∥

∞

= O(h
√

q),

which is obtained by modeling f(β) as a uniformly random variable in Zh.
– c′ after line 9: O(Nh2q2.5

√
2δ2c + N2 logQ) by Theorem 3.6.

– c′ in line 10: Adding an error-free ciphertext does not affect the error.

This proves the claim of error growth. For the computational complexity, we
have r = logp q = O(log φ(q)) for the loop from line 3 to 9, and each loop con-
tains one automorphism evaluation and one BFV multiplication, which implies
O(log φ(q)) times the cost of external product by Proposition 3.7. Moreover, all
the trace evaluation totally requires O(log φ(q)) times the cost of the external
product by Proposition 3.7, which implies our claim of computational complex-
ity. ��
Remark 5.4 The strategy for trace evaluation in Algorithm 5.1 can achieve a
logarithmic complexity only when p is small (e.g., p = 2, 3). For larger p, we
can employ a new general scaled equality test (see Lemma 6.6), allowing us to
perform the trace evaluation of TrQ(ζpr)/Q only once. The complexity in this case
corresponds to the trace evaluation of the cyclic extension case as discussed in
Sect. 3.3 and thus has a logarithmic complexity. Since this scenario is a special
case of the situations we will address in the next section, we omit its details here.

6 The Case of Composite Cyclotomic Rings

Now we move to the most general case where q is a composite number, i.e.,
q =

∏k
i=1 qi, and qi’s are distinct prime-powers. Below, we first describe some

critical intuitions and lemmas, and then present the final algorithm.
We first use the plaintext computation for an easier explanation of our idea.

Recall our high-level goal of equality test: given ζα−β
q (for some α, β ∈ Zq), we

can compute γ where γ = q if α = β mod q or otherwise γ = 0, using some
homomorphic-friendly operations. In the setting of composite q =

∏k
i=1 qi, we

identify several challenges where the techniques from the prior section do not
carry through easily. Particularly, Eq. 5.1 still holds, but we can not directly
apply Lemma 5.2 to relate it with algebraic trace. To tackle this, we identify the
following equation:

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =

{
q if α = β mod q

0 if α �= β mod q
. (6.1)

The intuition is clear: α = β mod q if and only if α = β mod qi for all the
branches modulo qi by the Chinese Remainder Theorem. As each

∑
j∈Zqi

ζ
(α−β)·j
qi

Functional Bootstrapping for General Functions in Polynomial Modulus 153

can serve as the equality test for the branch modulo qi, one can easily verify the
validity of this formula. Denote qi = pri

i where pi is prime for i ∈ [k], we have

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =
k∏

i=1

⎛

⎝1 +
∑

j∈[ri]

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠ (6.2)

by Lemma 5.2, which serves as our new equality test. To homomorphically eval-
uate this new equation, here comes the first (and main) challenge.

(Main) Challenge 1. While we can utilize the method in Sect. 5 to compute the
trace summation, elegantly handling the outer product poses a challenging prob-
lem. Specifically, we need to avoid the direct consecutive use of BFV multiplica-
tion due to the rapid error growth it would introduce.

Solution. We elaborate a critical equivalent expression as Eq. 6.2. Before intro-
ducing our new equation, we need to first discuss several elegant properties we
have discovered regarding trace computations in some special cases.

Lemma 6.1 Suppose q = q1q2 where q1 and q2 are coprime, then for any i ∈ Z,

TrQ(ζq)/Q(ζ
i
q) = TrQ(ζq1)/Q

(ζi
q1) · TrQ(ζq2)/Q

(ζi
q2).

Proof. Using the linearity and transitivity of the trace, we can verify that

TrQ(ζq)/Q(ζ
i
q) = TrQ(ζq)/Q(ζ

i
q1 · ζi

q2) (by coprimality of q1, q2)

= TrQ(ζq2)/Q

(
TrQ(ζq)/Q(ζq2)

(ζi
q1 · ζi

q2)
)

(by transitivity)

= TrQ(ζq2)/Q

(
ζi
q2 · TrQ(ζq)/Q(ζq2)

(ζi
q1)

)
(by Q(ζq2)-linearity)

= TrQ(ζq)/Q(ζq2)
(ζi

q1) · TrQ(ζq2)/Q
(ζi

q2) (by � and Q-linearity)

= TrQ(ζq1)/Q
(ζi

q1) · TrQ(ζq2)/Q
(ζi

q2) (by �)

where “�” is the fact TrQ(ζq)/Q(ζq2)
(ζi

q1) = TrQ(ζq1)/Q
(ζi

q1) ∈ Z. ��
Corollary 6.2 Suppose q =

∏k
i=1 qi where all the qi’s are distinct prime-powers,

then for any j ∈ Z,

k∏

i=1

TrQ(ζqi)/Q
(ζj

qi) = TrQ(ζq)/Q(ζ
j
q)

(
= TrQ(ζ∏k

i=1 qi
)/Q

(
ζj
∏k

i=1 qi

))
.

Proof. By continuously using Lemma 6.1, we have

k∏

i=1

TrQ(ζqi)/Q
(ζj

qi) = TrQ(ζq1)/Q
(ζj

q1) · TrQ(ζq2)/Q
(ζj

q2) · · ·TrQ(ζqk)/Q
(ζj

qk
)

= TrQ(ζq1q2)/Q
(ζj

q1q2) · TrQ(ζq3)/Q
(ζj

q3) · · ·TrQ(ζqk)/Q
(ζj

qk
)

= · · · = TrQ(ζq1···qk)/Q
(ζj

q1···qk),

which is exactly TrQ(ζq)/Q(ζ
j
q). ��

154 H. Xia et al.

Now, we can establish the following equivalent expression for Eq. 6.2.

Lemma 6.3 For any α, β ∈ Zq where q is any positive integer with prime-power
factorization q =

∏k
i=1 pri

i , we have

k∏

i=1

⎛

⎝1 +
∑

j∈[ri]

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠ = 1 +
∑

w|q,w �=1

TrQ(ζw)/Q

(
ζα−β
w

)
.

Proof. After the direct expansion of the equation on the left, we have the sum-
mation of all possible products of TrQ(ζ

p
j
i
)/Q

(
ζα−β

pj
i

)
for each i ∈ [k] and j ∈ [ri].

Since all pj
i ’s are distinct prime-powers, we can apply Corollary 6.2 to make the

products of trace “into” the products of the indices of primitive roots of unity.
These products actually traverse all the factors of q (except 1), so the result
exactly matches the equation on the right. ��

To homomorphically evaluate this new equation of equality test however, we
encounter the following new challenges.

Challenge 2. The input in each trace is of the form ζα−β
w . We need to efficiently

compute this term from ζα
q , i.e., using O(1) homomorphic-friendly operations.

Solution. Similar to our solution to Challenge 2 in Sect. 5, we can write ζα
w =

ζ
(q/w)·α
q = ζ

(q/w−1)·α
q · ζα

q . Unfortunately, ζq �→ ζ
q/w−1
q may not be an automor-

phism, so we need a more general formula that ζα
w = ζ

(q/w)·α
q = ζ

(q/w−c)·α
q · ζc·α

q

for some c ∈ Zq. We hope that both q/w−c and c are in Z
∗
q , then we can use two

automorphism evaluations plus one homomorphic multiplication to obtain the
encryption of ζα

w. However, we can not always find such c for all w | q, w �= 1, q
when q is an arbitrary number. Especially we can not choose an even q, the
intuition is straightforward: For any odd factor p of q, we will encounter the
case of computing ζp

q . Since p is odd, either p − c or c is an even number, which
implies either p − c or c is not in Z

∗
q as 2 | q. Instead, we can prove its existence

for any odd composite q as below.

Proposition 6.4 Let q be a odd number has factorization q =
∏k

i=1 pri
i where

pi’s are distinct odd primes and k > 1. For each v | q, v �= 1, q, there exists at
least one c ∈ Z

∗
q such that [v − c]q ∈ Z

∗
q .

Proof. Suppose all the prime factors contained in v are pi for i ∈ S � [k] and
S �= ∅. Then, we can construct c as c =

[∏
j∈[k]\S pj − v

]

q
. Now, we will prove

that both c and [v − c]q are in Z
∗
q .

– Write c =
∏

j∈[k]\S pj − v + q · I ∈ Zq for some I ∈ Z (in fact, I ∈ {0, 1}).
Suppose c /∈ Z

∗
q , which implies that c and q share at least one common prime

Functional Bootstrapping for General Functions in Polynomial Modulus 155

factor p. Namely, p ∈ {pi}i∈[k] and p | c. Then

If p ∈ {pi}i∈S =⇒ p | v
p|q
=⇒ p | (v − q · I)

p|c
=⇒ p |

∏

j∈[k]\S

pj , a contradiction.

If p ∈ {pj}j∈[k]\S
p|q
=⇒ p |

∏

j∈[k]\S

pj + q · I
p|c
=⇒ p | v, a contradiction.

Hence, c and q share no common prime factor, which implies c ∈ Z
∗
q .

– Write [v − c]q = 2 · v − ∏
j∈[k]\S pj + q · J ∈ Zq for some J ∈ Z, we can easily

show [v − c] ∈ Z
∗
q by a quite similar argument as the prior proof of c ∈ Z

∗
q

since q does not contain the factor 2.

Now, the remaining case is S = [k], i.e., v contains all the prime factors of q. In
this case, we can easily verify that v − 1 ∈ Z

∗
q , which completes the proof. ��

Remark 6.5 Our proof of Proposition 6.4 is constructive and provides a direct
method to determine one desired c for any v. However, for many values of v,
we observe by experiments using SageMath [68] that c = 1 is also usable. We
prioritize a usable v − 1 as it saves one homomorphic automorphism evaluation.

Challenge 3. There exist many different trace computations in the summation
(Lemma 6.3), where some of them may not contained in a consecutive tower
down to Q. Thus, we can not apply the strategy in Sect. 5, and computing them
separately will not meet the pre-set goal in our blueprint (Sect. 4.1).

Solution. We present a new technique that “swaps” the order of summation and
trace, meaning that we can first aggregate the inputs and just compute the trace
once. Particularly, we prove the following lemma as our final equality test:

Lemma 6.6 For any positive integer q > 1 and any α, β ∈ Zq, we have

TrQ(ζq)/Q

⎛

⎝1 +
∑

w|q,w �=1

φ(w) · ζα−β
w

⎞

⎠ =

{
φ(q) · q if α = β mod q

0 if α �= β mod q
.

Proof. We can verify that

TrQ(ζq)/Q

⎛
⎝1 +

∑
w|q,w �=1

φ(w) · ζα−β
w

⎞
⎠

= φ(q) +
∑

w|q,w �=1

φ(w) · TrQ(ζq)/Q

(
ζα−β
w

)
(by Q-linearity)

= φ(q) +
∑

w|q,w �=1

φ(w) · φ(q)

φ(w)
· TrQ(ζw)/Q

(
ζα−β
w

)
(�)

= φ(q) ·
⎛
⎝1 +

∑
w|q,w �=1

TrQ(ζw)/Q

(
ζα−β
w

)⎞
⎠ (combine terms)

=

{
φ(q) · q if α = β mod q

0 if α �= β mod q
(by Lemma 6.3 and Eq. 6.1, 6.2)

156 H. Xia et al.

Algorithm 6.1. EvalFunc(c,AutKey,RelKey, f)
Parameters:

Δ: the scaling factor �Q/(h · q · φ(q))� of the input encoding
Δ′: the scaling factor Δ · q · φ(q) ≈ Q/h of the output encoding
q: an odd number satisfying q | m with prime-power factorization q =

∏
i∈[k] p

ri
i

{cv}: the automorphism index set {cv}v|q,v �=1,q ⊂ Z
∗
q obtained by Proposition 6.4

and Remark 6.5 such that {v − cv}v|q,v �=1,q ⊂ Z
∗
q .

h: the plaintext modulus of the output ciphertext
Input:

A RLWE ciphertext c ∈ RLWEz(Δ · ζα
q)

The key for homomorphic automorphism evaluation AutKey
The relinearization key for BFV multiplication RelKey
An arbitrary function f : Zq → Zh

Output: A RLWE ciphertext c′ ∈ RLWEz(Δ
′ · f(α)).

1: c′ ← c · φ(q) · ∑
β∈Zq

f(β) · ζ−β
q

2: for w | q and w �= 1, q do
3: ctmp ← EvalAuto(c, ζq �→ ζ

q/w−cq/w
q ,AutKey)

4: if cq/w = 1 then
5: ctmp ← BFV.Mul(c, ctmp,RelKey)
6: else
7: c′

tmp ← EvalAuto(c, ζq �→ ζ
cq/w
q ,AutKey)

8: ctmp ← BFV.Mul(c′
tmp, ctmp,RelKey)

9: end if
10: ctmp ← ctmp · φ(w) ·

(∑
β∈Zq

(
f(β) · ζ−β

w

))

11: c′ ← c′ + ctmp
12: end for
13: c′ ← c′ + (Δ · ∑

β∈Zq
f(β), 0)�

14: c′ ← EvalTrQ(ζq)/Q(c
′,AutKey)

15: return c′

where (�) follows from the fact that

TrQ(ζq)/Q

(
ζα−β
w

)
= TrQ(ζw)/Q

(
TrQ(ζq)/Q(ζw)(ζ

α−β
w)

)
(by transitivity)

= TrQ(ζw)/Q

(
ζα−β
w · TrQ(ζq)/Q(ζw)(1)

)
(by Q(ζw)-linearity)

= (φ(q)/φ(w)) · TrQ(ζw)/Q(ζ
α−β
w)

by TrQ(ζq)/Q(ζw)(1) = [Q(ζq) : Q(ζw)] = φ(q)/φ(w) and Q-linearity. ��

By using this form of the equality test, we are able to design Algorithm 6.1.
The following theorem demonstrates its correctness and analysis.

Theorem 6.7 Algorithm 6.1 is correct, i.e., the input-output behavior satisfies
what is described. Let r =

∏
i∈[k](ri + 1), it possesses the following properties:

– Complexity: it requires O(log φ(q) + r) times the cost of the external product.
– Error growth: if ‖σ(Err(c))‖∞, ‖σ(Err(AutKey))‖∞ and ‖σ(Err(RelKey))‖∞

are upper bounded by subgaussian variables with parameters δc, δaut and δr,

Functional Bootstrapping for General Functions in Polynomial Modulus 157

respectively. Let δaut, δr, δz = O(
√

N) and assume δc < Δ, then the output
error ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable with param-
eter O(rh2Nq4

√
δ2c + N2 logQ).

Proof. We start with a step-by-step analysis of the loop from line 2 to line 12.

– In line 3, we have ctmp ∈ RLWEz

(
Δ · ζ

(q/w−cq/w)·α
q

)
by Lemma 3.2.

– In line 5, if cq/w = 1, we have ctmp ∈ RLWEz

(
Δ · ζ

(q/w)·α
q

)
⊂ RLWEz (Δ · ζα

w)
by Lemma 3.1.

– In line 6−9, if cq/w �= 1, then ctmp ∈ RLWEz

(
Δ · ζ

(q/w)·α
q

)
⊂ RLWEz (Δ · ζα

w)
by Lemma 3.1 and 3.2.

– In line 10, we have ctmp ∈ RLWEz

(
Δ · φ(w) ·

(∑
β∈Zq

(
f(β) · ζα−β

w

)))
.

Hence, after line 14, we have c′ encrypts

TrQ(ζq)/Q

⎛

⎝Δ ·
∑

β∈Zq

f(β) +
∑

w|q,w �=1

Δ · φ(w) ·
(∑

β∈Zq

(
f(β) · ζα−β

w

))
⎞

⎠

= Δ ·
∑

β∈Zq

f(β) · TrQ(ζq)/Q

⎛

⎝1 +
∑

w|q,w �=1

φ(w) · ζα−β
w

⎞

⎠ (by Q-linearity)

= Δ ·
∑

β∈Zq

f(β) ·
{

φ(q) · q if [α − β]q = 0
0 otherwise

(by Lemma 6.6)

= Δ · f(α) · φ(q) · q
(only f(α) is multiplied by φ(q) · q, others are multiplied by 0)

= Δ′ · f(α), (by the definition of Δ′ := Δ · q · φ(q))

which proves the correctness. Since the errors can be upper bounded by sub-
gaussian variables, we summarize the corresponding subgaussian parameter in
each line as follows.

– c′ in line 1: O(hδcφ(q)
√

q) by the fact that ‖σ(
∑

β∈Zq
f(β) · ζ−β

q)‖∞ ≤ h
√

q.
– ctmp in line 3: O(

√
δ2c + N2 logQ) by Lemma 3.2.

– ctmp in line 4−9: O(hNq2
√

δ2c + N2 logQ) by Lemma 3.1 and δc < Δ (we use
the worst case that cq/w �= 1).

– ctmp in line 10: O(h2Nq3.5
√

δ2c + N2 logQ) by plaintext-ciphertext multipli-
cation and the fact that

∥
∥
∥σ

(
φ(w) ·

(∑
β∈Zq

(
f(β) · ζ−β

w

)))∥
∥
∥

∞
= O(hq1.5),

which is obtained by modeling f(β) as a uniformly random variable in Zh.
– c′ in line 13: O(rh2Nq3.5

√
δ2c + N2 logQ) by the fact that we have r−2 loops

from line 2 to line 12.
– c′ in line 14: O(rh2Nq4

√
δ2c + N2 logQ) by Theorem 3.6.

158 H. Xia et al.

This proves the claim of error growth. For the computational complexity,
we have r − 2 for the loop from line 2 to 12, and each loop contains at most
two automorphism evaluations and one BFV multiplication, which implies O(r)
times the cost of the external product by Proposition 3.7. Finally, the final
trace evaluation requires O(log φ(q)) times the cost of the external product
by Proposition 3.7, which completes the proof of our claim of computational
complexity. ��
Remark 6.8 In the error analysis of Algorithm 6.1, we use rather loose esti-
mates, i.e., φ(w) < q for all w | q, w �= 1. These terms may be much smaller than
q in the concrete parameter settings. Moreover, there is a term r in the upper
bound of the overall error norm. As r is generally sub-linear in q [55,67], we note
that the overall term is still polynomially bounded (in the security parameter).

Asymptotic Setting. In the asymptotic setting, we can set r = O(log φ(q))
or fix r to some small constant. Then we have that the overall computational
complexity of EvalFunc is O(log φ(q)) as we desired in our blueprint in Sect. 4.1.

Parallel Computation. Our algorithm EvalFunc is friendly to the parallel com-
putation architecture, as the computation in each for loop (from line 2 to line
12) does not have a dependency on the others. Additionally, the homomorphic
trace is also parallel friendly, as pointed out by [38]. Thus, the overall throughput
can be easily improved on parallel-friendly (e.g., multi-core) platforms.

7 Conclusions and Future Work

In this work, we show for the first time that functional bootstrapping for general
functions within a polynomial modulus can work over a wide range of general
cyclotomic rings and simultaneously satisfy the following two properties:

– Supporting arbitrary correctly decryptable input LWE ciphertexts.
– Essentially as efficient as regular bootstrapping.

Based on the advantages and limitations of our current techniques, we also notice
two interesting directions that warrant further investigation:

– Theory: As mentioned in the solution to Challenge 2 of Sect. 6, our method
cannot handle cyclotomic rings with even composite indices, namely when
the cyclotomic index is composite and contains the prime factor 2. Overcom-
ing this limitation to support arbitrary cyclotomic rings while maintaining
functionality and efficiency presents a significant challenge.

– Practice: Note that our algorithms support cyclotomic rings with indices
that are powers of small primes (e.g., powers-of-2), which have been shown
to be concretely efficient due to their full compatibility with the standard
(or slightly twisted) Fast Fourier Transform (FFT) [24,30,73] and Number
Theoretic Transform (NTT) [3,20]. It is also promising for cyclotomic rings
with composite indices by combining the Batch framework of [44,45] with
insights from [51,56]. We leave it as an interesting follow-up work to determine
the concrete efficiency of our algorithms over different cyclotomic rings.

Functional Bootstrapping for General Functions in Polynomial Modulus 159

Acknowledgements. We would like to thank the anonymous reviewers of TCC 2024
for their insightful advices that help improve the presentation. Feng-Hao Liu is sup-
ported by NSF CNS-2402031. Han Xia and Han Wang are supported by the National
Key R&D Program of China under Grant 2020YFA0712303, the Strategic Priority
Research Program of the Chinese Academy of Sciences under Grant XDB0690200, and
State Key Laboratory of Information Security under Grant TC20221013042.

References

1. Abla, P., Liu, F.H., Wang, H., Wang, Z.: Ring-based identity based encryption -
asymptotically shorter MPK and tighter security. In: Nissim, K., Waters, B. (eds.)
TCC 2021, Part III. LNCS, vol. 13044, pp. 157–187. Springer, Cham (Nov 2021).
https://doi.org/10.1007/978-3-030-90456-2_6

2. Agrawal, S., Lin, D. (eds.): ASIACRYPT 2022, Part II, LNCS, vol. 13792. Springer,
Cham (Dec (2022)

3. Al Badawi, A., et al.: OpenFHE: Open-source fully homomorphic encryption
library. In: Proceedings of the 10th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pp. 53–63. WAHC’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3560827.3563379

4. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti and Garay [17], pp. 1–20. https://doi.org/10.1007/978-3-642-40041-4_1

5. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay and Gennaro [32], pp. 297–314. https://doi.org/10.1007/978-3-662-44371-
2_17

6. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: 18th ACM STOC, pp. 1–5. ACM Press
(May 1986). https://doi.org/10.1145/12130.12131

7. Bergerat, L., et al.: Parameter optimization and larger precision for (T)FHE. J.
Cryptol. 36(3), 28 (2023). https://doi.org/10.1007/s00145-023-09463-5

8. Biasse, J.F., Ruiz, L.: FHEW with efficient multibit bootstrapping. In: Lauter,
K.E., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp.
119–135. Springer, Cham (Aug 2015). https://doi.org/10.1007/978-3-319-22174-
8_7

9. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: Faster
FHE instantiated with NTRU and LWE. In: Agrawal and Lin [2], pp. 188–215.
https://doi.org/10.1007/978-3-031-22966-4_7

10. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating homomorphic evalu-
ation of deep learning predictions. In: International Symposium on Cyber Security
Cryptography and Machine Learning, pp. 212–230. Springer (2019). https://doi.
org/10.1007/978-3-030-20951-3_20

11. Bourse, F., Sanders, O., Traoré, J.: Improved secure integer comparison via homo-
morphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp.
391–416. Springer, Cham (Feb 2020). https://doi.org/10.1007/978-3-030-40186-
3_17

12. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini and Canetti [64], pp. 868–886. https://doi.org/10.
1007/978-3-642-32009-5_50

13. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

https://doi.org/10.1007/978-3-030-90456-2_6
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1145/12130.12131
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-030-20951-3_20
https://doi.org/10.1007/978-3-030-20951-3_20
https://doi.org/10.1007/978-3-030-40186-3_17
https://doi.org/10.1007/978-3-030-40186-3_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262

160 H. Xia et al.

14. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
45th ACM STOC, pp. 575–584. ACM Press (Jun 2013). https://doi.org/10.1145/
2488608.2488680

15. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press (Oct 2011). https://doi.org/10.1109/FOCS.2011.12

16. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014, pp. 1–12. ACM (Jan 2014). https://doi.org/10.1145/2554797.
2554799

17. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I, LNCS, vol. 8042. Springer,
Berlin, Heidelberg (Aug (2013)

18. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-lwe
revisited. In: Fischlin, M., Coron, J.-S. (eds.) Advances in Cryptology – EURO-
CRYPT 2016: 35th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, pp. 147–167. Springer Berlin Heidelberg, Berlin, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3_6

19. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between
(Ring) LWE Ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) Applied Cryp-
tography and Network Security: 19th International Conference, ACNS 2021,
Kamakura, Japan, June 21–24, 2021, Proceedings, Part I, pp. 460–479. Springer
International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-78372-
3_18

20. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) FC 2017 Workshops.
LNCS, vol. 10323, pp. 3–18. Springer, Cham (Apr 2017). https://doi.org/10.1007/
978-3-319-70278-0_1

21. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (Dec 2017). https://doi.
org/10.1007/978-3-319-70694-8_15

22. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster Fully Homomor-
phic Encryption: Bootstrapping in Less Than 0.1 seconds. In: Cheon, J.H., Tak-
agi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, pp. 3–33. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53887-6_1

23. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2019). https://doi.org/
10.1007/s00145-019-09319-x

24. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption library. GitHub (2023). https://github.com/tfhe/tfhe

25. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptography
and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings 5, pp. 1–19. Springer (2021). https://doi.org/
10.1007/978-3-030-78086-9_1

https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://github.com/tfhe/tfhe
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1

Functional Bootstrapping for General Functions in Polynomial Modulus 161

26. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 670–699.
Springer, Cham (Dec 2021). https://doi.org/10.1007/978-3-030-92078-4_23

27. Clet, P.E., Zuber, M., Boudguiga, A., Sirdey, R., Gouy-Pailler, C.: Putting up
the swiss army knife of homomorphic calculations by means of TFHE functional
bootstrapping. Cryptology ePrint Archive, Report 2022/149 (2022). https://eprint.
iacr.org/2022/149

28. Cong, K., Das, D., Park, J., Pereira, H.V.L.: SortingHat: Efficient private deci-
sion tree evaluation via homomorphic encryption and transciphering. In: Yin, H.,
Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 563–577. ACM Press
(Nov 2022). https://doi.org/10.1145/3548606.3560702

29. Crockett, E., Peikert, C.: Challenges for ring-LWE. Cryptology ePrint Archive,
Report 2016/782 (2016). https://eprint.iacr.org/2016/782

30. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald and Fischlin [58], pp. 617–640. https://doi.org/10.1007/
978-3-662-46800-5_24

31. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

32. Garay, J.A., Gennaro, R. (eds.): CRYPTO 2014, Part I, LNCS, vol. 8616. Springer,
Berlin, Heidelberg (Aug (2014)

33. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher
[54], pp. 169–178. https://doi.org/10.1145/1536414.1536440

34. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini and Canetti [64], pp. 850–867. https://doi.org/10.1007/978-3-642-
32009-5_49

35. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti
and Garay [17], pp. 75–92. https://doi.org/10.1007/978-3-642-40041-4_5

36. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
TFHE. IACR TCHES 2021(2), 229–253 (2021). https://doi.org/10.46586/tches.
v2021.i2.229-253, https://tches.iacr.org/index.php/TCHES/article/view/8793

37. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay and Gennaro [32], pp. 554–
571. https://doi.org/10.1007/978-3-662-44371-2_31

38. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald and Fischlin [58], pp.
641–670. https://doi.org/10.1007/978-3-662-46800-5_25

39. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryp-
tion library. Cryptology ePrint Archive, Report 2020/1481 (2020). https://eprint.
iacr.org/2020/1481

40. Hazay, C., Stam, M. (eds.): EUROCRYPT 2023, Part III, LNCS, vol. 14006.
Springer, Cham (Apr (2023)

41. Joye, M., Walter, M.: Liberating TFHE: programmable bootstrapping with gen-
eral quotient polynomials. In: Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pp. 1–11 (2022). https://doi.
org/10.1145/3560827.3563376

42. Kluczniak, K., Schild, L.: FDFB: Full domain functional bootstrapping towards
practical fully homomorphic encryption. IACR TCHES 2023(1), 501–537 (2023).
https://doi.org/10.46586/tches.v2023.i1.501-537

43. Lee, Y., et al.: Efficient FHEW bootstrapping with small evaluation keys, and
applications to threshold homomorphic encryption. In: Hazay and Stam [40], pp.
227–256. https://doi.org/10.1007/978-3-031-30620-4_8

https://doi.org/10.1007/978-3-030-92078-4_23
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2022/149
https://doi.org/10.1145/3548606.3560702
https://eprint.iacr.org/2016/782
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.46586/tches.v2023.i1.501-537
https://doi.org/10.1007/978-3-031-30620-4_8

162 H. Xia et al.

44. Liu, F.H., Wang, H.: Batch bootstrapping I: a new framework for SIMD bootstrap-
ping in polynomial modulus. In: Hazay and Stam [40], pp. 321–352. https://doi.
org/10.1007/978-3-031-30620-4_11

45. Liu, F.H., Wang, H.: Batch bootstrapping II: bootstrapping in polynomial modulus
only requires Õ(1) FHE multiplications in amortization. In: Hazay and Stam [40],
pp. 353–384. https://doi.org/10.1007/978-3-031-30620-4_12

46. Katsikas, S., Abie, H., Ranise, S., Verderame, L., Cambiaso, E., Ugarelli, R., Praça,
I., Li, W., Meng, W., Furnell, S., Katt, B., Pirbhulal, S., Shukla, A., Ianni, M., Dalla
Preda, M., Choo, K.-K.R., Pupo Correia, M., Abhishta, A., Sileno, G., Alishahi,
M., Kalutarage, H., Yanai, N. (eds.): Computer Security. ESORICS 2023 Interna-
tional Workshops: CPS4CIP, ADIoT, SecAssure, WASP, TAURIN, PriST-AI, and
SECAI, The Hague, The Netherlands, September 25–29, 2023, Revised Selected
Papers, Part II. Springer Nature Switzerland, Cham (2024)

47. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation
using FHEW/TFHE bootstrapping. In: Agrawal and Lin [2], pp. 130–160. https://
doi.org/10.1007/978-3-031-22966-4_5

48. Liu, Z., Wang, Y.: Amortized functional bootstrapping in less than 7 ms, with Õ(1)
polynomial multiplications. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part VI. LNCS, vol. 14443, pp. 101–132. Springer, Singapore (Dec 2023). https://
doi.org/10.1007/978-981-99-8736-8_4

49. Lu, W.J., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging polynomial
and non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE Sym-
posium on Security and Privacy. pp. 1057–1073. IEEE Computer Society Press
(May 2021). https://doi.org/10.1109/SP40001.2021.00043

50. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Berlin, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-
13190-5_1

51. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pp. 35–
54. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9_3

52. Ma, S., Huang, T., Wang, A., Zhou, Q., Wang, X.: Fast and accurate: efficient
full-domain functional bootstrap and digit decomposition for homomorphic com-
putation. IACR TCHES 2024(1), 592–616 (2024). https://doi.org/10.46586/tches.
v2024.i1.592-616

53. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In:
WAHC ’21: Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021,
pp. 17–28. WAHC@ACM (2021). https://doi.org/10.1145/3474366.3486924

54. Mitzenmacher, M. (ed.): 41st ACM STOC. ACM Press (May / Jun 2009)
55. from MO (https://mathoverflow.net/users/11919/gh-from mo), G.: Upper bound

for product of exponents of prime factorization. MathOverflow. https://
mathoverflow.net/q/256452

56. Open Source: HElib. GitHub. https://github.com/shaih/HElib
57. Open Source: Palisade lattice cryptography library. GitLab. https://gitlab.com/

palisade
58. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015, Part I, LNCS, vol. 9056.

Springer, Berlin, Heidelberg (Apr (2015)

https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-981-99-8736-8_4
https://doi.org/10.1007/978-981-99-8736-8_4
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.46586/tches.v2024.i1.592-616
https://doi.org/10.46586/tches.v2024.i1.592-616
https://doi.org/10.1145/3474366.3486924
https://mathoverflow.net/q/256452
https://mathoverflow.net/q/256452
https://github.com/shaih/HElib
https://gitlab.com/palisade
https://gitlab.com/palisade

Functional Bootstrapping for General Functions in Polynomial Modulus 163

59. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher [54], pp. 333–342. https://doi.org/10.1145/
1536414.1536461

60. Peikert, C.: How (not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 16. LNCS, vol. 9841, pp. 411–430. Springer, Cham (Aug / Sep 2016). https://
doi.org/10.1007/978-3-319-44618-9_22

61. Peikert, C., Pepin, Z.: Algebraically structured LWE, revisited. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 1–23. Springer, Cham
(Dec 2019). https://doi.org/10.1007/978-3-030-36030-6_1

62. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC, pp. 461–473. ACM Press (Jun 2017). https://doi.org/10.1145/3055399.
3055489

63. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

64. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012, LNCS, vol. 7417. Springer,
Berlin, Heidelberg (Aug (2012)

65. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2012). https://doi.org/10.1007/s10623-012-9720-4

66. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Berlin, Heidelberg (Dec 2009). https://doi.org/10.1007/978-
3-642-10366-7_36

67. Tenenbaum, G.: Introduction to analytic and probabilistic number theory, vol. 163.
American Mathematical Soc. (2015)

68. The Sage Developers: Sagemath, the Sage Mathematics Software System (Version
10.2) (2023). https://www.sagemath.org

69. Vinogradov, I.M.: Chapter VI: Primitive roots and indices. In: Elements of number
theory. pp. 105–121. Dover Publications (2003). https://books.google.com/books?
id=xlIfdGPM9t4C&pg=PA105

70. Wang, R., et al.: Circuit bootstrapping: Faster and smaller. In: Joye, M., Leander,
G. (eds.) EUROCRYPT 2024, Part II. LNCS, vol. 14652, pp. 342–372. Springer,
Cham (May 2024). https://doi.org/10.1007/978-3-031-58723-8_12

71. Xiang, B., Zhang, J., Deng, Y., Dai, Y., Feng, D.: Fast blind rotation for bootstrap-
ping FHEs. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV.
LNCS, vol. 14084, pp. 3–36. Springer, Cham (Aug 2023). https://doi.org/10.1007/
978-3-031-38551-3_1

72. Yang, Z., Xie, X., Shen, H., Chen, S., Zhou, J.: TOTA: Fully homomorphic encryp-
tion with smaller parameters and stronger security. Cryptology ePrint Archive,
Report 2021/1347 (2021). https://eprint.iacr.org/2021/1347

73. Zama: TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data (2022). https://github.com/zama-
ai/tfhe-rs

74. Zheng, X., Li, H., Wang, D.: A new framework for fast homomorphic matrix multi-
plication. Cryptology ePrint Archive, Paper 2023/1649 (2023). https://eprint.iacr.
org/2023/1649

https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-030-36030-6_1
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://www.sagemath.org
https://books.google.com/books?id=xlIfdGPM9t4C&pg=PA105
https://books.google.com/books?id=xlIfdGPM9t4C&pg=PA105
https://doi.org/10.1007/978-3-031-58723-8_12
https://doi.org/10.1007/978-3-031-38551-3_1
https://doi.org/10.1007/978-3-031-38551-3_1
https://eprint.iacr.org/2021/1347
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs
https://eprint.iacr.org/2023/1649
https://eprint.iacr.org/2023/1649

Multi-party Computation

A Note on Low-Communication Secure
Multiparty Computation via Circuit

Depth-Reduction

Pierre Charbit1(B), Geoffroy Couteau1, Pierre Meyer2, and Reza Naserasr1

1 Université Paris Cité, CNRS, IRIF, Paris, France
{charbit,couteau,reza}@irif.fr

2 Aarhus University, Aarhus, Denmark
pierre.meyer@cs.au.dk

Abstract. We consider the graph-theoretic problem of removing (few)
nodes from a directed acyclic graph in order to reduce its depth. While
this problem is intractable in the general case, we provide a variety of
algorithms in the case where the graph is that of a circuit of fan-in (at
most) two, and explore applications of these algorithms to secure mul-
tiparty computation with low communication. Over the past few years,
a paradigm for low-communication secure multiparty computation has
found success based on decomposing a circuit into low-depth “chunks”.
This approach was however previously limited to circuits with a “lay-
ered” structure. Our graph-theoretic approach extends this paradigm to
all circuits. In particular, we obtain the following contributions:

– Fractionally linear-communication MPC in the correlated
randomness model. We provide an N -party protocol for com-
puting an n-input, m-output F -arithmetic circuit with s internal
gates (over any basis of binary gates) with communication complex-
ity (2

3
s+n+m)·N ·log |F |, which can be improved to ((1+ε)· 2

5
s+n+

m) · N · log |F | (at the cost of increasing the computational overhead
from a small constant factor to a large one). Previously, comparable
protocols either used more than s ·N · log |F | bits of communication,
required super-polynomial computation, were restricted to layered
circuits, or tolerated a sub-optimal corruption threshold.

– Sublinear-Communication MPC. Assuming the existence of
N -party Homomorphic Secret Sharing for logarithmic depth cir-
cuits (respectively doubly logarithmic depth circuits), we show there
exists sublinear-communication secure N -party computation for all
log1+o(1)-depth (resp. (log log)1+o(1)-depth) circuits. Previously, this
result was limited to (O(log))-depth (resp. (O(log log))-depth) cir-
cuits, or to circuits with a specific structure (e.g. layered).

– The
(
N
1

)
-OT complexity of MPC. We introduce the “

(
N
1

)
-OT

complexity of MPC ” of a function f , denoted CN (f), as the number
of oracle calls required to securely compute f in the

(
N
1

)
-OT hybrid

P. Meyer—Most of this work was done while P. Meyer was a PhD student jointly at
Reichman University, Herzliya, ISRAEL and Université Paris Cité, CNRS, IRIF, Paris,
FRANCE.
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 167–199, 2025.
https://doi.org/10.1007/978-3-031-78023-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_6

168 P. Charbit et al.

model. We establish the following upper bound: for every N ≥ 2,
CN (f) ≤ (1 + g(N)) · 2|f |

5
, where g(N) is an explicit vanishing func-

tion.
We also obtain additional contributions to reducing the amount of boot-
strapping for fully homomorphic encryption, and to other types of sub-
linear-communication MPC protocols such as those based on correlated
symmetric private information retrieval.

1 Introduction

Secure multiparty computation (MPC) [Yao86,GMW87] enables mutually dis-
trusting parties to jointly compute a function on their private inputs, while
revealing nothing beyond the function’s output. The seminal protocols of the
1980s [Yao86,GMW87,BGW88,CCD88] all require an amount of communica-
tion which scales linearly with the computational complexity of the function:
given a fan-in two circuit representation of the function, the parties are required
to communicate for every (non-linear) gate of the circuit. In this paper, we pro-
pose to achieve MPC with less communication than the circuit-size by limiting
interaction to only a few key gates, which we identify using a graph-theoretic
algorithm. Specifically, the goal is to find a small set of nodes in the underlying
graph whose removal yields a low-depth directed acyclic graph (DAG). The idea
is to reduce the secure computation of an arbitrary circuit to that of a circuit
of logarithmic, doubly-logarithmic, or even constant depth for which, generally
speaking, there are known protocols using circuit-independent communication.

This problem is motivated by the fact that, aside from protocols based on
fully homomorphic encryption, all known ways to achieve sublinear-communica-
tion secure computation are restricted to low-depth circuits, and can only cur-
rently be extended to deeper circuit if they have a specific “layered” structure
(meaning the circuits’ gates are partitioned into ordered layers, and each wire
only connects one layer to the next).

1.1 Background

This paper proposes to solve the cryptographic problem of securely computing
any circuit with low communication by reducing it to a graph-theoretic prob-
lem. We recall in Sect. 1.1.1 what is known about low-communication secure
“general-purpose” computation (including protocols restricted to layered circuits
or low-depth circuits, but excluding special-purpose protocols such as Private
Information Retrieval), and in Sect. 1.1.2 the literature on the graph-theoretic
problem to which we reduce the secure computation task.

1.1.1 Sublinear-Communication Secure Multiparty Computation.
We start by surveying sublinear-communication secure computation protocols,

A Note on Low-Communication Secure Multiparty Computation 169

but restrict ourselves to those using a polynomial amount of computation1 and
tolerating the optimal number of corruptions. Because the amount of compu-
tation typically grows exponentially (or even doubly exponentially) with the
depth of the computation, most of these protocols only support computation up
to a certain depth. Throughout this section, s denotes the size of the circuit, d
denotes its depth, N denotes the number of parties, and F denotes the field over
which the circuit’s arithmetic is performed.

In the Correlated Randomness Model, d = log log s. Ishai, Kushilevitz,
Meldgaard, Orlandi, and Paskin-Cherniavsky [IKM+13] showed how to securely
compute any function with a polynomial-size look-up table using circuit-indepen-
dent communication (only proportional to input and output size). Couteau
[Cou19] extended this approach to any log log-depth (boolean or arithmetic)
circuit. In turn, this yields a protocol for securely computing any size-s layered
circuit using O(s/ log log s · N · log |F |) bits of communication.

From Fully Homomorphic Encryption (FHE), any d. Gentry [Gen09]
provided the first construction of fully homomorphic encryption from ideal lat-
tices. This powerful primitive, which was later instantiated under a standard
variant of the learning with errors assumption (LWE) [BV11,BGV12], allows
for a computation to be performed on encrypted data. FHE was later shown to
yield asymptotically optimal-communication secure multiparty computation (in
the computational setting) [DFH12,AJL+12].

From Homomorphic Secret Sharing (HSS), d = O(log s). Boyle, Gilboa,
and Ishai [BGI16a] built two-party homomorphic secret-sharing (HSS) for
branching programs from the decisional Diffie-Hellman assumption (DDH). This
yields two-party protocols for securely computing O(log s)-depth circuits using
circuit-independent communication, or arbitrarily deep layered boolean circuits
with communication O(s/ log s · N · log |F |). This template for HSS for branch-
ing programs was later instantiated under the decision composite residuosity
assumption (DCR) [FGJS17,OSY21,RS21], learning with errors (LWE) with
a polynomial noise-to-modulus ratio [BKS19], and assumptions based on class
groups of imaginary quadratic fields [ADOS22]. We note that some of the above
HSS schemes [BGI16a,FGJS17,BKS19] have a noticeable error in correctness,
but this has no bearing on the application to low-communication two-party com-

1 If we lift this restriction, Beaver, Feigenbaum, Kilian, and Rogoway [BFKR91]
showed that any function from {0, 1}n to {0, 1} can be securely computed in the
presence of up to t corruptions by N = O(t · n/ logn) computationally unbounded
parties (which the protocol indeed requires to use an exponential amount of com-
putation) using poly(n+N) communication. In addition, the protocol of [IKM+13],
which we state as a result for securely computing functions with a polynomial-size
look-up table, can be applied to general functions if the parties are computationally
unbounded (and have access to a doubly exponential amount of correlated random-
ness).

170 P. Charbit et al.

putation. The DDH-based approach only supports boolean circuits, while the
LWE- and DCR-based approaches work in any field.2

From Homomorphic Secret Sharing (HSS), d = log log s−log log log s.
There exists HSS supporting circuits of depth (log log s − log log log s):3 in the
two-party setting from the quasi-polynomial learning parity with noise assump-
tion (LPN) [CM21], in the four-party setting assuming DCR and constant-
depth pseudorandom generators (PRG) [COS+22,BCM23], and in the general
multiparty setting assuming sparse LPN [DIJL23]. In turn, this yields 2-, 4-,
or N -party computation of (log log s − log log log s)-depth circuits with circuit-
independent communication, or that of arbitrarily deep layered circuits with
communication O(s/ log log s · N · log |F |). All these approaches support arbi-
trary fields F . The scheme based on super-polynomial LPN [CM21] is a “single-
circuit” scheme (it requires the circuit’s topology to be known at input-sharing
time) and the scheme based on sparse LPN [DIJL23] has a noticeable error in
correctness, but here again these limitations have no bearing on the application
to low-communication secure multiparty computation.

Other Approaches, d = log log s−log log log s. Boyle, Couteau, and Meyer
[BCM22] introduced correlated symmetric private information retrieval (corre-
lated SPIR), and instantiated it under LPN plus any of the following assump-
tions: DDH, the quadratic residuosity assumption (QR), DCR, or poly-modulus
LWE. This primitive yields secure two-party computation of doubly logarithmic-
depth4 boolean circuits using O(n+m+

√
s·poly(λ)·(n+m)2/3) bits of communi-

cation, as well as secure two-party computation of synchronous5 boolean circuits
using communication O(s/ log log s+d1/3 ·s2(1+ε)/3) (which is O(s/ log log s) pro-
vided d = o(s1−ε/poly(λ)), which is to say the circuit is not too “tall and skinny”).
Boyle, Couteau, and Meyer [BCM23] later provided a framework, based on 2-
or 4-party HSS and correlated SPIR, to extended these protocols to the 3- or 5-
party settings. Finally, Abram, Roy, and Scholl [ARS24] extended this approach
to the general multiparty setting by instead only relying on a form of two-party
HSS with succinct share size, and instantiated it under a DDH-like assumption in
class groups, DCR, or LWE with a super-polynomial noise-to-modulus ratio: for
general layered boolean circuits with communication O(s/ log log s · N), or even
O(s/ log s ·N) if the layered boolean circuit is wide enough. All these approaches
are restricted to the boolean setting.

1.1.2 DAG Depth-Reduction. The problem of reducing a DAG’s depth
by removing nodes can be expressed as a hitting set problem: given a directed

2 These HSS schemes support bounded-integer computation, which translates to low-
communication secure computation over arbitrary fields using hybrid encryption.

3 Note that this class is somewhat related to logarithmic-depth branching programs.
4 The complexity we provide here is for when the depth is at most (log log s)/4, not
(log log s − log log log s); this is done in order to simplify the expression and absorb
some negligible terms.

5 A synchronous circuit is a layered circuit whose input gates are all in the first layer.

A Note on Low-Communication Secure Multiparty Computation 171

graph G = (V,E), we are looking for a set of vertices which “hits” (i.e. contains
a vertex from) each k-path in G. Ultimately, we will present a family of secure
computation protocols whose communication complexity scales with the size of
such a hitting set in a well-chosen graph, closely related to a circuit represen-
tation of the function to be securely computed. Towards upper bounding the
communication complexity of securely computing any circuit, we are interested
in upper bounding the size of the smallest k-path hitting set for very n-vertex
DAG of in-degree at most two.

For every k ≥ 2, the optimisation version of the directed k-path hitting set
problem was shown to be NP-complete for general DAGs by Paindavoine and
Vialla [PV16]. For k = 1, the problem coincides with the vertex cover problem6

which was shown to be NP-complete in general DAGs by Naumann [Nau09].
The analogue problem on undirected graphs (which is also NP-complete in

its optimisation version) has been studied by Brešar, Kardoš, Katrenič, and
Semanišin [BKKS11] and by Jianhua [Tu22]. Since every directed k-path in a
DAG corresponds to a k-path in the DAG’s underlying (undirected) graph, estab-
lishing an upper bound in the undirected case (i.e. establishing an upper bound
on the smallest k-path hitting set of the worst 2-degenerate graph on n vertices)
also applies to the directed case. For k = 3, which in the undirected setting cor-
responds to a bound on the dissociation number, applying the result of Brešar,
Kardoš, Katrenič, and Semanišin [BKKS11, Corollary 10] yields a bound7 of
2n/3. For all k ≥ 2, [BKKS11, Theorem 4] yields a bound8 of (35 + 2

5k) · n.
Finally, we mention that this problem is related to the bootstrap(ping) prob-

lem [LP13,PV16,BLMZ17]. Most constructions of fully homomorphic encryption
are based on LWE and follow the same blueprint. Each ciphertext is associated
with some noise, which grows at each homomorphic operation. Typically, the
noise grows additively for linear gates and multiplicatively for non-linear gates.
Once the noise reaches a certain limit, decryption is no longer possible (at least
not without significant error in correctness). The key technique to manage this
noise growth, due to Gentry [Gen09], is called “bootstrapping”. By using an
encryption of the secret key (which requires circular-security) one can homo-
morphically run the decryption procedure on the noisy ciphertext in order to
produce a fresh ciphertext, encrypting the same value under the same key, but
with a reset noise level. This bootstrapping operation is computationally heavy
however, which motivates the question to try and reduce the number of times it
is required for computing an arbitrary circuit. The bootstrap problem, formalised
by Benhamouda, Lepoint, Mathieu, and Zhou [BLMZ17], asks to minimise the
number of bootstraps required to compute a circuit. Consider a DAG whose ver-
tices all have in-degree exactly 0 or 2 and are coloured in one of three colours:

6 We note there is some inconsistency in the literature in how the vertex cover problem
is extended to directed graphs.

8 To obtain these bounds, observe that the undirected underlying graphs of fan-in
two DAGs have average degree no more than 4. We do not formally state these
results (which are direct corollaries of [BKKS11]) in the body however, as we provide
improved bounds in Sect. 4.2.

172 P. Charbit et al.

nodes of in-degree 0 are white (corresponding to inputs to the computation),
and the other nodes are either blue (corresponding to additions) or red (corre-
sponding to multiplications). In graph theory terms, the bootstrap problem for
maximum noise level L asks to find a small set of marked vertices such that
every path containing L + 1 red nodes must also contain at least one marked
vertex. In other words, the bootstrap problem asks to reduce the multiplicative
depth of a circuit by removing a few nodes.

1.2 Overview of Our Results

We present a framework for achieving low-communication MPC for all circuits,
sometimes allowing for a restriction on the depth, but never relying on a specific
circuit topology (such as layered circuits). The secure computation protocol is
based on the following pebbling game on the circuit’s underlying DAG:

1. A node u may be pebbled if it is a source node, or if every length-k directed
path (the length is counted in vertices) ending in u contains a node which
has already been pebbled.

2. Eventually, every node corresponding to an output gate must be pebbled (this
includes every sink).

At a high level, the protocol has the parties compute some “masked version”
(secret shares or ciphertexts) of the value of each pebbled gate. The parties
start with the inputs, then iteratively compute shares of the value of each peb-
bled gate using the fact that each one can be computed as a depth-k circuit
of already computed masked values. Finally, the parties “open up” the masked
output values. Typically, the communication required to generate the masked
inputs should scale only with the input size, the cost of computing the interme-
diary masked values should scale only with the number of pebbled gates, and
the cost of opening the masked outputs should scale only with the output size.
Instantiating this framework requires two key ingredients:

1. An algorithm to find a good pebbling of the circuit’s underlying DAG.
2. A low-communication protocol to compute a masked version of the output of

a depth-k circuit, given masked version of the inputs.

Solving the Pebbling Game. Our approach is to consider the circuit’s under-
lying DAG, remove the input and output nodes, and then identify a directed
k-path hitting set of the resulting DAG. Removing all these nodes yields a DAG
of depth k − 1.

Main Theorem 1 (Depth-reduction algorithms for fan-in two circuits). Let G
be an in-degree two, depth-d DAG on n vertices. Then

hk(G) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�2n/3� if k = 2 (1a)
2n
5

·
(

1 +
3/2
k

)

for any 1 ≤ k < d (1b)

O
(

n ·
(

1 − log k

log d

))

for any 1 ≤ k < d (1c)

A Note on Low-Communication Secure Multiparty Computation 173

where hk(G) is the size of the smallest k-path hitting set of G. Furthermore this
bound is constructive. Note that the last expression is particularly interesting in
the k = d1−o(1) regime, as it yields a hitting set of size o(n).

Main Corollary 1 (Circuit depth-reduction from k-path hitting set). Let R
be a finite ring. Let C be a fan-in two, depth-d, n-input, m-output circuit with s
gates9. Let (k,M) be any of the following combinations of parameters:

⎧
⎪⎪⎨

⎪⎪⎩

M = m + �2(s − m)/3� and k = 2

M = m + 2(s−m)
5 ·

(
1 + 3/2

k

)
and 1 ≤ k < d

M = m + O
(
(s − m) ·

(
1 − log k

log d

))
and 1 ≤ k < d

There exists a sequence of M fan-in two, depth-k, single-output circuits
C1, . . . , CM such that:

∀�x ∈ Rn, C(�x) = CM

(
�x, (Cj(�x, (Ci(�x, . . .))i<j)))j<M

)
.

(Or in algorithmic form, if

1. y1 ← C1(�x)
2. For i = 1 . . . M , yi ← Ci(�x, (y1, . . . , yi−1))

then C(�x) = CM (�x, (yi)Mi=1).)

Instantiating the Framework. We demonstrate the usefulness of main The-
orem1 by showing how each of the three expressions has applications to low-
communication secure multiparty computation: the parameters of Eq. (1a) are
useful to obtain fractionally linear-communication MPC in the correlated ran-
domness model, those of Eq. (1b) are best suited for 1-out-of-22

k

OT-complexity
of 2PC, and finally the parameters of Eq. (1c) are best applied to sublinear-
communication secure computation low-depth circuits.

Corollary 1 (MPC protocols through the depth-reduction lens).

1. Information-theoretic MPC in the correlated randomness model.
Let C be an n-input, m-output, F -arithmetic circuit with s non-output com-
putation gates (over any basis of binary gates). There exists an N -party pro-
tocol for perfectly securely computing C in the correlated randomness model
in the presence of a semi-honest adversary corrupting up to N − 1 parties.
The protocol uses the following resources (in bits):
– Total communication:

(
2
3
s + n + m

)

· N · log |F |

9 In order to simplify the expressions of M , we assume none of the input gates are
also outputs.

174 P. Charbit et al.

– Correlated randomness per party: O(s + n) · log |F | bits of function-
dependent correlated randomness per party (or alternatively BO(1) · log |F |
bits of function-independent correlated randomness, where B is some a
priori bound on s + n + m),

– Local computation per party: O(s · N · log2 |F |).
2. Sublinear-communication MPC from homomorphic secret-sharing.

Assuming the existence of N -party homomorphic secret-sharing supporting
logarithmic depth (respectively doubly logarithmic depth circuits) F -arithmetic
fan-in two circuits, there exists sublinear-communication secure N -party com-
putation for all log1+o(1)-depth (resp. (log log)1+o(1)-depth) circuits.

3. The 1-out-of-M-OT complexity of 2PC. Let f : {0, 1}n → {0, 1} be a
function which can be computed by a boolean circuit with s computation gates
(over any basis of binary gates). For every M ≥ 2, there exists a two-party
protocol for computing C with passive security in the 1-out-of-M -OT hybrid
model; this protocol makes 2

5

(
1 + 3/2

�log log M�+1

)
·s calls to the oblivious trans-

fer functionality.

We note that the protocols of Corollary 1 can be extended to the mali-
cious setting. The results for sublinear-communication from HSS also apply
to correlated SPIR: Assuming the existence of correlated SPIR, there exists
a sublinear-communication secure two-party protocol for (log log)1+o(1)-depth
circuits. Finally our depth-reduction algorithms (notably those in the parameter
range of Eq. (1b)) provide upper bounds on the number of bootstraps required
to achieve fully homomorphic encryption while tolerating a small constant max-
imum noise level: Given an FHE scheme tolerating a maximum noise level of L,

Table 1. Resources in field elements per party for computing a fan-in two arithmetic
circuit with n inputs, m outputs, and s computation gates (s× of which are multiplica-
tive, and s−s× linear), in the two-party setting. In the last column, k is not necessarily
a constant. Note that the GMW protocol coincides with an extension of our protocol
to k = 1 (up to free addition), as a “1-path hitting set” is the set of all vertices.

Previous Works
“GMW with OT correlations” [GMW87,Bea92] “Tiny Tables” [DNNR17]

Communication s× + n + m s + n + m

Correlated Randomness 4s× + n 3s + n

Function-Independent CR? Yes No
Computation sO(1) sO(1)

This Work

Colouring-based FVS-based (Any k ≥ 2)
Communication 2

3
s + n + m 2

5
(1 + 3/2

k
) · s + n + m

Correlated Randomness 10s + n† 22
k · s + n†

Function-Independent CR? No† No†

Computation sO(1) O(22
k

) · sO(1)

†The correlated randomness can be made function-independent at the cost of increasing
it to B2k

bits, where B is some a priori bound on n + m + s.

A Note on Low-Communication Secure Multiparty Computation 175

only 2
5s · (1+ 1.5

L+1) bootstraps are required to homomorphically evaluate a size-s
circuit (over an arbitrary basis of binary gates).

Concrete Efficiency. We conclude this section by comparing our frac-
tionally linear-communication protocol to the previously best known linear-
communication protocols in the correlated randomness model, in the two-party
setting. The comparison is summarized in Table 1. When compared with the
“Tiny Tables” protocol of Damgaard, Nielsen, Nielsen, and Ranelluci [DNNR17],
we save a factor 1.5 in communication at the cost of a factor 4 in computation.
The savings in communication can be asymptotically increased to a factor 2.5,
but only by losing a very large factor in computation.

1.3 Technical Overview

We refer to Sect. 2 for definitions of the graph-theoretical notions discussed here.
We consider three families of depth-reduction algorithms in this paper. Recall
our goal is to constructively give an upper bound for hk(G) where the DAG G
has n nodes and is of in-degree-2.

Colouring-Based Depth-Reduction. Observe that 2-paths are exactly
(directed) edges, so the hitting set we are looking for is exactly a vertex cover.
A DAG of in-degree two is 3-colourable, and furthermore a 3-colouring can be
found in polynomial time by the following greedy algorithm: colour all sources
with the same colour, then iteratively colour nodes in topological order with any
of the three colours not already used by its parents. Since each node has at most
two parents, the algorithm never gets “stuck” and only ever needs three colours.

Consider the 3-partition of the nodes obtained by this colouring. The union
of the two smallest partition must have size at most �2n/3� (or they would not
be the smallest), and they must be a vertex cover of the graph (or there would
be an edge whose two endpoints are of the third colour, which would violate the
proper 3-colouring property).

FVS-Based Depth-Reduction. Our second family of depth-reduction algo-
rithms is based on the following approach:

1. First, remove vertices from the in-degree-2 DAG so the resulting graph lies
in some graph class G.

2. Then, use a special-purpose depth-reduction algorithm for class G.

Specifically, we consider the class G of all directed forests. This is motivated
by the fact that directed trees (which in particular can be seen as layered graphs)
admit very efficient depth-reduction algorithms. More specifically, we can reduce
the depth of a directed forest to k − 1 while removing only a 1-in-k fraction of
its vertices. Indeed, while the forest still has depth at least k we can iteratively
remove the (k − 1)th ancestor u of the deepest leaf v . Whenever we remove
a node in this fashion, we are guaranteed we will never need to remove any of
the k − 1 nodes of the path from u (excluded) to v (included). We say these
k − 1 nodes have been “saved by u ”. Because each node can be saved by at

176 P. Charbit et al.

most one node’s removal, when the algorithm terminates we are guaranteed to
have removed only a 1-in-k fraction of the nodes (if we removed � nodes, then
we saved � · (k − 1); because � + � · (k − 1) ≤ n, necessarily � ≤ �n/k�).

The first step is handled by identifying a feedback vertex set (FVS) of the
in-degree-2 DAG’s underlying undirected graph. Fortunately, while the problem
of finding a small FVS is NP-complete in general graphs, it is known that every
2-degenerate graph (that is, one whose edges can be oriented as an in-degree-2
DAG) admits an FVS of size �2n/5� [BDBS14].

By combining these two steps, every n-vertex, in-degree-2 DAG has a k-path
hitting set of size �2n/5� + �n−�2n/5�

k � (which is at most 2n
5 · (1 + 3/2

k)).

Valiant’s [Val77] Edge-Partitioning-Based Depth-Reduction. The third
algorithm is one proposed by Valiant [Val77], and which we simply apply to
secure multiparty computation10. For completeness, we provide here a sketch
of how this algorithm works. This DAG depth-reduction algorithm is based on
deleting edges. In an in-degree-2 DAG however, the number of edges is within
a factor 2 of the number of vertices, so the problem is essentially the same as
the variant we consider. Valiant’s algorithm starts by partitioning the vertices
in d layers, according to their depth in the DAG. Note that because we do not
assume the DAG itself has a layered structure, the edges are allowed to join any
pair of layers. The edges are partitioned as X1 � · · · � Xlog d as follows: an edge
connecting two vertices in layers L1 and L2 is placed in partition Xi where i is
the most significant bit in which the binary representations of L1 and L2 differ.
We provide a visual representation of this partition in Fig. 1: any edge “crossing
the blue line” is in X1; any edge not in X1 but “crossing a red line” is in X2; any
edge not in X1 ∪ X2 but “crossing a green line” is in X3. The key observation
is that whenever we iteratively remove one of the partitions, the depth of the
DAG is reduced by a factor 2. Removing the log(d/k) smallest partitions (whose

Fig. 1. Visual representation of the edge partitioning mechanism in Valiant’s [Val77]
depth-reduction algorithm.

10 We note that Valiant’s algorithm was previously applied in essentially the same way
to other—yet incomparable—notions of depth-reduction and pebbling games, in the
study of memory-hard functions [AB16,ABH17].

A Note on Low-Communication Secure Multiparty Computation 177

union has size at most (log(d/k)) · #edges
log d) therefore yields a depth-k DAG. It

follows that every in-degree-2, n-vertex DAG of depth d admits a (k + 1)-path
hitting set of size O(n · (1 − log k

log d)).

2 Preliminaries

2.1 Cryptographic Notions

Definition 1 (Homomorphic Secret Sharing). An N -party Homomor-
phic Secret-Sharing (HSS) scheme (with additive reconstruction) for a
class F of functions over a finite field F is a pair of algorithms HSS =
(HSS.Share,HSS.Eval) with the following syntax and properties:

– Share(1λ, x): On input 1λ (the security parameter) and x ∈ F n(λ) (the input),
the sharing algorithm Share outputs N input shares (x(1), . . . , x(N)).

– Eval(i, f, x(i)): On input i ∈ [N] (the party index), f ∈ F (the function to
be homomorphically evaluated, implicitly assumed to specify input and output
lengths n,m), and x(i) (the ith input share), the evaluation algorithm Eval
outputs the ith output share y(i) ∈ Fm.

– Correctness: For any 1λ, input x ∈ F n(λ), and any function f ∈ F ,

Pr

[

y(1) + · · · + y(N) = f(x) :
(x(1), . . . , x(N)) $← HSS.Share(1λ, x)
y(i) $← HSS.Eval(i, f, x(i)), i = 1 . . . N

]

= 1.

– Security: For every set of corrupted parties D � [N], we consider the fol-
lowing game:
1. The adversary A sends inputs (x0, x1) with |x0| = |x1|.
2. The challenger picks b

$← {0, 1} and (x(1), · · · , x(N)) $← HSS.Share
(1λ, xb).

3. The adversary outputs a guess b′ ← A((x(i))i∈D).

We let Adv(1λ,A,D) denote the advantage |1/2−Pr[b = b′]| of A. The scheme
is secure if for any D � [N] and any PPT adversary A, Adv(1λ,A,D) is negli-
gible.

2.2 Graph-Theoretic Notions

In this paper, we consider only simple graphs, both directed and undirected.
For a graph G we let V (G) and E(G) be the sets of vertices and edges of G,
respectively. For a subset U ⊆ V (G), we use G[U] to denote the subgraph of G
induced by U , i.e. the graph (U,E(G)∩U2). We sometimes use the acronym DAG
as shorthand for “directed acyclic graph” and di-graph or digraph as shorthand
for “directed graph”. In a DAG, the nodes of in-degree 0 are called sources and
the nodes of out-degree 0 are called sinks. Borrowing from circuit terminology,
we allow a subset of a DAG’s nodes to be identified as output nodes: this can be
an arbitrary subset, provided that it contain all sinks and no sources.

178 P. Charbit et al.

(Directed) Paths. A (directed path) in a (directed) graph is a non-repeating
sequence of vertices such that each pair of consecutive vertices form an (arc)
edge of the graph. The length of a (directed) path is the number of vertices11 in
this sequence. The depth of a directed acyclic graph is the length of the longest
path in it.

Feedback Vertex Set. A feedback vertex set (FVS) of an undirected graph G
with vertex set V is a set S ⊆ V of its vertices such that the graph G[V \ S] is
a forest. The FVS decision problem asks, on input an undirected graph G and a
positive integer k, whether G admits an FVS of size at most k.

Vertex Colouring. A (proper) vertex colouring of graph G = (V,E) is a func-
tion π : V → N which assigns different values (called colours) to neighbouring
vertices. A k-vertex-colouring (or simply a k-colouring) is a vertex colouring
which uses at most k colours.

Independent Set. An independent set is a set of vertices in a graph such that
no pair of them are adjacent to each other.

Graph Degeneracy. The degeneracy [LW70] (a.k.a. the coloring number -1
[EH66]) of a graph G is the least integer k ≥ 0 such that every induced subgraph
of G contains a vertex with at most k neighbours. If a graph has degeneracy at
most d, we say it is d-degenerate. A graph is d-degenerate if and only if it admits
a d-elimination ordering [LW70], i.e. an ordering of the vertices in which each
vertex appears after at most d of its neighbours. A graph is d-degenerate if and
only if the edges of G can be oriented to form a directed acyclic graph with
in-degree at most d [CE91] (Fig. 2).

elimination ordering

Fig. 2. The nodes of a 2-degenerate graph can be ordered in such a way that each node
is preceded (in the ordering) by at most 2 of its neighbours.

3 Depth-Reduction Pebbling Game

The goal of this section is to show how solving the graph-theoretic problem of
reducing an in-degree-2 DAG’s depth by removing (few) nodes leads to low-
communication MPC protocols.
11 Beware that the literature is inconsistent on whether the length of a path should be

counted in vertices or edges.

A Note on Low-Communication Secure Multiparty Computation 179

In Sect. 3.1 we state the graph theoretic problem of DAG depth reduction. In
Sect. 3.2 we introduce a “pebbling game” for the gates of a (boolean or arithmetic)
circuit, and show it can be solved using DAG depth-reduction. In Sect. 3.3 we
explain how many existing low-communication MPC protocols implicitly rely on
finding a good pebbling of the circuit to be securely computed.

3.1 The Depth-Reduction Problem for Directed Acyclic Graphs

Definition 2 (DAG Depth-Reduction).

– DAG Depth-Reducibility. Let k, � ∈ N�. We say a directed acyclic graph
G = (V,E) is (k, �)-depth-reducible if there exists a subset S ⊆ V of size at
most � such that G[V �S] has depth at most k (i.e. the longest directed path
in G[V �S] contains at most k vertices).

– The DAG Depth-Reduction Problem. Given a directed acyclic graph
G = (V,E), the (k, �)-depth-reduction problem (denoted (k, �)-DR) asks to
find a subset S ⊆ V of size at most � such that G[V �S] has depth at most
k (i.e. the longest directed path in G[V �S] contains at most k vertices), or
output ⊥ if no such subset exists.

Remark 1 (Equivalent Problems to DAG Depth-Reduction). The following
holds:

1. The (k, �)-DR problem is that of finding a hitting set of size at most � for all
directed (k + 1)-paths in G.

2. The (1, �)-DR problem is that of finding a vertex cover of size at most �.

We bring the reader’s attention to the fact that removing a k-path hitting
set from a DAG yields a DAG of depth at most k − 1.

3.2 A Depth-Reduction Pebbling Abstraction

We outline below a convenient intermediate abstraction to interface between the
depth-reduction problem over digraphs and the execution of a secure multiparty
computation protocol. We model the distributed computation of a function f ,
given by a boolean circuit C, as the Depth-Reduction pebbling game. In this
pebbling game the parties can place a pebble on a node s of the underlying
graph G of the circuit if the following condition is met: either the node is an
input node, or all directed path of length k+1 in G ending at s already contain
a pebbled node. Formally,

Definition 3 (DR pebbling game).
Given a digraph G = (V,E) and a depth parameter k, a depth-reduction

(DR) pebbling game PG is a list of subsets S ⊂ V of the nodes of G. A DR
pebbling game PG = (S1, · · · , S|PG|) is valid if after executing the commands
PebbleGates(Si) sequentially for i = 1 to |PG|, defined in Fig. 3,

– no command returns an invalid flag,

180 P. Charbit et al.

– the termination condition is met (i.e. all output nodes are pebbled).

The cost cost(PG) of a valid DR pebbling game PG is defined as the total number
of pebbles placed throughout the game,

cost(PG) =
∑

S∈PG

|S|

and its length length(PG) = |PG| is the length of the list (i.e. the number of
subsets).

The rules of the DR pebbling game are formally described on Fig. 3.

Termination. The game terminates once all output nodes have been peb-
bled.

Fig. 3. The moves and termination condition of a depth-reduction pebbling game.

Then, we have the following straightforward lemma that relates the cost of
a pebbling game to the k-depth-reducibility of G:

Lemma 1. Let G = (V,E) be a digraph with m output nodes12; we denote
Vsources and Voutputs the sets of sources and outputs of G, respectively. Let G′ :=
G[V \ (Vsources � Voutputs)]. If G′ is (k, �)-depth-reducible, then there is a valid DR
pebbling PG of G with depth parameter k, cost cost(PG) ≤ � + m, and whose
length |PG| is the largest number of pebbles on a path from a source to a sink in
G.

Proof. The proof follows from a straightforward greedy procedure. Because G′

is (k, �)-depth reducible, there exists a size-� subset V ′ of the nodes of G′ whose
removal yields a depth-k DAG. Initially, all sources in G are pebbled. At each
12 We refer to Sect. 2.2 for what we mean by “output nodes of a DAG”.

A Note on Low-Communication Secure Multiparty Computation 181

round, identify the largest set S ⊆ V ′ ∪ Voutputs of unpebbled nodes such that
PebbleGates(S) does not return invalid (i.e., the set of all nodes s ∈ V ′ such
that every path in G of length k + 1 ending at s contains a pebbled node),
and pebble this set. Iterate until all nodes in Voutputs have been pebbled. It fol-
lows from the definition of (k, �)-depth-reducibility terminates with all the sinks
coloured. Indeed, assume toward contradiction that a node s ∈ Voutputs was not
pebbled by this procedure. Then there must be an ancestor a of s (at distance
at most k of s) which was not pebbled by this procedure (otherwise, s would
have been pebbled). Repeating this argument from the node a, we arrive after at
most depth(G) steps at an input node, which is pebbled by assumption, reach-
ing a contradiction. Furthermore, all nodes pebbled in this process are nodes
from V ′ ∪ Voutputs, hence cost(PG) ≤ |V ′ ∪ Voutputs| ≤ � + m. This concludes the
proof. ��

3.2.1 Example: A DR Pebbling of Layered Graphs. We say that an
in-degree-2 directed acyclic graph is layered [GJ11] if its nodes can be divided
into layers, such that any edge only connects adjacent layers. Let G = (V,E) be
a layered in-degree-2 directed acyclic graph with |V | = s nodes, and let k be an
arbitrary parameter. Let n be the number of sources and m be the number of
sinks in G. Let d be the depth of G.

Claim. There exists a valid DR pebbling PG of G with |PG| ≤ �d/(k + 1)� + 1
and cost(PG) ≤ m + �s/k�.

Equivalently, the proof below shows that layered graphs of size s with m
outputs are (k − 1,m + �s/k�)-depth reducible for any k.

Proof. First, observe that d is necessarily equal to the number of layers in G.
Second, divide G into �d/k� chunks of k consecutive layers (written from top to
bottom). Let i ∈ [1, k] be an index such that the total number of nodes in the
i-th layers of all chunks is at most �s/k� (such an index i exists by the pigeonhole
principle).

The pebbling strategy proceed in �d/k� + 1 rounds: in the j-th round, place
pebbles on all nodes in the i-th layer of the j-th chunk, as well as on all unpebbled
sinks above the i-th layer of the j-th chunk. Observe that when j = 1, all nodes
in the i-th layer of the first chunk, and all sinks above this layer, have depth
at most i ≤ k, hence every path of length k ending at a node of the i-layer
must contain an source (and length-k paths can only exist when i = k), which
is pebbled.

When j > 1, all k-ancestors of the i-th layer of the j-th chunk are on the
i-th layer of the (j −1)-th chunk (because the graph is layered), hence they have
been pebbled at the round j − 1. Furthermore, each path of length k ending on
an unpebbled sink above the j-th chunk contains a node on the i-th layer of the
�-th chunk, for some � < j, which was pebbled in one of the previous rounds.

Eventually, in the (�d/k�+1)’s round (the last round), it only remains to place
a pebble on the remaining unpebbled sinks (if any) situated after the i-th layer

182 P. Charbit et al.

of the last chunk, and all length-k path ending in these nodes contain a pebbled
node from the i-layer of the last chunk. Therefore, all moves are valid, and all
sinks are pebbled at the end of the DR pebbling game. In total, the game places
pebbles on the i-th layer of each chunk (at most �s/k� pebbles in total) plus a
pebble on each sink (at most m additional pebbled), hence cost(PG) ≤ m+�s/k�.
This concludes the proof. ��

3.3 Recasting MPC Protocols Through the Lens of DR Pebblings

The DR pebbling game abstraction allows to recast several existing low-
communication MPC protocols in a unified way which isolates their crypto-
graphic component from the graph algorithm that they implicitly rely on to tra-
verse the circuit of the function. The literature contains several protocols which
require less communication than the size of the circuit, for a suitable class of
“well-structured” circuits. For example, [BGI16a, Def 4.6] introduces the notion
of circuits over branching programs, while [Cou19,CM21] use layered circuits,
and [BCM22,BCM23] use synchronous circuits.

All these protocols (and others) evaluate the circuit by distributively and
iteratively computing the values carried on a subset of intermediate nodes in a
hidden fashion (the values are either shared [BGI16a,Cou19], masked [BCM22],
or encrypted [Gen09,BV11,BGV12]. Computing the cost of these protocols (in
terms of communication, computation, and storage overhead) can be abstracted
out as follows:

– the cryptographic mechanism introduced in the protocol induces a (storage,
communication, and computation) cost for each intermediate node whose
value is (securely) computed, and

– the final cost of running the protocol is derived by summing the costs of com-
puting the intermediate nodes, where the nodes are selected using a suitable
valid DR pebbling of the graph of the circuit.

Cast in this language, there is nothing mysterious in the restriction to circuit
classes such as layered or synchronous circuit: it simply comes from the fact that
these are classes of circuits whose underlying graph G is (k, �)-depth-reducible
with non-trivial parameters (k, �), which in turns implies by Lemma 1 the exis-
tence of a good DR pebbling game on G; see also Sect. 3.2.1 for an explicit
description of an efficient pebbling strategy for layered graph. It also follows
immediately that all of these results can be extended to larger classes of circuits
provided that we can find sufficiently non-trivial DR pebbling games for their
underlying family of graphs.

For the sake of concreteness, and to facilitate the statements of the corollar-
ies which we obtain in this paper, we work out explicitly the abstraction on a
few illustrative examples below. We stress that we do not prove new results on
secure computation in what follows: rather, for a list of existing protocols that
were originally described over a restricted class of circuits, we observe that the
protocols work identically over general circuits but that their efficiency depends

A Note on Low-Communication Secure Multiparty Computation 183

on the existence of an efficient DR pebbling. Our lemmas and corollaries simply
reformulate the existing results in this setting.

3.3.1 Information-Theoretic Secure Computation in the Correlated
Randomness Model. In [Cou19], Couteau introduced the first information-
theoretic secure computation protocol in the correlated randomness model which
achieves sublinear communication complexity O(s/ log log s) for all layered cir-
cuits of size s, using a polynomial amount of computation and correlated ran-
domness. For simplicity, we focus here on the case of secure computation of
boolean circuits with semi-honest security, but the result of [Cou19] extends to
arithmetic circuit and to the malicious setting.

On Fig. 4, we recall the protocol Πcorr of [Cou19]. Rather than focusing on
layered circuits, we describe the protocol for an arbitrary circuit C given a suit-
able pebbling of the underlying graph of C. Let C be a circuit, and let PG be a
valid DR pebbling of the graph G of C with depth parameter k(|C|) = log log |C|.
Lemma 2. Let C be an n-input boolean circuit with m output gates, and let PG
be a valid DR pebbling of its graph G = (V,E). Then the protocol Πcorr of Fig. 4
is an information-theoretically secure N -party protocol for computing C in the
correlated randomness model. Furthermore, the protocol Πcorr has the following
efficiency properties:

– Correlated randomness: each party receives at most |V | + cost(PG) · 22k

bits
of correlated randomness from the trusted dealer.

– Communication: the total communication of the protocol is upper bounded by
N · (n + cost(PG)).

– Computation: each party performs at most O(cost(PG) · (22k

+ N)) boolean
operations.

Lemma 2 is a reformulation of [Cou19, Theorem 1] in the setting of general
circuits with a DR pebbling game, and the proof of Lemma 2 is a direct adap-
tation of the analysis in [Cou19]. Due to the choice of k = log log(s), note that
the amount of correlated randomness and computation remain polynomial. Fur-
thermore, whenever cost(PG) � s, the total communication of the protocol is
� N · (n + s), i.e., below the “circuit-size barrier”. Plugging the efficient valid
DR pebbling of layered graphs described in Sect. 3.2.1 (whose cost is at most
m + �s/ log log(s)�) recovers the exact statement of Theorem 1 in [Cou19] for
layered boolean circuits.

3.3.2 Secure Computation from Homomorphic Secret Sharing. We
recall below another approach for sublinear secure computation, which was orig-
inally introduced in [BGI16b]. This protocol established HSS as the first known
alternative to FHE to obtain sublinear secure computation for an expressive class
of circuits. On Fig. 5, we recall a simplified variant of the protocol of [BGI16b]
for arbitrary circuits with a valid DR pebbling given a statistically correct HSS
scheme for the class NC1, and discuss extensions that rely on weaker forms of

184 P. Charbit et al.

Fig. 4. An information-theoretic secure computation protocol in the correlated ran-
domness model

HSS afterwards. Let C be a circuit, and let PG be a valid DR pebbling of the
graph G of C with depth parameter k(|C|) = log |C|.

A Note on Low-Communication Secure Multiparty Computation 185

Fig. 5. A two-party protocol for C with semi-honest security

186 P. Charbit et al.

Lemma 3. Let C be a boolean circuit with n input gates and m output gates,
and let PG be a valid DR pebbling of its graph G = (V,E). Then the protocol
Πhss of Fig. 5 is a secure 2-party protocol in the honest-but-curious setting for
computing C. Furthermore, the total communication of the protocol Πhss is upper
bounded by 2 · (n + cost(PG)) + poly(λ).

Lemma 3 follows directly from the same analysis as HSS-based secure compu-
tation protocols from previous works [BGI16b]. Above, the poly(λ) term refers to
the fixed communication cost (independent of n,m, and the circuit size) of the
secure 2-party protocol for distributively running HSS.Share on a pair of λ-bit
inputs. Plugging the efficient valid DR pebbling of layered graphs described in
Sect. 3.2.1 (whose cost is at most m+ �s/ log(s)�) recovers the result of previous
works from HSS for NC1 together with PRFs in NC1.

Extension 1: Las Vegas HSS. We note that the construction of Lemma 3 is
simplified compared to the original construction of [BGI16b] since it assumes a
statistically correct HSS scheme for NC1. While such schemes were later con-
structed from assumptions such as DCR [OSY21] or class groups [ADOS22],
they were not known (without using indistinguishability obfuscation of FHE-
style primitives) at the time of [BGI16b]. Instead, [BGI16b] relied on a DDH-
based construction of Las Vegas HSS, which satisfies a weaker correctness prop-
erty. A similar, slightly more complex construction works nonetheless given Las
Vegas HSS, by letting the functions gs encode their output with a suitable low-
complexity error correcting code. Combining the efficient valid DR pebbling of
layered graphs from Sect. 3.2.1 with this variant recovers the result of [BGI16b].

Extension 2: Single-Function HSS. Another extension replaces the HSS by
single-function HSS, a weaker notion where HSS.Share must specify in advance
the circuit to be computed on the shares. One can also modify the previous
construction to work with single-function HSS, by initially distributing HSS ·
Share(1λ,Kb, (gs)s∈S) for all sets S ∈ PG (viewing (gs)s∈S as a single function
that takes as input (K0,K1) and outputs (gs(K0,K1))s∈S). This increases the
total communication to 2·(n+cost(PG))+|PG|·poly(λ), which is still sublinear for
layered circuits which are not too “tall-and-skinny” (since there, |PG| = O(d/k)
where d is the circuit depth).

Combining the efficient valid DR pebbling of layered graphs from Sect. 3.2.1
with this variant, and setting k ← log log s, almost recovers the result of [CM21]
which achieves sublinear 2-party computation from the super-polynomial hard-
ness of LPN, by building single-function HSS for loglog-depth circuits from
superpoly-LPN. A minor distinction is that our construction would require a
PRF computable in depth loglog. At a high level, the PRF is used in our con-
struction to turn a (possibly non-compact) HSS into a compact HSS (whose share
size on input x is |x|+poly(λ)) using a hybrid encryption technique. Instead, the
work of [CM21] avoids this additional assumption by directly building a compact
single-function HSS from the super-polynomial hardness of LPN. Summing up:

Corollary 2. Let C be a boolean circuit with m output gates, and let PG be a
valid DR pebbling of its graph G = (V,E) of depth k. Then:

A Note on Low-Communication Secure Multiparty Computation 187

– if k = log |C| and assuming the hardness of either DCR or DDH, there exists
a secure 2-party protocol for C with communication 2·(n+cost(PG))+poly(λ),
and

– i k = log log |C| and assuming the super-polynomial hardness of LPN (semi-
honest setting) or additionally the existence of collision-resistant hash func-
tions (malicious setting), there exists a secure 2-party protocol for C with
communication 2 · (n + cost(PG)) + |PG| · poly(λ)
In the corollary above, the statement about security in the malicious setting

comes from the existence of a communication-preserving semi-honest to mali-
cious compiler given succinct zero-knowledge arguments (via the GMW compiler
[GMW86]), which exists assuming collision-resistant hash functions [Kil92]. The
latter is implied by either DDH or DCR, but not by the flavour of LPN used in
[CM21] (though strong forms of LPN imply CRHF [YZW+19]).

3.3.3 Further Protocols that Fit the Abstraction. We now list other
secure computation protocols whose recasting as protocols computing a circuit
through a DR pebbling of its graph captures adequately some of their efficiency
properties.

2-Party Computation from Correlated Symmetric PIR. The work of
[BCM22] achieves sublinear secure computation using a strong form of private
information retrieval, called correlated symmetric PIR. In a similar fashion as for
the protocols of the previous sections, the protocol of [BCM22] can be described
for all circuits given a suitable DR pebbling of their graph with depth parameter
k = c·log log |C| for an appropriate constant c. The dependency in the parameters
of the DR pebbling is slightly more complex, but still translates to a protocol
with sublinear communication whenever cost(PG) = o(|C|) and the circuit is not
too “small and skinny” (which translates to |PG| being significantly smaller than
cost(PG)). The lemma below is the generalization of Corollary 18 in [BCM22] to
arbitrary circuits C:

Lemma 4. Let C be a circuit with n inputs, m outputs, and let PG be a valid DR
pebbling of the graph G of C with depth parameter k. Assuming the existence of
correlated SPIR, there exists a secure 2-party protocol for C with communication
complexity

O

(

n + m + |PG|1/3 ·
(
2k+2k · cost(PG)

)2/3

· poly(λ) + cost(PG)
)

.

Correlated SPIR can be constructed assuming the LPN assumption (with
polynomial hardness) and either of QR, DDH, DCR, or LWE [BCM22,BCM23].
This implies secure 2-party computation with the communication complexity
outlined above under these combinations of assumptions.

Sublinear Multiparty Computation. The recent work of [BCM23] introduced
an approach for sublinear secure computation which, at a high level, combines

188 P. Charbit et al.

correlated SPIR with N -party homomorphic secret sharing to achieve sublinear
MPC for N + 1 parties. Combining this with existing constructions of 2-party
and 4-party HSS, they obtain constructions of sublinear 3-party and 5-party
secure computation protocols for layered circuits. Another recent protocol that
fits our abstraction is given in the work of [DIJL23], which introduced an N -
party homomorphic secret sharing scheme (with imperfect correctness) for any
polynomial N and all log log-depth circuits, and derived a sublinear N -party
secure computation protocol for all layered graphs. We briefly note that all these
approaches also fit our framework, and their protocols can be seen to work
identically over any circuit C with a suitable DR pebbling.

FHE-Based Secure Computation with Reduced Bootstrapping. Until
now, we outlined protocols whose communication complexity depends on finding
a suitable DR pebbling of the graph of the circuit. We now show that this abstrac-
tion is also useful beyond this setting. It is well known that fully homomorphic
encryption (FHE) [Gen09] implies secure computation of arbitrary function with
communication independent of the circuit size. However, evaluating arbitrary
circuits involves bootstrapping, which is typically quite expensive.

The work of [BLMZ17] initiated the study of the number of bootstrapping
operations required to homomorphically evaluate a circuit. In their abstraction,
each FHE ciphertext is associated to a noise level, represented as an integer. Eval-
uating any non-linear gate increase the noise level by 1. When some pre-specified
maximum noise level is reach, an expensive bootstrapping must be performed.
While one could set the maximum noise level to be above the circuit size to
avoid bootstrapping altogether, allowing higher noise levels typically results in
much larger ciphertexts and much less efficient homomorphic operations. This
suggests the following question studied in [BLMZ17]:

Given a maximum noise level k and a circuit C, how many bootstrappings are
required to homomorphically compute C?

Concretely, the model is as follows: fix a maximum noise level k. All inputs
are encrypted with respect to a noise level 0. At each gate, the output of the
gate becomes encrypted with respect to a noise level equal to the maximum noise
levels of its inputs (for linear gates) or the maximum noise level of its inputs
plus 1 (non-linear gates). If the noise level of an input to a gate is equal to k, a
bootstrapping operation must be performed, which resets the noise level to 0.

Let C be a circuit with n inputs, m outputs, and let PG be a valid DR
pebbling of the graph G of C with depth parameter k. The following follows
almost immediately from the definition of DR pebblings:

Lemma 5. The circuit C can be homomorphically evaluated with FHE cipher-
texts of maximum noise level k using at most cost(PG) bootstrapping operations.

Proof. The proof is straightforward: the homomorphic evaluation runs a boot-
strapping evaluation at each gate where a pebble is placed during the game.
Because all path of length k ending in a pebbled gate are guaranteed to contain

A Note on Low-Communication Secure Multiparty Computation 189

a pebbled node already (which implies that the ciphertext encrypting the output
of the node has noise level 0 because a bootstrapping was performed), the noise
level of the ciphertexts encrypting the inputs to the gate is at most k. ��
Remark 2. The size cost(PG) of a DR pebbling of the underlying digraph of
the circuit C yields an upper bound on the number of bootstrapping operations
required to homomorphically evaluate a circuit. We note that, since this measure
depends solely of the graph of the circuit, it is agnostic of the type of gates. On
the downside, this means that it does not take advantage of the fact that addition
gates are typically “for free” in FHE schemes. On the positive sides, it yields an
upper bound that holds for homomorphic evaluation of boolean circuits over an
arbitrary boolean basis.

We note that our result is not directly comparable to the result of [BLMZ17]:
their work showed that closely approximating the minimal number of bootstrap-
ping is NP-hard, and provided a polytime k-approximation of the best solution.
However, their result does not provide any bound on the size of the best possible
solution. In contrast, we provide an upper bound on the number of bootstrapping
required for any boolean circuit, as a function of its DR pebbling complexity.
Looking ahead, combined with the non-trivial DR pebbling algorithms which
we introduce in the next section, this will yield algorithms to homomorphically
evaluate low-depth circuits with a sublinear number of bootstrapping operations,
and algorithms to homomorphically evaluate any circuit using bootstrapping for
a constant fraction of all gates.

The Complexity of OT-Based Secure Computation. An 1-out-of-n oblivi-
ous transfer (OT) is a protocol that allows a sender holding inputs (s1, · · · , sn) to
reveal si to a receiver with input i ∈ {1, · · · , n} without learning i, and without
revealing any sj for j �= i to the receiver. The seminal GMW protocol [GMW87]
showed that any circuit can be securely evaluated (in the 2-party setting) using
a 1-out-of-4 oblivious transfer protocol. Informally, the 1-out-of-4 OT is used to
let one party obliviously retrieve its share from the truth table (of size 4) of a
binary gate (scrambled with the masks held by the other party). This approach
generalizes immediately to securely computing circuits with k-ary gates using 1-
out-of-2k oblivious transfer. This suggests the following natural question: given
a circuit C and a 1-out-of-n oblivious transfer protocol, how many invocations
of the OT are necessary to securely evaluate C?

For n = 2, the OT complexity of secure computation was previously studied
in [BIKK14]. In this section, we observe that for general values of n, the protocols
of [GMW87,DNNR17] immediately yield an information-theoretic protocol given
access to 1-out-of-n OT functionality for circuits with n-ary gates. Now, given
an efficient DR pebbling with depth parameter k of the graph of a circuit C,
observe that the value of each pebbled node v can be computed as a function of
the value of at most 2k pebbled ancestors of v (since all path of length k ending
in v must contain a pebbled node, and there are at most 2k such paths). In
turn, this implies that the computation of v from its pebbled ancestors can be
viewed as a 2k-ary gate which, using [GMW87,DNNR17], can be evaluated with

190 P. Charbit et al.

one call to a 1-out-of-22
k

OT functionality. Summarising, we have the following
lemma:

Lemma 6. Let C be a circuit with n inputs, m outputs, and let PG be a valid DR
pebbling of the graph G of C with depth parameter k. There exists an information-

theoretic secure 2-party protocol for C in the
(
22

k

1

)
-OT-hybrid model which makes

at most m + cost(PG) to the OT functionality, and requires no further commu-
nication.

4 Depth-Reduction Algorithms for Fan-In Two Circuits

In this section, we present depth-reduction algorithms for (the underlying DAG
of) fan-in 2 circuits.

In Sect. 4.1, we provide a conservative depth-reduction algorithm for any fan-
in two circuit which removes only a sublinear number of nodes. However, because
the reduction in depth is only sub-polynomial, we can only reach (doubly) log-
arithmic depth if the starting circuit is already shallow.

In Sect. 4.2 we provide extreme depth-reduction algorithms, reducing any in-
degree-2 circuit’s depth to a constant, while removing a constant fraction of the
vertices.

In Sect. 4.3 we exclude the existence of a “best of both worlds” result, by
establishing there are high-depth circuits whose depth cannot be reduced poly-
nomially without removing a linear number of nodes.

In Sect. 4.4 we list the implications for secure multiparty computation.

4.1 Depth-Reduction of Low-Depth Circuits

Valiant [Val77, Theorem 5.1] (recalled in this section as Theorem 1) established
that the depth of any circuit can be reduced sub-polynomially (i.e. the depth
goes from d to d1−o(1), thereby saving the sub-polynomial factor do(1)) by the
removal of only a sublinear number of vertices.

Theorem 1 (Subpolynomial depth-reduction for all circuits, Immedi-
ate Corollary of [Val77, Theorem 5.1]). Let G be an in-degree-2, depth-d,
n-vertex DAG. For every k ≤ d, there exists a subset of O(n · (1− log k

log d)) vertices
whose removal yields a depth-k DAG.

Proof. [Val77, Theorem 5.1] states that the smallest in-degree-2, depth-d DAG
whose depth cannot be reduced to k by removing � edges has order at least
(�·log d)/(log(d/k)). It follows that every in-degree-2, depth-d DAG on n vertices
can have its depth reduced to k by removing � edges if the following inequality
holds: n ≤ (� · log d)/(log(d/k)). By setting � ← n · (1 − log k

log d) and noting that
removing a giving set of k edges can also be done by removing k nodes, we get
the desired result. ��

A Note on Low-Communication Secure Multiparty Computation 191

To better understand the trade-off between depth-reduction and number of
nodes removed in Theorem 1, it may be instructive to introduce the variable
change κ ← log(d/k) and observe that the theorem can be restated as:

Let G be an in-degree-2, depth-d, n-vertex DAG. For every κ ≤ log d,
there exists a subset of O(n · κ/ log d) vertices whose removal yields a
depth-(d/2κ) DAG.

It should now be apparent that if we are only willing to remove o(n) nodes,
then we need to set κ = o(log d), which means that the depth of the DAG will
only be reduced to d1−o(1). If this quantity is to be logarithmic or even doubly
logarithmic in n (as is required for some applications of Sect. 3.3), the result can
only be applied to circuits which are already low-depth. We state the result for
low-depth circuits in Corollary 3.

Corollary 3 (Depth-reduction of low-depth circuits, Adapted from
[Val77, Corollary 5.3]). Let G be an in-degree-2, n-vertex DAG of depth
log1+o(1) n (resp. (log log n)1+o(1)). There exists a subset of o(n) vertices whose
removal yields a DAG of depth O(log n) (resp. O(log log n)).

4.2 Depth-Reduction of General Circuits

In this section we show how removing a constant fraction of the vertices can
reduce the depth of an in-degree-2 DAG all the way down to a constant.

4.2.1 Reduction to Depth k = 1 Based on 3-Colouring. Our first
solution removes a fraction 2/3 of the vertices in order to reduce the depth to 1.

Theorem 2 (Colouring-based depth reduction). Any in-degree-in 2, n-
vertex DAG admits a subset of � 2n

3 � vertices whose removal yields a depth-1
DAG (i.e. an independent set).

Proof. An independent set in a DAG is the same thing as an independent set
of the underlying (undirected) graph. Recall that the underlying graph of an in-
degree-in 2 DAG is 2-degenerate. A 2-degenerate graph is 3-colourable [Mat68,
LW70] and furthermore a 3-colouring can be found greedily in polynomial time:
colour vertices following a 2-elimination ordering, always assigning the smallest
available colour (by definition of a 2-elimination ordering, whenever we colour
a vertex, at most two of its neighbours have already been assigned a colour,
so the greedy algorithm will never be stuck and will never need to use more
than three colours). The vertices are now partitioned into three colours, and
removing the two smallest partitions (this union has size at most �2n/3�) yields
an independent set.

Note that Theorem 2 is tight in the sense that there exist n-vertex in-degree-2
DAGs whose independence number (i.e. the size of its maximum independent
set) is n − �2n/3�.

192 P. Charbit et al.

4.2.2 Reduction to Depth k ≥ 1 Based on Feedback Vertex Set. We
now present an alternative solution, which removes a smaller fraction than 2/3
of the vertices, but at the cost of reducing the depth to “only” a constant, not
one. The algorithm first removes a feedback vertex set, and then proceeds to
remove vertices from the resulting forest.

Depth-Reduction of Forests. The first observation is that forests can be reduced
to depth k by removing a fraction 1/(k + 1) of its vertices.

Fig. 6. Algorithm which, on input an n-vertex directed forest and an integer k, pro-
duces a set of at most � n

k+1
� vertices whose removal yields a DAG of depth at most

k.

Lemma 7 (Depth-reduction algorithm for directed forests). Let k ∈ N�.
Every n-vertex directed forest admits a set of � n

k+1� vertices whose removal yields
a depth-k DAG. Furthermore the (deterministic) algorithm of Fig. 6 finds such
a set in polynomial time.

Proof. The fact that DRforest runs in polynomial-time follows from inspection.
Let us show by induction on n ∈ N� that for every n-vertex directed forest
G = (V,E) and every integer k ≥ 1, DRforest(G, k) outputs a set S ⊆ V of size
at most � n

k+1� such that G[V \ S] has depth at most k.

– Initialisation: Let k ≥ 1. Any graph G with a single vertex has depth 1,
therefore DRforest(G, k) therefore returns ∅, and the claim is true.

– Induction Step: Let n ∈ N�, and assume the induction hypothesis is true from
ranks 1 to n. Let G = (V,E) be an (n + 1)-vertex forest and let k ∈ N�. If
G has depth at most k, then the claim is trivially true. If G has depth more
than k, then in particular n ≥ k + 1. Furthermore, by induction hypothesis
DRforest(G, k) outputs a set of size at most 1 + �n−(k+1)

k+1 � = � n
k+1�. ��

Note that the algorithm of Fig. 6 is optimal in the sense that for n-vertex
directed paths, the smallest set whose removal yields a graph of depth at most
k has size � n

k+1�.

A Note on Low-Communication Secure Multiparty Computation 193

From Forest Depth-Reduction to Circuit Depth-Reduction. The second observa-
tion is that finding an FVS reduces the depth-reduction problem from in-degree-2
DAGs to directed forests.

Lemma 8 (FVS-based depth reduction). Let G be an n-vertex DAG, and
denote G′ the underlying (undirected) graph of G. If G′ has a feedback vertex set
of size f , then G admits a set of �n−f

k+1 � vertices whose removal yields a depth-k
DAG.

Proof. By definition of a feedback vertex set, removing a size-f FVS from G′

yields an (n − f)-vertex forest. Evidently, removing the same size-f vertex set
from G yields an (n − f)-vertex directed forest. The desired result follows from
applying Lemma7: removing an additional �n−f

k+1 � vertices from G yields a graph
of depth at most k. ��
Lemma 9 (A feedback vertex set for all 2-degenerate graphs, [BDBS14,
Theorems 2, 3]). Every 2-degenerate (undirected) graph on n vertices admits
a feedback vertex set of size at most �2n/5�, and furthermore such an FVS can
be found in polynomial time.

Note that Lemma9 is tight in the sense that there exist n-vertex graphs
whose smallest feedback vertex set has size �2n/5� [BDBS14, Theorem 4].

Wrapping-up. We are now ready to conclude by combining Lemma 8 and 9.

Theorem 3 (FVS-based depth reduction). Let k ≥ 1. Any in-degree-2,
n-vertex DAG admits a subset of 2n

5 · (1 + 3/2
k+1) vertices whose removal yields a

depth-k di-graph.

Proof. Let G be an in-degree-2, n-vertex DAG. The underlying (undirected)
graph of G is 2-degenerate, therefore by combining Lemma 8 and 9, G admits a
subset of � 2n

5 �+�n−�2n/5�
k+1 � vertices whose removal yields a depth-k graph. Since

(2n
5 · (1 + 3/2

k+1))− (� 2n
5 �+ �n−�2n/5�

k+1 �) ≥ (2n
5 · (1 + 3/2

k+1))− (� 2n
5 �+ n−�2n/5�

k+1) =
(2n

5 − � 2n
5 �) · k

k+1 ≥ 0, the simplified expression stated in the theorem is also
correct. ��

4.3 Lower Bounds on Depth-Reduction

The depth-reduction algorithm of Sect. 4.1 is better in the sense it removes only
a sublinear number of nodes, while those of Sect. 4.2 are better in the sense they
drastically reduce the depth of the circuit. One may wonder if it is possible to
improve on this result, and reduce the depth of any circuit polynomially (i.e.
from d to dε for some constant 0 ≤ ε < 1) while still only removing a sublinear
number of vertices. Unfortunately, Schnitger [Sch83, Theorem A] showed that the
sub-polynomial limitation on depth-reduction was inherent by producing family
of constant fan-in circuits whose depth cannot be reduced polynomially without
removing a linear fraction of vertices. Alwen, Blocki, and Pietrzak [ABP17] later

194 P. Charbit et al.

introduced a technique to reduce a circuit family’s fan-in from δ to 2 while
preserving its depth-robustness up to a factor δ. We state the combined result
in Theorem 4.

Theorem 4 (Polynomial depth-reduction requires removing a linear
number of vertices in some graphs, Combination of [Sch83, Theorem
A] and [ABP17, Lemma 1]). For each ε (0 ≤ ε < 1), there is a family of in-
degree-2 DAGs (Gn,ε)n∈N� such that Gn,ε has O(n) vertices, but Ω(n) vertices
have to be removed to reduce its depth to (n/ log n)ε.

Proof. Let ε ∈ [0, 1). By [Sch83, Theorem A], there is a family of constant
in-degree DAGs (G̃n,ε)n∈N� such that G̃n,ε has n vertices, but Ω(n) vertices
have to be removed to reduce its depth to (n/ log n)ε. Let δ be the in-degree
of (G̃n,ε)n∈N� . Applying [ABP17, Lemma 1] (with γ = 1) yields the desired
result. ��

4.4 Applications to Cryptography

We conclude by combining the results of Sect. 3.3, which re-casts cryptographic
results in the lens of our pebbling game, and the depth-reduction algorithms of
Sects. 4.1 and 4.2.

By combining Lemma 2 and Theorem 2 we obtain Corollary 4.

Corollary 4 (Fractionally linear-communication MPC in the corre-
lated randomness model, Concrete Result). Let C be an n-input, m-
output, depth-d, F -arithmetic circuit with s non-output computation gates. There
exists a passive, perfectly secure N -party protocol for securely computing C in
the correlated randomness model, using the following resources (in bits):

– Correlated randomness per party: ((11 + 2/3) · s + n + 16 · m) · N · log |F |
– Total communication: (23s + n + m) · N · log |F |
– Local computation per party: O((2s

3 + m) · (N + log |F |))
If instead we combine Lemma 2 and Theorem 3 we obtain Corollary 5.

Corollary 5 (Fractionally linear-communication MPC in the corre-
lated randomness model, Asymptotic Result). Let C be an n-input, m-
output, depth-d, F -arithmetic circuit with s non-output computation gates. For
every ε ≥ 3

2 log log s , there exists a passive, perfectly secure N -party protocol for
securely computing C in the correlated randomness model, using the following
resources (in bits):

– Correlated randomness per party: n + 2
√
8
1/ε

(s + m)N · log |F |
– Total communication: ((1 + ε)25s + n + m) · N · log |F |
– Local computation per party: O(2

√
8
1/ε

((1 + ε) 25s + m) · (N + log2 |F |))

A Note on Low-Communication Secure Multiparty Computation 195

By combining Lemma 3 and Theorem 1 we get Corollary 6. To clarify, the
quantification in Corollary 6 is as follows: for every infinite family of cir-
cuits (Cλ)λ∈N of size s = s(λ) such that there exists a vanishing func-
tion α(·) ∈ o(1) such that the depth of Cλ is at most log1+α(s(λ))(s(λ))
(resp. [log log(s(λ))]1+α(s(λ))), there exists a protocol for securely computing Cλ

assuming HSS support logarithmic (resp. doubly logarithmic) depth homomor-
phic evaluations.

Corollary 6 (Sub-polynomially deeper HSS-based sublinear-comm-
unication secure computation). Assuming the existence of N -party
homomorphic secret-sharing supporting logarithmic depth (respectively dou-
bly logarithmic depth circuits) F -arithmetic fan-in two circuits, there exists
sublinear-communication secure N -party computation for all log1+o(1)-depth
(resp. (log log)1+o(1)-depth) circuits.

By combining Lemma 5 and Theorem 1 we obtain Corollary 7, establishing an
upper bound on the number of bootstraps required in FHE, given a maximum
noise level.

Corollary 7 (FHE-based secure computation with reduced bootstrap-
ping, informal). Given an FHE scheme tolerating a maximum noise level of
L, only 2

5s · (1 + 1.5
L+1) bootstraps are required to homomorphically evaluate a

size-s circuit (over an arbitrary basis of binary gates).

Corollary 8 (Upper bounds on the 1-out-of-M OT-complexity of
secure multiparty computation). Let f : {0, 1}n → {0, 1} be a boolean func-
tion. For every M ≥ 2, there is a two-party protocol for passively securely com-
puting f (we assume the parties initially hold shares of the inputs, but this cap-
tures the case where each input is held by one of the parties) with perfect security
in the

(
M
1

)
-OT hybrid model while making

1 +
2
5
|f | ·

(

1 +
3/2

1 + �log logM�
)

calls to the OT functionality, where |f | is the computational complexity of f with
respect to the basis of all binary boolean gates.

Acknowledgments. We thank Mikaël Rabie and Elette Boyle for helpful discussions
and pointers to respectively degenerate graphs and memory-hard functions.

Geoffroy Couteau was supported by the French Agence Nationale de la Recherche
(ANR), under grant ANR-20-CE39-0001 (project SCENE), and by the France 2030
ANR Project ANR22-PECY-003 SecureCompute. Pierre Meyer was supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme under grant agreements numbers 852952 (HSS) and 803096
(SPEC).

196 P. Charbit et al.

References

AB16. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard
functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, Part
II, vol. 9815, pp. 241–271. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5_9

ABH17. Alwen, J., Blocki, J., Harsha, B: Practical graphs for optimal side-channel
resistant memory-hard functions. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1001–1017. ACM Press,
October/November 2017

ABP17. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumu-
lative memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, Part III, vol. 10212, pp. 3–32. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7_1

ADOS22. Abram, D., Damgård, I., Orlandi, C., Scholl, P.: An algebraic framework
for silent preprocessing with trustless setup and active security. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, Part IV, vol. 13510,
pp. 421–452 (2022). Springer, Cham. https://doi.org/10.1007/978-3-031-
15985-5_15

AJL+12. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4_29

ARS24. Abram, D., Roy, L., Scholl, P.: Succinct homomorphic secret sharing.
In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024. LNCS, vol. 14656,
pp. 301–330. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
58751-1_11

BCM22. Boyle, E., Couteau, G., Meyer, P.: Sublinear secure computation from new
assumptions. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022. LNCS,
Part II, vol. 13748, pp. 121–150. Springer, Cham. (2022). https://doi.org/
10.1007/978-3-031-22365-5_5

BCM23. Boyle, E., Couteau, G., Meyer, P.: Sublinear-communication secure multi-
party computation does not require FHE. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023. LNCS, Part II, vol. 14005, pp. 159–189. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-30617-4_6

BDBS14. Borowiecki, M., Drgas-Burchardt, E., Sidorowicz, E.: A feedback vertex set
of 2-degenerate graphs. Theor. Comput. Sci. 557, 50–58 (2014)

Bea92. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

BFKR91. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low com-
munication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-38424-3_5

BGI16a. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, Part I, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4_19

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-031-15985-5_15
https://doi.org/10.1007/978-3-031-15985-5_15
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-031-58751-1_11
https://doi.org/10.1007/978-3-031-58751-1_11
https://doi.org/10.1007/978-3-031-22365-5_5
https://doi.org/10.1007/978-3-031-22365-5_5
https://doi.org/10.1007/978-3-031-30617-4_6
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19

A Note on Low-Communication Secure Multiparty Computation 197

BGI16b. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and
extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 1292–1303. ACM Press, October 2016

BGV12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp.
309–325. ACM, January 2012

BGW88. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988

BIKK14. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic
complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 317–342. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8_14

BKKS11. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex
cover. Discrete Appl. Math. 159(12), 1189–1195 (2011)

BKS19. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
Part II, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3_1

BLMZ17. Benhamouda, F., Lepoint, T., Mathieu, C., Zhou, H.: Optimization of boot-
strapping in circuits. In: Klein, P.N. (ed.) 28th SODA, pp. 2423–2433. ACM-
SIAM, January 2017

BV11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106.
IEEE Computer Society Press, October 2011

CCD88. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press,
May 1988

CE91. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and
compaction of adjacency matrices. Theor. Comput. Sci. 86(2), 243–266
(1991)

CM21. Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure computa-
tion under quasi-polynomial LPN. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, Part II, vol. 12697, pp. 842–870. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_29

COS+22. Chillotti, I., Orsini, E., Scholl, P., Smart, N.P., Van Leeuwen, B.: Scooby:
improved multi-party homomorphic secret sharing based on FHE. In: SCN
2022 (2022). https://eprint.iacr.org/2022/862

Cou19. Couteau, G.: A note on the communication complexity of multiparty com-
putation in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, Part II, vol. 11477, pp. 473–503. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_17

DFH12. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low
communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–
74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9_4

DIJL23. Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret shar-
ing and sublinear MPC from sparse LPN. In: Handschuh, H., Lysyanskaya,
A. (eds.) CRYPTO 2023. LNCS, vol. 14082, pp. 315–348. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-38545-2_11

https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-77886-6_29
https://eprint.iacr.org/2022/862
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-031-38545-2_11

198 P. Charbit et al.

DNNR17. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable
protocol for 2-party secure computation, or: gate-scrambling revisited. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, Part I, vol. 10401,
pp. 167–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_6

EH66. Erdös, P., Hajnal, A.: On chromatic number of graphs and set-systems.
Acta Mathematica Academiae Scientiarum Hungarica 17, 61–99 (1966)

FGJS17. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret
sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li,
Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68637-0_23

Gen09. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June
2009

GJ11. Gál, A., Jang, J.-T.: The size and depth of layered Boolean circuits. Inf.
Process. Lett. 111(5), 213–217 (2011)

GMW86. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended
abstract). In: 27th FOCS, pp. 174–187. IEEE Computer Society Press,
October 1986

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Aho, A. (ed.)
19th ACM STOC, pp. 218–229. ACM Press, May 1987

IKM+13. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2_34

Kil92. Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May
1992

LP13. Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homo-
morphic circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013.
LNCS, vol. 7862, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41320-9_13

LW70. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. 22(5), 1082–
1096 (1970)

Mat68. Matula, D.W.: A min-max theorem for graphs with application to graph
coloring. In: SIAM 1968 National Meeting, SIAM Review, vol. 10, no. 4,
pp. 481–482 (1968)

Nau09. Naumann, U.: Dag reversal is NP-complete. J. Discrete Algorithms 7(4),
402–410 (2009)

OSY21. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of Paillier: homomorphic
secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, Part I, vol. 12696, pp. 678–708. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24

PV16. Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings in
fully homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 25–43. Springer, Heidelberg (2016)

RS21. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR
and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,

https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-030-77870-5_24

A Note on Low-Communication Secure Multiparty Computation 199

Part III, vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-84252-9_23

Sch83. Schnitger, G.: On depth-reduction and grates. In: 24th Annual Symposium
on Foundations of Computer Science (SFCS 1983), pp. 323–328 (1983)

Tu22. Tu, J.: A survey on the k-path vertex cover problem. Axioms 11(5) (2022)
Val77. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In:

Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidel-
berg (1977). https://doi.org/10.1007/3-540-08353-7_135

Yao86. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In:27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

YZW+19. Yu, Yu., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hashing
from sub-exponential learning parity with noise. In: Galbraith, S.D., Moriai,
S. (eds.) ASIACRYPT 2019. LNCS, Part II, vol. 11922, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_1

https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1007/978-3-030-34621-8_1

General Adversary Structures
in Byzantine Agreement and Multi-party
Computation with Active and Omission

Corruption

Konstantinos Brazitikos1(B) and Vassilis Zikas2

1 University of Edinburgh, Edinburgh, U.K.
K.Brazitikos@sms.ed.ac.uk

2 Purdue University, West Lafayette, USA

vzikas@cs.purdue.edu

Abstract. Typical results in multi-party computation (in short, MPC)
capture faulty parties by assuming a threshold adversary corrupting par-
ties actively and/or fail-corrupting. These corruption types are, however,
inadequate for capturing correct parties that might suffer temporary
network failures and/or localized faults—these are particularly relevant
for MPC over large, global scale networks. Omission faults and general
adversary structures have been proposed as more suitable alternatives.
However, to date, there is no characterization of the feasibility landscape
combining the above ramifications of fault types and patterns.

In this work we provide a tight characterization of feasibility of MPC
in the presence of general adversaries—characterized by an adversary
structure—that combine omission and active corruption. To this front we
first provide a tight characterization of feasibility for Byzantine agreement
(BA),akeytool inMPCprotocols—thisBAresult canbeof itsownseparate
significance. Subsequently, we demonstrate that the common techniques
employed in the thresholdMPCliterature todealwithomissioncorruptions
do not work in the general adversary setting, not even for proving bounds
that would appear straightforward, e.g., sufficiency of the well known Q3

condition on omission-only general adversaries. Nevertheless we provide a
new protocol that implements general adversary MPC under a surprisingly
complex, yet tight as we prove, bound. All our results are for the classical
synchronous model of computation.

As a contribution of independent interest, our work puts forth, for
the first time, a formal treatment of general-adversary MPC with (active
and) omission corruptions in Canetti’s universal composition framework.

1 Introduction

Multi-party computation (MPC) enables n parties to securely compute a func-
tion on their joint input. To capture parties’ misbehavior one typically considers

The full version of this paper can be found at the IACR Cryptology ePrint Archive,
report 2024/209.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 200–233, 2025.
https://doi.org/10.1007/978-3-031-78023-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_7&domain=pdf
http://orcid.org/0009-0004-1261-4277
http://orcid.org/0000-0002-5422-7572
https://doi.org/10.1007/978-3-031-78023-3_7

General Adversary BA and MPC with Active and Omission Corruption 201

a central adversary corrupting parties and using them to attack the protocol.
The most common corruption type for such an adversary is active corruption—
the adversary takes full control of a corrupted party. Security against such an
active adversary offers strong guarantees, but allowing the adversary to take
full control of corrupted parties is an overkill to capture more benign types of
misbehavior or just faults. In fact, this typically yields restrictions both in the
feasibility—e.g., tolerable number of corruptions—and in terms of efficiency. As
a result, different types of corruption have been investigated to capture such
benign faults scenarios.

In the opposite extreme of active corruption, fail-corruption (aka fail-crash
corruption or fail-stop corruption) allows the adversary to make a party crash
(irrevocably) at any point of the protocol he chooses—without having knowledge
of the party’s internal state.1 Naturally, adversaries with fail-corruption allow
for better feasibility and efficiency bounds than active adversaries, but this cor-
ruption type is often criticized as too benign. As an example, fail-corruption
is too weak for capturing faults caused by temporary issues on the network of
otherwise correct—i.e., protocol abiding—parties. This gave raise to the study
of the so called omission-corruption, which allows the adversary to selectively
drop incoming and/or outgoing messages of the corrupted party, but obliviously
of the message contents or the party’s internal state.

On a different dimension, the two standard ways to capture the adversary’s
corruption patterns are via threshold and general adversaries. A threshold adver-
sary is specified by the maximum number (threshold) of possible corruptions.
This model can, again, be considered overly pessimistic, and therefore restrictive,
when one considers situations in which certain combinations of faulty parties are
unlikely. The concept of a general adversary (structure) is the alternative, fine-
grained way which better captures such a situation: Rather than the maximum
number of corruptions, a general adversary structure Z enumerates all possible
combinations of corrupted parties, therefore giving more flexibility in describing
the adversary’s capabilities.

Tight feasibility bounds have been established for both threshold and gen-
eral adversaries in the context of active corruptions and fail-corruptions, and
even their combination (see Sect. 1.1 below for an overview). However, to our
knowledge, omission corruption has not been considered for general adversaries,
neither in isolation nor in conjunction with active corruption. Furthermore, all
work on omission corruptions or general adversaries uses the property-based
security definition of MPC, as opposed to simulation based security which is
not only more general but, as we discuss is needed for completing the proofs of
these works that rely on composing smartly designed sub-protocols. In a nut-
shell, our work provides the first characterization of the feasibility landscape

1 In the distributed computing literature, omission-corrupted parties are often consid-
ered also semi-honest. This is suitable for classical distributed computing tasks, e.g.,
Byzantine agreement (see below), where input privacy is a lesser issue. However,
since here we are interested in MPC, we will follow the cryptographic convention of
considering it separate.

202 K. Brazitikos and V. Zikas

of Byzantine agreement (BA)—the core primitive in fault-tolerant distributed
computation and standard building block of MPC—and of secure multi-party
computation (MPC) for general adversaries that might corrupt some parties
actively (i.e., force byzantine faults) and, simultaneously, omission corrupt other
parties. Concretely, we prove a tight feasibility bound for both synchronous con-
sensus and broadcast in the perfect (security) setting, i.e., information theoretic
security with zero error probability. We then turn to the study of MPC in this
model. As we show (see discussion of MPC results in Sect. 2), translating thresh-
old bounds to this setting is far from trivial—this reaffirms what the complex
bounds of Beerliova et al. [5] demonstrate for the active/passive/fail case. Fur-
thermore, existing arguments and techniques from the cryptographic literature
are inadequate for proving even what one would consider a simple and intuitive
feasibility result. Notwithstanding, we provide a tight feasibility bound for MPC
in this setting by developing a new protocol for (publicly) detectable point-to-
point secure communication and proving a tight bound for this task. In fact, a
look at the complexity in the associated (tight) bound (see Eq. 11) serves as a
perfect demonstration of the technical challenges associated with devising such
a bound, protocol, and associated tightness proof.

Finally, our results are proven secure in a simulation-based composable frame-
work. Although we do not consider this to be our key technical contribution, it is,
to our knowledge, a first both for general (mixed) adversary MPC and for MPC
with omission corruptions. Our treatment demonstrates the challenges of a com-
posable treatment of omission-faults. Therefore we believe it to be a milestone
in the literature which can be of independent interest.

1.1 Related Literature

In this section we discuss the related literature, where we focus on synchronous2

protocols with perfect security, i.e., with zero error probability, which is also the
type of protocols we develop here.

Byzantine Agreement (BA). BA comes in two flavors: consensus and broad-
cast. In consensus, n parties, each with its own input, wish to agree on a joint
output, so that pre-agreement is preserved. In broadcast, only one party, the
sender, has input, and the goal is to distribute it in a consistent manner to all
parties, so that consistency is achieved even if some of the parties are actively
corrupted (cf. Sects.3.6, 3.7). The seminal results by Lamport, Shostak, and
Pease [27,32], showed that Consensus and Broadcast are feasible if and only if
at most t parties are byzantine, where t < n/3. Follow up work has extended the
above results to various models capturing different types of synchrony, alterna-
tive networks, and setup assumptions such as a public key infrastructure.

Multi-party computation (MPC). In MPC we have n parties from a set
P = {p1, . . . , pn}, each with a private input xi who wish to securely compute

2 We note that the feasibility questions discussed here have not been considered in
any other model, e.g., asynchronous or partially synchronous; we consider this an
interesting future direction.

General Adversary BA and MPC with Active and Omission Corruption 203

a function on their joint input, even in the presence of faulty parties. Faulty
parties are captured by assuming a central adversary that corrupts parties and
uses them to orchestrate a coordinated attack to break the protocol’s security,
where the two main security goals are privacy—corrupted parties should learn
nothing beyond their prescribed inputs and output, and correctness—the adver-
sary should not be able to affect the output of the computation in any other
way than choosing his own inputs independently of that of uncorrupted parties.
The typical type of corruption is active. Actively corrupted parties are often
referred to as malicious or byzantine and the set containing them is denoted
as A. MPC was introduced by Yao [35] where feasibility of two-party computa-
tion was shown. The seminal works of Ben-Or, Goldwasser, and Wigderson [7]
gave the first feasibility results for perfect security (that is, information-theoretic
with zero error probability) for a threshold adversary. In particular it was shown
that t < n/3 is both necessary and sufficient for perfectly secure MPC in the
synchronous malicious adversary model.

General Adversary Structures. General adversaries have also been studied for
both BA and MPC. Here, for the case of perfect security, Hirt and Maurer [21,22]
proved that a necessary and sufficient condition, if no setup3 is assumed, for a
general adversary structure—with active corruptions—to be tolerable is that the
union of no three sets in the adversary structure Z covers the whole player set,
a condition which is often referred to as the Q3 condition:4

CP
(A)
CONS(P,Z) ⇐⇒ Q3

A(P,Z) ⇐⇒ ∀Ai, Aj , Ak ∈ Z : Ai ∪ Aj ∪ Ak �= P. (1)

The above tight condition holds for perfectly secure BA (both consensus and
broadcast) and MPC. This was later extended to the mixed setting adding fail-
corruption faults in [2] and a combination of fail-corruption and passive corrup-
tion by Beerliova et al. [5] (We refer to [36] for a comprehensive survey of the
relevant literature).

The results from [5] offer a first demonstration of the unstranslatability of
threshold feasibility results to the general adversary setting. Indeed, in the
threshold setting, the active/passive/fail (tight) bound, i.e., 3ta + 2tp + tf <
n [18], is a simple combination of the corresponding active-only (3ta < n),
passive-only (2tp < n), and fail-crash-only (tf < n) bounds. On the other hand,
in the general adversary setting, the tight (necessary and sufficient) bound is
the combination of the following two conditions (each of them is necessary) [5,
Theorem 1]:

∀(Ai, Ei, Fi), (Aj , Ej , Fj), (Ak, Ek, Fk) ∈ Z : Ei∪Ej∪Ak∪(Fi∩Fj∩Fk) �= P (2)

and

∀(Ai, Ei, Fi), (Aj , Ej , Fj), (Ak, Ek, Fk) ∈ Z : Ei ∪ Aj ∪ Ak ∪ (Fj ∩ Fk) �= P. (3)
3 Note that “no setup” implies that we cannot use cryptographic tools such as digital

signatures.
4 Here we denote the classical Q3 condition as Q3

A to explicitly state that it only
applies to active corruptions.

204 K. Brazitikos and V. Zikas

Each of the above triples (A,E, F), so-called adversary classes, describes the
choice of the adversary specified by this class—namely the parties in A, E, and
F , are actively, passively, and fail-corrupted, respectively.

In fact, the inability to translate threshold bounds to general adversaries is
further demonstrated by the fact that if one is interested in non-reactive (one-
shot) computation of a function, a problem often referred to as Secure Function
Evaluation (SFE), then the following strictly weaker (and substantially more
complex) bound is necessary and sufficient [5, Theorem 2]: The bound from
Eq. 2 together with the following condition

∃ an ordering (A1, E1, F1), ..., (Am, Em, Fm) of the maximal classes in Z s.t.
∀i, j, k ∈ {1, ...,m}, i ≤ k : Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) �= P. (4)

The above results demonstrate the untranslatability of threshold to general
adversary results in the active/passive/fail setting. As we show in this work,
a similar untranslatability—with even more counter-intuitive phenomena (see
Sect. 2 for a discussion)—is evident also in our active/omission corruptions set-
ting.

Omission Faults. The first variant of omissions was introduced to the dis-
tributed literature by Hadzilacos [20], where the notion of send-only omissions
was introduced. There, and it was proven that t < n (send-)omission faults are
necessary and sufficient for BA. Full (send and receive) omission faults were
proposed by Perry and Toueg [33], who affirmed the t < n bound for that more
general model. A long line of follow-ups investigated the problem. As it can be
seen in [1], the recovery of crashed components is often considered a built-in
feature of the distributed replication systems, meaning that crash failures are
treated in essence as omissions, making omissions appear frequently in the liter-
ature.

Importantly, in [20,33], a weaker variant of BA with omissions was con-
sidered, where the consistency guarantee was limited to the output of the non-
faulty (i.e., uncorrupted/honest) players—meaning that omission-corrupted play-
ers were treated as malicious, and were not given any output guarantees. The
case where the output of both honest and omission-corrupted players should
be guaranteed (whenever possible) was treated by Raynal and Parvedy [31,34]
where it was proved that the tight bound on omissions with this requirement
becomes t < n/2. We note in passing that this latter, more natural and chal-
lenging way is also how we treat omissions in this work.

In the cryptographic literature omission faults (also referred to as omission
corruption and denoted by Ω) were first studied by Koo [26] who proved that for
a (mixed-corruption) adversary who can corrupt up to ta parties actively and
omission corrupt up to tω parties, 3ta + 2tω < n is sufficient for Consensus and
4ta + 3tω < n is sufficient for MPC. Follow-up work by Hauser, Maurer, and
Zikas [37] provided the first tight bounds proving that 3ta + 2tω < n is both
necessary and sufficient for BA and MPC in the perfect security (synchronous)
setting. The results were extended in [36] by adding fail corruption.

General Adversary BA and MPC with Active and Omission Corruption 205

More recently, Eldefrawy, Loss, and Terner [16] investigated computational
security for the case where send and receive omission faults have different thresh-
olds ts and tr respectively. This case was also treated in [37] but for perfect
security only. As demonstrated in [16] the shift to computational security car-
ries unexpected complications, which is yet another indication of the challenges
associated with omission-corruption. More concretely, [16] proved that in this
setting ts + tr + 2tb < n is sufficient for MPC—where tb is the threshold on
byzantine parties. They also proved this bound tight, albeit for a weaker adver-
sary that performs what they termed “spotty” send-corruptions: messages from
a send-(omission-)corrupted player in any round are either all delivered or none
of them is.

This lower bound was recently improved by Loss and Stern [29] to cover
a worst-case adversary, i.e., without spotty send-omission corruptions. In fact,
this seemingly simple generalization required developing novel techniques to deal
with omissions, an additional indication of the challenges related to feasibility
in the presence of active and omission corruptions.

We note in passing that, although in the threshold setting separating (full)
omissions to send-omissions and receive-omissions helps to find tight feasibility
bounds [16,29,37], this does not appear to be the case in the general adversary
setting. Indeed, splitting omissions this way would complicate the description
of the adversary structure—one would need two sets in each class to describe
just omissions—and we conjecture this would also yield more complex and less
intuitive bounds.

1.2 The Model

We consider n parties from a party set P = {p1, . . . , pn}. The parties can com-
municate via a complete network of bilateral point-to-point secure (i.e., authen-
ticated and private) channels [7]. (We note in passing that our BA protocol does
not need privacy and can just rely on standard authenticated channels; however,
privacy is necessary for perfectly secure MPC results). We assume synchronous
communication as in [7,12,27], i.e., all our protocols advance in rounds; every
party is aware of the current round and can send messages to all other parties,
where messages sent in any round are delivered to their intended recipients by
the beginning of the following round.

For simplicity in the exposition, for protocols that build on top of broadcast
we assume that each of their round is a broadcast round (i.e., a round where all
parties can broadcast a message). This does not affect composition of the total
counting of rounds as our broadcast protocol is deterministic and therefore we do
not run into the known issues of probabilistic termination [13]. Furthermore, to
make the protocols description simpler we will assume that each sub-protocol has
a dedicated output round where the parties do not send any messages to each
other, but use messages they have received to compute their (sub-)protocol’s
output(s). This does add a constant overhead on sequentially composing proto-
cols, but makes for a much cleaner abstraction and does not affect the nature of
our results which is targeted to feasibility. In fact, one can easily get rid of this

206 K. Brazitikos and V. Zikas

overhead by starting a next sub-protocol already during that output round of
the previous one.

Simulation-Based (composable) Security. We prove our protocols secure using
the synchronous adaption of Canetti’s UC framework [10] put forth by Katz et
al. [25]. We assume the reader has some familiarity with UC, but we make
our best effort to keep the technicalities of the framework insulated from the
protocol design and functionality description. In the following we discuss the
above synchrony framework and how it is utilized here.

In a nutshell, [25] proposed a methodology for the design/embedding of syn-
chronous protocols within the (by-default asynchronous) UC framework. In this
adaptation, protocols can be designed in a synchronous manner, and [25] defines
how they can be executed assuming access to a clock functionality, which ensures
that (1) all parties get a chance to speak in each round, (2) parties can become
aware when the clock round switches. Proving security in such a framework
means that the functionalities need to also become round aware; this is taken
care of in [25] by adding to the functionality dummy rounds which advance once
every party has had a chance to ping the functionality in that round. This allows
the environment to advance the ideal experiment if it wishes to, similar to what
it can do in the real world. To keep the description cleaner, we abstract away
this pinging of functionalities as dummy (“do-nothing”) rounds in the function-
alities we define, and explicitly make the functionality aware of the underlying
(broadcast) round.

To make the two-fold contribution of our work (protocol/proofs level vs.
model/UC-treatment level) clearer and isolate the techniques used in each of
the two contribution types, we use the following methodology in proving our
feasibility results: First we state and prove in separate claims key properties
that our (sub-)protocols achieve; this is useful for understanding the protocol
ideas that go into the construction and how these are used in the security proof.
Then, we use these properties in the simulation proof to obtain our end result.
Due to the page constraint, we refer the reader to the full version [9] for proofs
and other details.

Adversary. We consider a mix of active corruption and omission-corruption
characterized by general adversary structures. Concretely, the possible combina-
tions of corruptions are described by a mixed (active/omission) general adversary
structure. Such a structure is a collection Z of tuples of the type (Ai, Ωi) ∈ P2,
often referred to as classes. Intuitively, Z is intended to capture all possible sce-
narios of corrupted parties. In particular, a tuple/class (Ai, Ωi) ∈ Z, displays
the scenario where all parties in Ai are actively corrupted and all parties in Ωi

are omission-corrupted. We will be using the terminology: “the adversary cor-
rupts (class) Zi = (Ai, Ωi) ∈ Z” to refer to the above scenario and we denote
it by using a � symbol at the exponent. This means for example that the sets
A� and Ω� denote the sets of actively corrupted and omission-corrupted play-
ers, respectively. Similarly, we refer to an adversary who might corrupt any of
the sets in Z as a (general) Z-adversary. The set of uncorrupted/honest play-
ers will be denoted by H. Note that the class Z� is not known to the players

General Adversary BA and MPC with Active and Omission Corruption 207

and appears only in our security analysis. Furthermore an omission or actively
corrupted party might be allowed to send or receive all its messages, in which
case he is indistinguishable from an uncorrupted party. We refer to such a party
as correct at a certain point in time if it was allowed to behave this way (cor-
rectly) up until this certain point in time. Essentially, an omission-corrupted
party stops being correct the moment its first message is blocked. Finally, some
of our protocol executions allow omission-corrupted parties to realize that they
are corrupted; when this detection occurs, the party understands that it is in
the discretion of the adversary whether or not it will be allowed to contributed
inputs or receive outputs in the protocol. Therefore, in such cases the parties step
out of the computation and inform all their peers about this decision; borrowing
the terminology of [37] we will then say that this party becomes a zombie, in
contrast to the rest of non-actively-corrupted parties that are considered alive.

We will make the following standard conventions on the adversary structure
Z: (1) For any Zi = (Ai, Ωi) ∈ Z, for every A′ ⊆ Ai and Ω′ ⊆ Ωi: Z ′ =
(A′, Ω′) ∈ Z. This captures the intuitive fact that if a set of parties might
jointly fail in a certain way, then any subset of them failing is also a possible
corruption scenario. This convention allows us to describe Z by enumerating
only its maximal elements. (2) For any Zi = (Ai, Ωi) ∈ Z we will assume that
Ai ⊆ Ωi; this is simply capturing the fact that active corruption is strictly more
severe (as a misbehavior strategy) than omission and can, behave as such.

Finally, we prove our statements here with respect to static adversaries, i.e.,
the set of corrupted parties (and hence the set of possible corruptions) is decided
at the beginning of the protocol and cannot depend on the exchanged messages.
We note that all properties we prove here will directly hold to the adaptive
security setting without changing the respective bounds [3,11]. However, the
simulation-based treatment of adaptive security under parallel composition of,
e.g., BA primitives is known to have several thorny issues which are beyond the
scope of this submission [14,23].

1.3 Organization of the Paper

The remainder of the paper is organized as follows: Sect. 2 includes an exposition
of our results and an overview of the techniques and related challenges. Section 3
includes the details on our tight feasibility results for BA and Sect. 4 our tight
feasibility for MPC.

2 Technical Overview

Before diving into the technical part, it is useful to give an overview of our results
and the associated techniques and challenges.

Byzantine Agreement. As our first contribution towards our MPC feasibility
we prove that the following condition on the adversary structure is necessary
and sufficient for perfect synchronous BA, both broadcast and consensus:

208 K. Brazitikos and V. Zikas

C
(A,Ω)
BA (P,Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) �= P. (5)

Without loss of generality we provide protocols for binary consensus and broad-
cast, i.e., the inputs and outputs of the protocol are from the field F = {0, 1}.
This is sufficient for arbitrary valued BA, as we can represent the inputs as bit-
strings of appropriate (fixed) length and then we can invoke the bit-Consensus
protocol for each of those bits.

Our feasibility result is proven in two stages. First, in Sect. 3.2 we show how
to tackle one of the core challenges of omission-corruption, namely detection
of dropped messages. In particular, the biggest thorn with omissions is that a
party pj who does not receive a message it expects does not know whether this
happened because the sender or itself (pj) is omission-corrupted. To tackle the
above issue, we devise a simple protocol, called FixReceive, which allows the
receiver to take this decision. We prove (see Lemma 1) that the decision will
always be correct as long as the following condition5 is satisfied

C
(A,Ω)
FIXR(P,Z) ⇐⇒ ∀Zi, Zj ∈ Z : Ωi ∪ Ωj �= P, (6)

which is also proven necessary for the above task in Lemma 3.2. One can view
FixReceive as a way to lift the underlying communication network from a plain
one to one with detection. When this detection is successful and a player discovers
that he suffers from omissions, he steps down—becomes a zombie—for the rest
of the protocol and sends a special message to let others know.

The underlying idea of FixReceive is simple, and similar to the corresponding
protocol from [37]: the sender sends to all parties, who relay to the receiver;
then the receiver tries to “fit” the received messages into the corruption pattern.
However, in the threshold case, this “fitting” is rather straightforward. This is
in contrast to the general-adversary case, where the right condition (and proof)
is more involved. Yet, the above simplicity of FixReceive stems from the fact
that it makes the transmitted message public to the adversary. This makes it
suitable for BA but insufficient for MPC (see below) where we need detection on
top of private communication. Looking ahead, this combination turns out to be
particularly challenging and the private version of FixReceive (which we will call
detectable secure message transmission) will be one of the core contributions of
our paper.

Let us return to our overview of our BA feasibility result: Having added
FixReceive to our arsenal, we can now use this to improve the communication
properties that are disrupted by omission corruptions. (This can be seen as
“lifting” the underlying communication network by adding (partial) corruption
awareness/detection.) In particular, having improved the detection ability of
communicating parties as above, we proceed to our BA construction. For this,
we use the phase-king approach of Berman, Garay, and Perry [8]–which was
previously adapted to general adversary structures (with fail-corruption instead

5 Due to our assumption from earlier, the condition can also be written as Ai∪Ωj �= P.

General Adversary BA and MPC with Active and Omission Corruption 209

of omissions) by Altmann, Fitzi, and Maurer [2]. Concretely, we gradually build
protocols with stronger guarantees, from Weak Consensus (Sect. 3.3), to Graded
Consensus (Sect. 3.4), to King Consensus (Sect. 3.5), and then iterate through
different parties as kings to achieve the consistency and validity conditions of
consensus (see Theorem 2).

The above similarity in the structure of our protocol to that from [2] might
mislead the reader to believe that the search for the tight BA bound is straight-
forward given the above result. This is, however, far from true. To demonstrate
this, it is useful to discuss the main challenge in shifting from a combination of
active corruptions and fail-corruptions (for which we know tight bound both for
BA [2] and for MPC [5]) to active and omission corruptions for which nothing is
known in the general-adversary setting: The main issue lies in the ability of an
omission-corrupting adversary to create confusion by selectively dropping mes-
sages to some and not other parties and in some specific rounds. For instance, a
standard method in the fail-corruption literature to limit the effect of fail-crashes
is to embed a heartbeat after each step (or in selective protocol rounds) that
allows parties to detect whether or not some party has already crashed. This app-
roach does not work with omission corruptions, as a party might drop messages
during the protocol round, but send all messages in the heartbeat procedure as if
nothing happened. Thus one needs to come up with ways to counter the ability
of the adversary to create such confusions. The challenge of our above protocol
design is to come up with protocols that either allow for public detection of an
omission-corrupted party not sending messages, or make the party aware that it
is omission-corrupted—in the latter case, this party can put itself in a crashed
position (a possibility which the adversary would anyway have by blocking all
communication to/from that party) to allow the other parties to complete the
protocol.

Having derived a consensus protocol as above, we then turn to broadcast.
Interestingly, the standard reduction of broadcast to consensus—i.e., have the
sender send his input to everyone and run consensus on the received values—does
not work here. The reason is that a send-omission corrupted sender ps might fail
to send his input to some but not all non-actively corrupted parties, in which
case consensus might end up flipping his input, which violates our requirement
on the output with a non-actively corrupted sender.

We fix this by using an additional round of consensus: To guarantee that an
omission-corrupted ps never broadcasts a wrong value (but he may broadcast
⊥ in case he is incorrect) we extend the above generic protocol as follows: after
running consensus on the received bit, we have ps send a confirmation bit to
every player, i.e., a bit b = 1 with the meaning that ps agrees with his output
of the consensus or b = 0 otherwise. The players then invoke consensus on the
received bit to make sure that they have a consistent view on the confirmation-
bit and based on that they accept the output of the generic broadcast protocol
only if b = 1. In the opposite case, they output ⊥. This ensures that if they
output anything, it will be the correct bit.

Finally, we prove the tightness of C
(A,Ω)
BA (P,Z) for BA by means of a delicate

player simulation argument (see Lemma 5).

210 K. Brazitikos and V. Zikas

Multi-party Computation. Having proven a tight characterization of BA in
our model, we turn to multi-party computation (MPC). Here we first observe
that translating bounds from the threshold literature, or even the existing general
adversary literature (i.e., without omission-corruptions) simply does not work. In
fact, there is a number of ways that we demonstrate such a translation fails. For
example, it is known that in the case of active-only general adversary structures,
MPC is feasible if and only if the Q3

A(P,Z) condition (Eq. 1) holds [21]. Hence,
in search of a feasibility result, one might be tempted to assume that since active
corruption is more severe than omission-corruption, the natural adaptation of
the above condition to the omission-only setting, i.e., the condition Q3

Ω

CP
(Ω)
CONS(P,Z) ⇐⇒ ∀Ωi, Ωj , Ωk ∈ Z : Ωi ∪ Ωj ∪ Ωk �= P, (7)

would be sufficient for MPC. This however is not necessarily the case, as MPC
protocols for active corruptions entirely give up the inputs and outputs of actively
corrupted parties, something which we cannot do for omission corruption.

Similarly, drawing intuition from existing impossibility results can derail the
search for lower bounds. Indeed, the general rule is that general-adversary impos-
sibility results translate to threshold (though, not always in a trivial manner)
but not the other way. Intuitively, the underlying reason is that the asymme-
try of general adversary structures allows solutions which could never exist in
a threshold setting. This untranslatability becomes ever more prominent when
considering omission-corruptions (combined with active), and makes finding the
tight condition on general structures for this case a far more challenging task
than in the threshold case (in fact, it is challenging even given a tight threshold
condition).

As an example, for active/passive adversaries the tight condition 3ta +2tp <
n [18] was “translated” in [19] to the general adversary setting as:

∀(A1, E1), (A2, E2), (A3, E3) ∈ Z : E1 ∪ E2 ∪ A1 ∪ A2 ∪ A3 �= P, (8)

(where sets A and E in the above bound correspond to actively and passively cor-
rupted parties, respectively). But an analogous translation for active/omission
adversaries of the tight threshold 3ta + 2tω < n [37] as

∀(A1, Ω1), (A2, Ω2), (A3, Ω3) ∈ Z : Ω1 ∪ Ω2 ∪ A1 ∪ A2 ∪ A3 �= P, (9)

does not yield a bound necessary for MPC. In fact, in the appendix of the full
version of the paper [9] we describe a structure that violates (an even more
restrictive version of) the above condition but still allows for an MPC protocol.

In the same spirit, as we show in Sect. 4.1 of the full paper, common tech-
niques used in the threshold MPC literature to recover from corruptions, such
as player elimination [6], cannot be applied here either. A standard example of
player elimination is used in the case of MPC with (threshold) byzantine cor-
ruptions with t < n/3. The idea is that if some pi blames another pj , then, as
long as both pi and pj have had the chance to share their inputs, we can sim-
ply eliminate both of them and continue the computation with the remaining

General Adversary BA and MPC with Active and Omission Corruption 211

parties—and send pi and pj their outputs at the end; the t < n/3 condition
will then ensure that in the n′ = n − 2 remaining parties set, the number t′ of
maximum active corruptions will still satisfy t′ < n′/3. In fact, this technique
was used in [37] to prove the first, and only to date, tight condition on MPC
with active and omission corruption. However, as we show, player elimination is
inapplicable in our general-adversary active/omission setting. In particular, we
show that natural candidates for feasibility bounds conditions are not preserved
by player elimination. This situation calls for new protocols/techniques beyond
what is used in the threshold or previous general adversary literature.

To overcome this, we devise a novel protocol that aims at facilitating
detectable (i.e., which might abort with the identity of a corrupted party) per-
fectly secure (private and authenticated) message transmission introduced in [15]
(in short, DetSMT) between any two parties. Looking ahead, this will allow to
neutralize the effect of omissions in MPC. The challenge in devising and proving
security of the new detectable SMT primitive is evident by the new associated
condition C

(A,Ω)
SMT (P,Z, ps, pr), which in combination with C

(A,Ω)
BA (P,Z) gives us

the condition that is proven to be tight for DetSMT with sender ps and receiver
pr. The C

(A,Ω)
SMT (P,Z, ps, pr) states that for any three Zi, Zj , Zk ∈ Z :

if (ps ∈ Ωi ∩ Ωj ∧ pr ∈ Ωk) OR (pr ∈ Ωi ∩ Ωj ∧ ps ∈ Ωk)
then Ai ∪ Aj ∪ Ωk ∪ (Ωi ∩ Ωj) �= P.

(10)

The sufficiency of the above condition for detectable SMT and its necessity for
(detectable) SMT (hence also for MPC) are proven in Sect. 4.1 (Lemmas 6 and
7, respectively).

Finally, we put everything together to prove our last main theorem (The-
orem 4) of MPC feasibility under the same combination of conditions (where
the C

(A,Ω)
SMT (P,Z, ps, pr) needs to hold true for all pairs ps, pr ∈ P). More con-

cretely, we prove that perfectly secure MPC against a general adversary with
mixed active and omission corruptions is feasible if and only if the condition
C

(A,Ω)
MPC (P,Z) holds, where

C
(A,Ω)
MPC (P,Z) ⇔ C

(A,Ω)
BA (P,Z) ∧ ∀ps, pr ∈ P : C

(A,Ω)
SMT (P,Z, ps, pr). (11)

The necessity of the above condition follows from the fact that both SMT and
broadcast are special cases of MPC. In fact, since both the above are non-reactive
functionalities, our impossibilities (along with the feasibility discussed below)
imply that C

(A,Ω)
MPC (P,Z) is tight for both (reactive) MPC and for SFE (i.e.,

non-reactive MPC.) Thus our results prove that unlike the active/passive/fail
general adversary model where [5] proved a separation between the (tight fea-
sibility bounds) for MPC and SFE, such a separation does not exist in the
active/omission setting.

For the sufficiency we use the following idea: We modify the general adversary
protocol from [5] by first projecting it to the active-corruption-only case (recall
that [5] works for a mixed active/passive/fail adversary) and then doing the
following:

212 K. Brazitikos and V. Zikas

– All point-to-point communication between any two parties pi and pj is done
by the above detectable SMT.

– All broadcasts are implemented by our detectable broadcast.
– All sub-protocols in [5] for computing individual circuit gates (input, addition,

multiplication, and output gates) are turned to detectable counterparts, i.e.,
they might abort and make the identity of a corrupted party public.

– Importantly, instead of computing the actual circuit, our MPC computes a
verifiable secret sharing of the circuit’s output—we prove that such a robustly
reconstructible sharing is feasible under our conditions. The reason for this
is that before its last reconstruction round, the MPC from [5] leaks no infor-
mation to the adversary. By switching the computation’s output to a secret
sharing instead of actual circuit value, we ensure that no matter if or when
the protocol aborts, it will leak no information on any of the non-actively
corrupted player’s inputs.

The above construction gives a detectable MPC protocol which either com-
putes a verifiable secret sharing of the output of the intended circuit, or it aborts
without leaking any information to the adversary while exposing a corrupted
party. Such a protocol can be bootstrapped to a fully secure MPC (with guar-
anteed output delivery) by standard techniques: Whenever it aborts, remove the
detected (corrupted) party from the player set and re-start the computation—
this can be repeated at most n times as each abort exposes a new corruption.
Once the protocol succeeds, use the reconstruction protocol of the verifiable
secret sharing to publicly reconstruct the outputs. We note in passing that the
above only computes MPC with a public output, but it can be tuned to allow
for private outputs using standard techniques: every party inputs in addition
to its actual output a random key which is used to blind—by one-time-pad
encryption—the announced public output so that only this party can recover
the plaintext [28].

UC Treatment. Last but not least, as discussed above, all our proofs are in
the (synchronous) UC framework, which we view as a contribution in its own
sense. Although we do not consider this to be our core technical contribution, to
our knowledge, this is the first time that a general adversary protocol is proven
secure in such a composable manner. In particular, existing MPC protocols for
general adversaries [5,21,37] also follow a modular design approach—i.e., they
design sub-protocols for each type of MPC gate (input/sharing, addition, mul-
tiplication, output/reconstruction)—and prove the security of each underlying
sub-protocols separately in a property-based manner, i.e., prove the correctness
and privacy of each of these sub-protocols. They then argue that these sub-
protocols can be combined in the main MPC protocol. Although we believe this
last statement to be true, an actual proof would require a composition proof
(which is generally problematic with property-based definitions), or, alterna-
tively a composable treatment of the whole construction, an approach which
we take for the first time in this work. In fact, to our knowledge even without
considering general adversaries, no work has considered (active and) omission

General Adversary BA and MPC with Active and Omission Corruption 213

corruptions in UC. As it is evident by our functionalities, embedding omission
corruptions in UC requires new design choices for the relevant functionalities.

Because the core novelty of our results is in the protocol constructions and
proofs, to eliminate the technical burden put upon the reader in extracting the
ideas from the simulation, we have employed a special proof structure: First we
prove properties that our protocols have, akin to the traditional property-based
approach used in the general adversary literature; subsequently, we describe
our simulator and use the above properties, along with additional arguments
wherever necessary, to argue perfect indistinguishability of real and ideal world.

3 Byzantine Agreement with Active and Omission
Corruption

3.1 Security Conditions

In this section we present our first major result, a tight BA condition. Our results
cover the case of mixed active and omission-corruption under perfect security
(i.e., zero error probability).

Theorem 1. In the model with both active and omission-corruption if no setup
is assumed a set P of players can perfectly Z-securely realize Consensus or
Broadcast if and only if the condition C

(A,Ω)
BA (P,Z) holds where,

C
(A,Ω)
BA (P,Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) �= P. (12)

The proof of the theorem is in 3.7 and the condition is proven to be both suf-
ficient and necessary for both flavors of BA, i.e., Consensus and Broadcast. The
theorem follows after all the necessary tools are created (namely the primitives
FixReceive, Weak, Graded and King Consensus).

3.2 Detection of Omission-Failures on Public Point-to-Point
Communication

We begin by investigating the main problem of omission-corruption, namely the
fact that detecting such a corruption is not trivial. Indeed, when a player pj does
not receive a message she was expecting (because the channels are synchronous),
and receives the default value ⊥ she cannot be certain if the sender pi is actively
corrupted and did not send a message, if the sender is omission-corrupted and
his message was blocked or if pj herself is omission-corrupted and was not able
to receive the message (or a combination of the above).
Our first goal is to implement a functionality FFR in order to reinforce our com-
munication network and render it able to detect omission-failures. Effectively,
this functionality guarantees that either the adversary lets the message of the
sender pi reach its recipient pj or it becomes known to everyone (first to pj her-
self and then she will make it public) that pj is omission-corrupted, forcing her
to become a zombie.

214 K. Brazitikos and V. Zikas

If pj becomes a zombie via the FixReceive protocol, she stops participating
in any upcoming computations. Also, she notifies all other players about that
by sending a special message (she can send it at every round to make sure that
everyone receives it) saying that she “is out”. Those properties are captured by
the functionality FFR fully described in the full version of the paper [9].

For our functionalities we follow the template of [13] for canonical syn-
chronous functionalities. The functionality proceeds in this way. Initially FFR

sets the output value equal to ⊥ and then waits for input from pi. This input
is made known to the adversary through the leakage function l(x). On the sec-
ond round the adversary has the following choices. i) If pi ∈ Ω� (the sender is
omission-corrupted), the adversary can drop the input message and turn it to ⊥
or let it be recorded as normal. ii) If pj ∈ Ω� the adversary can either inform pj

of his omission status or let her receive the recorded message mout.
As such, we can see that if pj remained alive then she outputs a value mout,
which will be either pi’s input or ⊥. Additionally, if pi is correct we are granted
that it is the former case.

Our protocol which realizes this functionality does the following in more
detail. When pi wants to send a message x to pj , he sends x to all pk ∈ P to
leverage all parties. Then, every pk who received the message forwards it to pj .
If pk did not receive a message (he denotes that by the symbol ⊥) he sends a
special message “n/v” /∈ F to pj , to let her know that no value was received.
After that, pj should have received a message from all pk ∈ P. If from some
player she did not, she denotes that by the default character ⊥. At that point,
if there is no way according to the adversary structure Z that the ⊥ symbols
she received were sent by players that could be omission-corrupted or actively
corrupted she becomes a zombie. In other words, if there is some player who sent
⊥ but could never be corrupted, then it is clear for pj that she has a problem in
receiving messages.
In the opposite case, if there exists a value x′ which was sent to pj by people
that could not be actively corrupted, it would mean that this value cannot be
an erroneous one being pushed by the adversary. As such, pj can be certain that
this is the message that pi sent, and she outputs this value x′.
Otherwise, in the case where no such value exists, meaning that pi was not
consistent with the messages he sent or he was blocked, pj outputs ⊥ to indicate
that pi is not correct. The protocol FixReceive can be found in the full version
of the paper [9].

Lemma 1. If the condition C
(A,Ω)
FIXR(P,Z) (see Eq. 6) holds, the protocol FixRe-

ceive perfectly Z-securely realizes the functionality FFR.

To prove the above lemma, we will use the following properties of our proto-
col. i) If pj is alive at the end of the protocol then pj outputs a value x′, where
x′ ∈ {x,⊥}, unless pi ∈ A�, and x′ = x if pi is correct until the end of the pro-
tocol. ii) Moreover, pj might become a zombie only if pj is omission-corrupted.
From there, since we prove static security and these are public state protocols
where all inputs are revealed by the functionality, the simulator needs to simply

General Adversary BA and MPC with Active and Omission Corruption 215

run a simulated copy of the protocol with these input. A formal simulation proof
and proof of the properties can be found in the full version.

Proof. (sketch) According to the protocol, pj becomes a zombie only if there
exists no adversary class Z that could explain the ⊥ messages pj received. This
guarantees that pj is omission-corrupted because the ⊥ messages he received
cannot be explained in another way. Now, if pj is alive and pi is correct until the
end of the protocol, pj will output the correct value x′ = x because all the correct
players will have received the x value from pi and additionally the condition
C

(A,Ω)
FIXR(P,Z) ensures that there are enough of them to carry the correct value

to pj . On the opposite case where pi was not correct, pj is not guaranteed to
reach a correct result. If there are conflicting values due to the malicious behavior
of pi, pj will output ⊥. ��

We also prove in the full paper that this bound is actually tight, meaning
that the C

(A,Ω)
FIXR(P,Z) condition is also necessary for FixReceive.

Claim. If the condition C
(A,Ω)
FIXR(P,Z) (see Eq. 6) does not hold, then no protocol

can satisfy the properties of the FixReceive protocol stated above.

3.3 Weak Consensus

By use of Fix Receive, we will now establish an initial, basic form of consensus,
called Weak Consensus. For this, we require the following properties. Persis-
tency: If all alive, not actively-corrupted parties start with the same input x
then all of them should output y = x. Consistency: Additionally, there cannot
be disagreement between them. To do this, we allow them to output a special
character “n/v” (no value) if they are unsure. So, all of them can output either
the common value y or “n/v”. However, no two correct players should have con-
tradicting values. Our functionality FWC in the full paper [9] captures those
requirements.

Initially, it sets everything to ⊥ and then receives input from the players.
Again, the adversary learns those values, as in FixReceive. Afterwards, once
FixReceive is concluded, the adversary is allowed to affect the output. However,
he is bound by the consistency and persistency properties we mentioned. As such,
he can only set the outputs to either v or “n/v”, if there is no pre-agreement
on the inputs. The only other action he can perform is to make players in Ω�

become zombies, by informing them of their omission status.
Now, our WeakConsensus is realized as follows, using (as do all follow-up

protocols) FixReceive for party-to-party communication. First, we have every
player send his input xi to all players (using FixReceive). Then, each player
looks at all the possible classes of the adversary structure for the following:
1) If there exists one Z = (A,Ω) which gives him a value x ∈ F such that
this value was sent to pj by some players who are not corrupted and 2) the
values he received which are different from both x and ⊥ can be justified by
the set of actively corrupted players, meaning that a malicious player sent the
disagreeing value. Additionally, all ⊥ values should be coming from pk ∈ Ω,

216 K. Brazitikos and V. Zikas

because FixReceive gives us the guarantee that an alive player only outputs ⊥
if the sender is not correct. If that is the case, the player adopts this value x as
his output. Otherwise, he cannot be certain and outputs the message “n/v”.

Lemma 2. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Weak-

Consensus perfectly Z-securely realizes the functionality FWC .

To prove this lemma we will make use of the following properties of our
protocol. (weak consistency) There exists some y ∈ F such that every (alive)
pj ∈ P \ A� outputs yj ∈ {y, “n/v”}. (persistency) If every pi ∈ P \ A� who is
alive at the beginning of WeakConsensus has the same input x, then all alive
players at the end of the protocol output y = x. The full proof can be found in
the full version of the paper [9].

Proof. (sketch) First of, we can prove that the selection of the output value yj

is unique, assuming that there can be two that satisfy the conditions and reach-
ing a contradiction. After that, we can prove the weak consistency and persistency
properties, by using the sets P

(⊥,0,1)
j which split the whole player set according to

the values that where received. After that, we can use the condition C
(A,Ω)
BA (P,Z)

together with the requirements of the protocol for choosing yj in order to show that
the desired properties hold true. This is done after a lengthy separation of the sets
of players and a case study of what values they can send. ��

3.4 Graded Consensus

The next step towards our goal is GradedConsensus. Leveraging Weak Consensus
to get a stronger type of agreement, the players here also output a bit grade
gi reflecting their certainty in their output. This is similar to the Gradecast
primitive in [17]. This is a graded version of persistence—i.e., if the players who
are not actively corrupted have pre-agreed on a value x, then we get that they
all output x with grade g = 1 (graded persistency). Additionally, it ensures
that if any non-actively corrupt party outputs yi = y with gi = 1, then every
non-actively corrupt alive party pj outputs yj = y (graded consistency). In the
opposite case, where the player is not certain about his output value, his grade
of confidence is gi = 0.

Our functionality FGC presented in detail in the full paper [9] captures those
properties. At its core it works in a similar manner to FWC . The difference here
is that if there exists pre-agreement then all grades are set to 1 and outputs to
the same value and the adversary is not allowed to change them. Else, if some
grade is gi = 1, then all outputs have to be the same, but the adversary can
select the other grades. Otherwise, with all grades 0, the outputs are allowed to
be selected by the adversary.

In more detail, the protocol first calls the WeakConsensus protocol in order
to reach an initial step of agreement. Then all the players exchange the outputs
they received, by invocation of FixReceive. After that, each player collects that
information and decides whether to output yj = 0 or yj = 1. If it can be seen

General Adversary BA and MPC with Active and Omission Corruption 217

from the adversary structure that non-actively corrupted players have sent the
value 1, then yj = 1 (as in this case every non-actively corrupted player would
have output x′

i ∈ {yj , “n/v”}). Otherwise, if she only received 0 and “n/v” from
non-actively corrupted, she sets her output (by default) to yj = 0.

Next, we have to determine the grade. If at least all non-actively corrupted
players have sent to pj either the same message as her output yj or ⊥ (from the
players in Ω) and at least all uncorrupted players have definitely sent yj , then
pj sets her grade of confidence in the fact that all uncorrupted players have the
same output as gj = 1. Otherwise, she sets gj = 0, showing that there is no
agreement from her point of view, yet.

Lemma 3. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Grad-

edConsensus perfectly Z-securely realizes the functionality FGC .

To prove this lemma we will make use of the following properties of our protocol.
(graded consistency) If some pi ∈ P \A� outputs (yi, gi) = (y, 1) for some y ∈ F,
then every (alive) pj ∈ P \ A� outputs yj = y with some gj ∈ {0, 1}. (graded
persistency) If every pi ∈ P\A� who is alive at the beginning of GradedConsensus
has input xi = x, then every (alive) pj ∈ P \ A� outputs (yj , gj) = (x, 1).

Proof. (sketch) First of all we can prove that for any player pj ∈ P \ A�, yj = 1
only when a condition respective to the case of yj = 0 holds. After that, in
a similar manner as in Weak Consensus we can prove the properties of graded
consistency and graded persistency, leveraging the properties of Weak Consensus.
All details can be found in the formal proof in the full paper [9]. ��

3.5 King Consensus

The last step towards Consensus is KingConsensus. Here, we select one player
and give him the special role of (phase) king. As before, if the players had pre-
agreement on their inputs x, they all must output the same value x (persistency).
On top of that, if the king is correct, the players will reach agreement, no matter
what (king consistency).

The functionality FKC that captures this is described in detail in the full
paper [9]. The functionality guarantees that persistency is kept if it is already
established. Otherwise, it could allow the adversary to change the output to a
specific value v for all, subject to the king being correct. Else, the adversary is
allowed to select the outputs for all players.

The protocol realizing it first uses GradedConsensus and then has the king
send his output to all players. All players that are certain for their output keep
their value, whereas all those who are uncertain adopt the value of the king. This
way, using graded consistency for the grades and persistency we make sure that
if the king is correct until the end of the protocol then all non-actively corrupted
players will agree on the same output.

Lemma 4. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol King-

Consensus perfectly Z-securely realizes the functionality FKC .

218 K. Brazitikos and V. Zikas

To prove this lemma we make use of the following properties of our protocol.
(king consistency) If the king pk is correct, then every pj ∈ P\A� outputs yj = y.
(persistency) If every pi ∈ P \A� who is alive at the beginning of KingConsensus
has input xi = x then every (alive) pj outputs yj = x. The formal proof can be
found in the full paper [9].

3.6 Consensus

Finally, we are now ready to present our Consensus primitive. The end goal of the
parties is to terminate with the same output y. On top of that, if there was pre-
agreement on input x, the common output should be y = x. Our functionality
FCS , described in detail in the full paper, allows the adversary to change the
common output value only if there was no pre-agreement. Also, he is able to
make a player in Ω� zombie. All other messages are ignored.

The way that the FCS is realized by the protocol Consensus is by repeatedly
calling the KingConsensus protocol. We use as inputs the outputs of the previous
iteration and each time the king is a different player, in turn for all players until
we reach an honest one. Since every player becomes a king, we can be certain,
as long as not all players are corrupted (which is not allowed by our security
condition) that at least one king will be correct and, hence, we will achieve
consistency on the output value. This point will be reached even sooner if the
non-actively corrupted players have pre-agreed on a value x. What is more, once
this agreement is achieved, by the persistency property of KingConsensus, we
can be certain that it will not change, no matter what the king sends (in case
he is not correct) thus the agreement will be maintained.

To be more formal, below is the property-based definition of Consensus for
our relevant corruption types. A protocol perfectly Z-securely realizes Consensus
among the players in P if it satisfies the following properties in the presence of
a Z-adversary:

– (consistency) Every non-actively corrupted pi ∈ P who is alive at the end of
the protocol outputs the same value y.

– (persistency) Assuming that every non-actively corrupted pi ∈ P who is alive
at the beginning of the protocol has input x, the output is y = x.

– (termination) For every non-actively corrupted pi ∈ P the protocol termi-
nates after a finite number of rounds.

Theorem 2. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Con-

sensus perfectly Z-securely realizes the Consensus functionality FCS.

Proof. The proof of this theorem follows from the established protocols above. If
C

(A,Ω)
BA (P,Z) holds true we are granted that there exists an uncorrupted player

in P, as P\(Ai∪Aj ∪Ak∪(Ωj ∩Ωk)) �= ∅, for all i, j, k selections of the three sets.
Then, applying both properties of KingConsensus in succession creates and then
maintains the agreement on the output for all iterations. This post-agreement
can be achieved earlier still, if there is pre-agreement between the non-actively

General Adversary BA and MPC with Active and Omission Corruption 219

corrupted players on their values. Finally, for the termination property, we are
certain that the protocol repeats a finite number of times a terminating protocol,
so it is guaranteed to terminate. ��

3.7 Broadcast

In this section we describe our Broadcast functionality FBC above. The idea is
similar to the Consensus functionality, with the difference that only the sender
p has an input x. Additionally, if he remains alive, all alive players will get the
same output value y = x. The adversary can only make players pj ∈ Ω� become
zombie and nothing more to alter the outputs. An honest p always broadcasts
the correct value and the output of broadcast is ⊥ only if p ∈ Ω�.

The formal property-based definition of Broadcast is as follows. A protocol
perfectly Z-securely realizes Broadcast with sender a player p whose input is x
among the players in P if it satisfies the following properties in the presence of
a Z-adversary:

– (consistency) Every non-actively corrupted pi ∈ P who is alive at the end of
the protocol outputs the same value y.

– (validity) Assuming that the sender p is not actively corrupted, the common
output y satisfies y ∈ {x,⊥}. Specifically, y = x if p is alive and correct until
the end of the protocol and y =⊥ if p has become a zombie.

– (termination) For every non-actively corrupted pi ∈ P the protocol termi-
nates after a finite number of rounds.

Note that, as Broadcast invokes Consensus, the condition C
(A,Ω)
BA (P,Z) is

needed for this protocol, as well. We describe below our protocol for broadcast
that realizes the functionality FBC . The proof can be found in the full paper
and is mainly derived from the properties of Consensus.

1. In round ρ = 1: The sender p sends x to every pj ∈ P using FixReceive,
who denotes the received value by xj . (If pj received ⊥ he sets xj = 0).

2. In round ρ = 4: The players invoke Consensus(P,Z, (x1, . . . , xn)) on the
received values. We denote pj ’s output as yj .

3. In round ρ = 12n + 4: The sender p sends a confirmation bit b to every
pi ∈ P using FixReceive, where b = 1 if the output of p after Consensus
equals x and b = 0 otherwise; pi denotes the received bit by bi. (If pi

received ⊥ he sets bi = 0).
4. In round ρ = 12n + 7: Invoke Consensus(P,Z, (b1, . . . , bn)).
5. In round ρ = 24n + 7: For each pi ∈ P, if pi’s output after Consensus is

1, he outputs yi, otherwise he outputs ⊥.
If some pz ∈ Ω� became zombie he outputs (omission, pz).

Protocol Broadcast(P,Z, p, x)

Theorem 3. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol

Broadcast perfectly Z-securely realizes the functionality FBC .

220 K. Brazitikos and V. Zikas

Table 1. The classes Z1, Z2, Z3 with A1 ∪ A2 ∪ A3 ∪ (Ω2 ∩ Ω3) = P.

p1 p2 p3 p4

Z1 α

Z2 α ω

Z3 α ω

Necessity of Conditions for Byzantine Agreement. Next, we show that
the C

(A,Ω)
BA (P,Z) condition is also necessary for Broadcast.

The following lemma shows the impossibility that arises when C
(A,Ω)
BA (P,Z)

is violated. The proof exploits adversarial strategies which create an ambiguity
in the view of the players, which prevents them from deciding which corruptible
class the adversary has actually chosen, contradicting correctness. For a more
detailed proof with further discussion about why older techniques wouldn’t work
see the full version [9].

Lemma 5. If the condition C
(A,Ω)
BA (P,Z) does not hold, then the properties of

the Broadcast protocol stated in Theorem 3 cannot hold, as well.

Proof. (sketch) Assuming that the condition C
(A,Ω)
BA (P,Z)(12) does not hold

and that we have secure broadcast we will reach a contradiction. This means
that ∃ Z1, Z2, Z3 such that A1 ∪ A2 ∪ A3 ∪ (Ω2 ∩ Ω3) = P. Using a player-
simulation argument, we get three scenarios that are indistinguishable for the
players, using the adversary structure shown in Table 1. We assume that p1 is
the designated sender and we want all other players to output the same value,
according to the broadcast property. We consider the following scenarios. In all
cases, communication from p1 to p4 is cut entirely.

In the first scenario (see Fig. 1), p1 is actively corrupted and all other players
are honest. He sends different values to p2 and p3 and nothing to p4. This makes
p2 believe that the sender has input 0, p3 believes that the sender has input 1
and p4 does not have any direct information from the sender.

In the second scenario (see Fig. 2), p2 is actively corrupted and p4 is omission-
corrupted. The sender sends his input 1 to p3 but is blocked from reaching p4.
At the same time the adversary is using p2 to claim that the sender sent him
the value 0. This makes p2 believe that the sender has input 0, p3 believes that
the sender has input 1 and p4 does not have any direct information from the
sender. Because the sender is not actively corrupted and is correct until the end
of the protocol, due to validity, all players should output 1 with overwhelming
probability.

In the third scenario (see Fig. 3), p3 is actively corrupted and p4 is omission-
corrupted. The sender sends his input 0 to p2 but is blocked from reaching p4.
At the same time the adversary is using p3 to claim that the sender sent him
the value 1. This makes p2 believe that the sender has input 0, p3 believes that
the sender has input 1 and p4 does not have any direct information from the

General Adversary BA and MPC with Active and Omission Corruption 221

Fig. 1. p1 is actively
corrupted.

Fig. 2. p2 is actively, p4

is omission-corrupted.
Fig. 3. p3 is actively, p4 is
omission-corrupted.

sender. Because the sender is not actively corrupted and is correct until the end
of the protocol, due to validity, all players should output 0 with overwhelming
probability.

For p4 the three scenarios are indistinguishable. Hence, the output should
be the same value in all cases, since all scenarios have the same set up, mean-
ing that the distribution of the outputs should be identical. As the result is
overwhelmingly different in all cases, this leads us to a contradiction.

This proves that the condition C
(A,Ω)
BA (P,Z) consists a tight feasibility bound

for Broadcast, meaning that the desired properties hold true if and only if our
condition holds. In the full paper [9] we show that this condition is tight for
Consensus as well. ��

4 Multi-party Computation

In this section we extend our study to multi-party computation. A discussion
about the challenges of such an extension, and a showcase that existing tech-
niques from the threshold literature either do not work, or yield counter-intuitive
results can be found in the full version of the paper [9]. There we discuss and
prove the ineffectiveness of player elimination, a technique frequently used in the
general adversary literature.

This motivates us to introduce a new condition C
(A,Ω)
SMT (P,Z), which together

with C
(A,Ω)
BA (P,Z) enables us to create a Secure Message Transmission primitive

in Sect. 4.1. This allows any two given parties to exchange securely a message s
and, specifically, the protocol either aborts while detecting a corrupted party or
it provides an alive receiver with the correct message of a sender, effectively cre-
ating a publicly detectable private message functionality. In other words, either
the message is delivered (keeping its privacy) or it can be publicly detected which
player failed/is corrupted.

With that idea we practically overcome the problem of omission corrup-
tions and, thus, we could use any MPC protocol for active corruption in general

222 K. Brazitikos and V. Zikas

adversaries to accomplish the rest of our task. We present the necessary tools
and building blocks to do that in Sect. 4.2.

Next, we tackle one of the final problems, namely securely computing the
gates in Sect. 4.3, with multiplication being the main difficulty while addition is
pretty straight forward. There we present their functionalities and how we can
implement them in our setting.

Finally, after establishing that, we will be able to provide a tight character-
ization of the perfectly secure MPC landscape (in terms of both feasibility and
impossibility) in the remainder of the section. We compose all of our blocks and
tools together in Sect. 4.4 to present our full MPC protocol and in Sect. 4.4 we
prove that our conditions are also necessary, i.e., tight.

As a side note, we remind here that our MPC assumes that the parties can
broadcast messages (elements from an appropriate arithmetic field F). As we can
easily see, our MPC condition C

(A,Ω)
MPC (P,Z) implies C

(A,Ω)
BA (P,Z) which means

that we can use Broadcast for this purpose6.

4.1 Detectable Secure Message Transmission

The first step towards our MPC protocol is to enable any pair of parties with a
sender Ps and a receiver Pr to exchange a message s securely, i.e., with the pri-
vacy and correctness of the message preserved. Furthermore, we want to accom-
plish that in a publicly detectable way, meaning that the protocol either succeeds
or it aborts having detected a corrupted party.

To achieve this, the condition C
(A,Ω)
BA (P,Z) of broadcast is no longer suffi-

cient. On top of it, we need the condition C
(A,Ω)
SMT (P,Z, Ps, Pr) for this pair of

parties, as explained in 2.
In more detail, we have the sender Ps who wants to send a message s ∈ F

to the receiver Pr. The functionality dictates that this is accomplished without
leaking any information to the adversary. If no input is received by the func-
tionality from Ps due to his fault (i.e., Ps ∈ Ω� or A�) then FDetSMT sends a
default message “n/v” to Pr. If Pr is omission-corrupted and is unable to receive
the intended value from FDetSMT , he outputs a special symbol ⊥ to denote this.

The functionality that captures our goal is presented in detail in the full
version of the paper [9]. It starts by taking some input s from the designated
sender. The adversary can input any value his chooses if the sender is actively
corrupted. Then this value is forwarded to Pr. Meanwhile, it allows the adversary
to affect the output if the sender or receiver are corrupted by in a detectable
way. Also, he could cause an abort, but at the cost of making publicly known
the identity of a corrupted party.

Our protocol that realizes this functionality works in a way that resembles
FixReceive, as discussed in Sect. 3.2; The sender sends to all players and at the
end all players forward the message to the receiver. However, the difference is that
now we have a reliable broadcast primitive and the players can use it complain if
6 As discussed in the introduction, we can trivially turn binary Broadcast to a string
Broadcast by invoking it for each bit of the string.

General Adversary BA and MPC with Active and Omission Corruption 223

they do not receive a message they were expecting. Also, we also ensure that the
privacy of the message is maintained, in contrast to FixReceive, which was done
in public communication. This is done by the use of a secret sharing scheme. The
sharing is characterized by the sharing specification S, according to which the
shares of the message to be kept secret are distributed to the players, effectively
stopping the adversary from holding all shares. In our case we will be using a sum
sharing, i.e., the secret value s is split in summands s1, . . . , sm with

∑m
i=1 si = s,

where m is the size of the sharing specification |S|.
For each player pj we call the vector of summands in his possession 〈s〉j =
(sj1 , . . . , sjk) as pj ’s share of s. The complete vector of all shares is denoted as
〈s〉 = (〈s〉1, . . . , 〈s〉n) and is called a sharing of s. The vector of summands of s
is denoted as [s] = (s1, . . . , sm) and their sum is equal to s. We, also, say that
such a sharing 〈s〉 is a consistent sharing of s according to (P,S), if for each
Sk ∈ S all (correct) players in Sk have the same view on sk and s =

∑m
k=1 sk.

Our selection for S will be the natural sharing specification SZ associated with
Z, i.e., (S1, . . . , Sm) = (P \ A1, . . . ,P \ Am), where m = |Z|, so that for each
corruptible class Zi all the players not included in Ai for that class will receive
the share si. This way the adversary never obtains all summands.

Using that secret sharing scheme, Ps creates a sharing of his message s and
sends each part sq to the complement Sq of Aq. This process is done for each
q = 1, . . . ,m. Then the players who did not receive it can complain through
broadcast. Additionally, an extra round of cross checking and relay is added,
during which all parties in Sq send to one another the values they received
from Ps. Again, complaints are raised and the players try to see which classes
of the adversary structure fit their view. Finally, once the complaints are over,
all players send their vector of received values to the designated receiver of the
message, Pr.

Lemma 6. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, the protocol

DetSMT perfectly Z-securely realizes the functionality FdetSMT .

To prove this lemma we will make use of the following properties of our
protocol. Either the protocol aborts with some set B of corrupted parties or it
terminates and we have the following properties: If the receiver Pr is alive at the
end of the protocol then he outputs a value sp ∈ F where sp = s unless Ps ∈ A�.
Also, Pr might become a zombie only if he is omission-corrupted. Furthermore,
no information on s is leaked to the adversary. The complete proof can be found
in the full paper [9]. One thing that we need to point out is the following caveat.
Extra care needs to be taken in order to properly describe the simulation for the
functionality, because the simulator has to act differently based on whether the
adversary has access to some summand of the secret value or not. This subtlety
is expanded upon in the full proof.

Necessity of SMT Condition. Additionally, we prove that the condition
C

(A,Ω)
SMT (P,Z, p1, p2) is actually necessary for the (plain, not detectable) FSMT

224 K. Brazitikos and V. Zikas

functionality that enables p1 to securely send a message to a receiver p2, making
our result tight (both sufficient and necessary).

Lemma 7. If the condition C
(A,Ω)
SMT (P,Z, p1, p2) does not hold, then the func-

tionality FSMT (P,Z, p1, p2,m) cannot be securely realized.

As before, further details and the complete proof can be found in the full
version of the paper [9].

4.2 Building Blocks and Tools for MPC

Having established the DetSMT primitive to replace the network of point-to-
point channels for the communication, we will now carry on with the construction
of an MPC protocol by following the classic idea of creating a secure MPC proto-
col in the presence of a general adversary using only active corruption. Given any
arithmetic circuit C—recall that this is a complete model of computation—the
protocol evaluates the circuit in a gate-by-gate fashion, where the invariant is
that the inputs and outputs of each gate of C are kept secret shared, see below,
so that no information leaks to the adversary. Importantly, the protocols that
process each gate, which we construct, might abort; however, when this happens:
(1) no information leaks to the adversary, and (2) a corrupted party p is identi-
fied. This means that we can exclude p, and reset the computation without it.
As we prove, the relevant sufficient condition, C

(A,Ω)
MPC (P,Z), is preserved when

eliminating such a corrupted party, which will ensure security in the reduced
setting. As soon as an iteration of the above processing of the gates of C ter-
minates without an abort–which is bound to happen after at most n resets—we
invoke a reconstruction protocol to have every party (still alive) receive the out-
put. We note that without loss of generality, we assume that the function which
is computed by C has one public output. Using standard techniques, we can
use a protocol for any such function to compute functions with multiple and/or
private outputs [28].

In the following, we start by describing and proving the security of sub-
protocols that are used as building blocks and then describe how these can be
stitched together in an MPC protocol.

Heartbeat. A very important part of our results is based on the fact that if
the adversary blocks enough messages addressed to a player to make him reach
a wrong conclusion, the player could be able to perceive this loss of messages.
Then, he could step down from the calculation by becoming a zombie, as he is
(omission) corrupted. The functionality FHb is taking as input by the player a
bit b = 1 indicating that he is alive. The adversary is able make a player in
Ω� aware of his omission status, effectively setting b = 0. Then this value is
communicated to all parties. The functionality is provided in detail in the full
version of the paper [9]. We can implement this through the broadcast of the
bit b by the player in question. If b = 1 then all agree that the player is alive.

General Adversary BA and MPC with Active and Omission Corruption 225

Otherwise, if a player fails to broadcast this bit to other players or broadcasts
b = 0 it becomes apparent to all that he is a zombie, as he is corrupted. According
to the properties of broadcast everyone agrees whether p is alive or not.

It should be noted that omission-corrupted players who have not yet detected
their problem can learn that they are zombies from the output of the broadcast
protocol.

Lemma 8. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Heart-

beat perfectly Z-securely realizes the functionality FHb.

The proof is derived from the Broadcast properties. The complete version
can be found in the full paper [9].

Verifiable Secret Sharing. A very important primitive that is essential in
keeping the privacy of the players’ input is called Verifiable Secret Sharing (VSS).
On top of guaranteeing that the input of the player is kept secret, we also get
that all players agree on the way that the initial value is shared among them.
By splitting the message s in random summands sk using a sum share and then
giving each one of those to the corresponding set Sk we achieve the privacy
property Furthermore, by having the players in each Sk cross check their values
we get the verifiability property. This idea was first developed in [24] and has
since been used in many MPC protocols.

The functionality that we want to instantiate is presented in detail in the
full version of the paper [9]. To give a brief description, it takes as input a value
s that needs to be secret shared. Then, uniformly random shares s1, s2, . . . , sm

where m = |S|, are created such that s =
∑m

k=1 sk. Each one of those sk is
given to the respective set Sk (which is the complement of Ak). This way, no
matter which class A� the adversary corrupts, there exists a share s� of the
set S� = P \ A� that the adversary does not obtain. Hence the privacy of s is
preserved.

In the case where the dealer is actively corrupted, the adversary is allowed
to select the shares of s. However, all players in each Sk still get the same value
sk. If the dealer pd is omission-corrupted, the adversary selects if the Sharing
will succeed as normal or if it will abort and pd will be identified as omission-
corrupted.

What makes our implementation simple at this point is the existence of the
SMT channel. Instead of sending the messages using the existing network of
point-to-point channels, our protocol sends them by invocation of the Protocol
DetSMT we built earlier. This grants us the detectability and privacy properties
directly. Next, the players cross check their shares to detect inconsistencies. If
that is the case for some sk, a special message (CONTRAST, k) is broadcast and
the dealer pd broadcasts the correct summand in the open. Finally, the players
invoke a Heartbeat to communicate to all if someone became a zombie.

Lemma 9. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds and additionally we

have that for all Zi, Zj ∈ Z and for all Sk ∈ S : Ai ∪ Aj ∪ (Ωi ∩ Ωj) � Sk, the
protocol VSS perfectly Z-securely realizes the functionality FV SS.

226 K. Brazitikos and V. Zikas

To prove this lemma we will make use of the following properties of our
protocol. (correctness) VSS either outputs a consistent sharing 〈ŝ〉 of some ŝ,
where ŝ = s unless the dealer pd is actively corrupted, or it aborts with a set B
of corrupted parties. (secrecy) No information on s leaks to the adversary.
The complete proof can be found in the full version of the paper [9].

Announce and Reconstruct. The functionalities Fann and Frecn for the
Announce and Reconstruct primitives are given in the full version of the
paper [9]. The protocols Announce and Reconstruct are closely related as the
latter is essentially built on the former. The first one is used to publicly announce
the value of a specific summand (using Broadcast) and the second one to pub-
licly reconstruct a sharing of a value (using PublicAnnounce for all summands),
respectively. Both of those protocols are robust, meaning that if our condition
holds true and the sharing of the values was successful, those protocols cannot
abort and they always succeed.

Lemma 10. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, assuming that sk

is a summand of a consistent sharing of a value s, the protocol PublicAnnounce
perfectly Z-securely realizes the functionality Fann.

Since PublicAnnounce is robust and does not abort, it becomes apparent
that Reconstruct is also robust and if the protocols called up to that point have
succeeded, it correctly reconstructs the desired value s from its summands that
are announced one by one.

Lemma 11. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, assuming that

sk is a summand of the correct sharing of a value s, the protocol Reconstruct
perfectly Z-securely realizes the functionality Frecn.

The complete proofs can be found in the full version of the paper [9].

4.3 Computing the Gates

Addition. The first type of gate that we need to implement is the Addition
gate. At each such gate, given the sharing 〈s〉 and 〈t〉 of s, t the players need to
compute a sharing of their sum s+t. The simplest way to create this new sharing
is to have each party pj locally compute the sum of his shares of the two values
and set 〈s + t〉j = 〈s〉j + 〈t〉j . This way we create a sharing that is random (as
the sum of two random summands), hides the value of s + t as it did for s, t and
is consistent, as long as the initial sharings are consistent. As the parties can
locally compute addition gates without any communication involved, we omit
the rest from the main body and point to the full version of the paper [9] for
more details.

General Adversary BA and MPC with Active and Omission Corruption 227

Multiplication. Our next goal is to to securely compute a sharing of the prod-
uct of two shared values. Its properties are that, as long as our conditions hold,
given two consistent sharings 〈s〉, 〈t〉 it securely creates a consistent sharing of
〈s · t〉, or it aborts after detecting a set B of incorrect/corrupted players. Those
properties are captured by the functionality Fmult provided in the full version
of the paper [9].

Initially, the functionality receives input in the form of sharings, where each
player pi inputs his shares 〈s〉i and 〈t〉i for s and t, respectively. The adversary
can select the shares for the player he controls. After that, the functionality
checks whether the input of all non-actively corrupted parties for every summand
sk is the same, i.e., checks whether the sharing is consistent. If it is, sk is fixed to
this value (similarly for every t�). Otherwise, the values of the first honest player
are adopted. Then, the product xk,� of any two summands sk, t� is calculated.
Next each such product needs to be shared to all parties according to S. This is
performed by all players holding xk,�. Once the sharing of all those products is
completed, all parties can locally add their shares of xk,� over all combinations
of k, � to obtain a share of the final product y = st.

We note that if the adversary controls a party that can compute xk,�, he
is able to select how this product is shared, i.e., how it is split into summands
[xk,�] = (z1, . . . , zm) and importantly, he can impose this choice to the honest
players, subject to the summands adding up to xk,�. This was observed and dealt
with in detail in the work of Asharov, Lindell and Rabin [4]. Alternatively, the
adversary is able to completely deviate from creating a sharing of the correct
value and select summands that do not add up to xk,�, but in this scenario the
functionality detects that and adopts the values for sk and t� from a correct
player with a default sharing.

Finally, we show that there always exists a non-actively corrupted player
having both sk and t�, from the condition C

(A,Ω)
MPC (P,Z). Due to that, the adver-

sary cannot tamper with the value of xk,� and in this case both sk and t� are
publicly announced to all players, so that all adopt the correct values. If at some
point the adversary decides to make a player aware of his omission status, the
player is informed and publicly steps down, while the functionality aborts having
detected a corrupted party.

Our implementation of that functionality is the protocol Mult and it is based
on the respective protocols of [5,30]. The idea of the protocol is the following:
As s and t are shared according to S, we can use the summands s1, . . . , s|S| and
t1, . . . , t|S| to compute the product st as the sum of the products of all those
si, tj , i.e.,

st :=
|S|∑

k=1

|S|∑

�=1

skt� =
|S|∑

k,�=1

skt�. (13)

Each term xk,� = skt� is shared by every player in Sk ∩ S�. After that the
players try to see if they agree on the shared summands, by computing and
reconstructing all the differences of the xk,� shared. If they do not agree, either
the sharing was not consistent (due to the adversary inputting wrong values

228 K. Brazitikos and V. Zikas

earlier on) or the adversary controls some party in Sk ∩ S�. In either case, it is
safe to publicly announce both sk and t� so that everyone agrees on the value of
those summands and adopt a default sharing for their product xk,�.

After doing this for all combinations of k, �, the players compute the sum of
the shared terms xk,�, which results in a sharing of st, as desired.

Lemma 12. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, 〈s〉 and 〈t〉 are

consistent sharings according to S and the following properties hold: for all Zi =
(Ai, Ωi), Zj = (Aj , Ωj) ∈ Z and Sk ∈ S : Ai ∪ Aj ∪ (Ωi ∩ Ωj) � Sk, as well as
for all Sk, S� ∈ S and for all Zi = (Ai, Ωi) ∈ Z : Sk ∩S� �⊆ Ai, the protocol Mult
perfectly Z-securely realizes the functionality Fmult.

To prove this lemma we will make use of the following properties of our
protocol. (correctness) It either outputs a sharing of st according to S or it
aborts with a non-empty set B of incorrect players. (secrecy) No information
leaks to the adversary. The complete proof can be found in the full version of
the paper [9].

4.4 The MPC Protocol

We next proceed to the construction of our MPC protocol, which securely real-
izes the functionality FMPC , detailed in the full version [9]. The function to be
computed will be represented by a circuit C.

Our protocol will compute the desired circuit on the inputs of the players. If
none of the sub-protocols aborts, the protocol will succeed and give the correct
output. In the opposite case, where the adversary has misbehaved and caused
a protocol to abort we will identify a set B of corrupted parties. Then we will
restart the computation of the protocol from the beginning with a smaller struc-
ture, setting P := P \ B, as the players in B are all problematic. Importantly,
this action preserves the monotonicity of the condition, namely that the MPC
condition is also true in the new updated adversary structure. We should also
point out that even in the case of such an abortion no information about the
players’ input is leaked to the adversary. This is because all calculations are done
with sharings of the inputs, hence the actual values are hidden. The only time
where a value is actually revealed is after the Reconstruct protocol. However, our
Reconstruct protocol is robust, meaning that it cannot abort and if the protocol
has reached this point, it is guaranteed to succeed.

Moving on to the description of the protocol, it involves three stages, the
input, the computation and the output stage. For the input stage, we have all
players share their inputs according to the sharing specification S. This is done
to make sure that the inputs remain private, while still being able to perform
computations with them. In the case that a player fails to share her input, e.g.,
if she is corrupted and the adversary blocks her messages, all players adopt a
default pre-agreed sharing for her input value.

For the evaluation stage, the procedure is the following. Depending on the
gate of C that needs to be evaluated, the players do the following. If they need

General Adversary BA and MPC with Active and Omission Corruption 229

to evaluate an addition gate, each player locally computes the sum of his shares
of the two values, so the output is a sharing of the sum. If they need to eval-
uate a multiplication gate for two values s, t, the players invoke the protocol
Mult(P,Z,S, 〈s〉, 〈t〉) for the sharings 〈s〉, 〈t〉 and the output is a sharing 〈st〉 of
the product. If they need to evaluate a random gate, each player sends a random
value as input and the output is a sharing of the sum of those values.

Lastly, for the output stage where the players want to eventually get the
actual value of the output v, they invoke the protocol Reconstruct(P,Z,S, 〈v〉)
in order to publicly robustly reconstruct one by one the summands of v and after
that each one gets the desired value by summing all summands.

Theorem 4. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, the protocol MPC

perfectly Z-securely realizes the functionality FMPC .

Necessity of Condition for MPC. Finally, we can also show that the condi-
tion C

(A,Ω)
MPC (P,Z) is necessary to securely achieve MPC.

Lemma 13. If C
(A,Ω)
MPC (P,Z) is violated, then there exist n-party functions which

cannot be securely evaluated while tolerating (corruptions caused by) a Z-
adversary.

Proof. (sketch) As we have already discussed in 3.7 the condition C
(A,Ω)
BA (P,Z)

is necessary for broadcast. Also, in Sect. 4.1 we stated that the condition
C

(A,Ω)
SMT (P,Z, pi, pj) is necessary to securely exchange a message between a sender

pi and pj . As our condition C
(A,Ω)
MPC (P,Z) considers all such pairs of players, and

due to the fact that MPC implies both Broadcast and SMT, we get that our
condition C

(A,Ω)
MPC (P,Z) is necessary for MPC. ��

5 Conclusion and Open Problems

We put forth the study of Byzantine agreement (BA) and multi-party compu-
tation (MPC) in the presence of a mixed general adversary with active and
omission corruptions. We provided a tight characterization—necessary and suf-
ficient conditions—for feasibility of synchronous BA—both for broadcast and
consensus—tolerating such an adversary. We also provide a tight characteriza-
tion of feasibility of MPC in this model, where we show that existing techniques
fall short in providing feasibility results. Along the way, we also provide the first
tight feasibility result for (detectable) Secure Message Transmission (SMT) in
this model; by repeating upon failure while excluding the detected party, this
yields the first tight feasibility result for SMT in this model. The above results
make an important step forward in understanding the relevant landscape and
open the floor to follow-up questions that have been resolved in the thresh-
old adversary setting, but are wide open in the general adversary setting, e.g.,
allowing setup, error probability, and computationally bounded adversaries.

230 K. Brazitikos and V. Zikas

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful comments on the manuscript, as well as Giorgos Panagiotakos for discus-
sions in the early stages of this work. The research was done in part while Konstantinos
Brazitikos was visiting Purdue University and while Vassilis Zikas was at the Univer-
sity of Edinburgh. Konstantinos Brazitikos was supported in part by Input Output
(iohk.io) through their funding of the Edinburgh Blockchain Technology Lab and Sun-
day Group. Vassilis Zikas was supported in part by Sunday Group, IOHK, NSF grants
no. 2055599 & 2001096, and BSF grant no. 41000926.

References

1. Abdallah, M., Pucheral, P.: A low-cost non-blocking atomic commitment protocol
for asynchronous systems. In: International Conference on Parallel and Distributed
Systems, 1999, Proceedings. IEEE (1999)

2. Altmann, B., Fitzi, M., Maurer, U.M.: Byzantine agreement secure against general
adversaries in the dual failure model. In: Jayanti, P. (ed.) Distributed Comput-
ing, 13th International Symposium, Bratislava, Slovak Republic, September 27-29,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1693, pp. 123–137.
Springer (1999). https://doi.org/10.1007/3-540-48169-9 9

3. Asharov, G., Cohen, R., Shochat, O.: Static vs. adaptive security in perfect MPC:
A separation and the adaptive security of BGW. In: Dachman-Soled, D. (ed.)
3rd Conference on Information-Theoretic Cryptography, ITC 2022, July 5-7, 2022,
Cambridge, MA, USA. LIPIcs, vol. 230, pp. 15:1–15:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.15

4. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t
¡ n/3. In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6841, pp. 240–258. Springer
(2011).https://doi.org/10.1007/978-3-642-22792-9 14

5. Beerliová-Trub́ıniová, Z., Fitzi, M., Hirt, M., Maurer, U.M., Zikas, V.: MPC vs.
SFE: perfect security in a unified corruption model. In: Canetti, R. (ed.) Theory of
Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York,
USA, March 19-21, 2008. Lecture Notes in Computer Science, vol. 4948, pp. 231–
250. Springer (2008).https://doi.org/10.1007/978-3-540-78524-8 14

6. Beerliová-Trub́ıniová, Z., Hirt, M., Riser, M.: Efficient byzantine agreement with
faulty minority. In: Kurosawa, K. (ed.) Advances in Cryptology - ASIACRYPT
2007, 13th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kuching, Malaysia, December 2-6, 2007, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4833, pp. 393–409. Springer
(2007).https://doi.org/10.1007/978-3-540-76900-2 24

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pp. 1–10. ACM (1988). https://
doi.org/10.1145/62212.62213

8. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus
(extended abstract). In: 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November
1989, pp. 410–415. IEEE Computer Society (1989).https://doi.org/10.1109/SFCS.
1989.63511

https://doi.org/10.1007/3-540-48169-9_9
https://doi.org/10.4230/LIPIcs.ITC.2022.15
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-540-78524-8_14
https://doi.org/10.1007/978-3-540-76900-2_24
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1109/SFCS.1989.63511

General Adversary BA and MPC with Active and Omission Corruption 231

9. Brazitikos, K., Zikas, V.: General adversary structures in byzantine agreement and
multi-party computation with active and omission corruption. Cryptology ePrint
Archive, Paper 2024/209 (2024). https://eprint.iacr.org/2024/209

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

11. Canetti, R., Damgaard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6 17

12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pp.
11–19. ACM (1988). https://doi.org/10.1145/62212.62214

13. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 240–269. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 9

14. Cohen, R., Garay, J.A., Zikas, V.: Completeness theorems for adaptively secure
broadcast. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 14081, pp. 3–38. Springer (2023).https://doi.
org/10.1007/978-3-031-38557-5 1

15. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993). https://doi.org/10.1145/138027.138036

16. Eldefrawy, K., Loss, J., Terner, B.: How byzantine is a send corruption? In: Ate-
niese, G., Venturi, D. (eds.) Applied Cryptography and Network Security - 20th
International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13269, pp. 684–704. Springer (2022).
https://doi.org/10.1007/978-3-031-09234-3 34

17. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Simon, J.
(ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pp. 148–161. ACM (1988). https://doi.org/
10.1145/62212.62225

18. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055724

19. Fitzi, M., Hirt, M., Maurer, U.: General adversaries in unconditional multi-party
computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999.
LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999). https://doi.org/10.
1007/978-3-540-48000-6 19

20. Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations (Databases,
Reliability, Transactions, Agreement Protocols, Distributed Computing). Ph.D.
thesis, Harvard University, USA (1985), aAI8520209

21. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in
secure multi-party computation (extended abstract). In: Burns, J.E., Attiya, H.
(eds.) Proceedings of the Sixteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, Santa Barbara, California, USA, August 21-24, 1997, pp.
25–34. ACM (1997). https://doi.org/10.1145/259380.259412

https://eprint.iacr.org/2024/209
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-031-38557-5_1
https://doi.org/10.1007/978-3-031-38557-5_1
https://doi.org/10.1145/138027.138036
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1007/BFb0055724
https://doi.org/10.1007/978-3-540-48000-6_19
https://doi.org/10.1007/978-3-540-48000-6_19
https://doi.org/10.1145/259380.259412

232 K. Brazitikos and V. Zikas

22. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/
10.1007/s001459910003

23. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco / French Riviera,
May 30 - June 3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6110,
pp. 466–485. Springer (2010). https://doi.org/10.1007/978-3-642-13190-5 24

24. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Japan (Part III: Fundamental Electronic Science)
72(9), 56–64 (1989)

25. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

26. Koo, C.: Secure computation with partial message loss. In: Halevi, S., Rabin, T.
(eds.) Theory of Cryptography, Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 3876, pp. 502–521. Springer (2006). https://doi.org/10.1007/
11681878 26

27. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

28. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-
9036-8

29. Loss, J., Stern, G.: Zombies and ghosts: Optimal byzantine agreement in the pres-
ence of omission faults. In: Rothblum, G.N., Wee, H. (eds.) Theory of Cryptography
- 21st International Conference, TCC 2023, Taipei, Taiwan, November 29 - Decem-
ber 2, 2023, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 14372,
pp. 395–421. Springer (2023).https://doi.org/10.1007/978-3-031-48624-1 15

30. Maurer, U.M.: Secure multi-party computation made simple. In: Cimato, S., Galdi,
C., Persiano, G. (eds.) Security in Communication Networks, Third International
Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers. Lec-
ture Notes in Computer Science, vol. 2576, pp. 14–28. Springer (2002). https://
doi.org/10.1007/3-540-36413-7 2

31. Parvédy, P.R., Raynal, M.: Uniform agreement despite process omission failures.
In: 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings, p. 212.
IEEE Computer Society (2003). https://doi.org/10.1109/IPDPS.2003.1213388

32. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

33. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986). https://
doi.org/10.1109/TSE.1986.6312888

34. Raynal, M.: Consensus in synchronous systems: A concise guided tour. In: 9th
Pacific Rim International Symposium on Dependable Computing (PRDC 2002),
16-18 December 2002, Tsukuba-City, Ibarski, Japan, pp. 221–228. IEEE Computer
Society (2002). https://doi.org/10.1109/PRDC.2002.1185641

https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/11681878_26
https://doi.org/10.1007/11681878_26
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/978-3-031-48624-1_15
https://doi.org/10.1007/3-540-36413-7_2
https://doi.org/10.1007/3-540-36413-7_2
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/PRDC.2002.1185641

General Adversary BA and MPC with Active and Omission Corruption 233

35. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pp. 160–164. IEEE Computer Society (1982). https://doi.org/
10.1109/SFCS.1982.38

36. Zikas, V.: Generalized corruption models in secure multi-party computation. Ph.D.
thesis, ETH Zurich (2010). https://d-nb.info/1005005729

37. Zikas, V., Hauser, S., Maurer, U.: Realistic failures in secure multi-party compu-
tation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 274–293. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 17

https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://d-nb.info/1005005729
https://doi.org/10.1007/978-3-642-00457-5_17

Secure Computation with Parallel Calls
to 2-Ary Functions

Varun Narayanan1(B) , Shubham Vivek Pawar2,
and Akshayaram Srinivasan3

1 University of California, Los Angeles, USA
varunnkv@gmail.com

2 Royal Holloway, University of London, Egham, UK
shubham.pawar.2022@live.rhul.ac.uk
3 University of Toronto, Toronto, Canada

akshayaram@cs.toronto.edu

Abstract. Reductions are the workhorses of cryptography. They allow
constructions of complex cryptographic primitives from simple build-
ing blocks. A prominent example is the non-interactive reduction from
securely computing a “complex” function f to securely computing a
“simple” function g via randomized encodings.

Prior work equated simplicity with functions of small degree. In this
work, we consider a different notion of simplicity where we require g to
only take inputs from a small number of parties. In other words, we want
the arity of g to be as small as possible.

In more detail, we consider the problem of reducing secure compu-
tation of arbitrary functions to secure computation of functions with
arity two (two is the minimal arity required to compute non-trivial func-
tions). Specifically, we want to compute a function f via a protocol that
makes parallel calls to 2-ary functions. We want this protocol to be secure
against malicious adversaries that could corrupt an arbitrary number of
parties. We obtain the following results:

– Negative Result: We show that there exists a degree-2 polynomial
p such that no protocol that makes parallel calls to 2-ary functions
can compute p with statistical security with abort.

– Positive Results: We give two ways to bypass the above impossi-
bility result.
1. Weakening the Security Notion. We show that every degree-

2 polynomial can be computed with statistical privacy with
knowledge of outputs (PwKO) by making parallel calls to 2-
ary functions. Privacy with knowledge of outputs is weaker than
security with abort.

2. Computational Security. We prove that for every function
f , there exists a protocol for computing f that makes paral-
lel calls to 2-ary functions and achieves security with abort

V. Narayanan was supported by NSF Grants CNS-2246355, CCF-2220450, and CNS-
2001096; S. V. Pawar was supported by EPSRC through grant number EP/S021817/1;
A. Srinivasan was supported in part by a NSERC Discovery grant RGPIN-2024-03928.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 234–265, 2025.
https://doi.org/10.1007/978-3-031-78023-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_8&domain=pdf
http://orcid.org/0009-0000-6620-2754
http://orcid.org/0000-0003-2434-9912
https://doi.org/10.1007/978-3-031-78023-3_8

Secure Computation with Parallel Calls to 2-Ary Functions 235

against computationally-bounded adversaries. The security of
this protocol relies on the existence of semi-honest secure obliv-
ious transfer.

– Applications: We give connections between this problem and the
task of reducing the encoding complexity of Multiparty Random-
ized Encodings (MPRE) (Applebaum, Brakerski, and Tsabary, TCC
2018). Specifically, we show that under standard computational
assumptions, there exists an MPRE where the encoder can be imple-
mented by an NC0 circuit with constant fan-out.

– Extensions: We explore this problem in the honest majority setting
and give similar results assuming one-way functions. We also show
that if the parties have access to 3-ary functions then we can con-
struct a computationally secure protocol in the dishonest majority
setting assuming one-way functions.

1 Introduction

A key research direction in theoretical cryptography is to construct complex
cryptographic primitives from simple building blocks. This direction has achieved
remarkable success and has led to several fundamental results such as construct-
ing pseudorandom generators [HILL99] and zero-knowledge proofs [GMW86]
from one-way functions, secure multiparty computation protocols from obliv-
ious transfer [GMW87,Kil88,IPS08], and CCA-secure encryption from injec-
tive trapdoor functions [HKW20]. One such foundational result is a non-
interactive reduction from securely computing a “complex” function f to securely
computing a “simple” function g. This is achieved using randomized encod-
ings [Yao86,IK00,AIK04] and this approach has been instrumental in construct-
ing round-optimal secure computation protocols [Yao86,GS18,BL18].

Prior work aimed to minimize the degree of g as much as possible and they
equated simplicity with functions computable by constant degree polynomials.
[IK00,AIK04] showed that under standard cryptographic assumptions, securely
computing any function can be reduced to securely computing a degree-3 func-
tion. [BL18,GS18,GIS18,ACGJ18,ABT18,ABT19,ACGJ19] (using the notion
of multiparty randomized encoding) showed that one can further reduce the
(effective) degree to 2 if we allow local pre-processing of the inputs by the par-
ties.

Our Work. We consider a different notion of simplicity. Specifically, we want
to reduce the task of securely computing some complex n-party function f to
securely computing, in parallel, a set of functions where each function gS takes
inputs only from a proper subset S of the parties (in other words, the arity |S|
of gS is less than n) and delivers the output to all parties. It is trivial to see
that most multiparty party functions—for instance, n-party AND—cannot be
computed, using a single function of arity less than n. So, we need to necessarily
allow parallel calls to several such functions. Our goal is to minimize their arity
as much as possible.

236 V. Narayanan et al.

Our Model. To be more precise, let f be an n-party function and, for a collection
S of k-sized subsets of [n], let {gS}S∈S be a set of functions, where each gS is an
arity-k function taking inputs from parties in the set S and delivers output to all
parties. We say that f securely reduces to {gS} if there is a tuple of randomized
algorithms (Enc,Dec) with the following syntax and satisfying the following two
properties.

– Syntax: Enc is a randomized function that takes in the index i of a party,
its private input xi and a subset S ∈ S such that i ∈ S and outputs xi,S . Dec

takes in
{
gS({xi,S}i∈S)

}
S∈S

and outputs y.1

– Correctness: We want the output y of Dec to be f(x1, . . . , xn).

– Security: Even if an arbitrary subset of the parties get corrupted by an adver-
sary, we want

{
gS({xi,S}i∈S)

}
S∈S

to only reveal the output f(x1, . . . , xn) and

nothing else about the private inputs of the uncorrupted parties.

Minimal Arity. If we consider reduction to arity-1 functions, then it is easy
to see that the only functions that can be securely computed are of the form
(h1(x1), h2(x2), . . . , hn(xn)). Hence, to be useful, we need functions with arity 2
or higher.

Why is arity important? Consider the task of securely computing some complex
multiparty function f involving a large number of parties. In such a case, it
is unreasonable to expect all the parties to be online throughout the entire
protocol execution. However, if we can break this complex computation to simple
components of constant arity, then we only need a constant number of parties
to be online for computing every component. Further, the computation of each
component is not dependent on the outputs from other components (since we
only make parallel calls to the functions). Once all the components are computed,
the parties can apply the local decoding procedure to learn the output of the
function f .

Case of Semi-honest Adversaries. In the semi-honest model, there is an easy
transformation from securely computing a degree-d function (that has an one-
to-one correspondence with degree-d polynomials) to making parallel calls to
d-ary functions. Indeed, we can compute each monomial of the degree-d polyno-
mial using an d-ary function and add additive secret shares of 0 to each monomial
to ensure that only the output of the polynomial is revealed. Hence, the exist-
ing results about the completeness of degree-2 functions [GS18,GIS18,ACGJ18,
ABT18,ABT19,ACGJ19] (with local pre-processing) can be extended to our

1 We model Dec in this way so that a party that does not contribute any private input
could still learn the output. This is analogous to the notion of output client in the
client-server MPC protocol literature [DI05] and is equivalent to considering publicly
decodable transcripts [ABG+20].

Secure Computation with Parallel Calls to 2-Ary Functions 237

model of making parallel calls to 2-ary functions. Somewhat surprisingly, these
results do not extend to the malicious setting and this is the focus of this work.

1.1 Our Results

We explore the problem of securely computing n-party functions against mali-
cious adversaries by making parallel calls to 2-ary functions. As argued earlier,
two is the minimum arity needed to compute non-trivial functions. We pro-
vide both positive and negative results and connect this problem to reducing
the encoding complexity of multiparty randomized encodings [ABT18]. We also
provide a couple of extensions to these results by (i) considering the honest
majority setting, and (ii) allowing the arity to be larger than two.

Impossibility of Statistical Security with Abort. Our first result shows that if we
want statistical security, then it is impossible to compute even degree-2 polyno-
mials. Specifically, we give a 3-party function f (that is computable by a degree-2
polynomial) such that no protocol that makes parallel calls to 2-ary functions
achieves statistical security with abort. Formally,

Theorem 1.1. There exists a 3-party function f that can be computed using a
degree-2 polynomial such that no 3-party protocol making parallel calls to 2-ary
functions can compute f with statistical security with abort against a malicious
adversary corrupting two parties.

In the case of three parties with two corruptions, security with abort is equiva-
lent to security with selective abort. Therefore, our impossibility result also rules
out constructions with selective abort.

Positive Results. We give two ways to overcome the above impossibility.

1. We show that if we relax the security requirement to privacy with knowl-
edge of outputs (PwKO) [IKP10], then every degree-2 polynomial can be
securely computed with statistical PwKO by making parallel calls to 2-ary
functions. PwKO relaxation guarantees that the adversary does not learn any-
thing about the private inputs of the honest parties except the output of the
function but after learning the output, it can force the honest parties to out-
put an arbitrary value of its choice. Formally, this is modelled by having the
ideal functionality first give the output of the function to the simulator and
the simulator sends some arbitrary value as the output to the honest parties.
All the honest parties will output the value provided by the simulator.

Theorem 1.2. For every n-party function f computable using degree-2 polyno-
mials, there exists a protocol for computing f that makes parallel calls to 2-ary
functions and achieves statistical PwKO against a malicious adversary that could
corrupt an arbitrary number of parties.

238 V. Narayanan et al.

2. A second approach to bypass the impossibility result is to relax the security to
be computational. We show how to extend Theorem 1.2 to securely computing
arbitrary circuits and achieve security with unanimous abort.

Theorem 1.3. Assume the existence of a semi-honest secure oblivious transfer
protocol. For every n-party function f , there exists a protocol for computing f
that makes parallel calls to 2-ary functions and achieves security with unanimous
abort against a computationally-bounded malicious adversary that could corrupt
an arbitrary number of parties.

Application: Reducing the Complexity of MPRE. Theorem 1.3 has an interest-
ing application to reducing the complexity of the encoding function of Mul-
tiparty Randomized Encoding (MPRE) [GS17,ABT18,ABT19]. MPRE is the
analog of randomized encodings for distributed computation protocols. In a bit
more detail, MPRE for computing a multiparty function f comprises of n pre-
processing functions h1, . . . , hn along with an encoder Enc′ and a decoder Dec′.
The party Pi first applies the local pre-processing function hi on its private
input and randomness. After this, we apply the encoding function Enc′ on the
pre-processed values. The decoding function Dec′ takes in the output of the
encoder and computes the output of f applied on the private inputs of all the
parties. For security, we require that even if an adversary corrupts an arbitrary
number of parties, the output of the encoder only reveals the output of f and
nothing else about the inputs of the honest parties.

An important research direction in the study of randomized encodings is to
minimize the encoding complexity as much as possible [AIK04,AIK07]. Previous
results [GS18,ABT18,GIS18] gave constructions of MPRE where the encoder
could be implemented in NC0. However, the fan-out of the encoder circuit grew
linearly with the number of parties. But using Theorem 1.3, we can construct
an MPRE where the encoding can be done in NC0 with constant fan-out. In
other words, the encoder has constant input and output locality. This encoder is
optimal in the sense that its has constant fan-in, constant fan-out, and constant
depth.

This result is obtained directly from the above theorem by replacing the 2-ary
functions with an existing MPRE secure against malicious adversaries [GS18].
This MPRE construction is based on the existence of a two-round, malicious-
secure oblivious transfer protocol. Since this MPRE computes a two-party func-
tionality, its fan-out is constant and hence, the overall fan-out of the encoder is
constant. This is illustrated in Fig. 1. As a result, we get the following corollary.

Corollary 1.4. Assume the existence of a two-round oblivious transfer protocol
secure against malicious adversaries. Then, there is a reduction from securely
computing any multiparty function f against malicious adversaries to securely
computing a NC0 function with constant fan-out against malicious adversaries.

Extensions. We provide the following extensions.

Secure Computation with Parallel Calls to 2-Ary Functions 239

Fig. 1. Construction of MPRE where the encoder has constant input and output local-
ity. Here, Enc denotes the encoder function from Theorem 1.3 and MPRE is for com-
puting the 2-ary function from Theorem 1.3.

– Honest Majority: When security is required in the presence of an hon-
est majority, we can replace the assumption of semi-honest secure oblivious
transfer with the weaker assumption of one-way function.

Theorem 1.5. Assume the existence of one-way functions. For every n-party
function f , there exists a protocol for computing f that makes parallel calls
to 2-ary functions and achieves security with unanimous abort against a
computationally-bounded malicious adversary that could corrupt a strict minority
of parties.

– 3-ary functions. We further pursue the objective of realizing computational
security with unanimous abort against an arbitrary number of malicious cor-
ruptions based only on the existence of one-way functions. We show that this
is possible if the parties have access to 3-ary instead of 2-ary functions.

Theorem 1.6. Assume the existence of one-way functions. For every n-party
function f , there exists a protocol for computing f that makes parallel calls
to 3-ary functions and achieves security with unanimous abort against a
computationally-bounded malicious adversary that could corrupt an arbitrary
number of parties.

1.2 Related Work

Fitzi et al. [FGMO01] considered the problem of constructing secure computation
protocols in the dishonest majority setting with full security (i.e., guaranteed
output delivery) with help of functions that take inputs from less than n parties.
Without the help of additional functions, achieving fairness (which is weaker

240 V. Narayanan et al.

than full security) is impossible [Cle86]. Fitzi et al. showed a negative result
that it is impossible to achieve full security with access to functions of arity
less than n. See [IPP+22] for a detailed discussion on the works constructing
fully-secure protocols with calls to functions with arity n.

Applebaum and Goel [AG21] based on Baum et al.’s result [BOSS20] gave
a black-box protocol for computing any multiparty function by making parallel
calls to constant degree functions and satisfying security with identifiable abort.
This constant degree function takes inputs from all the parties. Their results do
not extend to our setting where we restrict the function to take inputs only from
two parties.

Applebaum et al. [ABG+20] showed that if we restrict our problem to only
include 2-ary functions that give outputs to the two parties that provide inputs,
then it is impossible to achieve statistical security even against semi-honest
adversaries. Specifically, they gave a 3-party function that cannot be computed
by any protocol that makes parallel calls to such 2-ary functions with statistical
security against semi-honest adversaries.

2 Technical Overview

In Sect. 2.1, we give the main intuition behind our impossibility result (see The-
orem 1.1). In Sect. 2.2, we show that if one relaxes the security requirement to
privacy with knowledge of outputs [IKP10], then every degree-2 polynomial can
be computed with parallel calls to 2-ary functions (see Theorem 1.2). In Sect. 2.3,
we explain how to securely compute arbitrary circuits with (unanimous) abort
by relaxing to computational security. This assumes the existence of semi-honest
secure oblivious transfer (see Theorem 1.3).

2.1 Impossibility of Achieving Statistical Security

The key intuition behind the impossibility result is that a corrupt party can send
inconsistent inputs in its interaction (via the 2-ary functions) with two different
honest parties. This would allow the adversary to learn additional information
about the private inputs of the honest parties that is not learnable in the ideal
world. However, formalizing this intuition requires great care as we need to
choose an appropriate function for which the impossibility holds and also provide
a formal attack that works against any protocol. We elaborate on this below.

Consider the 3-party function f that takes x1, x2, and x3 belonging to {0, 1, 2}
from P1, P2 and P3, respectively and outputs 1 iff x1 + x2 = x3 mod 3. We
will first argue that f cannot be computed by making parallel calls to 2-ary
functions. We will then show how to extend this impossibility to a function that
is computable by a degree-2 polynomial.

Towards a contradiction, assume that there exists a non-interactive proto-
col Π = (Enc, {O{1,2},O{2,3},O{1,3}},Dec) that securely computes f against
malicious adversaries with abort. Here, O{i,j} denotes the 2-ary function that is
invoked between parties Pi and Pj for each distinct i, j ∈ [3].

Secure Computation with Parallel Calls to 2-Ary Functions 241

Consider an adversary A1,2 that corrupts P1 and P2, and makes the calls
to O{1,3} and O{2,3} by honestly emulating P1 and P2 after setting their inputs
to x1 and x2 respectively. Let y{1,3} and y{2,3} be the outputs of O{1,3} and
O{2,3} respectively. At this point, the adversary can learn f(x1, x2, x3) without
even invoking O{1,2}. This can be obtained by honestly computing the output
of O{1,2} in its head and applying the decoder on the outputs of the functions.
The output is guaranteed to be f(x1, x2, x3) by correctness of Π.

The crucial lemma in the impossibility is that for any y′
{1,2} in the range of

O{1,2}, the output of Dec(y′
{1,2}, y{2,3}, y{1,3}) is either ⊥ or f(x1, x2, x3). Oth-

erwise, the adversary can simultaneously learn f(x1, x2, x3) (by computing this
in its head) and force honest P3 to output a value other than ⊥ or f(x1, x2, x3)
(by sending y′

{1,2} as the output of O{1,2}). This is impossible in the ideal world,
thereby, contradicting security of Π.

Appealing to another adversary A1,3 that corrupts P1 and P3, and behaves
analogously to A1,2, we can argue that, for any y′

{1,3} in the range of O{1,3}, the
output of Dec(y{1,2}, y{2,3}, y′

{1,3}) is either ⊥ or f(x1, x2, x3), when y{1,2} and
y{2,3} are, respectively, the outputs of O{1,2} and O{2,3}, when corrupt P1 and
P3 behave honestly.

Finally, consider an adversary A1 that only corrupts P1 and behaves as fol-
lows. A1 samples x1 uniformly and invokes O{1,2} by emulating P1 with input
x1, whereas, it invokes O{1,3} by emulating P1 honestly but with its input set to
x1+1 mod 3. In essence, A1 provides inconsistent inputs while emulating O{1,2}
and O{1,3}.

Let y{1,2}, y{2,3}, and y{1,3} be the outputs of O{1,2}, O{2,3} and O{1,3},
respectively in the real execution of the protocol with A1. A1 then chooses
y′

{1,3} and y′
{1,2} in the range of O{1,3} and O{1,2} respectively such that

z′ = Dec(y′
{1,2}, y{2,3}, y{1,3}) �= ⊥ and z = Dec(y{1,2}, y{2,3}, y′

{1,3}) �= ⊥, and
outputs (z, z′). Note that such y′

{1,2} and y′
{1,3} will always exist as we can set

them to be the outputs of honest emulations of O{1,2} and O{1,3} with inputs
x1 + 1 and x1 respectively. The adversary simply chooses the first string in the
range of these two functions that produces a non-bot output. This is where we
use the fact that the adversary is computationally unbounded as such strings
might not be efficiently computable.

We claim that Π is not secure against A1. By our previous two lemmas,
since z and z′ are not ⊥, it has to be the case that z = f(x1, x2, x3) and
z′ = f(x1+1, x2, x3). Thus, A1 simultaneously learns the output of the functions
for two possible inputs of P1. This allows A to learn the value of x3 − x2 with
absolute certainty. However, when x2 and x3 are chosen uniformly at random,
an ideal adversary will fail to guess x2 − x3 with constant probability and thus,
we obtain a contradiction to the security of Π.

Making f to be degree-2. We observe that the same impossibility proof extends if
we consider the function f that checks if x1 +x2 +x3 = 0 where the + operation
is over GF(22). This can be expressed as a degree-2 polynomial over {0, 1}.

242 V. Narayanan et al.

2.2 Securely Computing Degree-2 Polynomials with PwKO

The previous impossibility crucially relied on the honest party either outputting
the correct function output or ⊥. However, this impossibility result does not
extend to the case where the adversary could force the honest party to output
an arbitrary value. Therefore, there is hope of obtaining a protocol that satisfies
statistical privacy with knowledge of outputs (PwKO). However, such a protocol
is highly non-trivial to construct and it needs new techniques. We now explain
our approach to construct such a protocol for computing arbitrary degree-2
polynomials.

For simplicity, let’s assume that each party Pi gets a finite field element xi

as its private input. Let p(·) be a degree-2 polynomial and the parties want to
compute p(x1, . . . , xn) =

∑
i,j∈[n] ci,j · xi · xj . Our goal is to design a protocol

for computing p that makes parallel calls to 2-ary functions and achieves PwKO
against a malicious adversary that corrupts an arbitrary subset of the parties.
In the rest of the overview, we will use O{i,j} to denote the function that is
computed using Pi and Pj ’s inputs.2

The starting point of our construction is the semi-honest secure protocol for
computing p with parallel calls to 2-ary functions. In this semi-honest secure
protocol, we define O{i,j} to take (xi, si[j]) from Pi and (xj , sj [i]) from party
Pj and to output ci,j · xi · xj + si[j] + sj [i] to every party. For every i ∈ [n],
if Pi chooses {si[j]}j∈[n] as a random secret sharing of 0, then the parties can
add the outputs of all the 2-ary functions to obtain p(x1, . . . , xn). The security
follows since {si[j]}j∈[n] are all random subject to their sum being 0 and thus,
only p(x1, . . . , xn) is revealed. The key challenge is to extend this protocol to be
secure against malicious adversaries.

If we analyze the protocol a bit more carefully, we realize that a malicious
adversary can only mount two kinds of attacks:

– Sending inconsistent inputs. An adversary corrupting Pi could send (xi, ·)
to O{i,j} and (x′

i, ·) (where xi �= x′
i) to O{i,j′} for two different parties j, j′.

– Generating bad secret shares. An adversary that is corrupting party Pi

could generate {si[j]}j∈[n] as secret shares of a value other than 0.

Let’s assume for now that the adversary is restricted to sending consistent
private inputs to each 2-ary function. In other words, it is disallowed from mount-
ing the first attack strategy explained above. However, note that this adversary
is still allowed to generate {si[j]}j∈[n] as shares of a value other than 0. If that
is the case, we argue that the above protocol already satisfies PwKO. At a high-
level, if the real-world adversary generates {si[j]}j∈[n] to be shares of a value
other than 0, then it can be shown that this attack corresponds to adding an
offset to the actual output. Thus, we can have the simulator (in the ideal world)
to add the same offset to the output obtained from the ideal functionality and
make all the honest parties obtain this modified output.
2 For simplicity, we allow each pair of parties to potentially invoke a different function

O{i,j}. However, this can be easily modified to compute a single function g that
takes (i, j) as additional input.

Secure Computation with Parallel Calls to 2-Ary Functions 243

The next step to consider is what happens if the adversary is allowed to send
inconsistent inputs. Can the same protocol be proved to satisfy PwKO? We
explain that this is not the case. First, observe that if the adversary sends xi to
O{i,j} and x′

i to O{i,j′}, then the offset that is added to the real output is given
by ci,j ·(x′

i −xi) ·xj′ . However, this offset depends on the private input of Pj′ and
this is disallowed as per the PwKO definition. Specifically, the adversary is only
allowed to set the output received by the honest parties based on the output of
the function and it cannot depend on the private inputs of the honest parties
in any other way. Therefore, the above protocol as such does not satisfy PwKO.
Hence, we need a mechanism to force the adversary to give consistent inputs to
every 2-ary function.

Key Idea. Suppose we construct a protocol that satisfies the following two prop-
erties.

1. If every corrupted party Pi uses consistent inputs with every honest party,
i.e., Pi sends the same input xi to every O{i,j} where Pj is honest, then we
want all the honest parties to compute the output of the polynomial subject
to the adversary adding some offset.

2. If a corrupted party sends different xi and xi′ to O{i,j} and O{i,j′} where Pj

and Pj′ are honest, then we want the adversary not to learn any informa-
tion about the private inputs of the honest parties. Specifically, we want the
outputs of all the 2-ary functions involving an honest party to be random.

We argue that the above two properties are sufficient to show PwKO.

– If adversary sends consistent inputs in each execution of a 2-ary function with
an honest party, then the adversary can only send shares that do not add up
to 0 or cheat in the executions of 2-ary functions that involve only corrupt
parties. Both these attacks can be translated to the adversary adding some
offset to the output of the polynomial evaluation and hence, our protocol
satisfies PwKO.

– If the adversary sends inconsistent inputs to two different honest parties,
we need to show that the adversary learns no information about the private
inputs of the honest parties and the output obtained by the honest parties is
independent of their private inputs. The first property follows directly as the
outputs of each 2-ary function involving an honest party is random. To argue
the second property, note that the outputs obtained by the honest parties
depend only on the random values output by the 2-ary functions involving
at least one honest party and the values provided by the 2-ary functions
involving two corrupt parties. These are independent of the private inputs of
the honest parties as required by PwKO.

However, on close observation, we realize that it is highly non-trivial to satisfy
the second condition. In particular, even if the adversary cheats by sending
inconsistent inputs to any pair of honest parties, then we want this cheating to
be detected in all other 2-ary functions involving at least one honest party and

244 V. Narayanan et al.

the adversary should get no information about these outputs. This is especially
challenging since the 2-ary functions do not have any shared randomness and all
the functions are invoked in parallel.

Construction. To construct such a protocol, we tightly couple the outputs of
each 2-ary function. This coupling ensures that even if the output of a single 2-
ary function call gets erased (or equivalently, switched to random), this creates a
“domino effect” and the outputs of all the 2-ary function calls involving at least
one honest party get erased (i.e., switched to random). This allows us to argue
the second condition. Let us explain how this domino effect is created.

We first design a special conditional disclosure of secrets (CDS) protocol that
switches the output of O{j,j′} to random if a corrupt party Pi sends inconsistent
inputs to O{i,j} and O{i,j′} where Pj and Pj′ are honest. If this happens, observe
that sj [j′] and sj′ [j] are erased from the adversary’s view. This means that each
{sj [k]}k �=j′ and {sj′ [k]}k �=j is randomly distributed and hence, the outputs of
each 2-ary function O{j,k} for every k �= j′ and O{j′,k} for k �= j is randomly
distributed. Thus, for every honest party Ph, sh[j] and sh[j′] get erased from
the adversary’s view and we can continue the above argument to switch the
output of each 2-ary function’s output that involves at least one honest party to
random.

CDS Protocol. A key technical contribution of this work is a construction of a
CDS protocol that switches the output of O{j,j′} if Pi sends inconsistent inputs
to O{i,j} and O{i,j′}.

We build this CDS protocol in two steps. We first build a protocol that has
constant soundness error. That is, even if the corrupt Pi is sending inconsistent
inputs to O{i,j} and O{i,j′}, there is a constant probability that the output of
O{j,j′} is not switched to random. In the second step, we show how to bring
down this soundness error to negligible.

CDS Functionality. For simplicity of notation, let us fix j = 1, j′ = 2 and
i = 3. Assume for simplicity that P3’s private input is a single bit and P1 and
P2’s private inputs used in the CDS protocol are two random bits y1 and y2
respectively. The CDS protocol ensures that if P3’s input to O{1,3} and O{2,3}
are the same then, all the parties can recover y1⊕y2. Else, y1, y2 are hidden from
the view of the adversary. We observe that this is sufficient to erase the output
of O{1,2} as we can add y1 ⊕ y2 to the original output and send this modified
output to each party. If the adversary sends consistent outputs, then every party
can recover y1 ⊕ y2 and use this to unmask the output of O{1,2}. To protect the
privacy of honest parties, we additionally need that CDS protocol not to leak
any information about x3 if P3 was honest.

Overview of Conditional Disclosure Protocol. We slightly abuse the notation
and we describe our CDS protocol as making parallel calls to 2-ary functions
(O{1,2},O{2,3},O{1,3}). In the final protocol, these CDS computations are baked
into the 2-ary functions.

Secure Computation with Parallel Calls to 2-Ary Functions 245

The following protocol will serve as the starting point for our construction.
P3 sends to both O{1,3} and O{2,3} the same degree-2 polynomial q(x) over F4

sampled uniformly at random subject to q(0) = x3. Inputs of P1 and P2 to O{1,3}
and O{2,3} are, respectively, α1 and α2, which are uniform non-zero elements
of F4. The output of O{1,3} (resp. O{2,3}) is (α1, q(α1)) (resp. (α2, q(α2))). The
function O{1,2} is not used in this construction.

This is not a conditional disclosure protocol since it does not reveal y1 ⊕ y2
in an honest execution. But, it hides (honest) P3’s input from colluding P1, P2.
P1 and P2 learn the evaluation of q(x) on at most two non-zero values. This
perfectly hides x3 from the collusion for the same reason a 2-private Shamir
secret sharing is perfectly secure. Furthermore, if P1 and P2 are honest, with
at least 1/9 probability, all honest parties detect if a corrupt P3 uses distinct
values of x3 for computing inputs to O{1,3} and O{2,3}. Because, in this case,
P3’s inputs to O{1,3} and O{2,3}, say q1(x) and q2(x), respectively, are distinct
degree-2 polynomials (if degree is more than 2, the functions output ⊥). Hence,
there exists a non-zero α ∈ F4 on which both these polynomials evaluate to
distinct values.3 With probability 1/9, (honest) P1 and P2 would choose α1 = α
and α2 = α, respectively, in which case, the function outputs reveal that q1(x) �=
q2(x), resulting in all honest parties aborting the protocol.

Next, we tweak this protocol so that y1 ⊕ y2 is revealed if the evaluation
of the polynomial(s) on α1 and α2 are not in conflict, and is perfectly hidden
if α1 = α2 and q1(α1) �= q2(α2). We achieve this as follows. We use O{1,2} to
output a list {y1 ⊕ y2 ⊕ θp ⊕ φp}p, where p ranges over all polynomials of degree
at most 2 over F4, and θp and φp are one-time pads chosen by P1 and P2 to
mask the secret. The behavior of O{1,3} is modified such that, for each p, it
gives up the value of θp only if p(α1) = q1(α1), where q1 is the polynomial input
by P3 to O{1,3}. Similarly, for each p, O{2,3} reveals φp for each p such that
p(α1) = q2(α1), where q2 is the polynomial input by P3 to O{2,3}. If there exists
a p such that p(α1) = q1(α1) and p(α2) = q2(α2), then by recovering θp and φp,
the decoder can unmask y1 ⊕ y2. Clearly such a p exists when P3 is honest and,
hence, q1 = q2. However, if a corrupt P3 provides distinct polynomials q1 and q2,
and P1 and P2 chose α1 and α2 that coincide with α such that q1(α) �= q2(α),
then there is no p for which θp and φp are simultaneously revealed by O{1,3} and
O{2,3}, respectively. This ensures that, with a constant probability (specifically,
1/9), y1 ⊕ y2 remains completely hidden from corrupt P3, when P1 and P2 are
honest. Note that, privacy of an honest P3 is still preserved: revealing the set of
polynomials that agree with a randomly chosen polynomial q that evaluates to
x3 on 0 on any non-zero α1 and α2 of P1 and P2’s choosing does not reveal x3.

This protocol has a clear flaw that allows a rushing P3 to choose q1 �= q2
without getting caught by honest parties: P3 can learn α1 chosen by P1 from
the output of O{1,3}. And, by looking at the polynomials that agree with q1 on
α1, it adaptively chooses q2(x) such that q1(0) �= q2(0). Then, the parties will
never detect that q1 �= q2 irrespective of the value of α2. This attack (in fact, all

3 Note that any two distinct degree-2 polynomials can have the same evaluation on at
most two points on the finite field.

246 V. Narayanan et al.

attacks in general from P3) can be circumvented by ensuring that α1 and α2 are
hidden from the adversary until the outputs of all 2-ary functions are revealed.
We achieve this by appropriately masking the variables in the output of the
functions that are sensitive to the value of α1 and α2 and ensuring that these
masks can be removed only when the outputs of all function calls are known.

Boosting Soundness. The above protocol ensures that if P3 sends inconsistent
input, then with 1/9 probability, y1 ⊕ y2 remains hidden. To boost this proba-
bility to be very close to 1, we use the parallel repetition. In particular, we run
the above protocol k times in parallel and wherein each repetition, P3 chooses
random polynomials q1 and q2 with the same constant term.4. We additionally
set the secrets of P1 and P2 to be the XOR of the secrets used in each repetition.
This construction guarantees that for an adversary to learn information about
the secrets of P1 and P2, it should not get caught in each of the k repetitions.
The probability of this event is upper bounded by (89)k (which is negligible in
k).

2.3 Relaxing to Computational Security

We now explain how to bootstrap the protocol for computing degree-2 polyno-
mials with PwKO to computing arbitrary functions with stronger security guar-
antees. We do this by relaxing the security to be computational. Recall that the
impossibility result only holds against computationally unbounded adversaries.

Let f be an arbitrary multiparty function that is computable by a poly-sized
circuit. Consider an augmented functionality g that takes in (xi, ski) from party
Pi where ski is a signing key for a digital signature scheme. For each i ∈ [n], g
first computes y = f(x1, . . . , xn). It then signs y using ski for each i ∈ [n] to
obtain the signature σi. Finally, g outputs (y, σ1, σ2, . . . , σn).5

The parties use an effective degree-2 MPRE with semi-malicious security
against arbitrary corruptions (see Definition 4.2) for computing the function g.6

The parties use the previous protocol with PwKO to compute the pre-processing
phase and the encoding function for the MPRE.7 The parties also use the 2-ary
functions to broadcast the verification key vki corresponding to ski. The parties
then use the MPRE decoder to learn the output of g. The parties finally check

4 We can modify the 2-ary function to output ⊥ if the constant terms are not the
same.

5 A similar transformation was used in [IKSS22] to obtain security with unanimous
abort from PwKO.

6 Such an MPRE was constructed in [ABT18,GS18] assuming the existence of a semi-
honest secure oblivious transfer.

7 Note that we can extend the previous protocol to first apply a local function on the
parties private inputs and then compute a degree-2 polynomial on the outputs of
these local functions. This allows us to compute the pre-processing phase inside the
2-ary functions and thus, allowing us to rely on an MPRE that is secure against
semi-malicious adversaries.

Secure Computation with Parallel Calls to 2-Ary Functions 247

if each σi is a valid signature on y under the verification key vki. If any of the
checks do not pass, the party aborts.

Note that from the security of the PwKO protocol, the adversary only learns
the output of degree-2 polynomial computation on the pre-processed values and
this corresponds to the output of the encoding function of the MPRE. From
the MPRE security, this encoding can be generated only given the output of g,
and the inputs and randomness of the corrupted parties. If the adversary sends
some other value as the output to the honest parties, then it corresponds to
sending a tampered MPRE encoding. Note that all the honest parties will get
the same output (y′, σ′

1, . . . , σ
′
n) as the decoding for MPRE does not require any

secret state. If y �= y′, it follows from the security of the digital signature scheme
that each honest party will abort. If y = y′, but some signature check does not
pass, then once again all the honest parties will abort as the verification check
is publicly computable. The only case where all the honest parties will output y
is when y = y′ and all the verification checks pass.

Extensions. We observe that the same construction can be instantiated with a
degree-2 MPRE with semi-malicious security in the honest majority setting to
obtain a protocol secure against malicious adversaries that corrupt a minority
of the parties. [ABT18][Theorem 1.2] constructed such an MPRE assuming one-
way functions. The complexity of this construction is polynomial in the number
of parties and the size of the circuit representing the function. Using this MPRE
construction, we obtain a protocol in our model that computes any function
with unanimous abort against a computationally-bounded malicious adversary
corrupting a strict minority of the parties. The security of this construction
relies on one-way functions. We also show that if the parties have access to 3-ary
functions (instead of 2-ary), then we can rely on the MPRE construction from
Beaver et al. [BMR90] to give an analogous result in the dishonest majority. The
security of this protocol again relies on the existence of one-way functions.

3 Open Problems

We highlight some interesting problems left open by our work.

– Minimizing Assumption in Dishonest Majority. Assuming the exis-
tence of one-way functions, 3-ary functions can be used to achieve compu-
tational security with unanimous abort against an arbitrary number of cor-
ruptions. Similarly, 2-ary functions can be used to achieve the same against
a strict minority of corruptions. We leave open the possibility of achieving
security with abort with parallel calls to 2-ary functions in the dishonest
majority setting based on one-way functions. This work also leaves open the
(im)possibility of unconditional security with unanimous abort even with par-
allel calls to (n − 1)-ary functions.

– Using Private Decoders. Our impossibility result relied on the decoder
to be public, i.e., not have any secret state. One way to get around our

248 V. Narayanan et al.

impossibility in the statistical setting is to resort to using private decoders
(which take the secret state of a party as an additional input) and settling for
security with selective abort, where the adversary may select the set of honest
parties who are denied the output of the computation. [ABT18][Theorem 1.1]
showed the existence of a perfectly secure degree-2 MPRE (hence, perfectly
secure semi-malicious degree-2 MPRE) in the honest majority setting for any
function that is computed by a branching program. Hence, using our CDS
construction (which is secure against dishonest majority), we can securely
compute any branching program with statistical PwKO when there is an
honest majority. We can then use a standard transformation from PwKO
to selective abort described in [IKP10]. This transformation uses a Message
Authentication Code (MACs) and the private decoding is needed so that the
parties can check the validity of the tags.
We leave open the possibility of achieving statistical security with selective
abort for arbitrary corruptions using private decoding. An astute reader may
have noticed that the construction sketched above gives rise to such a pro-
tocol if there exists a statistical degree-2 MPRE for arbitrary corruptions
or a statistical degree-2 RE. Hence, the existence of such MPRE or RE–a
long standing open problem–acts as a barrier to proving the impossibility of
constructing such protocols with private decoding.

– Achieving Identifiable Abort. Our protocols do not satisfy identifiable
abort security which guarantees that at least one of the corrupt parties can
be detected by the honest parties whenever the protocol aborts. We leave
open the problem of achieving identifiable abort in our model.

– Guaranteed Output Delivery. We also leave open the possibility of achiev-
ing guaranteed output delivery in our model. The existing results [FGMO01]
imply this is impossible when there is a dishonest majority. However, the
problem remains open when there is an honest majority.

4 Definitions

Notations. The set {1, 2, . . . ,m} is denoted by [m]. A sequence (xi1 , . . . , xim),
where (i1, . . . , im) = S will be denoted by {xi}i∈S ; when S is clear from the
context, simply write {xi}. When S ⊆ [m], we will sometimes abuse the notation
to denote f(x1, . . . , xm) as f({xi}i∈S , {xi}i∈[m]\S).

We consider a secure computation model in which n parties securely compute
a function by making parallel calls to 2-ary functions with no further interaction.
Universally composable security (UC-security) against malicious adversaries, as
conceived in [Can01], will be the focus of this work.

Let λ ∈ N be the security parameter. Let n ∈ N and let P1, . . . , Pn be a set
of distinct parties. Let f be an n-party functionality f : X1 × . . . × Xn → Y.

Definition 4.1. An n-party protocol Π = ({O{i,j}},Enc,Dec) for securely real-
izing a functionality f using parallel calls to 2-ary functions {O{i,j}}, where
O{i,j} : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for each {i, j} ∈ (

[n]
2

)
, is described by an

encoding function Enc and a decoding function Dec. Π proceeds as follows.

Secure Computation with Parallel Calls to 2-Ary Functions 249

– Each party Pi has private input xi ∈ Xi. It samples private randomness ri

uniformly from {0, 1}∗, and computes y(i,j) = Enc(1λ, (i, j), xi, ri) for each
j �= i.

– For each {i, j} ∈ (
[n]
2

)
, Pi and Pj invoke the 2-ary function O{i,j} with inputs

y(i,j) and y(j,i), respectively, which delivers z{i,j} = O{i,j}(y(i,j), y(j,i)) to all
parties.

– Finally, each Pk outputs Dec(1λ, {z{i,j}}) and terminates. If output of Pk is
⊥, we say that Pk has aborted the protocol.

We say that Π securely computes f if, for any non-uniform polynomial time
adversary A that corrupts an arbitrary subset M ⊂ [n] of the parties, there exists
an ideal world PPT simulator Sim such that, for every choice of inputs {xi}i∈[n]:

(ViewA, out) ≈c Ideal(1λ,SimF({xi}i∈[n]\M ,·), {xi}i∈M) (1)

In the above, ViewA refers to the view of the adversary A (which includes the
input, randomness, and the outputs of the function calls) and out refers to the
output of all (honest) parties in the real execution of the protocol, which coincide
as they use the same decoder. Ideal refers to the ideal execution of the proto-
col. This starts with the Sim run on 1λ, {xi}i∈M . F({xi}i∈[n]\M , ·) takes inputs
{x̃i}i∈M from Sim and computes the output of f with the inputs of the honest
parties being fixed to {xi}i∈[n]\M and the inputs of the corrupt parties being fixed
to {x̃i}i∈M . It delivers this output to Sim. If Sim sends an instruction to deliver
the outputs to the honest parties, the functionality delivers the above computed
output. Else, it asks the honest parties to abort. The output of Ideal corresponds
to the output of Sim and the output of all the honest parties.

We can extend the above definition to consider computationally unbounded
adversaries A. In this case, we allow the simulator Sim and the distinguisher in
Equation (1) to be unbounded. In this case, we say that the protocol satisfies
statistical security.

Definition 4.1 can be generalized to n-party non-interactive protocols using
k-ary functions (k < n) which take inputs from sets of k parties.

Definition 4.1 considers a strong security guarantee where all the honest
parties either compute the output or all of them abort. This is known as security
with unanimous abort. Some of the protocols we construct enjoy a weaker notion
of security, which we define below:

Privacy with Knowledge of Output. A protocol is said to guarantee privacy with
knowledge of outputs (PwKO) if the malicious adversary learns only the output
of the function computation, and each honest party outputs a value that is
chosen by the adversary for that party based (only) on the output of the function
computation. This corresponds to realizing the functionality FPwKO which works
exactly like F until it sends the output to Sim. However, after delivering the
output to Sim, the functionality accepts an input o ∈ codomain(f) ∪ {⊥} from
Sim, and delivers o as output to all honest parties.

250 V. Narayanan et al.

4.1 Multiparty Randomized Encoding

Ishai and Kushilevitz introduced the notion of randomizing polynomials in [IK00]
which was later generalized to Randomized Encoding (RE) by Applebaum, Ishai
and Kushilevitz in [AIK04]. A function f is encoded by a randomized function f̂

if the output of f̂ allows reconstruction of the output of f and nothing more. The
function f is trivially a randomized encoding of itself. The utility of this notion
is rooted in the observation that it is possible to obtain randomized encodings
which are simpler than the function itself. A well studied notion of simplicity
is the degree of the randomized encoding when the output of f̂ is viewed as a
multi-variate polynomial of x1, . . . , xn, r, where x1, . . . , xn are the inputs to f
and r is the randomness used in the encoding.

Multiparty randomized encoding (MPRE) was introduced by Applebaum,
Brakerski and Tsabary in [ABT18] as a generalization of randomized encoding.
We are intereseted in MPRE that remains secure against an arbitrary number
of corruption, which we define below:

Definition 4.2 (Degree-d MPRE [ABT18]). Consider an n-party function
f : X1 × . . . × Xn → Y. f̂ is a degree d multiparty randomized encoding of f
if f̂ can be described as a polynomial of degree-d over GF[2], and the following
conditions hold for a set of preprocessing functions h1, . . . , hn.

– Correctness. There is a decoder Dec such that, for every input x1, . . . , xn,
and every choice of private randomness r1, . . . , rn, we have:

Dec
(
f̂

(
h1(1λ, x1; r1), . . . , hn(1λ, xn; rn)

))
= f(x1, . . . , xn)

– Privacy. For every subset M ⊂ [n] and for any non-uniform polynomial time
adversary A corrupting parties in M , we have a simulator Sim such that, when
{ri}i∈[n]\M are uniformly sampled, for all x1, . . . , xn and {ri}i∈M ,

f̂
(
h1(1λ, x1; r1), . . . , hn(1λ, xn; rn)

) ≈ Sim(f(x1, . . . , xn), {xi, ri}i∈M). (2)

Here ≈ denotes computational indistinguishability.
In the general definition of MPRE, each party uses a private decoder which,

in addition to the encoding, uses the party’s input and private randomness
to compute the output of the function. However, in the above definition, the
decoder is public. Such an MPRE was constructed in [GS17,GS18,ABT18] by
transforming a secure computation protocol that computes the function with
semi-malicious security–security is guaranteed even when the adversary chooses
arbitrary private randomness for corrupt parties. To arrange for public decoding
of this MPRE, it suffices to append an additional round of communication to
the corresponding protocol, in which the output of the function computation
is broadcasted. We note that such a multi-round semi-malicious secure proto-
col can be constructed from any multi-round semi-honest secure OT protocol
via the GMW transformation [GMW87] or making black-box use of semi-honest
OT [HIK+11].

Secure Computation with Parallel Calls to 2-Ary Functions 251

4.2 One-Time Digital Signature

Definition 4.3 (One-time digital signature scheme). Let λ be a security
parameter. A triple of algorithms (Gen,Sig,Ver) is a one-time digital signature
scheme if the following properties are met:

Authentication. When r is chosen uniformly, for all x ∈ {0, 1}m,

Pr
[
Ver(x,Sig(x, sk), vk) = 1|(sk, vk) ← Gen(1λ, r)

]
= 1

Unforgeability. For any non-uniform polynomial time adversary A, for any x,

Pr

⎡
⎢⎣(x �= x′) ∧ (Ver(x′, t′, vk) = 1)

∣∣∣∣∣∣∣

(sk, vk) ← Gen(1λ, r)
t = Sig(x, sk)

(x′, t′) ← A(1λ, x, vk, t)

⎤
⎥⎦ = negl(λ).

One-time digital signatures exist if one-way functions exist [Lam16].

5 Impossibility of Statistical Security with Abort

We begin by exploring the limitations of this model owing to non-interactivity.
Indeed, secure computation with abort is impossible for certain simple 3-party
functions in this model against a computationally unbounded adversary. We will
also show that this impossibility can be further extended to n-party setting when
the adversary may corrupt more than half of the participants.

Theorem 5.1. There exists a 3-party function f that can be computed using a
degree 2-polynomial such that no protocol making parallel uses to 2-ary functions
achieves statistically secure computation of f with abort against a malicious
adversary corrupting arbitrarily many parties.

Proof. We will show that the theorem holds for the 3-party function f that takes
xi ∈ F4 from each Pi and outputs 0 if x1 +x2 +x3 = 0 and outputs 1 otherwise.
When an element xi in F4 is represented as a 2-dimensional vector (xi,0, xi,1), f
is computed by the following degree-2 polynomial over F2:

f((x1,0, x1,1), (x2,0, x2,1), (x3,0, x3,1)) = (x1,0 ⊕ x2,0 ⊕ x3,0) ∨ (x1,2 ⊕ x2,2 ⊕ x3,1).

Suppose Π = ({O{i,j}},Enc,Dec) is a secure protocol computing f with
abort. Let ε ≥ 0 be some constant such that the advantage of any computation-
ally unbounded adversary in breaking the protocol is at most ε. That is, when ≈ε

denotes statistical distance of at most ε, for any adversary A corrupting M ⊂ [3],

(ViewA, out) ≈ε Ideal(1λ,SimFSA({xi}i∈[n]\M ,·), {xi}i∈M).

Consider an honest execution of Π with each xi is distributed uniformly and
independently over F4. Let z{1,2}, z{2,3} and z{1,3} be the output of 2-ary func-
tions O{1,2},O{2,3} and O{3,1}, respectively. That is, when r1, r2, r3 are sampled
uniformly, and y(i,j) = Enc((i, j), xi, ri) for distinct i, j ∈ [3],

z{1,2} = O{1,2}(y(1,2), y(2,1)) z{2,3} = O{2,3}(y(2,3), y(3,2))
z{1,3} = O{3,1}(y(1,3), y(3,1)), (3)

252 V. Narayanan et al.

Claim 5.1.1. Over the randomness of x1, x2, x3, r1, r2, r3,

Pr
[
∃(x′

1, r
′
1, x

′
2, r

′
2) s.t. y′

(1,2) = Enc((1, 2), x′
1, r

′
1), y

′
(2,1) = Enc((2, 1), x′

2, r
′
2),

and Dec(O{1,2}(y′
(1,2), y

′
(2,1)), z{1,3}, z{2,3}) /∈ {⊥, f(x1, x2, x3)}

]
≤ 9ε, (4)

and

Pr
[
∃(x′

1, r
′
1, x

′
3, r

′
3) s.t. y′

(1,3) = Enc((1, 3), x′
1, r

′
1), y

′
(3,1) = Enc((3, 1), x′

3, r
′
3),

and Dec(z{1,2},O{1,3}(y′
(1,3), y

′
(3,1)), z{2,3}) /∈ {⊥, f(x1, x2, x3)}

]
≤ 9ε. (5)

Before proving the claim, we will use this claim to prove the theorem. Con-
sider an adversary A1 that corrupts P1 and behaves as described in Fig. 2

Fig. 2. Description of A1.

We now argue that Π is not secure against A1. Let r2 and r3 be the private
randomness used by P2 and P3, respectively. Let y(i,j) = Enc((i, j), xi, ri) for
each i ∈ [3], j �= i. Then, z{i,j} = O{i,j}(y(i,j), y(j,i)) for each {i, j} �= {1, 3}.
Defining z̃{1,3} = O{1,2}(y(1,3), y(3,1)), z{1,2}, z{2,3} and z̃{1,3} are the outputs
of the function calls in an honest execution of Π with xi as input and ri as
randomness of each Pi. Hence,

Pr
[
Dec(z{1,2}, z{2,3}, z{1,3}) = f(x1, x2, x3)

] ≥ 1 − ε.

This along with eq. (5) implies Pr [a1 = f(x1, x2, x3)] ≥ 1 − 10ε. Using the same
line of argument, Pr [a0 = f(1 + x1, x2, x3)] ≥ 1 − 10ε. Thus, in the real execu-
tion, A1 successfully computes f(x1, x2, x3) and f(1+x1, x2, x3) with probability
at least 1 − 20ε.

Pr[f(x1 + 1, x2, x3) = 1|f(x1, x2, x3) = 1] = 2/3, and f(x1, x2, x3) = 1 with
probability 3/4 for any x1, when of x2 and x3 are chosen uniformly. Hence,
the simulator will fail to simultaneously guess the values of f(x1, x2, x3) and
f(x1 + 1, x2, x3) with probability at least 1/4. Thus, for sufficiently small ε, this
contradicts security with at most ε distinguishing advantage against an adversary
that corrupts at most 2 parties. We conclude the proof by proving the claim.

Secure Computation with Parallel Calls to 2-Ary Functions 253

Proof (of Claim 5.1.1). We will prove Equation (4); Equation (5) can be proved
similarly. Consider an adversary A1,2 that corrupts P1 and P2, and behaves as
described in Fig. 3.

Fig. 3. Description of A1,2.

We define a couple of distinguishers D1 and D2 that take the view of A1,2

and inputs/outputs of P3 and does the following:

1. D1 extracts z{1,3} and z{2,3} from the view of A1,2. It then extracts (x1,
r1, x2, r2) from A1,2’s view and computes z{1,2}. If Dec(z{1,2}, z{1,3}, z{2,3}) =
f(x1, x2, x3), D1 outputs 1, and outputs 0 otherwise.

2. If the output of P3 is not equal to f(x1, x2, x3) or ⊥, D2 outputs 1, and
outputs 0 otherwise.

We prove that, when ε is sufficiently small, there exists no simulator that guar-
antees at most ε distinguishability advantage against both D1 and D2 if

Pr
[
∃(x′

1, r
′
1, x

′
2, r

′
2) s.t. y′

(1,2) = Enc((1, 2), x′
1, r

′
1), y

′
(2,1) = Enc((2, 1), x′

2, r
′
2),

and Dec(O{1,2}(y′
(1,2), y

′
(2,1)), z{1,3}, z{2,3}) /∈ {⊥, f(x1, x2, x3)}

]
> 9ε.

(6)

Suppose such a simulator Sim exists. Let x̂1 and x̂2 be the inputs of P1 and
P2 used by Sim while invoking the functionality. We use security against D2 to
argue that x̂2 + x̂1 �= x2 + x1 with substantial probability. If x̂2 + x̂1 = x2 + x1,
then f(x1, x2, x3) = f(x̂1, x̂2, x3) for any x3. Hence,

Pr [D2 outputs 1 in the ideal execution] = Pr[f(x1, x2, x3) �= f(x̂1, x̂2, x3)]
≤ Pr[x̂2 + x̂1 �= x2 + x1].

254 V. Narayanan et al.

Whereas, by our assumption in eq. (6), and the property of A1,2, D2 outputs 1
in the real execution with probability more than 9ε. Since the probability with
which D2 outputs 1 in real and ideal executions are at most ε apart, the above
observations imply that

8ε < Pr [D2 outputs 1 in the real execution] − ε

≤ Pr [D2 outputs 1 in the ideal execution] ≤ Pr[x̂2 + x̂1 �= x2 + x1]. (7)

Next, we use security against D1 to argue that x̂2 + x̂1 �= x2 + x1 can only
occur with very low probability, reaching a contradiction. If x̂2 + x̂1 �= x2 + x1,
over the randomness of x3,

Pr [f(x1, x2, x3) = 0 | x̂2 + x̂1 �= x2 + x1, f(x̂1, x̂2, x3) = 1] = 1/3.

Note that Dec(O{1,2}(y(1,2), y(2,1)), ẑ{1,3}, ẑ{2,3}) is a value that the simulator
computes using x1, x2, x̂1, x̂2 and f(x̂1, x̂2, x3) and its own private randomness.
Since an 2/3-biased coin cannot be guessed with non-zero advantage, the above
condition implies that, when E is the event x̂2 + x̂1 �= x2 + x1, f(x̂1, x̂2, x3) = 1,

Pr
[
Dec(O{1,2}(y(1,2), y(2,1)), ẑ{1,3}, ẑ{2,3}) �= f(x1, x2, x3) | E

] ≥ 1/3.

The above equality implies

Pr [D1 outputs 1 in the ideal execution]

= Pr
[
Dec(O{1,2}(y(1,2), y(2,1)), ẑ{1,3}, ẑ{2,3}) = f(x1, x2, x3)

]

≤ 1 − 1
3
Pr[x̂2 + x̂1 �= x2 + x1, f(x̂1, x̂2, x3) = 1]

≤ 1 − 1
4
Pr[x̂2 + x̂1 �= x2 + x1]. (8)

The last inequality used f(x̂1, x̂2, x3) = 1 with probability 3/4 over the random-
ness of x3.

Next, we bound the probability with which D1 outputs 1 in the real exe-
cution. Since r1 and r2 are sampled uniformly from {0, 1}∗ and P3 is honest,
random variables (z{1,2}, z{2,3}, z{1,3}) are identically distributed as in an honest
execution of Π (as described in Equation (3)). By correctness of the protocol
when all parties are honest, the output of the decoder is f(x1, x2, x3) with prob-
ability at least 1 − ε. In other words,

Pr [D1 outputs 1 in the real execution]

=Pr
[
Dec(z{1,2}, z{1,3}, z{2,3}) = f(x1, x2, x3)

] ≥ 1 − ε. (9)

The probability with which D1 outputs 1 in real and ideal executions are at
most ε apart. Hence, by eq. (8) and eq. (9),

1 − 2ε ≤ Pr [D1 outputs 1 in the real execution] − ε

≤ Pr [D1 outputs 1 in the ideal execution] ≤ 1 − 1
4
Pr[x̂2 + x̂1 �= x2 + x1].

Hence, Pr[x̂2 + x̂1 �= x2 + x1] ≤ 8ε. This contradicts eq. (7). We conclude that
Sim does not exist; proof is complete. ��

Secure Computation with Parallel Calls to 2-Ary Functions 255

This completes the proof of the theorem. ��
Using a similar analysis we can extend the above result to n-party func-

tions against an adversary that corrupts a majority of the parties. The following
theorem is proved in the full version [NPS24].

Theorem 5.2. There exists an n-party function f such that no protocol making
parallel uses of 2-ary functions that securely computes f with statistical security
with abort against a malicious adversary corrupting at most �n/2� parties.

6 Positive Results

In this section, we give our two positive results, namely, a statistical PwKO pro-
tocol for computing degree-2 functions and computationally secure protocol for
computing arbitrary functions. A key building block used in these constructions
is conditional disclosure of secrets protocol that is described next.

6.1 Conditional Disclosure Protocol

A crucial building block in our later constructions is the so-called conditional
disclosure protocol which ensures that the inputs used by any (corrupt) party
Pi during their oracle calls to the 2-ary functions in the larger non-interactive
protocol are consistent.

A conditional disclosure protocol in which parties Pi and Pj verify the con-
sistency of Pk’s inputs to O{i,k} and O{j,k} is a n-party non-interactive protocol
with parallel use of 2-ary functions that effectively delivers a secret that is addi-
tively secret shared between Pi and Pj to all parties if Pk’s input to O{i,k} and
O{j,k} are consistent. If Pk uses inconsistent inputs, then all parties detect mal-
practice and abort; furthermore, the secret inputs of Pi and Pk are kept hidden
from the adversary. On the other hand, when Pi and Pj are corrupt, the pro-
tocol ensures perfect privacy of Pk’s input. The n-party conditional disclosure
protocol in which Pi and Pj verify Pk is denoted by CD{i,j},k.

Definition 6.1. Let Pi, Pj , Pk be distinct parties. Let CD{i,j},k be an n-party
protocol using parallel use of 2-ary functions with xi, xj ∈ {0, 1}m, respec-
tively, as inputs of Pi, Pj and xk ∈ {0, 1}� as the input of Pk, and no
inputs from the remaining parties, described by encoder Enc, 2-ary functions
{O{i,j},O{j,k},O{i,k}} and a decoder Dec. CD{i,j},k is said to be a conditional
disclosure protocol with Pi and Pj verifying Pk with ε(λ) soundness if the fol-
lowing properties are met.

1. If Pi, Pj , Pk are honest, all honest parties output xi ⊕ xj at the end of the
protocol.

2. If Pk is honest, a malicious adversary corrupting Pi and Pj does not learn xk.
That is, the view of the adversary corrupting Pi, Pj is identically distributed
irrespective of the value of xk.

256 V. Narayanan et al.

3. Π offers ε(λ) soundness if for any computationally unbounded adversary A
that corrupts a set of parties {Pa}a∈C such that {i, j} ∩ C = ∅, there exists
an ideal world PPT simulator Sim such that the following conditions are met:
(a) For every choice of inputs {xa}a∈{i,j,k}

(ViewA, out) ≡ Ideal(1λ,Sim
FCD{i,j},k

(xi,xj ,·)
, xk). (10)

Here, ViewA refers to the view of the adversary A (which includes the
input, randomness, and the outputs of the function calls) and out refers to
the output of all honest parties which coincide. Ideal refers to the ideal exe-
cution of the protocol. This starts with the Sim run on 1λ, xk. If F(xi, xj , ·)
receives a b = 1 from Sim, it delivers xi ⊕ xj to Sim, and all the honest
parties; if b = 0, it delivers ⊥ to Sim and all honest parties. The output
of Ideal corresponds to the output of Sim and the output of all the honest
parties (which coincide).

(b) Conditioned on the event that the input of Sim to O{i,k} and O{j,k} are,
respectively, y{i,k} and y{j,k} such that y{i,k} belongs to the domain of
Enc((i, k), x′

k, ·) and y{j,k} belongs to the domain of Enc((j, k), x′′
k , ·), and

x′
k �= x′′

k, the input of Sim to F(xi, xj , ·) is 0 with probability 1 − ε(λ).

Remark 6.2. Consider an execution of CD{i,j},k in which an adversary corrupts
Pk, while both Pi and Pj are honest. In our definition, conditioned on Sim sending
b = 0 to FCD, Sim perfectly simulated the view of the adversary without knowing
the secret, and the output of all honest parties is ⊥. This models the soundness
requirement that the secret that is shared between Pi and Pj remains hidden
from the adversary, and that all honest parties output ⊥. This justifyies defining
soundness as the probability with which Sim sends b = 1 conditioned on the
event that the adversary sends inconsistent values of xk to O{j,k} and O{i,k} on
behalf of Pk.

Figure 4 provides a formal description of the protocol which clarifies how the
aforementioned masking is carried out. The protocol also hides the secret in the
degree 2 term instead of the constant term allowing the construction to be based
on F3 rather than F4. Lemma 6.3 formally proves that the construction is a 1/9
sound conditional disclosure protocol where P1 and P2 verify P3’s inputs.

Lemma 6.3. The protocol CD{12},3 in Fig. 4 is a conditional disclosure protocol
where P1 and P2 with single bit secret verify the single-bit input of P3 with 8/9
soundness.

Proof. When P3 is honest, for any α1 and α2 chosen by P1 and P2, there exists
p ∈ F

2
3 (specifically p(u) = x3u

2 +c1u+c0) such that p(αi) = x3(αi)2 +c1αi +c0
for i = 1, 2. Hence, γp computed by O{1,3} and γ′

p computed by O{2,3} are both
1. Hence, the protocol satisfies the first condition in the definition of conditional
disclosure protocol in Definition 6.1.

Next, we prove that it satisfies the second condition in Definition 6.1. The
view of the adversary consists of x1, x2, the set of masks, α1 and α2 chosen by

Secure Computation with Parallel Calls to 2-Ary Functions 257

Fig. 4. Conditional disclosure protocol with 8/9 soundness in which P1 and P2 sharing
a 1-bit secret verify P3’s 1-bit input to O{1,3} and O{2,3}.

P1 and P2, and the class of polynomials P1 and P1, where, for each i ∈ {1, 2},
Pi contains the set of all degree-2 polynomials p such that p(αi) = x3(αi)2 +
c1αi +c0. It is easy to see that this view only reveals x3α

2
i +c1αi +c0 for i = 1, 2.

Since c0 and c1 are uniformly and independently sampled by P3, irrespective of
the values of α1 and α2, these values are identically distributed for x3 = 0, 1. In
other words, the view of the adversary can be perfectly simulated irrespective of
the value of x3, satisfying the second condition.

Next, we show that the protocol is 8/9-sound by showing that the simulator
Sim in Fig. 5 satisfies the conditions in Definition 6.1.

258 V. Narayanan et al.

Fig. 5. Conditional disclosure protocol with 8/9 soundness in which P1 and P2 sharing
a 1-bit secret verify P3’s 1-bit input to O{1,3} and O{2,3}.

We show that w.r.t. any adversary A, the real world and the ideal world
executions are computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the real world execution of the protocol.
• Hyb1 : Let (x3,{1,3}, r3,{1,3}) and (x3,{2,3}, r3,{2,3}) be P3’s input to O{2,3}

and O{1,3}, respectively. Interpret r3,{1,3} as (c0,{1,3}, c1,{1,3}) and r3,{2,3} as
(c0,{2,3}, c1,{2,3}). In this hybrid, check if x2,{1,3} �= x3,{1,3}, α1 = α2 and eq.
(11) are together satisfied. If not, change the output of O{1,2} to {(θp,1 +
φp,1, ap ⊕ b′

p, bp ⊕ a′
p)}. If O{1,3} is invoked after O{2,3}, replace θp,1 with

x1 ⊕ x2 ⊕ θp,1 before computing the output of O{1,3}. Likewise, if O{2,3} is
invoked after O{1,3}, replace φp,1 with x1 ⊕ x2 ⊕ θp,1 before computing the
output of O{2,3}. If the check succeeds, make no changes.

• Hyb2 : In this hybrid, make the following change if the same check succeeds:
change the output of O{1,2} to (θp,1 ⊕ φp,1, ap ⊕ b′

p, bp ⊕ a′
p).

Hyb0 is perfectly indistinguishable from Hyb1 because

{x1 ⊕ x2 ⊕ (θp,1 + φp,1, ap ⊕ b′
p, bp ⊕ a′

p), θp,1, φp,1, ap, bp, a
′
p, b

′
p}p

≡ {(θp,1 + φp,1, ap ⊕ b′
p, bp ⊕ a′

p), x1 ⊕ x2 ⊕ θp,1, φp,1, ap, bp, a
′
p, b

′
p}p

≡ {(θp,1 + φp,1, ap ⊕ b′
p, bp ⊕ a′

p), θp,1, x1 ⊕ x2 ⊕ φp,1, ap, bp, a
′
p, b

′
p}p.

Secure Computation with Parallel Calls to 2-Ary Functions 259

When the check succeeds, for each p, γp = 1 − γ′
p. Since θp,1, φp,1 are uniformly

and independently chosen,

{x1 ⊕ x2 ⊕ (θp,1 + φp,1, ap ⊕ b′
p, bp ⊕ a′

p), ap, bp, a
′
p, b

′
p, θp,γp

, φp,γ′
p
}p

≡ {(θp,1 + φp,1, ap ⊕ b′
p, bp ⊕ a′

p), ap, bp, a
′
p, b

′
p, θp,γp

, φp,γ′
p
}p.

Hence Hyb1 ≡ Hyb2. It can be verified that Hyb2 corresponds to the ideal execu-
tion using Sim. To show that the soundness error of the scheme is at most 8/9,
we need to show that Sim sends b = 0 to the functionality with probability at
least 1/9 when x2,{1,3} �= x3,{1,3}. This event occurs if and only if α1 = α2 and
eq. (11) are simultaneously satisfied, when x2,{1,3} �= x3,{1,3}.

Owing to the symmetry, we assume, without loss of generality, that adver-
sary rushes to obtain the output of O{1,2}; then adaptively chooses the input
(x3,{1,3}, c0,{1,3}, c1,{1,3}) to O{1,3}, obtains the output; then adaptively chooses
the input (1 ⊕ x3,{1,3}, c0,{2,3}, c1,{2,3}) to O{2,3}, obtains its output. For any
choice of c0,{1,3}, c1,{1,3}, the adversary only learns (x1 ⊕ x2 ⊕ θp,1 ⊕ φp,1, ap ⊕
b′
p, bp ⊕ a′

p) for each p as the output of O{1,2}, and (γp ⊕ ap, θp,γp
, a′

p) for each p
from the output of O{1,3}. For any p ∈ F3[u], ap and b′

p are uniform independent
bits. Hence, the value of γp is completely hidden from the adversary who knows
γp ⊕ ap and ap ⊕ b′

p. Thus, the above set of values are identically distributed
irrespective of the values of α1 (and, trivially, irrespective of α2 since no func-
tion of α2 has been revealed by O{1,2} and O{1,3}). We conclude that, α1 and α2

are uniformly and independently distributed in F3, conditioned on adversary’s
view after the evaluation of O{1,2} and O{2,3}. In other words, the distribution of
c0,{1,3}, c1,{1,3}, c0,{2,3} and c1,{2,3} chosen by the adversary is independent of the
distribution of α1, α2. Thus, when x2,{1,3} �= x3,{1,3}, the event where α1 = α2

and eq. (11) are simultaneously satisfied occurs with probability at least 1/9.
This concludes the proof of the lemma. ��

Boosting Soundness of Conditional Disclosure. The protocol presented in
the previous section only guarantees that a corrupt P3 which provides inconsis-
tent inputs to O{1,3} and O{2,3} would be detected with a constant probability,
in which event the decoder reports an abort and the secret is hidden from the
adversary. The following simple construction boosts the probability of this event
such that it occurs with overwhelming probability.

To achieve soundness of negl(λ), the construction repeats the simple protocol
λ times. If every execution succeeds, we require the parties to correctly recover
the secrets. However, if the decoder reports an abort in any of the execution,
which occurs independently with probability at least 1/9 in each execution if
the bit being verified is inconsistent, we require the secret to be completely
hidden from the adversary, and the parties to report an abort. This is easy to
arrange by having each repetition reveal an additive secret share of x1 ⊕ x2; for
this, P1 and P2 provide an additive secret share of their respective inputs as
inputs to each execution. Crucially, all λ repetitions of the protocol takes the
same input x3 from P3; Formally, the input of P3 to both O{1,3} and O{2,3} is

260 V. Narayanan et al.

x3, {c0,i, c1,i}i∈[λ], where cb,j is uniformly and independently chosen from F3 for
each i ∈ [λ] and b ∈ {0, 1}. The polynomial used in repetition i is the polynomial
q(u) = x3 · u2 + c1,� · u + c0,�. This ensures that each execution (independently)
has at least 1/9 probability of failing if (corrupt) P3 uses inconsistent values of
x3 in O{1,3} and O{2,3}.

The above protocol can be further modified to handle string inputs from all
parties. Let x1, x2 ∈ {0, 1}m be the inputs of P1, P2, and x3 ∈ {0, 1}� be the
input of P3. Modify the previous construction to verify each of the
-bits in x3

with negl(λ) soundness error, and reveal x1 ⊕ x2 only if P3 provides consistent
values for every bit in x3. As in the previous construction, this is arranged by
having the verification of each bit reveal an additive secret share of x1 ⊕ x2.

By modifying the CD{12},3 described in Fig. 4 as discussed above, we obtain
the following result as a consequence of Lemma 6.3.

Theorem 6.4. For any m,
, λ, there exists a conditional disclosure protocol
CD{12},3 with P1 and P2 verifying P3 with
(8/9)λ soundness when P1 and P2

have m bit inputs and P3 has
 bit input.

A proof of this theorem is provided in the full version [NPS24]. We stress that,
this protocol can be modified to obtain a conditional disclosure protocol in which
inputs of parties belong to arbitrary sets: it suffices to flatten the input being
verified and the secret into strings.

6.2 Computing Degree-2 Functions with PwKO

A deterministic n-party function f that takes input xi ∈ {0, 1}m from party
Pi, i ∈ [n] has effective degree 2 if it can be decomposed into functions {h{i,j}},
where, for each {i, j} ∈ (

[n]
2

)
, h{i,j} : {0, 1}m ×{0, 1}m → G for an additive finite

group G, such that, for all x1, . . . , xn,

f(x1, . . . , xn) =
∑
{i,j}

h{i,j}(xi, xj). (12)

In this section, we construct a protocol that securely computes any function with
effective degree 2. The construction follows the intuition sketched in Sect. 2.2.

Description of the Protocol. Let f be a deterministic n-party function of
effective degree 2, and let {h{i,j}} be as described in eq. (12). Let λ ∈ N be a
security parameter. The Fig. 6 provides a formal description of a protocol that
securely computes f with PwKO when the input of each party Pi is xi.

The construction uses the following resources and notations: Let CD{i,j},k =
({CD{i,j},k.O{i,j}},CD{i,j},k.Enc,CD{i,j},k.Dec) be a conditional disclosure pro-
tocol with negl(λ) soundness, conditionally reveals the secret that is shared
between Pi and Pj after verifying the consistency of Pk’s input. For concise-
ness, we will drop 1λ in the argument, and denote CD{i,j},k.Enc(1λ, (i,
), ·, ·) by
CD{i,j},k.Enc(i,�)(·, ·), for all
 ∈ {j, k}, and so on.

Secure Computation with Parallel Calls to 2-Ary Functions 261

For legibility, we suppress the private randomness used in the encoder of Πf as
well as the conditional disclosure protocols invoked as sub-protocols. But, we
stress that, an honest party uses the same private randomness while invoking
the encoder to obtain their input to different 2-ary functions.

Fig. 6. Πf computes f of effective degree 2 with privacy with knowledge of output.

Correctness of the protocol. When all parties behave honestly, the output of
CD{i,j},k is s{i,j},k = si[j, k] + sj [i, k] for each {i, j, k} ∈ (

[n]
3

)
. This follows from

the correctness of conditional disclosure protocol. Furthermore, {γi[j]}j �=i forms

262 V. Narayanan et al.

an additive secret sharing of 0. Hence, the decoder outputs the following ensuring
correctness:

ẑ{i,j} −
∑

k/∈{i,j}
si[j, k]+sj [i, k] =

∑
{i,j}

h{i,j}(xi, xj)+
∑

i

∑
j �=i

γi[j] = f(x1, . . . , xn).

The security with PwKO of the protocol follows the outline presented in the
technical overview. A formal proof is provided in the full version [NPS24].

Theorem 6.5. The protocol Πf in Fig. 6 computes any n-party function f of
effective degree 2 with statistical security while guaranteeing privacy with knowl-
edge output against a malicious adversary that corrupts any set of parties.

6.3 Achieving General Secure Computation with Abort

We use the protocol developed in the previous section to realize general secure
computation with abort against computationally bounded adversaries. For this,
we will rely on a computational semi-malicious MPRE, as defined in Definition
4.2. In [ABT18, Theorem 7.3], Applebaum, Brakerski and Tsabary showed that
every n-party functionality f can be encoded by a computational degree-2 MPRE
f̂ with complexity polynomial in n and size of the circuit, by making non-black
box use of a (possibly multi-round) oblivious transfer.

Since degree-2 MPRE has effective degree-2, we can compute f by first com-
puting MPRE using the protocol in Fig. 6, and then decode the MPRE to com-
pute the function. Owing to computational security of the MPRE, the resulting
protocol securely computes f with PwKO against a computationally bounded
adversary corrupting any subset of parties.

We use a standard approach to bootstrap this protocol and achieve security
with abort. Instead of computing f in the aforementioned manner, compute a
signed version of f in which the output of f is appended with one-time signatures
(See Definition 4.3) of this value with respect to a signing key provided by each
party. All parties can verify the validity of the signatures using the respective
verifying keys. For this, every party broadcasts their verifying key in parallel
with the function computation. If at least one of the signatures is found to
be inconsistent, the parties unanimously declare abort instead of outputting the
candidate output. The resulting protocol securely computes f with abort against
a computationally unbounded adversary.

When all parties behave honestly, authenticity of the signature scheme (Def-
inition 4.3) guarantees that the verification succeeds and the parties output
the function output, ensuring correctness. Whereas, an adversary that attempts
to modify the function output will fail to provide consistent signatures with
overwhelming probability by the unforgeability property (Definition 4.3) of the
one-time signature scheme, resulting in all honest parties issuing abort. Here, we
have crucially relied on the PwKO guarantee of the underlying protocol to ensure
that the adversary does not learn the signing key of any of the honest parties.
We defer the formal proof of the following result to the full version [NPS24].

Secure Computation with Parallel Calls to 2-Ary Functions 263

Theorem 6.6. Assuming the existence of (possibly multi-round) oblivious trans-
fer that is secure against semi-honest adversaries, for every n-party functionality
f , there exists a non-interactive protocol using parallel calls to 2-ary functions
that achieves security with unanimous abort against a computationally bounded
malicious adversary that corrupts an arbitrary number of parties.

6.4 Extensions

Honest Majority Setting. The following result is obtained by instantiating the
same construction with semi-maliciously secure 2-MPRE against a dishonest
minority, which exists if one-way functions exist [ABT18]:

Theorem 6.7. Assuming the existence of one-way functions, for every n-party
functionality f , there exists a non-interactive protocol using parallel calls to 2-ary
functions that achieves security with unanimous abort against a computationally
bounded malicious adversary that corrupts a strict minority of parties.

3-ary functions. We consider the same problem in the setting where the parties
have access to 3-ary functions instead of 2-ary. We obtain the following result.

Theorem 6.8. Assuming the existence of one-way functions, for every n-party
functionality f , there exists a non-interactive protocol using parallel calls to 3-ary
functions that achieves security with unanimous abort against a computationally
bounded malicious adversary that corrupts an arbitrary number of parties.

This theorem is obtained by first constructing a protocol that securely com-
putes degree-3 polynomials with PwKO. Then, it uses the MPRE construction
from Beaver, Micali, and Rogaway [BMR90] in the bootstrapping step. We defer
the construction and its analysis to the full version [NPS24].

References

ABG+20. Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separating
two-round secure computation from oblivious transfer. In: Thomas Vidick,
editor, ITCS 2020, vol. 151, pp. 1–18, LIPIcs (2020)

ABT18. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in
two rounds. In: Beimel and Dziembowski, pp. 152–174 (2021)

ABT19. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the
round-complexity of malicious MPC. In: Ishai and Rijmen, pp. 504–531
(2019)

ACGJ18. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure
multiparty computation with honest majority. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. Part II, volume 10992 of LNCS, pp. 395–424.
Springer, Heidelberg (2018)

ACGJ19. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-
theoretic MPC with malicious security. In: Ishai and Rijmen, pp. 532–561
(2019)

264 V. Narayanan et al.

AG21. Applebaum, B., Goel, A.: On actively-secure elementary MPC reductions.
In: Nissim, K., Waters, B. (eds.) TCC 2021. Part I, volume 13042 of LNCS,
pp. 717–749. Springer, Heidelberg (2021)

AIK04. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th
FOCS, pp. 166–175. IEEE Computer Society Press (2004)

AIK07. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant
input locality. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
92–110. Springer, Heidelberg (2007)

BD18. Beimel, A., Dziembowski, S. (eds.): TCC 2018, Part I. LNCS, vol. 11239.
Springer, Heidelberg (2018)

BL18. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In: Nielsen and Rijmen,
pp. 500–532 (2018)

BMR90. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press
(1990)

BOSS20. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round
MPC with identifiable abort and public verifiability. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. Part II, volume 12171 of LNCS, pp.
562–592. Springer, Heidelberg (2020)

Can01. Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press (2001)

Cle86. Cleve, R.: Limits on the security of coin flips when half the processors are
faulty (extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press
(1986)

DI05. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a
black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005)

FGMO01. Fitzi, M., Garay, J.A., Maurer, U.M., Ostrovsky, R.: Minimal complete
primitives for secure multi-party computation. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 80–100. Springer, Heidelberg (2001)

FOC86. 27th FOCS.: IEEE Computer Society Press (1986)
GIS18. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic

and black-box. In: Beimel and Dziembowski, pp. 123–151 (2018)
GMW86. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but

their validity and a methodology of cryptographic protocol design (extended
abstract). In: FOCS 1986, pp. 174–187 (2019)

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Alfred Aho,
editor, 19th ACM STOC, pp. 218–229. ACM Press (1987)

GS17. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilin-
ear maps. In: Chris Umans, editor, 58th FOCS, pp. 588–599. IEEE Com-
puter Society Press (2017)

GS18. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen and Rijmen, pp. 468–499 (2022)

HIK+11. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box
constructions of protocols for secure computation. SIAM J. Comput. 40(2),
225–266 (2011)

HILL99. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

Secure Computation with Parallel Calls to 2-Ary Functions 265

HKW20. Hohenberger, S., Koppula, V., Waters, B.: Chosen ciphertext security
from injective trapdoor functions. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. Part I, volume 12170 of LNCS, pp. 836–866. Springer, Hei-
delberg (2020)

IK00. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: 41st FOCS, pp.
294–304. IEEE Computer Society Press (2000)

IKP10. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with
minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 577–594. Springer, Heidelberg (2010)

IKSS22. Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: Round-optimal black-box
secure computation from two-round malicious OT. In: Kiltz, E., Vaikun-
tanathan, V. (eds.) Theory of Cryptography - 20th International Confer-
ence, TCC 2022, Chicago, IL, USA, 7-10 November, 2022, Proceedings,
Part II, LNCS, vol. 13748, pp. 441–469. Springer, cham (2022). https://doi.
org/10.1007/978-3-031-22365-5 16

IPP+22. Ishai, Y., Patra, A., Patranabis, S., Ravi, D., Srinivasan, A.: Fully-secure
MPC with minimal trust. In: Kiltz, E., Vaikuntanathan, V. (eds.) Theory
of Cryptography - 20th International Conference, TCC 2022, Chicago, IL,
USA, 7-10 November 2022, Proceedings, Part II, LNCS, vol. 13748, pp. 470–
501. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22365-5 17

IPS08. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

IR19. Ishai, Y., Rijmen, V. (eds.): EUROCRYPT 2019, Part II. LNCS, vol. 11477.
Springer, Heidelberg (2019)

Kil88. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM
STOC, pp. 20–31. ACM Press (1988)

Lam16. Lamport, L.: Constructing digital signatures from a one way function (2016)
NPS24. Narayanan, V., Pawar, S.V., Srinivasan, A.: Secure computation with par-

allel calls to 2-ary functions. Cryptology ePrint Archive (2024)
NR18. Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II, LNCS, vol.

10821. Springer, Heidelberg (2018)
Yao86. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In:

FOCS, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-031-22365-5_16
https://doi.org/10.1007/978-3-031-22365-5_16
https://doi.org/10.1007/978-3-031-22365-5_17

Efficient Secure Communication over
Dynamic Incomplete Networks with

Minimal Connectivity

Ivan Damg̊ard1, Divya Ravi2 , Lawrence Roy1, Daniel Tschudi3,4(B) ,
and Sophia Yakoubov1

1 Aarhus University, Aarhus, Denmark
{ivan, lance.roy, sophia.yakoubov}@cs.au.dk

2 University of Amsterdam, Amsterdam, Netherlands
tschudid@gmail.com

3 Concordium, Zurich, Switzerland
4 Institute for Network and Security, Eastern Switzerland University of Applied

Sciences (OST), Rapperswil, Switzerland

Abstract. We study the problem of implementing unconditionally
secure reliable and private communication (and hence secure compu-
tation) in dynamic incomplete networks. Our model assumes that the
network is always k-connected, for some k, but the concrete connection
graph is adversarially chosen in each round of interaction. We show that,
with n players and t malicious corruptions, perfectly secure communica-
tion is possible if and only if k > 2t. This disproves a conjecture from
earlier work, that k > 3t is necessary. Our new protocols are much more
efficient than previous work; in particular, we improve the round and
communication complexity by an exponential factor (in n) in both the
semi-honest and the malicious corruption setting, leading to protocols
with polynomial complexity.

1 Introduction

This paper studies unconditionally secure communication (and by extension
multiparty computation) when parties communicate over an incomplete and
dynamic network. More specifically, we assume synchronous communication with
secure point-to-point channels; however, only some of the point-to-point connec-
tions actually exist, so the network is incomplete. Moreover, the set of active
connections can change from one round to the next, and the graph describing

Funded in part by the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation program under grant agreement No 669255
(MPCPRO) and No 803096 (SPEC), the Danish Independent Research Council (grant
DFF-0165-00107B “C3PO”, grant DFF-2064-00016B / DFF-2032-00122B “YOSO”),
and the DARPA SIEVE program (contract HR001120C0085 “FROMAGER”). Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of DARPA. Distribution
Statement “A” (Approved for Public Release, Distribution Unlimited). We thank the
authors of [DRTY23] for the source code of the tables and protocol boxes.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 266–292, 2025.
https://doi.org/10.1007/978-3-031-78023-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_9&domain=pdf
http://orcid.org/0000-0001-6423-8331
http://orcid.org/0000-0001-6188-1049
http://orcid.org/0000-0001-7958-8537
https://doi.org/10.1007/978-3-031-78023-3_9

Efficient Secure Communication over Dynamic Incomplete Networks 267

the active connections is adversarially chosen in each round. This is called a
dynamic incomplete network, in contrast to a static incomplete network, where
the active connections stay the same throughout the protocol.

Static incomplete networks were first studied by Dolev [Dol82]. Here, it was
shown that when t of the n parties are malicious, one can do secure broadcast if
and only if the network is at least 2t+1-connected1, and 3t < n. Later, Dolev et
al. [DDWY93] showed that, in a static incomplete network, one can communicate
privately and reliably if and only if the network is 2t + 1-connected. Using the
protocols from that work, one can emulate a complete network with secure point-
to-point channels. This can be combined with any MPC protocol that is based
on a complete network, and one can then conclude that, in a static incomplete
network, 2t+1-connectivity is necessary and sufficient for unconditionally secure
MPC to be possible.

The case of dynamic incomplete networks was first considered in Maurer et
al. [MTD15], who studied reliable (non-private) communication. They defined a
notion called dynamic min-cut which is a number that can be derived from the
entire sequence of networks graphs. They then showed that reliable communica-
tion is possible between any pair of parties if and only if the dynamic min-cut
is larger than 2t. Although this is the weakest possible condition that allows for
reliable communication, it makes a rather complicated statement on the entire
sequence of network graphs, and in a given practical setting it would be hard to
assess whether it is going to be satisfied or not. Also, from a theoretical stand-
point, it is natural to ask if there is a condition on each individual network graph
that would enable both reliable and private communication.

These questions were considered in [DRTY23]. They initiated the study of
(unconditionally) private communication in dynamic networks, and introduced
a model that is a natural extension of the static case, where it is required that in
each round, the network graph for that round is at least k-connected (and this is
the only condition assumed). The model further assumes that honest parties do
not know the network topology. This is reasonable, as connections may be down
because mobile devices move, or equipment crashes, and such events cannot be
predicted locally. Finally, it is assumed that at most t parties are corrupted by
an adversary, either passively (semi-honest) or actively (malicious).

The main results from [DRTY23] are as follows: reliable communication is
possible in a dynamic network if and only if k > 0 in the passive case and k > 2t
in the active case. Private communication can be done for a passive adversary, if
and only if k > t. For an active adversary, k > 3t is sufficient for perfectly secure
private communication, whereas k > 2t is necessary (which follows from known
results in the static case). It was conjectured that in fact k > 3t is necessary
for perfect security (whereas they showed that k > 2t is sufficient for statistical
security).

1 A graph is k-connected if any pair of distinct nodes are connected by at least k
disjoint paths, or equivalently, if it remains connected when one removes any set of
less than k vertices.

268 I. Damg̊ard et al.

The protocols from [DRTY23] (and [MTD15]) introduce quite a large perfor-
mance penalty compared to the static case. They work by trying many different
paths from sender to receiver in the hope that the message will eventually arrive
along enough disjoint paths. For private communication, key material is sent
along many different paths in the hope that some of it will make it to the sender
via paths consisting of only honest players, which allows extraction of a key
that is completely unknown to the adversary. Unfortunately, the upper bounds
shown for both round and communication complexity of these approaches were
exponential in n in the worst case.

1.1 Our Contributions

In this paper, we disprove the conjecture from [DRTY23] and show that in fact
k > 2t is sufficient for perfect private communication. Since this condition was
already known to be necessary, this completes the characterization of dynamic
incomplete networks allowing for private and reliable communication. We also
give new protocols for private communication in the passive case, and for reliable
and private communication in the active case. The protocols are based on several
new techniques, allowing us to remove the exponential dependency on n in the
protocols from [DRTY23]. Indeed, all our protocols have complexity polynomial
in n for all values of n, k and t for which secure communication is possible.

We stick to the network model from [DRTY23] for most of the paper, as
it allows for simple descriptions of protocols and clean statements about their
properties. But we emphasize that our protocols do not need to assume that the
network graph is k-connected in every round, and in fact they work under much
weaker assumptions on connectivity. We discuss this in more detail in Sect. 6.

The complexities of our constructions are summarized in Tables 1 and 2.

1.2 Technical Overview

Reliable Communication. Reliable communication with a passive adversary
can be done as long as k > 0. A simple flooding approach will work in n rounds,
as was already noted in [DRTY23]. For reliable communication in the active
adversary case we introduce a new protocol and proof. In a nutshell, we also
use a flooding approach here, but each copy of the message carries metadata,
namely a graph describing the paths the message traveled along to reach the
current party. The party assembles new metadata based on what it received,
and passes it along in the next round. After some number of rounds, the final
receiver R has received possibly several different messages and metadata (as the
adversary is free to fabricate incorrect messages and metadata). We show that
after O(n) rounds, R has enough data to decide with probability 1 what the
correct message is.

An overview of how we arrive at this result: Earlier work for dynamic net-
works tracked all paths on which a message has traveled, and the receiver would
believe a message if it arrives via more than t disjoint paths, as this implies
it must have traveled on a path with only honest players. Unfortunately, the

Efficient Secure Communication over Dynamic Incomplete Networks 269

Table 1. Reliable Communication Protocols for a message m, over k-connected net-
works. The communication complexity is the total communication of honest parties in
the protocol. M denotes the total bits of all messages sent by corrupt parties (which
assuming PPT adversaries remains polynomial).

Scheme Corruption Graph Complexity

Type Threshold k Rounds Communication

[DRTY23],
Protocol 1

passive t < n k ≥ 1 n O(
n3|m|)

[DRTY23],
Protocol 2

active t < n
2

k > 2t O(
n2n

) O(
n422n|m|)

This work,
Protocol 3

active t < n
2

k > 2t ≤ n O(
n3|m| +

(M + 1)n6 log2(n)
)

number of potential paths can be exponential, leading to inefficient protocols.
An obvious idea for improvement is to collect the paths on which the message
traveled into a graph that can hopefully be described more compactly than the
set of paths. In case of a static network, it is quite straightforward to see that this
will work: the receiver can decide whether to believe a certain message m based
on the max-flow or equivalently min-cut of the graph that is sent along with m
(considering cuts separating sender from receiver). If this number is larger that
t, the sender believes the message.

However, things get more complicated in the dynamic case. Min-cut is not
defined for a dynamic network, so we construct a different type of graph that
captures the history of a message traveling through the network. There is a node
for each pair (Pi, j), where Pi is one of the parties and j indicates a round in
the protocol. We put an edge from (Pi, j − 1) to (Pi′ , j) if Pi sent the message
to Pi′ in round j (and by default a party is connected to itself from each round
to the next)2. We then introduce a notion called relaxed labelled min-cut in this
type of graph, where we allow fractions as values, in contrast to the standard
notion of min-cut which is always an integer. This allows us to formulate an
efficiently computable predicate which we show is satisfied after n rounds by
the graph traveling with the correct message, and cannot be satisfied for any
incorrect message.

Private Communication. For private communication, our main idea is as
follows: instead of trying to send the message via many paths, as in [DRTY23],
we ask each party to choose a secret key for each other party and try to send,

2 For technical reasons, we even need to have several nodes for one party in each round.
As we explain later, this has to do with the fact that a corrupt party can claim they
heard a fake message from an honest party Ph, but at the same time Ph might
report the same fake message because he heard from another corrupt party. These
two “stories” must be treated separately and we do this by having two different
nodes for Ph in the relevant round.

270 I. Damg̊ard et al.

Table 2. Private Communication Protocols for a message m, over k-connected net-
works with corruption threshold t. The complexity of Protocol 4 is in terms of the
complexities of its building blocks, namely reliable communication and secure message
transmission; where ρRel, ρSMT denote the round complexities and cRel(x), cSMT(x) denote
the communication complexities for transmitting x bits. There exist instantiations of
these building blocks that maintain these complexities to be polynomial (elaborated
in the relevant technical section). Note that the protocols in this paper are the first to
offer round and communication complexity which is sub-exponential in the number of
parties. All protocols in the table have perfect security.

Scheme Corruption Graph Complexity

Type t k directed Rounds Communication

[DRTY23], Protocol 3 passive t < n k > t � O(n2n) O(
22nn3(n + |m|))

[DRTY23], Protocol 5 active t < n
3

k > 3t � O(n2n) O(
2n2+nn3(n + |m|))

[DRTY23], Protocol 6 active t < n
4

k > 4t � O(n2n) O(23nn5(n + |m|))
This work, Protocol 1 ,
Corollary 3

passive t < n k > t � 2�n
k
� + 3 O

(
n4

k
(n log(n) + |m|)

)

This work, Protocol 2 ,
Corollary 6

passive t < n k > t ✗ �n
k
� + 2 O

(
n4|m|

k

)

This work, Protocol 4 active t < n
3

k > 2t � 1 +2ρRel

+ρSMTρRel

O(
ncRel(n

2) +
ncSMT(|m|)cRel(n log(n))

)

in a single round, each key to the party it was chosen for. Then we determine
via public discussion which connections worked, using the fact that we already
know how to do reliable (non-private) communication efficiently. Intuitively, this
“freezes” the network graph G that existed in the round where the keys were
sent.

Skipping a few details, the keys exchanged can be used to send3 data privately
along a path in G, such that the adversary will have no information on what
is sent if the path contains only honest players. This means that in the passive
case, the sender can secret-share its message additively and send shares privately
to the receiver along a set of disjoint paths in G. This will work because G is
sufficiently connected so that at least one share will remain unknown to the
adversary.

In the active case, we assume the G is at least 2t + 1-connected. We can
think of the (at least) 2t + 1 disjoint paths from sender to receiver as channels
connecting sender to receiver, of which at most t can be corrupted. We can then
use known efficient protocols for maliciously secure perfect message transmission
to send a private message.

This disproves the conjecture from [DRTY23], that connectivity must be at
least 3t + 1. In [DRTY23] evidence was given for the conjecture by arguing that
any protocol in the class of solutions they considered would fail for connectivity
less than 3t + 1. As also noted there, this is of course not a proof, and indeed

3 The actual communication is done using multicast which can be achieved with one
of the reliable communication protocols from above.

Efficient Secure Communication over Dynamic Incomplete Networks 271

our protocol falls outside the class because it crucially uses public discussion to
decide on the paths to use later. This option was not considered in [DRTY23].

2 Preliminaries

In this work we consider the setting as defined in [DRTY23]. Let F be a finite
field. Let P = {P1, . . . ,Pn} denote the set of n parties. The sender S ∈ P wants
to send a message m ∈ F to receiver R ∈ P.

2.1 Adversary Model

A computationally-unbounded, central adversary corrupts at most t parties. The
party corruption is static, i.e., the adversary is required to select the set of
corrupted parties before the protocol execution. We distinguish between passive
corruption where the adversary can access the internal state of corrupted parties
and active corruption where the adversary additionally has full control over the
behavior of corrupted parties.

2.2 Communication Network

Parties communicate over a dynamic incomplete network of secure (private and
authentic) synchronous channels in the presence of a rushing adaptive network
adversary. In more details, the protocol proceeds in rounds, also known as time
steps. Let G be a publicly-known family of graphs over P. Intuitively, the graph
family G models the network guarantees for honest parties. For example, G could
be the family of connected graphs. In each round a party may attempt to use
any channel in their neighborhood of Ḡ =

⋃
G∈G G4. The adversary decides on

the actual communication graph Gr ∈ G for round r after having observed the
communication attempts. Any message input on a channel within Gr will then
be delivered by the end of the round. We note that honest parties are oblivious
of the actual communication graph Gr. In particular, honest parties do not learn
which of their outgoing transmissions were successful. If not specified otherwise,
the graphs in G may be directed graphs.

2.3 Security

In this work we consider protocols that achieve a communication channel with
perfect security between sender and receiver.

Reliable Communication. A reliable communication channel allows a sender S
to send a message to a receiver R in a tamper-resilient manner.

Definition 1 (Reliable Communication). A protocol achieves a reliable
communication channel with perfect security between S and R in the presence
of an adversary A if the following holds:

Correctness. The output message mR of R is the input message m of S, i.e.
Pr[mR �= m] = 0 where the randomness is over the coins of all honest parties
and A.

4 Ḡ is often the fully-connected graph, so every party’s neighborhood is then all of P.

272 I. Damg̊ard et al.

Private Communication. A private communication channel allows a sender S to
send a message to a receiver R in a reliable and private manner, i.e. the adversary
will not learn any information on the message.

Definition 2 (Private Communication). A protocol achieves a private com-
munication channel with perfect security in the presence of an adversary A if it
achieves a reliable communication channel, and additionally the following holds:

Privacy. The view of adversary A can be simulated from the inputs and outputs
of corrupted parties. In particular, for honest S, R the adversarial view is
independent of the sender’s input message m.

2.4 Graphs

In this section we define the graph properties we consider for the communication
network in our protocols.

Definition 3. A (directed) graph is (u, v)-k-connected if for nodes u, v there
exist k disjoint (directed) paths from u to v.

Definition 4. A (directed) graph is k-connected if it is (u, v)-k-connected for
any pair (u, v) of nodes.

A 1-connected graph is simply called connected. We say graph family G has
property X if every graph in G has property X.

3 Private Communication with Passive Corruption

Damg̊ard et al. [DRTY23] presented a private communication protocol that tol-
erates t < n passive corruptions in a dynamic network with connectivity k > t.
Both the round and communication complexity of this protocol scales linearly
with the cardinality of a given set of paths Paths between sender and receiver. If
Paths happens to be the set of all possible paths, its cardinality is exponentially
large in n. Motivated by the goal of improving the efficiency of this protocol, we
propose a private communication protocol in this setting where the round and
communication complexity is polynomial in n.

Reliable multicast as building block. Before describing our protocol, we note
that in the passive setting reliable multicast is easy to achieve using a flooding
approach if G is connected. All parties that have seen the sender’s message will
repeatedly attempt to send it to all their neighbors. We will use this multicast
primitive in our protocol for secure communication.

Lemma 1 (From [DRTY23]). For any connected G there exists a protocol
MultiCast(P,m) that allows party P to safely distribute m in the presence of a
passive adversary. The protocol runs for n rounds and has a total communication
complexity of O(

n3|m|) bits, where |m| denotes the number of message bits.

Efficient Secure Communication over Dynamic Incomplete Networks 273

Remark 1. The flooding protocol in [DRTY23] is used to construct a reliable
communication channel from the sender to a specific receiver. However, we note
that the flooding approach guarantees that at the end of the protocol every
party will have the sender’s message. So by modifying the protocol slightly, such
that every party outputs the received message, the construction directly achieves
multicast.

3.1 Private Communication on Directed Graphs

Assume that directed G has connectivity k > t, i.e. every graph in G has con-
nectivity k > t. The main idea of Protocol 1 is as follows: In the first round,
parties attempt to send a random field element to each of their potential neigh-
bors. Then they each use MultiCast to announce the set of nodes from whom
they actually received randomness. This publicly defines a (undirected) ‘meta
graph’, say G, whose edges correspond to pairs of nodes who now have shared
randomness. Essentially, this serves as a means to freeze5 the first graph chosen
by the dynamic adversary. Now, the problem of private communication becomes
much simpler as we can focus on this meta graph G which is guaranteed to have
connectivity k > t. The sender S splits their message into t+1 sum shares which
are now passed along t+1 disjoint paths in G between S and R. Communication
along the edges in G is emulated using MultiCast and the shared randomness
is used to encrypt messages.

Comparison with previous work. We point out that the idea of additively
secret sharing the secret among a set of t + 1 disjoint paths is similar to the
protocol of Damg̊ard et al. The crucial difference is that we depend on a fixed
set of disjoint paths in the meta graph while their protocol considered all possible
sets of disjoint paths over dynamic graphs. This allows us to achieve complexity
that is polynomial in n.

Theorem 1. Protocol 1 is a private communication protocol that achieves per-
fect security against t < n passive corruptions for network G with connectivity
k > t. The protocol communicates at most n2|m| bits over network G, and sends
at most O(

n2 log(n) + n|m|) bits over multicast channels.

Proof. We start with an observation on G. Multicasting the sets In ensures that
parties agree on the meta-graph G. The connectivity k > t of the first round
graph ensures that there are at least t + 1 disjoint paths from S to R in G. We
also note that due to Lemma 1 multicasting is possible as G is connected.

Correctness. There are t + 1 disjoint paths from S to R in G, thus GoodPaths
exists. The agreement on G implies agreement on GoodPaths. This ensures that
parties agree on all necessary invocations of multicast in the second phase. For

5 Technically, G is an undirected graph with the same node set as the first graph. The
edge (u, v) is in G if and only if (u, v) or (v, u) are in the first graph.

274 I. Damg̊ard et al.

each path p it holds that

s′
p =

⎛

⎝
∑

pi∈Np\{R}
mp,pi

⎞

⎠ − op�−1,p�

= sp + op1,p2 +

⎛

⎝
∑

pi∈Np\{R,S}
opi,pi+1 − opi−1,pi

⎞

⎠ − op�−1,p�
= sp.

This means the receiver will compute the right shares from the multicast mes-
sages and will output the sender’s message m.

Privacy. The view of the adversary can be simulated from the output of an
ideal secure channel between S and R. If sender or receiver are corrupted, the
simulator knows the message m, and the selected graphs. This allows simulation
of the adversarial view by executing the real protocol in the head. If neither the
sender nor receiver are corrupted the view of the adversary can be simulated
by executing the protocol in the head with m = 0 (or any other default value).
The values in the first phase will be distributed exactly as in the real world.
In the second phase there exists a path p in GoodPaths that consists of honest
parties. The multicast messages for this path are, without knowledge of the
involved shared randomness, distributed independent of the actual message. So
the simulated view is indistinguishable from the real protocol. In particular,
the adversary does not learn sp. On the other paths the adversary may learn
the shares. However, these shares are uniform random and independent of the
message (if one does not know sp), so the simulated view for those paths is again
indistinguishable from the real protocol. Complexity. In the first round each
party sends at most n|m| bits. The first phase additionally sends n2 bits over
multicast channels. The second phase communicates at most n(n log(n) + |m|)
over multicast channels. ��
Corollary 1. Protocol 1 runs for 2n+1 rounds and has a total communication
complexity of O(

n5 log(n) + n4|m|) bits per party if the multicast channels are
instantiated with MultiCast.

Proof. This follows from the numbers in Theorem 1 and Lemma 1. ��
Observe that Protocol 1 only requires connectivity k in the first round; after

that, connectivity 1 suffices.

Corollary 2. Protocol 1 is a private communication protocol that achieves per-
fect security against t < n passive corruptions for connected network G if the first
round graph is guaranteed to be (S,R)-k-connected for k > t.

Efficient Secure Communication over Dynamic Incomplete Networks 275

Protocol 1: Πprv
perf,sh(S,R,m)

The sender S and receiver R are public input. The sender S has message m as private
input. Let Ḡ =

⋃
G∈G G.

–Establishing meta graph and shared randomness. Each party Pi does the
following:

– For each neighbor Pj in Ḡ, sample uniform random ri,j (of size |m|).
– In round 1, attempt to send ri,j to Pj using the communication network.
– Let Ini denote the set of parties Pj from whom Pi actually received ran-

domness rj,i in round 1.
– Parties jointly invoke MultiCast(Pi, Ini) where Ini is encoded as a n-bit

vector.
– Build the meta graph G as follows: there is an edge from Pu to Pv if Pu ∈ Inv

or Pv ∈ Inu.
– For each neighbor Pj in G set oi,j := rj,i + ri,j . (Missing values r·,· are set

to 0; that is, if Pj �∈ Ini, oi,j = ri,j , and if Pi �∈ Inj , oi,j = rj,i.)
–Secure message transfer in G. All the parties can now locally determine the

same set of t + 1 disjoint paths, say GoodPaths, in G between S and R (using
Ford-Fulkerson algorithm)a. Then message transfer is done as follows:

– The sender S selects t + 1 uniform random shares {sp}p∈GoodPaths, such that
m =

∑
p∈GoodPaths sp.

– The parties Np = {Pp1 , . . . ,Pp�} on each path p do the following:
• The sender S = Pp1 computes mp,p1 = sp +op1,p2 and all parties jointly

invoke MultiCast(S, (p, mp,p1)) where p is encoded in n log(n) bits.
• Each party Ppi ∈ Np \ {S,R} computes mp,pi = opi,pi+1 − opi−1,pi and

all parties jointly invoke MultiCast(Ppi , (p, mp,pi)) where p is encoded
in n log(n) bits.

– For each path p the receiver R computes share

s′
p =

⎛

⎝
∑

pi∈Np\{R}
mp,pi

⎞

⎠ − op�−1,p� .

– The receiver outputs m′ =
∑

p∈GoodPaths s′
p.

a In case of multiple disjoint sets, we can assume a lexicographic ordering among
them and choose the smallest one.

Fig. 1. An efficient perfectly-secure private communication protocol against t < n
passive corruptions in a network with connectivity k > t.

276 I. Damg̊ard et al.

Protocol 2: Π(S,R,m)

The identities of the sender S and receiver R are public input. The sender S
additionally has message m as private input.
Let Ḡ =

⋃
G∈G G.

–Establishing sharing of message. Party Pi does the following:
– If Pi = S, set mi = m. Otherwise, set mi = 0.
– For each neighbor Pj in Ḡ, sample uniform random ri,j ∈ F.
– Attempt to send ri,j to Pj using the normal channels. Denote by Ini the

set of all parties Pj from whom Pi actually received randomness rj,i in
this round.

– Compute ri,i = mi − ∑
j∈Ini

ri,j .
– Compute ri = ri,i +

∑
j∈Ini

rj,i.
–Send message shares to receiver. Parties jointly invoke an instance of

MultiCast(Pi, ri) for Pi �= R.
–Reconstruction of message. The receiver Pi = R computes m =

∑
Pi∈P ri.

Fig. 2. An efficient perfectly-secure private communication protocol against t < n
passive corruptions in an undirected network with connectivity k > t.

We can improve on the round complexity of Protocol 1 by optimizing the
multicast protocol.

Lemma 2. If G has connectivity k, then the flooding protocol from Lemma 1
requires at most �n

k �+1 rounds and total communication at most (�n
k �+1)n|m|

to distribute a message m among all parties.

Proof. We show this by induction. In each round at least k parties learn the
message, until the final round where all remaining parties learn the message.
Consider any round r and a party P that did not receive the message before
r. There must be at least k disjoint paths from the sender to P in the round
r graph. Along each such path, there must be a party who knows the message
(possibly the sender) and a party who does not (possibly P). This means that P
learns the message, or at least k other parties learn the message. Thus, in round
r at least k parties will learn the message or all parties will know the message
after the round. As there are n parties, there can be at most �n

k � rounds where
at least k parties learn the message. This means after �n

k � + 1 rounds, every
party knows the message. ��
Corollary 3. If G has connectivity k, and the multicast channels in Protocol 1
are instantiated with MultiCast as in Lemma 2, the protocol runs for 2�n

k � + 3

rounds, and has total communication complexity of O
(

n4

k (n log(n) + |m|)
)
.

In particular, if the connectivity k is a constant fraction of n, the protocol
achieves a constant round complexity.

Efficient Secure Communication over Dynamic Incomplete Networks 277

3.2 Private Communication on Undirected Graphs

In this section we consider undirected G with connectivity t+1. The undirected-
ness allows us to save (almost) half the round complexity compared to Protocol
1 using the following idea. Each party starts with a local value. For the sender,
this is the message m. Every other party starts with 0. As in Protocol 1 , parties
attempt to send a random field element to each potential neighbor. This defines
an (undirected) meta-graph G of parties that have successfully exchanged ran-
dom values. Since the graph is undirected, parties know their own neighborhood.6

In contrast to the above protocol, parties do not need to learn the full G; it is
enough to know one’s own neighborhood. Parties use successfully sent random
values to define a sharing of their local value in their closed neighborhood; i.e.,
their own share is their local value minus the sum of sent out random values.
Next, parties add up all the shares they hold (including their own share of their
local value). This establishes an additive sharing of the sender’s message. Every-
one but the receiver multicasts their shares, allowing the receiver to reconstruct
the message.

Remark 2. This protocol can be extended to undirected graphs. All that is
needed is for parties to learn if their sent random values were received. To
achieves this, parties could multicast the set from whom they received a ran-
dom value in the first round. However, this brings the round complexity back to
the one of Protocol 1 .

Theorem 2. Protocol 2 is a private communication protocol that achieves per-
fect security against t < n passive corruptions for an undirected, connected net-
work G with connectivity k > t. The protocol communicates at most n2|m| over
G and sends at most n|m| bits over multicast channels.

Proof. Correctness. The symmetry of G ensures that if Pj ∈ Ini, then Pj has
received a random value from Pi and will use it to compute rj . This implies

m =
∑

Pi∈P
ri =

∑

Pi∈P

⎛

⎝ri,i +
∑

j∈Ini

rj,i

⎞

⎠ =
∑

Pi∈P

⎛

⎝mi −
∑

j∈Ini

ri,j +
∑

j∈Ini

rj,i

⎞

⎠

=
∑

Pi∈P
mi +

∑

Pi∈P

∑

j∈Ini

rj,i −
∑

Pi∈P

∑

j∈Ini

ri,j

︸ ︷︷ ︸
=0

= m

��
The last two double sums cancel out as one sums up all the received random
values and the other all the sent random values which is the same set. The

6 This is because if a party received randomness from another party, it can infer that
the other party received the randomness sent by it as well.

278 I. Damg̊ard et al.

multicast (G is connected) ensures that the receiver gets all ri. The receiver will
therefore output m.

Privacy. If the sender or the receiver are corrupted, the adversarial view can
be simulated by running the actual protocol in the head.

Otherwise, observe that the only message that depends on m is ri for Pi = S
(which is multicast). There must exist an all-honest path from S to R, as G has
connectivity of at least t + 1. Let S = Pi1 , . . . ,Pil

= R be the parties on that
path. If all other parties are corrupt, what the adversary learns is

x1 = m − ri1,i2 + ri2,i1 ,

x2 = 0 − ri2,i1 − ri2,i3 + ri1i2 + ri3,i2 ,

. . .

xl−2 = 0 − ril−2,il−3 − ril−2,il−1 + ril−3,il−2 + ril−1,il−2 ,

xl−1 = 0 − ril−1,il−2 − ril−1,il
+ ril−2,il−1 + ril,il−1 .

Note that the values ril,il−1 and ril−1,il
only appear as summands in xl−1; these

are both randomly chosen, and thus ril,il−1 − ril−1,il
perfectly masks ril−2,il−1 −

ril−1,il−2 . That in turn perfectly masks ril−3,il−2 − ril−2,il−3 in xl−2, and so on;
finally, we get that ri1,i2 − ri2,i1 perfectly masks m in x1. We can conclude that
ri for i ∈ {i1, . . . , il} (where ri contains xi as a summand) are independent
and uniform. Thus, the adversarial view can be simulated by running the actual
protocol in the head with m = 0.

Complexity. In the first round each party sends at most n|m| bits. Addition-
ally, there is communication of n|m| bits over multicast channels. ��
Corollary 4. Protocol 2 runs for n + 1 rounds and has a total communication
complexity of O(

n4|m|) if the multicast channels are instantiated with MultiCast
from Lemma 1.

Proof. This follows from the numbers in Theorem 2 and Lemma 1. ��
Observe that Protocol 2 only requires connectivity k in the first round; after

that, connectivity 1 suffices.

Corollary 5. Protocol 2 is a private communication protocol that achieves per-
fect security against t < n passive corruptions for undirected connected network
G if the first round graph is guaranteed to have connectivity t + 1.

We can improve on the round complexity of Protocol 2 by optimizing the
multicast protocol.

Corollary 6. If G has connectivity k, and the multicast channels in Protocol 1
are instantiated with MultiCast as in Lemma 2, the protocol runs for �n

k � + 2

rounds, and has total communication complexity of O
(

n4|m|
k

)
.

Efficient Secure Communication over Dynamic Incomplete Networks 279

4 Reliable Communication with Active Corruption

In this section, we construct a network flooding protocol for reliable commu-
nication with security against active adversaries. In this kind of protocol, the
best attack is essentially to select t parties to corrupt, and have these parties
ignore the honest messages and transmit lies. This attack is limited in two ways:
every lie must originate from one of only t parties, while if the graph is at least
k-connected then there must be at least k − t disjoint paths from the original
sender along which the honest message can pass. Since the sender did not send
the lie, every path the lie was purported to have been sent along must go through
some corrupt party. [DRTY23] therefore proposed flooding the network until a
message is heard from more than t disjoint paths, which will happen eventually
if k − t > t (i.e., k > 2t). Unfortunately, there can be exponentially many paths
from the sender in the graph, so their protocol does not work in polynomial time
or polynomial communication.7

We present a more efficient flooding protocol, based on the idea of tracking
the (polynomial-size) communication graph along which a message has been
sent, instead of all paths. As motivation, we start with a protocol for the case
of static graphs. Recall that every path along which a lie was purported to have
been transmitted from S to a R must go through a corrupted party. Rephrased
in terms of graphs, this means that the corrupted parties must form a (S,R)-cut8

of this graph, with size t. This suggests a protocol along these lines:

1. Flood the network with the sender’s message m. Alongside the messages,
transmit graphs that somehow representing where the message has come from.

2. If a receiver R notices that a particular message m is associated with a mini-
mum (S,R)-cut greater than t, then output m.

There are three challenges with this approach:

1. Min-cut is only defined for a static graph, and we want a protocol that works
for dynamic communication graphs.

2. Corrupt parties must be restricted in how they can influence the graph show-
ing where a message came form. Otherwise, as we explain below, they might
introduce a fake path from S to R that only goes through honest parties.

3. For efficiency, the graphs must have polynomial size.

Challenge 1 we overcome by introducing multiple vertices for each party—one
for each round—with each vertex labeled by the party it represents, and by
introducing the notion of a labeled cut. In a labeled cut, all vertices with the
same label P can be cut at once, for a cost of 1. For Challenge 2, we addition-
ally introduce multiple vertices for the same party even within the same round,
representing different claims about how that party heard about the message. To
see why this is needed, imagine that during round r an honest Ph hears l from
a corrupt party Pj (who claims to have heard it from S), then in round r + 1,

7 Even polynomial round complexity has not been proven.
8 In this paper we only consider vertex cuts, not edge cuts.

280 I. Damg̊ard et al.

Ph sends l to another honest party Ph′ (who reports it to R in round r + 2),
while simultaneously Pj claims to R that in round r it heard l from Ph (who
heard it from S). Even though l has only been claimed to have traveled down
the two paths S → Pj → Ph → Ph′ → R and S → Ph → Pj → R, which both
go through the corrupt party, if you treat all instances Ph in round r as a single
node then you would add the path S → Ph → Ph′ → R to the graph, which
does not go through a corrupted party. Therefore, we treat the Ph who heard l
from Pj as a separate node from the Ph who was claimed to have heard l from
S. This means that if R hears l from Ph and Pi, it won’t think that there was
a path directly from S through Ph to R. Finally, for Challenge 3 we perform a
kind of deduplication on the graphs to keep them polynomially sized, while still
keeping separate the nodes representing different claims of message provenance.

4.1 Labeled Min-Cut

An (s, d)-(vertex)-cut of a directed graph G is a partition {S,C,D} of the vertices
of G where s ∈ S and d ∈ D, such that there are no edges from S to D. The
minimum (s, d)-cut problem is to find an (s, d)-cut that minimizes |C|. Now let
G be a labeled directed graph, where we have a function l mapping from vertices
of G to labels in some set L. One may think of L as the set of parties in our
protocol. Recall that in the previous section we argued that we need graphs with
several vertices labelled as one party. Similarly, we can now define an integral
labeled (s, d)-cut as follows.

Definition 5. Let G be a directed graph with labels L and labeling function l. An
integral labeled (s, d)-(vertex)-cut of G is a partition {S,C ′,D} of the vertices
of G such that there are no edges from S to D and C ′ is the preimage l−1(C)
for some set C ⊆ L.

That is, we only want to consider cuts that correspond to an actual set of par-
ties (i.e., labels). The integral labeled minimum (s, d)-cut problem is then to
minimize |C| over all such cuts. This is the vertex-labeled cut analog of the
edge-labeled cuts introduced by [DHKM16].

In the protocol sketched above, the adversary will corrupt a subset C of
the parties (i.e., labels), and any lie will have to traverse this subset. Letting
S be the connected component of s after removing C ′ = l−1(C) and D be the
remainder of the graph then gives an integral labeled (s, d)-cut. Indeed, our final
protocol would still be secure if it used integral labeled cuts. However, unlike
for unlabeled cuts, we do not know how to efficiently compute minimal integral
labeled (s, d)-cuts. In fact the problem is NP-hard: there is an easy reduction to
weighted monotone satisfiability, which is NP-hard (see, e.g., [DF98]).

To see why, view these problems as integer linear programs. In Fig. 3a we
have written a linear program for unlabeled min-cut, which exactly matches the
definition above if the variables {Sv, Cv,Dv} are restricted to being integers. For
each vertex v, exactly one of (Sv, Cv,Dv) will be 1 and the others will be zero,
so these variables will define a partition of the vertices of G. The constraint that

Efficient Secure Communication over Dynamic Incomplete Networks 281

Fig. 3. Linear programs for min-cut.

no edges connect S to D is enforced by Sv + Dw ≤ 1 for all edges (v, w), i.e., we
cannot have both v ∈ S and w ∈ D. We have s ∈ S and d ∈ D because of the
constraints Ss = 1 and Dd = 1.

While in general integer linear programs can be hard to solve, this particular
one is easy. That is, the constraint matrix is totally unimodular (after elimi-
nating the Dv variables using the equality constraint Dv = 1 − Sv − Cv), and
constants in the constraints are integers, so every vertex of the polytope defined
by the constraints has integer coordinates. Therefore, if you solve the linear pro-
gramming relaxation of the problem (i.e., solve the same linear programming
problem, but without requiring that the variables take integer values) then the
minimal

∑
v∈G Cv will be exactly the same as in the integer problem. This shows

that min-cut can be solved in polynomial time [Kha79].
We present a similar linear program for labeled min-cut in Fig. 3b. The only

significant change is that cut variables Cv are now defined on labels instead of

282 I. Damg̊ard et al.

Fig. 4. Example graph where the integral labeled (s, d) min-cut has size 2, but the
relaxed labeled min-cut has size 3

2
. The cut is black, the source component orange, and

the sink component blue. Any subset of two of three labels {1, 2, 3} gives an integral
labeled min-cut, while the relaxed labeled min-cut is half of all three labels.(Color
figure online)

vertices, to match the set C ′ of cut vertices being defined as C ′ = l−1(C) in this
problem.9 Unfortunately, this new system is not totally unimodular, because the
same cut variable C� gets used with many different vertices. In fact, the linear
programming relaxation can now have a min-cut with a fractional min

∑
�∈L C�

(see Fig. 4). Because we desire a computationally efficient protocol, we will use
only the relaxed labeled (s, d)-cuts, rather than integral labeled (s, d)-cuts. Our
analysis will show that the protocol will still be secure, even though these relaxed
labeled cuts are only an approximation to the integral labeled cuts that describe
the possible attacks.

9 There is another change, which is the added constraint Sv ≤ Sw for all edges (v, w) ∈
G where v and w have the same label �. This does not affect the integer linear
program, as either C� = 0, in which case it’s implied by Sv + Dw ≤ 1 and Dw =
1−Sw −C�, or C� = 1, in which case Sv = Sw = 1. The constraint should be viewed
as tightening the approximation of the linear program relaxation, as the constraint
becomes non-trivial if C� is not an integer.

Efficient Secure Communication over Dynamic Incomplete Networks 283

4.2 Multicast Protocol

We present our actively secure multicast Protocol 3. In each round, every party
sends to its neighbors an associative array (i.e. a key-value store) containing
all the messages they’ve heard so far (i.e. the keys), together with the labeled
directed acyclic graphs representing the paths along which the message is pur-
ported to come from the sender S (i.e. the values). Each party then takes a
kind of union of all the graphs it has heard (together with the graph from the
previous round), where nodes representing the same message provenance are

Protocol 3: MultiCast(S,m)

The sender S is public input. S has message m ∈ {0, 1}∗. Denote by Ḡ =
⋃

G∈G G.

–Initialization. Every party Pi has an associative array Di mapping from possible mes-
sages (i.e, from {0, 1}∗) to DAGs with nodes labeled by party identifiers.

– For all i, set Di to be empty, so that Di[m
′] is the empty graph for all m′ ∈ {0, 1}∗.

– For Pi = S, set Di[m] := ({s}, {s �→ S}), i.e., the graph containing a single node
labeled as S.

–Network flooding. For ρ rounds, every party Pi does the following:

– For each neighbor Pj in Ḡ, attempt to send Di to Pj .
– For each message Dj,i that received from Pj , and for each m′ such that Dj,i[m

′]
is non-empty:

• Check that Dj,i[m
′] has exactly one sink, which must be labeled Pj .

• If so, update Di[m
′] := Di[m

′] + Dj,i[m
′]. (I.e., take the disjoint union.)

– For any m′ where Di[m
′] is not empty,

• Connect every sink in Di[m
′] to a new node d, labeled as Pi. Now d is a

unique sink.
• Compress the DAG with Di[m

′] := Deduplicate(Di[m
′]).

–Output condition. Each party Pi locally decides when it knows the message sent by
S. If there exists a m′ ∈ {0, 1}∗ such that Di[m

′] is non-empty, output m′ if
– Di[m

′] has a source s labeled as S;a and
– The relaxed labeled (s, d) min-cut of Di[m

′] is greater than t, where d is the
unique sink (labeled as Pi) in Di[m

′].

a s is unique if it exists, because of Deduplicate.

Function Deduplicate(D)

Repeat the following merger operation until a fixed point is reached.

– Find two nodes x, y of D such that x and y have the same label and the same direct
predecessors.

– Merge x and y into a node z that has the same label and direct predecessors, and
the union of the x’s and y’s direct successors.

Output D.

Fig. 5. Our actively secure multicast protocol.

284 I. Damg̊ard et al.

identified. This is done by taking the disjoint union of the graphs, then run-
ning Deduplicate to merge nodes when they are labeled with the same party
and have the same predecessor nodes. Finally, each party computes the relaxed
labeled min-cut of each message’s graph, which lower bounds the number of lies
needed to cause this graph to appear for a message that was not sent by S.10

The party determines that the message is correct and outputs it if this min-cut
is greater than t.

Theorem 3. Protocol 3 is a multicast protocol that achieves perfect security
against t parties for networks G with connectivity k > 2t. It completes in ρ =
1+ �n−t−2

k−2t � rounds, uses at most O(
nρdavg|m|+(M +1)n2ρ2d2avg log2(nρ)

)
bits

of total communication, and runs in polynomial time. Here, |m| is an upper
bound on the size of the message, davg is an upper bound on the average degree
of the communication graph of every round, and the M is the total bits of all
messages sent by corrupt parties.

Proof. We must show that the protocol does not output a lie (“security”), that
it eventually outputs the correct message (“correctness”), and that the commu-
nication cost is bounded (“efficiency”).

Security. Security comes down to the following property: for every honest party
Pi and for any m′ �= m, after every round all paths from source s to sink d
in Di[m′] will go through a corrupted party. We call this the “corrupt paths
property” for d. If this property holds, then cutting the t labels corresponding
to corrupted parties in Di[m′] will disconnect s from d, so there is a labeled
min-cut of size t, and so Pi won’t output m′.

We prove this property by induction. In the base case, all Di[m′] is the
empty graph, so the property holds vacuously. In each round, Di[m′] grows only
by receiving Dj,i[m′] from some other party Pj

11. Pj can either be corrupt or
honest. If it is corrupt, before adding Dj,i[m′] to the graph, Pj checks that it’s
unique sink is labeled Pj . Therefore, every path in Dj,i[m′] to this sink must go
through a corrupt party, Pj . If Pj is honest, then by the induction hypothesis
every path from s to the sink must go through a corrupt party. Next, a new
sink d is added (labeled Pi), and all existing sinks are attached to it. Since the
corrupt paths property was satisfied by all previous sinks, it will be satisfied
by d.

Finally, Pi runs Di[m′] := Deduplicate(Di[m′]) to remove redundant nodes.
We must show that this operation preserves the corrupt paths property. For any
path from s′ to d′ in the deduplicated graph, there exists a corresponding path
from s to d in the original graph, sharing exactly the same labels. To see this,
follow the path in reverse, from d′ to s′. Note d must not have been merged,
because it is the unique sink in the original graph and the graph is acyclic, so

10 Our protocol would also work with the integral labeled min-cut instead, which would
give the exact minimum number of lies, except that this is hard to compute.

11 Or if no new graphs are received for m′, it grows only by adding a new sink node d;
this is discussed later.

Efficient Secure Communication over Dynamic Incomplete Networks 285

initially the correspondence is unambiguous. At each step, if x′ has predecessor
y′ in the path, select a predecessor y of x such that y was merged into y′ during
Deduplicate. Such a node must exist because x is a node that was merged into
x′, and all nodes merged together shared the same set of direct predecessors.
The path will have exactly the same labels because nodes are only merged if
they have the same label. Since the corrupt paths property holds for the original
graph, it therefore holds for the deduplicated graph. We have now proven that
the hypothesis holds after the round is finished.

Correctness. Let the sequence of network graphs be G1, . . . ,Gρ. Remove the
corrupt nodes, then combine them into a single acyclic graph G representing all
honest communication paths that could occur. In more detail, construct G by
creating vertices vir for all honest parties Pi and all rounds r ∈ {0, . . . , ρ}. For
each edge (Pi, j) in Gr, create an edge (vi(r−1), vjr) in G to represent that Pi

will send a message to Pj in round r. Additionally, add an edge (vi(r−1), vir) for
all parties Pi and rounds r, since Pi preserves its state from rounds. Then we
have:

Lemma 3. The relaxed labeled (vS0, vRρ)-min-cut of G is greater than t, for any
honest party R.

Using this lemma, we will show that every honest party Pi in our protocol
will output the correct message m by round ρ. That is, we will show that Di[m]
will contain a copy of the relevant subgraph of G: all nodes that are on some
path from vS0 to viρ

12.
At the start, the only non-empty Di[m] is when Pi = S, where it contains a

solitary node. Call this node vS0. In every round, honest parties will send each
other their graphs, take the disjoint union, deduplicate, and add new sinks d to
their own graphs. Let vir be the sink added by Pi at the end of round r. It will
have an edge from the previous sink vi(r−1), as well as edges from vj(r−1) for all
honest Pj that Pi heard from in round r. Note that any such node vir will always
get deduplicated, as there the honest parties do not modify the predecessors of
nodes in their graphs before sending them on, so there will be at most one copy
of any vir in any of these graphs. Since all paths in G are exactly the paths of
honest parties are communicating along, Pi will have heard about vjr by round
ρ if and only if vjr is on some path from vS0 to viρ.

Nodes not on any path vS0 to viρ are irrelevant for determining the minimum
cut, so by Lemma 3 each honest party Pi will output m by round ρ. It remains
only to prove this lemma.

Proof (Proof of Lemma 3). Assume that there exists some relaxed labeled (vS0,
vRρ)-cut ({CPi

}i, {Sv,Dv}v∈G) where
∑

i CPi
≤ t. To avoid using double sub-

scripts, we will write Sir for Svir
, and similarly for C and D. Let Sr =

∑
i Sir

represent the “progress” made in the flooding on round r. It is essentially the

12 In general, it can contain much more, because the corrupted parties can make up
whatever graph they choose. But it will always contain this subgraph of G.

286 I. Damg̊ard et al.

total number of nodes that are on the sender’s side of the cut, except that
the variables Sv need not be integers. For all r we have SSr = DRr = 1, as
SS0 = DRρ = 1 by assumption that it is a (vS0, vRρ)-cut, and there are edges
from vR(r−1) to vRr for all r. We also have S0 ≥ SS0 = 1.

Next, for all rounds r there exists (S,R)-cut of the honest subgraph of Gr

with size t + Sr − Sr−1: let S′
i = Si(r−1), C ′

i = Ci + Sir − Si(r−1), and D′
i = Dir.

We can now show that (S′, C ′,D′) is a cut, assuming that (S,C,D) is a labeled
cut:

S′
i + D′

j = Si(r−1) + Djr ≤ Sir + Djr ≤ 1

S′
i + D′

i + C ′
i = Si(r−1) + Djr + Ci + Sir − Si(r−1) = Sir + Djr + Ci = 1

S′
i = Si(r−1) ∈ [0, 1]

D′
i = Djr ∈ [0, 1]

C ′
i = Ci + Sir − Si(r−1) ≥ Ci ≥ 0

C ′
i = 1 − S′

i − D′
i ≤ 1.

The size of C ′ is
∑

i C ′
i =

∑
i(Ci + Sir − Si(r−1)) ≤ t + Sr − Sr−1. While

this is a relaxed cut, the relaxed min-cut coincides with the integral min-cut, so
there exists some cut of honest subgraph of Gr with size at most t + Sr − Sr−1.
By assumption, Gr is k-connected, so after removing the corrupted nodes it is
(k−t)-connected. Therefore, Gr’s honest subgraph has no cuts smaller than k−t.
We now have t + Sr − Sr−1 ≥ k − t, or Sr − Sr−1 ≥ k − 2t.

We have lower bounded S0, and lower bounded its increase in each round, so
at the end we get

Sρ ≥ 1+ρ(k −2t) ≥ 1+
(

1 +
⌊

n − t − 2
k − 2t

⌋)

(k −2t) > 1+n− t− 2 = n− t− 1.

However, there are only n − t − 1 honest parties other than R, and SRρ = 0, so
Sρ ≤ n − t − 1. This is a contradiction.

Efficiency. We start by upper bounding the size of the graphs being sent when
all parties are honest. Let D[m] = Deduplicate(

∑
i Di[m]) be the deduplication

of the disjoint unions of the graphs of all honest parties. Every Di[m] is then a
subgraph of D[m], so the cost of sending Di[m] is upper bounded by the cost of
sending of D[m]. This graph only grows as the protocol continues, so need only
bound the size of the final value of Di[m]. In every round D[m] will increase by
n nodes and davgn edges, because every party will add a new sink connected
to the sinks from the previous round of all parties it has heard from. Note
that all of these honest nodes will always get deduplicated after the disjoint
union operations, because all copies of these honest nodes will have the same
predecessors.

We use a sparse representation of the graph, and compute its communication
cost as 2E log2 V + V log2 n, where E and V are the number of vertices. That
is, each edge specifies its two endpoints, and each vertex specifies its label. Note

Efficient Secure Communication over Dynamic Incomplete Networks 287

that V ≥ n, so this communication cost is upper bounded by (2E + V) log2 V .
If everybody is honest, this upper bounds the message size by

|m| + (2ndavgρ + nρ + 1) log2(nρ + 1) = |m| + (nρ(2davg + 1) + 1) log2(nρ + 1),

because the graph starts with one vertex (the sender) and zero edges. The total
communication cost of graphs would then be nρdavg(nρ(2davg+1)+1) log2(nρ+
1), as there are ρ rounds and at most ndavg messages sent in each round.

Next, we consider how the corrupt parties could increase the communica-
tion cost. They can do some combination of sending lies (i.e., sending m′ �= m),
increasing the number of graphs for honest parties to send, and sending graphs,
increasing the size of each graph the honest parties send. The total communica-
tion increases linearly with the number of lies, as essentially the same protocol
is run for lies as for m. The communication also increases linearly with the size
of each graph sent by a corrupt party, as the corrupt graph will become part
of D[m]. However, sending lies increases the communication faster than send-
ing graphs, as sending lies causes honest parties to add another nρ nodes to
the graph themselves, while sending graphs only increases the size of an existing
graph by the amount you sent. Therefore, the best attack is to spend the corrupt
party’s communication entirely on lies, multiplying the total communication for
graphs by M + 1. Adding on the cost of sending every message on every round,
this gives a total communication cost of

nρdavg(M + 1)(nρ(2davg + 1) + 1) log2(nρ + 1) + nρdavg(|m| + M).

Finally, note that based on these bounds all graphs remain polynomial in
size. The relaxed labeled min-cut can be computed in polynomial time using
linear programming, so the entire protocol then runs in polynomial time. ��

5 Private Communication with Active Corruption

5.1 Feasibility of Perfect Security When k > 2t

In this section, we disprove the conjecture by Damg̊ard et al. [DRTY23] by
showing feasibility of perfectly-secure private communication when 3t ≥ k > 2t.
First, we describe the building blocks used by Protocol 4.

Reliable Channel as a Building Block. We note that actively-secure reliable com-
munication protocols that are secure against t corruptions in a dynamic network
exist, as long as k > 2t. Thus, for simplicity, we use reliable channels as a primi-
tive in Protocol 4 . These could be realized by using our reliable communication
Protocol 3 or alternately by using the (more expensive) protocol of Damg̊ard et
al. [DRTY23]. The communication complexity of the former is upper bounded
by O(

n3|m| + Mn6 log2(n)
)

where |m| denotes the number of message bits and
M is an upper bound on the number of bits communicated by corrupt parties.

288 I. Damg̊ard et al.

Perfect Secure Message Transmission (PSMT). We use a perfect secure message
transmission protocol, which informally speaking, allows a sender to send a pri-
vate message securely to a receiver in a network where the sender and receiver
are connected by n secure channels, among which up to t channels could be
controlled by the adversary. More formally, PSMT can be defined as below.

Definition 6. Assume there are k secure channels between a sender S and a
receiver R. A protocol between S (with input message m) and R is a perfect
secure message transmission protocol if it satisfies privacy and correctness as
per Definition 2 against any adversary A corrupting at most t out of the k
channels.

Dolev et al. [DDWY93] showed the following:

Lemma 4 ([DDWY93]). PSMT is achievable if and only if k ≥ 2t + 1.

We observe that any such PSMT protocol should be secure even if there
are potentially fewer than 2t + 1 channels (say, there are δ < 2t + 1 channels),
as long as there are at least t + 1 uncorrupted channels. This is because one
can always augment this network with 2t + 1 − δ dummy channels, where the
dummy channels can be considered as being controlled by the adversary (as the
adversary corruption budget of t allows for this). This observation allows us to
state the below lemma.

Lemma 5. Assume a party S and another party R are connected by k ≥ t + 1
secure channels, among which at least t+1 channels are uncorrupted. Then, there
exists a protocol ΠSMT(S,R,m) that allows S to securely communicate a private
message m to R.

Looking ahead, in our Protocol 4 , we use the protocol ΠSMT in a non-black
box fashion by replacing the secure channels used by such protocols with reli-
able channels and suitably masking the private message using established shared
keys. Shared keys are established as in our protocols in the passive setting. Lastly,
we point that ΠSMT can be instantiated using any existing efficient PSMT con-
struction, such as the two round protocol of [SZ16] which has a communication
complexity of O(

n2 log n
)

bits to securely communicate a 1-bit secret.

Theorem 4. Protocol 4 is a private communication protocol that achieves per-
fect security against t < n active corruptions for network G with connectivity
k > 2t.

The protocol runs for 1 + 2ρRel + ρSMTρRel rounds, where ρSMT is the round
complexity of the SMT protocol and ρRel is the round complexity of the reliable
communication protocol.

Its communication complexity is O(
cRel(n2) + cSMT(|m|)(ncRel(1 + n log(n)))

)

bits where cRel(x) denotes the communication complexity of reliably communi-
cating x bits, cSMT(x) denotes the communication complexity of SMT for x bits,
and |m| denotes the number of message bits.

Efficient Secure Communication over Dynamic Incomplete Networks 289

Lemma 6. If none of (Pi1 , . . . ,Pi�
) are corrupt, then the steps from Protocol 4

for communicating a (private) message m′ from S to R over channel Chp achieve
private and reliable communication of m′.

The proof of Lemma 6 is identical to that of Theorem 2, with the graph
limited to the single path in question.

Proof (Proof of Theorem 4). The security of Theorem 4 then follows from the
security of the SMT protocol used: clearly, all connections between honest parties
will be present in G and since the subgraph of honest parties is at least t + 1-
connected, G′ must contain at least t + 1 all-honest paths. Moreover, we only
care about security if S is honest, and in that case all honest parties will be in
agreement regarding the network G

′. We can therefore rely on the security of
the SMT protocol (that assumes a public network).

The round complexity of the protocol follows from the fact that establishing
shared randomness takes one round; establishing the metagraph involves two
phases of (concurrent) reliable communications; and finally secure transmission
involves executing the SMT protocol, where each message in the SMT protocol
involves (multiple parallel) invocations of the reliable communication protocol.

The communication complexity of the protocol follows from the fact that
establishing the metagraph incurs cRel(n2) complexity (since the reliable com-
munication protocol directly achieves multicast); and secure message transfer
involves n instances of reliable communication (each involving communication
of cRel(1 + n log(n))) corresponding to each bit sent in the underlying SMT
protocol. ��
Remark 3. If S is not honest, there are no requirements on security, but we can
note that the protocol will still terminate and be efficient. In this case, parties
may no longer agree on which instances of the protocol for reliable communica-
tion should be run in the last phase. So, effectively, the set of honest parties will
be partitioned in subsets each trying to run their own set of instances. However,
this will not affect the round complexity as each instance runs for a fixed num-
ber of rounds. As for the communication complexity, we can assume that honest
parties will ignore messages from instances they do not think should be run, so
we are effectively running at most a factor n more protocols in parallel. How-
ever, note that the complexity of the reliable communication protocol already
incorporates a polynomial factor that depends on the behavior of the adversary
(as indeed it must). This means that the adversary could make us work at least
as hard by instead allowing parties to agree on G

′ but increase the number of
incorrect messages it sends when the reliable communication protocols are run.
Therefore, our expression for the communication complexity captures what can
happen, even for a dishonest S.

Conjecture of Damg̊ard et al. [DRTY23]. Lastly, recall that Damg̊ard et al.
conjectured that perfectly secure private communication in the active setting was
impossible to achieve when 3t ≥ k > 2t. They gave evidence for the conjecture

290 I. Damg̊ard et al.

by arguing that any protocol in the class they considered would fail in this case.
The assumption on the protocol was that the receiver would receive values from
different sets of t + 1 disjoint paths and would then try to identify the honest
set of t + 1 disjoint paths. However, this was shown to be impossible with 0
error probability when 3t ≥ k > 2t, since in the dynamic setting, an adversary
can always fabricate paths. While this argument is correct, it does not cover
all protocols, as also pointed out in [DRTY23]. Indeed, our protocol does not
fall in this class, as we crucially rely on fixing the meta graph using additional
public communication, and such additional interaction was not considered in
[DRTY23]. The metagraph essentially gives us a means to work with the static
setting instead, where perfect private communication is known to be possible for
k > 2t.

6 Communication with Less Connectivity

In the model we have used in the paper so far, the network graph is k-connected
in every round. It is natural to ask if this is required for our protocols to work.
As we shall see, the answer is no, in some cases we can work with the weakest
possible network assumption.

Let us first consider the case of reliable communication. We will use the con-
cept of a dynamic path, which is taken from [MTD15]. Consider some sequence
of network graphs as chosen by the adversary. Now, informally, if there is a path
in round 1 from party Pi to party Pj and in round 2 we have one from party Pj

to party Pk, we say there is a dynamic path from Pi to Pk; and this generalizes
in the natural way to any number of rounds. We say the network is dynamically
connected if there is a dynamic path from any party to any other party. If this
is the case, then for a passive adversary, the simple flooding protocol will allow
any party to multicast a message to anyone else. On the other hand, if there is
no dynamic path from Pi to Pj , nothing Pi says can reach Pj .

For an active adversary, we have shown an efficient multicast protocol working
in at most n rounds if we have k-connectivity in every round. A first observation
is that since the protocol is based on flooding, it will clearly also work if we run
for m > n rounds and we have k-connectivity in at least n of the m rounds.

However, we can even work with the weakest possible network model as
defined in [MTD15]. For a given set Ω of dynamic paths between nodes Pi and
Pj , they define the dynamic min-cut of Ω as the minimal number of nodes one
needs to remove, in order to cut all paths in Ω. Finally, the dynamic min-cut
between Pi and Pj is defined as the min-cut of the set of all possible dynamic
paths from Pi to Pj . It is shown that reliable communication from Pi to Pj with
t active corruptions is possible if and only if the dynamic min-cut between Pi

and Pj is larger than 2t.
We can rephrase this in terms of the notions we define in this paper, namely

for a set of dynamic paths Ω as above, we define a labelled graph GΩ as we did
in Sect. 4, where for each party Pa and each round there is a node labelled as Pa.
If a path in Ω connects Pa to Pb in some round r, we put an edge between the

Efficient Secure Communication over Dynamic Incomplete Networks 291

node for round r − 1 labelled as Pa and the one for round r labeled as Pb (also,
each party is connected to itself in the next round). It is then straightforward
to see that the labeled (integer) min-cut of GΩ as defined in Sect. 4 equals the
dynamic min-cut of Ω.

Protocol 4: Πprv
perf,mal(S,R,m)

The identities of the sender S and receiver R are public input. The sender S has message m ∈ F as
private input.
Let Ḡ =

⋃
G∈G G. We use the following building blocks:

– Rel(S,R, m), which allows reliable communication of a message m from S to R.
– ΠSMT(S,R, m): A perfect secure message transmission protocol that allows secure communica-

tion of a private message m over a network of k ≥ t + 1 secure channels, among which at least
t + 1 channels are uncorrupted.

–Establishing shared randomness. Party Pi does the following:
– For each neighbor Pj in Ḡ, sample uniform random ri,j (of size |m|).
– In round 1, attempt to send ri,j to Pj using the communication network.
– Let Ini denote the set of parties Pj from whom Pi actually received randomness rj,i in

round 1.
– For each neighbor Pj in G set oi,j := rj,i + ri,j where missing values r·,· are set to 0.

–Establishing meta graph of shared keys. This phase consists of the following steps:
– For each party Pi, parties jointly invoke Rel(Pi, S, Ini), where Ini is encoded as a n-bit

vector.
– The sender S builds the meta graph G as follows: Let P be the set of nodes. There is an

edge between Pu and Pv if Pu ∈ In′
v or Pv ∈ In′

u, where In′
u denotes the output of the

instance Rel(Pu, S, Inu).
– For each party Pi, parties jointly invoke Rel(S,Pi,G), where G is encoded in n2 bits.

–Secure message transfer in G. All the parties can now locally determine the same set of
disjoint paths, say GoodPaths in G between S and R (using the Ford-Fulkerson algorithm to
get a maximal set of disjoint paths): If the algorithm returns at most 2t+1 disjoint paths, use
these as GoodPaths, else use the first 2t+1 paths returned. Consider a network G

′ where each
disjoint path p in GoodPaths corresponds to a channel Chp. In order to emulate each step of
an instance of ΠSMT(S,R, m) over G

′, parties do the following:
– If the step involves computation, it is done exactly as in the protocol ΠSMT.
– If the step involves communicating a (private) message m′ from S to R over a channel Chp:

• Let (Pi1 , . . . ,Pi�) be the path corresponding to Chp, where Pi1 = S and Pi� = R.
• The sender S = Pi1 computes mi1 = m′ + oi1,i2

a and all parties jointly invoke
Rel(S,R, (p, m′

i1)) where p is encoded in n log(n) bits.
• Each party Pij ∈ (Pi2 , . . . ,Pi�−1) computes m′

ij
= oij ,ij+1 − oij−1,ij and all parties

jointly invoke Rel(Pij ,R, (p, m′
ij

)) where p is encoded in n log(n) bits.

• The receiver R computes m′ =
(∑

ij∈(i1,...,i�−1)
m′

ij

)
− oi�−1,i� as the value received

via the channel Chp in this step.
– If the step involves communicating a (private) message m′ from R to S over a channel Chp:

Similar steps as above, with the roles of S and R interchanged.
– R returns the output of ΠSMT(S,R, m) over G

′.

a We abuse notation here; assume that the shared key oi,j established earlier contains enough
randomness that can be used to mask the private messages sent throughout all steps of ΠSMT

and only the relevant part of the shared key corresponding to this particular private message
mp is used here.

Fig. 6. A perfectly-secure private communication protocol in a network with connec-
tivity k > 2t.

292 I. Damg̊ard et al.

Now, since our actively secure multicast protocol works with labelled min-
cuts, we can make a variant that will work making the minimal assumption
that the dynamic min-cut between any pair of players is > 2t. The idea is to
change the output condition such that the graph accompanying the message
m′ (Di[m′]) must have integer labelled min-cut greater than t – rather than
the relaxed labelled min-cut that allows fractional values. Computing the non-
relaxed labeled min-cut is not computationally efficient, but we still use only
polynomial communication. This protocol therefore compares favorably to the
protocol from [MTD15] for the same setting. That protocol tracks every indi-
vidual path a message travels and so is exponential both in communication and
computation.

Finally, we consider private communication. Observe that in both the passive
and active case, we use one round to decide on a sufficiently connected graph
according to which keys are shared pairwise between parties. Clearly, we could
also run this phase for several rounds, where in each round players attempt to
share keys with other players. As long as the union of the network graphs in
all the rounds is sufficiently connected, this will be enough for the protocol to
work. Once the keys have been established, reliable communication is used, so
we only need that the network supports non-private communication in that last
phase. We note that for passive security this means that we only need k > t for
the key sharing phase, and k > 0 (or a dynamically connected network) for the
rest of the protocol.

References

[DDWY93] Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message
transmission. J. ACM 40(1), 17–47 (1993)

[DF98] Downey, R.G., Fellows, M.R.: Parameterized Complexity. In: Monographs
in Computer Science. Springer, New York (1998). https://doi.org/10.1007/
978-1-4612-0515-9

[DHKM16] Dutta, T., Heath, L.S., Kumar, V.A., Marathe, M.V.: Labeled cuts in
graphs. Theor. Comput. Sci. 648, 34–39 (2016)

[Dol82] Dolev, D.: The byzantine generals strike again. J. Algorithms 3(1), 14–30
(1982)

[DRTY23] Damg̊ard, I., Ravi, D., Tschudi, D., Yakoubov, S.: Secure communica-
tion in dynamic incomplete networks. In: 4th Conference on Information-
Theoretic Cryptography, ITC 2023 (2023)

[Kha79] Khachiyan, L.G.: A polynomial algorithm in linear programming. Dokl.
Akad. Nauk SSSR 244, 1093–1096 (1979)

[MTD15] Maurer, A., Tixeuil, S., Defago, X.: Communicating reliably in multihop
dynamic networks despite byzantine failures. In: 2015 IEEE 34th Sympo-
sium on Reliable Distributed Systems (SRDS), pp. 238–245 (2015)

[SZ16] Spini, G., Zémor, G.: Perfectly secure message transmission in two
rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
286–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53641-4 12

https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-662-53641-4_12
https://doi.org/10.1007/978-3-662-53641-4_12

Adaptive Security, Erasures, and Network
Assumptions in Communication-Local

MPC

Nishanth Chandran1, Juan Garay2 , Ankit Kumar Misra3(B) ,
Rafail Ostrovsky3 , and Vassilis Zikas4

1 Microsoft Research, Bengaluru, India
nichandr@microsoft.com

2 Texas A&M University, Texas, USA
garay@tamu.edu

3 University of California, Los Angeles, USA
{ankitkmisra,rafail}@cs.ucla.edu

4 Purdue University, West Lafayette, USA
vzikas@cs.purdue.edu

Abstract. The problem of reliable/secure all-to-all communication over
low-degree networks has been essential for communication-local (CL) n-
party MPC (i.e., MPC protocols where every party directly communi-
cates only with a few, typically polylogarithmic in n, parties) and more
recently for communication over ad hoc networks, which are used in
blockchain protocols. However, a limited number of adaptively secure
solutions exist, and they all make relatively strong assumptions on the
ability of parties to act in some specific manner before the adversary can
corrupt them. Two such assumptions were made in the work of Chandran
et al. [ITCS ’15]—parties can (a) multisend messages to several receivers
simultaneously; and (b) securely erase the message and the identities of
the receivers, before the adversary gets a chance to corrupt the sender
(even if a receiver is corrupted).

A natural question to ask is: Are these assumptions necessary for
adaptively secure CL MPC? In this paper, we characterize the feasibil-
ity landscape for all-to-all reliable message transmission (RMT) under
these two assumptions, and use this characterization to obtain (asymp-
totically) tight feasibility results for CL MPC.

– First, we prove a strong impossibility result for a broad class of RMT
protocols, termed here store-and-forward protocols, which includes
all known communication protocols for CL MPC from standard cryp-
tographic assumptions. Concretely, we show that no such protocol
with a certain expansion rate can tolerate a constant fraction of
parties being corrupted.

– Next, under the assumption of only a PKI, we show that assuming
secure erasures, we can obtain an RMT protocol between all pairs of

R. Ostrovsky—This research was supported in part by NSF grants CNS-2246355, CCF-
2220450, US-Israel BSF grant 2022370, and by Sunday Group.
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 293–326, 2025.
https://doi.org/10.1007/978-3-031-78023-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_10&domain=pdf
http://orcid.org/0000-0003-0366-7110
http://orcid.org/0009-0009-6795-2771
http://orcid.org/0000-0002-1501-1330
http://orcid.org/0000-0002-5422-7572
https://doi.org/10.1007/978-3-031-78023-3_10

294 N. Chandran et al.

parties with polylogarithmic locality (even without assuming multi-
send) for the honest majority setting. We complement this result by
showing a negative result for the setting of dishonest majority.

– Finally, and somewhat surprisingly, under stronger assumptions (i.e.,
trapdoor permutations with a reverse domain sampler, and compact
and malicious circuit-private FHE), we construct a polylogarithmic-
locality all-to-one RMT protocol, which is adaptively secure and
tolerates any constant fraction of corruptions, without assuming
either secure erasures or multisend. This last result uses a novel
combination of adaptively secure (e.g., non-committing) encryption
and (static) FHE to bypass the impossibility of compact adaptively
secure FHE by Katz et al. [PKC’13], which we believe may be of inde-
pendent interest. Intriguingly, even such assumptions do not allow
reducing all-to-all RMT to all-to-one RMT (a reduction which is
trivial in the non-CL setting). Still, we can implement what we call
sublinear output-set RMT (SOS-RMT for short). We show how SOS-
RMT can be used for SOS-MPC under the known bounds for fea-
sibility of MPC in the standard (i.e., non-CL) setting assuming, in
addition to SOS-RMT, an anonymous PKI.

Keywords: Secure Multiparty Computation · Communication
Locality

1 Introduction

1.1 Communication Locality and Adaptive Security

Secure multi-party computation (MPC) [4,19,31,47] allows a set of n parties to
securely compute a function on their joint private data. Initial work on MPC
focused on feasibility, and it was followed by a series of works on improving round
and communication complexity. Envisioning the potential need to deploy MPC
on massive networks, novel works on scalable MPC (e.g., [20,21,25,34]) have
investigated settings and techniques that allowed for protocols with communi-
cation complexity that grows (asymptotically) slower than the size of the player
set. Boyle, Goldwasser, and Tessaro [8] put forth a different metric that is very
relevant for the design of massive-scale MPC, namely, communication locality
(CL). The CL of a party in a protocol is the number of parties that this party
sends/receives messages to/from, via a direct point-to-point channel, through
the execution of the protocol; as such, the CL of a protocol is the maximum
CL of any party. Motivated by the potential application of MPC to privately
executing sublinear algorithms in a distributed manner, [8] proposed a solution
which achieves MPC with a sublinear (i.e., polylogarithmic in n) CL tolerating
a (sub-optimal) number of t < (1/3 − ε)n actively corrupted parties, for ε > 0.

The original solution in [8] only considered static corruptions and relied on
the existence of a public-key infrastructure (PKI), a common reference string
(CRS), semantically secure public-key encryption and existentially unforgeable
signatures. Chandran et al. [15] improved on the above result to tolerate an
asymptotically optimal number of t < (1/2 − ε)n adaptive active corruptions,

Adaptive Security, Erasures, and Network Assumptions 295

for an arbitrary small constant ε. Their construction relied on the same assump-
tions except for the CRS, which was replaced by a hidden (random) graph: A
suitable random graph on n vertices (with sublinear degree) that is sampled by
a trusted entity and where each party is given its neighborhood in this graph.
However, parties do not know the other parties’ neighborhoods, and, most impor-
tantly, the adversary does not know the (honest) neighbors of honest parties. As
shown in [15], this random graph can be realized via a standard symmetric-key
infrastructure (SKI)—wherein every two parties share a (secret) symmetric-key
encryption key. The emulation is simple: Every two nodes locally use their sym-
metric key as a seed to a PRF to derive sufficiently long pseudorandomness that
can be utilized to decide (locally and independently) whether or not the parties
should have an edge between them in any given round. In fact, we mention that,
as noted in [14], the above hidden graph (or, equivalently, SKI) assumption can
be replaced by standard number-theoretic cryptographic assumptions (such as
DDH and its resulting PKI), allowing non-interactive key exchange (NIKE, for
short—cf. [24]). The simple idea is that the PKI can be used to non-interactively
establish the SKI required in [15], which can be used to derive the hidden graph.

The core challenge associated with such sublinear CL protocols is propagat-
ing information and connecting any two parties using a sparse (i.e., sublinear
degree) communication graph. In such a context, one needs to route messages
through the induced (incomplete) communication graph so that the adversary
cannot block (even indirect) communication between any two honest nodes, thus
disconnecting the graph. Indeed, since any party can only directly communicate
with a sublinear number of neighbors, the only way for it to reach all parties in
the network is by means of a gossiping protocol. In [8], gossiping was done via
a routing protocol based on hierarchical routing and sorting networks that clev-
erly knit the paths to ensure each message travels over sufficiently many paths,
making it impossible for the adversary to block it.

The above gossiping protocol works for a static adversary corrupting t <
(1/3 − ε)n parties. However, when one considers stronger adversaries, with an
asymptotically optimal (for MPC) corruption threshold—i.e., t < (1/2 − ε)n—
and, most importantly, adaptive adversaries, the problem becomes even more
challenging, as message routing through the incomplete graph turns into a “cat-
and-mouse” game—more formally, a graph discovery game—with the adversary
using an initial set of corrupted parties to try to discover possible message routes
and block them. In [15], properties of a hidden Erdős-Rényi graph were used
along with a clever use of edges in a disposable manner (where every edge was
used only once) in order to win the above graph discovery game, and devise a
sublinear-locality communication protocol for the problem of reliable message
transmission (RMT) between any two honest nodes, which allowed every honest
party to reach every other honest party. The protocol from [15] tolerates an arbi-
trary constant fraction of the parties being adaptively (and actively) corrupted.
RMT protocols can then be used to trivially construct secure message transmis-
sion (SMT) protocols—informally, these are protocols which emulate a secure,
i.e., private and authenticated, channel between a sender and a receiver—in the

296 N. Chandran et al.

model assuming a PKI, which can then be used to build communication local
MPC protocols1.

1.2 Erasures and Network Assumptions in CL Protocols

The protocol in [15] relied on the aforementioned setup and hardness assump-
tions, namely, a PKI, an SKI, and the existence of enhanced one-way
permutations—the latter being a common minimal assumption for MPC. In
addition, an assumption was made in [15] which is not essential for MPC, but,
as we show in this paper, turns out to be necessary for sublinear communication
when natural gossiping protocols are used. In more detail, the assumption of
secure erasures [12]—namely, that honest parties can erase whichever part of
their state they wish, in a way that if they are corrupted later on, the adversary
cannot recover the erased information—is only needed for a subset of adaptively
secure MPC protocols without the sublinear CL restriction [28]. The construc-
tion from [15], however, assumes not just erasures, but actually two levels of
strengthening of the assumption: First, it also assumes an atomic multisend
capability [33], which in a nutshell ensures that if a player p attempts to send
a message to a subset Q of the player set in some given round, then either all
honest parties will receive the message or none of them will2. However, even
assuming secure erasures in addition to such a rushing adversary proves not to
be sufficient for the protocol in [15]. The reason is that when a message is sent
to a polylogarithmic (in n) number of parties, then one of these parties may be
corrupted, in which case the adversary can corrupt the sender and learn who the
other receivers were, before the sender has had a chance to erase their identities,
and corrupt them too, thereby completely neutralizing the sender. In fact, the
inability of the adversary to mount such an attack is essential in [15]’s secu-
rity proof. In order to exclude this attack, [15] also assumes that multisend and
erase can jointly be done as an atomic operation—i.e., p can send his message
so that it is received by all the parties in Q and erase their identitites before the
adversary is able to corrupt him.

1.3 Our Results

The above state of affairs leaves open several questions regarding the mini-
mal assumptions required for sublinear locality in all-to-all communication (and
therefore also in MPC) in the adaptive security setting. In particular, it leaves
open the question of the necessity and sufficiency of secure erasures, atomic
multisend, and their atomic combination as mentioned above. In this paper we

1 As a side note, an interesting side effect of the recent popularity of blockchain proto-
cols is that, as they also rely on gossiping for communication, results on the feasibility
of sublinear-communication protocols provide insights on basic feasibility questions
in the blockchain context as well (see related work for further details).

2 As shown in [33,36], this property is impossible to obtain from simple point-to-point
communication in the standard adaptive and rushing adversary setting [10].

Adaptive Security, Erasures, and Network Assumptions 297

provide a characterization of this landscape, as depicted in Table 1. The impossi-
bility results in Table 1 are for adaptively secure all-to-all reliable message trans-
mission, i.e., the task of allowing every party pi to send a (potentially different)
message to every party pj in a reliable, i.e., authenticated manner—where pj

becomes aware that the message was sent by pi—so that the adversary cannot
block or alter the message exchanges between any pair of honest parties. As
noted earlier, this serves as a building block for SMT and CL MPC protocols.
These results apply to a broad class of protocols which we call store-and-forward
(SF) protocols, which, intuitively, allow intermediate parties to only store and
forward previously received messages, and (for the non-erasure case) under an
expansion-rate assumption, which mandates that messages originating from any
neighbors of a sender will reach a large (polylogarithmic size) set relatively fast
(i.e., before they reach their respective receiver) (see Definitions 1 and 2). This
includes several natural message propagation and gossiping protocols, and in
particular all those used in the CL literature (see Sect. 2 for a discussion).

The positive results in Table 1 are for all-to-one RMT, i.e., there is one
receiver who everyone wishes to send messages to. As we shall show, assum-
ing erasures, the feasibility results can be extended to all-to-all RMT. However,
intriguingly, in the non-erasure setting, the protocol can only be extended to
allow for a sublinear (polylogarithmic) set of receivers. Even so, the assumption
of an additional setup, namely, an anonymous PKI, allows us to rescue the sit-
uation: We show that we can implement a new notion of MPC, which we term
sublinear output-set MPC (SOS-MPC for short). Likewise, we use the term SOS-
RMT to refer to the formerly obtained notion of RMT with a sublinear set of
receivers. Intuitively, in an anonymous PKI setting, parties have access to a PKI
but do not know which public-key corresponds to which party. Such a setup is
common in YOSO-style MPC protocols which have become highly relevant in
the blockchain literature [30]. Our newly defined SOS-MPC is similar to stan-
dard MPC (i.e., the inputs of all parties are accounted for in the computation)
but only a (random) subset of the parties of sublinear size receives the output
from the computation. We note that SOS-MPC is sufficient for the motivating
applications of CL MPC, namely, secure computation of sublinear algorithms,
where the output is by definition far smaller than the input (cf. [9]). This leaves
open the question of feasibility or impossibility of (all-to-all RMT and) standard
MPC in this setting.

Our positive results are of two flavors. Assuming secure erasures under stan-
dard assumptions (i.e., one-way functions), we provide SF protocols for RMT
tolerating the (asymptotically) optimal number of corruptions, as implied by
the impossibility result of Theorem 3. This leaves open the following important
question:

Is it possible to construct an RMT protocol in the no-erasures setting that
is adaptively secure against a constant fraction of corruptions?

We answer this question in the affirmative, albeit using strong cryptographic
assumptions. Concretely, assuming trapdoor permutations with a reversed
domain sampler and the existence of a malicious, compact, and circuit-private

298 N. Chandran et al.

Table 1. A characterization of feasibility of reliable communication (RMT) under the
different assumptions: Atomic multisend (A-MS), secure erasures (Erasures), and multi-
send and secure erasures as an atomic operation (A-MSE). All negative results are for
all-to-all RMT. The positive results are for all-to-one RMT; but all except Theorem 4
are extended to all-to-all RMT, whereas Theorem 4 is extended to SOS-RMT. Note
that SF stands for store-and-forward as defined in Definition 1, and expansion rate is
as defined in Definition 2.

A-MS Erasures A-MSE

✓ ✓ ✓ [15]: Assuming PKI and one-way functions, there exists an (SF) sublinear
locality RMT protocol tolerating t < (1− ε)n corruptions, for any ε > 0.

✓ ✗ ✗ Theorem 1: There exists no SF polylogarithmic locality RMT protocol
with expansion rate (polylog(n), k logn

c log logn
) tolerating a constant fraction of

corruptions, for any k < 1, where the degree of the communication graph
is O(logc n).

✗ ✓ ✗ Theorem 2: Assuming PKI and one-way functions, there exists an (SF)
polylogarithmic locality RMT protocol tolerating t < (1

2
− ε)n

corruptions, for any 0 < ε < 1
2
. Theorem 3: There exists no SF

polylogarithmic locality RMT protocol tolerating t > (1
2
+ ε)n

corruptions, for any 0 < ε < 1
2
.

✗ ✗ ✗ Theorem 4: Assuming PKI, trapdoor permutations with a reversed
domain sampler and compact and malicious circuit-private FHE, there
exists a polylogarithmic locality RMT protocol tolerating t < (1− ε)n
corruptions, for any ε > 0.

fully-homomorphic encryption (FHE) scheme [42], we can construct a proto-
col, which is not SF, and thus circumvents our impossibility result, allowing for
RMT tolerating any constant fraction of corruptions. Its construction relies on
a novel combination of adaptively secure (e.g., non-committing) encryption [12]
and (statically) secure FHE to obtain a homomorphic encryption scheme that,
although not fully homomorphic, allows to compute a class of circuits sufficient
for our RMT, while providing adaptive security (including deniability), a prop-
erty which is known to be impossible for general FHE [37].

Regarding our MPC feasibility results, using techniques from [15], we can
“lift” all the above all-to-all RMT feasibility results on adaptive all-to-all commu-
nication to adaptively secure MPC, under the assumption of enhanced trapdoor
permutations, or any other assumption that would allow for corruption-optimal
adaptively secure MPC over a complete point-to-point network. Similarly, we
can lift the SOS-RMT results to SOS-MPC.

1.4 Related Work

Although introduced as a notion explicitly for standard MPC by Boyle, Gold-
wasser, and Tessaro [9], the idea of low communication locality was already
implicit in a number of works on almost-everywhere secure (communication,
Byzantine agreement, and computation) protocols [17,18,23,27,39,40,44]. Such
protocols can operate over incomplete networks (or under-utilize a complete

Adaptive Security, Erasures, and Network Assumptions 299

network to achieve low CL as we do here) but “give up” security for a num-
ber of parties; such so-called doomed parties might loose their input privacy,
and/or contribute a false input to or receive a false output from the compu-
tation. The goal of such almost-everywhere secure protocols is then to achieve
optimal tradeoffs between number of corruptions and number of doomed parties.
We refer to [16] for a recent formal treatment of and detailed literature review
of almost-everywhere secure protocols.

As already mentioned, Chandran et al. [15] improved on the resiliency of
the protocol from [9] and brought adaptive security to the model, at the cost,
however, of the strong atomic erase-and-multisend assumption, which restricts
the ability of an adaptive adversary to attack the protocol, as we discuss in
detail in Sect. 2. The results from [15] relied on a hidden-graph setup which,
by construction, was an expander graph. The follow-up work by Boyle et al. [6]
provided the first solutions to the problem for PRAM-based MPC, which in
addition achieved some load balancing properties. Following that, Boyle et al. [7]
investigated the question of whether an expander is in fact needed for sublinear
locality MPC, answering it in the negative.

Also related to our goals are works that explicitly target sublinear per-party
communication complexity. In this context, Dani et al. [22] presented a stati-
cally secure information-theoretic MPC protocol with a per-party communica-
tion complexity of O(

√
n) tolerating t < n/3 corruptions. King and Saia [38]

showed how to construct a Byzantine agreement (BA) protocol that is secure
against adaptive corruptions, where the communication complexity of every
party is Õ(

√
n), which leads to a BA protocol with Õ(n) communication locality

tolerating t < (13 − ε)n corruptions.
Also related to our work is the work of Matt et al. [41], who consider a weak-

ening of the adversary’s adaptivity, which they term delayed adaptive corruption.
Here the adversary who wants to corrupt a party needs to first indicate its inten-
tion, say, in round r, but the actual corruption does not take effect until a few
rounds later. Despite being useful for making statements about the load balance
and delivery guarantees of blockchain-inspired message propagation protocols, in
the context of sublinear locality we are considering, this assumption trivializes
feasibility questions. Indeed, the latter protocols tend to use parties (network
nodes) as “disposable” relays, i.e., once a party successfully relays its message
to its neighbors, corrupting it does not buy the adversary anything. This fact,
in combination with the delayed adaptive corruption assumption (which would
imply that the adversary’s ability to corrupt is slower than the message propa-
gation), would prevent the adversary from adaptively blocking discovered paths.

2 Model

Notation. Here we present some basic notation used throughout the paper. We
denote by [n] the set [n] = {1, . . . , n}. P = {p1, . . . , pn} denotes the set of parties
participating in the MPC protocol. We will often refer to parties as nodes in a
network. We will assume that the adversary is able to corrupt a number t < n

300 N. Chandran et al.

of the parties; it will be convenient for our exposition to express corruption in
terms of a fraction τ of the total number of parties; hence t = τn, for 0 < τ < 1.

In any directed graph over P, we will use ρi,j to denote the length of the
shortest path from node i ∈ P to node j ∈ P. Further, we will denote by Γq(u)
the set of all nodes (not including u) that are at forward distance ≤ q from node
u ∈ P, and we will define γq(u) = |Γq(u)|. Hence, Γ1(u) denotes the set of all
outgoing neighbors of u. Analogously, we will denote by Γ in

q (u) the set of all
nodes v ∈ P such that ∈ Γq(v). Hence, Γ in

1 (u) denotes the set of all incoming
neighbors of u.

2.1 Adversarial Model

Next, we turn to defining the communication and adversary model for adaptively
secure computation with communication locality. We note that most works in
this area leave several of the model assumptions implicit or unspecified. Instead,
since our goal is to provide a complete feasibility landscape given such assump-
tions, we need to take a more rigorous and detailed approach to the specification
of the model.

Consistently with the classical MPC literature, we assume that parties are
connected with each other via a complete network of secure (i.e., authenticated
and private) point-to-point channels [5,32]. However, since each party can “talk”
to only a sublinear (i.e., polylogarithmic in n) number of other parties, no party
will be using all its point-to-point channels. The communication is synchronous,
which means all parties advance in a round-based manner, where whenever the
round switches everyone is informed, and messages sent in any round r are
guaranteed to be delivered by the beginning of the following round r+1—unless
the sender gets corrupted during r and no multi-send capability is assumed (see
below). We will consider an adaptive and rushing adversary who might actively
corrupt parties during the protocol execution.

The combination of sublinear communication locality and synchrony with
such an adversary brings up a number of modeling challenges, described below.

Localized Notification. In classical synchronous point-to-point networks, the
adversary is always informed when a party pi sends a message to another party
pj via their direct point-to-point channel. Notifying the adversary about such a
transmission implicitly captures the assumption that the adversary has a global
view of the entire network, including runtime-observable events, such as mes-
sages being transmitted. This gives him the ability to induce a worst-case (arbi-
trary/adversarial) scheduling of messages that makes for stronger security.

However, when we shift to settings with vastly large sets of parties—these are
the settings where sublinear-locality protocols become relevant—the assumption
that the adversary has a complete view of all the events that occur in the network
might be too strong. In fact, it is impossible to achieve adaptive security with
sublinear locality in this worst-case setting. Indeed, in low-locality settings3, a
3 Here “low” specifically means asymptotically smaller than the adversary’s corruption

budget.

Adaptive Security, Erasures, and Network Assumptions 301

party might only communicate with a small number of its neighbors. Hence,
if the adversary is able to detect that an honest party p attempts to send a
message to another honest party, then he can simply corrupt the receiver and
block this transmission path; by performing this attack on every transmission of
p the adversary will be able to isolate the party from the rest of the network,
making all-to-all communication (and therefore “full” MPC) impossible4. Hence,
for such settings, it is natural and relevant to limit the visibility to the adversary
in message transmission events to only events happening near his neighborhood,
i.e., assume that the adversary only observes message transmissions on channels
that are incident to a neighborhood where he is present—e.g., channels in the
immediate neighborhoods of parties currently under his control. In our model, we
make this assumption—which is necessary for sublinear-locality communication
and MPC, and therefore implicit in all relevant works—explicit by assuming
that the adversary is only able to observe a transmission when the sender or the
receiver of that transmission is corrupted.

Adaptive Adversarial Scheduling. The above localized notification assump-
tion is natural in large networks (and necessary for adaptive corruption), but
it does create a challenge with allowing the adversary to perform worst-case
scheduling: Since the adversary does not have a full view of which honest-to-
honest channels are used in each round (recall that only a small, sublinear per
party, number is utilized), how can he induce a worst-case scheduling? In fact,
although the above localized-notification assumption was implicit in [15], this
delicate issue was not addressed.

To address it, we look back at the classical way of defining scheduling for an
adaptive and rushing adversary in [10]: Every round is split in “mini-rounds”,
where in each mini-round the adversary can have one party pi send his message
to another party pj . If in the protocol every party communicates with all other
parties in each round (a common protocol structure in feasibility results) then
this means that each round has n2 mini-rounds. The adaptive adversary is able to
corrupt parties between any two mini-rounds. Note that, as explicitly discussed
in [10], this means that a worst-case adversary would first deliver all messages
sent to corrupted receivers and then schedule the remaining messages in an
adaptive manner. To allow for worst-case scheduling in our model, we rely on
the exact same idea: In each round r, the adversary operates in n2 mini-rounds,
where each such mini-round corresponds to a unique (ordered) pair of parties
(pi, pj), allowing pi to send its rth round message to pj . The only difference
here is that if and while both pi and pj are honest, the adversary does not
learn whether or not a message was sent on the (pi, pj) channel in that round.
(Of course, if either pi or pj gets corrupted down the line, then the adversary
will find out at the point of corruption whether a message was exchanged in
round r, unless the corrupted party has had a chance to erase before becoming
corrupted—see discussion about erasures below.)
4 Here, we use “full” MPC to refer to the standard MPC formulation where no party

is left out; this is in contrast to “almost-everywhere” MPC [27], where some of the
parties are not given any correctness and privacy guarantees.

302 N. Chandran et al.

Trusted Setup Assumptions. We assume classical correlated randomness
setups: The parties have access to a public-key infrastructure (PKI), which they
can use for digital signatures and public-key encryption. In addition, the parties
are given an appropriately sampled hidden random graph setup with polyloga-
rithmic degree [15]. As discussed in [15], and already mentioned earlier, under
standard hardness assumptions (i.e., existence of pseudo-random generators)
this graph setup can be replaced by a different correlated randomness setup,
namely, a secret key infrastructure (SKI); alternatively, if the PKI allows for non-
interactive key exchange (NIKE), then any other setup assumption is not needed
since an SKI can be created by pairwise invocation of the NIKE protocol—since
this is non-interactive, it does not result increase communication locality.

Secure Erasures. Secure erasures are common (and, in fact, necessary in SF
protocols) for adaptively secure MPC and, as we prove here, for point-to-point
communication over a sublinear-degree network graph. The assumption is that
(honest) parties are able to erase any part of their internal state (including parts
of their setup and/or randomness) so that if they get corrupted later on, the
adversary does not have access to the erased information. We note that in a
model where such erasures are possible, such actions take place responding to
protocol instructions, and therefore the adversary corrupting a party is allowed
to learn that an erasure was performed by the party in the past.

2.2 Atomicity Assumptions

Atomicity of Actions. One of the most important parameters of any adaptive
adversary setting, which is often left as implicit, is the question of atomicity of
operations for the honest party. A block of operations is considered atomic if,
once an honest party starts performing them, it is allowed to complete them
before the adversary gets a chance to act (e.g., perform additional corruptions).
Clearly, the higher the number of operations that are bundled in an atomic
block, the harder the job of the adversary becomes. One of the standard uses of
atomicity in the distributed computing and cryptographic protocols literature is
the so-called atomic multi-send, where if in a given round a party is supposed to
send a message to multiple parties, it is allowed to do so without any in-between
adversarial interference. One can view this assumption as a way to restrict the
rushing ability of the adaptive adversary. As such, in the recent literature the
(setting of an) adaptive adversary over a network of standard (point-to-point)
channels (i.e., with non-atomic multisend) is at times referred to as strongly
rushing [1,46] and the term “rushing” is used to refer to the setting where the
adaptive adversary operates over a network with atomic-multisend channels.

In this work we use the term “rushing” consistently with [10,11,26,33] to
characterize the adversary (i.e., its ability to schedule the delivery honest par-
ties’ messages) rather than the setting of network and adversary. Hence, atomic
multisend is a network/protocol-related atomicity assumption: When the proto-
col instructs a party p to deliver a message to several parties in some set Q in
the same round (or even a vector (mp1 , . . . ,mpQ) of messages, where each mpi

is

Adaptive Security, Erasures, and Network Assumptions 303

to be sent to pi ∈ Q), then the party can send all those messages as an atomic
operation, meaning that these messages will be delivered to their intended recip-
ients at the beginning of the following round; in particular, the adversary cannot
corrupt p in the middle of the transmission and enforce that some pi ∈ Q receives
the message mpi

from p while some other pj ∈ Q does not.

Atomicity Assumptions Used in This Work. The way different feasibil-
ity assumptions are bound together in an atomic operation has an impact on
the feasibility of reliable communication (and therefore MPC) that one is able
to prove. As our goal is to investigate the different relevant assumptions for
sublinear- (polylogarithmic-) locality MPC, we next include a detailed discus-
sion on the ways these assumptions can be bound (and have been bound in prior
literature):

– No erasures/no (atomic) multisend (NE-NAMS): This is the worst-case net-
work and erasures model (fourth row of Table 1): (1) No honest party is
allowed to erase its internal state and the adversary, upon corrupting a party,
learns that party’s entire prior and current state, and (2) the parties send
their messages one by one as discussed in the adaptive scheduling above.

– No erasures/(atomic) multisend (NE-AMS): This corresponds to the second
row of Table 1): (1) (Lack of) erasures are as above, and (2) the parties can
atomically multisend their messages.

– Erasures/no (atomic) multisend (E-NAMS): This corresponds to the third
row of Table 1. We assume erasures but no atomic multisend. Hence: (1) In
each mini-round where a party pi is allowed to “speak” (we say the party is
activated); i.e., in each miniround corresponding to a pair (pi, pj) for some pj ,
the party pi can first erase and then send, but it cannot erase the message it
is about to send (including the identity of the receiver) until the next mini-
round when the party is activated, and (2) messages are sent in a one-by-one
manner (in mini-rounds as above), where between any two mini-rounds the
adversary can act.

– Erasures/(atomic) multisend (E-AMS): (1) Erasures are as in the previous
case, and (2) when a party is activated for sending, it is allowed to erase
and then send to a set Q of parties (but as above, it cannot erase this set or
the messages it sends until the next time it is activated). Note that this case
allows an adversary who has corrupted a party in Q to learn the message,
corrupt the sender, learn the identities of all other parties in Q (since the
sender is not given a chance to erase before) and corrupt all of these parties
thereby blocking this message.

– Atomic erasures and multisend (AE-AMS): This is the strongest of the atom-
icity assumpions (first row of Table 1) and corresponds to the model con-
sidered in past works on sublinear locality MPC with adaptive corruptions
(e.g., [7,15]). In this case, whenever a party is activated for sending a message,
it is allowed to send to a set Q of parties (where all are guaranteed to receive
their messages at the beginning of the following round) and perform erasures
after sending is complete and before the adversary has a chance to corrupt
this party. This, in particular, means that even if the adversary controls one

304 N. Chandran et al.

of the parties in Q, he is still unable to learn who the other parties in Q are
even by corrupting the sender (as before corruption the sender is able to erase
their identities).

3 Technical Overview

Impossibility of Store-and-Forward Without Erasures. Our first tech-
nical contribution (see Sect. 4) is an impossibility result for all-to-all (in fact,
even one-to-all) store-and-forward RMT with a high expansion rate, if we do
not assume erasures. In particular, we show this impossibility for expansion rate
(logz(n), k log n

c log log n), for all z > 1 and k < 1, where the degree of the communi-
cation graph is O(logc n). Intuitively, our definition of (L, �) expansion rate (see
Definition 2) captures the constraint that, in an honest execution of the proto-
col, when the sender’s message reaches parties up to a distance � from himself,
his message also reaches at least L parties through each of his neighbors. To
our knowledge, this property can be shown to hold for all CL MPC protocols
in the current literature. The result holds independently of whether or not we
assume atomic multisend. The proof utilizes a combination of graph-theoretic
and protocol results and can be summarized as follows: The first step in the
proof shows that, due to the polylogarithmic locality assumption, there must
exist a pair (ps, pr) of sender and receiver that are far enough from one another,
concretely, in distance greater than k log n

c log log n (Lemma 2). Looking ahead, this will
be the pair the adversary will try to disconnect. The expansion rate assumption
will then ensure that for each forward neighbor p of ps in the RMT to pr, the
graph rooted at p that is created by coloring the communication graph as the
message of ps (intended for pr) passes though the intermediate nodes, will have
sufficiently many colored nodes before it reaches pr, so that with high probability
one of them can be adversarial. Once this happens, the adversary will be able to
follow the thread backwards all the way to this neighbor p and then corrupt p
and all parties that p has sent the message to, thereby eliminating p as a possible
relayer. Since each such p can be eliminated with high probability, and ps had
at most polylogarithmically many neighbors, the above adversary will be able
to capture all these neighbors (and the colored graphs rooted at them) before
the message reaches pr (and without corrupting ps). This adversary can drop all
the message passing from captured nodes, thereby disconnecting ps and pr and
violating the security of the RMT. The detailed proof is given in Sect. 4.

We remark that, although the above SF subclass might appear somewhat
simple, it captures the structure of several natural message-propagation and
gossiping protocols—in particular those used in the context of blockchains, as
well as in so-called store-and-forward (switching) networks (cf. [3]). In fact, as
demonstrated in Lemma 1, the class of SF RMT protocols with expansion-rate
parameter that fall within our impossibility range includes all known message-
propagation protocols in the sublinear locality MPC realm. We stress that our
impossibility is not intended as a way to tightly characterize the feasibility land-
scape of CL RMT in the non-erasure setting, but rather to abstract the core of

Adaptive Security, Erasures, and Network Assumptions 305

the above protocols that makes them inadequate against adaptive adversaries
in this setting. Notwithstanding, we are not aware of any technique that yields
a protocol in the non-erasure setting, as even common approaches for anony-
mous communication, e.g., onion-routing-based protocols, seem insufficient in
this highly adversarial setting (as discussed in Sect. 1.4).

The Power of Secure Erasures for CL Protocols. As discussed above,
the above impossibility (for SF RMT) protocols renders existing communication
protocols in the CL MPC (and blockchain-via-gossip) literature insecure when
erasures are not assumed. Continuing our exploration of the landscape, we turn
to the question of how far can the secure-erasures assumption take us in terms
of feasibility of RMT. Recall that [15] proved that if erasures and multisend can
be performed/bundled in an atomic operation, then any adversary corrupting
any constant fraction of the parties can be tolerated in RMT. Here we ask
what happens if we unbounded these two assumptions, i.e., assume either only
erasures, or erasures and multi-send as separate operations. And we shoot for
the strongest possible results: (1) Feasibility even without atomic multisend and
(2) Impossibility even with atomic multisend.

For the first (feasibility) result, our starting point is the RMT protocol
from [15], which at a high level operates as follows: The sender sends his signed
inputs to his hidden graph Round-1 neighbors,5 and whenever a party receives
a message in some round rnd, he relays it (in the next round, rnd + 1) to his
(rnd + 1)-round hidden-graph (forward) neighbors6.

The above protocol does not work here, since the communicating parties
can be cut off by the attack described in Sect. 1.2; namely, a corrupted node p
who receives a message from an honest neighbor q can corrupt q and all of q’s
neighbors before any chance of erasure. To make the above protocol secure when
(just) erasures are assumed, we make the following modification: Every round is
assigned to exactly one party in P, who, if he has a message to send, sends this
message to exactly one of his hidden graph (forward) neighbors at a time, and
then (in the next activation/round) erases both the fact that he sent it and the
relevant (used) edge from his hidden graph setup (i.e., the edge pointing to the
neighbor he just contacted). Importantly, unlike [15], where as soon as a party
relays a message he does not need to do any more relaying, we require every party
that has received a message to keep relaying it to its hidden graph(s) neighbors.
By forwarding messages to neighbors one at a time and erasing in between, the
adversary is prevented from corrupting the neighbors of honest relayers who get
corrupted, enabling a message to propagate into the network even after a past
relayer is compromised. Note that to allow for worst-case attacks, one needs to
devise a careful structure that gives the adversary sufficient attack-opportunities.
We ensure this by forcing on our protocol a structure that makes erasures slow
enough, so that the adversary is given enough time to attack (see Sect. 5.1.1).

5 Since we will be running at most polylogarithmic-round protocols, we can assume
wlog that the hidden graph is a multi-graph consisting of polylogarithmic, indepen-
dent copies of polylogarithmic-degree hidden graph setup.

6 Recall that the hidden graph is directed.

306 N. Chandran et al.

The above protocol is clearly SF, and it even has an expansion rate that
matches the parameter of our non-erasure impossibility theorem. Hence, one
might be tempted to believe that if the adversary corrupts a constant fraction of
the parties, then with good probability he will be able to block the message in a
similar way as in our no-erasures impossibility proof. However, contrary to the
above intuition, we show that any adversary corrupting at most t < (1/2−ε)n of
the parties can be tolerated (with overwhelming probability). The proof follows
a careful probabilistic argument: Since, from a Chernoff bound, more than half
of the hidden graph neighbors of any party are honest, we can show that the
above protocol will create an avalanche effect: With good probability, for several
rounds from the start of the above protocol the set of honest parties that has
received the message will keep growing and it will become large enough to be
guaranteed to include a party who is one hop (in the hidden graph) from the
RMT receiver. Once this happens, it is game over for the adversary since this
party will relay the message to the RMT receiver in the following round.

The above result establishes (one-to-one) RMT assuming an honest majority
and erasures only (Theorem 2) and as a corollary, (one-to-one) RMT assum-
ing honest majority, erasures, and multisend, not necessarily bulked as a single
atomic operation (Corollary 1). Furthermore, it can be trivially extended to the
all-to-all RMT case (where every party wants to send a message reliably to every
other party) by using batching techniques from [15] (Corollary 2). This settles
the feasibility question.

We next turn to impossibility. Here we use an argument that can be seen as
mirroring the proof of Theorem 2: We prove that if the majority of the parties
can be corrupted (in particular, t > (1/2 + ε)n for any constant ε) then in any
RMT-protocol candidate, the adversary can with noticeable probability make
the expansion of the set of parties that learn the sender’s input shrink, resulting
in the message dying in the network before it reaches the receiver. This yields
a strong impossibility of RMT in the erasures model, which as we show holds
even if we assume multisend (Theorem 3).

Beyond Store-and-Forward. Next, we turn our attention to the question of
whether one can design RMT protocols in the non-erasure model, by devising
non-SF protocols, thereby circumventing our impossibility. The answer to this
question is far from simple, which further underpins the challenges that CL
protocol design poses.

Our key idea is to hide the store-and-forward procedure under the hood of
fully homomorphic encryption (FHE). This will hide the message and signature
(and in particular, origin and path) for transmitted messages. But as as we shall
see, this seemingly simple intuition needs several modification to work.

The protocol structure is similar to the previous protocol (which assumed
secure erasures), with the main difference being that the sender encrypts his
original message and signature with the receiver’s HE public key, and this cipher-
text is what is diffused through the low locality network. In particular, instead
of checking signatures in the clear, every party uses HE to check if any of the
received ciphertexts is an encoding of a message signed by the sender. If so,

Adaptive Security, Erasures, and Network Assumptions 307

it (the circuit evaluated by HE) outputs a new, rerandomized HE ciphertext
that encrypts the sender’s message and signature (if several such messages are
received then use any of them); otherwise encrypt the all-zero message along
with a default signature on it. We denote the above protocol by ΠRMT

FHE .
In order for the above approach to work we need the HE scheme to satisfy

several properties that are common in the fully homomorphic encryption (FHE)
literature, namely compactness and malicious circuit-privacy [29,43,45]. Infor-
mally, compactness ensures that the ciphertext size depends only on the plain-
text and the security parameter (in particular it does not grow when the EvalFHE
operation is applied). On the other hand, malicious circuit privacy ensures that
the ciphertext that is computed by EvalFHE leaks no information about the cir-
cuit that was homomorphically evaluated, even when the ciphertext on which
EvalFHE is computed is maliciously formed. This last property will ensure that
applying EvalFHE automatically rerandomizes the ciphertext. We note that both
of these properties are common in standard FHE schemes (cf. [29,42,43,45]).

A caveat in the above idea is that it is known that adaptively secure FHE
which satisfies compactness is impossible [37]. Nonetheless, we construct a com-
pact adaptively secure FHE scheme which allows for the homomorphic evaluation
of the specific function needed by our RMT protocol. In particular the specific
function we require does not actually modify the contents of the underlying
message that was encrypted (but only checks validity of a signature “under-the-
hood” and then retains or disregards the underlying message). We stress that
existence of such a scheme does not contradict the impossibility result of Katz
et al. [37], as the circuits we consider are not in the class considered there.

Next, we describe the idea to circumvent the above impossibility. We con-
sider only the single-pair RMT setting, where one sender u wishes to send a
message to one receiver v. In order to ensure that ciphertexts can be simulated
without knowledge of the plaintext and, if, later on, the sender and/or receiver
is corrupted, the simulator can present randomness matching this ciphertext, we
use the following idea: The sender first encrypts the message m it wishes to send
with the receiver’s public key, using an adaptively secure encryption scheme (e.g.,
the non-committing encryption of Canetti et al. [13]). (Looking ahead, this will
allow a simulator to equivocate the message if needed.) Next, the sender signs the
resulting ciphertext c, and encrypts the resulting pair (c, σ) using the receiver’s
public key for a (statically secure) FHE scheme. For brevity, we will refer to the
above operation of encrypting with FHE an authenticated version of the adap-
tively encrypted plaintext as adaptively authenticated homomorphic encryption
(aaHE for short). Then the sender propagates the aaHE ciphertext through the
hidden communication graph, identically to the original protocol described in
Sect. 5.1.

However, unlike the original protocol, parties that are at distance > 1 from
the sender cannot tell if the aaHE ciphertext they receive is encrypting a valid
message (i.e., one actually originating from the sender). Looking ahead, this
property is the key part where our protocol deviates from the SF protocol struc-
ture. One solution would be for relayers to propagate all messages they receive.

308 N. Chandran et al.

This, however, would result in an exponentially growing message and could com-
promise the security of the protocol, as the number of relayed messages would
leak information about the position of the relayer in the hidden graph.

This is where FHE comes to the rescue. Upon receiving several such cipher-
texts, a relayer homomorphically evaluates the circuit which on input all the
(plaintexts of the) received ciphertexts and the sender’s verification key, checks
if any of these plaintexts is of the form (c, σ), where σ is a valid sender’s signa-
ture on c, and if it finds one it outputs (an FHE ciphertext c̃ encrypting) it. (If
more than one such message is found then output the first one encountered in
the above search.) This will make sure that every relayer sends out ciphertexts
of the same length which encrypt either (c, σ), in case the sender was honest
and the relayer is on an honest path between the sender and the receiver, or
some arbitrary pair (∗, ∗) (chosen by the adversary) otherwise. In other words,
the above scheme ensures that the information transmitted by the above scheme
is exactly an aaHE encryption of the message m which our original SF protocol
from Sect. 5.1 would propagate, except that since this information is encrypted,
the adversary cannot use it to trace the message/aaHE ciphertext back to the
sender. We stress that the properties of compactness as well as malicious circuit
privacy, of FHE play a crucial role here, as we elaborate in the full version.

However, there is still a way the adversary can obtain information in the
above scheme that allows him to potentially link the sender to the transmitted
aaHE ciphertext, by observing which parties “speak” in which round. This can
easily be mitigated by decoy traffic: every party sends some message in every
round, where in the first round, parties other than the actual sender create and
send to their neighbors an aaHE ciphertext using dummy strings d and s in place
of m and σ respectively, with |d| = |m| and |s| = |σ|.7

The final missing piece in the protocol is to ensure that we can use the above
protocol for transmitting multiple messages (as is needed in MPC). It is not hard
to see that for this to be possible, we need to exclude replay attacks. Indeed,
although the adversary cannot create an aaHE of a new message corresponding
to honest senders, he can replay past aaHE of messages created by the sender.
The way to mitigate this is, as is common in the security literature, to use unique
publicly agreed identifiers—e.g., round-number and/or message ID—and make
sure that the circuit which EncFHE is run on, also takes as input (and checks) the
corresponding identifier. Yet, one needs to be careful about where the identifier
is placed inside the aaHE. If one encrypts (m,msg_ID) with aaHE then EvalFHE
will be unable to check the message ID msg_ID under the (adaptively secure)
encryption. Therefore, the actual message which is encrypted with FHE will be
of the form ((c,msg_ID), σ), where σ is a signature on the pair (c,msg_ID).

This completes the high-level protocol description. In Theorem 4 we prove
that the above protocol is an adaptively secure single-pair RMT protocol with
polylogarithmic locality. Intuitively, the fact that the message is transmitted
successfully between two honest parties follows from the fact that the protocol
view of the adversary in this case is fully simulatable, hence any attack by an

7 WLOG, we assume that valid RMT messages are from a fixed-size domain.

Adaptive Security, Erasures, and Network Assumptions 309

adaptive adversary who does not corrupt the sender or receiver can be reduced
to the static case proven in [15]. If, on the other hand, the adversary corrupts
the sender or the receiver, then the only challenge for the simulator is to be able
to come up with coins that are consistent with the actual input m of the sender.
But this is straightforward in aaHE as the FHE ciphertext (i.e., encrypting
((c,msg_ID), σ)) is generated by the simulator and hence he can simply reveal
the keys used for this encryption. Having these coins, the simulator needs to
simply show how to open c to the message m. But for that, he can use the
adaptive security of the underlying encryption scheme.

From One-to-One CL RMT to Many-to-Many CL RMT. The FHE-based
protocol described above is for one-to-one RMT. One might might be tempted
to assume that having such a protocol gives us also all-to-all RMT in this model.
Indeed, at first thought, it appears that one can achieve this by simply running
n(n−1)

2 instances of ΠRMT
FHE in parallel over the same hidden graph (i.e., a joint

state) on separate slots, one for each sender-receiver pair, following the idea of
Sect. 5.1.2. However, the following major flaw breaks such a protocol.

Let u and v be honest parties in the network, and z be a party corrupted
by adaptive adversary A, with u being a sender while v and z act as receivers.
Further, suppose the shortest honest path from u to z is shorter than that from
u to v; i.e., z receives her message from u before (in an earlier round than) v.
Now, adversary A can decrypt z’s message in that same round and learn that
it is a valid message originating from u. Moreover, A can corrupt the neighbor
who sent her this valid message and decrypt that neighbor’s previously received
set of messages for z. In this manner, A can corrupt everyone who this message
has passed through by following the inverse path the message travelled. Clearly,
this is identical to the adversarial strategy employed in Sect. 4 to prove the
impossibility of SF RMT in the NE-NAMS model, and it is easy to see that the
same reasoning breaks the protocol here.

Intuitively, the root of the problem is that using FHE under the receiver’s
key renders messages “unlinkable” for everyone but the receiver. In single-pair
RMT, there is a single receiver and correctness is trivial if he is corrupted, so
ΠRMT

FHE suffices. But with multiple receivers, corrupted receivers can evidently
cause trouble for honest ones.

The above discussion, points to a restricted class of all-to-all RMT, which
we call sublinear-output-set RMT (in short, SOS-RMT) to come to the rescue.
SOS RMT allows every party (a sender) to send a (potentially different) mes-
sage to every receiver in a subset of Pof size o(n)—in our case this will be of
polylogarithmic size. Here is how we proceed towards the design of SOS RMT:

1. First we observe that the above one-to-one RMT can be trivially turned into
an all-to-one RMT, by having honest parties replace their decoy messages with
the actual message they want to send to the (single) receiver and adjusting
the homomorphic operation to keep (one copy of) all these messages as the
ciphertext is diffused through the network. We provide the specification of
this operation and the corresponding statement of security in Sect. 6.2. Note

310 N. Chandran et al.

that this protocol uses the same edges of the underlying communication graph
as the one-to-one RMT protocol it “piggybacks” on.

2. Having such an all-to-one RMT it is straightforward to turn it to an SOS
RMT by using an independent (part of the) hidden-graph setup for each
of the receivers. Since there are polylogarithmic receivers and each of these
hidden (sub-)graphs has polylogarithmic degree, the resulting protocol will
also have polylogarithmic locality (see Corollary 4).

From CL RMT to CL MPC. Last but not least, we show how to turn
the above feasibility results on RMT into feasibility for CL multi-party com-
putation (CL MPC). For the erasures case, we can use the same approach as
the one used in [15] for this reduction: Use a constant-round MPC, e.g., [2],
where calls to a broadcast channels are replaced by a polylogarithmic-round (in
the worst-case) byzantine broadcast protocol. Because the expected constant-
round protocol of [35] is guaranteed to terminate with overwhelming probability
after polylogarithmically many round, we can simply employ this protocol. This
will result in polylogarithmically many invocations of the all-to-all RM from
Sect. 5.1, which consumes a polylogarithmic hidden graph setup, thereby yield-
ing a CL MPC protocol in the secure-erasures model (with or without atomic
multisend), which is secure under an honest-majority (adaptive) adversary. We
refer to Sect. 7.1 for details.

The more challenging case is the non-erasures setting. Here, we do not have
an all-to-all CL RMT, so we cannot hope for standard CL MPC—as the latter
would imply the former. Instead, we go for (CL) SOS MPC, which as with SOS
RMT, computes a function with inputs from all parties, but only distributes the
output to a sublinear (polylogarithmic) set of parties. We believe that the notion
of SOS MPC is interesting in is own accord, as it appears to be a best-possible
security notion in the CP non-erasure setting. Furthermore this notion is already
reasonable for the core application of CL MPC, namely computing sublinear
algorithms. Indeed, such algorithms typically have output asymptotically smaller
than n. In this case, having the output-set of SOS MPC distribute the otputs to
the whole player set (using the complete graph) does not incur a big overhead
in communication complexity.

To implement CL SOS MPC, we assume an additional setup, namely, anony-
mous PKIs for the FHE, NCE, and signature schemes used in our non-erasures
RMT protocol: Parties are given public keys but they do not know who has
the corresponding secret key. Given this setup and SOS RMT, SOS MPC can
be designed as follows: Let C denote a polylogarithmic size subset of the (own-
ers of the secret keys for) the anonymous public keys. (Any subset will do,
but for simplicity we can assume that this is the first polylog(n) public key in
a lexicographic order). The parties use SOS RMT (where the FHE and NCE
encryptions, and the underlying signatures are are with the anonymous PKIs)
to share their input to C. Then the parties in C run an MPC over SOS RMT
(again with these anonymous keys). However, to avoid leaking their identities
through communication pattern, all n parties participate in these RMTs, where
parties not in C simply send decoy traffic as in our one-to-one version of the

Adaptive Security, Erasures, and Network Assumptions 311

non-erasure RMT protocol. The details on this construction and security proof
are given in the end of Sect. 7.1.

4 Impossibility in the NE-NAMS and NE-AMS Models

In this section, we show an impossibility result for a natural class of reliable
message transmission (RMT) protocols (and therefore also MPC) which we term
store-and-forward protocols, with low communication locality in NE-NAMS and
NE-AMS models—i.e., a model where secure erasures are not allowed—tolerating
an adaptive adversary corrupting a linear number of parties. As discussed above,
this class includes most if not all, gossip-style communication protocols which
have been used in the CL MPC and CL communication literature.

Let us first define the class of store-and-forward RMT protocols:

Definition 1 (Store-and-Forward). A PKI-hybrid RMT protocol with
sender ps and receiver pr, using parties in P who communicate over point-
to-point channels, is a store-and-forward (in short, SF) protocol if it has the
following structure:

– In the first round of the protocol, ps sends the message m (that he wishes to
transmit to pr) to any neighbors of his choosing, along with his signature σs

on m. ps does not participate in any other transmission.
– In every round j > 1, any party who has received a pair (m,σs), where σs

is a valid signature (with respect to ps’s verification key) on m, may forward
the pair (m,σs) to any neighbors of his choosing.

We remark that the above definition allows parties to selectively decide
(using their current state) when and to whom they forward the pair (m,σs).
As such it also captures protocols that use delays to hide communication pat-
terns. Furthermore, the assumption that in the first round, ps sends all his
protocol messages does not pose a restriction with respect to such scheduling—
i.e., on when ps sends his message to each neighbor—as such delays can be
trivially simulated by ps telling his neighbors (in the first round) to apply the
intended delay. We also point out that the above single-pair RMT can be trivially
extended to all-to-all RMT, by allowing each relayer p to forward vectors of pairs
((mi1 , σi1), . . . , (mi�

, σi�
)), where each (mij

, σij
) is a (message, pij

-signature)-
pair that p heard in a previous round.

Our impossibility result assumes a restriction on the above class of SF pro-
tocols, which relates the maximum length of a path traversed by the sender’s
message to the size of the set of parties that have seen the message. To define
this, we introduce the following graph theoretic notation.

Notation. We will denote by Gs,r the labeled graph with vertices V = P which
corresponds to a protocol’s execution in the following manner: an edge (w1, w2)
is added to Gs,r when w1 ∈ V sends the message (m,σs) to w2 ∈ V through their
point-to-point channel, in the RMT protocol between sender ps and receiver pr.
The label lw1,w2 of each such edge (w1, w2) is defined as the round of the RMT

312 N. Chandran et al.

protocol in which this edge was added to Gs,r. Further, we denote by Grnd
s,r the

subgraph of Gs,r that only contains edges (w1, w2) having labels lw1,w2 ≤ rnd.

Definition 2 (Expansion Rate of SF RMT Protocols). We say that an SF
RMT protocol has expansion rate (L, �), where L ∈ [n] and � ∈ N, if the following
property holds at every round rnd in the protocol execution: If the maximum size
of a path in Grnd

s,r from ps to a sink (i.e., a node which has out-degree 0 in Grnd
s,r)

is �, then for any (forward) neighbor p of ps in Grnd
s,r, the number of nodes in the

subgraph of Grnd
s,r (with in-degree at least 1) rooted at p is at least L.

The above definition can easily be extended to all-to-all SF RMT protocols
(resp. one-to-all), by requiring that for every pair (ps, pr) (resp. for sender ps

and all receivers pr) the expansion rate of the transmission is as above.
Looking ahead, we will prove our impossibility result for SF RMT protocols

with expansion rate (logz(n), k log n
c log log n) for all k < 1 and z > 1, where the

degree of the communication graph is O(logc n). To get a better intuition of
how the expansion rate affects the security of RMT protocols against adaptive
adversaries, it is worth looking at the simpler case with expansion rate (dξ−1, ξ),
where d = O(logc n) is the degree of the underlying communication graph and ξ
is a constant. We note that this seemingly simple case corresponds to (the first
of ξ rounds of) the “vanilla” SF strategy which, to our knowledge, is employed
by all CL MPC protocols in the literature.

Lemma 1. Assuming no erasures, there exists no polylogarithmic-locality SF
one-to-all RMT protocol with sender ps that has expansion rate ((logc n)2, 3)) for
some constant c > 1, and tolerates an adaptive adversary corrupting a constant
fraction of the parties.

Note that this is the case with ξ = 3. We give a proof sketch of the above
lemma in the full version. Since this is just a special case of the general theorem
(Theorem 1) proved later in this section, we keep the proof at an informal level,
to allow the reader to grasp the main ideas, and refer to the remainder of this
section for formal claims (that even cover the more general case).

The Case of Expansion Rate (logz n, k log n
c log log n). We assume that the adver-

sary is able to corrupt a constant fraction τ of the nodes; hence t = τn. Our
impossibility result holds for any constant τ > 0. Our proof relies on a series of
lemmas (see the full version for proofs) on the (polylogarithmic-degree) commu-
nication graph and how the adversary attacks any RMT protocol π over such a
graph. Concretely, towards our impossibility result, we prove the following:

1. First, we will show (Lemma 2) that there exists a sender ps and a receiver
pr, such that the length of the shortest path between ps and pr (in the com-
munication graph Gs,r of π) is strictly greater than q, where q = k log n

c log log n ,
for any k < 1 and where the communication locality of the RMT protocol is
O(logc n). In other words, let rnd be the round of π in which the (ps, pr)-RMT
message first reaches a distance q from ps; then, pr is not connected to any
node in Grnd

s,r .

Adaptive Security, Erasures, and Network Assumptions 313

2. The remainder of our proof strategy is as follows: Consider an execution of
RMT with sender ps and receiver pr as above; the communication graph
after rnd rounds is Grnd

s,r . The goal of the adversary (and what we will prove
he can achieve) is to corrupt each of the neighbors of ps in this graph, and
also corrupt everyone to whom they have (directly or indirectly) conveyed
information on ps’s message, before this information reaches the receiver pr.
Thus, our proof focuses on each of the neighbors of s individually, and shows
that the above is achieved with overwhelming probability. Using the fact that
the total number of neighbors of ps is O(logc n), and by the choice of q, we
can then prove that the probability of an adversary successfully attacking
all of ps’s neighbors and cutting ps off before (information on) his intended
message reaches pr is noticeable (Lemma 3). This forms a successful attack
on the RMT protocol π, as it disconnects ps and pr, completing the proof.

The formal statement of Lemma 2 now follows.

Lemma 2. For any given SF RMT protocol π with communication locality
O(logc n), let q = k log n

c log log n for any k < 1. Consider a sender ps. There exists
a receiver pr such that pr is not connected to any node in Grnd

s,r, where rnd
denotes the round of π in which the (ps, pr)-RMT message first reaches distance q
from ps.

The most interesting step which captures the essence of our proof is Lemma 3
below. The intuition of the proof is that because the distance between ps and pr

is larger than q, each ps-neighbor in Gs,r will have distance of at least q to pr

in Gs,r. Thus, any message originating from such a ps-neighbor needs at least q
hops to reach the receiver. Now consider the subgraph of Gs,r which grows from
a forward neighbor p of ps only, i.e., the graph consisting of p, his neighbours, his
neighbors’ neighbors and so on. To prevent ps from communicating with pr via
p, the adversary will first corrupt nodes at random with the hope of corrupting
at least one node in this subgraph. More specifically, let us consider an adversary
that initially corrupts a β < τ

4 fraction of random nodes in the whole graph Gs,r,
and show that such an adversary leaves both ps and pr initially uncorrupted—
and looking ahead, will avoid corrupting ps and pr after this initial step. The
first observation is that the message sent by ps and relayed by p will, with
overwhelming probability, hit some party in this initially corrupted set before it
hits the receiver pr. Once this happens, the adversary corrupts everyone who this
message has passed through by following the inverse path the message travelled.
This is feasible because nodes cannot erase any information, and in particular
where messages came from and where they were relayed. If the adversary is able
to do this for every ps-neighbor, then he successfully cuts ps off from pr. To
complete the proof we need to argue that this strategy can be launched within
the adversary’s corruption budget. Intuitively, this is the case, because in each
step the total set of parties who have received information about the sender’s
message grows by a polylogarithmic factor. Hence, by the above choice of q we
are guaranteed that the size of the set remains sublinear. Since the adversary

314 N. Chandran et al.

has only spent a fraction of his linear budget in his initial corruption choice, he
still has sufficiently many corruptions to perform the above attack. The formal
statement follows.

Lemma 3. For any given SF RMT protocol π with communication locality
O(logc n), let q = k log n

c log log n for any k < 1. Further, let π have expansion rate
(logz n, q) for any z > 1. Consider a sender ps and a receiver pr, and an adver-
sary A who corrupts each node in P at random with constant probability β < τ

4 .
Then, with noticeable probability 1

poly(n) , A (i) does not corrupt more than τn
2

nodes in total; (ii) does not corrupt nodes ps and pr; but (iii) corrupts at least
one node in {p}⋃

Γ(q−1)(p) for every p ∈ Γ1(ps).

We now combine Lemmas 2 and 3 to obtain our impossibility result, in the
following theorem, the proof of which is given in the full version.

Theorem 1. In NE-NAMS and NE-AMS models (i.e. models not assuming era-
sures), there exists no SF protocol, with (logz n, q) expansion-rate, for all-to-all
RMT with polylogarithmic (i.e., O(logc n)) communication locality tolerating an
adaptive adversary corrupting a linear number t = τn (for any constant τ) of
parties, where q = k log n

c log log n , for any k < 1 and z > 1. The statement holds even
assuming an arbitrary correlated randomness setup, atomic multisend, and any
cryptographic hardness assumptions.

5 Positive Results in the E-NAMS/E-AMS Models

In this section, we assume that parties can erase their state. In our positive result,
we do not assume that parties have an atomic multisend operation available
to them, and the operations of sending a message and erasing state are not
atomically bound either. This corresponds to the E-NAMS model. We will first
show an all-to-all RMT protocol in this model with polylogarithmic locality
tolerating t < (12 − ε)n corruptions (Sect. 5.1); this automatically also implies a
protocol in the stronger E-AMS model. To complement this result, we also show
that tolerating t > (12 + ε)n corruptions is impossible in the E-NAMS model
(Sect. 5.2).

5.1 Polylogarithmic Locality RMT in the E-NAMS Model

Our protocol is a standard RMT protocol that allows a sender ps to reliably
transmit a message to a remote recipient pr over a polylogarithmic degree graph.
The all-to-all RMT is then obtained by having each pair use this RMT simulta-
neously. In addition to a PKI (for digital signatures) our protocol uses a hidden
graph setup as in [15] as follows: the setup picks a directed random Erdős-Rényi
graph G(n, p) = (V,E), where V = P is the vertex set and E is the set of edges
in G, and for every i, j ∈ V , Pr[(i, j) ∈ E] = p. This graph is given to the parties
such that every party learns its incoming and outgoing edges in G (and nothing
else). From Sect. 2, recall that for any node u ∈ V , we denote its set of outgoing
neighbors by Γ1(u). The set of nodes at distance ≤ i on a forward (directed)
path starting from a node u are denoted by Γi(u).

Adaptive Security, Erasures, and Network Assumptions 315

5.1.1 Single-Pair RMT Protocol in the E-NAMS Model
We now describe our RMT protocol from honest sender ps to honest receiver

pr, where ps, pr ∈ V , denoted by ΠRMT . Our protocol assumes a PKI, a hidden
graph setup, existentially unforgeable digital signatures (equivalently, one-way
functions), worst-case secure erasures (as discussed in Sect. 2), and no atomic
multisend. As a corollary of our statement, at the end of the section we prove
that the protocol with a minor tweak works even if we assume atomic multisend
instead of just point-to-point communication. (The latter corollary is not that
surprising, as atomic multisend restricts the adversary’s power, but needs to
be nonetheless done with care to make sure the adversary cannot abuse it to
discover the hidden graph.)

Protocol Structure. To make the protocol and proof simplest, we will (implic-
itly) induce the following structure: The protocol advances in blocks of two
sequential (mini-)rounds, where in the first of these two minirounds a specific
sender gets a chance to send a message to a specific receiver, and in the second
one that sender gets a chance to erase his state (e.g., the information of the
previous receiver). These miniround-blocks are advanced in a round-robin fash-
ion: the first n blocks of such minirounds are with sender p1 and receiver each
party pj in the party set; the next n blocks of minirounds are for sender p2 and
receiver each party pj in the party set, and so on; after n such sets of n blocks,
the (n + 1)st set of n blocks is again with sender p1, etc. Thus, a sequence of
2n2 minirounds (where all parties have had a chance to send all the messages
they have for any other parties) constitutes a round in the protocol. We induce
the above structure as it makes the influence of an adaptive adversary clean, no
matter what model one is used to. Recall that we consider an adversary A who
can adaptively corrupt up to a τ fraction of nodes in the network. Hence, A is
allowed to order the blocks of minirounds within a single round (worst-case adap-
tive scheduling), and he can corrupt any party in between any two minirounds.
Observe that this protocol structure does not increase the CL of the protocol,
as a party will utilize its associated minirounds if and only if it has something
to send to the corresponding receiver.

More concretely, the protocol starts at round 0, and we call the entire block
below a round in the protocol.

– For spkr = 1 to n, do the following:
• If Party pspkr has a message to send to p0 it will do so.
• Party pspkr is given a chance to erase.
• If Party pspkr has a message to send to p1 it will do so.
• Party pspkr is given a chance to erase.

...
• If Party pspkr has a message to send to pn−1 it will do so.
• Party pspkr is given a chance to erase.

The protocol then proceeds to the next round, completing a total of R rounds.
The protocol ΠRMT itself is defined as follows.

316 N. Chandran et al.

RMT Protocol Between ps and pr. Our protocol proceeds for a total of
R = logc̃ n rounds, for some constant c̃ > 1 (where rounds are defined as above).
All the verification keys of all nodes (denoted vkw for each party w ∈ P, with
corresponding signing key skw) are known to all parties.

1. First, ps signs (m, pr) with skps
. Denote the signed message (which comprises

of the (m, pr) as well as the signature on it) by μm. Party ps also initializes
ctrps

to the index of a random neighbor in Γ1(ps).
2. Now, at every round 0 ≤ j ≤ R, every node w does the following:

– w checks if he possesses a single valid message μm - i.e., a message of
the form (m, pr) that has been signed by ps. If so, then w sends μm to
Γ1(w)[ctrw] and sets ctrw = ctrw + 1. (This constitutes a mini-round,
and is immediately followed by another mini-round in which w is given a
chance to erase the information of the node in Γ1(w)[ctrw] he sent to in the
previous miniround.) Node w repeats the above over d many neighbors
in Γ1(w) by iteratively incrementing ctrw, where d = O(logc n) (for some
c > 1) is the communication locality. Otherwise, if he possesses no valid
message μm, then he does nothing.

– w disregards all messages from w∗ /∈ Γ in
1 (w).

We now prove that the above protocol is an RMT between ps and pr. Define
set, GOODj , 0 ≤ j ≤ R to be the set of nodes, who at the beginning of round
j of the protocol are a) honest and b) are in possession of the message μm. Let
gj = |GOODj | for all j. The idea of our proof is that no matter what the adversary
does, the set of parties that know the message (and will therefore forward it in
the next round) grows multiplicatively in each round of the protocol. Hence, in
logc̃ n rounds, the message will reach a large enough honest set, so that one of
them will be a neighbor of pr and will therefore forward the message to pr. Once
this happens, RMT will have succeeded.

To this end, we prove a series of lemmas, which can be found in the full
version. We first use a probabilistic argument to show that the good set GOOD1

of honest parties that have seen message μm at the beginning of round 1 has
size polylog(n), with overwhelming probability. Next, we show that, as long as
the adversary corrupts a minority of parties, the size of the good set increases
multiplicatively in every round by a constant greater than 1. Finally, we prove
that the above constant expansion will ensure that, in logc̃ n rounds, μm will
arrive at its intended receiver pr. This implies the following theorem.

Theorem 2. Assuming a PKI, a hidden graph setup as above, secure erasures,
one-way functions (for existentially unforgeable signatures) and an adaptive
adversary corrupting at most t < (12 − ε)n parties for any 0 < ε < 1

2 , the protocol
ΠRMT realizes reliable message transmission from ps to pr. The statement holds
in the E-NAMS as well as E-AMS models.

Since atomic multisend is a stronger model than the non-atomic multisend
setting considered above, the possibility result applies also to this case. Indeed,
given atomic multisend one can trivially simulate point-to-point communication

Adaptive Security, Erasures, and Network Assumptions 317

between a sender ps and receiver pr, by having ps multisend the vector that
includes the intended message to the location corresponding to pr and 0 to
all other parties in its outgoing neighborhood of the hidden graph setup. This
proves the following statement about the protocol Π

(MS)
RMT which results from

instantiating ΠRMT via the above invocation of the atomic multisend primitive.

Corollary 1. Assuming a PKI, a hidden graph setup as above, secure erasures,
one-way functions (for existentially unforgeable signatures), atomic multisend,
and an adaptive adversary corrupting at most t < (12 − ε)n parties for any 0 <

ε < 1
2 , the protocol Π

(MS)
RMT described above realizes reliable message transmission

from ps to pr in the E-AMS model.

5.1.2 All-Pairs (aka All-to-All) RMT in the E-NAMS Model
We now describe our protocol for RMT between all pairs of parties, denoted

by Πa2aRMT. This will allow every party u to send a message to every other
party v in a total of R rounds (where a round is defined as earlier). At a high
level, Πa2aRMT works as follows. We will execute a total of n(n−1)

2 instances of
protocol ΠRMT from Sect. 5.1.1 in parallel. For every receiver v, every sender u
signs (m, v) with sku. Denote the signed message (which comprises of the (m, v)
as well as its signature) by μu,v. Every party w will maintain n(n−1)

2 slots, each
corresponding to one (u, v) pair. Now, at every round 0 ≤ j ≤ R, w checks if
it possesses any valid message that has been sent by sender u to receiver v (i.e.
a message μu,v of the form (m, v) that has been signed by u). It places this
message in the slot corresponding to the pair (u, v). w then sends (potentially)
all n(n−1)

2 messages to Γ1(w)[ctrw] and sets ctrw = ctrw +1. It is easy to see that
the communication locality of any party does not increase through this process
– only the number of messages sent by a party at a time increases from a single
message to a collection of n(n−1)

2 messages. Applying a union bound over all pairs
of senders and receivers, one can obtain the following corollary to Theorem 2.

Corollary 2. Assuming a PKI, a hidden graph setup as above, secure era-
sures, one-way functions (for existentially unforgeable signatures) and an adap-
tive adversary corrupting at most t < (12 − ε)n parties for any 0 < ε < 1

2 , the
protocol Πa2aRMT realizes reliable message transmission between all pairs of par-
ties (u ∈ P, v ∈ P). The statement holds in the E-NAMS as well as E-AMS
models.

5.2 Impossibility of Dishonest Majority in the E-NAMS Model

In this section, we shall show that it is impossible to construct SF reliable mes-
sage transmission (RMT) protocols (and therefore also MPC) with low commu-
nication locality, in a model even with erasures, if the corruption threshold is
1
2+ε for any constant ε > 0. To do so, we shall prove that an adversary can break
correctness of any RMT protocol between some pair of honest nodes in any such
protocol. The proof idea can be seen as symmetric to the proof of Theorem 2. In

318 N. Chandran et al.

particular, in Theorem 2 we showed that if the adversary corrupts t < (12 − ε)n
parties, for any constant 0 < ε < 1/2, then the set of honest nodes that learns
(and forwards) the sender’s message grows exponentially fast, and therefore in
logc̃ n rounds it will be large enough to hit a neighbor of the receiver. Here we
prove that if t ≥ (12 + ε)n for any constant 0 < ε < 1/2, then there is a strategy
making the above set shrink exponentially fast, which can make the message
disappear before reaching the receiver pr.

Consider an RMT protocol between an honest sender ps and an honest
receiver pr. We shall show that for any SF RMT protocol from ps to pr, an
adversary that corrupts 1

2 + ε parties can prevent the message m from reaching
pr in any polynomial number of rounds. As in Sect. 5.1, let the RMT protocol
from ps to pr begin at round 0, and define GOODj , 0 ≤ j ≤ R to be the set of
nodes, who at round j of the protocol are a) honest and b) are in possession of
the message μm. Let gj = |GOODj | for all j.

Adversarial Strategy. Our adversarial strategy is as follows: First, corrupt
nodes in the graph uniformly at random (i.e., every node is corrupted with
probability 1

2 + ε
4). Next, if an adversarial node receives a message (that was a

part of the RMT protocol between ps and pr) from some node w (other than
ps), then corrupt w. Do not forward any messages.

We now prove a series of lemmas (see full version) to show that our adversary
violates the assumed security of RMT. We first show that our adversary corrupts
at most 1

2 + ε fraction of nodes, with overwhelming probability. We next show
that after the initial round, only a small set of honest nodes are in possession of
the message. Finally, we show that after every round in the protocol, the number
of honest nodes having the message reduces. This implies the following theorem.

Theorem 3. In the E-NAMS model (i.e., without atomic multisend), there exists
no all-to-all store-and-forward RMT protocol with polylogarithmic CL tolerating
an adaptive adversary corrupting t ≥ (12 + ε)n (for any constant 0 < ε < 1

2)
parties. The statement holds even assuming an arbitrary correlated randomness
setup, secure erasures, and any cryptographic hardness assumption.

Remark 1. We note that the above argument holds if we do not assume atomic
multisend (i.e., in E-NAMS). Indeed, in the stronger E-AMS model, the nodes
might be able to do some smart multisend-based relay that prevents the set of
parties that know the message from shrinking, or slows down the rate. We leave
this interesting question as a future research direction.

6 Polylogarithmic Locality RMT in the NE-NAMS Model

In this section, we propose RMT protocols which are not store-and-forward,
and can therefore circumvent the impossibility result from Sect. 4. Our key idea
is to remove the ability of the adversary to identify the sender by looking at
intermediate messages, with the use of fully homomorphic encryption (FHE) to
hide the contents (and in particular, origin and path) of transmitted messages.

Adaptive Security, Erasures, and Network Assumptions 319

The resulting protocol for single-pair RMT is described in Sect. 6.1. However,
we subsequently note that the same protocol loses its security when composed
in parallel for the purpose of all-pairs RMT. In the following Sect. 6.2, we show
how the protocol can be extended to obtain RMT from all senders to polylog(n)
receivers, which we term sublinear output-set RMT (or SOS-RMT) and later use
directly to achieve communication-local SOS-MPC in Sect. 7.2.

6.1 Single-Pair RMT Using Fully Homomorphic Encryption

We next provide a description of our (one-to-one) RMT protocol in the non-
erasure case under strong cryptographic assumptions. Here we denote the sender
by u and the receiver by v. See full version for the proof of Theorem 4.

Single-pair RMT Protocol ΠRMT
FHE Between u and v from FHE and Adap-

tively Secure (Non-committing) Encryption. Similarly to the protocol
from Sect. 5.1, our protocol proceeds for a total of R = logc̃ n rounds for any
constant c̃ > 1 (where rounds are as defined in Sect. 5.1). The protocol assumes
setup for the following schemes:

– An existentially unforgeable digital signature scheme (KeyGen, Sign, Verify).
Denote by vku the verification key of the sender u and by sku the correspond-
ing signing key.

– A non-committing encryption scheme (KeyGenNCE, EncNCE, DecNCE). Denote by
pkNCEv and skNCEv the encryption and decryption keys of the receiver.

– A compact and malicious circuit-private FHE scheme (KeyGenFHE, EncFHE,
EvalFHE, DecFHE). Denote by pkFHEv and skFHEv the encryption and decryption
keys of the receiver, respectively.

The protocol also assumes that the parties have agreed on unique public message
IDs msg_ID for the transmitted messages (this will include the protocol ID, the
party ID, and the current round). The protocol proceeds as follows:

1. Computation of each party when the protocols starts (to compute the first
message they will send):

– Code for the sender u: First, u encrypts m with v’s (non-committing)
encryption key pkNCEv ; denote the resulting ciphertext by c. Then, u signs
(c, v,msg_ID) with sku; denote the corresponding signature by σ. Finally,
u encrypts the pair ((c, v,msg_ID), σ) with v’s FHE encryption key pkFHEv ;
denote the resulting (aaHE) ciphertext by c̃u.

– Code for each party w �= u: Party w computes c as an encryption of
the all-zero message of size |m| with v’s (non-committing) encryption key
pkNCEv and sets σ to the all-zero string of same size as the actual signature
of u above. Then, w encrypts ((c, v,msg_ID), σ) with v’s FHE encryption
key pkFHEv ; denote the ciphertext by c̃w.

2. Next, at any round 0 ≤ j ≤ R, every node w does the following: Let Cw,j =
{ỹ1, . . . , ỹq} be the ciphertexts that party w has received in the previous
rounds (Cw,j = {c̃w} if no messages have been received yet.)

320 N. Chandran et al.

– w applies the homomorphic evaluation function EvalFHE on input the
ciphertexts in Cw,j , the verification key vku of the sender u, and the
pre-agreed message ID msg_ID to compute the following function: If any
ỹ ∈ Cw,j can be parsed as ((c, v,msg_ID), σ), where σ is a valid signa-
ture on (c, v,msg_ID) according to the sender’s verification key vku, then
output ((c, v,msg_ID), σ). (If there are multiple such ỹ, output the one
with the smallest c.) Party w denotes the resulting FHE ciphertext by
c̃w,j , sends it to Γ1(w)[ctrw] and sets ctrw = ctrw + 1.

– w disregards all messages from w∗ /∈ Γ in
1 (w).

3. At round R, v uses his FHE decryption key to decrypt each FHE ciphertext
in Cv,R (i.e., all ciphertexts received in the protocol). If any ỹ ∈ Cv,R can be
parsed as ((c, v,msg_ID), σ), where σ is a valid signature on (c, v,msg_ID)
according to the sender’s verification key vku, then v uses his NCE decryption
key skNCEv to decrypt c and outputs the corresponding message as the one sent
by u (if more than one such c exists, then v takes the one corresponding to the
smallest message m). Otherwise, v outputs 0 as the message received from u.

Theorem 4. Assuming a PKI, hidden graph setup, trapdoor permutations with
a reversed domain sampler, and compact and malicious circuit-private FHE [42],
protocol ΠRMT

FHE securely realizes single-pair RMT, tolerating an adaptive adver-
sary who corrupts t < εn parties for any 0 ≤ ε < 1, in the NE-NAMS model.

6.2 Multi-sender RMT

While ΠRMT
FHE cannot be composed in parallel to achieve all-pairs RMT as dis-

cussed in Sect. 3, we show in this section that simple joint state parallel compo-
sition of single-pair RMT is sufficient to construct an all-to-one RMT protocol
Πa21RMT

FHE , and the usage of multiple all-to-one RMT instances over independent
hidden graphs can further extend this to an SOS-RMT protocol ΠSOS−RMT

FHE . See
the full version for detailed protocols and proofs.

Corollary 3. Assuming a PKI, a hidden graph setup, trapdoor permutations
with a reversed domain sampler, and compact and malicious circuit-private FHE,
Πa21RMT

FHE securely realizes all-to-one RMT, tolerating an adaptive adversary who
corrupts t < εn parties for any constant 0 ≤ ε < 1, in the NE-NAMS model.

Corollary 4. Assuming a PKI, a hidden graph setup, trapdoor permutations
with a reversed domain sampler, and compact and malicious circuit-private FHE,
ΠSOS−RMT

FHE securely realizes SOS-RMT, tolerating an adaptive adversary who
corrupts t < εn parties for any constant 0 ≤ ε < 1, in the NE-NAMS model.

7 Communication-Local MPC

We finally turn to the question of adaptively secure MPC with polylogarithmic
communication locality. In Sect. 7.1, we show that all-pairs RMT can be used to
realize CL MPC, and we outline our impossibility and feasibility results for CL
MPC in the NE-AMS, E-NAMS, and E-AMS models. In Sect. 7.2, we state our
final feasibility result for CL SOS-MPC in the NE-NAMS model.

Adaptive Security, Erasures, and Network Assumptions 321

7.1 CL MPC in the NE-AMS, E-NAMS, and E-AMS Models

All our negative results on all-to-all RMT trivially apply to MPC, since the
former is a special case. Next, we show the feasibility of CL MPC, under the
combination of the feasibility bounds of all-pairs RMT proven here and the
classical t < n/2 bound, necessary and sufficient for standard (non-CL) MPC.

The idea for the above is as follows: Execute the MPC protocol where the
point-to-point communication is replaced by encrypting the message with the
public key of the receiver and sending it using a fresh all-pairs RMT execution
(as constructed here). As noticed in [15], to achieve adaptive security, each round
of the MPC protocol will require RMT on a new hidden graph setup which, in
the worst case, induces an additive polylogarithmic increase in the CL in every
round. To keep the overall CL of the MPC polylogarithmic, one needs to be
careful that the total number of point-to-point rounds in the MPC protocol
is at most polylogarithmic. To this direction, we adopt the following solution
from [15]: Invocations to the (typically round-intensive) broadcast channel are
replaced by a polylogarithmic-round broadcast protocol provided in [15]. This
protocol can be used within an adaptively secure constant-round MPC protocol
(e.g., [2]) to get an overall polylogarithmic-round MPC protocol.

Theorem 5. Assuming a PKI, a polylogarithmic-degree hidden graph setup8,
and trapdoor permutations with a reversed domain sampler, the following feasi-
bility and impossibility statements hold for the existence of a store-and-forward
protocol for securely evaluating any given n-party function against an adaptive t-
adversary satisfying the following two conditions with overwhelming probability:

– Locality. Every party communicates with at most O(log1+ε n) other parties,
for some constant ε > 0.

– Rounds. The protocol terminates after O(logε′
n) rounds, for some constant

ε′ > 0.

1. In the NE-AMS and NE-NAMS models, i.e. if we do not assume erasures, then
no such MPC exists if t = O(n) and the protocol has an expansion rate of
(logz n, k log n

(1+ε) log log n), for some k < 1 and z > 1.
2. In the E-NAMS and E-AMS models, i.e., if we assume erasures (with or with-

out atomic multisend), then there exists such an MPC protocol if t < (12−ε′′)n
for some constant ε′′.

3. In the E-NAMS model, no such MPC exists if t > (12 +ε′′)n for some constant
ε′′.9

8 Recall that this can be replaced by an SKI or a NIKE scheme assuming the PKI
supports it.

9 Note that Theorem 3 implies that if we assume erasures as an atomic operation and
no atomic multisend, then no MPC as in the above theorem exists if t > (1

2
+ε′′)n for

some constant ε′′. However, this is anyway implied by the tightness of the condition
t < n/2 for adaptive security even in the complete (i.e., non-CL) point-to-point
channels setting, and is therefore omitted.

322 N. Chandran et al.

7.2 CL Sublinear-Output-Set (SOS) MPC in the NE-NAMS Model

Since we do not have all-pairs RMT in the NE-NAMS model, we propose a pro-
tocol for sublinear output-set MPC (SOS-MPC), where a sublinear (here poly-
logarithmic) set of parties learns the output. A high-level outline is as follows.

We first select a committee of some polylog(n) parties; these parties per-
form the actual MPC and learn the output. The first task here is to select the
committee members and keep their identities hidden from the adversary, while
still allowing parties to send messages to committee members. We resolve this by
introducing an anonymous PKI setup, for all three schemes involved, namely the
signature scheme, the non-committing encryption scheme, and the FHE scheme.
Each party receives its secret keys, while the public keys are made known to
everyone without disclosing identities. The setup also selects some polylog(n)
parties at random to form the committee, and publishes their public keys.

Next, each party creates polylog(n) secret shares of his MPC input, and
distributes these shares to the committee with a single instance of SOS-RMT
(using ΠSOS−RMT

FHE). Finally, the committee members simulate an arbitrary MPC
protocol to obtain the output. This can be realized by simulating each round of
communication in the MPC protocol via a new instance of SOS-RMT, wherein
each committee member sends the appropriate message for the MPC protocol
to other committee members, while other parties just send a dummy all-zeros
message to each committee member. After every RMT instance, each committee
member decrypts messages received from other committee members.

A detailed description of our final protocol can be found in the full version,
and the following theorem is immediate.

Theorem 6. Assuming an anonymous PKI, a polylogarithmic-degree hidden
graph setup, trapdoor permutations with a reversed domain sampler, and com-
pact and malicious circuit-private FHE, there exists a protocol, satisfying the
following two constraints with overwhelming probability:

– Locality. Every party communicates with at most O(log1+ε n) other parties,
for some constant ε > 0, and

– Rounds. The protocol terminates after O(logε′
n) rounds, for some constant

ε′ > 0,

which securely evaluates any given n-party function against an adaptive t-
adversary corrupting up to t < n/2 parties in the NE-NAMS model, and delivers
the output to any O(logε′′

n) parties, for constant ε′′ > 0.

Adaptive Security, Erasures, and Network Assumptions 323

References

1. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited.
In: Robinson, P., Ellen, F. (eds.) Proceedings of the 2019 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2019, Toronto, ON, Canada, 29 July–2
August 2019, pp. 317–326. ACM (2019). https://doi.org/10.1145/3293611.3331629

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract), pp. 503–513 (1990). https://doi.org/10.1145/100216.100287

3. Beck, M., et al.: Logistical computing and internetworking: middleware for the use
of storage in communication. In: 3rd Annual International Workshop on Active
Middleware Services (AMS 2001), 6 August 2001, San Francisco, CA, USA, pp.
12–21. IEEE Computer Society (2001). https://doi.org/10.1109/AMS.2001.993716

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, 2–4 May, 1988, Chicago, Illinois, USA, pp. 1–10. ACM (1988). https://
doi.org/10.1145/62212.62213

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), pp. 1–10
(1988). https://doi.org/10.1145/62212.62213

6. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party
computation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7_36

7. Boyle, E., Cohen, R., Data, D., Hubáček, P.: Must the communication graph of
MPC protocols be an expander? In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 243–272. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0_9

8. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_21

9. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_21

10. Canetti, R.: Security and composition of multiparty cryptographic protocols 13(1),
143–202 (2000). https://doi.org/10.1007/s001459910006

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols, pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888

12. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24
May, 1996, pp. 639–648. ACM (1996). https://doi.org/10.1145/237814.238015

13. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation, pp. 639–648 (1996). https://doi.org/10.1145/237814.238015

14. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R.,
Zikas, V.: Optimally resilient and adaptively secure multi-party computation with
low communication locality. IACR Cryptol. ePrint Arch, vol. 2014, p. 615 (2014).
http://eprint.iacr.org/2014/615

15. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R.,
Zikas, V.: The hidden graph model: communication locality and optimal resiliency
with adaptive faults, pp. 153–162 (2015).https://doi.org/10.1145/2688073.2688102

https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1145/100216.100287
https://doi.org/10.1109/AMS.2001.993716
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-662-48000-7_36
https://doi.org/10.1007/978-3-319-96878-0_9
https://doi.org/10.1007/978-3-319-96878-0_9
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1007/s001459910006
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
http://eprint.iacr.org/2014/615
https://doi.org/10.1145/2688073.2688102

324 N. Chandran et al.

16. Chandran, N., Forghani, P., Garay, J.A., Ostrovsky, R., Patel, R., Zikas, V.: Univer-
sally composable almost-everywhere secure computation. In: Dachman-Soled, D.
(eds.) 3rd Conference on Information-Theoretic Cryptography, ITC 2022. LIPIcs,
5–7 July, 2022, Cambridge, MA, USA, vol. 230, pp. 14:1–14:25. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.
14

17. Chandran, N., Garay, J., Ostrovsky, R.: Improved fault tolerance and secure com-
putation on sparse networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 249–260.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_21

18. Chandran, N., Garay, J., Ostrovsky, R.: Edge fault tolerance on sparse networks. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS,
vol. 7392, pp. 452–463. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31585-5_41

19. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (eds.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, 2–4 May, 1988, Chicago, Illinois, USA, pp.
11–19. ACM (1988). https://doi.org/10.1145/62212.62214

20. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175_30

21. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5_23

22. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: breaking the
O(nm) bit barrier, secure multiparty computation with a static adversary. In:
ACM Symposium on Principles of Distributed Computing, PODC 2012, Funchal,
Madeira, Portugal, 16–18 July 2012, pp. 227–228 (2012)

23. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree (preliminary version), pp. 370–379 (1986). https://doi.org/10.
1145/12130.12169

24. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7_17

25. Garay, J., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communication in
secure multi-party computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_14

26. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.: Adaptively secure broadcast, revis-
ited. In: Gavoille, C., Fraigniaud, P. (eds.) Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA,
USA, 6–8 June, 2011, pp. 179–186. ACM (2011). https://doi.org/10.1145/1993806.
1993832

27. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3_18

https://doi.org/10.4230/LIPIcs.ITC.2022.14
https://doi.org/10.4230/LIPIcs.ITC.2022.14
https://doi.org/10.1007/978-3-642-14162-1_21
https://doi.org/10.1007/978-3-642-31585-5_41
https://doi.org/10.1007/978-3-642-31585-5_41
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1145/12130.12169
https://doi.org/10.1145/12130.12169
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1007/978-3-540-78967-3_18

Adaptive Security, Erasures, and Network Assumptions 325

28. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest
majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 105–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_8

29. Gentry, C.: Fully homomorphic encryption using ideal lattices, pp. 169–178 (2009).
https://doi.org/10.1145/1536414.1536440

30. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1_3

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (eds.) Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, pp. 218–229. ACM (1987). https://doi.org/10.1145/
28395.28420

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority, pp. 218–229 (1987). https://
doi.org/10.1145/28395.28420

33. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5_24

34. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

35. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. In: Dwork, C. (eds.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175_27

36. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

37. Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively
secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36362-7_2

38. King, V., Saia, J.: Breaking the o(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In: Proceedings of the 29th Annual ACM Symposium
on Principles of Distributed Computing, PODC 2010, Zurich, Switzerland, 25–28
July 2010, pp. 420–429 (2010)

39. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA, pp.
990–999 (2006)

40. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: FOCS, pp. 87–98 (2006)

41. Matt, C., Nielsen, J.B., Thomsen, S.E.: Formalizing delayed adaptive corruptions
and the security of flooding networks. In: Dodis, Y., Shrimpton, T. (eds.) Advances
in Cryptology, CRYPTO 2022. LNCS, vol. 13508, pp. 400–430. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4_14

42. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2_30

https://doi.org/10.1007/978-3-642-32009-5_8
https://doi.org/10.1007/978-3-642-32009-5_8
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36362-7_2
https://doi.org/10.1007/978-3-642-36362-7_2
https://doi.org/10.1007/978-3-031-15979-4_14
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30

326 N. Chandran et al.

43. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7_25

44. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In:
PODC, pp. 83–89 (1992)

45. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (eds.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5_2

46. Wan, J., Xiao, H., Devadas, S., Shi, E.: Round-efficient byzantine broadcast under
strongly adaptive and majority corruptions. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12550, pp. 412–456. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64375-1_15

47. Yao, A.C.C.: Protocols for secure computations (extended abstract), pp. 160–164
(1982). https://doi.org/10.1109/SFCS.1982.38

https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-030-64375-1_15
https://doi.org/10.1007/978-3-030-64375-1_15
https://doi.org/10.1109/SFCS.1982.38

Information-Theoretic Cryptography

Perfectly-Secure MPC with Constant
Online Communication Complexity

Yifan Song1,2(B) and Xiaxi Ye1

1 Tsinghua University, Beijing, China
yfsong@mail.tsinghua.edu.cn, yexx23@mails.tsinghua.edu.cn

2 Shanghai Qi Zhi Institute, Shanghai, China

Abstract. In this work, we study the communication complexity of
perfectly secure MPC protocol with guaranteed output delivery against
t = (n − 1)/3 corruptions. The previously best-known result in this set-
ting is due to Goyal, Liu, and Song (CRYPTO, 2019) which achieves
O(n) communication per gate, where n is the number of parties.

On the other hand, in the honest majority setting, a recent trend in
designing efficient MPC protocol is to rely on packed Shamir sharings
to speed up the online phase. In particular, the work by Escudero et al.
(CCS 2022) gives the first semi-honest protocol that achieves a constant
communication overhead per gate across all parties in the online phase
while maintaining overall O(n) communication per gate. We thus ask the
following question: “Is it possible to construct a perfectly secure MPC
protocol with GOD such that the online communication per gate is O(1)
while maintaining overall O(n) communication per gate?”

In this work, we give an affirmative answer by providing an MPC pro-
tocol for computing an arithmetic circuit C over a finite field of size at
least 2n with communication complexity O(|C| + Depth · n + n5 · logn)
elements for the online phase, and O(|C| · n + Depth · n2 + n5 · logn)
elements for the preprocessing phase, where |C| is the circuit size and
Depth is the circuit depth.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrustful par-
ties to jointly compute a common function on their private inputs. Very infor-
mally, the protocol guarantees that each party can only learn his own input and
output but nothing else. Since the notion of MPC was introduced by Yao [Yao82],
early feasibility results on MPC were obtained by Yao [Yao82] and Goldreich
et al. [GMW87] in the computational setting, where the adversary is assumed
to have bounded computational resources. Subsequent works [BGW88,CCD88]
considered the unconditional (or information-theoretic) setting and showed pos-
itive results up to t < n/3 corrupted parties assuming point-to-point communi-
cation channels. If one assumes a broadcast channel in addition, it was shown
in [RB89,Bea89] how to obtain positive results in the information-theoretic set-
ting for up to t < n/2 corrupted parties.
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 329–361, 2025.
https://doi.org/10.1007/978-3-031-78023-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_11&domain=pdf
http://orcid.org/0009-0000-2912-4240
https://doi.org/10.1007/978-3-031-78023-3_11

330 Y. Song and X. Ye

In this work, we are interested in the communication complexity of per-
fectly secure MPC with guaranteed output delivery (GOD) over point-to-point
channels. At a high level, perfect security requires that any (computationally
unbounded) adversary by controlling t corrupted parties cannot learn any infor-
mation about honest parties’ inputs even if corrupted parties can arbitrarily devi-
ate from the protocol. Guaranteed output delivery, on the other hand, requires
that the protocol should always succeed. Indeed, perfect security with GOD is
the best possible security one can hope. It has been shown in [BGW88] that
perfectly secure MPC with GOD is impossible to achieve when t ≥ n/3. On
the other hand, when t < n/3, [BGW88] gives the first positive result that can
compute any computable functions.

Communication complexity is an important measurement of the efficiency of
an MPC protocol, especially in the information-theoretic setting. This is because
unconditionally secure MPC protocols usually have light weight local computa-
tion, often just a series of linear operations. On the other hand, known construc-
tions for general functions still require at least a linear communication complex-
ity in the circuit size. Thus in the real world, the efficiency of an unconditional
MPC protocol is dominated by its communication complexity.

There is a rich line of works studying the communication complexity of per-
fectly secure MPC with GOD. Most noticeably, the work [BH08] gives the first
result with linear communication complexity per multiplication gate. To be more
concrete, the achieved communication complexity is O(|C|·n+Depth·n2+n3) ele-
ments. In 2019, Goyal et al. [GLS19] show how to remove the quadratic commu-
nication overhead in the circuit depth and achieve O(|C| ·n+n3) elements. Both
of these works are based on the party elimination framework [HMP00], a generic
approach to achieve GOD efficiently. On the other hand, this approach inherently
requires O(n) evaluation rounds. Therefore, the round complexity of these two
works are O(Depth+n). Another line of works [ALR11,AAY22,AAPP23] focuses
on improving the communication complexity without the O(n) overhead in the
round complexity. And in the recent work [AAPP23], a linear communication
overhead per gate in the number of parties is also achieved in this setting. Con-
cretely the achieved communication complexity is O(|C|·n+Depth·n2+n4). It is
not clear whether a linear communication overhead per gate is inherent in general
in perfect malicious security setting despite there are negative results for special
cases with an additional requirement that the protocol be two-phase [DS20].1

We note that in the honest majority setting where t < n/2, the communi-
cation complexity of the best-known semi-honest protocol [DN07,GLO+21] is
also linear in the number of parties per gate. However, a recent work [EGPS22]
gives a novel construction that achieves O(1) communication per gate in the
online phase while preserving O(n) overall communication per gate in the pre-
processing phase. Having O(1) communication per gate in the online phase is
interesting since

1 The negative result in [DS20] requires that protocols are UC secure and have a
standard 2-phase structure where the inputs are committed in the first phase, before
the output is computed in the second phase.

Perfectly-Secure MPC with Constant Online Communication Complexity 331

– In practice, people care more about the efficiency in the online phase as the
preprocessing phase can be done in the idle time before knowing the inputs.

– It means that the amortized communication complexity per party decreases
as the increase of the number of parties and one may speed up the protocol
by having more parties!2

Unfortunately, to the best of our knowledge, such a result is not known in the
perfect security setting. Thus, we ask the following question:

“Is it possible to construct a perfectly secure MPC protocol with GOD such
that the online communication complexity per gate is O(1) while the overall com-
munication remains O(n)?”

1.1 Our Contribution

In this work, we answer the above question affirmatively. Our main result is
summarized in the following theorem.

Theorem 1. Let n denote the number of parties. Let F be a finite field of size
|F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-
theoretic MPC protocol that computes C against a fully malicious adversary
controlling at most t = n−1

3 corrupted parties with perfect security. The com-
munication cost of the protocol is expected O(|C|+Depth ·n+n5 · log n) elements
for the online phase and expected O(|C| · n+Depth · n2 +n5 · log n) elements for
the preprocessing phase, where Depth is the circuit depth. The round complexity
of the protocol is O(Depth + n2) in expectation for the online phase and O(n2)
in expectation for the preprocessing phase.

We note that the previously best-known results [GLS19,AAPP23] both require
linear communication complexity per gate in the online phase. Thus, our result
gives a factor of O(n) improvements over the previous results in the online phase.

To achieve our result, our idea is to compile the semi-honest proto-
col in [EGPS22] to achieve perfect security. While the semi-honest protocol
in [EGPS22] gives us an efficient way to compute the circuit in the online phase,
we note that the main difficulty of achieving perfect security is to efficiently ver-
ify the computation and locate the errors. In particular, we identify a security
issue that does not occur in the semi-honest setting when compiling [EGPS22] to
achieve perfect security. We note that this security issue is very similar to the one
observed in [GLS19]. Compared with [GLS19], we give a much simpler solution
to address this issue which can potentially be used to improve the construction
in [GLS19]. In Sect. 2, we give an overview of our solution towards tackling these
difficulties.

2 Our construction requires the field size to be O(n). We leave the extension of our
result to constant-size fields to future work.

332 Y. Song and X. Ye

Comparison with Previous Works. As we have mentioned above, our work
achieves the same overall asymptotic communication complexity as [GLS19,
AAPP23] while we achieve constant online communication per gate.

On the other hand,

– Both of our work and [AAPP23] suffer an additive communication overhead
depending on the circuit depth, O(Depth · n2), while [GLS19] does not have
this term.

– For round complexity, when using an expected constant round BC protocol,
our protocol requires O(Depth+ n2) rounds in expectation due to the use of
the dispute control framework. This is in contrast to [AAPP23] that achieves
expected O(Depth) rounds and [GLS19] that achieves expected O(Depth+n)
rounds.

This additional communication overhead depending on the circuit depth and
additional round complexity may be viewed as the tradeoff of achieving constant
online communication per gate. An interesting future direction is to achieve the
best among these three works.

When focusing on the non-optimal corruption setting, [DIK10] achieves sub-
linear communication and computation in the number of parties. As for its tech-
niques, [DIK10] first transforms a general circuit into a SIMD-like circuit to
overcome the issue of network routing where the input wires for each group
of gates need to be aligned. However, this transformation increases the circuit
size by a factor of log |C|. To evaluate the circuit after transformation, [DIK10]
designs a protocol for a much smaller corruption threshold and use the party
virtualization technique to boost the corruption threshold. However, the tech-
nique of party virtualization only works in the non-optimal corruption setting
which does not work for the optimal 1/3 corruption setting we target for. We
note that if only focusing on the communication complexity, one can potentially
achieve overall O(|C|) communication by adapting the protocol in [GPS21] that
addresses network routing with constant overhead and combining it with our ver-
ification technique. However, one main challenge in our case is that, to achieve
O(|C|) online communication, we have to use packed Shamir sharing with larger
degree d(> n/3) to pack O(n) secrets which leads to the loss of error correction
property. In contrast, both [DIK10] and the above adaption of [GPS21] can use
Shamir sharings with degree d = n/3−1 while still packing O(n) secrets and take
advantage of the error correction property to achieve a much simpler protocol.

2 Technical Overview

Our work uses both the standard Shamir sharings and Packed Shamir sharings.
We use [x]d to represent a degree-d Shamir sharing of x, which corresponds to
a degree-d polynomial f such that the i-th share is f(i), and f(0) = x. We will
also use [x|j]d to denote a degree-d Shamir sharing of x where the secret value
is stored at f(−j + 1) rather than f(0). For a vector x = (x1, . . . , xk) ∈ F

k, we
use [x]d to represent a degree-d packed Shamir sharing of x, which corresponds

Perfectly-Secure MPC with Constant Online Communication Complexity 333

to a degree-d polynomial f such that the i-th share is f(i) and for all j ∈ [k],
f(−j + 1) = xj .

2.1 Efficient Online Protocol via Preprocessing

In this work, our goal is to design a perfectly secure MPC protocol with guar-
anteed output delivery (GOD) against a fully malicious adversary who controls
up to t = n−1

3 corrupted parties such that the online communication complex-
ity per multiplication gate is constant among all parties. Our starting point is
the recent semi-honest protocol [EGPS22] in the honest majority setting that
achieves constant communication complexity in the online phase relying on the
packed Shamir sharing scheme and preprocessing.

The notion of packed Shamir sharing was introduced by Franklin and Yung
in [FY92]. At a high level, packed Shamir sharings allow us to compute a batch
of O(n) gates of the same kind simultaneously but only at cost O(n), the same
as using the Shamir sharings to compute a single gate. This allows us to bring
the cost per gate to O(1). In [EGPS22], the authors rely on preprocessing to
prepare packed Beaver triples (the packed version of the standard Beaver triples)
which are used in the online phase to achieve constant online communication.
On the other hand, the overall communication complexity of the construction
in [EGPS22] remains O(n) per gate, which matches the best-known semi-honest
protocol [DN07,GLO+21].

Inspired by [EGPS22], our idea is to rely on packed Shamir sharings to achieve
perfect security with GOD with constant online communication per gate. At
a very high level, our idea is to (1) use techniques in [BH08] to compile the
preprocessing phase of [EGPS22] to prepare packed Beaver triples, and (2) use
party elimination framework [HMP00] to compile the online protocol that uses
packed Beaver triples. However, the second step is much more difficult to achieve
than it looks. In the following, we give an overview of our construction and
demonstrate the technical difficulties we have to address. For simplicity, we first
focus on a SIMD circuit, which computes many copies of the same sub-circuit.
We will discuss how to move to a general circuit later.

Overview of Our Protocol. Let k be the number of secrets packed in a single
sharing. We will discuss the choice of k at a later point. We set d = t + k − 1
and use degree-d packed Shamir sharings to ensure privacy against t corrupted
parties. A packed Beaver triple contains three degree-d packed Shamir sharings
([a]d, [b]d, [c]d) such that c = a ∗ b, where ∗ denotes the coordinate-wise multi-
plication.

In the preprocessing phase of [EGPS22], a random packed Beaver triple is
prepared as follows.

– First, for all i ∈ [k], a standard Beaver triple with secrets stored at position
−i + 1 is prepared: ([ai|i]t, [bi|i]t, [ci|i]t).

– Then, all parties locally convert such a group of k Beaver triples to a packed
Beaver triple. This is done by computing [a]d =

∑k
i=1[ei]k−1 · [ai|i]t, where

334 Y. Song and X. Ye

ei is the i-th unit vector (i.e., the i-th entry is 1 while all other entries are
0). To see why it works, just note that the secrets of [ei]k−1 · [ai|i]t is equal
to ai · ei. Thus, we have a =

∑k
i=1 ai · ei.

Using techniques in [BH08], we can prepare standard Beaver triples with perfect
security. Thus, following [EGPS22], we can efficiently prepare packed Beaver
triples with perfect security.

With packed Beaver triples in hand, in the online phase, all parties evaluate
a group of k gates in parallel each time. For a group of k addition gates with
input sharings [x]d, [y]d, all parties locally compute [z]d = [x]d + [y]d. For a
group of k multiplication gates, all parties run the following steps:

1. All parties locally compute [x + a]d = [x]d + [a]d and [y + b]d = [y]d + [b]d
and send them to a common party Pking.

2. Pking reconstructs x + a,y + b, and distributes [x + a]k−1, [y + b]k−1 to all
parties.

3. All parties locally compute

[z]d+k−1 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]d − [a]d · [y + b]k−1 + [c]d.

To obtain a degree-d packed Shamir sharing of z, all parties in addition
prepare ([r]d, [r]d+k−1). Such a pair of random sharings can also be prepared
by using techniques in [BH08].

4. All parties locally compute [z+r]d+k−1 = [z]d+k−1+[r]d+k−1 and send it to
Pking.

5. Pking reconstructs z + r and distributes [z + r]k−1 to all parties.
6. All parties locally compute [z]d = [z + r]k−1 − [r]d.

In this way, all parties can evaluate every group of gates with constant commu-
nication.

When corrupted parties deviate from the protocol, however, the above pro-
tocol can easily go wrong. This is because the packed Shamir sharings are of
degree d which is greater than t, and we cannot hope to use the error correction
of Reed Solomon Code as [BH08] to ensure the correctness of the computa-
tion in the online phase. To achieve perfect security, one may hope to use the
party elimination framework as [GLS19]. At a high level, the whole computation
task is first divided into O(n) segments. Each time one segment is computed
as above. Then all parties together check the correctness of the computation. If
the computation is correct, all parties move to the next segment. Otherwise, all
parties together find a pair of dispute parties which ensures at least one party
is corrupted. Such a dispute pair is removed and all parties re-evaluate the cur-
rent segment. This way, we can achieve perfect security without blowing up the
communication complexity.

Unfortunately, this idea does not work in our case. This is because in the
worst case, the party elimination framework may remove 2t parties and only
t + 1 parties left. However, in the above multiplication protocol, to allow Pking
to reconstruct [z]d+k−1, at least d + k = t + 2k − 1 > t + 1 parties are needed.

Perfectly-Secure MPC with Constant Online Communication Complexity 335

To resolve this issue, our construction uses the dispute control method [BH06].
The high-level idea of dispute control is similar to party elimination framework
except that each time a dispute pair is found, we will not remove these two
parties. Instead, we will ensure that these two parties never talk to each other in
the following computation. In this way, we could avoid finding the same dispute
pair in the future evaluation. A party is only removed if he is disputed with
more than t parties, in which case this party is definitely a corrupted party. By
using dispute control, we will only remove corrupted parties. Thus, at least 2t+1
(honest) parties are active. To ensure that Pking can always receive enough shares
for [z]d+k−1, which requires d+k = t+2k−1 shares, we need t+2k−1 ≤ 2t+1.
Thus, our construction sets k = t

2 + 1 = O(n), which is sufficient to achieve our
goal.

Note that so far we haven’t discussed how to check the correctness of the
computation and how to find a dispute pair if the computation goes wrong. In
particular,

– The verification of computation should be done with constant communica-
tion per gate as well. Note that this difficulty does not appear in [GLS19]
since their construction only achieves linear communication per gate in the
online phase. So it suffices for them to also pay linear cost per gate in the
verification. This difficulty does not appear in [EGPS22] either since their
malicious version is in the honest majority setting where one cannot hope to
achieve perfect security. However, allowing errors with negligible probability
simplifies the task of verification as one can even achieve sublinear cost in the
verification [GSZ20].

– Degree-d packed Shamir sharings are insufficient to identify dispute pairs
when the computation goes wrong. This is unlike degree-t Shamir sharings
where even if all corrupted parties provide incorrect shares, we can always
reconstruct the whole sharing. In fact, this is a much more severe issue since
if the input packed Shamir sharings are found to be incorrect, then even if all
parties follow the protocol, the computation will always fail and we are not
able to find a dispute pair.

In the following sections, we will address these two difficulties.

2.2 Boosting Verification

As we discussed above, we have to design a verification protocol with constant
communication per gate. We first examine where the multiplication protocol
may go wrong.

– Issue 1. In Step 1 and 4, parties may send incorrect shares to Pking so that
Pking cannot reconstruct the secrets of degree-d or degree-(d + k − 1) packed
Shamir sharings.

– Issue 2. In Step 2 and 5, Pking may maliciously distribute incorrect packed
sharings where either the degree of packed sharings is not k −1 or the secrets
are incorrect.

336 Y. Song and X. Ye

In the first case, we show that Pking can detect such issues and directly announce
to others that the computation is incorrect. Recall that we set k, the number of
secrets packed in a single sharing, to be t

2 +1. Then (d+k−1)+1 = t+2k−1 =
2t + 1. Therefore, a degree-d or degree-(d + k − 1) packed Shamir sharing is
fully determined by the shares of honest parties and corrupted parties can only
cause the sharing to be inconsistent but not change the secret. Thus, Pking can
detect errors by checking whether the received shares lie on a valid degree-d or
degree-(d + k − 1) polynomial.

In the second case, we can abstract the verification task as follows. All parties
hold a pair of packed Shamir sharings ([u]d+k−1, [u]k−1), where the first sharing
is the one all parties send to Pking and the second sharing is the one all parties
receive from Pking (note that we can always view a degree-d packed Shamir
sharing as a degree-(d + k − 1) packed Shamir sharing). The goal is to check
that (1) the second sharing is a valid degree-(k − 1) packed Shamir sharing, and
(2) both sharings have the same secrets. To verify such a pair, we let each party
receive the shares from all parties and check the above two points accordingly.
Here we rely again on the fact that a degree-(d+k−1) packed Shamir sharing is
fully determined by the shares of honest parties. Thus corrupted parties cannot
make honest parties accept the verification by sending wrong shares.

However this way of checking ([u]d+k−1, [u]k−1) would require O(n2) commu-
nication per pair. To amortize the communication complexity, we adapt the tech-
nique in [BH08] to efficiently check a batch of 2t+1 such pairs, say {([ui]d+k−1,
[ui]k−1)}2t+1

i=1 . Let M be a Vandermonde matrix of size n × (2t+ 1). All parties
first expand such 2t + 1 pairs to n pairs by locally computing

([vi]d+k−1, [vi]k−1)ni=1 = M · ([ui]d+k−1, [ui]k−1)2t+1
i=1 .

By the property of Vandermonde matrices, there is a one-to-one linear map
between any subset of 2t + 1 pairs in {([vi]d+k−1,[vi]k−1)}ni=1 and {([ui]d+k−1,
[ui]k−1)}2t+1

i=1 . Thus if 2t + 1 pairs in {([vi]d+k−1, [vi]k−1)}ni=1 are correct, this
implies that {([ui]d+k−1, [ui]k−1)}2t+1

i=1 are all correct. Therefore, after expansion,
we let each party Pi check a single pair ([vi]d+k−1, [vi]k−1). If every party is
happy with the pair he checked, then at least 2t+ 1 pairs are verified by honest
parties, which ensures that the original 2t + 1 pairs are correct. Finally, all
parties run a Byzantine Agreement protocol to reach an agreement on whether
the verification passes or not. Note that the communication remains to be O(n2)
but we check O(n) pairs each time.

We extend the above idea to check any linear secret sharing scheme which
satisfies that the whole sharing is determined by the shares of honest parties. The
functionality FVerifyPub will be formally described in Subsect. 4.1 and the protocol
ΠVerifyPub instantiating FVerifyPub appears in the full version of this paper [SY24]
(Subsect. 5.1).

2.3 Identifying Dispute Pair

After the verification, if the check fails, we reach a scenario where

Perfectly-Secure MPC with Constant Online Communication Complexity 337

– Either Pking claims that the degree-d or degree-(d + k − 1) packed Shamir
sharing he received is incorrect.

– Or some party Pi claims that ([vi]d+k−1, [vi]k−1) he received is incorrect.

Then we know the computation of the current segment fails and we have to
identify a dispute pair of parties. For the latter case, since ([vi]d+k−1, [vi]k−1) is
computed from {([ui]d+k−1, [ui]k−1)}2t+1

i=1 which are known by Pking, Pking can
provide a correct version to Pi so that Pi can cross check which party deviates
from the protocol. However, what if Pking claims that a degree-d or degree-
(d + k − 1) packed Shamir sharing is incorrect? Since d > t, we cannot hope
to always reconstruct the correct sharing and identify the party who sends the
wrong share.

To enable identification of dispute pair, we have to resort to degree-t Shamir
sharings. Our idea is to compute a degree-t Shamir sharing for every value and
all parties hold these degree-t Shamir sharings silently. In this way, whenever a
degree-d or degree-(d+k − 1) packed Shamir sharing is incorrect, we can always
come back to the degree-t sharings to identify a dispute pair. However, we have
to achieve this with constant online communication.

Computing Degree-t Sharings with Constant Online Communication. Our obser-
vation is that in the preprocessing phase of [EGPS22], all parties can obtain
a degree-d packed Shamir sharing [a]d via local computation from {[ai|i]t}ki=1.
This inspires us to compute degree-t Shamir sharings in the online phase with
a similar form so that when we compute multiplication gates, we can pack the
degree-t Shamir sharings on demand. To be more concrete, for every group of
k multiplication gates, all parties hold {[xi|i]t, [yi|i]t}ki=1 in the beginning. They
first locally transform these 2k degree-t Shamir sharings to [x]d, [y]d and then
run the multiplication protocol.

Note that we also have to unpack the output sharing [z]d to {[zi|i]t}ki=1.
Fortunately, this can be achieved with a small modification of the preprocess-
ing data: We require all parties to also prepare {[ri|i]t}ki=1 when preparing
([r]d, [r]d+k−1). Then after receiving [z + r]k−1 from Pking, since [z + r]k−1

can be viewed as a degree-(k − 1) Shamir sharing of zi+ ri stored at −i+1, i.e.,
[zi + ri|i]k−1, all parties can compute [zi|i]t = [z + r]k−1 − [ri|i]t.
Identifying Dispute Pair When [x + a]d is Incorrect. Now come back to the
problem of identifying dispute pair. If Pking claims that [x+ a]d is incorrect, all
parties can provide {[xi+ai|i]t}ki=1 (note that [ai|i]t is generated when preparing
packed Beaver triples in the preprocessing phase). In this way, Pking can robustly
reconstruct each degree-t Shamir sharing and compute the correct [x+ a]d.

Identifying Dispute Pair When [z + r]d+k−1 is Incorrect. If Pking claims that
[z + r]d+k−1 is incorrect, however, the above approach does not work. Recall
that

[z+r]d+k−1 = [x+a]k−1·[y+b]k−1−[x+a]k−1·[b]d−[a]d·[y+b]k−1+[c]d+[r]d+k−1,

where [x + a]k−1 and [y + b]k−1 are distributed by Pking. Also recall that all
parties have prepared {([ai|i]t, [bi|i]t, [ci|i]t)}ki=1 in the preprocessing phase. To

338 Y. Song and X. Ye

allow Pking robustly reconstructing [z + r]d+k−1, we further change the way
of preparing [r]d+k−1 as follows: All parties prepare 2k − 1 random degree-t
Shamir sharings {[ri|i]t}2k−1

i=1 . Let r′ = (r1, . . . , r2k−1). Following the observation
in [EGPS22], all parties can locally transform {[ri|i]t}2k−1

i=1 to a degree-(d+k−1)
packed Shamir sharing [r′]d+k−1 (that stores 2k − 1 secrets). Here we utilize the
fact that d + k − 1 = t+ (2k − 1)− 1 by our choices of d and k. Note that if we
only focus on the first k secrets of r′, denoted by r = (r1, . . . , rk), [r′]t+2k−2 can
be directly viewed as a degree-(d+ k − 1) packed Shamir sharing [r]d+k−1 (that
stores k secrets), which is what we need.

Now if all parties send {([ai|i]t, [bi|i]t, [ci|i]t)}ki=1 and {[ri|i]t}2k−1
i=1 to Pking,

Pking can reconstruct each degree-t Shamir sharing and compute a correct degree-
(d+k−1) packed Shamir sharing [z+r]d+k−1, and therefore can identify a dispute
pair. However, doing this would reveal x,y,z to Pking. To resolve this issue, we
use the following tricks.

1. In the preprocessing phase, all parties prepare random degree-t Shamir shar-
ings {([a′

i|i]t, [b′
i|i]t, [c′

i|i]t)}ki=1 and {[r′
i|i]t}2k−1

i=1 as random masks. Note that
each c′

i is a random value rather than a′
i · b′

i.
2. All parties compute [a′]d, [b′]d, [c′]d, [r′]2k−1 locally. Then all parties send

[v]d+k−1 = [x + a]k−1 · [y + b]k−1 − [x + a]k−1 · [b′]d − [a′]d · [y + b]k−1 +
[c′]d + [r′]d+k−1 to Pking. Basically, [v]d+k−1 is computed in the same way as
[z + r]d+k−1 except that we use [a′]d, [b′]d, [c′]d, [r′]d+k−1.

3. Now if Pking complains about [v]d+k−1, all parties send {([a′
i|i]t, [b′

i|i]t,
[c′

i|i]t)}ki=1 and {[r′
i|i]t}2k−1

i=1 to Pking. These are independent of the actual
wire values.

4. Otherwise, it means that [z+r]d+k−1+[v]d+k−1 is not a valid degree-(d+k−1)
packed Shamir sharing. Note that we have

[z + r]d+k−1 + [v]d+k−1

= 2 · [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · ([b]d + [b′]d)
−([a]d + [a′]d) · [y + b]k−1 + ([c]d + [c′]d) + ([r]d+k−1 + [r′]d+k−1).

All parties send {([ai+a′
i|i]t, [bi+b′

i|i]t, [ci+c′
i|i]t)}ki=1 and {[ri+r′

i|i]t}2k−1
i=1 to

Pking. Again those sharings are independent of the actual wire values because
of the random masks.

In this way, Pking can identify a party who sends incorrect shares.

2.4 Security Issue of the Current Approach

One issue we omitted so far is that the multiplication above is actually not secure
against malicious corrupted parties: A malicious Pking can learn some partial
information of y from the shares of [z+r]d+k−1 by sending incorrect [x+a]k−1

and [y+b]k−1. Consider the following so-called double-dipping attack [GBO+23,
DEN24] which has been pointed out in [GLS19]:

Perfectly-Secure MPC with Constant Online Communication Complexity 339

1. Without loss of generality, assume the first 2t + 1 parties are honest. After
Pking reconstructs e = x + a, Pking chooses another vector e′ such that the
first shares of [e]k−1 and [e′]k−1 are identical. Then Pking sends the shares of
[e]k−1 to {P1, . . . , Pt+1}, and sends the shares of [e′]k−1 to {Pt+2, . . . , P2t+1}.

2. Let [z + r]d+k−1 denote the correct sharings computed from [e]k−1 and
[z′ + r]d+k−1 denote the incorrect sharings computed from [e′]k−1. Then
the parties in {P1, . . . , Pt+1} hold shares of [z + r]d+k−1 while parties in
{P1, Pt+2, . . . , P2t+1} hold shares of [z′ + r]d+k−1. Note that corrupted par-
ties, i.e., {P2t+2, . . . , P3t+1}, can compute their shares of both [z + r]d+k−1

and [z′ + r]d+k−1.
3. After receiving the shares of [z + r]d+k−1 (or [z′ + r]d+k−1) from all honest

parties, Pking learns 2t+1 shares of both [z+r]d+k−1 and [z′+r]d+k−1. Thus
Pking can reconstruct z + r and z′ + r and compute z′ − z = (e′ − e) ∗ y,
which leaks the information about y.

We point out that such an issue does not appear in [EGPS22] since in their
setting, they set d + k − 1 = n − 1 so that Pking needs all shares to reconstruct
z + r. In our case, however, we need d + k − 1 ≤ 2t to ensure that Pking can
detect the errors in [z + r]d+k−1.

We note that a similar issue has been pointed out in [GLS19]. We follow
the approach in [GLS19] to resolve this issue. Before sending [z + r]d+k−1 to
Pking, all parties prepare a random degree-(n − 1) packed Shamir sharing of 0,
denoted by [0]n−1, and add it with [z+ r]d+k−1. In this way, even if a malicious
Pking may distribute incorrect [x+a]k−1 and [y+ b]k−1, he no longer gains any
information from shares of [z + r]n−1. Intuitively, this is because [z + r]n−1 =
[z]d+k−1+([r]d+k−1+ [0]n−1) where the second part is a random degree-(n− 1)
packed Shamir sharing and every share is just a random value. Effectively, every
party uses a uniform value to hide his share of [z]d+k−1.

While this approach prevents a corrupted Pking from gaining information
from [z + r]n−1, an honest Pking cannot detect errors in [z + r]n−1 either.
In [GLS19], the authors introduce the so called 4-consistent sharings to detect
errors in [z+r]n−1. In our work, we give a much simpler approach for this task,
which can also be used to simplify the construction in [GLS19] and avoid the
use of 4-consistent sharings.

We notice that the key point of the above attack is that Pking may distribute
[x+ a]k−1 and [y + b]k−1 that are not of degree (k − 1). On the other hand, if
Pking is guaranteed to distribute degree-(k − 1) packed Shamir sharings, even if
the secrets are incorrect, Pking cannot learn any information from [z + r]d+k−1

since in this case it is a valid degree-(d + k − 1) packed Shamir sharing and the
potentially incorrect secrets z are masked by r. Thus, to allow Pking to detect
errors in [z + r]n−1,

1. All parties first check that Pking indeed shares degree-(k − 1) packed Shamir
sharings. This check can be done by the verification protocol ΠVerifyPub we
briefly sketched in Subsect. 2.2.

2. All parties together open the mask sharing [0]n−1. This is done by letting
each party send all messages when generating [0]n−1 to Pking. Note that given

340 Y. Song and X. Ye

that Pking shares valid degree-(k − 1) packed Shamir sharings, [0]n−1 is safe
to open. Now Pking can detect errors in [z + r]d+k−1 = [z + r]n−1 − [0]n−1

again.

In our construction, we will also use a random packed Shamir sharing of 0
when reconstructing [x + a]d and [y + b]d to Pking. In this way, we can first
evaluate multiplication gates in multiple layers without check, and then verify
the correctness of multiplication gates at the end. We point out that without
doing this, a similar security issue occurs when evaluating multiplication gates
in multiple layers without check [GLS19].

To summarize, we use techniques in [GLS19] to allow computation across lay-
ers and only verify the computation at the end of each segment. To achieve this,
we add a degree-(n − 1) packed Shamir sharings of 0 to remove the redundancy
of the sharings reconstructed to Pking in order to prevent Pking from applying
the double-dipping attack by distributing inconsistent reconstruction results to
all parties. However, when the computation fails, Pking cannot pin-point which
party misbehaved due to the lack of redundancy. Our observation is that the
high-degree packed Shamir sharings of 0 is to prevent Pking from applying the
double-dipping attack and once this has been checked (i.e., Pking indeed sends
consistent reconstruction results to all parties), it is safe for all parties to de-
mask the random sharings of 0. Hence, Pking could again rely on the redundancy
of lower degree Shamir sharings for verification.

Using Our Technique in [GLS19]. The construction in [GLS19] uses the standard
degree-t Shamir sharing and random Beaver triples for online computation. To
compute the multiplication of two input sharings [x]t, [y]t with Beaver triple
([a]t, [b]t, [c]t), all parties first reconstruct x+a and y+b by sending their shares of
[x+a]t, [y+b]t to Pking and then asking Pking to distribute back the reconstruction
results. To prevent the above mentioned double-dipping attack, [x+a]t and [y+b]t
are masked by random degree-(n − 1) Shamir sharings of 0, denoted by [o1]n−1

and [o2]n−2. However these random masks also prevent Pking from detecting and
error-correcting incorrect shares when reconstructing x+a and y+b. As a result,
even if a single incorrect share may cause the whole computation incorrect.

To solve this, after checking that Pking does not play the double-dipping
attack, all parties transform [x + a]n−1 := [x + a]t + [o1]n−1 to a tuple of 4
degree-t Shamir sharings such that each share of [x + a]n−1 can be robustly
recovered from one of the 4 newly generated degree-t Shamir sharings. This
technique is known as the 4-consistent sharings [GLS19].

We note that following our approach, the above problem can be easily
addressed by asking all parties send all messages when generating [o1]n−1 to
Pking. In this way, Pking can de-mask [x+a]n−1 and obtain [x+a]t, which allows
him to find incorrect shares using error correction.

2.5 Towards General Circuits

When evaluating a general circuit, one issue is to prepare the packed Shamir
sharings for the next group of multiplication gates. We note that the packed

Perfectly-Secure MPC with Constant Online Communication Complexity 341

Shamir sharings only allow us to do coordinate-wise multiplications. It requires
that the secrets of the two input sharings are correctly aligned. This holds auto-
matically for SIMD circuits. However, when dealing with a general circuit, the
secrets may not be in the order we want. Or even worse, the secrets may not
be in a single packed Shamir sharing. This problem is referred to as network
routing [GPS21,GPS22].

In [GPS21,GPS22], the authors reduce the problem of network routing to
the following sharing transformation problem. Suppose all parties hold a packed
Shamir sharing [x]d and want to perform a linear map L : F

k → F
k to the

secrets x. I.e., the goal is to compute a packed Shamir sharing [L(x)]d. Follow-
ing [GPS21], this task can be achieved as follows.

1. All parties prepare ([r]d, [L(r)]d).
2. All parties compute [x+ r]d and send their shares to Pking.
3. Pking reconstructs x+ r and distributes [L(x+ r)]k−1.
4. All parties locally compute [L(x)]d = [L(x+ r)]k−1 − [r]d.

There are two difficulties we have to address. First, how should parties prepare
([r]d, [L(r)]d) efficiently? Indeed this is the main technical difficulty resolved
in [GPS21,GPS22]. This task is not simple because each time we may need
to perform a different linear map. Known solutions from [DN07,BH08] only
allow us to prepare such random sharings for the same linear map many times.
In [GPS22], the authors show how to perform any linear transformation effi-
ciently (where the underlying secret sharing scheme can be any linear secret
sharing scheme). Instead of using the general linear transformation, we give an
efficient solution towards this task that is tailored for our case.

Second, how should parties check the correctness of Pking? We note that the
verification functionality FVerifyPub only allows us to check the same linear maps
many times, which is not sufficient since each time we may have to perform a
different linear map. We design an efficient solution to resolve this issue which
will be introduced later.

Efficient Preprocessing for Sharing Transformation. Our idea is to prepare ran-
dom sharings {([ri]d, [Li(ri)]d)}ki=1 for k different linear maps in a batch way,
where recall that k is the number of secrets packed in a single sharing. Let
ui = Li(ri). Then for all j ∈ [k], ui,j is a linear combination of ri,1, . . . , ri,k.

In the beginning, all parties prepare k random degree-d packed Shamir shar-
ings {[ri]d}ki=1. We may list the secrets in a matrix as follows:

⎡

⎢
⎣

r1,1 . . . r1,k
...

. . .
...

rk,1 . . . rk,k

⎤

⎥
⎦

Then the secrets in the same row are stored in a single packed Shamir sharing.
We observe that the packed Shamir sharings support efficient linear opera-

tions over secrets that are stored in the same positions, i.e., we can efficiently

342 Y. Song and X. Ye

compute any linear combination of r1,i, . . . , rk,i, which are stored at position
−i + 1. However, the sharing transformation requires us to do linear operations
over secrets that are all stored in different positions. Thus, a natural idea is to
re-share the matrix so that the secrets in the same column are stored in a single
packed Shamir sharing, i.e., {[r∗,j]d}kj=1. This can be viewed as a “transpose”
operation. Now all parties could efficiently compute {[u∗,j]d}kj=1. This is because
the i-th secret of [u∗,j]d, which is ui,j , is a linear combination of ri,1, . . . , ri,k,
which are the i-th secrets of {[r∗,j]d}kj=1. To obtain {[ui]d}ki=1, we simply per-
form another “transpose” operation on {[u∗,j]d}kj=1.

We note that the “transpose” operation can also be viewed as one type of
sharing transformation and the only difference is that it acts on the secrets of k
packed Shamir sharings. Since we have to perform the same “transpose” operation
many times, this can be handled efficiently by solutions from [DN07,BH08].

Efficient Verification of Pking. We may abstract the verification task as follows.
Given ([u]d, [v]k−1) and a linear map L, we want to check that [v]k−1 is a valid
degree-(k − 1) packed Shamir sharing and v = L(u).

To achieve efficient verification, we follow a similar approach to that when
preparing random sharings for sharing transformation. This becomes even sim-
pler since Pking knows all sharings and he can help all parties perform the “trans-
pose” operations. We sketch our solution as follows:

1. For each group of k pairs {([ui]d, [vi]k−1), Li}ki=1, Pking shares the “transpose”
sharings {[u∗,j]k−1}kj=1, {[v∗,j]k−1}kj=1.

2. All parties use ΠVerifyPub to check the correctness of all “transpose” operations.
Note that these are just the same operations, which can be handled by our
verification protocol.

3. All parties compute from {[u∗,j]k−1}kj=1 to {[v∗,j]k−1}kj=1 and check whether
the secrets of the resulting sharings are the same as those shared by Pking.
Again the last check can be handled by our verification protocol as well.

2.6 Summary of Our Construction

Putting all components together, we obtain a perfectly secure MPC protocol
with constant online communication. In the preprocessing phase, we prepare
correlated random degree-t Shamir sharings and Beaver triples. We show how to
use the techniques in [BH08] to achieve this task. The communication complexity
in the preprocessing phase is O(n) elements per gate.

In the online phase, we follow the dispute control method and divide the
circuit into O(n2) segments of equal size. Since there are at most O(n2) different
dispute pairs, in the worst case, we may need to re-evaluate O(n2) segments. By
having O(n2) segments, even in the worst case, the asymptotic communication
complexity remains unchanged.

In each segment, we first evaluate the circuit by using packed Shamir sharings
without check. This includes (1) performing proper linear transformations to
prepare input packed Shamir sharings for each layer, and (2) using packed Shamir

Perfectly-Secure MPC with Constant Online Communication Complexity 343

sharings to evaluate each group of gates efficiently. Note that to protect against
a malicious Pking, every sharing that is reconstructed to Pking is masked by a
degree-(n − 1) packed Shamir sharing of 0.

After evaluation, all parties together verify whether Pking distributes valid
degree-(k − 1) packed Shamir sharings. After this check, all parties can reveal
the mask sharing [0]n−1. Now Pking checks whether the shares he received are
valid degree-d or degree-(d+k − 1) sharings, and all parties check whether Pking
honestly follows the protocol. If all check passes, all parties proceed to the next
segment. Otherwise, all parties rely on the degree-t Shamir sharings prepared in
the preprocessing phase to identify a dispute pair. Then the whole segment is
re-evaluated.

As a conclusion, we have the following theorem.

Theorem 1. Let n denote the number of parties. Let F be a finite field of size
|F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-
theoretic MPC protocol that computes C against a fully malicious adversary
controlling at most t = n−1

3 corrupted parties with perfect security. The com-
munication cost of the protocol is expected O(|C|+Depth ·n+n5 · log n) elements
for the online phase and expected O(|C| · n+Depth · n2 +n5 · log n) elements for
the preprocessing phase, where Depth is the circuit depth. The round complexity
of the protocol is O(Depth + n2) in expectation for the online phase and O(n2)
in expectation for the preprocessing phase.

3 Preliminary

3.1 The Model

We consider a set of n parties {P1, P2, . . . , Pn} where each party can provide
inputs, receive outputs, and participate in the computation. For every pair of
parties, there exists a secure (private and authenticated) synchronous channel
so that they can directly send messages to each other. The communication com-
plexity is measured by the number of bits via private channels.

We focus on functions which can be represented as arithmetic circuits over
a finite field F (with |F| ≥ 2n) with input, addition, multiplication, and output
gates. Let κ = log |F| be the size of an element in F.

In this work, we consider the standard simulation-based definition of
MPC [Can00]. An adversary is able to corrupt at most t = n−1

3 parties, pro-
vide inputs to corrupted parties, and receive all messages sent to the corrupted
parties. Corrupted parties can deviate from the protocol arbitrarily. We denote
the set of corrupted parties by C. We consider perfect security with guaranteed
output delivery. That is the protocol is guaranteed to succeed with no error.

3.2 Byzantine Agreement

Our MPC protocol uses Byzantine agreement for both broadcast and consensus.
Broadcast channels are authenticated and synchronous which allow a sender to

344 Y. Song and X. Ye

distribute a message with a guarantee that all parties will receive the same value.
Consensus allows the parties who hold an individual input xi, to reach agreement
on a value x′ such that x′ = x if every honest party holds xi = x. Focusing
on perfect security with corruption threshold t < n

3 , to instantiate Byzantine
agreement and broadcast channels, we use an expected constant round broadcast
protocol proposed in [AC24] which achieves communication complexity of O(n ·
L) bits plus expected O(n3 · log2 n) bits for broadcasting a message of size L
bits.

We denote the communication complexity of a protocol by P2P(M) + N1 ×
BA(L1) + N2 × BC(L2), which means the protocol costs M bits in total over
the point-to-point private channels, calls the Byzantine agreement N1 times to
reach an agreement on a message of L1 bits, and calls the broadcast channel N2

times with a message of L2 bits.

3.3 Packed Shamir Secret Sharing

We use the packed secret sharing technique introduced by Franklin and Yung
[FY92]. This is a generalization of the standard Shamir secret sharing scheme
[Sha79]. Let F be a finite field of size |F| ≥ 2n. Let n be the number of parties and
k be the number of secrets that are packed in one sharing. A degree-d (d ≥ k−1)
packed Shamir sharing with secret x = (x1, . . . , xk) ∈ F

k is a vector (w1, . . . , wn)
for which there exists a polynomial f(·) ∈ F[X] of degree at most d such that
f(−i + 1) = xi for all i ∈ [k], and f(i) = wi for all i ∈ {1, 2, . . . , n}. The i-th
share wi is held by party Pi. Reconstructing a degree-d packed Shamir sharing
requires d + 1 shares and can be done by Lagrange interpolation. For a random
degree-d packed Shamir sharing of x, any d − k + 1 shares are independent of
the secret x.

In our work, we use [x]d to denote a degree-d packed Shamir sharing of
x ∈ F

k. In the following, operations (addition and multiplication) between two
packed Shamir sharings are coordinate-wise. We recall two properties of the
packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k−1 and x,y ∈ F
k, [x+y]d = [x]d+[y]d.

– Multiplicativity: Let ∗ denote the coordinate-wise multiplication operation.
For all d1, d2 ≥ k−1 subject to d1+d2 < n, and for all x,y ∈ F

k, [x∗y]d1+d2 =
[x]d1 · [y]d2 .3

These two properties directly follow from computing the underlying polynomials.
Note that the second property implies that, for all x, c ∈ F

k, all parties
can locally compute [c ∗ x]d+k−1 from [x]d and the public vector c. To see
this, all parties can locally transform c to degree-(k − 1) packed Shamir sharing
[c]k−1. Then they can use the property of the packed Shamir sharing scheme to
compute [c∗x]d+k−1 = [c]k−1 ·[x]d. This property is referred to as multiplication-
friendliness in [GPS22].
3 We remark that the resulting sharing [x ∗ y]d1+d2 is not a random degree-(d1 + d2)

secret sharing with the secret x ∗ y.

Perfectly-Secure MPC with Constant Online Communication Complexity 345

Recall that t is the number of corrupted parties. Also recall that a degree-d
packed Shamir secret sharing scheme is secure against d−k+1 corrupted parties.
In our work, we set k = (t + 2)/2 = (n + 5)/6 and d = t + k − 1. As we have
discussed in Sect. 2.1, during the computation, all parties need to reconstruct
degree-(d + k − 1) packed Shamir sharings. Using the above choices of k and
d, we have (d + k − 1) + 1 = t + 2k − 1 = 2t + 1, which ensures that even if
all corrupted parties have been removed when using dispute control (introduced
below), we still have enough shares to reconstruct degree-(d + k − 1) packed
Shamir sharings.

Standard Shamir Secret Sharing. When k = 1, [x]d is a standard degree-d Shamir
sharing of x ∈ F. In our work, for all i ∈ {1, . . . , n}, we use [x|i]d to denote a
degree-d Shamir sharing with secret stored at position −i + 1 rather than 0.

3.4 The Generalization of Party Elimination: Dispute Control

Our work uses the dispute control technique introduced in [BH06]. The crux
for dispute control is to divide the whole computation into several segments
and do it segment by segment. As for the current segment, we first evaluate
it and then detect efficiently whether the evaluation is correct. In the case of
success, all parties move to the next segment. In the case of failure, all parties
run another protocol to localize a pair of two dispute parties containing at least
one corrupted party. Then the current segment will be evaluated again. To avoid
the dispute pairs that have been detected to disrupt the execution again, before
re-evaluating the current segment, we find an intermediate party Pr which is not
disputed with both Pi and Pj to help pass messages between Pi and Pj for each
dispute pair (Pi, Pj) who have been already detected and are both active. As
a result, the number of failures is bounded by O(n2) since each failure leads to
finding a new dispute pair.

Hence, dividing uniformly the whole circuit into n2 segments, each of size
|C|/n2, since there are totally at most n2 failures, the whole communication
complexity at most doubles. We refer the readers to the full version of this
paper [SY24] for more details regarding the dispute control technique.

We denote the set of currently active parties by P and the set of recorded
dispute pairs of parties by D. We use n′ to denote the size of P and t′ to denote
the number of corrupted parties in P. Then each time a corrupted party is
eliminated, it results in n′ := n′ − 1, t′ := t′ − 1.

3.5 Enabling Preprocessing

In this part, we briefly summarize the functionalities that will be used in our
main construction. We refer the readers to the full version of this paper [SY24]
for the descriptions of these functionalities and the realizations using techniques
in [BH08].

346 Y. Song and X. Ye

Preparing Random Degree-t Shamir Sharings. Our work needs to prepare the fol-
lowing kinds of correlated random degree-t Shamir sharings in the preprocessing
phase.

– A random degree-t Shamir sharing [r|i]t. We use Σ1,i to denote this kind of
random sharings.

– A pair of random degree-t Shamir sharings ([r|i]t, [r|j]t) of the same random
value. We use Σ2,i,j to denote this kind of random sharings.

For all Σ ∈ {Σ1,i, Σ2,i,j}ni,j=1, FRandSh(Σ) prepares N random Σ-sharings. Using
techniques in [BH08], the communication complexity for N random Σ-sharings
is P2P(O(N · n + n4)) elements plus O(n2) × BA(O(1)) bits, which results in
total communication of P2P(O(N · n + n5 · log n)) elements in expectation.

Preparing Random Beaver Triples. To prepare random packed Beaver triples, we
also make use of the functionality FTriples(i) that generates N random degree-t
Beaver triples with secrets stored at position −i+1. Using techniques in [BH08],
the communication complexity for N degree-t Beaver triples is P2P(O(N ·n+n4))
elements plus O(n2) × BA(O(1)) bits, which results in total communication of
P2P(O(N · n + n5 · log n)) elements in expectation.

4 Circuit Evaluation

Recall that, we use n to denote the number of parties, n′ to denote the number
of active parties and t′ to denote the number of active corrupted parties. Also
recall the corruption threshold t = (n − 1)/3 and the packing parameter k =
(t + 2)/2 = (n + 5)/6.

4.1 Useful Building Block for Verification

Let Σ be a linear secret sharing scheme such that a Σ sharing is fully determined
by the shares of honest parties. We consider the scenario where a party Pking
distributes N Σ-sharings, denoted by U1, . . . , UN to all parties (via a relay if
Pking and Pi are disputed). These N Σ-sharings need not to be private. All
parties want to check whether they hold valid Σ-sharings. We assume that an
honest Pking always distribute valid Σ-sharings to all parties.

We introduce a functionality FVerifyPub to accomplish this task. FVerifyPub

either outputs accept to all parties, indicating that all (honest) parties hold
valid Σ-sharings, or outputs a new dispute pair that contains at least one cor-
rupted party. To instantiate FVerifyPub, we follow the high-level idea in Subsect. 2.2
which utilizes the property of Vandermonde matrix to expand (2t + 1) sharings
to be checked to n sharings with each verified by a different party. We refer
the readers to the full version of this paper [SY24] (Subsect. 5.1) in which we
describe the protocol ΠVerifyPub and show that ΠVerifyPub realizes FVerifyPub with
communication complexity P2P(O((N · n + n2) · |Σ| + n3 · log n)) elements in
expectation if the check passes, where |Σ| is the share size.

Perfectly-Secure MPC with Constant Online Communication Complexity 347

Functionality 1 : FVerifyPub(Σ)

1. FVerifyPub receives the set C of corrupted parties’ identities and the set
D of disputed pairs.

2. FVerifyPub receives honest parties’ shares of U1, . . . , UN from the honest
parties and sends them to the adversary.

3. FVerifyPub checks if each group of shares form a valid Σ-sharing.
– If all the checks are passed, FVerifyPub receives an instruction from

the adversary:
• If FVerifyPub receives reject from the adversary, it further

receives a new pair of dispute parties containing at least one
corrupted party and outputs reject together with the receiv-
ing pair to all parties.

• If FVerifyPub receives accept from the adversary, it outputs
accept to all parties.

– If one of the checks fails, FVerifyPub receives a new pair of dispute
parties containing at least one corrupted party and outputs reject
together with the receiving pair to all parties.

4.2 Evaluating Multiplication Gates

To evaluate a group of k multiplication gates with input sharings
{[xi|i]t, [yi|i]t}ki=1, we follow the technique of packed Beaver triples together with
degree reduction.

In the preprocessing phase, all parties prepare random Beaver triples {[ai|i]t,
[bi|i]t, [ci|i]t}ki=1 such that ci = ai · bi for all i ∈ [k], and random sharings
{[ri|i]t}2k−1

i=1 . Before the evaluation of each segment, all parties also together
prepare random degree-(n′ − 1) packed Shamir sharings of 0 ∈ F

k by invoking
ΠzeroSharing. The protocol ΠzeroSharing shown in the full version of this paper [SY24]
allows all parties to prepare O(n) degree-(n′ − 1) packed Shamir sharings of 0
with communication cost P2P(O(n2)) elements. We give the description of ΠMult

below. The communication complexity per batch of k multiplication gates is
P2P(O(n)) elements.

Protocol 1 : ΠMult

For a batch of k multiplication gates, all parties hold input sharings
{[xi|i]t, [yi|i]t}ki=1. In addition, all parties hold the following sharings pre-
pared in the preprocessing phase.

– A group of Beaver triples {[ai|i]t, [bi|i]t, [ci|i]t}ki=1;
– A group of random degree-t Shamir sharings {[ri|i]t}2k−1

i=1 ;

All parties also hold the following sharings prepared right before evalu-
ating the current segment: three degree-(n′ − 1) packed Shamir sharings

348 Y. Song and X. Ye

[01]n′−1, [02]n′−1, [03]n′−1. All parties run the following steps to compute
{[zi|i]t}ki=1.

1. All parties locally compute [x]t+k−1, [y]t+k−1, [a]t+k−1, [b]t+k−1, [c]t+k−1

from {[xi|i]t, [yi|i]t}ki=1 and {[ai|i]t, [bi|i]t, [ci|i]t}ki=1.
2. All parties locally compute [x+a]n′−1 = [x]t+k−1+[a]t+k−1+[01]n′−1

and [y+b]n′−1 = [y]t+k−1+[b]t+k−1+[02]n′−1, and send their shares
to Pking.

3. Pking reconstructs x+ a and y + b, distributes [x+ a]k−1, [y + b]k−1

to all parties.
4. All parties locally compute

[z]t+2k−2 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]t+k−1

−[a]t+k−1 · [y + b]k−1 + [c]t+k−1

and a random degree-(t + 2k − 2) packed Shamir sharing [r]t+2k−2

from {[ri|i]t}2k−1
i=1 .

Finally, all parties locally compute [z+r]n′−1 = [z]t+2k−2+[r]t+2k−2+
[03]n′−1 and send their shares to Pking.

5. Pking reconstructs z + r and distributes [z + r]k−1 to all parties.
6. All parties locally compute [zi|i]t = [z + r]k−1 − [ri|i]t for all i ∈ [k].

4.3 Handling Sharing Transformations

In this section, we show how to efficiently perform sharing transformations. This
will be an important component to evaluate a general circuit using packed Shamir
sharings. The task of sharing transformation is to transform a degree-(t+ k − 1)
packed Shamir sharing [x]t+k−1 to [L(x)]t+k−1, where L : Fk → F

k is a linear
map.

Preparing Correlated Random Sharings for Linear Maps. As we discussed in
Subsect. 2.5, the sharing transformation is done by first preparing a pair of ran-
dom sharings ([r]t+k−1, [L(r)]t+k−1).

We first introduce a protocol ΠTranspose that allows all parties to transform
{[xi,j |j]t}ki,j=1 to {[xj,i|j]}ki,j=1. The communication complexity of ΠTranspose is
P2P(O(n2)) elements before running the consensus in step 6 in the case of suc-
cess. Note that all parties run the consensus on their happy-bits only once after
they finish all the executions of the protocol ΠTranspose to perform the ‘transpose’
operations in each segment.

Perfectly-Secure MPC with Constant Online Communication Complexity 349

Protocol 2 : ΠTranspose in FVerifyPub-hybrid model

All parties hold input sharings {[xi,j |j]t}ki,j=1. All parties in addition
hold the following random sharings prepared in the preprocessing phase:
{[ri,j |j]t, [rj,i|j]t}ki,j=1. All parties run the following steps to compute
{[xj,i|j]t}ki,j=1.

1. For all i ∈ [k], all parties locally compute [xi]t+k−1 and [ri]t+k−1 from
{[xi,j |j]t}kj=1 and {[ri,j |j]t}kj=1.

2. For all i ∈ [k], all parties locally compute [xi+ri]t+k−1 = [xi]t+k−1+
[ri]t+k−1 and send their shares to Pking.

3. Pking checks whether all received degree-(t + k − 1) packed Shamir
sharings are valid. If not, supposing the i-th sharing is inconsistent,
Pking broadcasts a complain to all parties. Then all parties send their
shares of {[xi,j + ri,j |j]t}kj=1 to Pking.
Pking reconstructs (xi,j + ri,j)kj=1 and computes [(xi,j + ri,j)kj=1]t+k−1.
Then Pking identifies the cheating party Pi and broadcasts (i, x, x′),
where Pi should have sent x to Pking, but Pking receives x′ �= x. Then
Pi and the relay between Pi and Pking broadcast the messages they
believe. Set two adjacent parties broadcasting differently to be the
dispute pair.

4. Otherwise, Pking reconstructs (xi,j + ri,j)ki,j=1. For all i ∈ [k], Pking
distributes [x∗,i + r∗,i]k−1 to all parties.

5. For all i, j ∈ [k], all parties locally compute [xj,i|j]t = [x∗,i+r∗,i]k−1−
[rj,i|j]t.

6. All parties invoke FVerifyPub to check whether Pking correctly distributes
valid degree-(k − 1) packed Shamir sharings. If not, all parties take a
new dispute pair as output. Otherwise, all parties take {[xj,i|j]t}ki,j=1

as output.

We will use ΠTranspose to prepare correlated random sharings for sharing
transformations in ΠPrepTrans. The communication complexity of ΠPrepTrans is
P2P(O(N · n + n3)) elements plus O(1) × BA(O(1)) bits accounting for total
communication of expected P2P(O(N · n + n3 · log n)) elements to prepare ran-
dom sharings for N linear transformations if succeeds.

Protocol 3 : ΠPrepTrans in FVerifyPub-hybrid model

All parties together hold N linear maps L1, . . . , LN and the goal is to
prepare {[ri,j |j]t, [Li,j(ri)|j]t}kj=1 for all i ∈ [N]. Here Li,j(·) denote the
linear function that outputs the j-th value of Li(·).
For each group of k linear maps, say L1, . . . , Lk, in the beginning, all
parties hold the following random sharings prepared in the preprocessing
phase: {[ri,j |j]t, [rj,i|j]t}ki,j=1. All parties do the following.

350 Y. Song and X. Ye

1. All parties locally compute

[Lj,i(rj)|j]t = Lj,i([rj,1|j]t, . . . , [rj,k|j]t),∀i, j ∈ [k].

2. All parties invoke ΠTranspose on {[Lj,i(rj)|j]t}ki,j=1 to obtain shares of
{[Li,j(ri)|j]t}ki,j=1.

Finally, if all parties succeed in ΠTranspose, all parties invoke FVerifyPub

to check whether Pking correctly performs the transpose operation
in ΠTranspose. This is done as follows. In ΠTranspose, Pking receives {[xi +
ri]t+k−1}ki=1 from all parties and distributes {[x∗,i + r∗,i]k−1}ki=1 to all
parties. We may effectively think that Pking distributes {[xi+ri]t+k−1}ki=1

and {[x∗,i+r∗,i]k−1}ki=1 to all parties. All parties invoke FVerifyPub to check
the correctness of the transpose operations.

– If the check fails, all parties take a new dispute pair as output. Oth-
erwise, all parties take {[ri,j |j]t, [Li,j(ri)|j]t}N,k

i,j=1 as output.

Performing Sharing Transformations. With {[rj |j]t, [Lj(r)|j]t}kj=1, we show how
to transform {[xj |j]t}kj=1 to {[Lj(x)|j]t}kj=1 in ΠShTrans. The communication
complexity of ΠShTrans is P2P(O(n)) elements.

Protocol 4 : ΠShTrans

All parties take {[xj |j]t}ki=1 and a linear map L = (L1, . . . , Lk) as input.
All parties also hold the following random sharings prepared right before
the evaluation of the current segment:

– Two groups of correlated random sharings {[rj |j]t, [Lj(r)|j]t}kj=1,
– A degree-(n′ − 1) packed Shamir sharing [0]n′−1.

All parties run the following steps to compute {[Lj(x)|j]t}kj=1.

1. All parties locally compute [x]t+k−1 and [r]t+k−1 from {[xj |j]t}kj=1

and {[rj |j]t}kj=1.
2. All parties locally compute [x+r]n′−1 = [x]t+k−1+[r]t+k−1+[0]n′−1

and send their shares to Pking.
3. Pking reconstructs x + r, computes L(x + r), and distributes [L(x +

r)]k−1 to all parties.
4. All parties locally compute [Lj(x)|j]t = [L(x+ r)]k−1 − [Lj(r)|j]t for

all j ∈ [k].

Perfectly-Secure MPC with Constant Online Communication Complexity 351

4.4 Summary of the Evaluation Phase

To compute a general circuit with packed Shamir sharings, we utilize the tech-
niques in [GPS21] for network routing. At a high level, for any circuit C, we first
divide gates of the same type in each layer into groups of size k. After we obtain
output packed Shamir sharings for each group of gates in the current layer, the
authors in [GPS21] show that the input packed Shamir sharings in the next layer
can be obtained as follows:

– For each output packed Shamir sharings in the current layer, we perform the
fan-out operation to copy each secret enough number of times. For exam-
ple, if a packed Shamir sharing [x1, x2, x3]d satisfies that x1, x2, x3 will be
used by (2, 3, 1) times in future layers, then all parties compute [x1, x1, x2]d
and [x2, x2, x3]d. Note that each new packed Shamir sharing can be obtained
by performing a proper linear transformation to the original packed Shamir
sharing.

– After the fan-out operations, for each obtained packed Shamir sharing, per-
form a proper permutation on the secrets, which is also a linear transforma-
tion.

– After doing the above two steps, we move to prepare the input packed Shar-
ings we need in the next layer. The main property that is achieved in [GPS21]
is that, now for every packed Shamir sharing [x]t+k−1 we want to prepare, the
previous steps have generated k packed Shamir sharings {[x(i)]t+k−1}ki=1 such
that there exists a permutation p : {1, . . . , k} → {1, . . . , k} and xi = x

(i)
p(i). In

other words, all secrets we want to collect all come from different positions.
In this way, all parties can efficiently collect secrets they want and obtain
[x′]t+k−1 without changing the positions of the secrets, i.e., xi = x

(i)
p(i) = x′

p(i).
We note that in our case this task is even simpler. This is because for every
[x(i)]t+k−1, we actually prepare {[x(i)

j |j]t}kj=1. Thus, we just need to pick
{[xi|p(i)]t}ki=1 = {x

(i)
p(i)|p(i)}ki=1.

– Finally, to obtain [x]t+k−1, we permute the secrets in [x′]t+k−1, which again
is a linear transformation.

Since our work uses [GPS21] in a black box way, we refer the readers
to [GPS21] for how to find these linear maps.

We assume that for output packed Shamir sharings from the last segment,
the first two steps have been done. We will maintain the invariant in the current
segment. We summarize our evaluation protocol as ΠEval below and analyze
the number of required different kinds of preprocessing data as follows, where
we suppose there are N linear maps and M multiplication gates needed to be
handled in this segment and thus N = O(|C|/n3),M = O(|C|/n2).

– A degree-(n′ − 1) packed Shamir sharing [0]n′−1: 3M
k + N .

– A group of Beaver triples {[ai|i]t, [bi|i]t, [ci|i]t}ki=1:
M
k groups.

– A group of random degree-t Shamir sharings {[ri|i]t}2k−1
i=1 : M

k groups.
– A group of Shamir sharings {[ri,j |j]t, [rj,i|j]t}ki,j=1:

2N
k groups.

352 Y. Song and X. Ye

Protocol 5 : ΠEval

For each group of k wires before the current segment, all parties hold
{[xi|i]t}ki=1. All parties run the following steps.

1. Suppose the linear maps we need to perform in this seg-
ment is L1, . . . , LN . All parties invoke ΠPrepTrans to prepare
{[ri,j |j]t, [Li,j(ri)|j]t}i∈[N],j∈[k]. All parties invoke ΠzeroSharing to pre-
pare [0]n′−1.

2. All parties evaluate the current segment layer by layer.
(a) For each group of input wires x, all parties locally collect secrets

and obtain {[xi|p(i)]t}ki=1, where p is a permutation over [k]. This
step is guaranteed by the network routing protocol in [GPS21].

(b) For each group of input wires x, All parties invoke ΠShTrans on
{[xi|p(i)]t}ki=1 to obtain {[xi|i]t}ki=1.

(c) For each group of addition gates with input packed Shamir
sharings {[xi|i]t}ki=1 and {[yi|i]t}ki=1, all parties locally compute
[zi|i]t = [xi|i]t + [yi|i]t via local computation for i ∈ [k].

(d) For each group of multiplication gates with input packed Shamir
sharings {[xi|i]t}ki=1 and {[yi|i]t}ki=1, all parties invoke ΠMult to
compute {[zi|i]t}ki=1.

(e) For each output packed Shamir sharing {[zi|i]t}ki=1 and the linear
map L that is needed to perform on z, all parties invoke ΠShTrans

on {[zi|i]t}ki=1 to obtain {[Li(z)|i]t}ki=1. (Fan-out gates and per-
mutations are handled here.)

5 Efficient Verification

In this section, we study how to perform efficient verification after completing
evaluating the current segment and handling sharing transformations.

5.1 Verifying Multiplication Gates

For now, all parties already complete the computation of the current segment
including evaluating all groups of multiplication gates inside the current segment
and handling sharing transformations.

To verify the evaluation above, all parties first invoke FVerifyPub to check
whether Pking distributes valid degree-(k − 1) packed Shamir sharings in ΠMult.
If the verification passes, all parties open their shares of degree-(n′ − 1) packed
Shamir sharings of 0 prepared in ΠzeroSharing. After subtracting the shares of
degree-(n′ − 1) packed Shamir sharings of 0, Pking obtains the original messages
including 1) two degree-(t + k − 1) sharings [x+ a]t+k−1, [y + b]t+k−1 and 2) a
degree-(t + 2k − 2) sharing [z + r]t+2k−2 receiving from other parties.

Perfectly-Secure MPC with Constant Online Communication Complexity 353

Notice Pking is able to detect whether other parties send these shares correctly
following the high-level idea in Subsect. 2.2. In the case of inconsistency, Pking
localizes a dispute pair following the high-level idea in Subsect. 2.3.

The protocol ΠVerifyMult described below requires all parties to prepare ran-
domness {[a′

j |j]t, [b′
j |j]t, [c′

j |j]t}kj=1, {[r′
j |j]t}2k−1

j=1 in the preprocessing phase. The
communication of verifying N multiplication gates is P2P(O(N + n)) elements
plus O(1) × BA(O(1)) bits accounting for total communication of expected
P2P(O(N + n3 · log n)) elements in the case of success.

Protocol 6 : ΠVerifyMult in FVerifyPub-hybrid model

All parties hold random degree-t Shamir sharings prepared in the pre-
processing phase {[a′

j |j]t, [b′
j |j]t, [c′

j |j]t}kj=1 and {[r′
j |j]t}2k−1

j=1 .

1. All parties invoke FVerifyPub to check whether Pking sends valid degree-
(k − 1) packed Shamir sharings in step 3 and step 5 of ΠMult.

– If the verification passes, then all parties send all messages in
ΠzeroSharing to Pking. Then Pking checks whether all parties hon-
estly follow ΠzeroSharing.

• If not, Pking either broadcasts (�, v, v′, Pi, Pj) if Pi and Pj do
not agree on the same message, or (Pi, corrupt) if Pi does not
follow the protocol. Then follow Step 4.(e) in ΠVerifyPub (in the
full version of this paper [SY24]) to identify a new dispute
pair. All parties take the new dispute pair as output.

• Otherwise Pking subtracts the degree-(n′ − 1) packed Shamir
sharings of 0 from the sharings he received in ΠMult.

– Otherwise, all parties take the new dispute pair as output.
2. Pking checks if one of other parties sends wrong share [x+a]t+k−1, [y+

b]t+k−1 in step 2 of ΠMult: Pking only needs to check whether these
shares are of degree t + k − 1.

– If it is inconsistent, every party Pi sends {[xj |j]t+[aj |j]t, [yj |j]t+
[bj |j]t}kj=1 to Pking, ∀i ∈ [n′]. Pking reconstructs x + a,y + b,
compares it with [x+a]t+k−1, [y+b]t+k−1 to detect who is cheating
and broadcasts (i, x, x′), where Pi should have sent x to Pking, but
Pking claims to have received x′ �= x. Pking asks Pi and their relay
to broadcast the messages they believe. Set two adjacent parties
broadcasting differently to be the dispute pair. All parties take the
new dispute pair as output.

3. All parties invoke FVerifyPub to check whether Pking sends degree-(k−1)
sharings with correct secret value x+ a,y + b in step 3 of ΠMult.

– If not, all parties take the new dispute pair as output.
4. Pking checks if it receives a valid deg-(t+2k−2) Shamir secret sharing

in step 4 of ΠMult.

354 Y. Song and X. Ye

– If it is inconsistent, all parties localize a dispute pair as fol-
lows, using fresh random sharings {[a′

j |j]t, [b′
j |j]t, [c′

j |j]t}kj=1 and
{[r′

j |j]t}2k−1
j=1 .

(a) Every party locally computes a degree-(t + 2k − 2) sharing
[v]t+2k−2 as

[v]t+2k−2 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b′]t+k−1

−[a′]t+k−1 · [y + b]k−1 + [c′]t+k−1 + [r′]t+2k−2,

where [a′]t+k−1, [b′]t+k−1, [c′]t+k−1, [r′]t+2k−2 are locally
computed from {[a′

j |j]t, [b′
j |j]t, [c′

j |j]t}kj=1 and {[r′
j |j]t}2k−1

j=1 .
Then all parties send [v]t+2k−2 to Pking.

(b) Pking checks if the received shares in step 4(a) satisfy a degree-
(t + 2k − 2) Shamir secret sharing.

• If it is inconsistent, every party Pi sends
{[a′

j |j]t, [b′
j |j]t, [c′

j |j]t}kj=1 and {[r′
j |j]t}2k−1

j=1 to Pking
who localizes a dispute pair as follows. Pking recon-
structs all degree-t Shamir sharings and computes
[a′]t+k−1, [b′]t+k−1, [c′]t+k−1, [r′]t+2k−2. Then Pking com-
putes [v]t+2k−2 and detect who is cheating. The rest is
the same as step 2.

(c) If it is consistent, every party Pi sends {[a′
j |j]t+[aj |j]t, [b′

j |j]t+
[bj |j]t, [c′

j |j]t + [cj |j]t}kj=1 and {[r′
j |j]t + [rj |j]t}2k−1

j=1 to Pking
who localizes a dispute pair as in step 4(b).

5. All parties invoke FVerifyPub to check whether Pking sends a degree-
(k − 1) sharing with correct secret value z + r in step 5 of ΠMult.

– If not, all parties take the new dispute pair as output.

5.2 Verifying Sharing Transformations

Following the verification of multiplication gates, after degree-(n′ − 1) packed
Shamir sharings of 0 are opened, Pking checks whether all parties send correct
shares [x+r]t+k−1. Then all parties check whether Pking honestly shares [L(x+
r)]k−1.

The protocol ΠVerifyShTrans is described below. The communication of verifying
N sharing transformations is P2P(O(N ·n+n2)) elements plus O(1)×BA(O(1))
bits accounting for total communication of expected P2P(O(N · n + n3 · log n))
elements in the case of success.

Perfectly-Secure MPC with Constant Online Communication Complexity 355

Protocol 7 : ΠVerifyShTrans in FVerifyPub-hybrid model

1. All parties check whether Pking distributes a degree-(k − 1) Shamir
sharing in step 3 of ΠShTrans in the same way as step 1 in ΠVerifyMult.
Then Pking checks if one of other parties sends wrong share of [x +
r]t+k−1 in step 2 of ΠShTrans in the same way as step 2 in ΠVerifyMult.

2. All parties check whether Pking sends valid sharing of degree k−1 with
correct secret L(x+ r) as follows. For each group of k linear transfor-
mations, say L1, L2, . . . , Lk, all parties hold {[xi + ri]t+k−1, [Li(xi +
ri)]k−1}ki=1. Let [ui]t+k−1 denote [xi + ri]t+k−1 and [vi]k−1 denote
[Li(xi + ri)]k−1.
(a) Pking distributes {[u∗,i]k−1}ki=1 and {[v∗,i]k−1}ki=1 to all parties.
(b) All parties invoke FVerifyPub to check whether Pking honestly per-

form the transpose operations for {[ui]t+k−1}ki=1. This step is done
for all groups of k linear transformations.

– If not, all parties take a new dispute pair as output.
(c) All parties invoke FVerifyPub to check whether Pking honestly per-

form the transpose operations for {[vi]k−1}ki=1. This step is done
for all groups of k linear transformations.

– If not, all parties take a new dispute pair as output.
(d) For all i ∈ [k], all parties locally compute

[oi]2k−2 = [v∗,i]k−1 −
k∑

j=1

[ej]k−1 · Lj,i([u∗,1]k−1, . . . , [u∗,k]k−1),

where ej ∈ F
k is the j-th unit vector (i.e., the j-th value is 1

while all other values are 0). Note that Pking can also compute
{[oi]2k−2}ki=1. Effectively, we view these sharings are distributed
by Pking.

(e) All parties invoke FVerifyPub to check whether {[oi]2k−2}ki=1 are
degree-(2k − 2) packed secret sharings of 0.

– If not, all parties take a new dispute pair as output.

6 Main Protocol with Perfect Security

In this section, we will conclude our main protocol and discuss the instantiation
of preprocessing phase.

6.1 Input Layer

We sketch the protocol ΠInput that allows a party Ps to share his inputs to all
parties and refer its formal description to the full version of this paper [SY24]. At
the end of ΠInput, either all parties hold degree-t Shamir sharings of Ps’s input,
or a new dispute pair is identified and Ps will re-share his input.

356 Y. Song and X. Ye

For each group of k inputs x of Ps, all parties prepare random degree-t Shamir
sharings {[rj |j]t}kj=1 in the preprocessing phase. Then in the online phase, all
parties locally compute [r]t+k−1 from {[rj |j]t}kj=1 and send their shares to Ps.
Ps checks whether the received shares form a valid degree-(t + k − 1) packed
Shamir sharing. If not, all parties send their shares of {[rj |j]t}kj=1 to Ps and
Ps helps identify a dispute pair. Otherwise, Ps distributes [x + r]k−1 to all
parties. Then all parties use FVerifyPub to check whether Ps distributes a valid
degree-(k−1) packed Shamir sharing. If not, all parties receive a new dispute pair
from FVerifyPub. Otherwise, all parties locally compute [xj |j]t = [x+r]k−1−[rj |j]t.

The communication of handling N input gates is P2P(O(N + n)) elements
plus O(1) × BA(O(1)) bits accounting for total communication of expected
P2P(N + n3 · log n) elements in the case of success.

6.2 Output Layer

After completing the entire computation segment by segment, all parties come to
the output phase. To reconstruct the output z ∈ F

k of party Ps towards Ps, all
parties send their shares of [z]t+k−1 to Ps. Then after checking the consistency,
Ps is able to reconstruct its output.

We formally describe ΠOutput in the full version of this paper [SY24]. The
communication is P2P(O(N +n)) elements to handle N output gates in the case
of success.

6.3 Main Protocol

Now we are ready to present our main protocol. First, we apply the determinis-
tic circuit transformation algorithm proposed in [GPS21] to ensure the resulting
circuit is friendly to the packed secret sharing technique. In dispute control
framework, we keep recording the set of active parties P which contains all par-
ties initially, and the set of dispute pair of parties D which is empty initially. In
the preprocessing phase, all parties invoke FRandSh and FTriples to prepare suf-
ficient amount of random sharings of each type. In the input phase, all parties
invoke ΠInput to share their groups of inputs. Before computing the circuit, we
divide uniformly the whole circuit into O(n2) segments satisfying the require-
ments stated in Remark 1 and start to compute all the segments sequentially.
When evaluating each segment, to tackle with the fan-out gates in the current
segment, we first handle the fan-out gates whose output wires will be used in the
current segment, then divide the rest of them into several segments also satisfying
the requirements in Remark 1, and compute the segments sequentially. We refer
the readers to the full version of this paper [SY24] for the detailed requirements
of circuit transformation and the formal algorithm for segment division.

In the computation phase, each segment is first evaluated by ΠEval.
Then all parties together check the correctness of the computation by run-
ning ΠVerifyMult and ΠVerifyShTrans. All parties either agree on the success of the
computation, in which case they move on to evaluate the next segment, or receive
a new dispute pair. In the latter case, the whole segment is re-evaluated.

Perfectly-Secure MPC with Constant Online Communication Complexity 357

Ultimately, all parties have already had their shares of each output. Then in
the output phase, all parties invoke ΠOutput to reconstruct the output towards
the corresponding party. We describe the main protocol ΠMain below.

Protocol 8 : ΠMain in FRandSh,FTriples,FVerifyPub-hybrid model

Circuit Transformation Phase. We adopt the deterministic algorithm
in [GPS21].
Let D = {(Pi, Pj)|Pi and Pj are disputed} denote the set of pairs of dis-
puted parties which initially is an empty set. Let P of size n′ denote the
set of parties remained to participate the computation which contains all
n parties initially.
Preprocessing Phase. All parties invoke FRandSh,FTriples to receive cor-
related randomness that will be used in the online phase.
Input Phase. All parties invoke ΠInput to share their inputs.
Segment Division Phase. We perform the algorithm for segment divi-
sion to divide the circuit into O(n2) segments which will then be evaluated
sequentially.
Computation Phase. For every segment of the circuit:

1. All parties in P invoke ΠEval to evaluate this segment.
2. All parties in P invoke ΠVerifyMult and ΠVerifyShTrans to verify the cor-

rectness of the computation.

If a dispute pair of parties is identified, re-evaluate* the current seg-
ment. Otherwise, all parties perform the remaining fan-out gates. This
can be viewed as a segment that only contains fan-out gates. Thus, it can
be evaluated in the same way as described above.
Output Phase. All parties invoke ΠOutput to reconstruct their outputs.
If a dispute pair of parties is identified, re-evaluate* the current seg-
ment.

*Re-evaluation. Each time when faults occur and a dispute pair is
identified, add this pair to D, assign each dispute pair in D who are both
active an intermediate party for relaying, and re-evaluate the current
segment. (We omit this in protocol description for simplicity.)

Remark 1 (Segment Division). To upper bound the overhead of re-evaluating
the segments due to the faults caused by dispute pairs, we enforce our segment
division to satisfy the following three requirements: 1) the circuit size of each
segment is O(|C|

n2) 2) the circuit depth of each segment is O(Depth
n2) and 3) gates

belonging to one group should be contained in the same segment. To achieve
this, following the topology of the circuit, we include the gates into one segment
until the circuit size of the current segment exceeds |C|

n2 or the circuit depth of

358 Y. Song and X. Ye

the current segment exceeds Depth
n2 while keeping the number of gates of each

kind a multiple of k, which results in at most 3n2 segments in the online phase.

Analysis of the Communication Complexity of ΠMain. Let I denote the input
size, G denote the number of gates, and O denote the output size, Depth denote
the depth of the circuit. Then |C| ≥ I+G+O. We set T = n−t, k = (n+5)/6. In
summary, the overall communication complexity for online phase is P2P(O(|C| ·
n
k + (Depth + n) · n + n5)) elements plus O(n2) × BA(O(1)) bits, where the
term n5 is caused by redoing the segment when encountering faults. Thus, if
we apply an expected constant round broadcast protocol like [AC24], the online
communication becomes expected P2P(O(|C| · n

k + (Depth+ n) · n + n5 · log n))
elements.

Analysis of the Round Complexity of ΠMain. For each segment of circuit, its
depth is bounded by O(Depth

n2). The round complexity is O(Depth
n2) + O(1) × BA

and O(Depth
n2) +O(1)×BA+O(1)×BC in the case that faults occur. Hence, the

online round complexity is O(Depth+ n2) +O(n2)×BA+O(n2)×BC. Thus, if
we apply an expected constant round broadcast protocol like [AC24], the online
round complexity becomes O(Depth+ n2).

6.4 Summary

In the preprocessing phase, the preprocessing randomness can be divided into
two classes: (1) degree-t Shamir secret sharings satisfying some specific require-
ments and (2) packed Beaver triples, which both can be dealt with using the
techniques in [BH08] as mentioned in Subsect. 3.5. In total, the communication
for preprocessing phase is P2P(O((|C| + k(n + Depth))n + n4)) elements plus
O(n2)×BA(O(1)) bits, which becomes expected P2P(O((|C|+k(n+Depth))n+
n5 · log n)) elements assuming an expected constant round broadcast protocol
like [AC24] is used. Moreover, the round complexity for preprocessing phase is
O(n2) +O(n2)×BA+O(n2)×BC and becomes O(n2) in expectation assuming
an expected constant round broadcast protocol like [AC24] is used.

To conclude, combining the preprocessing phase and the online phase, we get
a perfectly secure protocol to compute a circuit C with online communication of
expected O(|C| · n

k + (Depth+ n) · n + n5 · log n) elements which is linear in the
circuit size, offline communication of expected O((|C|+k(n+Depth))n+n5 ·log n
elements, online round complexity O(Depth+n2) in expectation and offline round
complexity O(n2) in expectation.

Functionality 2 : FMain in FRandSh,FTriples,FVerifyPub-hybrid model

1. FMain receives the input from all parties. Let x denote the input and
C denote the circuit.

2. FMain computes C(x) and distributes the output to all parties.

Perfectly-Secure MPC with Constant Online Communication Complexity 359

Lemma 1. Protocol ΠMain securely computes FMain in FRandSh,FTriples,
FVerifyPub-hybrid model against a fully malicious adversary who controls at most
t < n/3 parties.

We refer the readers to the full version of this paper [SY24] for the proof of
Lemma 1 and the detailed communication complexity analysis. Combining the
complexity analysis and Lemma 1, we obtain the following theorem.

Theorem 1. Let n denote the number of parties. Let F be a finite field of size
|F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-
theoretic MPC protocol that computes C against a fully malicious adversary
controlling at most t = n−1

3 corrupted parties with perfect security. The com-
munication cost of the protocol is expected O(|C|+Depth ·n+n5 · log n) elements
for the online phase and expected O(|C| · n+Depth · n2 +n5 · log n) elements for
the preprocessing phase, where Depth is the circuit depth. The round complexity
of the protocol is O(Depth + n2) in expectation for the online phase and O(n2)
in expectation for the preprocessing phase.

Acknowledgments. Y. Song was supported in part by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science
Foundation of China Grant 61033001, 61361136003.

References

AAPP23. Abraham, I., Asharov, G., Patil, S., Patra, A.: Detect, pack and batch:
perfectly-secure MPC with linear communication and constant expected
time. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14005,
pp. 251–281. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30617-4_9

AAY22. Abraham, I., Asharov, G., Yanai, A.: Efficient perfectly secure computation
with optimal resilience. J. Cryptol. 35(4), 27 (2022)

AC24. Asharov, G., Chandramouli, A.: Perfect (parallel) broadcast in constant
expected rounds via statistical VSS. In: Joye, M., Leander, G. (eds.) EURO-
CRYPT 2024. LNCS, vol. 14655, pp. 310–339. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-58740-5_11

ALR11. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any
tâĂĽ<âĂĽn/3. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
240–258. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22792-9_14

Bea89. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0_49

BGW88. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10.
ACM (1988)

https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/978-3-031-58740-5_11
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/0-387-34805-0_49

360 Y. Song and X. Ye

BH06. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with
dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 305–328. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878_16

BH08. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8_13

Can00. Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13, 143–202 (2000)

CCD88. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19. ACM (1988)

DEN24. Dalskov, A., Escudero, D., Nof, A.: Fully secure MPC and zk-FLIOP over
rings: new constructions, improvements and extensions. In: Reyzin, L., Ste-
bila, D. (eds.) CRYPTO 2024. LNCS, vol. 14927, pp. 136–169. Springer,
Cham (2024). https://doi.org/10.1007/978-3-031-68397-8_5

DIK10. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computa-
tion and the computational overhead of cryptography. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5_23

DN07. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5_32

DS20. Damgård, I., Schwartzbach, N.I.: Communication lower bounds for perfect
maliciously secure MPC. Cryptology ePrint Archive, Paper 2020/251 (2020)

EGPS22. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y.: TurboPack: honest
majority MPC with constant online communication. In: Yin, H., Stavrou,
A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th Conference on Com-
puter and Communications Security, Los Angeles, CA, USA, 7–11 Novem-
ber, pp. 951–964. ACM Press (2022)

FY92. Franklin, M.K., Yung, M.: Communication complexity of secure compu-
tation (extended abstract). In: 24th Annual ACM Symposium on Theory
of Computing, Victoria, BC, Canada, 4–6 May, pp. 699–710. ACM Press
(1992)

GBO+23. Gama, M., Beni, E.H., Orsini, E., Smart, N.P., Zajonc, O.: MPC with
delayed parties over star-like networks. In: Guo, J., Steinfeld, R. (eds.) ASI-
ACRYPT 2023. LNCS, vol. 14438, pp. 172–203. Springer, Singapore (2023).
https://doi.org/10.1007/978-981-99-8721-4_6

GLO+21. Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS:
efficient and scalable MPC in the honest majority setting. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 244–274. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_9

GLS19. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC
with guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 85–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7_4

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pp. 218–229. ACM (1987)

https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-031-68397-8_5
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-981-99-8721-4_6
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-26951-7_4

Perfectly-Secure MPC with Constant Online Communication Complexity 361

GPS21. Goyal, V., Polychroniadou, A., Song, Y.: Unconditional communication-
efficient MPC via Hall’s Marriage Theorem. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 275–304. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_10

GPS22. Goyal, V., Polychroniadou, A., Song, Y.: Sharing transformation and dis-
honest majority MPC with packed secret sharing. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 3–32. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_1

GSZ20. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in
honest majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-56880-1_22

HMP00. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party com-
putation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 143–161. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44448-3_12

RB89. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pp. 73–85. ACM (1989)

Sha79. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11),
612–613 (1979)

SY24. Song, Y., Ye, X.: Perfectly-secure MPC with constant online communication
complexity. Cryptology ePrint Archive, Paper 2024/242 (2024)

Yao82. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium
on Foundations of Computer Science, SFCS 2008, pp. 160–164. IEEE (1982)

https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-031-15985-5_1
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/3-540-44448-3_12

Statistical Layered MPC

Giovanni Deligios1(B) , Anders Konring2, Chen-Da Liu-Zhang3 ,
and Varun Narayanan4

1 ETH Zurich, Zürich, Switzerland
gdeligios@ethz.ch

2 Espresso Systems, Menlo Park, USA
3 Lucerne University of Applied Sciences and Arts and Web3 Foundation,

Zug, Switzerland
chen-da.liuzhang@hslu.ch

4 University of California, Los Angeles, USA

Abstract. The seminal work of Rabin and Ben-Or (STOC ’89) showed
that the problem of secure n-party computation can be solved for t < n/2
corruptions with guaranteed output delivery and statistical security. This
holds in the traditional static model where the set of parties is fixed
throughout the entire protocol execution.

The need to better capture the dynamics of large scale and long-lived
computations, where compromised parties may recover and the set of par-
ties can change over time, has sparked renewed interest in the proactive
security model by Ostrovsky and Yung (PODC ’91). This abstraction,
where the adversary may periodically uncorrupt and corrupt a new set of
parties, is taken even a step further in the more recent YOSO and Fluid
MPC models (CRYPTO ’21) which allow, in addition, disjoint sets of
parties participating in each round. Previous solutions with guaranteed
output delivery and statistical security only tolerate t < n/3 corruptions,
or assume a random corruption pattern plus non-standard communica-
tion models. Matching the Rabin and Ben-Or bound in these settings
remains an open problem.

In this work, we settle this question considering the unifying Layered
MPC abstraction recently introduced by David et al. (CRYPTO ’23). In
this model, the interaction pattern is defined by a layered acyclic graph,
where each party sends secret messages and broadcast messages only to
parties in the very next layer. We complete the feasibility landscape of
layered MPC, by extending the Rabin and Ben-Or result to this setting.
Our results imply maximally-proactive MPC with statistical security in
the honest-majority setting.

1 Introduction

Setting. In the problem of secure multi-party computation (MPC) [2,6,17,27,29]
a set of mutually distrusting parties jointly computes a function of their private
data, so that nothing about their data beyond the function output is leaked.

MPC protocols are traditionally designed assuming a static set of n parties
that stay online throughout the entire protocol execution. Security is guaranteed
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 362–394, 2025.
https://doi.org/10.1007/978-3-031-78023-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_12&domain=pdf
http://orcid.org/0009-0005-4762-9732
http://orcid.org/0000-0002-0349-3838
http://orcid.org/0009-0000-6620-2754
https://doi.org/10.1007/978-3-031-78023-3_12

Statistical Layered MPC 363

as long as the number of parties compromised at any point throughout the entire
protocol execution is less than a specified threshold. In this setting, assuming
bilateral secure channels, Ben-Or, Goldwasser and Wigderson [2] and Chaum,
Crepeau and Damgard [7] showed protocols to compute any function with perfect
security against computationally unbounded adversaries corrupting less than n/3
of participants. Rabin and Ben-Or [27] showed that assuming ideal broadcast and
settling for statistical (up to some error probability) rather than perfect security,
the resilience can be improved to the optimal threshold of less than n/2.

However, this static-participant model is ill suited for capturing large-scale
long-lived secure computations, where the assumption that servers remain online
throughout the protocol is hard to satisfy. For longer applications, it is reason-
able to assume that parties that are compromised at some point in the protocol
execution may be able to recover, especially if the corruption capability of the
adversary is tied to some scarce resource. The gap between the reach of tradi-
tional models and the needs of some use-cases has revived interest in the mobile
adversary model by Ostrovsky and Yung [26]. Here, the adversary can corrupt
different sets of parties in each round, as long as the number of per-round cor-
ruptions does not exceed a fixed threshold.

Recently, models have been proposed which in addition address the need
for a more dynamic participation of parties: the YOSO [16] and Fluid MPC
[8] models. They take the mobile-adversary model a step further by allowing a
different set of n parties (called a committee) to participate in each round of the
computation.

In [16] a protocol with statistical security and guaranteed output delivery
against a dishonest minority is presented. However, this protocol assumes ideal
secure channels (with strong properties) between parties that come online at
different times, and the adversary corrupts parties independently and with a
constant probability τ < 1/2. In contrast, the Fluid model [8] assumes a worst-
case corruption model, where the adversary can choose to corrupt any t < n/2
out of the n committee members in each round. In this case, the original paper
only provides protocols that fall short of full security (guaranteed output deliv-
ery) and achieve the weaker notion of security with abort instead. Recently in
[10], the authors showed a protocol for perfect security and guaranteed output
delivery, but tolerating only up to t < n/3 corruptions. In this work, we investi-
gate this model further in the statistical setting striving for the optimal resilience
of t < n/2 corruptions. More concretely, we ask the following question:

Is it possible to solve the MPC problem with statistical security and optimal
resiliency of n/2 corruptions in the setting of dynamic committees?

Our Contributions. We answer the question in the affirmative. We construct
the first MPC protocol supporting dynamic committees that achieves guaranteed
output delivery and statistical security tolerating up to t < n/2 corruptions
per round. We remark that prior works in this setting only tolerate t < n/3
corruptions or assume non-standard communication and adversary models.

We consider the Layered MPC abstraction recently introduced in [10]. This
model (which is equivalent to Fluid MPC with maximal-fluidity [8]) provides

364 G. Deligios et al.

a clean and elegant framework to treat MPC with dynamic committees. The
N = dn parties are partitioned in d numbered layers, with each layer consisting
of n parties. Parties have access to bilateral secure communication channels,
but the communication pattern of a protocol is restricted as follows: a party in
any layer can send messages to any party in the following layer. Additionally,
the parties have access to secure broadcast channels, but again the use of these
channels is restricted and each party can only broadcast messages to all the
parties in the next layer. The adversary is restricted to corrupt a subset of up to
t out of n parties in each layer, a specialization of the notion of general adversary
structure [18]. In this model, we prove the following theorem.

Theorem 1. Let f be an n-party function computed by an arithmetic circuit C
of depth d over a finite field F. Then, for any t < n/2, there is a polynomial-
time and polynomial-communication (in n and |C|) layered protocol over a O(d)-
layered network that computes f with statistical t-security.

This result finally settles the feasibility landscape of optimally-resilient MPC
with guaranteed output delivery in the layered model, complementing analogous
results in the settings of perfect and computational security. Furthermore, as
proven in ([10], Lemma 1), layered MPC implies maximally proactive MPC (
[10], Definition 3), so that our result also implies the existence of a statistically-
secure maximally-proactive MPC protocols in the honest majority setting for a
fixed set of n parties.

Corollary 1. Let f be an n-party function computed by an arithmetic circuit
over a finite field F with depth d. Then, for any t < n/2, there is a t-resilient
polynomial-time and polynomial-communication maximally proactive MPC pro-
tocol computing f in O(d) rounds with statistical security.

We provide explicit ideal functionalities for all the primitives we build, and for-
mally reduce the security of our protocols to the security of their most basic
building blocks (like linear information-theoretic message authentication codes),
whose security is captured through formal definitions. Considering the signif-
icant complexity overhead that by design affects constructions with dynamic
committees, we consider this modelling effort a contribution in its own right.

Related Work. Due to space constraints, we refer the reader to the full version
of this paper for an exhaustive treatment of related work. We summarize the
landscape of relevant results in Table 1, updated from [10].

2 Technical Overview

Challenges. An approach that has repeatedly proven successful in the literature
is to transform protocols that provide security with abort into protocols achiev-
ing full security (guaranteed output delivery). Popular techniques such as player
elimination or dispute control [1,19] rely on detecting and excluding pairs of par-
ties when at least one is known to be corrupted, and then restarting the protocol

Statistical Layered MPC 365

Table 1. Protocols realizing primitives in the most extreme proactive settings.
(∗protocol security relies on the adversary only doing probabilistic corruption, †assumes
access to ideal target-anonymous channels for future messaging)

Maximally Proactive MPC with Dynamic Committees

Functionality Reference Level Security Threshold

VSS [10] perfect full t < n/3

[3] computational full t < n/4∗

[16] (YOSO) statistical full (w/setup†) t < n/2∗

This work statistical full t < n/2

MPC [26] perfect full t < n/d

[10] perfect full t < n/3

[10] computational full t < n/2

[16] (YOSO) statistical full (w/setup†) t < n/2∗

[8] (Fluid) statistical w/abort t < n/2

This work statistical full t < n/2

from a previous step, thus reducing the number of parties while maintaining the
same corruption ratio. Unfortunately, these techniques are not applicable to the
layered setting, where new committees consist of entirely different parties.

An alternative approach is to build upon sub-protocols, such as verifiable
secret sharing, which tolerate malicious adversaries from the outset. However, the
only information-theoretic protocols that provide guaranteed output delivery in
the layered setting are resilient against t < n/3 corruptions, and the techniques
used fail in the honest-majority setting with t ≥ n/3 corruptions. In particular,
the efficient verifiable secret sharing scheme in [10] is based on the perfectly
secure VSS from Gennaro et al. [14], tailored to the t < n/3 setting. Conversely,
the computational protocol from [10] (see [11] for details) inherently utilizes
linearly-homomorphic cryptographic commitments.

Our construction follows a blueprint first adapted to the setting of dynamic
committees in the original YOSO paper [16]: an implementation of the well-
known BGW paradigm. Initially, clients in the first layer distribute their inputs
using a verifiable secret sharing scheme. Then, servers in subsequent layers pro-
cess the circuit gate by gate; for each gate, servers in consecutive layers compute
shares of the output wire from shares of the input wires of that gate. Ultimately,
a layer of clients holds the output of the circuit.

However, adapting this paradigm to the layered setting presents a unique
challenges, as the protocol outlined in [16] relies on a couple of crucial assump-
tions. The first is ideal point-to-point committing channels to the future. These
channels allow parties in any layer to transmit messages to parties in any sub-
sequent layer. More importantly, when a corrupt party in L0 sends a message
to a party in a later layer Lk for k > 1, the channel does not allow the sender
to modify the message in a later layer Lk′ where k′ > 0. Such channels trivially

366 G. Deligios et al.

solve issues arising from rushing and future causal dependency attacks, because
a corrupted sender cannot adjust their message based on information acquired
throughout the intermediate layers until Lk. Addressing these attacks across
all the primitives we construct (including our own constructions of channels
to future committees, distributed information-theoretic signatures, distributed
commitments) constitutes the primary challenge in the layered model.

Secondly, the YOSO model assumes that the adversary corrupts parties inde-
pendently and at random. To illustrate why this model is weaker, consider an
example where an honest party P ∈ L0 wants to distribute a secret s to the
future. For this purpose, P generates k additive shares s = s1 + · · · + sk and
transmits si to Pi ∈ L1. The probability of the adversary learning s in this sce-
nario is 2−k. In contrast, in our model, the adversary can simply corrupt the
first k parties in L1 and learn the secret with probability 1.

Our Approach. In this section we go through each of the building blocks for
our layered MPC protocol, explaining the novel ideas needed to overcome these
challenges.
Robust Linear Secret Sharing. Our protocol follows the share-evaluate-
reconstruct paradigm, so that naturally linear secret sharing serves as a basic
building block. In the t < n/3 setting, even simple secret sharing schemes (think
of Shamir sharing) achieve the important property of robustness: that is, if the
dealer samples the shares honestly, even if an adversary modifies up to t out of n
shares, the original secret can be correctly reconstructed. In our t < n/2 setting,
robustness can also be achieved, but only up to some error probability.

We employ a simple secret sharing scheme that achieves robustness when
up to t < n/2 are swapped independently from honest ones, is linear, and only
requires a single round for reconstruction. The construction follows well-known
techniques that date back to Rabin and Ben-Or or earlier, (also used in [12])
based on linear information theoretic message authentication codes (MAC). The
secret m is shared as (m1, . . . ,mn) using a plain t-out-of-n secret sharing scheme
(such as classical Shamir [28]). Then, each share m′

i is authenticated using n
MAC keys (k1i, . . . , kni) producing MAC tags (t1i, . . . , tni). The actual shares
of the robust scheme are then defined as mi = (m′

i, (ki1, . . . , kin), (t1i, . . . , tni)),
containing the non-robust share m′

i, the tags authenticating m′
i, as well as one

key used to authenticate every other non-robust share m′
j �= m′

i. An adversary
holding up to t of the authenticated shares cannot forge MAC tags for the
remaining n − t keys, from which the robustness of the scheme follows. Hence,
shares for which only up to t MAC checks succeed, can be dropped to ensure that
only correct shares are used during reconstruction. This scheme is only linear
if the keys for the MACs are sampled according to an appropriate distribution,
and therefore it does not provide linearity among sharings performed by different
dealers. Due to space constraints details are provided in the full version of this
paper.

Tolerating attacks by a rushing adversary that can modify corrupt shares
after having observed the honest ones is also important for later construc-

Statistical Layered MPC 367

tions, but achieving this guarantee is postponed until our future broadcast
functionality.

Future Messaging. This primitive effectively establishes secure channels to
future layers. More specifically, future messaging enables any sender from an
initial layer, say layer L0, to transmit a message m to any receiver in layer Lk

for k > 0. If the sender is honest, the view of an adversary corrupting up to
t < n/2 parties in all intermediate layers is independent from m. It is important
to note that this functionality is considerably weaker compared to the channels
assumed in the YOSO model: if the sender is corrupted, the adversary can alter
the message until the final layer Lk. This is in contrast to the channels assumed
in YOSO, where the adversary must fix the message at the time of transmission,
independently from its view in later layers.

When sender and receiver are in adjacent layers (case k = 1), they can simply
communicate via the provided point-to-point secure channels. When sender and
receiver are separated by exactly one layer of parties (case k = 2) future mes-
saging reduces to the problem of one-way secure message transmission (SMT)
[13]. In this special case, an easy solution is for the sender to distribute a t-
out-of-n robust secret sharing of m to layer L1, so that each party in this layer
holds a distinct share. Then, each party in layer L1 forwards their share to the
receiver in layer L2, who reconstructs the secret. In this last step, it is crucial
that the reconstruction procedure of the secret sharing scheme is non-interactive.
Since all communication happens between parties in adjacent layers, we can take
advantage of the provided secure point-to-point channels. Note that, because the
receiver is honest (we are not interested in providing any security guarantees for
corrupted receivers), we are in the best-case scenario outlined above: the adver-
sary can modify corrupt shares but only independently from the honest ones.
Therefore, the receiver can recover the message m thanks to the robustness of
the secret sharing scheme.

The general case (k > 2) is tackled recursively: the robust secret sharing of
the message is distributed by the sender towards some intermediate layer Lk′

for 0 < k′ < k. The shares are then forwarded by parties in layer Lk′ to the
receiver in layer Lk. However, if k′ ≥ 2 or similarly if k − k′ ≥ 2, we cannot take
advantage of provided point-to-point channels. To overcome this problem, each
share is treated by the sender as a new message for a receiver in layer Lk′ , and
the procedure is iterated in a recursive fashion, with the base of the iteration
being resolved by making use of point-to-point channels between adjacent layers.
Choosing k′ = �k

2 � results in O
(
(C · n)log(k)

)
communication complexity for a

small constant C, so that as long as the sender and receiver are separated by a
constant number of layers, as in all our constructions, the protocol is efficient.

Future Broadcast. Our secret sharing scheme fails to provide robustness
against a rushing adversary. This primitive achieves this, and in addition it
provides an agreement guarantee (hence the name broadcast) when the sender
(dealer) is corrupted: all receivers agree on the same value.

Specifically, future broadcast allows a party in layer L0 to send a message m
securely to a set of recipients in layer Lk. Each honest recipient agrees on the

368 G. Deligios et al.

same message m′, even if the sender is corrupted, and m′ = m when the sender
is honest. Moreover, the primitive allows an auxiliary layer Lk′ for 0 < k′ < k to
decide whether to deliver the message m or not. Future broadcast also guarantees
linearity among messages from the same sender: if Lk′ can deliver messages m1

and m2 from the same sender, it can also deliver any linear combination am1 +
bm2 of these messages. For a single recipient, in contrast to future messaging the
auxiliary layer decides whether to reveal the message or not.

In our construction, the dealer samples n independent robust sharings of m
and provides them to Lk′ using future messaging. Then, each of these states
are reconstructed towards a distinct party in a buffer layer. Each party in the
buffer layer finally broadcasts the value they have reconstructed, and a majority
decision over all broadcast values is taken. Because the final decision is over
public values, the agreement property follows easily. What is more, the honest
majority in the buffer layer ensures robustness, as all honest parties in the buffer
layer reconstruct the correct m if the sender is honest. Note that it is not enough
to distribute a single sharing to Lk′ and have every party in this layer broadcast
their share, because a rushing adversary sees the shares broadcasted by honest
parties before broadcasting corrupt shares. Our robust secret sharing scheme
provides no guarantees in this case. However, it is easy to observe that if the n
sharings of the message m are independent this rushing attack does not apply
for an honest receiver in the buffer layer.

For context, in the non-layered model, our future broadcast protocol effec-
tively realizes a robust linear secret sharing scheme secure against a rushing
adversary, with a reconstruction procedure consisting of two communication
rounds. We did not optimize the efficiency of our protocol: to share an m-bit
secret, the resulting share size is O(n · m · κ), where κ is the statistical security
parameter. This is to be compared with the most efficient robust protocols in the
non-layered setting [24], where the share size is m + O(κ · log n(log n + log m)).
However, efficient constructions sacrifice the linearity properties crucial in MPC
applications, and it is anyway unclear how to use them in our model, as there
is no generic way to adapt their interactive reconstruction procedures to the
layered setting. In contrast, our construction is linear, conceptually simple, and
secure in the layered setting. Details can be found in Sect. 5.

Information Theoretic Signature. The primitives described until now pro-
vide no guarantees when the sender is dishonest. They allow a dishonest sender
to correlate their message with the information learned in the layers previous
to (and including) the output layer. As a result, the sender is not committed
to a message until the time of its delivery. Information theoretic signature (IT
signature) takes the first step in the direction of limiting this freedom.

In an IT signature protocol, a sender S ∈ L0 entrusts an intermediary M ∈
Lk with a signed message which it can securely and verifiably reveal to receiver(s)
R in Lk′′ . When S is honest, the receivers will reject a corrupt M who attempts to
reveal a value different from the sender’s message. When M is honest, a corrupt
S is committed to a message when the protocol reaches a so called auxiliary
layer, in that, the states of parties in the auxiliary layer fix a message m such

Statistical Layered MPC 369

that receivers output m at the end of the protocol. The protocol provides no
guarantees when both S and M are corrupt: adversary can choose the message
based on its view until the receiving layer.

Our protocol uses the same blueprint as that of the implementation of IT
signature in the YOSO model:

– The sender transfers the signed message to the intermediary.
– The intermediary verifies the validity of the signature with the help of the

parties in the subsequent layers.
– If the signature is verified to be valid, the state held by the intermediary

defines a message that honest receivers will accept. If the signature check
fails, the sender is forced to reveal the actual message to the auxiliary layer,
thereby committing to the message.

– The receivers accept the message if the signature is valid. Since the signed
message is given only to intermediary, if the intermediary is honest the privacy
of the sender’s input is preserved until the message is revealed to the intended
receiver.

S with input m computes MAC tags ti,j = Aut(ki,j ,m) with respect to keys
kij for i ∈ [n] and j ∈ [κ], where κ is a security parameter. The message along
with the MAC tags effectively constitute a one time signature of the message
which is privately communicated to M ∈ Lk. To enable the verification of the
signature, S sends the keys {ki,j}j to Lk+1 so that Pi ∈ Lk+1 receives ki,j for
all j ∈ [κ]. We will refer to the parties in this layer as key-holders.

A corrupt sender may supply malformed signatures to have the receivers
reject an honest M. To avoid this, M and the key-holders check the validity of
the MACs provided by S. This is achieved using cut and choose: each key-holder
Pi announces a random subset INDi ⊆ [κ] on which both Pi and the sender
reveal their “versions” of ki,j . The intermediary validates the MAC using the
key revealed by the sender for each j ∈ INDj . If any of the checks fail, M, now
convinced that S is corrupt, complains forcing S to reveal m to parties in layer
Lk′ . Otherwise, if some key-holder Pi’s keys are different from the sender’s, the
vote of Pi is counted towards accepting the intermediary’s message.

The cut and choose protocol ensures that a corrupt S will either be detected
by the M forcing it to reveal the message or every honest key-holder will vote
for the intermediary’s message. To see this, consider any honest key-holder Pi.
Consider the event in which the sender does not disqualify the sender while doing
the MAC check for ki,j , j ∈ INDi and the vote of Pi is not counted towards
intermediary’s message. This occurs only if MAC ti,j sent by the corrupt sender
is consistent for all j ∈ INDi and inconsistent for all j /∈ INDi. Since INDi is
chosen uniformly at random unknown to S, this occurs with probability that
is negligible in κ. Thus, an honest M will successfully call out a corrupt S, in
which case S reveals the message during the checking phase, or the message of
M will be accepted by a receiver that accepts the message if a strict majority of
key-holders vote for the message. Finally, a corrupt M that uses a value m′ �= m
will fail to receive a vote from any of the honest key-holders by the unforgeability
of MAC, causing the receiver to reject the message.

370 G. Deligios et al.

Porting the above blueprint into a layered protocol, we encounter all the
inherent challenges of any framework dealing with dynamic committees (includ-
ing YOSO). In particular, the sender cannot be “present” to reveal the keys
{ki,j}j∈INDi

after the key-holder Pi broadcasts the set INDi. Clearly, S has
already used up its communication round to send, among other things, the keys
{ki,j}j∈[κ] to key-holder Pi. We solve these challenges in the same way as all con-
structions dealing with dynamic committees: parties who need to speak multiple
times cache their messages using future broadcast, and later layers conditionally
reveal only those messages that are required to be opened.

However, the layered model brings up many subtle challenges that are not
encountered in YOSO. It is crucial that the message and MACs are chosen by
S before each honest key-holder Pi reveals their set INDi. Otherwise, a corrupt
S can choose the MAC tags ti,j to be consistent with ki,j for all j ∈ INDi

and inconsistent for all j /∈ INDi. Since none of our communication primitives
commit the sender to their messages, this is possible only if the layer in which
the key-holders make their random sets public comes after the layer in which
M is placed. Note, that this is not the case in YOSO: thanks to the assumed
channels to the future, the messages from S to M are fixed at the time of sending.
This allows M, to perform the MAC checks locally after the random sets and the
keys in those sets are revealed, and only speak after this check. In the layered
protocol, on the other hand, the MAC checks–a non-linear operation–need to be
carried out by a future layer that learns INDi and has access to cached values
of the message and MAC tags m, ti,j provided by M, as well as the keys ki,j

provided by S. We construct this by having the sender’s keys made public first,
and then using them to securely compute the appropriate linear combination
m, ti,j that yields 0 if and only if the verification succeeds. We crucially use the
fact that m is not revealed in this secure computation when S and M are honest.

Finally, because the receivers perform the MAC checks using the keys pro-
vided by the key-holders, to ensure security against a dishonest M, the message
and MACs are crucially revealed by M before the keys are revealed. We encoun-
tered the same challenge in future broadcast, and address it similarly: the mes-
sage and MACs published before the keys, by adding some additional dummy
layers.

Distributed Commitment. Our information theoretic signature primitive
commits a dishonest sender to their input only when the intermediary is honest.
In contrast, the distributed commitment primitive commits a sender to their
input unconditionally, by leveraging the honest majority in each layer. More
specifically, we realize the following functionality: a party from an initial layer
can commit to one (or multiple) values towards many future layers, who can
then decide whether to open (any linear combination of) the committed values.
Commitments can be opened publicly (towards all parties in one layer) or pri-
vately towards a single party. The opening of commitments made by an honest
party never fails, but the adversary can prevent the opening of commitments of
dishonest parties.

Statistical Layered MPC 371

The protocol we present follows a natural blueprint in which the committer
produces a Shamir sharing of their input, and uses one instance of our informa-
tion theoretic signature to sign each share; in this step, it is crucial that the
intermediaries involved in the signing of each share are distinct parties in the
same layer: this guarantees that at most t of them are corrupted, preserving the
privacy of the committed message. Furthermore, there are at least n − t ≥ t + 1
honest intermediaries, and the information theoretic signature primitive guar-
antees that their shares will be accepted. Therefore, even if the committer is
corrupted, these t + 1 shares uniquely determine a committed value. By control-
ling the dishonest shares, a corrupt dealer can still open the value ⊥, or in other
words refuse to open their commitment. Details are in Sect. 7.

Verifiable Secret Sharing. The last ring in this chain of primitives with
increasingly strong commitment guarantees is verifiable secret sharing (VSS).
This can be thought of as a distributed commitment primitive in which even a
dishonest committer cannot prevent their commitment from being opened.1

As none of the few VSS constructions in the setting of dynamic committees
can be adapted to the layered setting with t < n/2, we design an entirely new
protocol. Our construction makes black-box use of a linearly homomorphic (for
commitments generated by the same party) distributed commitment primitive to
construct a full-fledged VSS. We reduce the security of VSS to that of the under-
lying distributed commitment perfectly: meaning that this construction does not
introduce any further error probability. To the best of our knowledge, this sim-
ple black-box compiler is of independent interest even in the non-layered setting,
where parties can send messages in multiple rounds. We provide a description of
its non-layered version below. The layered version of the protocol is presented
in Sect. 8.

An important technical point is that the resulting VSS is homomorphic
even across sharings (commitments) dealt by different dealers, despite the fact
that the underlying distributed commitment protocol is only homomorphic with
respect to sharings dealt by the same dealer. This is crucial in our circuit evalu-
ation protocol. The sharing phase works as follows.

1. The dealer uniformly samples a random bi-variate polynomial F (x, y) of
degree at most t in each variable conditioned on F (0, 0) = s, and sends to each
Pi the vertical projection F (i, y). The dealer also commits to (all coefficients
of) the polynomial F (x, y) via the distributed commitment primitive.

2. Each Pi commits to (all coefficients of) the received polynomial vi(y) via the
distributed commitment primitive.

3. Using the homomorphism of the distributed commitments, parties privately
open towards each party Pj the j-th horizontal projection F (x, j) committed

1 We are faced with a dichotomy of languages: a VSS protocol can be thought of as a
strong distributed commitment. From this perspective, the party providing input is a
committer, producing commitments that can be opened. More often, the language of
secret sharing is used. Here, the party providing input is a dealer, producing sharings
that can be reconstructed. We oscillate between these two abstractions.

372 G. Deligios et al.

by the dealer, and the j-th evaluation point vi(j) of every Pi’s committed
polynomial.

4. If the private reconstructions do not match, i.e. F (i, j) �= vi(j) (or both fail),
then Pj broadcasts a complain message (complain, i, j).

5. For each complaint (complain, i, j) parties publicly open the commitments to
the two points, which we denote F (i, j) from the dealer and vi(j) from Pi. If
the dealer’s opening fails, disqualify the dealer. And if Pi’s opening does not
match the dealer’s point (or fails), then add Pi to a global set I of parties,
and publicly open the projection F (i, y). The dealer is disqualified if |I| > t.

If the dealer is not disqualified, each party Pi /∈ I has a committed polyno-
mial vi(y) which is the same as the vertical projection of the polynomial F ′(x, y)
committed by the dealer in the first step. If this was not the case, the two poly-
nomials would differ in at least t + 1 points, and therefore one honest party Pj

would have complained in Step 4, a complaint that would have led to including
Pi to the set I, a contradiction. Moreover, if the dealer is honest, it is easy to
see that F ′(x, y) = F (x, y). Further note that the sharing phase is homomor-
phic across different dealers, since the distributed vertical polynomials used for
reconstruction are dealt by each of the recipients, or publicly known.

To ensure reconstruction (i.e. to open the dealer’ commitment), parties sim-
ply open the vertical projections committed by each Pi /∈ I, and use any t + 1
polynomials {vi1(y), . . . , vit+1(y)} that are either reconstructed in this step, or
were revealed in Step 5, to interpolate the original secret.

Multi-Party Computation. The circuit evaluation protocol proceeds gate-by-
gate, with gates in the same layer of the circuit being evaluated in parallel. We
maintain the following invariant: there is layer of parties, say L0, holding a state
encoding the input values a and b for each gate g in a certain level of the circuit
C and a layer Lk holding a state encoding the output of g. The state encoding
an input value a to a gate g has three components:

1. A (t, n)-Shamir sharing of a: each party P 0
i ∈ L0 holds share ai = fa(i).

2. A (t, n)-Shamir sharing of a random value r, which is wasted to compute
multiplication gates. This can be easily achieved using our VSS protocol, by
letting all parties in a layer verifiably share a random value and taking the
sum.

3. Verifiable sharings (aka commitments) to the coefficients of the polynomial
fa(x) used for the Shamir Sharing of a.

Input Gates. Each client needs to produce the state described above (encoding
their input) towards the layer tasked with computing the first level of gates
in the circuit. To achieve this, a client with input m simply commits via VSS
towards two different layers to each coefficient of a degree t polynomial f(x) with
f(0) = m. Then, the intermediary layer reconstructs each f(i) (exploiting the
linearity of the VSS) towards party Pi in the second layer.

Addition Gates. Since the invariant state is linear, addition gates can be per-
formed locally. However, as captured by the parallel functionality FVSS in Sect. 8,

Statistical Layered MPC 373

our VSS only allows to add sharings made by dealers in the same layer. The
evaluation of multiplication gates, on the other hand, requires several rounds of
interaction. We need the output of the addition gates to also be processed in the
same number of rounds, and to avoid introducing extra machinery, we simply
multiply the output of each addition gate by 1.

Multiplication Gates.The multiplication follows the classical blueprint of [15],
adapted to the layered setting and the described state invariant. Suppose that
layer L0 holds the states for the inputs a and b of the multiplication gate g.
Each party P 0

i locally multiplies their Shamir shares to compute ci = ai · bi. To
reproduce the state for the value ci, the party simply performs the client input
routine described above. Note that c = a · b is a linear combination of the ci’s, so
to compute the invariant state for c it is enough that the parties produce correct
states for each ci.

To show that the party P 0
i actually produced a state for the right value ci,

the party provides a distributed zero-knowledge proof. Assume that the com-
mitments to the coefficients of fa(x) and fb(x) are also available towards any
auxiliary layer Lk′ for 0 ≤ k′ ≤ k. Then, P 0

i produces new verifiable secret shar-
ings to âi, b̂i and ĉi, and proves towards parties in Lk′ : 1) that âi = ai, 2) that
b̂i = bi, and 3) that âi · b̂i = ĉi. If the proof fails, parties in Lk′ simply reveal
values ai and bi to parties in layer Lk.

For the proof of equality, party P 0
i verifiably shares r̂i towards all future

layers until Lk. Then, parties in some later layer (who also hold commitments to
ai, ri and âi) sample a public common random value ρ, and the values ri + ρai

and r̂i + ρâi are opened publicly. If they are different, the proof fails. Note that
if ai �= âi or ri �= r̂i, there is only one value ρ that makes the proof succeed.

The proof of correct multiplication showing âi · b̂i = ĉi is an adaptation from
[9]. For this, party P 0

i samples a random value β and verifiably shares β and bβ.
Now, parties in some later layer (who also hold commitments to âi, b̂i and ĉi)
sample a random value ρ, and publicly open the value ρ′ = ρa+β. Finally, a later
layer publicly opens and checks that ρ′b−bβ−rc = 0. Note that if âi ·b̂i �= ĉi, only
one value ρ makes the proof succeed, which happens with negligible probability.
See details in Sect. 9.

3 Preliminaries and Model

A layered MPC protocol can be viewed as a special case of standard MPC with
a general adversary structure, specialized in the following way: 1) the interaction
pattern is defined by a layered graph, and 2) the adversary can corrupt at most
t parties in each layer.

Definition 1 (Layered Protocol). Let n, t, d be positive integers. An (n, t, d)-
layered protocol is a synchronous protocol Π over secure point-to-point channels
and a broadcast channel, with the following special features.

374 G. Deligios et al.

– Parties. There are N = n(d + 1) parties partitioned into d + 1 layers Li,
0 ≤ i ≤ d, where |Li| = n. Parties in the first layer L0 and the last layer Ld

are referred to as input clients and output clients, respectively.
– Interaction pattern. The interaction consists of d rounds, where in round

i parties in Li−1 may send messages to parties in Li over secure point-to-
point channels. We additionally allow each party in Li−1 to send a broadcast
message to all parties in Li.

– Functionalities. We consider functionalities f that take inputs from input
clients and deliver outputs to output clients.

– Adversaries. We consider adversaries who may corrupt any number of input
and output clients, and additionally corrupt t parties in each intermediate
layer Li, 0 < i < d. We consider active, rushing and non-retroactive adaptive
adversaries2.

We say that a protocol Π is a layered protocol for F if it UC-realizes F in the
setting of general adversary structures [4,5,18]. We consider statistical security
(with guaranteed output delivery) where κ denotes the security parameter and F

is a finite field of size 1/negl(κ).

A Note on Synchronous Universal Composability. We are interested in
realizing functionalities f that take input from the input clients in layer L0

by default and deliver outputs to the output clients in the last layer (layer
Lk) of a layered network. We develop a synchronous protocol for computing
general functionalities in the UC model. The standard UC model is asynchronous
by default, but there have been a number of works that modeled synchronous
universally composable frameworks [5,20,21,23,25], and our protocols can be
described in any of those models. Very roughly, one usually considers a clock
functionality that keeps track of the activation pattern and also advances a
round whenever a round-robin of activations happen. For simplicity and ease of
exposition, our descriptions omit the clock and it is understood that protocols
and ideal functionalities know the current round number.

On Ideal Broadcast Channels. Without assuming broadcast, information
theoretic MPC for general functionalities is provably impossible for t ≥ n/3 [22].
We assume a broadcast channel that broadcasts messages from a certain layer to
parties in all later layers. Note that this is equivalent to assuming broadcast to
the immediate next layer in the honest majority setting, since broadcast messages
can be propagated through layers via bilateral channels and sequential majority
decisions, at the price of an additional quadratic factor in communication.

2 For simplicity, we consider the notion of “non-retroactive” (see [8], Definition 3)
adaptive adversaries, who chooses at each round r a set of up to t parties from layer
Lr to corrupt. Since our protocols are information-theoretic, we conjecture that they
are also secure against the stronger notion of retroactive-adaptive adversaries that
can corrupt parties in previous layers.

Statistical Layered MPC 375

4 Future Messaging

Future Messaging Functionality. As discussed in the technical overview, a
basic challenge in the layered setting is for a party in a layer L0 to communicate
securely with parties in a later layer Lk for k > 0. If k = 1, communication
happens via provided point-to-point secure channels. However, if k ≥ 2 secure
channels must be emulated via an appropriate layered protocol. Our parallel
future messaging functionality allows each party in layer L0 to send a message
to each party in a layer Lk for any k ≥ 1. We remark that the guarantees
provided by the functionality are quite weak, as the adversary is allowed to fix
the messages from corrupted parties in L0 to honest parties in Lk after having
received the messages sent by honest parties in L0 to corrupted parties in Lk.

Parallel Future Messaging Functionality Fk
FutureMsg

Public Parameters. Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Lk

where k ≥ 1. The domain Mi,j of message from Si to Rj .

Secret Inputs. For each Si messages mi,j ∈ Mi,j for j ∈ [n] to be sent to
each Rj .

Layer L0:
– For each honest Si ∈ L0 \ I0 and each Rj ∈ Lk, receives message mi,j

from Si to Rj .

Layer Lk:

– For each honest Si ∈ L0 \ I0 and corrupt Rk ∈ Ik, forward mi,j to the
(ideal) adversary.

– For each corrupt Si ∈ I0 and each Rj ∈ Lk, receive from the (ideal)
adversary the message mi,j that Si wants to send to Rj .

– For each Si ∈ L0 and Rj ∈ Lk, send mi,j to Rj as message from Si.

Future Messaging Protocol. Our protocol realizing Fk
FutureMsg is described

informally in Sect. 2. Due to space constraint, a formal description of the protocol
and a proof of lemma 1 can be found in the full version of this paper.

Lemma 1. If (Sh,Rec) is a (D, t, negl(κ))-robust (t, n)-secret-sharing scheme,
then for any k′ ∈ [k −1] the (n, t, k)-layered protocol Πk

FutureMsg realizes function-

ality Fk
FutureMsg with (negl(κ), t)-statistical security in the

(
Fk′

FutureMsg,Fk−k′
FutureMsg

)
-

hybrid model.

5 Future Broadcast

376 G. Deligios et al.

Future Broadcast Functionality. This primitive allows a sender to broadcast
any linear combination of some input values to a later layer (or one single party
in a later layer), and guarantees that 1) the messages (or their wanted linear
combination) remains secret until the decision to reveal them is taken, and 2)
even when the sender is dishonest, all honest parties in the receiving layer agree
on a single message. The decision to reveal a message (or not) can be taken by
honest parties in a certain layer depending on public information. Again, this
primitive provides no commitment guarantees when the sender is corrupt, as
adversary is allowed to modify the message up until the moment of delivery.

Linear Future Broadcast Functionality Fk
FutureBC

Public Parameters. Sender S ∈ L0. Auxiliary layer Lk deciding which
messages are revealed. Layer Lk′ onto which the messages are broadcast. The
domain M of the messages from S. The maximum number of messages � to
be broadcast by each sender.

Secret Inputs.

– Messages (m1, . . . ,m�) ∈ M from S to be broadcast to Lk′ .
– A public value (L, r) agreed up on by all honest P k

j , where
- L : M � → M is a linear operator.
- r ∈ Lk′ ∪{Lk′} is the intended recipient of L(m1, . . . ,m�): either some

specific party P k′
s in Lk′ or all the parties in layer Lk′ .

Layer L0: If S /∈ I0 receive messages (m1, . . . ,m�) from S.
Layer Lk: For each honest P k

i ∈ Lk \ Ik, receive the same input (L, r).
Layer Lk′−1 : If r = Lk′ , forward (L,L(m1, . . . ,m�)) to the (ideal) adversary.
Layer Lk′ :
– If r = P k′

s ∈ Ik′ , and S /∈ I0, forward
(
L,L(m1, . . . ,m�)

)
to the (ideal)

adversary.
– If S ∈ I0 receive from the (ideal) adversary message lA that S wants to

broadcast.
– If r = P k′

s /∈ Ik′ , and S /∈ I0, send the value L(m1, . . . ,m�) to P k′
s .

– If r = P k′
s /∈ Ik′ , and S ∈ I0, send the value lA to P k′

s .
– If r = Lk′ , and S /∈ I0, send the value L(m1, . . . ,m�) to all parties in Lk′ .
– If r = Lk′ , and S ∈ I0, send the value lA to to all parties in Lk′ .

Future Broadcast Protocol. The first solution that comes to mind to realize
FFutureBC is the following: to broadcast a message m onto layer Lk′ , simply pro-
vide, using future messaging, a robust sharing of s to layer Lk, and ask parties in
layer Lk to broadcast their shares using the provided broadcast channels. This
construction is secure if there is only one recipient (notice that we do not pro-
vide any guarantees for dishonest recipients). However, when the robust shares

Statistical Layered MPC 377

are broadcast, this construction is insecure, because if the the dealer is honest a
rushing adversary can wait to see the shares broadcast by honest parties in Lk

before broadcasting shares of corrupted parties. As briefly mentioned in Sect. 2,
the robustness guarantees provided by the secret sharing scheme are insufficient
in this scenario, because the corrupted shares can depend on the honest shares.
For instance, in the robust secret sharing scheme outlined in Sect. 2, a rushing
adversary would be able to make the reconstruction fail by first observing the
keys broadcast by honest parties, and only then computing new valid MAC tags
(with respect to these observed keys) for new arbitrary values. To avoid this, we
instead have the dealer set up n independent robust sharings of m and provide
them to Lk using future messaging. Then, each of these states are reconstructed
towards distinct parties in some auxiliary layer (no rushing attack applies if
the recipient is honest), and then we leverage the honest majority in the aux-
iliary layer to agree on a single value: each party in the auxiliary layer simply
broadcasts the value they have reconstructed. In this construction, the adversary
learns the broadcasted value one layer before the intended target layer. Note, our
functionality matches this protocol since the message is leaked to the adversary
in the auxiliary layer.

We get around this shortcoming by ensuring that the adversary gains no
advantage by having learned the broadcast message one layer in advance. This
is arranged by having all the other protocols run in parallel with the future
broadcast completely ignore the auxiliary layer. Consequently, the view of the
adversary in any set of layers including the auxiliary layer and the output layer of
a future broadcast is identical to that in the subset excluding the auxiliary layer.
We formally describe the protocol below, and argue about its security, captured
by Lemma 2, only in the full version of this paper, due to space constraints.

Future Broadcast Protocol Πk
FutureBC

Public Parameters. Sender S ∈ L0. Receiving layer Lk. The domain M of
S’s messages.

Secret Inputs. Messages (m1, . . . ,m�) ∈ M from sender S.

Resources. A (D, t, negl(κ))-robust (t, n)-secret sharing scheme (Sh,Rec)
with message space M = M , randomness space R and share space S; func-
tionalities Fk

FutureMsg, Fk′−k−1
FutureMsg, and Fk′−k

FutureMsg.

Layer L0: S ∈ L0 does
- Sample (r1,j . . . , r�,j) ←D R for all j ∈ [n].
- Compute (m1

i,j , . . . ,m
n
i,j) ← Sh(mi, ri,j) for each i ∈ [�] and j ∈ [n].

- For each r ∈ [n], set mr as the message
a

to P k
r in Fk

FutureMsg, where mr is
the matrix of values mr

i,j for all i ∈ [�] and j ∈ [n].

Subroutine 1: Revealing L(m1, . . . ,m�) to P k′
s :

378 G. Deligios et al.

Layer Lk: Each P k
r ∈ Lk receives (from Fk

FutureMsg) values m̂r
i,j for all i ∈

[�] and j ∈ [n] and set input mr,s towards P k′
s in F (k′−k)

FutureMsg to the value

L
(
m̂r

1,1, . . . , m̂
r
�,1

)
.

Layer Lk′ : Party P k′
s receives (from Fk′−k

FutureMsg) values l̂r for all r ∈ [n] and

computes their output ms ← Rec
(
l̂1, . . . , l̂n

)
.

Subroutine 2: Revealing L(m1, . . . ,m�) to all parties in Lk′ :

Layer Lk: Each P k
r ∈ Lk receives (from Fk

FutureMsg) values m̂r
i,j for all

i ∈ [�] and j ∈ [n] and sets input mr,j towards P k′−1
j in F (k′−k−1)

FutureMsg to

L
(
m̂r

1,j , . . . , m̂
r
�,j

)
.

Layer Lk′−1: Each P k′−1
j receives (from Fk′−k−1

FutureMsg) values l̂rj for all r ∈ [n]
and broadcasts (using the provided ideal broadcast channels) value lj ←
Rec

(
l̂1j , . . . , l̂

n
j

)
.

Layer Lk′ : Each party in Lk′ outputs the value which was broadcast the
most times by Lk′−1.

a Since we are using the parallel FFutureMsg functionality with only one sender
we drop the indices for clarity.

Lemma 2. If t < n/2 and (Sh,Rec) is a (D, t, negl(κ))-robust (t, n)-secret-
sharing scheme, then for all k ∈ [k′] the (n, t, k′)-layered protocol Πk,k′

FutureBC real-
izes Fk,k′

FutureBC with (negl(κ), t)-statistical security in the FFutureMsg-hybrid model.

6 Information Theoretic Signature

Information Theoretic Signature Functionality. This functionality allows
a sender to entrust an intermediary with a message that a later layer can then
reliably reveal to a receiver. The functionality ensures that an honest interme-
diary will always be able to convince the honest receiver to accept the message
that the intermediary received from the sender. If the sender is honest, the func-
tionality ensures that a potentially corrupt intermediary cannot convince an
honest receiver to accept a distinct message than the one it received from the
sender. When both the sender and intermediary are corrupt, the functionality
provides no guarantees. Notice that in the layered setting, the message is not
actually revealed by the intermediary itself, but rather by a later layer holding
an appropriate state provided by the intermediary.

Statistical Layered MPC 379

The functionality described below describes a generalization useful in our
later constructions in which the message receiver(s) can be selected from a
set of possible layers {Lr1 , . . . ,Lrv

} by one among a set of auxiliary layers
{Lk1 , . . . ,Lkv

}. Note, the sender is forced to commit to the message by the
first among the auxiliary layers.

Information Theoretic Signature Functionality Fk1,...,kw

ITSig

Public Parameters. Sender S ∈ L0. Intermediary M ∈ Lk for k ≥ 1.
Auxiliary layers Lk1 , . . . ,Lkw

for kw > . . . > k1 ≥ k + 8. Candidate receiver
layers Lr1 , . . . ,Lrv

, r1 > k1. The F-vector space M , domain of S’s messages.

Inputs. From S, secret messages (m1, . . . ,m�) ∈ M �. The same public input
(L, r) from all honest parties from a unique auxiliary layer Lki

, i ∈ [w].

- L : M � → M is the linear operator.
- r ∈ Lri

∪ {Lri
} for some i ∈ [v] is the intended recipient of L(m1, . . . ,m�):

either a specific party in Lri
or all parties in layer Lri

.

Layer L0:
– If S /∈ I0, receive messages (m1, . . . ,m�) from S.

Layer Lk :

– If M ∈ Ik is corrupt, reveal (m1, . . . ,m�) to the (ideal) adversary.

Layer Lk1 : If M /∈ Ik is honest and S ∈ I0 is corrupt, receive messages
(m1, . . . ,m�) from the (ideal) adversary.

Layer Lki
for i ∈ [w]:

– Receive (the same) message (r, L) or ⊥ from each honest party in Lki
.

Ignore messages from Lki′ , i
′ > i if (r, L) is received in Lki

.

Layer Lri−3 for i ∈ [v]:

– If r = Lri
(i.e., specifically, the set of receivers is the entire Lri

instead of
an individual receiver P ri

j ∈ Lri
for some j ∈ [n]), and both M /∈ Ik and

S /∈ I0 are honest, deliver L(m1, . . . ,m�) to the ideal adversary.

Layer Lri
for i ∈ [v]:

1. If r = Lri
or r = P ri

j ∈ Lri
:

- If M is honest deliver L(m1, . . . ,m�) to r.
- If M is corrupt then:

- If S is corrupt receive m′ from the (ideal) adversary and forward
it to r.

- If S is honest receive boolean reveal ∈ {0, 1} from the (ideal) adver-
sary. If reveal = 1 then deliver L(m1, . . . ,m�) to r.

380 G. Deligios et al.

Information Theoretic Signature Protocol. For improved legibility, we
describe a protocol realizing the above functionality for � = 1, w = 1 and v = 1,
meaning the auxiliary layer is fixed to Lk′ and receiver layer is Lk′′ . We only
consider the more involved construction in which the message is revealed to all
the parties in Lk′′ . We will describe later how the protocol can be modified to
realize the general functionality for arbitrary, finite �, w and v. The security of
the protocol, captured by Lemma 3, is proven in the full version of this paper,
due to space constraints. The construction follows the description presented in
the technical overview.

Information Theoretic Signature Protocol Πk′
ITSig

Public Parameters. Sender S ∈ L0, intermediary M ∈ Lk, a committing
layer k′ and receiver layer R = Lk′′ where 1 ≤ k < k′ < k′′. The message
domain M which is a finite field. A security parameter κ.

Secret Inputs. S has a message m ∈ M to be sent to R via M.

Resources. Functionality FFutureMsg; functionality FFutureBC; a message
authentication code in which key (a, b) ←$ M2 and Aut(m, (a, b)) = a · m + b
for any message in M .

Layer L0: The sender S does:
1. Sample keys ki,j ←$ F

2 for each i ∈ [n], j ∈ [κ], and compute ti,j =
Aut(ki,j ,m) for all i ∈ [n] and j ∈ [κ].

2. Send (m, {ti,j}i∈[n],j∈[κ]) to M ∈ Lk using FFutureMsg.
3. Send {ki,j}i∈[n],j∈[κ] to each Pi ∈ Lk+1 using FFutureMsg for all i ∈ [n].
4. Invoke FFutureBC with ki,j as input and Lk+2 for all i ∈ [n] and j ∈ [κ].
5. Invoke FFutureBC with m as input and Lk+6 as auxiliary layer.

Layer Lk: The intermediary M does:
1. Invoke FFutureBC with input (m, ti,j) and Lk+4 as auxiliary layer for all

i ∈ [n] and j ∈ [κ].
2. Invoke FFutureBC with input m and Lk′ as auxiliary layer.
3. Invoke FFutureBC with input ti,j and Lk′ as auxiliary layer for all i ∈ [n]

and j ∈ [κ].

Layer Lk+1: Each P k+1
i ∈ Lk+1 does:

1. Choose a random subset INDi ⊂ [κ] of size κ/2, and broadcasts INDi.
2. Broadcast ki,j for all j ∈ INDi

3. Invoke FFutureBC with ki,j as input and Lk+4 as auxiliary layer for all j /∈
INDi.

Layer Lk+2:

1. For each i ∈ [n], j ∈ INDi, to FFutureBC with S as sender, ki,j as message,
and Lk+2 as auxiliary layer, all parties send (L ← (1), r ← Lk+4) as input.

Statistical Layered MPC 381

Layer Lk+4:

1. For each i ∈ [n], j ∈ INDi, each party stores ki,j sent by S using FFutureBC

as k̄i,j , and that sent by Pi ∈ Lk+2 as k̃i,j .
2. Each party computes and broadcasts

votes = {i ∈ [n] : ∃j ∈ INDi, k̄i,j �= k̃i,j}.

3. For each i ∈ [n], j ∈ INDi, invoke FFutureBC with M as sender, (m, ti,j) as
message, and Lk+4 as auxiliary layer, all parties send (L ← (ai,j , bi,j), r ←
Lk+4), where (ai,j , bi,j) = k̄i,j , as input.

4. For each i /∈ votes, j /∈ INDi, invoke FFutureBC with Pi ∈ Lk+1 as sender,
ki,j as message, and Lk+4 as auxiliary layer, all parties send (L ← (1), r ←
Lk′′) as input.

Layer Lk+6:

1. If there exists i ∈ [n] and j ∈ INDi such that the output of FFutureBC with
M as sender and (m, ti,j) as message, is non-zero, then set success = 0,
otherwise set it to 1. Broadcast success.

2. If success = 0, call FFutureBC with S as sender, m as message, and Lk+6

as auxiliary layer, parties send (L ← (1), r ← Lk′) as input.

Layer Lk′ :

1. If success = 0, each party receives m′ as the output of FFutureBC with S as
sender, m as message, and Lk+6 as auxiliary layer. Each party broadcasts
m′.

2. If success = 1:
(a) Invoke FFutureBC with M as sender, m as message, and Lk′ as auxiliary

layer, parties send (L ← (1), r ← Lk′′−2) as input.
(b) For each i /∈ votes, j /∈ INDi, to FFutureBC with M as sender, ti,j as

message, and Lk′ as auxiliary layer, parties send (L ← (1), r ← Lk′′−2)
as input.

Layer Lk′′−2:

1. Each party recovers m̃ as the output of FFutureBC with M as sender, m as
message, and Lk′ as auxiliary layer.

2. For each i /∈ votes and j /∈ INDj , each party recovers t̃i,j as the output of
FFutureBC with M as sender, ti,j as message, and Lk′ as auxiliary layer.

3. Each party broadcasts m̃ and {t̃i,j}i∈[n],j∈INDi
.

382 G. Deligios et al.

Layer Lk′′ :

1. If success = 0, the parties output m′ broadcasted by parties in Lk′ .
2. If success = 1:

(a) For each i /∈ votes, j /∈ INDi, each party recovers k̃i,j as the output
of FFutureBC with Pi ∈ Lk+1 as sender, ki,j as message, and Lk+4 as
auxiliary layer

(b) For each i /∈ [votes], and j /∈ INDi, using m̃ and t̃i,j broadcast by
the Lk′′−2, and k̃i,j , each party checks if Vfy(t̃i,j , m̃, k̃i,j) = 1; if so,
votes ← votes ∪ {i}.

(c) If |votes| ≥ t + 1, each party outputs m̃; else outputs ⊥.

Lemma 3. If t < n/2 and (Aut,Vfy) is a (D, t, negl(κ))-secure MAC, then the
(n, t, k′′)-layered protocol ΠITSig realizes functionality FITSig with � = 1, w = 1
and v = 1 with (negl(κ), t)-statistical security in the (FFutureMsg,FFutureBC)-hybrid
model.

Generalizing the construction to implement general FITSig. Due to space
constraints, we discuss the modifications that are needed to adapt the above
protocol to handle a message vector from the sender, support multiple auxiliary
layers, and choose among multiple receiver layers only in the full version of this
paper. These modifications yield the following result.

Lemma 4. If t < n/2 and assuming a linear (D, t, negl(κ))-secure MAC, there
exists a protocol ΠITSig realizing functionality FITSig (negl(κ), t)-statistical secu-
rity in the (FFutureMsg,FFutureBC)-hybrid model for a security parameter κ.

7 Distributed Commitment

Distributed Commitment Functionality. We describe a distributed com-
mitment functionality that allows parties to commit to values that can then be
opened towards future layers. There might be multiple intermediate layers with
the right to open a value. The functionality also allows for linear combinations
of values to be opened. If the dealer was corrupted by the adversary at the time
of commitment, then when an open request is submitted, the adversary is given
the option to open the ⊥ value (analogously as what happens with a traditional
cryptographic commitment, where the dealer can always decide not to open a
value). Notice the main differences between FDistCommit and FFutureBC:

1. In FDistCommit, even when the committer C is corrupted, then the adversary
A must decide its inputs after some fixed number of layers, unlike in Fk,k′

FutureBC

where A can choose the value of a corrupt S until the very last moment. In
other words, the adversary is committed to its inputs in FDistCommit.

2. Functionality FDistCommit provides the ability for multiple layers to open the
same commitments. While this can be achieved by FFutureBC when S is honest,

Statistical Layered MPC 383

in FDistCommit one has the guarantee that, even when C is corrupt, if two
different layers open the same linear combination of commitments, in both
cases the opened value will be the same (that is, if in both cases the opened
value is not ⊥).

Linear Distributed Commitment Functionality Fk1,...,kw

DistCommit

Public Parameters. Committer C ∈ L0. Auxiliary layers Lki
i ∈ [w] decid-

ing which messages are opened. The domain M of the messages from C. The
maximum number of messages � to be committed by C.

Secret Inputs.

– From C messages (m1, . . . ,m�) ∈ M to be committed.
– From each P ki

j i ∈ [w] message (L, r):
- L : M � → M the linear combination of C’s messages to compute.
- r ∈ Lk′ ∪ {Lk′} is the intended recipient of this linear combination:

either some specific party in Lk′ or all the parties in layer Lk′ .

Layer L0: If C /∈ I0 receive messages (m1, . . . ,m�) from C.

Layer Lki
for i ∈ [w]:

- If C ∈ I0 receive from the (ideal) adversary messages (m1, . . . ,m�) that
C wants to commit.

- For each honest P ki
i ∈ Lki

\ Iki
, receive the same input (L, r).

Layer Lk′−3 : If r = Lk′ , then forward (L,L(m1, . . . ,m�)) to the (ideal)
adversary.

Layer Lk′ :

– If r = P k′
s ∈ Ik′ , then forward

(
L,L(m1, . . . ,m�)

)
to the (ideal) adversary.

– If C ∈ I0 receive from the (ideal) adversary boolean open ∈ {0, 1}.
– If C ∈ I0 and open = 1, or if C /∈ I0:

- If r = P k′
s , send L(m1, . . . ,m�) to P k′

s .
a

- If r = Lk′ , send L(m1, . . . ,m�) to all parties in Lk′ .
– If C ∈ I0 and open = 0:

- If r = P k′
s , send ⊥ to P k′

s .
- If r = Lk′ , send ⊥ to all parties in Lk′ .

a The projection map onto a component of (m1, . . . ,m�) is linear, so that
parties can decide to reconstruct exactly one of C’s inputs.

384 G. Deligios et al.

Distributed Commitment Protocol. The distributed commitment protocol
we present takes full advantage of the guarantees provided by Fk1,...,kw

ITSig from
Sect. 6. To commit to value m, because no single intermediary can be trusted
(they could be corrupted), a party creates a (t, n)-shamir sharing of m and then
invokes Fk1,...,kw

ITSig with a different intermediary (in the same layer) for each share.
Intuitively, only the shares corresponding to corrupted intermediaries (at most
t) are leaked to the adversary. This is not a problem thanks to the t-privacy of
the secret sharing scheme. Furthermore, even a dishonest dealer, or committer,
is committed to the shares entrusted to honest intermediaries. Since the latter
are at least t + 1, they determine a unique polynomial and the dealer is now
committed to the unique value identified by the honest intermediaries’ shares.

Clearly, since Fk1,...,kw

ITSig provides no guarantees when both the dealer and an
intermediary are corrupt, the reconstruction of the sharing might still fail, as
the shares corresponding to dishonest intermediaries can be fixed arbitrarily by
the adversary. However, if the reconstruction succeeds, the output of the recon-
struction will be the unique value defined by the shares of honest intermediaries,
providing the commitment property of our construction. The security of the pro-
tocol below, captured in Lemma 5, is proven in the full version of this paper,
due to space constraints.

Linear Distributed Commitment Protocol Πk1,...,kw

DistCommit

Public Parameters. Committer C ∈ L0. Auxiliary layers Lki
for i ∈ [w]

deciding which messages are opened. The domain M of the messages from C.
The maximum number of messages � to be committed by C. Latest layer L′

k

onto which messages can be opened.

Secret Inputs. From C messages (m1, . . . ,m�) ∈ M .

Resources. Functionality Fk1,...,kw

ITSig .

Layer L0: The committer C does:
- Sample a polynomial fi(x) of degree at most t such that fi(0) = mi and

do (mi,1, . . . ,mi,n) ← (fi(1), . . . , fi(n)) for all i ∈ [�].
- Input (m1,j . . . ,m�,j) to Fk1,...,kw

ITSig [j]
a

for j ∈ [n] with intermediary P k
j ∈

Lk for all j ∈ [n].

Revealing L(m1, . . . ,m�) to r ∈ Lk′ ∪ {Lk′}:

Layer Lki
for any i ∈ [w]: Each P ki

s inputs (L, r) to Fk1,...,kw

ITSig [j] for all
j ∈ [n].

Layer Lk′ : Party r = P k′
s (or all parties in Lk′ if r = Lk′) does:

- Receive value lj from Fk1,...,kw

ITSig [j] for all j.

Statistical Layered MPC 385

- Interpolate a polynomial f̂(x) through any of the t + 1 points (i, li) for
li �= ⊥ and compute l̂ = f̂(x) and output l.

a This notation is used to identify the n distinct parallel instances of
Fk1,...,kw

ITSig [j] for j ∈ [n].

Lemma 5. If t < n/2 then the (n, t, k′)-layered protocol Πk1,...,kw

DistCommit realizes
Fk1,...,kw

DistCommit with (0, t)-statistical security in the Fk1,...,kw

ITSig -hybrid model.

8 Parallel Linear VSS

Parallel Linear VSS Functionality. In this section we describe our parallel
VSS functionality Fk1,...,kw

VSS . The functionality can be thought of as a strong
distributed commitment functionality: parties in an initial layer L0 can input
(commit to) values, and then later parties (in layers k1, . . . , kw) can decide to
perform linear operations on the values and reveal them as long as the majority of
parties in the layer agree (from which the distributed nature of the commitment).
Parties are strongly committed to the values they input, in the sense that they
cannot abort the opening of these values, or linear combinations of them, at a
later time: this is the first big difference between this functionality and FDistCommit.
The second major difference is that parties in layers k1, . . . , kw can perform linear
operations on values committed by different parties (in the functionality, this is
modeled by the linear function L). This stronger linearity property is crucial to
perform secure addition and multiplication.

Parallel Linear VSS Functionality Fk1,...,kw

VSS

Public Parameters. Committers C1, . . . ,Cn ∈ L0. Auxiliary layers Lki
for

i ∈ [w] deciding which messages are opened. The domain M of the messages
from Ci for all i ∈ [n]. The maximum number of messages � to be committed
by each committer.

Secret Inputs.

– From each honest Ci messages (m1,i, . . . ,m�,i) ∈ M to be committed.
– From each P ki

j i ∈ [w] message (L,L1, . . . , Ln; r):
- Li : M � → M the linear combination of C′

is inputs to compute.
- L : Mn → M the linear combination of these linear combinations to

compute.
- r ∈ Lk′ ∪ {Lk′} is the intended recipient of this linear combination:

either some specific party in Lk′ or all the parties in layer Lk′ .

386 G. Deligios et al.

Layer L0: For each Ci /∈ I0 receive messages (m1,i, . . . ,m�,i) from Ci.

Layer Lki
for i ∈ [w]:

- For each Ci ∈ I0 receive from the (ideal) adversary messages
(m1,i, . . . ,m�,i) that Ci wants to commit.

- For each honest P k
i ∈ Lk \ Ik, receive the same input (L,L1, . . . , Ln; r).

Layer Lk′−3 :

- Let l = L
(
L1(m1,1, . . . ,m�,1), . . . , L(m1,n, . . . ,m�,n)

))
.

- If r = Lk′ , then forward (L,L1, . . . , Ln; l) to the (ideal) adversary.

Layer Lk′ :

– If r = P k′
s , send the value l to P k′

s .
– If r = Lk′ , send the value l to all parties in Lk′ .

Linear VSS Protocol. Starting from the distributed commitment functional-
ity FDistCommit we construct a protocol that realizes FVSS with perfect security.

The task is to prevent a corrupt dealer from disrupting the opening of their
commitment at a later time. A basic idea is to ask the dealer to robustly secret
share the input s and send each share to a distinct party in a following layer. Each
party can then commit to their share. This simple approach fails because the
secret sharing provides no guarantees when the dealer is corrupted: the adversary
can selectively abort the reconstruction by preventing the opening of different
subsets of corrupted commitments.

An even bigger problem is that even with an honest dealer, corrupted parties
can commit to arbitrary values. To tackle both these problems at once, we ask
the dealer to commit to the randomness used in the sharing (in our case, a
polynomial) and prove in ZK that that they are providing valid shares (with
respect to this randomness) to the auxiliary layer. Then, parties in the auxiliary
layer prove in ZK that they are committing to the values received from the
dealer. Since we cannot rely on public randomness for these distributed ZK-
proofs (we use the VSS protocol to implement our random beacon later) we
resort to techniques based on bi-variate polynomials and leverage the honest
majority in each layer.

The dealer produces a two-dimensional polynomial sharing of their input,
and sends each share (now a univariate vertical projection of the bi-varate poly-
nomial) to a distinct party in an auxiliary layer. The dealer also commits to
their bi-variate polynomial. Each of the parties in the auxiliary layer now com-
mits to the polynomial received from the dealer. The opening of commitments
to the dealer’s polynomial can fail if the dealer is corrupted, but the projections
committed by honest parties in the auxiliary layer will open correctly, even if

Statistical Layered MPC 387

those by dishonest parties might be inconsistent with the dealer’s polynomial.
To ensure consistency of all projections with the dealer’s polynomial, every hor-
izontal projection of the dealer’s polynomial and the corresponding cross points
with the vertical projections are opened towards distinct parties in another layer.
If any inconsistency is detected, the conflict is then publicly resolved. Privacy is
not an issue as there are no inconsistencies between an honest dealer’s polyno-
mial and honest parties’ projections. The security of the protocol captured by
Lemma 6 is proven in the full version of this paper, due to space constraints.

Linear VSS Protocol Πk1,...,kw

VSS

Public Parameters. Dealer D ∈ L0. Layers Lk1 , . . . ,Lkw
receiving sharing

states. Domain S of the secret. The domain S of each share. Finite field F.

Secret Inputs. From D the secret s to share.

Resources. Functionality Fk1,...,kw

DistCommit (as the functionality is only invoked
with this set of parameters throughout the protocol, in the description below
we omit the parameters for legibility).

Layer L0: The dealer D does:
- Sample fk,� ←$ F for k, � ∈ {0, . . . , t} such that (k, �) �= (0, 0).
- Let F (x, y) =

∑t
k,�=0 fk,�x

ky� where f0,0 = s.
- Let hi(x) = F (x, i) =

∑t
k=0 hi,kxk.

- Let vi(y) = F (i, y) =
∑t

k=0 vi,kyk.
- For all k, � ∈ [0, t] input fk,� to FDistCommit[D].

a

- Send (vi,0, . . . , vi,t) to P 1
i via bilateral secure channels.

Layer L1: Each P 1
i does:

- If vi,k was not received for some k ∈ {0, . . . , t} set vi,k to 0.
- Input vi,k to FDistCommit[i] for all k ∈ {0, . . . , t}.

Layer Lk1 : Each P k1
s does:

- Input
(
L = (j0, . . . , jt), r = P k2

j

)
to FDistCommit[i] for k ∈ {0, . . . , t}.

b

- Input
(
L = (i0j0, . . . , itjt), r = Lk4

)
to FDistCommit[D] for i ∈ [n].

Layer Lk2 : Each P k2
j does:

- Receive value v̂i(j) from FDistCommit[i] for all i ∈ [n].
- Receive values ĥj(i) from FDistCommit[D] for all i ∈ [n].
- If v̂i(j) = ⊥, or ĥj(i) = ⊥, or v̂i(j) �= ĥj(i), then broadcast complaini,j .

388 G. Deligios et al.

Layer Lk3 : Each P k3
s does:

- For all i, j ∈ [n], if complaini,j was broadcast by P k2
j do:

- Input
(
L = (j0, . . . , jt), r = Lk4

)
to FDistCommit[i].

c

- Input
(
L = (i0j0, . . . , itjt), r = Lk4

)
to FDistCommit[D].

d

Layer Lk4 : Each P k4
s does:

- For all i, j ∈ [n], if complaini,j was broadcast by P k2
j , do:

- Receive value vi(j) from FDistCommit[i].
- Receive value hj(i) from FDistCommit[D].
- If hj(i) = ⊥ the dealer D is disqualified.
- If vi(j) = ⊥ or vi(j) �= hj(i), then add index i to a set I (if |I| > t

then D is disqualified) and for all j ∈ [n] do:
- Input

(
L = (j0, . . . , jt), r = Lk5

)
to FDistCommit[i].

e

- Input
(
L = (i0j0, . . . , itjt), r = Lk4

)
to FDistCommit[D].

f

Layer Lk5 : Each P k5
s does:

- Receive values vi(j) for all j ∈ [n] from FDistCommit[i]. 2
- Receive values hj(i) for all j ∈ [n] from FDistCommit[D].
- If hj(i) = ⊥ for any j ∈ [n], then the dealer D is disqualified.

Sharing State VSS:

Public State. Set I and each i ∈ I polynomial vi,D(y) through values hj(i)
for all j ∈ [n] revealed in layer Lk5 .
Private State. For all i /∈ I the state of functionality FDistCommit[i].

Dealer With Multiple Inputs (s1, . . . , s�):

We described the protocol in the case where D only has one input s to avoid
a notational blow-up. However, it is easy to generalize the construction to
the case where D has multiple inputs s1, . . . , s�. The protocol is simply exe-
cuted � times in parallel, but using the same instances of FDistCommit[i] for
all ι ∈ [n] and FDistCommit[D], which allow for an arbitrary number of inputs.
This ensures homomorphism across the sender’s inputs. Furthermore, in each
parallel execution with input sι for ι ∈ [�] the set I(ι) might be different: we
consider I =

⋃
ι∈[�] I(ι) to be the union of all such sets. Again, if |I| > t then

D is disqualified.

Revealing L(s1, . . . , s�) to r ∈ L′
k ∪ {Lk′}:

Suppose D has inputs s1, . . . , s�. If D was disqualified in any of the executions
corresponding to any sι the honest party simply output 0.

Statistical Layered MPC 389

Layer Lkr
for r ≥ 5: Each P ki

s does:

- For all i /∈ I input (L′, r) to FDistCommit[i], where L′ is the linear function
that comptutes L(v̂(1)

i (0), . . . , v̂(n)
i (0)).

– For all i ∈ I input (π′
ι, r) to FDistCommit[i] for all ι ∈ [�].

g

Layer Lk′ : Each P k′
s does:

- Receive output li from FDistCommit[i] for i /∈ I.
- Receive outputs si,ι from FDistCommit[i] for i ∈ I and ι ∈ [�].
- Let li = L(s1,i, . . . , s�,i) for i ∈ I.
- Interpolate the unique polynomial f̂(x) through any of t+1 among points

(i, li)i∈[n] and output f̂(0).

Multiple Dealers D1, . . . ,Dn:

We described the protocol in the case where there is only one dealer to avoid a
notational blow-up. However, when invoked in parallel by different dealers the
protocol provides linearity among values dealt by different dealers. Consider
parallel executions with dealer Dι with input sι for ι ∈ [n]. Suppose party
P 1

i commits to polynomials v̂
(ι)
i (y) in execution with Dι. Revealing a linear

combination of values L′(s1, . . . , sn) can be done by revealing the correspond-
ing linear combination of the polynomials v̂

(ι)
i (y). Some care must be put to

ensure privacy. Indeed, in executions with different dealers the sets I(ι) could
be different. Suppose that P 1

i ∈ I(1) but P 1
i /∈ I(ι) for all other ι �= 1. Then,

we cannot simply reconstruct all polynomials v̂(i)(0) for ι �= 1 and compute
L′ on public information, as this would violate the privacy of honest dealer’s
values. Therefore, we first compute the projection of L′ on v̂(i)(0) for ι �= 1,
and then add v̂(1)(0) afterwards. Details follow.

Revealing L(s1, . . . , sn) to r ∈ L′
k ∪ {Lk′}:

Suppose dealer Dι has input sι.

Layer Lkr
for r ≥ 5: Each P ki

s does:

- If L = (a1, . . . , an) then let L′ = (ã1, . . . , ãn) where ãι ← aι if i /∈ I(ι),
and ãι ← 0 if i ∈ I(ι).

- For all i ∈ [n] input (L′, r) to FDistCommit[i].

Layer Lk′ : Each P k′
s does:

- Receive output l′i from FDistCommit[i] for i ∈ [n].
- If l′i �= ⊥ let li = l′i +

∑
ι such that i∈I(ι) v

(ι)
i,Dι

(0) for all i ∈ [n].
- Interpolate the unique polynomial f̂(x) through any of t+1 among points

(i, li) and output f̂(0).

390 G. Deligios et al.

a This notation is used to identify different parallel instances of FDistCommit.
b This reveals v̂i(j) to P k2

j .
c This publicly reveal values v̂i(j) to all parties in Lk3 .
d This publicly reveals F̂ (i, j) = ĥj(i) to all parties in layer L4.
e This reveals values hj(i) for all j ∈ [n] to all parties in Lk5 .
f This reveals values vi(j) for all j ∈ [n] to all parties in Lk5 .
g We denote by π′

ι the linear projection map computing v̂
(ι)
i (0) for ι ∈ [�].

Lemma 6. Assume that t < n/2. The (n, t, k′)-layered protocol Πk1,...,kw

VSS real-
izes functionality Fk1,...,kw

VSS with (0, t)-statistical security (i.e. perfect security) in
the Fk1,...,kw

DistCommit-hybrid model.

9 Circuit Evaluation

In this section, we explain how the layered components we developed so far can
be used to securely evaluate a circuit C encoding a function f . Let F be a finite
field, and let f be a function f : F

� → F
�′
. We denote by Ff the functionality that

takes a set of inputs (si)i∈inputsi from all input clients Ci for i ∈ [n] belonging
to an initial layer L0, and delivers f(s1, . . . , s�)j∈outputsi to the output clients
C′
1, . . . , C′

n. Due to space constraints, we describe the functionality Ff , give a
formal description of the protocol ΠC

MPC, and proof of the following theorem in
the full version of this paper.

Theorem 2. Let t < n/2. If C is a circuit with depth d computing f , the
(n, t, O(d)) layered protocol ΠC

MPC realizes functionality Ff with (negl(κ), t)-
statistical security in the (FVSS,FBeacon)-hybrid model.

Protocol Invariant. Throughout the circuit evaluation, we maintain the following
invariant: there is a layer of parties, say L0, holding a state encoding the input
values a and b to every gate g in a certain level of the circuit C, and a layer Lk

holding a state encoding the output c = g(a, b) of g. It is clear that this invariant
allows performing the computation of the whole circuit layer by layer. The state
encoding an input value a to a gate g has three components:

1. A (t, n)-Shamir Sharing of a, where each party P 0
i ∈ L0 holds share ai.

2. A (t, n)-Shamir Sharing of a random value r (which is used to securely eval-
uate multiplication gates).

3. Commitments (in the strong sense, produced using FVSS) to the coefficients
of the polynomial fa(x) used for the Shamir Sharing of a. Observe that,
because of the linear properties of FVSS, this means that parties also hold
commitments to each share ai.

Statistical Layered MPC 391

The need for such a cumbersome state is somewhat inherent to the t ≥ n/3
honest majority setting. Unlike in the t < n/3 case, where robust linearly homo-
morphic sharings have a simple description (typically a polynomial sharing, for
example Shamir sharing), in the honest majortiy setting combining robustness
and linearity is trickier. In particular, the robust sharing scheme described above
does not provide linearity across different dealers. We now descrive protocol
ΠC

MPC, which comprises of four sub-protocols, two for receiving inputs and pro-
viding outputs to clients, and two for computing addition and multiplication
gates.

Client Input Protocol. Clients must provide the necessary state encoding their
input onto the layer tasked with the evaluation of the first level of the circuit.
The protocol is simple because all the difficult guarantees (commitment, linearity
among values input by different dealers) are derived from FVSS, so that the only
real task is to produce the polynomial sharing securely even when the client is
dishonest. To achieve this, we simply require the client to VSS the coefficients
of a polynomial which shares their input, and then we reconstruct each share
towards the intended recipient exploiting the VSS linearity. This ensures that all
shares lie on a polynomial of degree t even when the dealer is dishonest. We only
describe the protocol for one client and one input, but a parallel version where
every party in a layer has up to � inputs can be obtained exactly as in ΠVSS.

Secure Multiplication. Layer L0 holds the states for the inputs a and b of the
multiplication gate g. Each party P 0

i locally multiplies their polynomial shares
of a and b and computes ci = ai · bi. Then this party reproduces the input state
but for the value ci towards the layer (say Lk) who is tasked to compute the
following layer of the circuit. It does so by using the client input protocol ΠInput.
Notice that c = a·b can be expressed as a linear combination of the ci’s for i ∈ [n],
because (i, ci)i∈[n] are points on a polynomial g(x) of degree 2t (the product of
fa(x) and fb(x)) such that g(0) = c, and both polynomial interpolation and
polynomial evaluation at 0 are linear functions. Therefore, the state for c can be
obtained from the states for each ci locally.

However, a corrupt P 0
i ∈ I0 who inputs a value ĉi �= ai · bi can easily disrupt

the correctness of this procedure. We therefore require that each party proves,
via a distributed ZK-proof, that the input ĉi they provided is indeed ĉi = ai · bi.
To this end, each party P 0

i produces new FVSS commitments to âi, b̂i and ĉi, and
proves (to parties in some auxiliary layer Lk′) that 1) âi = ai, 2) b̂i = bi, and 3)
âi · b̂i = ĉi. If they fail to do so (honest parties never fail in these proofs) then
parties in Lk′ simply reveal values ai and bi to layer Lk. Finally parties in Lk

hold commitments to each ci (the ones for which the proof fails are just taken
as standard states of the reconstructed values) and with this to the product
c = a · b.

To finish, we just need to explain how parties perform the three required ZK-
proofs. Let us first discuss the proof of equality for the commitments to values
âi and ai performed by P 0

i . To begin the proof of equality, party P 0
i produces

new commitments via FVSS to r̂i (his claimed version of ri), towards all future
layers until Lk. Then, parties in some later layer (who also hold commitments

392 G. Deligios et al.

to ai, ri and âi) receive a public random value ρ from functionality FBeacon. The
values ri+ρai and r̂i+ρâi are opened publicly, and if they are different the proof
fails. Intuitively, if ai �= âi or ri �= r̂i, there is only one value ρ that satisfies the
equality, and this can only be guessed with negligible probability if the space of
random values sampled by the beacon is large enough.

The proof of correct multiplication to show âi · b̂i = ĉi works as follows: party
P 0

i samples a random value βi and commits (via FVSS) to values βi and biβi.
Now, parties in some later layer (who also hold commitments to âi, b̂i and ĉi)
receive a random value ρ from functionality FBeacon, and publicly open the value
ρ′ = ρai + βi. Finally, a later layer publicly opens the value ρ′bi − biβi − ρci

and the proof succeeds if and only if this value is 0. Again, the intuition is
that if âi · b̂i �= ĉi, there is only one value ρ that satisfies the equality, and
the proof succeeds with negligible probability if the value ρ comes from a large
enough space. The fresh randomness to be used in the next layer of the circuit
is generated in parallel to the multiplication protocol.

Secure Addition. Addition gates (and linear gates in general) could be eval-
uated locally by exploiting the linearity of FVSS and of polynomial sharings.
However, since the linearity only holds for parallel executions of ΠVSS, to allow
the next layer of parties to compute the next layer of the circuit, we need to
“refresh” the state, so that the commitments to the inputs for the next layer
are all generated in parallel executions of ΠVSS. This can be trivially achieved
by multiplying by 1 after performing the addition locally. The state encoding
the input of this dummy gate fixed to 1 can be computed as a default state of
protocol ΠInput. We denote this procedure by ΠAdd. Notice that this protocol
preserves the invariant necessary for the circuit computation.

Client Output Protocol. The output protocol ΠOutput is trivial: parties in the
layer holding the state corresponding to output c of an output gate g can query
FVSS[c] to reveal c to the intended recipient (or recipients).

References

1. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press (1988)

3. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. Part I, volume 12550 of LNCS, pp. 260–290. Springer,
Heidelberg (2020)

4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

Statistical Layered MPC 393

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract) (informal contribution). In: Pomerance, C. (ed.) CRYPTO’87, volume
293 of LNCS, page 462. Springer, Heidelberg (1988)

7. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (1988)

8. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 4

9. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT’99. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

10. David, B., et al.: Perfect MPC over layered graphs. In: Handschuh, H., Lysyanskaya,
A. (eds.) CRYPTO 2023. Part I, volume 14081 of LNCS, pp. 360–392. Springer,
Heidelberg (2023)

11. Deligios, G., Goel, A., Liu-Zhang, C.D.: Maximally-fluid MPC with guaranteed
output delivery. Cryptology ePrint Archive, Paper 2023/415 (2023). https://eprint.
iacr.org/2023/415

12. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-46035-7 33

13. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM (JACM) 40(1), 17–47 (1993)

14. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: 33rd ACM STOC, pp. 580–589. ACM
Press (2001)

15. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y., (eds.) 17th ACM PODC, pp. 101–111. ACM (1998)

16. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1 3

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A., (eds.) 19th ACM
STOC, pp. 218–229. ACM Press (1987)

18. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

19. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000)

20. Hofheinz, D., Müller-Quade, J.: A synchronous model for multi-party computation
and the incompleteness of oblivious transfer. In: Proceedings of FCS, pp. 117–130.
Citeseer (2004)

21. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013)

22. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem, pp.203–226.
Association for Computing Machinery, New York, NY, USA (2019)

23. Liu-Zhang, C.-D., Maurer, U.: Synchronous constructive cryptography. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. Part II, volume 12551 of LNCS, pp. 439–472.
Springer, Heidelberg (2020)

https://doi.org/10.1007/978-3-030-84245-1_4
https://eprint.iacr.org/2023/415
https://eprint.iacr.org/2023/415
https://doi.org/10.1007/3-540-46035-7_33
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3

394 G. Deligios et al.

24. Manurangsi, P., Srinivasan, A., Vasudevan, P.N.: Nearly optimal robust secret shar-
ing against rushing adversaries. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. Part III, volume 12172 of LNCS, pp. 156–185. Springer, Heidelberg (2020)

25. Nielsen, J.B.: On protocol security in the cryptographic model. BRICS (2003)
26. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended

abstract). In: Luigi L., (ed.) 10th ACM PODC, pp. 51–59. ACM (1991)
27. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with

honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press
(1989)

28. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
29. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th

FOCS, pp. 162–167. IEEE Computer Society Press (1986)

An Improvement Upon the Bounds
for the Local Leakage Resilience

of Shamir’s Secret Sharing Scheme

Dustin Kasser(B)

University of Georgia, 30602 Athens, GA, USA

dustin.kasser@uga.edu

Abstract. Shamir’s Secret Sharing Scheme allows for the distribution
of information amongst n parties so that any nt of them can combine
their information to recover the secret, for some parameter 0 < t ≤ 1.
By design, it is secure against the total corruption of nt− 1 parties, but
open questions remain around its security against side-channel attacks,
where an adversary may obtain a small amount of information about
each of the n party’s shares.

An initial result by Benhamouda, Degwekar, Ishai and Rabin showed
that if n is sufficiently large and t ≥ 0.907, then the scheme was secure
under one bit of local leakage. These bounds continued to be improved in
following works, and most recently Klein and Komargodski introduced
a proof using a new analytical proxy that showed leakage resilience for
t ≥ 0.69.

In this paper we will use the analytic proxy of Klein and Komargod-
ski to show leakage resilience for t ≥ 0.668. We do this by introducing
two new bounds on the proxy. The first uses a result from additive com-
binatorics to improve their original bound on the proxy. The second
is an averaging argument that exploits the rarity of worst-case bounds
occurring.

1 Introduction

In his 1979 paper “How to Share a Secret” [18], Shamir explains what is now
aptly referred to as Shamir’s Secret Sharing Scheme. This scheme allows for a
secret to be divided among n parties so that if any tn of them work together the
secret may be recovered, but a group of tn − 1 parties will gain no information
about the secret. An example for tn = 2 would be to calculate a line �(x) that
passes through (0, s), where s is the secret. Then each ordered pair (i, �(i)) could
be distributed to each party.

Since Shamir’s scheme is secure when at most tn − 1 parties are corrupted,
it has been used as an important part of a variety of applications [2,5–11,17].
However, the hypothesis that all parties are entirely uncorrupted and pass no
information to an adversary is very strong. In recent works it has been examined

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 395–422, 2025.
https://doi.org/10.1007/978-3-031-78023-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_13

396 D. Kasser

whether Shamir’s scheme is secure if each party leaks a small amount of infor-
mation to an adversary. Before presenting the results on the security, it may be
helpful to begin by defining the scheme and leakage resistance explicitly.

To begin the scheme, a prime p > n is chosen and a secret s ∈ Fp is fixed.
Then, a tn − 1 degree polynomial � ∈ Fp[x] with �(0) = s is randomly chosen.
Next, each ordered pair (i, �(i)) is distributed among the parties.

It is equivalent to consider the vector x ∈ F
tn
p as representing the coefficients

of �, and then to construct the vectors �i ∈ F
tn
p , where each �i = (i, i2, i3, ..., itn)

so that �i · x = �(i). In this case, each (i, �i · x) is distributed among the parties.
It is this perspective that we shall use for the remainder of the paper.

The adversary is allowed to construct some leakage functions fi : F
t
p →

{−1, 1} and obtains the pairs (i, fi(�i · x)), from which they aim to reconstruct
some information about the secret. The scheme is considered secure if the amount
of information gained tends to zero as n grows to infinity. In Appendix B X, we
formally state the definition of security, but throughout this paper we will focus
on using the analytic proxy of Klein and Komargodski.

The scheme was originally shown to be secure when t ≥ 0.907 by Ben-
hamouda, Degwekar, Ishai, and Rabin [3], in which they presented an ana-
lytic proxy to bound the leakage. These results were independently improved
to t ≥ 0.8675 by Maji, Paskin-Cherniavski, Suad, and Wang [14] and to t ≥ 0.85
by Benhamouda et al. [4], and then further to t ≥ 0.78 by Maji, Ngyuen, Paskin-
Cherniavski, and Wang [15]. A new analytic proxy was later introduced by Klein
and Komargodski in [12], which improved the bound to t ≥ 0.688 [12]. In a neg-
ative result, Nielsen and Simkin showed that Shamir’s scheme is known to not
be leakage resilient if tn = O(n/ log(n)) [16].

Before reading the proxy of Klein and Komargodski, it may be helpful to the
reader to refer to Appendix B, where we formally define the Fourier transform. In
this paper, we use a normalized Fourier transform so that for fi : Fp → {−1, 1},
∥
∥
∥f̂i

∥
∥
∥
L2

= 1. Before continuing, we also define the function fS : F
tn
p as

fS(x) =
∏

i∈S

fi(x · �i) ,

The proxy of Klein and Komargodski implies that if

2

⎛

⎝p3
∑

k∈Fp\0

∑

S⊆[n]

∣
∣
∣f̂S(k · �0)

∣
∣
∣

2

⎞

⎠

1/4

(1)

decays to zero, then so too does the information available to an adversary.
Because we have a term that is polynomial in p, we will need that p = O(2n) in
order to gain our convergence results. They are able to obtain decay in (1) by
proving that

∣
∣
∣f̂S(k · �0)

∣
∣
∣ ≤
(

2
π

)2tn−|S|
, (2)

Shamir’s Secret Sharing Local Leakage Resilience 397

and that when |S| < tn,
∣
∣
∣f̂S(k · �0)

∣
∣
∣ = 0

when k �= 0. Then by a counting argument, it follows that (1) decays when
t ≥ 0.688.

In this paper, we will focus on showing that each

∑

S⊆[n]
|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

decays to zero for a ∈ N. We will use the slightly more general setting where
the �i are any collection of vectors in F

tn
p so that every tn of them are linearly

independent. The �i given by the secret sharing scheme satisfy this, but in this
setting we may drop the k from f̂S(k · �0) at the cost of a factor of at most p. We
introduce two new bounds, described below, in order to give leakage resistance
for t ≥ 0.668.

Before illustrating our methods, we quickly examine in more detail how Klein
and Komargodski obtained the bound in (2). We begin by assuming that t > 0.
For each set |S| = (t + a)n for some parameter 0 < a < 1 − t, Klein and
Komargodski show that they may bound

∣
∣
∣f̂S(�0)

∣
∣
∣ by

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
∏

i∈A1

∥
∥
∥f̂i

∥
∥
∥
L2

∏

j∈A2

∥
∥
∥f̂j

∥
∥
∥
L2

∏

k∈B

∥
∥
∥f̂k

∥
∥
∥
L∞

(3)

where |A1| = |A2| = an and |B| = (t − a)n. Using Plancherel, each
∥
∥
∥f̂i

∥
∥
∥
L2

= 1.

When the mean of fi is small,
∥
∥
∥f̂i

∥
∥
∥
L∞

≤ 2/π. Their induction argument covered

the cases when the mean of fi is large replacing each term of
∥
∥
∥f̂i

∥
∥
∥
L∞

with a 2/π

to obtain the bound
∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)(t−a)n

, (4)

which is equivalent to (2). The reader can find a similar proof of a slightly general
version of this bound in Appendix A.

In Sect. 3 we are able to improve the bound to

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)(t−0.66a)n

, (5)

though we need the even more restrictive requirement that a ≤ t/4. We instead
use

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
∏

i∈A1

∥
∥
∥f̂i

∥
∥
∥
L4

∏

i∈A2

∥
∥
∥f̂i

∥
∥
∥
L4

∏

i∈A3

∥
∥
∥f̂i

∥
∥
∥
L4

∏

i∈A4

∥
∥
∥f̂i

∥
∥
∥
L4

∏

k∈C

∥
∥
∥f̂k

∥
∥
∥
L∞

398 D. Kasser

and use a result of Lev [13] to obtain a bound on the L4 norms. We then prove
the bound using an induction argument similar to that of [12], as well as a
counting argument to handle its failure cases.

Unfortunately, this L4-style bound does not give much improvement, as the
decay fails near a = 0 for both our bound and that of [12]. To obtain an
improvement we also introduce an averaging argument. The core of the idea
is that if two sets, S and T , share most elements, then if f̂S(�0) is large, f̂T (�0)
should not be. In order to argue this more rigorously, we fix a set S′ and choose
another set T randomly, so that S = S′ ∪T . For different choices of T , we would
expect f̂S′∪T (�0) to not take consistent values. We can then average across all
T to obtain the estimate that, if |T | = (K + a)n for a parameter K fulfilling
a ≤ K ≤ t/2 − a,

∑

T

|fS′∪T | ≤
(

2
π

)2(t−K−3a)n

. (6)

When we then sum across choices of S′, we are over-counting our entries of∣
∣
∣f̂S(�0)

∣
∣
∣, and measuring this over-counting gives the bound

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤
(

(t + a)n
(t − K)n

)−1

·
(

n

(t − K)n

)

·
(

2
π

)2(t−K−3a)

. (7)

Finally, we spend Sect. 5 showing that the bounds from (4) and (5), combined
with the original bound in (2), indeed gives that Shamir’s secret sharing scheme
is secure for t ≥ 0.668. We state this formally in the following theorem.

Theorem 1. Let n, t ∈ N and 0 < t ≤ 1. Let p = O(2n). Then let {�i}n
i=0 be

vectors in F
tn
p such that every tn of them are linearly independent. Let {fi}n

i=0 be
some functions fi : Fp → {−1, 1}. Let fS(x) =

∏
fi(�i · x). Then for t ≥ 0.668,

∑

S⊆[n]

∣
∣
∣f̂S(k · �0)

∣
∣
∣

2

= 2−Ω(n) (8)

As a final note on the structure of the paper, the reader may notice that we
break from the notation of Klein and Komargodski, which would take t ∈ N.
We found that by taking t, a ∈ [0, 1] it was easier to think of them as variables
with which to graph various bounds; these graphs will appear throughout the
paper, and may be accessed directly via links in Appendix C for the readers
convenience.

2 Establishing a Bound on
∥
∥
∥f̂i

∥
∥
∥
Lq

We will begin by introducing a Theorem that follows from Corollary 2 in [13] by
Lev.

Shamir’s Secret Sharing Local Leakage Resilience 399

Theorem 2. Let f : Fp → {0, 1} be an arbitrary function. Let g : Fp → {0, 1}
be a function such that ‖g‖L1 = ‖f‖L1 and g is the indicator function for the set
[−a, b], where |b − a| ≤ 1. Then for each k ∈ N,

∥
∥
∥f̂
∥
∥
∥
L2k

≤ ‖ĝ‖L2k .

This allows us to move from examining arbitrary functions to indicators of inter-
vals, where we may explicitly compute their L2k norms, which we claim corre-
spond to the following function.

Definition 1. For q > 2, q ∈ 2N, we define the function Lq(μ) as

Lq(μ) = 2

√
p
∑

k=1

∣
∣
∣
∣
∣

2
π

· sin
(

πk μ+1
2

)

k

∣
∣
∣
∣
∣

q

(9)

While we will only use L4(μ) in this paper, we state the results of this section
in higher generality in case it is useful to others.

|µ|

y

L4(|µ|)

Fig. 1. A graph of L4(|µ|) on [0, 1] with increments at 0.1 intervals.

Lemma 1. If f : Fp → {−1, 1} with 0 < μ = Ef , then for all q ∈ 2N, q > 2,

∑

k �=0

∣
∣
∣f̂(k)

∣
∣
∣

q

≤ Lq(μ) + O

(
1√
p

)

,

Proof. We will start by bounding f above by the indicator function of an interval
of the form [−a, a]. We define the function g : Fp → {0, 1} as

g(x) =
f(x) + 1

2

so that g : Fp → {0, 1}. Further,

∑

k �=0

∣
∣
∣f̂(k)

∣
∣
∣

q

= 2
∑

k �=0

|ĝ(k)|q .

400 D. Kasser

Since g is in the proper form to apply Theorem 2, we will focus on bounding it
instead. Let ν = ‖g‖L1 /p be its density of non-zero entries. Let a, b ∈ Z≥0 such
that |b − a| ≤ 1 and if s(x) is the indicator function for [−a, b], then ‖s‖L1 = νp.
From here, we may apply Theorem 2 to g and s so that

∑

k �=0

|ĝ(k)|q ≤
∑

k �=0

|ŝ(k)|q .

Finally, we introduce the function h : Fp → {0, 1}, defined as

h(x) =

{

1 : x ∈
[

−
pν
2 �,
pν

]

0 : x �∈ [−
pν
2 �,
pν

2 �]

The number of non-zero outputs for h(x) and s(x) differs by at most one, and
so since our Fourier transform is normalized by 1/p,

∑

k �=0

|ŝ(k)|q ≤
∑

k �=0

(∣
∣
∣

ˆh(k)
∣
∣
∣+ 1/p

)q

.

Factoring out the right-hand side, we obtain the inequality

∑

k �=0

|ŝ(k)|q ≤
∑

k �=0

q
∑

j=1

∣
∣
∣ĥ(k)j

∣
∣
∣ · (1/p)q−i ·

(
q

i

)

.

We next exchange the order of the sums, to obtain

∑

k �=0

|ŝ(k)|q ≤
q
∑

i=0

∑

k �=0

∣
∣
∣ĥ(k)

∣
∣
∣

i

· (1/p)q−i ·
(

q

i

)

.

Since ‖h‖Lr ≤ 1 for r ≥ 1, all terms with q > i ≥ 2 are O(1/p). When i < 2,
q − i > 1, and so for i = 1 or i = 0,

∑

k �=0

∣
∣
∣ĥ(k)

∣
∣
∣

i

· (1/p)q−i ·
(

q

i

)

≤
∑

k �=0

1 · 1/p2 · q2 ≤ (p − 1) · q2/p2 = O(1/p) . (10)

As we wish to examine the term when i = q, we reduce to the inequality

∑

k �=0

|ŝ(k)|q ≤
⎛

⎝
∑

k �=0

∣
∣
∣ĥ(k)

∣
∣
∣

q

⎞

⎠+ O(1/p) .

As
∑

k �=0

∣
∣
∣f̂(x)

∣
∣
∣

q

≤
∑

k �=0

∣
∣
∣2ĥ(k)

∣
∣
∣

q

+ O(1/p)

we shall proceed by obtaining estimates on each ĥ(k). Notice that

ĥ(k) =
1
p

∑

x∈Fp

h(x)e
2πi

p kx =
1
p

∑

−pν
2 ≤x≤ pν

2

(

cos
(

2π

p
xk

)

+ i sin
(

2π

p
xk

))

Shamir’s Secret Sharing Local Leakage Resilience 401

As our sum is over x values that are symmetric about 0, our sine terms can-
cel. Then

ĥ(k) =
1
p

∑

−pν
2 ≤x≤ pν

2

cos
(

2π

p
xk

)

.

Note that for each z ∈ Z,
∣
∣
∣
∣

∫ z+1

z

cos
(

2π

p
kx

)

dx − cos
(

2π

p
kn

)∣
∣
∣
∣
≤ 4πk

p
.

Then when |k| <
√

p, we may write

ĥ(k) =
1
p

∫ pν
2

−pν
2

(

cos
(

2π

p
xk

)

+ O

(
1√
p

))

dx

Since ν ≤ 1, pulling out the O(1/
√

p) leaves our original term unaffected, so that

ĥ(k) = O

(
1√
p

)

+
1
p

∫ pν
2

−pν
2

cos
(

2π

p
xk

)

dx

Making a u substitution for u = 2πxk/p, we have that

ĥ(k) = O

(
1√
p

)

+
1
p

∫ 2πkν
2

−2πkν
2

cos (u)
p

2πk
du = O

(
1√
p

)

+
1
πk

∫ πkν

0

cos (u) du

and so

ĥ(k) = O

(
1√
p

)

+
sin(πkν)

πk

We now only need to show that when |k| >
√

p, ĥ(k) = O(1/
√

p).
Let J ∈ N and j = j(J) ∈ Fp with J ≡ j mod p. We choose J to be minimal

such that jk ∈ [−√
p,

√
p]. Note that J ≤ √

p by the pigeonhole principle.
Suppose that νp ≤ J ; then ν ≤ 1√

p , and so
∣
∣
∣
∣
∣
∣

1
p

∑

−pν
2 ≤x≤ pν

2

e
2πi

p kx

∣
∣
∣
∣
∣
∣

≤ pν

p
= O

(
1√
p

)

.

It also follows that for any |c| , |d| < 1/
√

p, we may say that
∣
∣
∣
∣
∣
∣

1
p

∑

−pν
2 −c≤x≤ pν

2 +d

e
2πi

p kx

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1
p

∑

−pν
2 ≤x≤ pν

2

e
2πi

p kx

∣
∣
∣
∣
∣
∣

+ O

(
1√
p

)

.

Rather than examining the sum over all x ∈ Fp, we will instead exam-
ine a partial sum, where the values range between m + 1 and m + J for a
parameter m.

m+J∑

x=m+1

e
2πi

p kx . (11)

402 D. Kasser

We may rewrite this as
J∑

x=1

e
2πi

p k(x+m) .

We begin by noting that there must be some element y = a/J ∈ Q satisfying
y ∈ [−√

p/J,
√

p/J] and yJ ≡ kj mod p. Then it follows that yJ ≡ kJ mod p.

J∑

x=1

e
2πi

p k(x+m) =
J∑

x=1

e
2πi

p (k(x+m)−yx) +
(

e
2πi

p k(x+m) − e
2πi

p (k(x+m)−yx)
)

.

Notice that
J∑

x=1

e
2πi

p (k(x+m)−yx) = e
2πi

p km
J∑

x=1

e
2πi

p (k−y)x .

Since kJ − yJ ≡ 0 mod p, it follows that k − y = zp/J for some z ∈ Z. As
k >

√
p > y, it follows that z �= 0. Then

J∑

x=1

e
2πi

p (k(x+m)−yx) = e
2πi

p km
J∑

x=1

e
2πi
J zx .

Since e
2πi
J zx is a J-th root of unity, it follows that

J∑

x=1

e
2πi

p (k(x+m)−yx) = 0.

Then we may rewrite (11) again as

m+J∑

x=m+1

e
2πi

p
kx

=
J∑

x=1

(
e

2πi
p

k(x+m) − e
2πi

p
(k(x+m)−yx)

)
= e

2πikm
p

J∑

x=1

(
e

2πi
p

kx − e
2πi

p
(kx−yx)

)
.

It is now useful to define the constant

J∑

x=1

(

e
2πi

p kx − e
2πi

p (kx−yx)
)

= λk ,

so that
j
∑

x=1

e
2πi

p k(x+m) = λk · e
2πi

p km .

Note that for θ, φ ∈ R,
∣
∣eiθ − eiφ

∣
∣ ≤ |θ − φ| ,

and so

|λk| ≤
J∑

x=1

∣
∣
∣
∣

(
2π

p
kx − 2π

p
(kx − yx)

)∣
∣
∣
∣
≤ 2π

p

J∑

x=1

|yx| =
2π

p
|y| J(J + 1)

2
.

Shamir’s Secret Sharing Local Leakage Resilience 403

Since |y| ≤ √
p/J ,

|λk| ≤ 2π

p

√
p

J

J(J + 1)
2

≤ 4πJ√
p

.

By our previous remark, we will rewrite ĥ(k) as a sum over partial sums of length
J , incurring at most O(1/

√
p) error. We state this formally below.

∣
∣
∣ĥ(k)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

1
p

∑

−pν
2 ≤x≤ pν

2

e
2πi

p kx

∣
∣
∣
∣
∣
∣

=
1
p

m=J
 pν
2J �

∑

m=−J
 pν
2J �

m+J∑

x=m+1

e
2πi

p kx + O

(
1√
p

)

. (12)

We use our bounds from above to write
∣
∣
∣ĥ(k)

∣
∣
∣ ≤ 1

p
|λk| 3

⌊ pν

2J

⌋

≤ 1
p

4πJ√
p

3
⌊ pν

2J

⌋

.

Simplifying, it follows that
∣
∣
∣ĥ(k)

∣
∣
∣ ≤ 6π√

p
.

Then it follows that
∑

k �=0

∣
∣
∣f̂(k)

∣
∣
∣

q

≤
∑

k �=0

∣
∣
∣2ĥ(k)

∣
∣
∣

q

+ O(1/p) ≤
∑

k �=0

∣
∣
∣
∣
2 · 1

π

sin (πkν)
k

∣
∣
∣
∣

q

+ O

(
1√
p

)

.

Notice that combining our positive and negative k,

∑

k �=0

∣
∣
∣f̂(k)

∣
∣
∣

q

≤ 2

√
p
∑

k=1

∣
∣
∣
∣

2
π

· sin (πkν)
k

∣
∣
∣
∣

q

+ O

(
1√
p

)

.

Note that ν = (μ + 1)/2, and so

∑

k �=0

∣
∣
∣f̂(k)

∣
∣
∣

q

≤ 2

√
p
∑

k=1

∣
∣
∣
∣
∣

2
π

· sin
(

πk μ+1
2

)

k

∣
∣
∣
∣
∣

q

+ O

(
1√
p

)

,

which is as we claimed.

3 A New Bound on
∣
∣
∣f̂S(�0)

∣
∣
∣

In this section we will be relying on Lemma 1. As we will eventually be forced
to round certain terms up, we will suppress the error term of O(1/

√
p). We will

simply ask that p be sufficiently large that the error caused by the O(1/
√

p)
term fits under the error induced by rounding.

Theorem 3. Let S ⊂ Fp such that |S| = (t + a)n with a ≤ t/4. Then for n
sufficiently large,

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)(t−0.66a)n

.

404 D. Kasser

Lemma 2. Let S ⊂ Fp and T ⊂ S such that |S| = (t + a)n and |T | = 4an.
Then ∣

∣
∣f̂S(�0)

∣
∣
∣ ≤
∏

i∈T

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\T

∥
∥
∥f̂j

∥
∥
∥
L∞

.

This is a similar result to Corollary 4.4 of [12]. We provide proofs for a similar
result in Lemma 8 and Corollary 1 in Appendix A. For this reason, we will omit
the proof of this Lemma.

Recall Lq(|μ|),

Lq(μ) = 2

√
p
∑

k=1

∣
∣
∣
∣
∣

2
π

· sin
(

πk μ+1
2

)

k

∣
∣
∣
∣
∣

q

(13)

as defined in Definition 1. Then we define K : [0, 1] → [0, 1] as

K(|μ|) =
(

L4(|μ|) + |μ|4
) 1

4
.

Notice that for each i, ∥
∥
∥f̂i

∥
∥
∥
L4

≤ K(|μi|) .

It is easy to verify through an approximation of K that for all x ∈ [0, 0.75],
K(x) ≤ K(0), and the K is increasing on [0.75, 1]. We state the following Lemma,
which will have an inductive proof using techniques from [12].

Lemma 3. Let S ⊂ Fp and T ⊂ S such that |S| = (t + a)n, |T | = 4an. Let
B ⊂ T such that for each i ∈ B, |μi| > 0.836. Let G ⊂ T such that for each
i ∈ G, |μi| ≤ 2/π. Further, let |G| = 3 |B|. Then

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤ (K(0))4|B| ∏

i∈T\(B∪G)

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\T

∥
∥
∥f̂j

∥
∥
∥
L∞

.

Proof. We will induct on |B|, beginning by noting that when |B| = 0 the lemma
holds by Lemma 2. Suppose then that |B| > 0. Then choose some b ∈ B and a
set G′ ⊂ G with |G′| = 3. To ease our notational burden we will assume without
loss of generality that μb ≥ 0. Then notice that we may rewrite

f̂S(�0) = μbf̂S\b(�0) + ̂(fb − μb)fS\b(�0) . (14)

We will bound the two terms separately. First, notice that by the induction
hypothesis on |B|, choosing T̄ = T\(b ∪ G′), B̄ = B\b, and Ḡ = G\G′,
∣
∣
∣μbf̂S\b(�0)

∣
∣
∣ ≤ μb ·

∏

i∈G′

∥
∥
∥f̂i

∥
∥
∥
L∞

· (K(0))4|B|−4 ·
∏

i∈T̄\(B̄∪Ḡ)

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\(T̄∪b∪G′)

∥
∥
∥f̂j

∥
∥
∥
L∞

.

Firstly, note that T̄\(B̄ ∪ Ḡ) = T\(B ∪ G). Further, S\(T̄ ∪ b ∪ G′) = S\T .
Finally, by hypothesis on G, for each i ∈ G′,

∥
∥
∥f̂i

∥
∥
∥
L∞

≤
(

2
πK(0)

)

K(0) ,

Shamir’s Secret Sharing Local Leakage Resilience 405

Fig. 2. A graph of K(|µ|) on [0, 1] with increments at 0.1 intervals.

and so we may conclude that

∣
∣
∣μbf̂S\b(�0)

∣
∣
∣ ≤ μb ·

(
2

πK(0)

)3

· (K(0))4|B|−1 ·
∏

i∈T\(B∪G)

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\T

∥
∥
∥f̂j

∥
∥
∥
L∞

.

Applying the induction hypothesis to the second term of (14),
∣
∣
∣

̂(fb − μb)fS\b

∣
∣
∣ is

bounded by
∥
∥
∥f̂b − μb

∥
∥
∥
L4

·
∏

i∈G′

∥
∥
∥f̂i

∥
∥
∥
L4

· (K(0))4|B|−4
∏

i∈T̄\(B̄∪Ḡ)

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\(T̄∪b∪G′)

∥
∥
∥f̂j

∥
∥
∥
L∞

.

We rewrite (3), using that for each i ∈ G′,
∥
∥
∥f̂i

∥
∥
∥
L4

≤ K(0), and so

∣
∣
∣

̂(fb − μb)fS\b

∣
∣
∣ ≤ (L4(μb))

1/4 · (K(0))4|B|−1
∏

i∈T\(B∪G)

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\T

∥
∥
∥f̂j

∥
∥
∥
L∞

.

Then it suffices to show that

μb ·
(

2
πK(0)

)3

+ (L(μb))
1/4 ≤ K(0) .

Unfortunately, this only holds for when μb ≥ 0.836, leading to the use of that
bound, rather than the more desirable 0.75.

It is useful to note that

μb ·
(

2
πK(0)

)3

+ (L(μb))
1/4 = K(μb)

406 D. Kasser

Fig. 3. A graph of displaying the induction bound compared against K(|µ|).

at approximately μb = 0.7817. Since

μ ·
(

2
πK(0)

)

+ (L(μ))1/4

is decreasing in μ, we may run this argument again, but using a bound of
K(0.7818), by our remark above, to handle terms with μ ∈ (0.7817, 0.836] to
gain the following Lemma.

Lemma 4. Let S ⊂ Fp and T ⊂ S such that |S| = (t + a)n, |T | = 4an. Let
B1, B2 ⊂ T such that for each i ∈ B1, |μi| > 0.836 and for each j ∈ B2,
|μj | ∈ (0.7817, 0.836]. Let G ⊂ T such that for each i ∈ G, |μi| ≤ 2/π. Further,
let |G| = 3 |B1 ∪ B2|. Then

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤ (K(0))4|B1|+3|B2| · (K(0.7818))|B2| ∏

i∈T\(B1∪B2∪G)

∥
∥
∥f̂i

∥
∥
∥
L4

·
∏

j∈S\T

∥
∥
∥f̂j

∥
∥
∥
L∞

.

As an additional note, in the above Lemma our induction gives K(0)|3|B2||,
which are the terms coming from our set G used to induct on B2. The terms
directly from B2 provide the K(0.7818)|B2|.

From here we will restate the bound derived in [12], though we will preserve
the extra terms

H(|μ|) =
2
π

|μ| + cos
(π

2
|μ|
)

that come out of the induction argument. The reader may refer to a similar
argument using L2 bounds in the Appendix in Lemma 7, though one would
modify it by taking B = A and preserving the terms that come out due to
induction. To avoid needless repetition of the argument, we omit the proof of
Lemma 5.

Shamir’s Secret Sharing Local Leakage Resilience 407

Lemma 5. Let S ⊂ Fp with |S| = (t + a)n, a ≤ 1 − t. Then let B ⊂ T with
|B| ≤ (t − a)n and for each i ∈ B, |μi| ≥ 2/π. Then

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)(t−a)n

·
∏

i∈B

H(|μi|) .

To prove Theorem 3, we would like to get an extra saving of (2/π)0.34an.
This could happen if there are enough functions with large μi that the savings
that we from H(μ) would give us this without a need for an L4 argument. We
proceed by examining when this occurs for some bounds on |μ|.

We begin with the set

A = {i ∈ S : |μi| ∈ [0.836, 1]} ,

which act as B1 for Lemma 4. Then notice that

∏

i∈A

H(|μi|) ≤ (H(0.836))|A| ≤
(

2
π

)0.555|A|
.

Our second set is

B = {i ∈ S : |μi| ∈ [0.7817, 0.836)} ,

which will act as B2 for Lemma 4. Then we see that

∏

i∈B

H(|μi|) ≤ (H(0.7817))|B| ≤
(

2
π

)0.4|B|
.

Our third set is
C = {i ∈ S : |μi| ∈ [0.75, 0.7817)} ,

for which we automatically obtain that
∥
∥
∥f̂i

∥
∥
∥
L4

≤ K(0.7817). We observe that

∏

i∈C

H(|μi|) ≤ (H(0.75))|C| ≤
(

2
π

) |C|
3

.

We now define our fourth set,

D = {i ∈ S : |μi| ∈ [2/π, 0.75)} ,

which are the functions with
∥
∥
∥f̂i

∥
∥
∥
L4

≤ K(0), but i �∈ G. Finally, we have that

∏

i∈E

H(|μi|) ≤
(

H

(
2
π

))|D|
≤
(

2
π

)0.1238|D|
.

In the following proof, we will begin by arguing that if |A ∪ B ∪ C ∪ D| is
large, then Lemma 5 gives us our result immediately. Then when |A ∪ B ∪ C ∪ D|
is small, we may find a large enough set G to apply Lemma 4 and obtain our
bound in this way.

408 D. Kasser

Proof (Proof of Theorem 3). As a < t/4, it follows that t − a > 3a. Let our sets
A, B, C, and D be defined as above. If |A ∪ B ∪ C ∪ D| > 3an, we will remove
elements from them until they are of size 3an. Then notice that by Lemma 5,

∣
∣
∣f̂(�0)

∣
∣
∣ ≤
(

2
π

)tn−an+0.555|A|+0.4|B|+ |C|
3 +0.1238|D|

.

It follows that if 0.555 |A|+0.4 |B|+ |C|
3 +0.1238 |D| ≥ 0.34an, then we are done.

We will assume then that

0.555 |A| + 0.4 |B| +
|C|
3

+ 0.1238 |D| ≤ 0.34an , (15)

Notice that for every i �∈ A ∪ B ∪ C ∪ D, |μi| ≤ 2/π. We want to construct a set
G and a set T with |T | = 4an and G = 3(|A| + |B| so that G,A,B,C,D ⊆ T in
order to apply Lemma 4. We get this if we can obtain the bound that

3(|A| + |B|) ≤ 4an − (|A| + |B| + |C| + |D|) . (16)

We will begin by noticing that, by (15),

0.1238(|C| + |D|) ≤ |C|
3

+ 0.1238 |D| ≤
0.34an − 0.555 |A| − 0.4 |B| ≤ 0.34an − 0.4 (|A| + |B|) .

It follows that

|C| + |D| ≤ 0.34
0.1238

an − 0.4
0.1238

(|A| + |B|) .

We now examine the right-hand side of (16), and see that

4an − |A| − |B| − |C| − |D| ≥ 4an − |A| − |B| − 0.34
0.1238

an +
0.4

0.1238
(|A| + |B|)

≥ 1.25an + 2.232(|A| + |B|) .

Then (16) holds if

3(|A| + |B|) ≤ 1.25an + 2.232(|A| + |B|) .

By moving over the 2.232(|A| + |B|) term and rounding aggressively, it suffices
to prove that

|A| + |B| ≤ an .

We immediately have this, as (15) gives that

0.555 |A| + 0.4 |B| ≤ 0.34an ,

and so we conclude that

3(|A| + |B|) ≤ 4an − |A| − |B| − |C| − |D| .

Shamir’s Secret Sharing Local Leakage Resilience 409

Then let T be any set of size 4an with A,B,C,D ⊂ T ⊂ S. Let G ⊂ T with
G ∩ (A ∪ B ∪ C ∪ D) = ∅ and |G| = 3(|A| + |B|). We let B1 = A and B2 = B.
Then we may apply Lemma 4 to obtain the bound

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)(t−3a)n

(K(0))4an−|B|−|C| · (K(0.7818))|B|+|C|
.

It is clear that this bound is decreasing in |B|+|C|, but as we have from (15) that

|B| + |C| ≤ 1.02an ,

it follows that

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)t−3a

(K(0))2.98an · (K(0.7818))1.02an
.

From here, approximating K(0) and K(0.7818) gives that

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)(t−3a)n

·
(

2
π

)2.35an

,

which suffices for our bound.

Remark 1. This argument was run for q = 4, but it could plausibly be run for
higher choices of q. It is worthwhile to note though, that

Lq(0) ≥ 2
π

· 21/q (17)

for each q. Any application of Hölder along the lines of this argument will give
∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
∏

i∈A

∥
∥
∥f̂i

∥
∥
∥
Lq

·
∏

i∈B

∥
∥
∥f̂i

∥
∥
∥
L∞

(18)

where |A| = qan and |B| = (t + a − qa)n. So, even with a successful induction
argument, one should not expect these techniques to give bounds better than

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤ 2an ·

(
2
π

)(t+a)n

≤
(

2
π

)(t−0.53a)n

. (19)

4 A Bound via Subset Averaging

Theorem 4. For each 0 ≤ a ≤ t/4, and for every choice of K satisfying a ≤
K ≤ t/2 − a, the following bound holds.

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤ O

((
(t + a)n
(t − K)n

)−1

·
(

n

(t − K)n

)

·
(

2
π

)2n(t−K−3a)
)

.

410 D. Kasser

Proof (Proof of Theorem 4).
Let 0 ≤ a ≤ 1 − t such that an ∈ N. We aim to give a bound on the size of

∑

|S|=n(t+a)

∣
∣
∣f̂S (�0)

∣
∣
∣

2

.

We start by choosing a parameter K = K(a, t) which fulfills

a ≤ K ≤ t/2 − a .

We further require that Kn ∈ N. Fix an S′ ⊂ [n] such that |S′| = (t − K)n.
Next, select an S̃ ⊆ S′ such that

∣
∣
∣S̃
∣
∣
∣ = (K + 2a)n. Finally, let T ⊂ [n] be an

arbitrary set such that |T | = (K + a)n and T ∩ S′ = ∅.

Remark 2. In this argument, we will let S̃ be an arbitrary subset of S′ of size
(K + 2a)n; however, we leave the choice of S̃ available in the argument in case
others can find a way to exploit it.

Definition 2. Let ϕ ∈ F
S′∪T
p . We say that (T, ϕ) is a valid pair if it satisfies

�0 =
∑

i∈S′
ϕi · �i +

∑

k∈T

ϕk · �k . (20)

To clarify our notation, we consider F
S′∪T
p to the space of |S′ ∪ T |-dimensional

vectors with values in Fp and entries indexed by S′ ∪ T .
We next define λ(T) to be a choice of vector such that (T, λ(T)) is a valid

pair and
∏

i∈S̃

∣
∣
∣f̂i(λi(T))

∣
∣
∣

is maximized.
Let θ ∈ F

S̃
p and define Cθ as the set of all valid pairs (T, λ(T)) such that

∀i ∈ S̃, λi(T) = θi. Choose two valid pairs (T, λ(T)), (T ′, λ(T ′)) ∈ Cθ. Notice
that since each is a valid pair, we can subtract the two equations given by (20),
to obtain

0 =

⎛

⎝
∑

k∈S′\S̃

(λk(T) − λk(T ′)) · �k

⎞

⎠+

(
∑

i∈T

λi(T) · �i

)

+

⎛

⎝
∑

j∈T ′
λj(T ′) · �j

⎞

⎠ .

Then 0 is expressed as the sum of some vectors. We notice that the number of
distinct vectors is at most

|T | + |T ′| +
∣
∣
∣S′\S̃

∣
∣
∣ = n(K + a) + n(K + a) + n(t − K) − n(K + 2a) = nt

vectors. But as any tn vectors are linearly independent, it follows that either
(T, λ(T)) = (T ′, λ(T ′)) or λ(T ′)i = 0 for all i ∈ (S′\S̃) ∪ T . The second option
would imply that

�0 =
∑

i∈S̃

θi · �i ,

Shamir’s Secret Sharing Local Leakage Resilience 411

which cannot happen as S̃ contains less than tn vectors. Then we conclude that
|Cθ| ≤ 1.

Lemma 6. For fixed S′, S̃, and T , where |T | ≥ 2an, we have that

∣
∣
∣f̂S′∪T

∣
∣
∣ ≤ O

⎛

⎝
∏

i∈S̃

∣
∣
∣f̂i (λi(T))

∣
∣
∣ ·
(

2
π

)n(t−K−3a)
⎞

⎠ . (21)

This Lemma uses an argument modified from that of Lemma 4.2 in [12]. The
reader may find our proof in Appendix A.

We may reindex our summation so that

∑

T

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣

2

=
∑

θ∈FS̃
p

(
∑

T∈Cθ

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣

2
)

.

Applying Lemma 6, it follows that

∑

T

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣

2

≤
∑

θ∈FS̃
p

⎛

⎝
∑

T∈Cθ

O

⎛

⎝
∏

i∈S̃

∣
∣
∣f̂i (λi(T))

∣
∣
∣

2

·
(

2
π

)2n(t−K−3a)
⎞

⎠

⎞

⎠ .

As each Cθ contains at most one element, we may rewrite this bound as

∑

T

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣

2

= O

⎛

⎜
⎝

(
2
π

)2n(t−K−3a)

·
∑

θ∈FS̃
p

⎛

⎝
∏

i∈S̃

∣
∣
∣f̂i (θi)

∣
∣
∣

2

⎞

⎠

⎞

⎟
⎠ .

We may re-order our sum in θ again so that
∏

i∈S̃

∣
∣
∣f̂i (θi)

∣
∣
∣

2

=
∏

i∈S̃

∑

k∈Fp

∣
∣
∣f̂i(k

∣
∣
∣

2

=
∏

i∈s̃

∥
∥
∥f̂i

∥
∥
∥
L2

.

By Plancherel,

∑

T

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣

2

= O

((
2
π

)2n(t−K−3a)
)

.

Notice that we may represent any |S| = (t+a)n as S′ ∪T in
(
(t+a)n
(t−k)n

)

different
ways. Then

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

=
(

(t + a)n
(t − k)n

)−1

·
∑

|S′|=(t−k)n

∑

|T |=(k+a)n

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣

2

.

Using our previous bounds, we see that

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤ O

⎛

⎝

(
(t + a)n
(t − k)n

)−1

·
∑

|S′|=(t−k)n

(
2
π

)2n(t−k−3a)
⎞

⎠ .

412 D. Kasser

Counting our choices of S′, we finally obtain that

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤ O

((
(t + a)n
(t − k)n

)−1

·
(

n

(t − k)n

)

·
(

2
π

)2n(t−k−3a)
)

.

5 Convergence When t ≥ 0.67

What remains is to show that the results come together to give our promised
result. We’ll begin by examining the range of a over which our averaging argu-
ment, Theorem 4, gives decay. Recall that it says that, taking K = a,

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤
(

(t + a)n
(t − a)n

)−1

·
(

n

(t − a)n

)

·
(

2
π

)2(t−4a)n

.

Using Stirling’s Approximation, we may rewrite this as, for n large,

∑

|S|=t+a

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤ 2 ·
√

4πan(2an)2an ·√2π(t − a)n((t − a)n)(t−a)n

√

2π(t + a)n (n(t + a))n(t+a)

·
√

2πnnn

√

2π(t − a)n((t − a)n)(t−a)n ·√2π(n − nt + na)(n − nt + na)n−nt+na

·
(

2
π

)2(t−4a)n

.

Simplifying, this reduces to

∑

|S|=t+a

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤ 2

√

2a

(t + a)(1 − t + a)

·
(

(2a)2a

(t + a)t+a · (1 − t + a)1−t+a
·
(

2
π

)2(t−4a)
)n

.

Then it suffices to examine when

E1(t, a) =
(2a)2a

(t + a)t+a · (1 − t + a)1−t+a
·
(

2
π

)2(t−4a)

< 1 . (22)

Here we may plug in t = 0.668 from Theorem 1, and we see that (22) reaches 1
at approximately a = 0.0054 and a = 0.0991, and so we gain exponential decay
for x ∈ (0.0054, 0.0991). Applying logarithms and differentiating, we find that
(22) is decreasing in t if

1 − t + a

t + a
· 4
π2

< 1 , (23)

Shamir’s Secret Sharing Local Leakage Resilience 413

Fig. 4. Truncated graphs of each of the estimation functions Ei with t = 0.688. Each
tick represents a length of 0.01. Except for E3, which ends its domain at a = t/4, the
other functions have extended domains that are truncated here for space. Rather than
the a-axis, the line is drawn at y = 1, to make it clear when the Ei cross the threshold.

which holds for t > 0.668 as 1 − t + a < t + a for such values.
To cover the gap where a ≤ 0.0054, we repeat this process with K = t/2−a,

so that

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤
(

(t + a)n
(t/2 + a)n

)−1

·
(

n

(t/2 + a)

)

·
(

2
π

)2(t/2−2a)n

,

and so by Stirling’s Approximation, it suffices to examine when

E2(t, a) =
(t/2)(t/2)

(t + a)t+a · (1 − t/2 − a)1−t/2−a
·
(

2
π

)2(t/2−2a)

< 1.

Once again taking t = 0.668, we compute that the value is 0.8801 when a =
0, and the next time that it reaches 1 when a = 0.07557. Similarly applying
logarithms and differentiating one may see that this is decreasing in t at fixed
values of a.

We now may examine the efficacy of Theorem 3. This gives us that

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤
(

n

(t + a)n

)

·
(

2
π

)(t−0.66a)2n

414 D. Kasser

Once again, we may apply Stirling’s Approximation, and it suffices to exam-
ine when

E3(t, a) =
1

(t + a)t+a · (1 − t − a)1−t−a

(
2
π

)2(t−0.66a)

< 1 ,

and taking t = 0.668, we see that it holds when a > 0.0936. However, as our
theorem requires that a < t/4, this only applies when a < 0.167. Once again,
one may take logarithms and differentiate to show that this bound decreases in
t.

We will finally apply the bound from [12], that

∑

|S|=(t+a)n

∣
∣
∣f̂S(�0)

∣
∣
∣

2

≤
(

n

(t + a)n

)

·
(

2
π

)(t−a)2n

.

By Stirling’s approximation, we may instead examine when

E4(t, a) =
1

(t + a)t+a · (1 − t − a)1−t−a

(
2
π

)2(t−a)

< 1 .

This holds when a > 0.1604, Applying logarithms and derivatives, we see that
these are decreasing in t for fixed a as well, and so our result holds, as we have
covered all values of 0 ≤ a < 1 − t for t ≥ 0.668.

6 Discussion

In a 2019 paper [1], Balister et al. proved a result implies the existence of func-
tions fi : Fp → {−1, 1} so that for each k ∈ Fp,

∣
∣
∣f̂i(k)

∣
∣
∣ ≥ δ/

√
p, for p sufficiently

large and some small fixed δ > 0. This unfortunately means that one should not
expect purely functional-analytic methods to work when t ≤ 1/2, as the triangle
inequality used one the convolution behaves as we highlight below. Recall that,
for |S| = n,

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤

∑

λ1,...λn∑n
i=1 λi�i=�0

n∏

i=1

∣
∣
∣

ˆfi(λi

∣
∣
∣ (24)

is an inequality that is taken in obtaining our bounds. But for functions as
generated by [1], and using our argument that n − tn of the �i determine the
convolution,

∑

λ1,...λn∑n
i=1 λi�i=�0

n∏

i=1

∣
∣
∣

ˆfi(λi

∣
∣
∣ ≥

∑

λ1,...λn∑n
i=1 λi�i=�0

n∏

i=1

δ√
p

= pn−tn · δn

pn/2
= pn/2−tnδn . (25)

Then if tn < n/2, clearly the sum after taking the triangle inequality is large.

Shamir’s Secret Sharing Local Leakage Resilience 415

We would like to note that this does not necessarily mean that the analytic
proxy fails in these cases, or that functional analytic techniques are useless,
only that some additional argument that does not use these techniques will
be necessary to handle functions that have this lower bound on their Fourier
transforms.

We’ll now attempt a more direct commentary on generalizing the techniques
presented here. We suspect that one cannot push the bounds in Sect. 2 and
Sect. 3 much further; as we remarked, the bounds on ‖fi‖Lq can’t do better than
21/q · 2/π. That said, these results may be useful for others, or in cases where a
functional-analytic bound is useful after some additional cancellation argument
has been made. We are hopeful that if an improved bound on

∣
∣
∣f̂S(�0

∣
∣
∣ is found,

then the argument made in Sect. 4 may be adapted to that setting. Most of the
properties of the bound in [12] are not used directly, so it may be possible to use
this argument to boost other bounds in future papers.

Acknowledgements. Thank you to Dr Simkin for introducing me to this problem.
An additional thank you to Dr Magyar, Dr. Petridis, and Ms LaRue for helping refine
the proof and writing. Thank you for the thoughtful comments of the reviewers to
help improve this paper. This material is based upon work supported by the National
Science Foundation under Grant No. 2054214.

A Appendix A

We will re-state Lemma 6 in slightly more general terms here that will be easier
to remember throughout this proof. We begin by defining the set V , which we
will use throughout this proof.

Definition 3. Let V be the set of all ϕ ∈ F
(t+a)n
p such that

�0 =
(t+a)n
∑

i=1

ϕi · �i . (26)

Lemma 7. For each S ⊂ [n], |S| = (t + a)n for 0 ≤ t ≤ 1 and 0 ≤ a ≤ t, let
B ⊆ S where |B| = (t − a)n and let A ⊆ B. Then

∣
∣
∣f̂S′∪T (�0)

∣
∣
∣ ≤ O

⎛

⎝

⎛

⎝sup
ϕ∈V

∏

i∈B\A

∣
∣
∣f̂i(ϕi

∣
∣
∣

⎞

⎠

(
2
π

)|A|
⎞

⎠

We define π1(ϕ) : F
tn+an
p → F

tn
p as

π1(ϕ) =
an∑

i=1

ϕi�i .

Similarly, we define

π2(ϕ) =
tn+an∑

i=tn+1

ϕi�i

416 D. Kasser

and

π3(ϕ) =
tn∑

i=an+1

ϕi�i .

We can now state and prove a variant of Lemma 4.3 from [12], page 17.

Lemma 8. Let 0 < t ≤ 1, nt ∈ N, 0 ≤ a ≤ 1−t, and {�i}(t+a)n
i=0 be vectors in F

tn
p

such that every tn of them are linearly independent. Let A,B : F
an
p → {−1, 1}

and C : F
(t−a)n
p → {−1, 1} be any functions. We write

F (x) = A(�1 ·x, ..., �an ·x) ·C(�an+1 ·x, ..., �tn ·x) ·B(�tn+1 ·x, ..., �(t+a)n ·x) . (27)

Then ∣
∣
∣F̂ (�0)

∣
∣
∣ ≤ ‖A‖L2 · ‖B‖L2 · sup

ϕ∈V

∣
∣
∣Ĉ(π3(ϕ))

∣
∣
∣ (28)

Proof. We write A′(x), B′(x), and C ′(x) to suppress the use of the �i such that
F (x) = A′(x) · B′(x) · C ′(x). As the Fourier transformation of a product is a
convolution of Fourier transformations, we may write

F̂ (�0) =
(

̂A′ · B′ · C ′
)

(�0) =
∑

β+γ+δ=�0

Â′(β)B̂′(γ)Ĉ ′(δ) (29)

We claim that we may rewrite this again to have that

F̂ (�0) =
∑

ϕ∈V

Â′(π1(ϕ))B̂′(π2(ϕ))Ĉ ′(π3(ϕ)) . (30)

To prove this, consider Â′(β) for some β linearly independent of {�i}an
i=1. Then

choose some vector �∗ that is orthogonal to the �i so that for some ki, k
∗,

β = k∗�∗ +
an∑

i=1

ki�i .

Let ⊥ �∗ be the set of vectors in F
tn
p perpendicular to �∗. Recall that

Â′(β) =
1
pt

∑

x∈⊥�∗

∑

k∈Fp

A′(x + k�∗)e
2πi

p (x+k�∗)·β

Since each �i · �∗ = 0, it follows that

Â′(β) =
1
pt

∑

x∈⊥�∗
A′(x)

∑

k∈Fp

e
2πi

p (x+k�∗)·β = 0 .

Therefore, we will only sum over precisely those β such that β = π1(ϕ), ϕ ∈
F

tn+an
p . We may do an identical argument for B′ and C ′. Then for such a ϕ, it

is necessary that π1(ϕ) + π2(ϕ) + π3(ϕ) = �0, and so ϕ ∈ V , which proves our
claim.

Shamir’s Secret Sharing Local Leakage Resilience 417

Then we may write that
∣
∣
∣F̂ (�0)

∣
∣
∣ ≤ sup

ϕ∈V

∣
∣
∣Ĉ ′(π3(ϕ))

∣
∣
∣ ·
∑

ϕ∈V

∣
∣
∣Â′(π1(ϕ))B̂′(π2(ϕ))

∣
∣
∣ .

If we fix π1(ϕ), notice that

�0 −
an∑

i=1

ϕi�i =
an+tn∑

i=an+1

ϕi�i .

There are exactly tn vectors on the right-hand side of the equation, and thus we
conclude that π2(ϕ) and π3(ϕ) are determined by π1(ϕ) when ϕ ∈ V . Then if
W is the span of {�i}an

i=1, we may define π−1
1 : W → V in the natural way. Thus,

∣
∣
∣F̂ (�0)

∣
∣
∣ ≤ sup

ϕ∈V

∣
∣
∣Ĉ ′(π3(ϕ))

∣
∣
∣ ·
∑

φ∈W

∣
∣
∣Â′(φ)B̂′(π2

(

π−1
1 (φ))

)

)
∣
∣
∣ .

It follows that our previous logic that π2

(

π−1
1 (φ)

)

is a bijection onto the span of
�i for i ∈ [tn+1, tn+an], and so we may apply Cauchy-Schwartz and Plancherel
to obtain our result.

We now begin by stating an analogue of Corollary 4.4 from page 17 of [12].

Corollary 1. Let B ⊂ S with |B| = (t − a)n. Then

|fS(�0)| ≤ sup
ϕ∈V

(
∏

i∈B

∥
∥
∥f̂i

∥
∥
∥
L∞

)

. (31)

Proof. Choose two sets, T1, T2 with |T1| = |T2| = an and T1 � T2 � B = S. Then
we define

A′ =
∏

i∈T1

fi(�i · x) (32)

B′ =
∏

i∈T2

fi(�i · x) (33)

C ′ =
∏

i∈B

fi(�i · x) . (34)

We can apply Lemma 8 in the natural way to, we have that

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(
∏

i∈T1

∥
∥
∥f̂j

∥
∥
∥
L2

)

·
⎛

⎝
∏

j∈T2

∥
∥
∥f̂j

∥
∥
∥
L2

⎞

⎠ ·
(

sup
ϕ∈V

∏

B

∣
∣
∣f̂i(ϕi)

∣
∣
∣

)

(35)

As each fi maps to either 1 or −1, it follows that for all i,
∥
∥
∥f̂i

∥
∥
∥
L2

= 1

Before proceeding with our proof of Lemma 6, we recall Claim 4.5 from [12],
which we will use directly.

418 D. Kasser

Lemma 9. Let f : Fp → [−1, 1] be a function with E[f] = μ. Then for all k �= 0
we have ∣

∣
∣f̂(k)

∣
∣
∣ ≤ 2

π
cos
(π

2
μ
)

+ O(1/p2) . (36)

Proof (Proof of Lemma 7). Notice that if B = S′ ∪ T ′ and A = (S′ ∪ T ′)\S̃, our
statement implies Lemma 6.

We will follow with the convention in [12] by suppressing the extra O(1/p2)
term that comes from Lemma 9.

Let |S| = tn + an. Note that the bound trivially holds when an < 0, as
f̂S(�0) = 0. Then we will begin by inducting on an for an ≥ 0. By Corollary 1,
the bound holds whenever |A| = 0, so we will also induct on |A|, assuming that
the bound holds for all |A′| < |A|.

We will begin by selecting an arbitrary index I ∈ A. Notice that if
∥
∥
∥f̂I

∥
∥
∥
L∞

≤
2
π + O(1/p2), then we apply the induction hypothesis on A\ {I} so that

∣
∣
∣f̂S(�0)

∣
∣
∣ ≤
(

2
π

)|A|−1

· sup
ϕ∈V

⎛

⎝
∏

i∈B\(A\{I})

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠ . (37)

We may extract a term of
∥
∥
∥f̂I

∥
∥
∥
L∞

from the second term in the product, and

this gives us the extra factor of 2/π that we need to conclude the proof.
Then consider the case when

∥
∥
∥f̂I

∥
∥
∥
L∞

≥ 2/π; if this is the case, then |E[fi]| =

|μi| ≥ 2/π, as Lemma 9 tells us that the largest value of f̂I away from 0 cannot be
larger that 2/π. We will now define the balance function g = fI − μ. Applying
Lemma 9 to fI , along with the fact that μ̂(k) = 0 for k �= 0, it follows that
‖g‖L∞ ≤ 2/π cos(πμ/2).

Notice that we may write

f̂S(�0) = μ · f̂S\{I}(�0) + ̂
(

g · fS\{I}
)

(�0) (38)

We will bound the two terms in Equation (38) separately using the induction
hypothesis, and this will give us our result.

To bound μ · f̂S\{I}(�0), we begin by noticing that if an−1 < 0, we are done,
as f̂S\{I}(�0) = 0 in that case. We assume then that an > 0.

Choose two indices J,K ∈ S\B. We define the sets A′ = (A\ {I}) ∪ {J,K},
B′ = (B\ {I})∪{J,K}, and S′ = S\ {I}. We may apply the induction hypothesis
for |S′| = tn + an − 1 to see that

∣
∣
∣μ · f̂S\{I}(�0)

∣
∣
∣ ≤ |μ| ·

(
2
π

)|A′|
· sup

ϕ∈V

⎛

⎝
∏

i∈B′\A′

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠ . (39)

First notice that B′\A′ = B\A. Further, we may compute that |A′| = |A| + 1,
and so

∣
∣
∣μ · f̂S\{I}(�0)

∣
∣
∣ ≤ |μ| ·

(
2
π

)|A|+1

· sup
ϕ∈V

⎛

⎝
∏

i∈B\A

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠ . (40)

Shamir’s Secret Sharing Local Leakage Resilience 419

Bounding the second term of (38) is simpler, as we will simply choose A′ =
A\ {I} and apply the induction hypothesis for |A| − 1 to see that

∣
∣
∣

̂
(

g · fS\{I}
)

(�0)
∣
∣
∣ ≤
(

2
π

)|A′|
· sup

ϕ∈V

⎛

⎝|ĝ(ϕI)| ·
∏

i∈B\A

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠ . (41)

We now apply that ‖ĝ‖L∞ ≤ 2/π cos(π/2μ) to say that

∣
∣
∣

̂
(

g · fS\{I}
)

(�0)
∣
∣
∣ ≤
(

2
π

)|A|−1

·
∣
∣
∣
∣

2
π

cos
(π

2
μ
)
∣
∣
∣
∣
· sup

ϕ∈V

⎛

⎝
∏

i∈B\A

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠ . (42)

Then it suffices to show that

|μ| ·
(

2
π

)|A|+1

· sup
ϕ∈V

⎛

⎝
∏

i∈B\A

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠

+
(

2
π

)|A|−1

·
∣
∣
∣
∣

2
π

cos
(π

2
μ
)
∣
∣
∣
∣
· sup

ϕ∈V

⎛

⎝
∏

i∈B\A

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠

≤
(

2
π

)|A|
· sup

ϕ∈V

⎛

⎝
∏

i∈B\A

∣
∣
∣f̂i(ϕi)

∣
∣
∣

⎞

⎠ . (43)

We may divide through by the common terms, and so it is sufficient to show that

2
π

|μ| + cos
(π

2
μ
)

≤ 1 . (44)

As we are working under the restriction that 2/π ≤ |μ| ≤ 1, this holds for all |μ|
in the range, concluding our proof.

B Appendix B

In this Appendix we will briefly state our definitions of the Fourier transform,
as well as some standard results on them.

We define the characters of the group Fp as χk : Fp → C as

χk(x) = e− 2πi
p kx

and the characters of F
tn
p , χϕ : F

t
p → C, as

χϕ(x) = e
2πi

p φ·x (45)

Then for f : Fp → C, k ∈ Fp, we define

f̂(k) =
1
p

∑

x∈Fp

f(x)χk(x) =
1
p

∑

x∈Fp

f(x)e
2πi

p k·x

420 D. Kasser

and for g ∈ F
tn
p , ϕ ∈ F

tn
p ,

ĝ(ϕ) =
1

ptn

∑

x∈Fp

g(x)χϕ(x) =
1

ptn

∑

x∈Fp

g(x)e
2πi

p ϕ·x .

One of the Fourier-analytic theorems that we use in this paper are
Plancherel’s theorem, which states that, for fi : Fp → C,

‖fi‖L2 = p
∥
∥
∥f̂i

∥
∥
∥
L2

,

and similarly for gi : F
tn
p → C, we have that ‖gi‖L2 = ptn ‖ĝi‖L2 . We also use

the fact that for two functions f, g : Fp → C,

f̂g(ϕ) =
∑

α+β=ϕ

f̂(α) · ĝ(β) = (f̂ ∗ ĝ)(ϕ) .

We also will take the time here to formally define leakage resilience. We begin
by defining the function leak : F

tn
p → F

n
p as leak(x) = (f1(�1 · x), ..., fn(�n · x)),

representing the leaked bits that the adversary sees. Then the adversary can
expect that one secret s is more likely than another s′, given a fixed leak(x) =
A, if

|P (leak(x) = A|�0 · x = s) − P (leak(x) = A|�0 · x = s′)|
is large. Here we use probability and conditional probability in the standard
ways. We say that the scheme is leakage resilient if the expected amount of
information gained,

∑

A∈Fn
p

|P (leak(x) = A|�0 · x = s) − P (leak(x) = A|�0 · x = s′)| ,

tends to zero for each s, s′ as n tends to infinity.

C Appendix C

Desmos Link for Figure 1 Desmos Link for Figure 2

https://www.desmos.com/calculator/ha3n4x8c2y
https://www.desmos.com/calculator/z3idiccno9

Shamir’s Secret Sharing Local Leakage Resilience 421

Desmos Link for Figure 3 Desmos Link for Figure 4

References

1. Balister, P., et al.: Flat littlewood polynomials exist. Ann. Math. 192(3)977–1004
(2020). https://doi.org/10.4007/annals.2020.192.3.6

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing. STOC ’88. Chicago,
Illinois, USA: Association for Computing Machinery, 1988, pp. 1–10. isbn:
0897912640. https://doi.org/10.1145/62212.62213

3. Benhamouda, F., et al.: On the Local Leakage Resilience of Linear Secret Sharing
Schemes. In: J. Cryptology 34 (2018). https://api.semanticscholar.org/CorpusID:
206716311

4. Benhamouda, F., et al.: On the local leakage resilience of linear secret shar-
ing schemes. In: J. Cryptology 34(2) (2021). Publisher Copyright: 2021, The
Author(s), under exclusive licence to International Association for Cryptologic
Research. issn: 0933-2790. https://doi.org/10.1007/s00145-021-09375-2

5. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing. STOC ’88. Chicago, Illinois, USA: Association for Computing Machinery, 1988,
pp. 11–19 (1988). isbn: 0897912640. https://doi.org/10.1145/62212.62214.

6. De Santis, A., et al.: How to share a function securely. In: Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing. STOC ’94. Mon-
treal, Quebec, Canada: Association for Computing Machinery, 1994, pp. 522–533
(1994). isbn: 0897916638. https://doi.org/10.1145/195058.195405.

7. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Advances in Cryptology -
CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New
York, 1990, pp. 307–315 (1990). isbn: 978-0-387-34805-6

8. Faust, S., et al.: Protecting circuits from leakage: the computationally- bounded
and noisy cases. In: Advances in Cryptology - EUROCRYPT 2010. Ed. by Henri
Gilbert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 135–156 (2010).
isbn: 978-3-642-13190-5

9. Frankel, Y.: A practical protocol for large group oriented networks. In: Advances
in Cryptology - EUROCRYPT ’89. Ed. by Jean-Jacques Quisquater and Joos
Vandewalle. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 56–61 (1990).
isbn: 978-3-540-46885-1

https://www.desmos.com/calculator/0fmza5vjso
https://www.desmos.com/calculator/qraxbb0c5e
https://doi.org/10.4007/annals.2020.192.3.6
https://doi.org/10.1145/62212.62213
https://api.semanticscholar.org/CorpusID:206716311
https://api.semanticscholar.org/CorpusID:206716311
https://doi.org/10.1007/s00145-021-09375-2
https://doi.org/10.1145/62212.62214.
https://doi.org/10.1145/195058.195405.

422 D. Kasser

10. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing.
STOC ’87. New York, New York, USA: Association for Computing Machinery,
1987, pp. 218–229 (1987). isbn: 0897912217. https://doi.org/10.1145/28395.28420.

11. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing
attacks. In: Advances in Cryptology - CRYPTO 2003. Ed. by Dan Boneh. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 463–481 (2003). isbn: 978-3-540-
45146-4

12. Klein, O., Komargodski, I.: New bounds on the local leakage resilience of Shamir’s
secret sharing scheme. Cryptology ePrint Archive, Paper 2023/805 (2023). https://
eprint.iacr.org/2023/805

13. Lev, V.F.: Linear equations over Fp and moments of exponential sums. Duke Math.
J. 107(2), 239–263 (2001). https://doi.org/10.1215/S0012-7094-01-10722-9

14. Maji, H.K., et al.: Constructing locally leakage-resilient linear secret-sharing
schemes. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Proceedings. Ed. by Tal Malkin
and Chris Peikert. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Pub-
lisher Copyright: 2021, International Association for Cryptologic Research.; 41st
Annual International Cryptology Conference, CRYPTO 2021 ; Conference date:
16-08- 2021 Through 20-08-2021. Springer Science and Business Media Deutsch-
land GmbH, 2021, pp. 779–808 (2021). isbn: 9783030842512. https://doi.org/10.
1007/978-3-030-84252-9 26

15. Maji, H.K., et al.: Improved bound on the local leakage-resilience of shamir’s
secret sharing. In: 2022 IEEE International Symposium on Information Theory
(ISIT). Espoo, Finland: IEEE Press, 2022, pp. 2678– 2683. https://doi.org/10.
1109/ISIT50566.2022.9834695

16. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Advances in Cryptology - EUROCRYPT (2020). https://eprint.iacr.org/2019/181

17. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:
Advances in Cryptology - CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran
Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 552–569 (2012).
isbn: 978-3-642-32009-5

18. Shamir, A.: How to share a secret. In: Commun. ACM 22(11), 612–613 (1979).issn:
0001-0782. https://doi.org/10.1145/359168.359176

https://doi.org/10.1145/28395.28420.
https://eprint.iacr.org/2023/805
https://eprint.iacr.org/2023/805
https://doi.org/10.1215/S0012-7094-01-10722-9
https://doi.org/10.1007/978-3-030-84252-9_26
https://doi.org/10.1007/978-3-030-84252-9_26
https://doi.org/10.1109/ISIT50566.2022.9834695
https://doi.org/10.1109/ISIT50566.2022.9834695
https://eprint.iacr.org/2019/181
https://doi.org/10.1145/359168.359176

Information-Theoretic Multi-server
Private Information Retrieval with Client

Preprocessing

Jaspal Singh1,2(B), Yu Wei2, and Vassilis Zikas2

1 Purdue University, West Lafayette, USA
sing1361@purdue.edu

2 Georgia Institute of Technology, Atlanta, USA
{ywei368,vzikas}@gatech.edu

Abstract. A private information retrieval (PIR) protocol allows a client
to fetch any entry from single or multiple servers who hold a public
database (of size n) while ensuring no server learns any information
about the client’s query. Initial works on PIR were focused on reduc-
ing the communication complexity of PIR schemes. However, standard
PIR protocols are often impractical to use in applications involving large
databases, due to its inherent large server-side computation complexity,
that’s at least linear in the database size. Hence, a line of research has
focused on considering alternative PIR models that can achieve improved
server complexity.

The model of private information retrieval with client prepossessing
has received a lot of interest beginning with the work due to Corrigan-
Gibbs and Kogan (Eurocrypt 2020). In this model, the client interacts
with two servers in an offline phase and it stores a local state, which it
uses in the online phase to perform PIR queries. Constructions in this
model achieve online client/server computation and bandwidth that’s
sublinear in the database size, at the cost of a one-time expensive offline
phase. Till date all known constructions in this model are based on sym-
metric key primitives or on stronger public key assumptions like Deci-
sional Diffie-Hellman (DDH) and Learning with Error (LWE). This work
initiates the study of unconditional PIR with client prepossessing - where
we avoid using any cryptographic assumptions. We present a new PIR
protocol for 2t servers (where t ∈ [2, log2 n/2]) with threshold 1, where

client and server online computation is ˜O(
√

n)1 - matching the compu-
tation costs of other works based on cryptographic assumptions. The
client storage and online communication complexity are ˜O(n0.5+1/2t)

and ˜O(n1/2) respectively. Compared to previous works our PIR with
client preprocessing protocol also has a very concretely efficient clien-
t/server online computation phase - which is dominated by xor oper-
ations, compared to cryptographic operations that are orders of mag-
nitude slower. As a building block for our construction, we introduce
a new information-theoretic primitive called privately multi-puncturable

Work done while the authors were at Purdue University.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 423–450, 2025.
https://doi.org/10.1007/978-3-031-78023-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_14

424 J. Singh et al.

random set (PMPRS), which might be of independent interest. This new
primitive can be viewed as a generalization of privately puncturable
pseudo-random set, which is the key cryptographic building block used
in previous works on PIR with client preprocessing.(1 the ˜O(.) notation
hides poly log factors)

1 Introduction

First introduced by Chor et al. [9], a private information retrieval (PIR) protocol
allows a client to fetch any entry of a public database held by a single or multiple
non-colluding servers. A line of works beginning with Chor et al. [9] have focused
on reducing the communication complexity of PIR in the single and multiple
server cases under various cryptographic assumptions [3,5,8,14,15,33]. PIR has
been employed as a useful building block for many cryptographic applications,
including private contact discovery [12,21], anonymous communication [29], and
safe browsing [24].

Standard PIR protocols however are generally inefficient when they are used
for applications involving very large databases. One major factor contributing
to the inefficiency of all known PIR schemes is the linear server computation
complexity per query. This inefficiency is inherent in the standard PIR model
in both the single and multi-server case and both the statistical and computa-
tional setting [6]. Hence, a line of research has focused on considering alternative
PIR models, that allow for sublinear server complexity per query, either in the
worst case or in an amortized sense. These includes models focused on batch
PIR queries [1,2,6,19,22,27,32] and PIR with pre-processing [6,10,20,26,31,34].
Specifically, the PIR with client pre-processing model has garnered a lot of atten-
tion beginning with a work by Corrigan-Gibbs and Kogan [11].

PIR with Client Preprocessing. In this 2-server PIR model introduced by
Corrigan-Gibbs and Kogan [11], the client interacts with two non-colluding
servers during an offline phase where the servers receive as input a database
of size n. At the end of this phase the client maintains some sublinear sized
state and there’s no state stored on the server side. This offline phase is often
computationally expensive - with each server doing linear computation in the
database size. In the online phase, the client can make an unbounded number
of PIR queries using its stored state - such that both online communication and
online client/server computation are sublinear in the database size! In [11] the
authors were able to construct a PIR protocol in this model with ˜O(n1/2) online
client/server computation and ˜O (n1/2) client state size. Furthermore, in the
online phase, the client query size is ˜O (n1/2) and the server response is O(1) -
leading to online communication complexity of ˜O(n1/2). Their original 2-server
construction is based on one-way functions (OWF), but since then its also been
extended to the single server model and its been improved using other cryp-
tographic primitives [10,16,17,20,26,30,31,34]. The key building cryptographic
building block used in [11] and follow-up works is some variant of privately punc-
turable pseudo-random set, which we describe in greater detail next. We refer to

Information-Theoretic PIR with Client Preprocessing 425

all PIR preprocessing protocols that are based on this primitive to be designed
in the Corrigan-Gibbs and Kogan (CGK) paradigm.

Corrigan-Gibbs and Kogan (CGK) Paradigm (Based on Privately
Puncturable Pseudo-Random Sets.) A privately puncturable pseudo-
random set consists of four algorithms (Gen, Set,Test,Punc). Gen is a random-
ized function that outputs a short key k corresponding to a pseudo-random
set. Function Set(k) outputs the corresponding pseudo-random set, which has
distribution computationally indistinguishable from a random set of size

√
n

from domain [n] = {0, 1, . . . , n − 1}. Function Test(k, x) outputs a bit check-

ing whether x
?∈ Set(k). Punc(k, x) outputs a punctured key k′, such that

Set(k′) = Set(k) \ {x} and the key k′ hides x. The first construction for this
primitive in [11] was based on pseudo-random permutations - where the key and
punctured key have sizes κ and ˜O(

√
n) respectively, where κ is the private key

security parameter. The computation complexity of Test and Set algorithms are
˜O(1) and ˜O(

√
n) respectively.

A very rough sketch of the PIR with client preprocesisng scheme of [11] is as
follows: the client generates T = ˜O(

√
n) privately puncturable pseudo-random

set keys (k1, k2, . . . , kT) and it sends them to the first server in the offline phase.
This server responds back with hint bits hi = ⊕j∈Set(ki)DB[j] where DB is a
database of size n held by both parties. The client stores these T keys and the
corresponding hint bits as its client state. In the online phase, the client receives
as input some queries x ∈ [n] and it finds a key ki from its state such that,
Test(ki, x) = true. It then sends the punctured key k′ ← Punc(ki, x) to the
second server - which responds with r ← ⊕j∈Set(k′)DB[j], which we refer to as
the ‘database xor bit’ with respect to the key k′. The client can now compute
DB[x] = r ⊕ hi, which is the expected output of the PIR online phase.

This is a simplified version of the original protocol in [11], and the original
construction has a few more features. Firstly, in the online phase, the client also
interacts with the first server to replenish the key and hint bit that it used to
compute DB[x], and this ensure that the client state always contains T privately
puncturable pseudo-random keys before each online PIR query. Secondly, note
that the right server in the above simplified protocol always views a key of a
set of size (

√
n − 1) punctured at x - and hence its view is not independent of

x. The author further use privacy amplification techniques to avoid this kind of
leakage.

All follow up PIR with preprocessing works in this CGK paradigm use cryp-
tographic assumptions and they focus on designing a more efficient privately
puncturable pseudo-random set - where the keys has short description size, while
they allow for efficient set membership testing, set enumeration and puncturing
[17,26,31]. In all these works, the client and server online computation is domi-
nated with ˜O(

√
n) cryptographic operations (either based on OWF or public-key

primitives) and their bandwidth and client storage complexity have a multiplica-
tive factor of cryptographic key length as well.

426 J. Singh et al.

Information-Theoretic Setting. In this work we focus our attention on the
feasibility of designing PIR with client preprocessing schemes with sublinear
client state, online computation and communication in the information theoretic
setting i.e. with no cryptographic assumption. In particular, in the Corrigan-
Gibbs and Kogan paradigm we investigate the feasibility of designing an infor-
mation theoretic analog of privately puncturable pseudo-random sets. A major
challenge here is to represent a pseudo-random set of size

√
n with a key of

size o(
√

n), while still allowing for efficient set membership, set enumeration and
private puncturing.

The key observation that helps in the design of this primitive is that the cor-
rectness of the PIR scheme only requires that for any x ∈ [n], Pr(x ∈ Set(k)) =
1/

√
n, where k ← Gen(), and its not required that Set(k) has the same distribu-

tion as a random set of size
√

n (which is a stricter requirement). We exploit this
observation in our design of a privately puncturable random set, where the keys
simultaneously have sufficient randomness and structure to ensure sublinear size,
while allowing for puncturing that hide the punctured element.

Outside theoretical interest, PIR protocols in the information-theoretic set-
ting would be of attractive from a practical viewpoint as well. The computation
complexity in information-theoretic protocols is dominated by simpler algorith-
mic operations (like bit shift, xor, etc.), which are generally faster than crypto-
graphic operations in both private-key and public-key regime.

1.1 Our Contribution

Information-Theoretic PIR with Client Preprocesing. We initiate the
study of the PIR with client preprocessing model in the information theoretic
setting based on the CGK paradigm [11]. We propose a 2t server PIR with
preprocessing protocol with corruption threshold 11, where the client maintains
a state of size ˜O(n1/2+1/2t), with online client computation ˜O(

√
n), online per

server computation ˜O(
√

n) and online communication ˜O(
√

n).
In particular, setting t = 2, we get a 4-server PIR with preprocessing pro-

tocols with client storage ˜O(n3/4), client/server online computation/bandwidth
˜O(n1/2). Setting t = log(n)/2, we get a log(n)-server PIR with preprocessing pro-
tocols with ˜O(n1/2) client storage, client/server online computation and online
bandwidth ˜O(n1/2) - where these cost match the original 2-server PIR with
preprocessing construction of Corrigan-Gibbs and Kogan [11] based on OWFs.

All the client/server computation costs reported here are in number of bit
operations, and unlike other PIR protocols it does not have a multiplicative
O(poly log(κ)) factor, where κ is the security parameter. The online communica-
tion of our scheme has no security parameter multiplicative factor either, which
is the case for all previous PIR with preprocessing constructions in the CGK
model.

1 i.e. all but one server are honest.

Information-Theoretic PIR with Client Preprocessing 427

Improving PIR Communication Complexity. In Sect. 4.1 we slightly mod-
ify the above construction to reduce the online bandwidth, and the online server
response bandwidth at the cost of doubling the number of servers. We achieve
a 4t server PIR with preprocessing protocol with threshold 1 with online band-
width n1/2t+o(1), where the online computation asymptotic complexities of the
client/server stay sublinear in the database size.

New Information-Theoretic Primitive. The key building block in our PIR
construction is a (t, n)-privately multi-puncturable random set (PMPRS), which
has five algorithms (Gen, Set, Test, Punc, DotProdEval). Similar to the analo-
gous cryptographic primitive, Gen() outputs a key k, where Set(k) outputs a
set of size

√
n with domain [n] and each element from the domain is contained

in the set with probability 1/
√

n. Function Test(k, x) checks if x
?∈ Set(k). The

multi-puncturing function Punc(k, x) outputs t tuples of the form (ki, Si, indi)
for i ∈ [t], where each punctured key ki corresponds to set Si, and correct-
ness requires that sets S0, . . . , St−1 are pairwise disjoint, and their union equals
Set(k) \ {x}. We call this primitive a ‘multi-puncturable’ random set, since the
partitioned set S \ {x} is divided into t disjoint sets. Privacy of this scheme
requires that each of these punctured keys are simulatable given just the param-
eters t, n, which implies that they hide the punctured element x. This is a general-
ization of the traditional privately puncturable set primitive in [11], where Punc
function outputs a single punctured key. The function DotProdEval(ki, i,DB)
exactly captures the server computation - which involves generating the partial
punctured set and compute database xor bit wrt the input punctured key. How-
ever, instead of outputting a single bit, this algorithm outputs a vector �vi, such
that the idxth

i bit has the expected result i.e. �vi[idx] = ⊕j∈Si
DB[j]. This kind of

correctness requirement in the CGK model was also first considered in TreePIR
[26] - which is a 2-server PIR with preprocessing construction based on DDH
assumption.

We propose an information theoretic construction for (t, n)-PMPRS (for when
n1/2t is an integer) where the key and each punctured key have sizes ˜O(tn1/2t).
The running time of Gen,Test,Set,DotProdEval are ˜O(tn1/2t), ˜O(1), ˜O(

√
n) and

˜O(
√

n) respectively.

1.2 Technical Overview

We divide our technical overview in two parts, first we highlight the key ideas
behind our PMPRS construction, and next we show how this primitive can be
used to construct a multi-server PIR with client preprocessing.

((log2 n)/2, n)-PMPRS Construction. To illustrate some of the key ideas in our
construction, in this subsection we depict a ((log2 n)/2, n)-PMPRS construction
where n is an even power of 2. The general (t, n) construction and its formal
proof of security are presented in Sect. 3.

Our scheme generates PMPRS keys that correspond to well-partitioned sets,
which are sets that contains a single element from each chunk of the domain [n],

428 J. Singh et al.

Fig. 1. An example of (t, n) − PMPRS with n = 64, t = 3. The leaf nodes contain the
offset values within the specific chunks, which can be computed using the vector �R. The
sets S0, S1, S2 represent the multi-puncturing obtained if the PMPRS set is punctured
at x = 38 that’s contained in the set. The leaf nodes corresponding to each set Si and
the path to the punctured element x are highlighted using the red boxes and the green
filled boxes respectively

where the ith chunk is defined as {i
√

n, i
√

n + 1, . . . , i
√

n + (
√

n − 1)}. Hence,
any well-partitioned set contains

√
n elements - one for each chunk. We use

the bijective map (cx, δx) ← ChunkCoord(x) to map any element x ∈ [n] to its
corresponding chunk cx = (�x/

√
n�) ∈ [

√
n] and the offset within the chunk

δx = bit decomposition of (x mod
√

n). We sometimes use the integer modulo√
n representation of δx as well, but it’ll always be clear from the context. Sets

with this structure were first used in a single server PIR with preprocessing
construction PIANO [34], where the privately puncturable pseudo-random key
is constructed using a pseudo-random function (PRF). The description of each
algorithm in our PMPRS scheme is as follows:

– Gen(): outputs a matrix �R of dimension t × 2, where t = (log2 n)/2 and
each element is sampled randomly from the domain {0, 1}t. We use t as a
shorthand for log2(n)/2 throughout the description of this construction.

– Set(k = �R): outputs a well-partitioned set, where the offset of the element in
the ith chunk is given by ⊕t−1

j=0
�R[j][ij], where (i0, . . . , it−1) ← bit-decomp2(i)

is the bit decomposition of i. Since, i ∈ [
√

n], the bit decomposition of i has
log2(

√
n) = t bits.

– Test(�R, x): first compute (cx, δx) ← ChunkCoord(x), and then check if the
offset of the element in Set(�R) in the cth

x chunk is δx as follows: ⊕t−1
j=0

�R[j][cj
x] ?=

δx, where (c0x, . . . , ct−1
x) ← bit-decomp2(cx).

We can visualize this well-partitioned set using a full binary tree T2,n with
depth t = log2(n)/2 (and hence it has

√
n leaves) as shows in Figure 1. We

associate random values (R[i][0], R[i][1]) with depth i and we associate the ith

leaf in the tree with the ith chunk. For any path from root to a leaf, we can

Information-Theoretic PIR with Client Preprocessing 429

xor one of the random strings at each depth, corresponding to whether the path
travels along the left or the right child at that depth. Hence, the value computed
at the ith leaf equals exactly the offset of the element in the ith chunk, as was
computed in Set(�R). We will use this tree based interpretation in the description
of the following two algorithms of our PMPRS scheme:

– ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1) ← Punc(k, x): To puncture the set
Set(k) at element x, we can partition the tree T2,n after removing the path
from root to the chunk containing x into t disjoint trees, where the ith tree Ti

(for i ∈ [t]) has root at depth i+1, and it has 2t−i−1 leaves - which corresponds
to the ith partitioned set Si. Hence, we have ∪t−1

i=0Si = S \{x}. An example of
these t sets forming a disjoint union of the punctured set is also highlighted in
Fig. 1. However, note that each set Si cannot be part of the key ki since it leaks
some information about x - particularly it leaks that this set doesn’t contain
the element of puncturing. To ensure privacy, while satisfying a correctness
definition, we define the ith key ki such that it contains sufficient information
to compute offsets of all elements in Si, but it contains no information about
the chunks that correspond to those offsets in Si. This decoupling of the off-
sets and the chunks is critical for making the scheme secure. Concretely, the
key ki has three components: a matrix �Ri = �R[i + 1 :][:] i.e. Ri contains all
rows ≥ i + 1 of R, it also contains a correction corr = ⊕i−1

j=0
�R[j][cj

x] where
(cx, δx) ← ChunkCoord(x) and (c0x, . . . , ct−1

x) ← bit-decomp2(cx), and finally
it contains R[i][1 − ci

x]. The first component of the key contains information
from R from depth i + 1 and higher, the second component contains partial
information of R from depth 0 to i−1, and in particular it contains the xor of
bits in R from these lower depths corresponding to the bit decomposition of
cx, and the third and final component contains one of the two random strings
of R associated with depth i that is not used in computing δx (the offset
of the punctured element). In the next function description we elaborate on
how the indexes idxi are computed and how the key ki is used to construct
Si to satify the correctness definition. Its easy to see that key ki hides the
element x since it contains no information about R[i][ci

x] - masking the value
of δx defined as ⊕t−1

j=0R[j][cj
x], and it contains no information about the chunk

containing the punctured element.
– �vi ←DotProdEval(ki, i,DB): Given ki = (�Ri, corr, r), we first compute an

offset vector �δ of length 2t−i−1 - such that this vector contains the offsets
in the leaf nodes of tree Ti in increasing order of chunk indexes. This vector
can be computed using �Ri in a similar fashion to how the offset vector is
computed in Set algorithm, and further each element of this is xored with
corr ⊕ r. By construction, vector �δ contains offsets of all elements in Si in
order. However, note that ki hides the exact chunk indexes (which depend on
the item being punctured) that these offsets correspond to. Here, we make
the key observation that there are exactly 2i+1 possible trees which could
be Ti - one for each tree rooted at depth (i + 1) in T2,n. Hence, for each of
those 2i+1 trees in order we compute the following: consider the sequence of
chunks (represented by a vector �c) corresponding to its leaf nodes in the tree,

430 J. Singh et al.

and compute a set S′ = {ChunkCoord−1(�c[j], �δ[j])|j ∈ [2t−j−1]}. Append to
the vector vi (which is initialized as null vector) with the bit ⊕j∈S′DB[j].
Exactly one of these 2i+1 trees would be Ti, and let it be the idxth tree in the
sequence. Then by construction we have �vi[idxi] = ⊕j∈Si

DB[j] - satisfying
the correctness definition of PMPRS. It takes O(2t−i−1) time to compute
each bit of �vi and hence the running time of DotProdEval is 2i+1.O(2t−i−1) =
O(2t) = O(

√
n).

This construction gives us an information theoretic PMPRS construction with
key size O(log2(n)) for a

√
n sized random set - such that it supports efficient

set membership, set enumeration and t-puncturing! We extend the above con-
struction in Sect. 3 in a couple ways. Firstly, we ensure that Gen can generate a
set containing a specific element Δ (which is needed in the PIR construction),
and secondly we give non-trivial PMPRS constructions for smaller t values. In
the general construction we define d = n1/2t (which must be an integer) and we
consider d-ary full tree Tn,d (of depth t = logd n) over the domain [n] instead of a
binary tree. Here to puncture at a leaf node, we can partition the remaining tree
into disjoint union of t “punctured trees” - which is defined as a tree with one
of the root’s children subtrees being removed. A major challenge in the general
construction was to ensure that the DotProdEval has O(

√
n) complexity, as the

trivial approach of considering all possible punctured subtrees at depth i lead to
computation complexity O(d

√
n), which can be ω(

√
n) for very small t or large

d. We discuss this issue and the proposed solution in detail in Sect. 3.

2t-Server PIR with Client Preprocessing. Our PIR protocol follows the
CGK paradigm. In the offline phase the client generates T = ˜O(

√
n) (t, n)-

PMPRS keys and sends them to server 0. The server responds back with the
hint bits for each of these keys, which is computed as follows for a given key k:
⊕j∈Set(k)DB[j]. The client stores the keys and the hint bits as its state.

In the online phase, the client inputs an index x ∈ [n] and it finds a PMPRS
key such that Test(k, x) = true. It computes ((k0, idx0), . . . , (kt−1, idxt−1)) ←
Punc(k, x)2, and sends ki to server (t + i). The server responds back with the
vector �vi ← DotProdEval(ki, i,DB). By the correctness of the PMPRS primitive,
we have ⊕t−1

i=0 �vi[idxi] = ⊕j∈Set(S)\{x}DB[j]. And hence if h is the hint bit corre-
sponding to the key k, then the client can compute h ⊕ (⊕t−1

i=0 �vi[idxi]) = DB[x]
- which is the desired output.

The above construction ends up using the pair (k, h) - and hence we replenish
the state with a new key-hint pair to maintain the same client state. For this,
the client samples a new key k′ such that x ∈ Set(k′). It punctures this key k′

at x and it sends its t components to servers 0, 1, . . . , (t− 1) in the online phase.
Each server responds back with vector output of DotProdEval algorithm. Using
these vectors and the database bit DB[x] the client can compute the hint bit
h′ = ⊕j∈Set(k′)DB[j].

2 Here we ignore the sets Si output by Punc algorithm since they are not used in the
PIR construction.

Information-Theoretic PIR with Client Preprocessing 431

The privacy of the scheme is ensured by the fact that in each online query
each server only views a single punctured PMPRS key - which is simulatable by
definition. And the correctness of this scheme follows from the definition of the
PMPRS construction as described above. We defer the details of the security
proof and the complexity analysis to Sect. 4.

1.3 Related Work

A trivial approach to solve the PIR problem would be for the client to down-
load the entire database from the server, and store just the element of interest.
However, this leads to linear bandwidth cost. Hence, a line of work starting with
Chor et al. [9] have focused on reducing the bandwidth cost in the single server
[8,13,20,25,28] and multi-server setting [3,5,7,14,15,18,33]. However, all these
works have linear computation complexity for each server - which is inherent in
the standard PIR model as proven by Beimel et al. [6]. To overcome this barrier,
broadly speaking two models were introduced - PIR with batch queries and PIR
with preprocessing.

In a PIR scheme with batch queries a client takes as input a sequence of k
indexes, for which it privately queries the server(s). Here the goal is to amortize
the server computation cost across the k queries. A number of works study this
model of batch queries [1,2,6,19,22,27,32], and in particular the work due to
Ishai, Kushilevitz, Ostrovsky and Sahai [22] achieve the optimal amortized per
query server complexity of ˜O(n/k).

PIR with pre-processing was first proposed by Beimel, Ishai and Malkin [6].
In their scheme, in the offline phase the two non-colluding servers do a one-time
computation to store a new encoding of the database with super-linear size. In
the online phase the server can support an unbounded number of client queries,
where the client stores no state from the preprocessing phase. They introduce
two information theoretic protocols, one where each server stores a state of size
O(n2) with online computation O(n/ log2 n), and bandwidth O(n1/3). Their sec-
ond scheme achieves online computation and bandwidth O(n0.5+ε) for any ε,
where the server storage is ω(n) and it exponentially increases with decrease in
ε. Compared to this information theoretic preprocessing scheme, our construc-
tion has no super linear server state after preprocessing and it enjoys a lower
client/server computation and bandwidth complexity at the price of a higher
number of servers with corruption threshold 1.

PIR with client-side preprocessing was first introduced by Kogan and
Corrigan-Gibbs [24] in the 2-server model, which achieve client state, online clien-
t/server computation and bandwidth ˜O(

√
n). This scheme was later improved

in future works, where the focus is either to improve the asymptotic or concrete
online bandwidth [17,26,31]. Recently a number of single server PIR with pre-
processing protocols were also proposed in the CGK paradigm [10,16,20,30,34] -
where a single server can perform both the offline and online phase while satisfy-
ing the privacy requirement. All these previous works on PIR with client prepro-
cessing are either in the OWF regime or they used some public key assumption
like φ-hiding, DDH and LWE.

432 J. Singh et al.

Concurrent Work. A recent work due to Ishai et al. [23] also study the prob-
lem of PIR with client preprocessing in the information-theoretic setting, but in
the single and two server case. They provide a set of protocols with various per-
formance tradeoffs between server computation, client space and bandwidth. In
particular, all the proposed constructions with sublinear online server time in [23]
have client space, server computation and online bandwidth Ω(n2/3), Ω(n2/3)
and Ω(n1/3) respectively. We improve on all these three performance metric in
the case of 4 or more servers in the information theoretic and client preprocessing
PIR setting.

2 Preliminaries

2.1 Algorithmic Notation

A function f : N → R is called negligible it shrinks faster than any inverse
polynomial i.e. for any polynomial p(), there exist an N ∈ N, such that f(n) <
1/p(n) for every n ≥ N . We use the notation negl.(n) to represent any arbitrary

negligible function in n. We use shorthand notation S = ˙⋃m−1

i=0 Si to represent
that the m sets S0, . . . , Sm−1 are pairwise disjoint and their union equals set S.

Notation with an overset arrow (e.g. �v, �M) is used to represent vectors and
matrices, where capitalized letters are used specifically for matrices. Notation
←$ R signifies sampling a random element from set R. For domain [n] =
{0, 1, . . . , n−1}, we define the ith chunk as the set {√ni,

√
ni+1, . . . ,

√
ni+(

√
n−

1)}. Hence, we can view the domain [n] as a disjoint union of
√

n chunks. Define
bijection ChunkCoord(x) = (cx, δx) ∈ [

√
n] × {0, 1}log n/2, where cx = �x/

√
n�

is the chunk that contains x and δx = bit decomposition of (x mod
√

n) is the
offset signifying which specific element in the chunk corresponds to x. We refer
to cx as the chunk coordinate of x. Sometimes in the paper we refer to the
mod

√
n representation of δx interchangeably with its bit decomposition - but it

will always be clear from the context. A set S from domain [n] = {0, 1, . . . , n−1}
is called well partitioned if it contains exactly one element from each chunk. Par-
ticularly, note that the description of a well partitioned set can be given by just
a vector of offsets of size [

√
n], which corresponds to offsets of the elements in

each chunk.
Function �v ← trim(�u, i) takes as input a vector u (let say of size n) and an

index i ∈ [n], then it outputs a trimmed version of the input vector with the
ith element removed. Hence, �v[j] = �u[j] for 0 ≤ j < i and �v[j] = �u[j + 1] for
j ∈ [i, n − 1].

For any n, t where d = n1/2t is an integer, we use notation Td,n to represent
a full d-ary tree of depth t (= 1/2 logd n) - where the ith leaf node correspond
to the ith chunk of the domain [n]. Note Td,n has exactly

√
n leaf nodes. We

use the notation chunksd,n(v) to represent increasing sequence of chunk indexes
contained in subtree rooted at node v in tree Td,n. Additionally, chunksd,n(v, u)
outputs the vector of increasing chunk indexes in sub-tree rooted at v in Td,n

excluding the chunks/leaf nodes in the subtree rooted at the uth child of v,

Information-Theoretic PIR with Client Preprocessing 433

where u ∈ [d]. Hence, vector chunksd,n(v, u) doesn’t contain any chunk indexes
contained in the subtree rooted at the uth child node of v.

2.2 Multi-server PIR with Client Preprocessing (with Threshold 1)

We adapt 2-server PIR with client preprocessing syntax and adaptive security
definitions from Corrigan-Gibbs and Kogan [11] and Shi et al. [31] to the multi-
server and the information theoretic setting here.

An l server protocol contains (l+1) parties: a single Client and l non-colluding
servers Server0, Server1, . . . ,Serverl−1. All parties receive as input the statistical
security parameter λ and the database size n. The protocol proceeds as follows:

– Offline phase: All the servers receive as input a database DB ∈ {0, 1}n.
The client sends a single message to each server, which responds back with
a single message to the client. The client uses these l responses to compute
some state that it stores as output of this offline phase.

– Online phase: The servers can serve an unbounded queries of the following
form: client receives as input an index x ∈ [n], following which the client
sends a single message to each of the servers as a function of its state and
index x. Each server responds back to the client with a single message, which
allows the client to compute an output bit y ∈ {0, 1}.

Correctness. For any database DB ∈ {0, 1}n and an arbitrary sequence of
queries (x1, x2, . . .), the client outputs DB[xi] at the end of the ith online query
phase with probability at least 1 − negl.(λ).

Privacy. The PIR scheme is said to be private with threshold 1, if there exists
a probabilistic polynomial time simulator Sim(1λ, 1n) such that for an adversary
acting as the jth server (for any j ∈ [l]), polynomially bounded (in λ) parameters
n and q and DB ∈ {0, 1}n, the view of the adversary A in the following two
experiments is statistically indistinguishable:

– Real: An honest Client interacts with A(1λ, 1n,DB) who acts as Serverj and
it may actively deviate from the prescribed PIR protocol. At the start of each
online phase i ∈ [q], A adaptively picks a query xi ∈ [n] which is the input of
the Client in the same phase.

– Ideal: The simulator Sim acts as a Client and it interacts with A(1λ, 1n,DB)
who acts as Serverj and which may actively deviate from the prescribed PIR
protocol. At the start of each online phase i ∈ [q], A adaptively picks a query
xi ∈ [n] for the client, which is not input to Sim.

3 Privately Multi-puncturable Random Set (PMPRS)

In this section we present formal syntax and security definition of our newly
introduced PMPRS primitive. Following which we present our PMPRS construc-
tion, which is based on random sets with some structure imposed by d-ary trees
(for d = n1/2t) using a minimal amount of randomness.

434 J. Singh et al.

Definition 1 (PMPRS syntax). A (t, n)-PMPRS scheme with input domain
[n] = {0, . . . , n−1} consists of five algorithms (Gen, Set, Test,Punc,DotProdEval)
with the following syntax:

– k ← Gen(Δ, 1t, 1n): outputs a short key k ∈ {0, 1}∗ corresponding to a random
set containing element Δ ∈ [n]. The parameter Δ is an optional input to this
algorithm

– S ← Set(k): takes as input a key k, and it outputs a random well partitioned
set from domain [n]

– b ← Test(k, x): takes as input a key k, an element x ∈ [n], and it outputs a
boolean value true or false- corresponding to whether element x is contained
in the set represented by k

– ((S0, k0, ind0), (S1, k1, ind1), . . . , (St−1, kt−1, indt−1)) ← Punc(k, x): out-
puts t punctured keys k0, . . . , kt−1, with corresponding integer indexes
idx0, . . . , idxt−1 and sets S0, . . . , St−1, such that the t sets form a disjoint
union of punctured set Set(k) \ {x}.

– �vi ← DotProdEval(i, ki,DB): is a deterministic function that takes in a punc-
tured key ki, a vector DB ∈ {0, 1}n and it outputs a vector �vi, such that its
indth

i bit corresponds to ⊕j∈Si
DB[j] - the database xor bit for one of the

partitioned sets

Definition 2 (PMPRS security). A (t, n)-PMPRS scheme (Gen, Set, Test,
Punc, DotProdEval) for domain [n] is λ-secure if is satisfies the following con-
ditions:

– Correctness: For any Δ,x ∈ [n] and DB ∈ {0, 1}n, let

k ← Gen(Δ, 1t, 1n), S ← Set(k)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← Punc(k, x)

then the following holds:
• Δ ∈ Set(k)
• S \ {x} = ˙⋃Si

• for i ∈ [t], �vi[indi] = ⊕j∈Si
DB[j]

The second and third correctness requirements mentioned above also hold
when the optional Δ parameter is not input to Gen algorithm

– Privacy: There exists a simulator Sim such that for all x ∈ [n], i ∈ [t], the
following distributions are statistically indistinguishable in λ:

k ← Gen(x)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← Punc(k, x)
return ki

∼∼∼λ Sim(1t, 1n, i)

Each punctured key ki can be simulated using just the parameters t, n, i, or
in other words, it hides the punctured element x. It should also be noted
that the vectors �vi can be deterministically computed using the DotProdEval
algorithm with input key ki (which is simulatable) and vector DB. Hence,
�vi hides element x as well, even if one of its bits correspond to the correct
database xor bit on one of the punctured sets.

Information-Theoretic PIR with Client Preprocessing 435

– Randomness: The set output by Set(Gen(1t, 1n)) contains any element x ∈
[n] with probability 1/

√
n, where the probability is taken over the randomness

of Gen algorithm. Additionally, Set(Gen(Δ, 1t, 1n)) contains any element x
not in the same chunk as Δ with probability 1/

√
n

Our PMPRS construction satisfies a stronger security guarantee which we
define next.

Definition 3. A λ-secure PMPRS scheme with λ = 0 is called perfectly secure.

Efficiency Requirements. We measure the efficiency of any PMPRS scheme in
terms of the size of the keys and the punctured keys - which would contribute to
the communication potocol of our PIR scheme. We also measure the computation
complexity of the Gen, Test, Set, Punc and DotProdEval algorithms, which would
contribute to the computation complexity of the client and the servers in our
PIR scheme.

3.1 Proposed PMPRS Construction

We follow the blueprints of the PMPRS construction described in Sect. 1.2, but
extend it to random sets generated using a d-ary tree structure instead of a
binary tree. The formal description of our generic (t, n)−PMPRS construction,
where d = n1/2t is an integer is given in Fig. 3. We give a high level description
of all the algorithms in this construction next.

The Gen function takes as input an additional Δ parameter, which should be
contained in the random set corresponding to the output key k. The PMPRS key
output of Gen consists of a matrix �R of dimension t×d and an additional element
corr. The value of corr is picked such that the well-partitioned set generated by
k contains x.

The algorithm Set on input (�R, corr) outputs a well partitioned set of size√
n, where the element in chunk c with base d bit decomposition (c0, . . . , ct−1)

is given by corr ⊕
(

⊕t−1
i=0

�R[i][ci]
)

. Intuitively, this refers to the xor of corr with

the random strings in �R corresponding to the path in tree Td,n from root to
leaf c.

Hence, the algorithm Test on input x such that (cx, δx) ← ChunkCoord(x),
just checks if Set(k) has offset δx in chunk cx. Note, that this doesn’t require
enumerating the entire well partitioned set, and it can be performed in time
linear in the depth of the tree Td,n.

Function Punc takes as input a PMPRS key k and the index of puncturing
x, such that x ∈ Set(k). At a high level, this function outputs t punctured
keys k0, . . . , kt−1 and corresponding sets S0, . . . , St−1 such that the t sets form
a disjoint union of punctured set S \ {x}. Removing the path from root to the
leaf/chunk containing x in Td,n partitions the remaining tree intro t “punctured
trees”, where the ith punctured tree (lets call it T ′

i for i ∈ [t]) contains a subtree
with root at depth i after removing the subtree rooted at exactly one of its

436 J. Singh et al.

children nodes. This structure is also depicted in Fig. 2. The set Si contains
elements of S with chunk indexes in exactly in the leaf nodes of sub-tree T ′

i .
Each key ki is constructed such that it contains exactly the information needed
to compute the offset (in order) of all elements corresponding to the leaf nodes
in T ′

i .

Fig. 2. Example tree Td,n associated with (t, n)−PMPRS for parameters n = 272, t = 3,
implying d = 3. The green path corresponds to the punctured element. Then punctured
trees corresponding to sets S0, S1, S2 output of Punc are colored red, blue and yellow
respectively except for their roots, which are on the green path. Particularly note each
of these “punctured trees” has root at a unique depth, and exactly one of their children
subtrees missing

The function DotProdEval captures the computation performed by each
server in our PIR scheme based on PMPRS. On input i, ki,DB the goal of this
algorithm is to compute the database xor bit of set Si (i.e. ⊕j∈Si

DB[j]). We can
view this expected output as the dot product between two vectors: the database
DB and the indicator vector �ISi

of set Si ⊂ [n]3. However, our PMPRS scheme
allows for a correctness notion - where DotProdEval outputs a vector �vi such
that its idxth bit (which was output of Punc) is the correct expected output. At
a high level, this algorithm works in two stages:

– Given the punctured key ki we can first compute an offset vector �δ - which
contains the offsets of all elements in Si in order from left to right chunk.

– Secondly, the algorithm computes the chunk vector �c for every possible “punc-
tured subtree” at depth i in Td,n - where exactly one of them is T ′

i . For each of
these possible punctured subtrees, we can compute the punctured set (given
offsets �δ and corresponding chunk indexes �c). We use notation Suw to repre-
sent corresponding to a tree rooted at node u with subtree at child node w
punctured. The algorithm computes database xor bit for Suw and it appends it
to the output vector vi. If idxi refers to the index of chunk sequence for T ′

i , then
by construction �vi[idxi] = ⊕j∈Si

DB[j] - proving the PMPRS scheme is cor-
rect. The privacy follows from the observation that the offset of the punctured
element x = ChunkCoord−1(cx, δx) is given by δx = corr ⊕ (

(

⊕t−1
i=0

�R[i][ci
x]

)

)
where (cx

0 , . . . , cx
t−1) is the base-d bit decomposition of cx, and the fact that

key ki contains no information about R[i][ci
x] - which is one of the randomly

sampled elements in Gen corresponding to depth i in tree Td,n.

3 The indicator vector �IS of a set S from domain [n] is a bit vector of size n such that
�IS [i] = 1 ⇐⇒ i ∈ S.

Information-Theoretic PIR with Client Preprocessing 437

The trickiest part is to prove that DotProdEval has run time ˜O(
√

n) on arbi-
trary input i, di,DB. Note that there are di+1 punctured subtrees at depth i or
sets Suw that might correspond to the set Si, since there are di nodes at depth i,
where any of its d children subtrees could be punctured. Each of these sets Suw

has size dt−i − dt−i−1. Hence, trivially computing the database xor bit for each
of these sets would lead to complexity ˜O(dt−i−1(d − 1)di+1) = ˜O((d − 1).dt) =
O(d

√
n), which can be ω(

√
n) when d = ω(1). To reduce the computation com-

plexity, we make the key observation that for any node u in Td,n at depth i
and two adjacent children nodes w,w′ of u, the sets Suw and Suw′ only dif-
fer in 2.dt−i−1 elements, and otherwise they overlap. Hence, given the database
xor bit for set Suw, we can compute the database xor bit for set Suw′ in time
˜O(dt−i−1) instead of ˜O(dt−i) time that it takes to compute it trivially. This gives
us the needed factor O(d) improvement in the runtime - making the complexity
of DotProdEval ˜O(

√
n).

Theorem 1. Let F be a (t, n)-PMPRS construction shown in Fig. 3. Then F is
perfectly secure.

Proof. By Lemma 1, we know that F satisfies the correctness property defined
in Definition 2. By Lemma 2, we know that F satisfies the randomness property
defined in Definition 2. By Lemma 3, we can construct the simulator Sim that
satisfies the following condition for λ = 0:

k ← Gen(x)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← Punc(Gen(Δ, 1t, 1n), x)
return ki

∼∼∼λ Sim(1t, 1n, i)

Our simulator Construction Works as Follows: (on input t, n, i)

– Initialize (d− 1)-length vector �ri where each element is uniformly distributed
over [

√
n].

– Initialize (t − i − 1) × d random matrix �Ri where each element is uniformly
distributed over [

√
n].

– Initialize corr sampled from uniform distribution over [
√

n].
– Return ki ← (corri, �ri, �Ri).

Lemma 1 (Correctness). The (t, n)-PMPRS construction shown in Fig. 3
satisfies the correctness definition given in Definition 2.

Proof. We first consider the case that the parameter Δ is given as input. First
we check Δ ∈ Set(Gen(Δ, 1t, 1n)). This is by construction and we could show it
passes the membership test F.Test(k,Δ). Let (cΔ, δΔ) ← ChunkCoord(Δ) and
(c0Δ, c1Δ, . . . , ct−1

Δ) ← bit-decompd(cΔ). We can verify that

corr ⊕
(

⊕t−1
j=0R[j][cj

Δ]
)

= δΔ ⊕
(

⊕t−1
j=0R[j][cj

Δ]
)

⊕
(

⊕t−1
j=0R[j][cj

Δ]
)

= δΔ.

Then we check S \{x} = ˙⋃Si. We first show that for distinct i, j ∈ [t], Si and
Sj are disjoint. Let Ci and Cj be the corresponding set of chunk coordinates of

438 J. Singh et al.

Fig. 3. Proposed (t, n)-PMPRS construction (where n1/2t is an integer)

Information-Theoretic PIR with Client Preprocessing 439

Si and Sj . We show Si and Sj are disjoint by showing Ci and Cj are disjoint,
this is simply because if two elements are in different chunks, they cannot be
the same. WLOG, we consider the case i < j. Let (cx, δx) ← ChunkCoord(x)
and let p be the internal node in Td,n at depth i on path from root to cx-th leaf
node. By definition Ci = chunksd,n(p, ci

x), which is the set of chunks excluding
the chunks/leaf nodes in the sub-tree rooted at ci

x-th child of p and Cj is the
subset of chunks in this excluded sub-tree, so Ci and Cj are disjoint. Then we
show S \{x} =

⋃

Si. This is because, by construction,
⋃

Ci = [
√

n]\ cx includes
all the leaf nodes of the tree Td,n except the cx-th leaf, which represents the set
S \ {x}.

We next show that for all i ∈ [t], vi[indi] = ⊕j∈Si
DB[j]. WLOG, we fixed an

arbitrary i ∈ [t]. By indi’s definition, we find the set Suw where w is the ci
x-th

children node of u and u be the internal node in Td,n at depth i on the path
from root to cx-th leaf node. By checking the definition of Suw, we can see it
exactly equals to Si. So we have

�vi[indi] = ⊕j∈Suw
DB[j] = ⊕j∈Si

DB[j].

Lastly, We consider the case that the optional parameter Δ is not given as
input. We no longer have the requirement that Δ ∈ Set(Gen(Δ, 1t, 1n)). For
the statement S \ {x} = ˙⋃Si and vi[indi] = ⊕j∈Si

DB[j], since our above proof
doesn’t rely on Δ, it still holds when Δ is not input.

Lemma 2 (Randomness). Let F be a (t, n)-PMPRS construction shown in
Fig. 3. Then, for any x ∈ [n],

Pr
[

x ∈ F.Set(Gen(1t, 1n))
]

=
1√
n

.

Additionally, for any Δ ∈ [n], and any x ∈ [n] not in the same chunk as Δ,

Pr
[

x ∈ F.Set(Gen(Δ, 1t, 1n))
]

=
1√
n

.

Proof. Let (cx, δx) ← ChunkCoord(x) and (c0x, c1x, . . . , ct−1
x) ← bit-decompd(cx).

Let X be the cx-th element being added into the set F.Set(Gen(1t, 1n). Then,
we have

Pr
[

x ∈ F.Set(Gen(1t, 1n))
]

= Pr [X = δx]

= Pr
[

corr ⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx

]

=
1√
n

.

The second last step is by definition of Fig. 3. The last step is because �R[j][cj
x]

and corr are mutually independent and uniformly distributed over [
√

n], so does
the sum of them corr ⊕

(

⊕t−1
j=0

�R[j][cj
x]

)

.

440 J. Singh et al.

Similarly, for any Δ ∈ [n], and any x ∈ [n] not in the same chunk as Δ,
let (cx, δx) ← ChunkCoord(x) and (c0x, c1x, . . . , ct−1

x) ← bit-decompd(cx). Let X
be the cx-th element being added into the set F.Set(Gen(1t, 1n). let (cΔ, δΔ) ←
ChunkCoord(Δ) and (c0Δ, c1Δ, . . . , ct−1

Δ) ← bit-decompd(cΔ). We have

Pr
[

x ∈ F.Set(Gen(Δ, 1t, 1n))
]

= Pr [X = δx]

= Pr
[

corr ⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx

]

= Pr
[

δΔ ⊕
(

⊕t−1
j=0

�R[j][cj
Δ]

)

⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx

]

= Pr
[(

⊕t−1
j=0

�R[j][cj
Δ]

)

⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx ⊕ δΔ

]

=
1√
n

.

The last step is because every �R[j][cj
Δ] and �R[j][cj

x] are mutually independent
and uniformly distributed over [

√
n] since cx �= cΔ by definition. Therefore,

the sum of them
(

⊕t−1
j=0

�R[j][cj
Δ]

)

⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

is uniformly distributed over

[
√

n].

Lemma 3 (Privacy). Let F be a (t, n)-PMPRS construction shown in Fig. 3,
x ∈ [n], and ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← F.Punc(F.Gen(x), x). For
any x ∈ [n], i ∈ [t], ki = (corri, �ri, �Ri) follows a joint distribution with size
(t− i)×d where each component is independently and uniformly distributed over
[
√

n].

Proof. We first show that every element in corri, �ri, �Ri follows a uniform distri-
bution over [m], and then we will show that elements in corri, �ri, �Ri are mutually
independent.

Recall that �R is a t × d random matrix where each element is uniformly
distributed over [

√
n]. Let (cx, δx) ← ChunkCoord(x) and (c0x, c1x, . . . , ct−1

x) ←
bit-decompd(cx). By corr’s definition, corr = δx ⊕ (⊕t−1

j=0
�R[j][cj

x]) is uniformly
distributed over [

√
n]. So corri ← (⊕i−1

j=0
�R[j][cj

x]) ⊕ corr is uniformly distributed
over [

√
n]. Since all elements in �ri are defined as xor of elements in �R, so they

are uniformly distributed over [
√

n]. Lastly, by �Ri’s definition, every element in
�Ri is a copy of an element in �R, so all elements in �Ri are uniformly distributed
over [

√
n].

We now show elements in corri, �ri, �Ri are mutual independent.

– We initialize an empty set S and add all elements in �Ri and �ri into S. We know
that elements in S are mutual independent since, by definition, every element
in �Ri or �ri is a copy of an distinct element in �R and so is independently
sampled.

– By corri’s definition, we know corri is independent of S, since (⊕i−1
j=0

�R[j][cj
x])

is independent of S.
– Update S ← S ∪ {corri}, we know all elements in S are mutual independent.

Information-Theoretic PIR with Client Preprocessing 441

Since S equals the union of elements in corri, �ri, �Ri, we conclude that elements
in corri, �ri, �Ri are mutual independent.

Theorem 2. Let F be a (t, n)-PMPRS construction shown in Fig. 3. Then

– The time complexity of F.Test(k, x) for any valid k, x is O(poly. log(n)).
– The time complexity of F.Set(k) for any valid k is ˜O(

√
n).

– The time complexity of F.Punc(k, x) for any valid k, x is ˜O(
√

n + t2n1/2t).
Additionally, for t ∈ [2, 1

2 log(n)], F.Punc(k, x) runs in ˜O(
√

n).
– The time complexity of F.DotProdEval(i, ki,DB) for any valid i, ki,DB is

˜O(
√

n).
– The key k and punctured key ki have size ˜O(tn1/2t) for every i ∈ [t].

Proof. We first note that for any input from [n], all the ChunkCoord(·),
ChunkCoord−1(·, ·), bit-decomp(·) and ⊕ operations can be done in
O(poly. log(n)).

By F.Test(k, x)’s definition, we can verify that it runs in O(poly. log(n)) for
any valid k, x.

By F.Set(k)’s definition, it runs a for loop O(
√

n) times and each loop can be
done in O(poly. log(n)). Therefore, F.Set(k) runs in O(poly. log(n)·√n) = ˜O(

√
n)

for any valid k.
By F.Punc(k, x)’s definition, it computes (Si, ki, indi) for each server i ∈

[t]. ki can be computed in O(id · poly. log(n)), indi can be computed in
O(poly. log(n)) and Si can be computed in O(dt−ipoly. log(n)). Summing up
together, F.Punc(k, x) runs in O(poly. log(n) · (

√
n + t2n1/2t)). Additionally, if

we choose t ∈ [2, 1
2 log(n)], F.Punc(k, x) runs in O(poly. log(n) · √n) = ˜O(

√
n).

We now compute the time complexity of F.DotProdEval(i, ki,DB). To con-
struct the offset vector �δ, DotProdEval runs a for loop O(dt−i) times and each
loop can be done in O(poly. log(n)).

To compute a single element in �vi, since the corresponding set Suw is with size
O(dt−i), so the total computation time is O(dt−ipoly. log(n)). However, we note
that, for adjacent element in �vi, their corresponding set Suw and Suw′ are only
different in 2 · dt−i−1 elements. This is because w and w′ are sibling nodes and
the chunks/leaf nodes in the sub-tree rooted at w and w′ are the only elements
that differentiate Suw and Suw′ . This observation says that we only need to do
a full computation on �vi[0], and all the rest elements of �vi can be computed in
O(dt−i−1poly. log(n)) time. Since �vi has di+1 nodes, the total computation of �vi

is O(dtpoly. log(n)).
Summing up the complexity of computing both vectors �δ and �vi, we conclude

that F.DotProdEval(i, ki,DB) runs in O(poly. log(n)·dt) = O(poly. log(n)·√n) =
˜O(

√
n) for any valid i, ki,DB.

Lastly, to see the size of k = (�R, corr), since �R is a t × d matrix where every
entry has size 1

2 log2 n and corr is a 1
2 log2 n-bits string. Therefore, k has size

O(td · poly. log(n)) = ˜O(tn1/2t). Similarly, by definition, punctured key ki =
(corri, �ri, �Ri) has size O(td · poly. log(n)) = ˜O(tn1/2t).

442 J. Singh et al.

4 Proposed Scheme for PIR with Client Preprocessing

As described in the technical overview, our PIR construction is in the CGK
paradigm, where instead of 2 servers, our construction assumes 2t servers for
t ≥ 2. Next we reiterate a high level outline for the PIR protocol, which we
present formally in Fig. 4.

Let n represent the size of the database DB, and 2t is the number of servers.
In the offline phase the client generates PMPRS keys: ki ← Gen() for i ∈ [T] =
{1, 2, , . . . , T}, where T = λ

√
n and λ is the statistical security parameter. The

client sends these PMPRS keys to Server 0. Let �k be a vector of keys such that
�k[i] = ki.

Server 0 interprets each of these PMPRS keys as a partitioned pseudo-random
set (using Set function) each of size

√
n - allowing it to compute the hint bit

hi = ⊕j∈Set(ki)DB[j]. The Server 0 sends back the vector �h with �h[i] = hi to the
Client. The Client stores state (�k,�h) as output of the offline phase.

In the online phase, the client on input PIR index x ∈ [n] first searches for
a key ki in �k such that Test(ki, x) = true. With probability (1 − negl.(λ)) such
a key would exist. This follows from the randomness property of the PMPRS
primitive:

Pr(x /∈ Set(Gen(1t, 1n))) =
(

1 − 1/
√

n
)

=⇒ Pr (x /∈ Set(k0) ∧ x /∈ Set(k1) . . . ∧ x /∈ Set(kT−1)) = (1 − /
√

n)λ
√

n ≤ e−λ

Next, the Client computes the punctured keys as ((S0, k0, ind0), (S1, k1, ind1),
. . . , (St−1, kt−1, indt−1)) ← Punc(k, x) and sends to Server (t + i) the punc-
tured key ki. Each of these servers respond back with vectors �vi as output by
DotProdEval(ki, i,DB). The client can now compute the PIR output DB[x] as
hi ⊕ (⊕t−1

j=0�vi[idxi]
)

.
The client ends up consuming a PMPRS key and corresponding hint bit

(ki, hi). To replenish the same, the Client generates a new PMPRS key k′ con-
taining x and it computes its hint bit by sharing punctured keys of Punc(k′, x)
with Servers 0, 1, . . . t − 1.

Theorem 3. Suppose that F is ελ-secure (t, n)-PMPRS, then the 2t-server PIR
scheme (shown in Fig. 4) that supports poly(λ) queries is ελ-private.

Proof. The proof is a direct combination of Lemma4 and Lemma 5.

Lemma 4. Suppose that F is ελ-secure (t, n)-PMPRS, then for any polynomial
function p(·), and any adversary A that acts on behalf of Server i ∈ {t, · · · , 2t−1}
and adaptively makes p(λ) queries, there exists a PPT simulator Sim(1λ, 1n),
where the polynomial is in terms of n, λ, such that

viewReal
∼∼∼ελ

viewSim,

where viewReal, viewSim are the distributions of A’s views interacting with a real
client in Fig. 4 and Sim, respectively.

Information-Theoretic PIR with Client Preprocessing 443

Fig. 4. Proposed 2t server PIR with pre-processing protocol for database of size n
given a (t, n)-PMPRS

Proof. We first construct the following simulator Sim. Note that viewSim follows
the distribution (k1

i , · · · , k
p(λ)
i).

Simulator Construction
Upon receiving the q-th query index idx ∈ [n], if q > p(λ) then aborts; otherwise
computes the following:

– Ignores idx and samples a new index y ←$ [n].
– kq ← F.Gen(1t, 1n, y).
– Computes

((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, y).

– Sends kq
i to A.

Indistinguishability of viewReal and viewSIM .

444 J. Singh et al.

To prove viewReal
∼∼∼ελ

viewSim, we follow a standard hybrid argument. We first
construct Experiment Hyb1 described below. From the privacy property of of the
underlying PMPRS scheme F , we have viewSIM

∼∼∼ελ
viewHyb1. We highlight the

difference between Sim and Experiment Hyb1 with a shaded background.
Experiment Hyb1. Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– kq

i ← SimF (1t, 1n, i), where SimF is a simulator for F defined in Definition 2.

– Sends kq
i to A.

We again follow the Privacy property of the underlying PMPRS scheme F ,
and have viewHyb1

∼∼∼ελ
viewHyb2.

Experiment Hyb2. Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– Computes kq ← F.Gen(1t, 1n, idx).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ←

F.Punc(kq, idx).

– Sends kq
i to A.

We highlight the difference between the Realworld Construction and the
Experiment Hyb2 with a shaded background. Note that viewReal follows the
distribution (k1

i , · · · , k
p(λ)
i) in the Realworld Construction below. The differ-

ence between the Realworld Construction and the Experiment Hyb2 is that the
puncturable random sets in Real is generated offline and there is a negligible
probability of it not being able to find a random set containing idx (by the
guarantee of choosing parameter T). Since the adversary didn’t participate in
the offline phase, it has no chance to see the puncturable random set generated
in offline phase, so viewHyb2

∼∼∼ελ
viewReal.

Realworld Construction. Upon receiving the q-th query index idx ∈ [n], if
q > p(λ) then aborts; otherwise proceeds the following:
– Find a k ∈ �k such that F.Test(k, x) = true
– Set kq ← k

– Computes
((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, idx).

– Sends kq
i to A.

By the standard hybrid argument, we conclude that viewReal
∼∼∼ελ

viewSim.

Lemma 5. Suppose that F is ελ-secure (t, n)-PMPRS, for any polynomial func-
tion p(·), and any adversary A that acts on behalf of Server i ∈ [t] and adaptively
makes p(λ) queries, there exists a PPT simulator Sim(1λ, 1n), where the polyno-
mial is in terms of n, λ, such that

viewReal
∼∼∼ελ

viewSim,

where viewReal, viewSim are the distributions of A’s views interacting with a real
client in Fig. 4 and Sim, respectively.

Information-Theoretic PIR with Client Preprocessing 445

Proof. We first construct the following simulator Sim for any adversary A that
acts on behalf of Server i ∈ {1, · · · , t − 1}, and prove viewReal

∼∼∼ελ
viewSim.

Then, we will show how to extend the simulator and the proof to A that acts on
behalf of Server 0, which also participates the offline phase. Note that viewSim

follows the distribution (k1
i , · · · , k

p(λ)
i).

Simulator Construction
Upon receiving the q-th query index idx ∈ [n], if q > p(λ) then aborts; otherwise
proceeds the following:

– Ignores idx and samples a new index y ←$ [n].
– Computes kq ← F.Gen(1t, 1n, y).
– Computes

((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, y).

– Sends kq
i to A.

Indistinguishability of viewReal and viewSIM . To prove viewReal
∼∼∼ελ

viewSim, we follow a standard hybrid argument. We construct Experiment Hyb1
in the below. Directly following the Privacy property of the underlying PMPRS
scheme F , we have viewSIM

∼∼∼ελ
viewHyb1. We highlight the difference between

Sim and Experiment Hyb1 with a shaded background.

Experiment Hyb1. Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– kq

i ← SimF (1t, 1n, i), where SimF is a simulator for F defined in Definition 2.

– Sends kq
i to A.

We again follow the Privacy property of the underlying PMPRS scheme F ,
and have viewHyb1

∼∼∼ελ
viewReal.

Realworld Construction. Upon receiving the q-th query index idx ∈ [n], if
q > p(λ) then aborts; otherwise proceeds the following:
– Computes kq ← F.Gen(1t, 1n, idx).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ←

F.Punc(kq, idx).

– Sends kq
i to A.

We then construct the simulator Sim0 for any adversary A that acts on behalf
of Server 0. The proof of viewReal

∼∼∼ελ
viewSim0 follows exactly the same flow in

the above.

446 J. Singh et al.

Simulator Construction
In the offline phase,

– For i = 1 to T : computes ki ← F.Gen(1t, 1n).
– Sends k0. . . . , kT−1 to A.

In the online phase, upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:

– Ignores idx and samples a new index y ←$ [n].
– Computes kq ← F.Gen(1t, 1n, y).
– Computes

((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, y).

– Sends kq
i to A.

Theorem 4. The 2t-server PIR with client preprocessing protocol (in Fig. 4)
instantiated with the (t, n) − PMPRS F (in Fig. 3) has the following complexity:

– ˜O(λ
√

nt2n
1
2t) client storage. If t ∈ [2, log2(n)], ˜O(λ

√
n) client storage;

– No additional server storage after offline phase;
– Offline Phase:

• ˜O(λn) server time and ˜O(λ
√

ntn
1
2n) client time; if t ∈ [2, log2(n)],

˜O(λ
√

n) client time;
• ˜O(λn1/2+1/2t) communication;

– Online Phase:
• ˜O(

√
n) server time and ˜O(

√
n + t2n1/2t) client time; if t ∈ [2, log2(n)],

˜O(
√

n) client time;
• ˜O(

√
nt) communication; if t ∈ [2, log2(n)], ˜O(

√
n) communication.

Therefore, the amortized communication per query is ˜O(
√

n), and the amortized
server computation and client computation per query is ˜O(

√
n) if we choose

t ∈ [2, log2(n)].

Proof. On the client side, it stores the hint vector �h and the key vector �k
and also needs a buffer to store F.Punc’s output. Recall �h and �k both have
size T = O(λ

√
n) and each element requires O(1) and ˜O(tn

1
2t) storage, sepa-

rately. F.Punc’s output requires O(t log(n)), ˜O(t2n
1
2t), O(

√
n log(n)) storage for

S, k, ind, separately. Summing up together, client needs storage ˜O(λ
√

nt2n
1
2t). If

we choose t ∈ [2, log2(n)], client-side storage is ˜O(λ
√

n).
During the offline phase, Server 0 computes F.Set() function T times, so its

computation is bounded by ˜O(λn). Client computes F.Gen() function T times,
so its computation is bounded by ˜O(λ

√
ntn

1
2n). If we choose t ∈ [2, log2(n)],

client’s computation is ˜O(λ
√

n). For the communication, Server 0 and Client

communicate �h and �k, the size of which are ˜O(λ
√

nt2n
1
2t). If we choose t ∈

[2, log2(n)], the communication overhead is ˜O(λ
√

n).
During the online phase, each Server i (for i ∈ [2t]) computes F.DotProdEval

per query in ˜O(
√

n). Client computes F.Punc twice per query in ˜O(
√

n+t2n1/2t).

Information-Theoretic PIR with Client Preprocessing 447

If we choose t ∈ [2, log2(n)/2], the client-side computation is ˜O(
√

n) per query.
The communication between servers and Client is bounded by ˜O(

√
nt). Since

Client receives �vi from each server i ∈ [2t] and the size of �vi is bounded by
√

n.
If we choose t ∈ [2, log2(n)/2], the communication overhead is ˜O(λ

√
n).

The correctness proof of our PIR scheme is pretty straightforward and it
follows the same blueprints as other PIR correctness proofs in CGK paradigm
[11,26]. At a high level, we prove the client always maintains a state containing
T random PMPRS keys. In each online phase the client finds a key k containing
its query x with probability 1 − negl.(λ). Using the key k and its hint bit the
client retrieves the correct database bit DB[x] and it replenishes the used key
and hint bit, where the correctness of our PMPRS scheme ensures the correctness
of the online phase of our construction.

Remark 1 (Extending our PIR scheme for arbitrary n). The proposed 2t server
PIR scheme with client preprocessing assumes a (t, n)-PMPRS as building block.
However, our PMPRS scheme gives us a construction only for parameters t, n
such that n1/2t is an integer. To get a PIR scheme for arbitrary n ∈ N and 2t
servers, we can find the smallest integer m greater than or equal to n such that
m1/2t is an integer, then we have m = O(tn). Now we can pad the database of size
n with m − n dummy elements and then use our PIR scheme based on (t,m)-
PMPRS to query the modified database. For t ∈ [2, log(n)/2] the asymptotic
complexity of offline phase and online phase of this modified protocol would
remain unchanged up to polylogarithmic factors in n.

4.1 Improving PIR Communication Complexity

In our proposed PIR with client preprocessing scheme, the online phase commu-
nication is dominated by the cost of server responses - which include vectors �vi

output by the DotProdEval algorithm. However, note that the Client is interested
in learning just the idx0, idx1, . . . , idx

th
t−1 bits of the vectors �v0, �v1, . . . , . . . , �vt−1

respectively, since these specific bits allow the client to compute the database xor
bit of the punctured set. In our constructions these vectors �v0, �v1, . . . , . . . , �vt−1

are of length d, d2, . . . , dt =
√

n respectively (where d = n1/2t is an integer).
Hence, a natural approach to reduce communication would be to use a PIR
scheme where the database on the server side are the vectors �v0, �v1, . . . , . . . , �vt−1

with client query indexes idx0, idx1, . . . , idxth
t−1, instead of downloading the entire

vectors on to the client. However, there exist no non-trivial information theoretic
PIR schemes in the single server model [4].

Hence, our next approach would be to consider 4t servers instead of 2t servers
- two servers for each server in the original PIR scheme. For every server and
its copy the client sends the same online query - and hence these pair of servers
compute the same vector �vi as output of DotProdEval in the online phase. And
now the Client can use a 2-server PIR scheme to retrieve just the bit of interest
�vi[idxi] in sublinear communication and linear computation in the database size.
Instantiating the 2-server PIR primitive with the most communication efficient
information-theoretic PIR due to Dvir and Gopi [14] gives us the following result:

448 J. Singh et al.

Theorem 5. There exists a 4t-server PIR with client preprocessing protocol
with threshold 1 with ˜O(λ

√
n) client storage; ˜O(λ

√
n) online client complexity;

20.5(log(n)+O(
√
log n)) online server complexity and n1/2d+o(1) online bandwidth

per query.

Acknowledgements. We thank all anonymous reviewers for their valuable com-
ments. This work was done while all authors Jaspal Singh, Yu Wei and Vassilis Zikas
were at Purdue University. Yu Wei and Vassilis Zikas were funded in part by NSF grant
No. 2055599, AnalytiXIN, and Sunday Group, Inc. Jaspal Singh was funded in part by
AnalytiXIN, and Sunday Group, Inc.

References

1. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy,
pp. 962–979. IEEE Computer Society Press, May 2018

2. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastruc-
ture. In: 2th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16), pp. 551–569 (2016)

3. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified
construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-48224-5 74

4. Beimel, A., Ishai, Y., Kushilevitz, E., Malkin, T.: One-way functions are essential
for single-server private information retrieval. In: 31st ACM STOC, pp. 89–98.
ACM Press, May 1999

5. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the O(n1/(2k−1))
barrier for information-theoretic private information retrieval. In: 43rd FOCS, pp.
261–270. IEEE Computer Society Press, November 2002

6. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44598-6 4

7. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 12

8. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

9. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM (JACM) 45(6), 965–981 (1998)

10. Corrigan-Gibbs, H., Henzinger, A., Kogan, D.: Single-server private information
retrieval with sublinear amortized time. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022. LNCS, vol. 13276, pp. 3–33 . Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-07085-3 1

11. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp.
44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 3

https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-031-07085-3_1
https://doi.org/10.1007/978-3-031-07085-3_1
https://doi.org/10.1007/978-3-030-45721-1_3

Information-Theoretic PIR with Client Preprocessing 449

12. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. Cryptology ePrint Archive (2018)

13. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 1

14. Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J. ACM
(JACM) 63(4), 1–15 (2016)

15. Efremenko, K.: 3-query locally decodable codes of subexponential length. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 39–44. ACM Press, May/June
(2009)

16. Fisch, B., Lazzaretti, A., Liu, Z., Papamanthou, C.: Single server PIR via homo-
morphic thorp shuffles. Cryptology ePrint Archive (2024)

17. Ghoshal, A., Zhou, M., Shi, E.: Efficient pre-processing PIR without public-key
cryptography. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024. LNCS, vol.
14656, pp. 210–240. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
58751-1 8

18. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

19. Henry, R., Huang, Y., Goldberg, I.: One (block) size fits all: PIR and SPIR with
variable-length records via multi-block queries. In: NDSS (2013)

20. Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan,
V.: One server for the price of two: simple and fast {single-server} private infor-
mation retrieval. In: 32nd USENIX Security Symposium (USENIX Security 23),
pp. 3889–3905 (2023)

21. Hetz, L., Schneider, T., Weinert, C.: Scaling mobile private contact discovery to
billions of users. Cryptology ePrint Archive (2023)

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: Babai, L. (ed.) 36th ACM STOC, pp. 262–271. ACM Press, June 2004

23. Ishai, Y., Shi, E., Wichs, D.: PIR with client-side preprocessing: information-
theoretic constructions and lower bounds. In: Reyzin, L., Stebila, D. (eds.)
CRYPTO 2024. LNCS, vol. 14928. Springer, Cham (2024). https://doi.org/10.
1007/978-3-031-68400-5 5

24. Kogan, D., Corrigan-Gibbs, H.: Private blocklist lookups with checklist. In: 30th
USENIX Security Symposium (USENIX Security 21), pp. 875–892 (2021)

25. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings 38th Annual Sym-
posium on Foundations of Computer Science, pp. 364–373. IEEE (1997)

26. Lazzaretti, A., Papamanthou, C.: TreePIR: sublinear-time and polylog-bandwidth
private information retrieval from DDH. Cryptology ePrint Archive (2023)

27. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information
retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 168–
186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 10

28. Menon, S.J., Wu, D.J.: SPIRAL: fast, high-rate single-server PIR via FHE com-
position. In: 2022 IEEE Symposium on Security and Privacy, pp. 930–947. IEEE
Computer Society Press, May 2022

29. Mittal, P., Olumofin, F., Troncoso, C., Borisov, N., Goldberg. I.: {PIR-Tor}:
scalable anonymous communication using private information retrieval. In: 20th
USENIX Security Symposium (USENIX Security 11) (2011)

https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-031-58751-1_8
https://doi.org/10.1007/978-3-031-58751-1_8
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-031-68400-5_5
https://doi.org/10.1007/978-3-031-68400-5_5
https://doi.org/10.1007/978-3-662-47854-7_10

450 J. Singh et al.

30. Mughees, M.H., Sun, I., Ren, L.: Simple and practical amortized sublinear private
information retrieval. Cryptology ePrint Archive (2023)

31. Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable pseudorandom sets
and private information retrieval with near-optimal online bandwidth and time. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 641–
669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 22

32. Stinson, D., Wei, R., Paterson, M.B.: Combinatorial batch codes. Adv. Math. Com-
mun. 3(1), 13–27 (2009)

33. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM (JACM) 55(1), 1–16 (2008)

34. Zhou, M., Park, A., Shi, E., Zheng, W.: Piano: extremely simple, single-server PIR
with sublinear server computation. Cryptology ePrint Archive (2023)

https://doi.org/10.1007/978-3-030-84259-8_22

Asynchronous Agreement on a Core Set
in Constant Expected Time and More
Efficient Asynchronous VSS and MPC

Ittai Abraham1 , Gilad Ashsarov2 , Arpita Patra3 , and Gilad Stern4(B)

1 Intel Labs, Petah Tikvah, USA
ittai.abraham@intel.com

2 Bar-Ilan University, Ramat Gan, Israel
3 Indian Institute of Science, Bengaluru, India
4 Tel Aviv University, Tel Aviv-Yafo, Israel

giladstern@tauex.tau.ac.il

Abstract. A major challenge of any asynchronous MPC protocol is the
need to reach an agreement on the set of private inputs to be used as
input for the MPC functionality. Ben-Or, Canetti and Goldreich [STOC
93] call this problem Agreement on a Core Set (ACS) and solve it by run-
ning n parallel instances of asynchronous binary Byzantine agreements.
To the best of our knowledge, all results in the perfect and statisti-
cal security setting used this same paradigm for solving ACS. Using all
known asynchronous binary Byzantine agreement protocols, this type of
ACS has Ω(log n) expected round complexity, which results in such a
bound on the round complexity of MPC protocols as well (even for con-
stant depth circuits).

We provide a new solution for Agreement on a Core Set that runs in
expected O(1) rounds. Our perfectly secure variant is optimally resilient
(t < n/4) and requires just O(n4 log n) expected communication com-
plexity. We show a similar result with statistical security for t < n/3. Our
ACS is based on a new notion of Asynchronously Validated Asynchronous
Byzantine Agreement (AVABA) and new information-theoretic analogs
to techniques used in the authenticated model. Along the way, we also
construct a new perfectly secure packed asynchronous verifiable secret
sharing (AVSS) protocol with just O(n3 log n) communication complex-
ity, improving the state of the art by a factor of O(n). This leads to
a more efficient asynchronous MPC that matches the state-of-the-art
synchronous MPC.

1 Introduction

Broadly, there are two main network conditions where secure multiparty com-
putation protocols were studied. The first is the synchronous setting, where all
messages sent between honest parties arrive after some known bounded delay.

For a full version of this paper, see [4].

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 451–482, 2025.
https://doi.org/10.1007/978-3-031-78023-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_15&domain=pdf
http://orcid.org/0000-0001-9568-7674
http://orcid.org/0000-0002-0846-9773
http://orcid.org/0000-0002-8036-4407
http://orcid.org/0000-0002-0358-2689
https://doi.org/10.1007/978-3-031-78023-3_15

452 I. Abraham et al.

The choice of this delay bound is critical: setting a large delay causes the pro-
tocol to be inefficient and slow, while setting a small delay might lead to non-
termination. The second category is the asynchronous model, where each mes-
sage sent between honest parties arrives after some finite delay. This model allows
protocols to dynamically adjust to adversarial network conditions and terminate
even when the adversary can adaptively manipulate the delays.

One of the core challenges for MPC protocols in the asynchronous setting is
that they must reach agreement on which private inputs to use as input for the
circuit. Ben-Or, Canetti and Goldreich (BCG) [11] call this problem Agreement
on a Core Set (ACS). In this paper, we consider protocols with optimal resilience
in the asynchronous model against computationally unbounded adversaries. From
the lower bound of [5,11,13], perfect security for MPC implies that the number
of corruptions in this setting is at most t < n/4, so optimal resilience is when
n = 4t + 1. This is in contrast to the optimal resilience of n = 3t + 1 in the
synchronous perfect security setting and the asynchronous statistical security
setting. The seminal result of [11,15] is the first work to obtain perfect security
with optimal resilience in the asynchronous model.

Before proceeding, we refine the problem definition. Our main motivating
application for ACS is in asynchronous secure computation. Each party shares
its input at the beginning of the protocol using asynchronous verifiable secret
sharing (AVSS). When a dealer is honest, then all honest parties will eventually
receive valid shares. If the dealer is corrupted and one honest party successfully
completes the AVSS, then all honest parties will eventually also receive valid
shares. However, some instance of corrupted dealers might never terminate, and
some instances of honest dealers might be very slow (due to adversarial dealys).
The parties then wish to agree on a common core set of n − t parties whose
AVSS has been successfully completed or will eventually terminate. Reaching an
agreement is crucial for the sequel of the secure protocol. Using an ACS protocol,
parties agree on some set of n−t parties (“core”) whose AVSS has terminated or
will eventually terminate for all parties. The difficulty is that due to asynchrony,
some of the inputs of honest parties (which instances terminated) might arrive
dynamically, and the corrupted parties might input identities of instances that
will never terminate.

In terms of round complexity, the best one can hope for is reaching agree-
ment in constant expectation [25]. However, to the best of our knowledge, all
results in the asynchronous information-theoretic setting run O(n) parallel asyn-
chronous binary Byzantine agreement instances to agree on a core set. All known
asynchronous binary agreement protocols follow a geometric distribution, and
composing n such protocols in parallel, means that the expectation of the max-
imum is Ω(log n). So for over 30 years, the best expected round complexity for
asynchronous MPC has Ω(log n) overhead (even for constant depth circuits)1.
A natural question remained open:

1 As opposed to some claims in the literature, the work of [12] does not provide an
O(1) expected time ACS; see Sect. 1.2.

Asynchronous Agreement on a Core Set 453

Is there an asynchronous MPC with constant expected running time over-
head? Or is there an inherent Ω(log n) lower bound for ACS due to asyn-
chrony?

1.1 Our Contributions

Our main contributions are (1) a novel protocol for agreement on a core set in
constant expected time via a new multi-valued agreement protocol with asyn-
chronous validation; (2) Efficiency improvements in the communication complex-
ity of asynchronous verifiable secret sharing. Our new ACS and AVSS together
significantly improve the communication complexity and round complexity of
asynchronous MPC.

Asynchronously Validated Asynchronous Byzantine Agreement
(AVABA). We achieve ACS via a new notion that we introduce, called
“AVABA”. This is an information-theoretic version of Validated Asynchronous
Byzantine Agreement (VABA [7]), where the external validity function is
replaced with asynchronous validation. Our AVABA protocol is perfectly secure
and resilient to t < n/4 corruptions. For inputs of size O(n) bits, it runs in
O(1) expected time and requires O(n4 log n) expected communication complex-
ity. Parties are guaranteed to reach an agreement on an input of one of the
parties, and the value is guaranteed to pass an asynchronous validation. In the
MPC setting, this validation checks that the input contains n − t parties who
verifiably completed the input-sharing phase. To the best of our knowledge, the
most efficient agreement protocols [10,24] with constant expected rounds and
t < n/4 currently require O(n6 log n) bits to be sent in expectation. Further-
more, these protocols are binary agreement protocols. Our protocol improves
the efficiency of those protocols and allows for multi-valued agreement.

Theorem 1.1 (Asynchronously Validated Asynchronous Byzantine Agreement
(informal)). There exists a perfectly secure protocol for asynchronous Byzantine
agreement with asynchronous validation (AVABA) that is resilient to t < n/4
Byzantine corruptions. Each party has a valid input of size O(n log n) bits. The
protocol runs in constant expected time and O(n4 log n) expected communication
complexity.

Agreement on a Core Set (ACS). Using this AVABA protocol and an asyn-
chronous validation checking which parties shared their inputs, we implement a
perfectly secure, t < n/4 resilient constant expected time protocol for Agreement
on a Core Set (ACS) with an expected O(n4 log n) communication complexity.
To the best of our knowledge, this is the first time ACS is solved via a multi-
valued agreement in the information-theoretic setting without using any binary
agreement building blocks. See Sect. 1.2 for more details.

Corollary 1.2. There exists a perfectly secure protocol for asynchronous agree-
ment on a core set (ACS) with an asynchronous validation resilient to t <
n/4 Byzantine corruptions. The protocol runs in constant expected time and
O(n4 log n) expected communication complexity.

454 I. Abraham et al.

As we elaborate in the related work section, the communication cost of ACS
from [15] is O(n7 log n).

Extensions for t < n/3 Corruptions and Statistical Security. We also
extend our results to the statistical settings, and derive resilience to t < n/3
corruptions. Set Sect. 2.3 for further details.

Asynchronous Verifiable Secret Sharing. Our second main contribution is
a new asynchronous verifiable secret sharing (AVSS):

Theorem 1.3. There exists a perfectly secure protocol for asynchronous ver-
ifiable secret sharing resilient to t < n/4 malicious corruptions. For shar-
ing X secrets (of O(log n) bits each), the total communication complexity is
O(nX + n3 log n).

This means that we get O(n) overhead for sharing Ω(n2) secrets. Prior to
our work, the AVSS protocol of [11] achieves total communication complexity
of O(n4 log n) for sharing one secret, and the one by [19,29] obtains a total
communication complexity of O(nX + n4 log n) bits for X secrets. That is, for
obtaining O(n) overhead the dealer has to share Ω(n3) secrets. In our ACS pro-
tocol, the dealer has to share just O(n) secrets, in which case our AVSS requires
O(n3 log n) as opposed to O(n4 log n) by [19,29], improving the communication
by a factor of O(n).

Conclusion: Asynchronous MPC. When plugging our new AVSS and new
ACS in the recent asynchronous MPC protocol of [3], we obtain the following
corollary:

Corollary 1.4. For a circuit with C multiplication gates and depth D, there
exists a perfectly secure, optimally-resilient asynchronous MPC protocol with
O((Cn + Dn2 + n4) log n) communication complexity and O(D) expected run-
time.

Without our work, when combining the protocol of [3] with the ACS protocol
of [15], together with the AVSS protocol of [19,29], the cost of the entire MPC is
O((Cn + Dn2 + n7) log n) and O(D + log n) expected-time. Our work improves
both the communication and round complexities. See Sect. 2.3.

Synchronous vs. Asynchronous MPC. We conclude this section by noting
an accepted claim regarding the relationship between synchronous and asyn-
chronous MPC is that (see, e.g., Nielsen [28]):

“Synchronous MPC has higher security and requires less communication
than asynchronous MPC.”

The first is part of the sentence is due to the different optimal bounds: Optimal
resilient in perfect MPC in the synchronous setting is t < n/3 whereas in the
asynchronous setting is t < n/4. The second part, as claimed in [28] is due to
the fact that “Another advantage of synchronous MPC is that we know how to
construct them with much less communication in terms of bits sent than the
asynchronous ones”.

Asynchronous Agreement on a Core Set 455

Our work shows that the second part of the claim is false, at least, for perfect
MPC. Specifically, the current most efficient perfect synchronous MPC [2] pro-
tocol achieves the exact same complexity as ours: O((Cn + Dn2 + n4) log n)
with O(D) expected rounds.2 Note that while one could run asynchronous pro-
tocols in synchronous networks, asynchronous MPC protocols are designed for
lower corruption thresholds and only take n − t inputs into consideration. This
even gives rise to the hope that perhaps, one can even construct a more efficient
asynchronous MPC protocol than a synchronous protocol, and our understand-
ing of the relationship between synchronous and asynchronous protocols is still
lacking.

1.2 Related Work

Agreement on a Core Set via n Parallel Binary Agreements. In the
asynchronous setting, an MPC protocol cannot wait for input from all parties.
One important task of any MPC protocol in the asynchronous setting is reaching
agreement on the set of parties whose private input is used as the input for
the MPC circuit. To solve this, Ben-Or, Canetti and Goldreich [11] suggest a
protocol called Agreement on a Core Set (ACS). To the best of our knowledge,
all previous asynchronous MPC protocols (in the perfect and statistical security
setting) use the same ACS protocol suggested by [11]. This ACS is based on
running n parallel binary agreements. Roughly speaking, parties enter input 1
to the ith binary agreement when they see that party Pi has completed secret
sharing its input and enter all remaining instances with the value 0 once they
see at least n − t agreements terminate with a decision of 1.

On the positive side, this elegant solution requires just simple binary agree-
ment as a building block. On the negative side, each binary agreement instance
has an independent constant probability of terminating in each round, so in iso-
lation, each instance has a constant expectation. However, the expectation of
the maximum of n such independent instances is Ω(log n). Therefore, this app-
roach of running separate binary instances seems to have a natural barrier for
obtaining O(1) expected round complexity. Lastly, the best known binary agree-
ment protocols [10,24] in this setting require the expected total of O(n7 log n)
communication bits for the ACS.

On Ben-Or and El-Yaniv’s Work. The work of [11] claims that a result of
Ben-Or and El-Yaniv solves ACS in constant expected rounds. Here we explain
why this is not the case. The work by Ben-Or and El-Yaniv [12] (published
10 years after [11] cites them) deals with executing n concurrent instances of
Byzantine Agreement. The first part of [12] is for the synchronous model and we
believe it can be used to agree on a common subset in synchrony. The second
part claims that these techniques can be extended to solve some variant of multi-
sender agreement in constant expected rounds in the asynchronous model.
2 A somewhat incomparable result [26] removes the O(Dn2) in the communication

complexity: O((Cn+n5) log n) communication with O(D +n) expected rounds. We
are not aware of a comparable result in the asynchronous case.

456 I. Abraham et al.

The situation for the asynchronous model is different. First, we note that [12]
explicitly do not mention that they can solve ACS in the asynchronous model.
Indeed, the stated results of [12] and the techniques of [12] do not provide a way
to solve ACS (as needed for asynchronous MPC) in constant expected rounds.
They only solve an easier problem in which the input of each party exists at the
beginning of the protocol (unlike ACS, where due to asynchrony some of the
inputs may arrive dynamically over time).

The Work of Ben-Or, Kelmer and Rabin [13]. In [13]’s ACS protocol,
parties first invoke the BA instances with input 1 for parties who are deemed
valid according to a validity condition (in the case of MPC, dealers whose VSS
instances have been completed). Parties input 0 to the remaining instances only
after seeing n−t instances with output 1. Trying to naively apply the techniques
of [12] does not work because they require starting all BA instances at the same
time and synchronizing them using Select (the Select protocol in round r waits
for all n log n BA instances to reach round r + 1). It is possible that a less naive
approach may work, synchronizing some of the BA instances using Select, and
then initiating the rest. This seems to require a much more subtle approach since
parties are required to wait for the agreed output for each party to be 1 before
proceeding (while dealing with log(n) BA instances per party), and possibly
using Select several times.

A possible alternative approach is having each party set all inputs to the BA
instances at once, after seeing that at least n− t of those inputs are 1. Using this
approach, it is possible that no party has the unanimous support of all honest
parties, meaning that each party has at least one honest party input 0 to its
BA instance. In this case, parties can output 0 in all instances and thus output
an empty set as the agreed core. Even protocols that strengthen the validity
conditions are likely to fail because it is possible that most BA instances have
many 0 and 1 inputs, resulting in small cores (for example, of size t+1 as opposed
to n− t). We believe that obtaining a less naive protocol could potentially be an
interesting follow-up work.

Recent and Concurrent Work. Two recent and concurrent works deal with
tasks related to information-theoretic agreement on a core set with constant
round complexity. Duan et al. [23] claims to have an information-theoretic con-
struction of an ACS in constant expected rounds. However, their construction
uses cryptographic hash functions and a threshold PRF, instantiated by a thresh-
old signature scheme. So while their work solves ACS with constant round com-
plexity it is not perfectly secure or statistically secure (it does not obtain O(1)
expected rounds against an unbounded adversary). Moreover, our core consensus
protocol obtains the same efficiency while requiring significantly weaker primi-
tives. Our core consensus protocol obtains the same asymptotic O(n3 log n) bit
complexity but requires just a weak leader election (which can be implemented
information theoretically via AVSS, as we show). On the other hand, [23] requires
a strong leader election, which, to the best of our knowledge, requires a DKG and
a computationally bounded adversary for the required complexity. An additional
recent work in the cryptographic setting is that of Das et al. [22]. Their work

Asynchronous Agreement on a Core Set 457

only relies on a cryptographic hash function without additional setup assump-
tions and achieves O(λn3) bit complexity and O(1) time complexity (Table 1).

Cohen et al. [21] construct a constant expected round protocol for a linear
number of binary Byzantine agreement protocols (where all inputs arrive at the
beginning of the protocol). The first version of [21] offhandedly remarks that this
primitive can be used to construct a constant round ACS protocol. However, as
stated in our discussion of Ben-Or and El-Yaniv’s work, these protocols require
parties to know their inputs to all instances of binary agreement at the same
time. The currently known reductions from binary agreement to ACS in the
asynchronus setting rely on this not being the case.

A newer version of [21] was made public after an earlier version of our work
appeared online [4]. In this newer version, the authors use the information the-
oretic Gather protocol defined in our paper in order to solve ACS (the gather
protocol in [6] relied on cryptographic assumptions). The resulting ACS of [21]
uses our techniques, and requires at least Ω(n5κ2 + n6) bits of communication
and is statistically secure, where κ is a statistical security parameter. This bound
stems from each party having to share n secrets. Using the packed secret sharing
protocol of [20], each such sharing requires Ω(n4κ2 +n5) bits of communication.
Constructing a statistical ACS protocol using our techniques will also have the
same bottleneck of n packed sharings, resulting in the same communication com-
plexity. In comparison, our perfect ACS protocol can be used to solve ACS in
just O(n4 log n) bits of communication with perfect security.

Table 1. A comparison of ACS schemes, in terms of: (1) the total number of bits
sent; (2) the expected number of rounds; (3) the type of security provided by the
protocol (either perfect security, statistical security, or computational security reliant
on cryptographic assumptions). All of the works are optimally resilient, i.e. assume
n > 4t for perfectly secure schemes and n > 3t for statistical and computational
schemes. κ and λ are statistical and cryptographic security parameters respectively.
Both [21] and our statistical protocol are evaluated using the packed ACSS protocol
of [20] for n instances of packed secret sharing, assuming sharing O(n) secrets costs
O(n4κ2 + n5).

Protocol Bit Complexity Expected Time Security

Complexity Complexity

BCG [11] O(n7 log n) O(log n) perfect

BKR [13] Ω(n13k2) O(log n) statistical

FIN [23] O(λn3) O(1) computational with DKG

Cohen et al. [21] O(n5κ2 + n6) O(1) statistical

Das et al. [22] O(λn3) O(1) computational

This work (statistical)O(n5κ2 + n6) O(1) statistical

This work (perfect) O(n4 log n) O(1) perfect

458 I. Abraham et al.

2 Technical Overview

We provide a high level overview of our main techniques. In Sect. 2.1 we provide a
brief overview of our AVSS protocol, which might be of an independent interest.
In Sect. 2.2 we provide the overall structure of the ACS protocol, and our AVABA
protocol. We also provide some extensions to our result in Sect. 2.3.

The Model. Before we start, let us first introduce the model. We assume asyn-
chronous communication, which means that the adversary can arbitrarily delay
messages sent between honest parties, while it cannot necessarily see their con-
tent. Messages between honest parties can be delayed but must be delivered
eventually. Honest parties, therefore, cannot distinguish between the case where
a message (from a corrupted party to an honest party) has never been sent or
whether a message (from an honest party to an honest party) is delayed. Thus,
protocols must make sure that parties do terminate and parties cannot wait to
receive messages from all parties. Parties can wait to receive messages from more
than n − t parties only when they are certain that not all messages from honest
parties have been received.

Notation. To describe the ith party, we use i or Pi interchangeably. In Sect. 2.1
we overview our improvement in the communication complexity of AVSS. In
Sect. 2.2 we overview our new asynchronously validated asynchronous Byzantine
Agreement.

2.1 Packed Asynchronous Verifiable Secret Sharing

In this section, we describe an information-theoretic packed AVSS protocol that
requires O(nX + n3 log n) for sharing X secrets.

A Quick Overview of the AVSS Protocol of [11]. We start with a quick
overview of the AVSS protocol of Ben-Or, Canetti and Goldreich [11]. As a first
step, we present an inefficient version where the dealer runs in exponential time.

1. The dealer chooses a random bivariate polynomial S(X,Y) of degree-t in
both variables such that S(0, 0) = s. It then gives each party Pi the shares
fi(X) = S(X, i), gi(Y) = S(i, Y).

2. After receiving their fi and gi polynomials, which we call their shares, and
seeing that they are of the correct degrees, every party Pi forwards the values
fi(j), gi(j) to every Pj .

3. When a party Pi receives a forwarded pair of values fj(i), gj(i) from some
party Pj , it verifies that these values are consistent with the values it has
received from the dealer. Namely, that fi(j) = gj(i) (= S(j, i)) and gi(j) =
fj(i) (= S(i, j)). If this is the case, then Pi broadcasts 〈ok, i, j〉, signifying
that Pi agrees with Pj .

4. The dealer initiates a graph G with V = [n] and E = ∅. Then, upon receiving
broadcasted messages 〈ok, i, j〉 and 〈ok, j, i〉 it adds the edge (i, j) to E. It
then looks for a clique K ⊆ [n] in G. If found, it broadcasts 〈clique,K〉.
Otherwise, it continues to listen to more ok messages, updates its graph, and
repeats.

Asynchronous Agreement on a Core Set 459

5. Each party also initiates a graph as the dealer and adds edges in a similar
manner. Once the dealer broadcasts 〈clique,K〉, the party verifies that K is
a clique in its respective graph. If so, it terminates. Otherwise, it continues
to listen to more edges.

It is easy to see that if one honest party Pj terminates, all honest parties will
eventually terminate. This is because Pj terminates only after the dealer has
broadcasted a clique and Pj has verified the same clique in its respective graph.
Since all the messages that Pj considers are broadcasted, each other honest party
will eventually see the same clique in its graph. Moreover, if the dealer is honest,
then the dealer will eventually see the clique of all honest parties in its graph,
will broadcast it, and all honest parties will eventually verify it as well.

To show binding (i.e., there is a well-defined secret at the end of the sharing
phase), assume that the dealer has broadcasted some clique and an honest party
has verified that clique. Since the clique contains at least 3t+1 parties, it contains
at least 2t + 1 honest parties. Since each pair of honest parties has verified
that their shares agree, they all lie on the same bivariate polynomial S(x, y).
Moreover, parties only consider members of the clique during reconstruction.
This implies that in the reconstruction phase, we will have at least 2t+1 correct
shares and at most t errors, and therefore reconstruction is guaranteed.

The Star Algorithm. To make the dealer computationally efficient, Canetti [15]
defines the FindStar algorithm that finds a large “star” [15] in a graph, which can
be thought of as a relaxation of a clique. It receives an undirected graph G = (V,E)
as input and outputs a pair of sets C,D ⊆ V such that C ⊆ D and there exists an
edge (u, v) ∈ E for every u ∈ C, v ∈ D, and such that |C| ≥ n − 2t (= 2t + 1) and
|D| ≥ n − t (= 3t + 1). The algorithm might also output “no star was found”. In
addition, Canetti [15] showed a polynomial time algorithm that finds such a STAR
if there exists a clique of size n − t. The dealer then looks for a STAR in the graph
instead of a clique, and once found, it broadcasts 〈star, C,D〉. Each party verifies
that (C,D) is a STAR in its graph, and terminates if so.

This guarantees validity and binding: Validity: If the dealer is honest, then
the protocol should terminate, and reconstruction should be the secret that the
dealer shared. When the dealer is honest, eventually, there will be a clique in
the graph of size n− t. The STAR algorithm then outputs a star (C,D), and all
honest parties will eventually verify that (C,D) is a STAR. All honest parties
receive shares that are consistent with the dealer’s polynomial. Binding: Once
an honest party terminates (regardless of whether or not the dealer is honest),
the set C contains at least t + 1 honest parties, and all their shares must agree.
Therefore, the set C defines a unique bivariate polynomial S(X,Y), and the
shares of all honest parties in C lie on that polynomial. Moreover, the set D
contains at least 2t + 1 honest parties, and their shares agree with all parties
in C and, therefore, must also agree with S. We obtain that there are at least
2t+1 honest parties with valid shares, and therefore reconstruction is guaranteed
even if t errors are introduced during the reconstruction phase, by utilizing Reed
Solomon decoding.

460 I. Abraham et al.

Cost. When considering the costs of broadcasting ok messages, the above proto-
col requires O(n4 log n) bits to be transmitted over the point-to-point channels.
This is because each message of size L being broadcasted requires O(n2L) bit
sent over the point-to-point channels. Since each party Pi broadcasts (ok, i, j)
we have O(n2) messages being broadcasted. This implies that overall, we have
O(n4 log n) overhead for sharing a single secret.

Reducing the Cost. To reduce the cost, the protocol of [29] utilizes the fol-
lowing two tricks:

– Packing: Instead of having a bivariate polynomial of degree t in both vari-
ables, the dealer can embed t + 1 secrets in one bivariate polynomial. That
is, the dealer holds secrets s0, . . . , st, and uniformly samples a bivariate poly-
nomial S(X,Y) of degree 2t in X and degree t in Y such that S(−k, 0) = sk

for every k ∈ {0, . . . , t}.
– Batching: Instead of having one instance of AVSS, we can run O(n2)

instances in parallel while re-using the broadcast messages across all instances.
That is, each Pi broadcasts 〈ok, i, j〉 only after it verified the shares of j across
all O(n) instances.

Those two ideas together lead to a protocol in which parties send O(nX +
n4 log n) bits point-to-point for sharing X secrets (of O(log n) bits each). This
yeilds an overhead of O(n) per secret, starting from Ω(n3) secrets. However, if
the dealer has to distribute only O(n) secrets (as in our ACS protocol), we get
an overhead of O(n3).

The difficulty is that there are n2 “short messages” to be broadcasted
(〈ok, i, j〉), and the overhead of each broadcast is O(n2). One might try to amor-
tize these costs by having parties send O(n) of these ok messages at the same
time (in which case, a broadcast with an overhead of O(n) can be used). How-
ever, parties do not even know how many ok they might broadcast. For instance,
in the case of an honest dealer, parties know that they will eventually broadcast
oks for the n − t honest parties, but they do not know how many corrupted
parties would send them correct sub-shares. So they can wait and broadcast one
large n − t ok message, but then they will still have to broadcast the remaining
(even up to t = O(n)) messages one-by-one, as they arrive one-by-one. More-
over, all parties must hear all the edges between honest parties, to verify that
the graph has a star. Thus, total communication of Ω(n4) looks like a natural
barrier.

Breaking the Ω(n4)-Barrier. We achieve O(n)-overhead for o(n3) secrets.
To reduce the overhead when the dealer has to share o(n3) secrets, we further
improve the protocol and add one more optimization to packing and batching:

– No broadcast: We completely eliminate any broadcast message in the pro-
tocol.

To achieve this property, first, consider trying to replace any broadcast message
with multicast (the sender simply sends the message to all parties). Edges (i, j)

Asynchronous Agreement on a Core Set 461

between pairs of honest parties will appear in all graphs and will be consistent.
On the other hand, edges between corrupted parties or between an honest party
and a corrupted party might not be consistent in the different graphs.

To overcome this difficulty, we instruct each party Pi to look for its own
STAR (Ci,Di). Moreover, in addition to those two sets, we look for an extended
star (see, e.g., [29]) (Ci,Di, Ei, Fi) which satisfies the following properties:

– Ci: a clique of size (at least) n − 2t (i.e., 2t + 1), as before.
– Di: a set of size (at least) n − t that agrees with all Ci (i.e., for all d ∈ Di

and c ∈ Ci there exists an edge – (c, d)). This is again as before.
– Fi: a set of size n − t of all vertices that have at least n − 2t edges to Ci.
– Ei: a set of size n − t of all vertices that have at least n − t edges to Fi.

Each party finds an extended star in its graph. Then, the challenge is that differ-
ent parties might have different graphs. Nevertheless, we claim that the following
holds: (1) Validity: If the dealer is honest, then all honest parties will eventually
find extended stars in their respective graphs; (2) Binding: Any pair of extended
stars found by honest parties define the exact same bivariate polynomial, even
they do not necessarily have the same graphs.

– Validity: It is also easy to see that if the dealer is honest, then all honest
parties will eventually find such (Ci,Di, Ei, Fi): The clique of all honest par-
ties will eventually appear in the respective graphs of each honest party. An
extended star will then always be found.

– Binding: We claim that for every honest party Pj , the honest parties in the
sets that Pj has found, i.e., the honest parties in the sets (Cj ,Dj , Ej , Fj),
define a unique bivariate polynomial. Specifically:
1. The set Cj contains at least t+1 honest parties; take an arbitrary subset

C ′
j ⊆ Cj of cardinality t + 1; their f -shares (each is of degree-2t) define a

unique bivariate polynomial Sj(X,Y) of degree (2t, t);
2. The set Dj contains at least 2t + 1 honest parties, and each such party

agrees with all parties in Cj ; As such, each such party must hold a g-share
that lies on Sj(X,Y). Since Dj contains at least 2t + 1 honest parties,
it also implies that all the other honest parties (if exist) in Cj \ C ′

j hold
f -shares that lie on Sj .

3. The set Fj contains at least 2t+1 honest parties; each such honest party
agrees with at least n − 2t (i.e., ≥ 2t + 1) parties in Cj , i.e., with at least
t + 1 honest parties in Cj . Thus, all the g-shares of parties in Fj lie on
Sj .

4. The set Ej contains at least 2t + 1 honest parties; each such party agrees
with at least 3t + 1 parties in Fj , i.e., with at least 2t + 1 honest parties.
As such, all the f -shares of parties in Ej lie on Sj .

Moreover, we claim that for two honest parties Pj and Pk that might have
distinct extended stars (Cj ,Dj , Ej , Fj) and (Ck,Dk, Ek, Fk) that define the
bivariate polynomials Sj and Sk respectively, Sj = Sk. This is because Ej and
Ek are both sets of size 3t+1 and, therefore, must have an intersection of size
at least 2t+1 and thus have at least t+1 honest parties in their intersection.

462 I. Abraham et al.

The f -shares of those parties uniquely define Sj and Sk, respectively, and
thus it must hold that Sk = Sj .

The Rest of the Protocol. In the rest of the protocol, parties that do have
shares help the other parties reconstruct their shares. Since the shares of all hon-
est parties that have an extended star must define the same bivariate polynomial,
we get that, eventually, all parties hold shares on that polynomial. Therefore,
we get a complete secret sharing : all honest parties have shares at the end of the
protocol. This makes the reconstruction phase almost trivial. Parties just send
their shares to one another, and use Reed Solomon decoding to eliminate errors.
We refer to Sect. 5 for full specification and proofs.

2.2 ACS and AVABA

We now describe how we construct the ACS protocol, and our new notion called
“AVABA”, which is an information-theoretic version of Validated Asynchronous
Byzantine Agreement (VABA [7]). This is a multivalued agreement protocol that
allows parties to agree on a value which is “validated”. The notion of validated
will become clearer soon.

Our ACS. Recall that the main goal of ACS is to agree on a common core set
of n− t parties whose AVSS successfully terminated. Parties can asynchronously
validate which parties can be considered: A party Pi validates Pj when the AVSS
of Pj as a dealer terminates. When a party Pi validates a set of n − t parties,
it broadcasts its set Si containing those n − t parties; However, it continue to
store and update Si as more parties are being validated (i.e., their AVSS has
terminated). The parties now run an instance of AVABA – and try to reach an
agreement on the sets Si; the main difference is that this set Si is dynamic, and
as Pi validates additional parties, say, some Pk, it allows the agreed output to
contain such additional parties that were dynamically added – such as Pk. The
AVABA protocol guarantees that all honest parties will reach an agreement on
the set, and whoever appears in the output was validated by an honest party.
See Sect. 8.

AVABA. The construction of an AVABA protocol follows the ideas and con-
struction of the No Waitin’ HotStuff (NWH) protocol of [6], and replaces the
cryptographic validation function with an asynchronous validation notion, as
described above. Seeing as the NWH protocol is designed in the authenti-
cated setting and uses a signature scheme, our work adapts these ideas to the
information-theoretic setting, removing the need for cryptography.

Our AVABA protocol proceeds in iterations called “views”. Parties start each
view by exchanging suggestions for possible outputs from the protocol. These
values are either derived from messages they saw in previous views, or simply
their inputs if no suitable previous values exist. Every party then chooses the
suggestion from the most recent view, and broadcasts it as its proposal for the
current view. After parties broadcast their proposals, one of them is chosen

Asynchronous Agreement on a Core Set 463

retroactively and obliviously using a Verifiable Leader Election (VLE) protocol.
Following that, parties check whether the proposal can be safely output from
the protocol without contradicting values output by parties previously. If that
is the case, they do so. We emphasize that when an honest leader is elected,
this is always the case. Otherwise, they proceed to the next view, while ensuring
other parties can proceed as well. We now elaborate on how the parties pick the
leader.

Verifiable Leader Election. The first challenge is constructing a verifiable
leader election (VLE) protocol. In ordinary leader election, the goal is for all
parties to agree on the identity of an honest leader with some constant probabil-
ity. In our setting, the chosen leader might be validated by some asynchronous
validation process (specifically, in our AVABA, a party is validated once it broad-
casted a proposal for an output). Our protocol is inspired by the synchronous
leader election protocol of [27], its efficiency improvements [1], and the asyn-
chronous authenticated proposal election protocol in the computational setting
of [6].

The main idea of leader election is to assign to each party a random rank ci,
and then pick the party with the maximal rank as the leader. Each party cannot
assign a random rank to itself, as corrupted parties will not choose their values
uniformly at random. Instead, each party Pj contributes a sub-rank cj→i to each
Pi, and we define (for now) the rank of Pi to be ci =

∑n
j=1 cj→i. We call each

cj→i the contribution of Pj to Pi. We cannot just let parties contribute random
sub-ranks, as the corrupted parties will wait to see the sub-ranks that the honest
parties contributed and then pick their own sub-ranks so that a corrupted leader
will be elected. Instead, the parties first “commit” to the sub-ranks and later
“reveal” them. The commitment is performed using AVSS.

We borrow ideas from [1,6] and instead of having O(n2) AVSS instances (i.e.,
ci→j for every i, j), we use O(n) “packed” AVSS instances in which each dealer
can share O(n) secrets at once. This reduces the number of instances to O(n).
As mentioned, we improve the cost of packed AVSS by a factor of O(n), leading
to a more efficient VLE.

Verifiable Party Gather. Since the model is asynchronous, the above protocol
suffers from a similar problem to our starting point: how can the parties know and
agree on which AVSS instances terminated successfully and can be considered
as contributions? Parties do not know whether to wait until a particular AVSS
instance terminates, as it might never terminate. On the other hand, agreeing
on which AVSS instances were terminated is exactly the ACS problem!

Luckily, we do not have to reach an agreement fully. We avoid strong agree-
ment using two tools. First, we let each party Pi choose a set of t+1 dealers that
have successfully shared secrets. The value ci of Pi is defined to be the sum of
their secrets. Since it is a sum of t + 1 parties, it must include at least one hon-
est dealer, which means that ci is uniformly distributed. Parties then broadcast
their choice of dealers, and wait to receive at least n − t such broadcasts.

However, if some broadcasts are delayed, we again run into a similar problem
to ACS: different parties might not consider the same set of parties as potential

464 I. Abraham et al.

leaders, and as such parties might not agree on the chosen leader. The parties
have to agree on which broadcasts to consider. We now employ our second tool
to “roughly agree” on which broadcasts were received: the verifiable party gather
protocol. Verifiable party gather is a relaxation in which the parties might output
distinct sets, say C1, . . . , Cn, but with the following two guarantees: (1) All
parties in all sets have been validated by at least one honest party (which means
that eventually, they will all be validated); (2) The different sets are distinct,
but are all supersets of some large “core” of n − t parties.

Since all of the ci ranks are uniform, each party has the same probability
of having the maximal value. If we are lucky and the party with the maximal
random value is an honest party in the shared core, all parties will see its ci rank
and elect it as a leader. Luckily, since the core is large, there are many honest
parties in the core, and this event happens with a large probability. The core is
of size n − t in our case, and thus it contains n − 2t honest parties, which yields
a success probability of n−2t

n ≥ 1
2 . See more in Sect. 6.

Our verifiable party gather protocol is inspired by [6]. Unlike [6], which relies
on signatures and authentication, we implement an information theoretic version
of gather whose inputs comply with asynchronous validation. Moreover, our
gather protocol is unique in that it outputs a set of parties, while their values
are inferred via asynchronous validation. See more on the gather protocol in
Sect. 4.

Verifiable Leader Election =⇒ AVABA. We now slightly elaborate on how
we move from VLE to AVABA. Here the main challenge is working with asyn-
chronously validated inputs and maintaining both safety (that all honest parties
output the same value) and liveness (that the protocol terminates) over the dif-
ferent iterations (views). Our protocol is an information-theoretic adaptation
of [6].

For safety, we use a common approach in authenticated protocols [18,30] of
using lock certificates and adapt them to the information-theoretic setting. Some
of these techniques are inspired by the approach of [8] that adapts the protocol
of [30] to partial synchrony. Here we show how to obtain liveness under fully
asynchronous network conditions.

For liveness in asynchrony, there are two major challenges. The first is guar-
anteeing that all honest parties will reach agreement on the leader’s proposal if
a unique honest leader is elected. For this, we use the key certificate approach
of [7,30] and adapt it to the information-theoretic setting. The second, more
challenging problem is guaranteeing that honest parties eventually proceed to
the next iteration (view) if the current iteration does not lead to agreement. As
in [6], we observe that there are two triggers to changing views (i.e., giving up
on the current iteration/leader):

– The first is when two different honest parties decided on different leaders
(failure of the VLE); or

– The second is when the leader sends a proposal whose key is lower than a lock
held by some party (blame event): parties check whether the leader proposed

Asynchronous Agreement on a Core Set 465

values that are “acceptable” based on their current state, and “blame” the
leader publicly if that is not the case.

In [6] these two events can be verified cryptographically, so any honest party that
observes this event simply forwards it to all parties. In our setting, we adapt val-
idate the correctness of messages asynchronously instead of using cryptographic
tools. Roughly speaking, when the VLE fails or a blame message is sent, parties
record it and wait for it to be asynchronously validated. We refer the reader
to Sect. 7 for further details.

Structure. Figure 1 shows the structure of our ACS protocol, including the
different building blocks and showing their complexity.

Fig. 1. The structure of our ACS protocol; In red: The communication complexity of
each primitive.

2.3 Extensions

We conclude the overview and the preliminary part of the paper by discussing
two extensions: The statistical settings (Sect. 2.3), and the ramifications of our
ACS and AVSS to asynchronous MPC (Sect. 2.3).

The Statistical Settings. Our AVABA protocol requires O(n) secrets (each
of size O(log n) bits) to be shared per party per round and can be generalized to
a protocol resilient to t < n/3 corruptions. Our ACS protocol uses packed AVSS
to generate randomness.

As proven in [5,13], when n < 4t, any AVSS protocol must have some non-
zero probability of non-termination. The work of [17] constructs such an AVSS
protocol with an adjustable security parameter ε, allowing the protocol to fail
or not terminate with ε probability. It is possible to use such an AVSS protocol
in our construction, resulting in an AVABA protocol with a similar probability
of non-termination, as described in the following:

466 I. Abraham et al.

Theorem 2.1 (General Asynchronously Validated Asynchronous Byzantine
Agreement (informal)). Let c ∈ [3, 4]. Given a n > ct resilient protocol for
asynchronous verifiable secret sharing that has S(n, ε) communication complex-
ity, ε ≥ 0 error, and 1 − ε probability of termination, there exists an agreement
protocol that is resilient to t corruptions as long as n > ct. Moreover, the protocol
is Õ(ε) secure (and in particular for ε = 0 is perfectly-secure). With probabil-
ity 1 − Õ(ε), the protocol runs in constant expected time (and in particular for
ε = 0 is almost-surely terminating) and has O(n3 log n + n2S(n, ε)) expected
communication complexity.

In the above theorem, setting c = 3, we get the first statistical ACS protocol
for any n > 3t parties that terminates in constant expected time, conditioned
upon the success of the protocol.

Corollary 2.2. There exists a statistically secure protocol for asynchronous
agreement on a core set with asynchronous validation resilient to t < n/3 Byzan-
tine corruptions. Conditioned upon the protocol succeeding with probability 1− ε,
the protocol runs in constant expected time.

It is also possible to directly construct our AVABA protocol using a single
call to a verifiable leader election protocol per round instead. This means that
any construction of such a protocol will immediately yield an AVABA protocol
and consequently an ACS protocol as well. More precisely:

Theorem 2.3 (General Asynchronously Validated Asynchronous Byzantine
Agreement (informal)). Let c ∈ [3, 4]. Given a n > ct resilient protocol for
verifiable leader election that has LE(n, ε) communication complexity, ε ≥ 0
error, and 1 − ε probability of termination, there exists an agreement protocol
that is resilient to t corruptions as long as n > ct. Moreover, the protocol is
Õ(ε) secure (and in particular for ε = 0 is perfectly-secure). With probability
1−Õ(ε), the protocol runs in constant expected time (and in particular for ε = 0
is almost-surely terminating) and has O(n3 log n+LE(n, ε)) expected communi-
cation complexity.

Asynchronous Secure Computation. Plugging our new AVSS and the ACS
protocols in the recent asynchronous MPC protocol of [3] leads to an efficiency
improvement. Specifically, instead of MPC with O((Cn + Dn2 + n7) log n) com-
munication and O(D+log n) expected-time using the ACS of [15] and the AVSS
of [19], we obtain O((Cn+Dn2 +n4) log n) communication and O(D) expected-
time.

The MPC protocol of [3] has the following structure:

Offline: Beaver Triplets Generation. The goal is to distribute (Shamir, uni-
variate degree-t) shares of random secret values a, b, and c, such that c = ab.
This is performed as follows:

1. Triplets with and without a dealer. Each party first distributes secrets
ai, bi, ci such that ci = ai ·bi. If the computation requires C multiplications in

Asynchronous Agreement on a Core Set 467

total, each dealer has to generate C/n such triplets. Using the previous best
AVSS, this step requires O(n4 log n+C log n) communication for each dealer,
i.e., a total of O(n5 log n+Cn log n) for all parties combined. Using our AVSS
protocol, this step is automatically reduced to O(n4 log n + Cn log n). Both
protocols are constant expected number of rounds.

2. Agreeing on a core set (ACS): The parties then have to agree on a core
set of parties whose beaver triplets generation terminated and will be consid-
ered in the sequel of the computation. The communication cost of the ACS
from [15] is O(n7 log n) with O(log n) rounds, which we reduce to O(n4 log n)
and expected constant time.

3. Triplets with no dealer: Once agreed on the core, there is a way to extract
O(n) triplets with no dealer (i.e., when no party knows the secrets a, b and
c) from O(n) triplets with a dealer (where the dealer knows the secrets a, b
and c). This step costs O(n2 log n + Cn log n).

To conclude, generating C multiplication triplets costs a total of O(n4 log n +
Cn log n).

Online. The second step follows the standard structure where each party shares
its input (using AVSS), and the parties evaluate the circuit gate-by-gate while
consuming the multiplication triplets they have generated, using the method
of [19]. Using our AVSS, the sharing phase is reduced from O(n5 log n) to
O(n4 log n). The computation of the circuit using the multiplication triplets
remains O((Cn + Dn2) log n) with an O(D) time requirement.

In total, using our ACS and AVSS, we obtain a protocol that requires
O((Cn + Dn2 + n4) log n) communication and O(D) time.

3 Definitions and Assumptions

3.1 Network and Threat Model

This work deals with protocols for n parties with point-to-point communication
channels. The network is assumed to be asynchronous, which means that there
is no bound on message delay, but all messages must arrive in a finite time. The
protocols below are designed to be secure against a computationally unbounded
malicious (Byzantine) adversary. The AVSS protocol is secure when the adver-
sary controls t < n

4 parties, whereas the other protocols are secure even if the
adversary controls t < n

3 parties (assuming an AVSS protocol). Furthermore, for
simplicity, our modeling of the functionalities and the simulation proofs assume
a static adversary, but we believe that our construction can be extended to the
adaptive adversary. In the full version [4], we also provide proofs for property-
based definitions that are secure against adaptive corruption.

3.2 Asynchronous Secure Computation and SUC

We model our protocols in the simplified universally composable setting (SUC),
formalized by Canetti, Cohen, and Lindell [16], which implies UC security. We

468 I. Abraham et al.

briefly overview the model here, where this overview is taken almost verbatim
from [3].

We consider an asynchronous network where the parties are {P1, . . . , Pn}.
The parties are connected via pairwise ideal private channels. To model asyn-
chrony, messages sent on a channel can be arbitrarily delayed, however, they
are guaranteed to be eventually received after some finite number of activations
of the adversary. In general, the order in which messages are received might be
different from the order in which they were sent. Yet, to simplify notation and
improve readability, we assume that the messages that a party receives from a
channel are guaranteed to be delivered in the order they were sent. This can be
achieved using standard techniques – counters, and acknowledgements, and so
we just make this simplification assumption.

Main Difference from SUC. The SUC model allows the adversary to also
drop messages, and the adversary is not limited to eventually delivering all mes-
sages. To model “eventual delivery” (which is the essence of the asynchronous
model), we limit the capabilities of the adversary and quantify over adversaries
that eventually transmit each message in the network (i.e., they do not drop mes-
sages). Formally, any message sent must be delivered after some finite number
of activations of the adversary.

As in SUC, the parties are modeled as interactive Turing machines, with
code tapes, input tapes, outputs tapes, incoming communication tapes, outgoing
communication tape, random tape and work tape.

Communication. In each execution there is an environment Z, an adversary
A, participating parties P1, . . . , Pn, and possibly an ideal functionality F and a
simulator S. The parties, adversary and ideal functionality are connected in a
star configuration, where all communication is via an additional router machine
that takes instructions from the adversary. That is, each entity has one outgoing
channel to the router and one incoming channel. When Pi sends a message to
Pj , it sends it to the router, and the message is stored by the router. The router
delivers general information about the message to the adversary (i.e., “a header”
but not the “content”. That is, the adversary can know the type of the message
and its size, but cannot see its content). When the adversary allows the delivery
of the message, the router delivers the message to Pj . As mentioned, we quantify
only over all adversaries that eventually deliver all messages. In particular, even
in an execution with an ideal functionality, communication between the parties
and this functionality is done via the router machine and is subject to (finite)
delivery delays imposed by the adversary.

Note that the router machine is also part of the ideal model. When the
functionality gives for instance, some output to party Pj , then this is performed
via the router, and the simulator is notified. Thus, if the adversary, for instance,
delays the delivery of the output of some party Pj , we do not explicitly mention
that in the functionality (e.g., “wait to receive OKj from the adversary and then
deliver the output to Pj”), yet it is captured by the model.

Finally, the environment Z communicates with the adversary directly and
not via the router. In particular, the environment can communicate with the

Asynchronous Agreement on a Core Set 469

adversary (and it cannot communicate even with the ideal functionality F). In
addition, Z can write inputs to the honest parties’ input tapes and can read
their output tapes.

Execution in the Ideal Model. In the ideal model we consider an execution
of the environment Z, dummy parties P1, . . . , Pn, the router, a functionality F
and a simulator S. In the ideal model with a functionality F the parties follow
a fixed ideal-model protocol. The execution is as follows:

1. The environment is first activated with some input z.
2. The environment delivers the inputs to the dummy honest parties, which

forward the inputs to the functionality (recall that this is done via the router,
which then gives some leakage about the message header to S, which can
adaptively delay the delivery by any finite amount). Moreover, Z can also
give some initial inputs to the corrupted parties via S.

3. At a later stage, where the dummy parties receive output from the functional-
ity F , they just write the outputs on their output tapes (and Z can read those
outputs). Again, these messages go through the router, and the simulator can
delay them.

4. At the end of the interaction, Z outputs some bit b.

The simulator S can send messages to Z and to the functionality F . The simu-
lator cannot directly communicate with the participating parties. We stress that
in the ideal model, the simulator S interacts with Z in an online way, and the
environment can essentially read the outputs of the honest parties and query
the simulator (i.e., can ask to receive a simulated transcript of the adversary’s
view) at any point of the execution. We denote by idealF,S,Z(z) an execution of
this ideal model of the functionality F with a simulator S and environment Z,
which starts with an input z.

Execution in the Real Model with Protocol π. In the real model, there is
no ideal functionality and the participating parties are Z, the parties P1, . . . , Pn,
the router and the real-world adversary A.

1. The environment is first activated with some input z, and it can give inputs
to the honest parties, as well as some initial inputs to the corrupted parties
controlled by the adversary A.

2. The parties run the protocol π as specified, while the corrupted parties are
controlled by A. The environment can see at any point the outputs of the
honest parties, and communicate directly with the adversary A (and see,
without loss of generality, its partial view).

3. All messages go through the router and the adversary gets notified. The
adversary can decide when to deliver each message.

4. At the end of the execution, the environment outputs some bit b.

We denote by realπ,A,Z(z) an execution of this real model with the protocol
π, the real-world adversary A and the environment Z, which starts with some
input z.

470 I. Abraham et al.

Definition 3.1. We say that an adversary A is an asynchronous adversary if for
any message that it receives from the router, it allows its delivery within some
finite number of activations of A.

Definition 3.2. Let π be a protocol and let F be an ideal functionality. We say
that π securely computes F in the asynchronous setting if for every real-model
asynchronous adversary A there exists an ideal-world adversary S that runs in
polynomial time in A’s running time, such that for every Z:

{idealF,S,Z(z)}z ≡ {realπ,A,Z(z)}z

3.3 Cooperative Adversaries

Most of the functionalities discussed in this paper do not involve private inputs.
Specifically, in many of these functionalities, the adversary is aware of all parties’
inputs and outputs. The adversary’s primary capability is influencing these out-
puts to some degree. Such functionalities often include a command like setOutput,
allowing the adversary to set the output for certain honest parties under specific
conditions verified by the functionality. This can lead to a scenario where the
adversary might choose not to cooperate, failing to send any inputs and forcing
the functionality to “get stuck”.

To simplify matters, we model the adversary is always “cooperative”. This
is done for simplicity of exposition, to enhance readability and provide a more
concise description of the functionalities. In this model, the adversary eventually
responds and cooperates with the functionality.

We justify this modeling by noting that any functionality assuming a coop-
erative adversary can be transformed to handle a non-cooperative adversary. In
such a case, the functionality would specify default outputs for honest parties.
This involves the functionality calling the setOutput command that the ideal
adversary would typically invoke. This message is routed to itself via the router,
and the adversary is notified. The adversary can decide to rush and reply with
its own setOutput command, or, it must eventually pass the first command to
the functionality (recall that we assume eventual delivery), which then sends
the output to the honest parties. In the case of two setOutput commands, the
second one will be ignored. When describing a functionality that works for every
adversary, not necessarily a cooperative one, the eventual output will be the one
that it sent by the functionality to itself.

In other words, by modeling functionalities with cooperative adversary, we
effectively “shift” some of the functionality’s description to the simulator, result-
ing in more concise functionalities that precisely describe the adversary’s capa-
bilities. For instance, in FGather (Sect. 4), the adversary might choose different
outputs for different parties, but the functionality ensures that all outputs share
a significant common subset. We just define that the adversary is capable of
choosing different outputs to different parties, without necessarily describing
what the outputs are when the adversary does not cooperate. This means that
a simulator can use its access to define outputs, or give up this right by being
uncooperative and allow the functionality to define outputs instead.

Asynchronous Agreement on a Core Set 471

3.4 Reliable Broadcast

We assume the existence of a Reliable Broadcast protocol. A Reliable Broadcast
protocol is an asynchronous protocol with a designated sender. The sender has
some input value M from some known domain M and each party may output a
value in M. A Reliable Broadcast protocol has the following properties assuming
all honest parties participate in the protocol:

– Agreement. If two honest parties output some value, then it’s the same
value.

– Validity. If the dealer is honest, then every honest party that completes the
protocol outputs the dealer’s input value, M .

– Termination. If the dealer is honest, then all honest parties complete the
protocol and output a value. Furthermore, if some honest party completes
the protocol, every honest party completes the protocol.

Concretely, we use the reliable broadcast protocol of [9] in which parties send
O(n2 log n + n · m) bits when broadcasting a message of size O(m).

4 Verifiable Party Gather

In the leader election protocol, we wish to agree on a large set of parties
that actively participated and elect a leader among them. However, since some
instances might terminate earlier than others for some parties, exactly agreeing
on the set is non-trivial and potentially expensive. We know, however, that if an
instance has terminated for one honest party then it eventually terminates for
all parties. The gather functionality comes to “synchronize” the parties. Exactly
agreeing on all terminating instances is rather expensive (in fact, this is the end
goal of “agreement on a core set” – of Sect. 8). At this point, we slightly relax
our requirements, the parties might output different sets, but under the following
condition:

CORE: there exists some core C∗ of size n − t or greater such that the
output of every honest party contains C∗.

The parties also give their outputs to one another, and whenever Pj receives
the output of Pi it verifies that the output was computed correctly. As we will
see, all the messages sent are public, and therefore the view of the different
parties should be the same. The only difference is the different scheduling of
messages. Thus, it should be possible to eventually verify an honestly generated
output, at least eventually.

4.1 Property-Based Definition

To aid understanding, we first give some property based definition of this prim-
itive. We later describe its functionality (Functionality 4.1). (Our proof refers to
the functionality, the property-based definition is given just for completeness.)

472 I. Abraham et al.

– Syntax: Each party eventually Pj eventually sets its output to be
(output, j, Cj); Moreover, it receives the sets of the other parties and veri-
fies them (and (output, k, Ck) will also be part of its output for other parties
Pk).

– Core: Once the first honest party outputs a value from the protocol, there
exists a core set C∗ such that |C∗| ≥ n − t. If an honest party Pj outputs a
set (output, j, Cj) then it holds that C∗ ⊆ Cj .

– Completeness: For every honest Pj , if Pj outputs (output, j, Cj) then all
honest parties would verify its set and have (output, j, Cj) as part of their
output.

– Agreement on verification: For a corrupted Pi, if some honest party out-
puts (output, i, Ci), then all honest parties eventually output (output, i, Ci).

– Validation of verification: For a corrupted Pi, if some honest party Pj

outputs (output, i, Ci), then it holds that C∗ ⊆ Ci and each element in Ci has
been validated by Pj .

4.2 Gather Functionality

We now describe the gather functionality. As described in Sect. 3.3, we describe
the functionality with a cooperative adversary - namely, we assume that it always
replies to the functionality.

Functionality 4.1: Gather Functionality
The functionality is reactive. Initialize C1, . . . , Cn = C∗ = ∅.

– validate(i, j): Whenever the functionality received this command from some
party Pi (via the router), forward (validate, i, j) to the ideal adversary and
record the message.

– setCore(C): Whenever the ideal adversary sends this command, verify that
|C| ≥ n− t and that for every x ∈ C, there exists a recorded validate(�, x) for
an honest P�. If so, store C∗ = C; Otherwise, ignore the command.

– setOutput(i, C ′
i): Whenever the ideal adversary sends this command, verify

that |C ′
i| ≥ n − t, C∗ ⊆ C ′

i and for every x ∈ C ′
i, there exists a recorded

validate(�, x) for an honest P�. If Ci = ∅ replace it with Ci = C ′
i, and send

(output, j, Cj) to all parties. Otherwise (Ci
= ∅), ignore the command.

Input Assumption 4.2. We prove that the protocol implements the function-
ality for restricted environments. In particular, we assume the following:

1. For every pair of honest parties (j, k), the environment issues validate(j, k).
2. If the functionality issues validate(j, i) from an honest Pj and corrupted Pi,

for any other honest Pk, the environment will also issue validate(k, i).

A construction of the Gather protocol, a proof of its correctness and a com-
plexity analysis are provided in the full version of the paper.

Asynchronous Agreement on a Core Set 473

5 Packed AVSS

5.1 The Functionality

The protocol we present implements a complete secret sharing, where all parties
receive output. The dealer inputs a bivariate polynomial. If the polynomial is
of the appropriate degree, all parties receive shares on that polynomial and the
functionality can terminate. If the polynomial is not from the expected degree,
the functionality does not terminate.

Functionality 5.1: Sharing phase of AVSS

1. The dealer sends the functionality a bivariate polynomial S(X,Y).
2. The functionality verifies that S(X,Y) is of degree at most 2t in X and degree

at most t in Y . If not - the functionality does not terminate.
3. Otherwise, it sends all the shares S(X, i), S(i, Y) for each corrupted party Pi

to the ideal adversary. Moreover, it sends the shares S(X, j), S(j, Y) to all
honest parties j
∈ I. Recall that the adversary has the ability to delay those
messages.

5.2 Reconstruction

Functionality 5.2: Reconstruction Functionality

1. Upon receiving (point, i, k, pi(−k)) from all honest parties with the same index
k ∈ {0, . . . ,−t}, forward the message to the ideal adversary .

2. After receiving these messages from t + 1 parties, reconstruct the unique
degree-t univariate polynomial q(Y) satisfying q(j) = pj(−k) for each honest
Pj received.

3. Send q(Y) to all parties.

Input Assumption 5.3. It is assumed that all the shares of the honest parties
lie on a unique degree-t univariate polynomial g(Y).

5.3 Putting It All Together

We now show a reactive functionality that combines the share and reconstruct
phases.

Functionality 5.4: Reactive AVSS - FAVSS

The functionality is parameterized by the identify of the dealer.

– Share(s0, . . . , st): When the dealer transmits this message to the functional-
ity with input (s0, . . . , st), forward Share to the ideal adversary, and record
(s0, . . . , st). Reply to all parties with the message shared.

474 I. Abraham et al.

– Reconstruct(k) with k ∈ {0, . . . ,−t}: Whenever this message is received
from some party Pi, record that message. Once t + 1 honest parties sent
Reconstruct(k), reply with (k, sk) to all parties that sent that command and
all following commands.

Protocols realizing these functionalities, proofs of their correctness and anal-
ysis of their complexity are provided in the full version of the paper.

6 Verifiable Leader Election

A perfect leader election would allow all parties to output one common randomly
elected party. Verifiable Leader Election (VLE) is an asynchronous protocol that
tries to capture this spirit but obtains weaker properties. Intuitively, there is only
a constant probability that all parties elect the same honest party. In the remain-
ing cases, the adversary can control the output and even cause different parties
to have different outputs. However, even in these cases, all parties eventually
output some value. We proceed to define the VLE functionality in Sect. 6.1.

6.1 The Functionality

Following Sect. 3.3, we define the functionality for cooperative adversaries. Once
again, there is an external validity command that can be invoked, with the same
input assumption as Input Assumption 4.2. The functionality samples a random
rank for each party. Ideally, we would like all parties to consider all parties as pos-
sible candidates, and to choose the one with the highest rank as leader. As we will
see, by delaying the delivery of messages, the adversary can make some parties not
consider other parties as possible candidates. However, there is a large core of par-
ties that is considered by all parties. After describing the functionality, we prove
that this suffices in order to elect an agreed leader with a constant probability.

Functionality 6.1: FVLE – The Verifiable Leader Election Functionality

1. validate(i, j): Whenever the command is received from some party Pi, forward
(validate, i, j) to the ideal adversary and record the message.

2. setCore(C∗): Upon receiving this command from the ideal adversary, with
C∗ ⊆ n, and |C∗| ≥ n − t, verify that for every k ∈ C∗ there exists an honest
j such that validate(j, k) was recorded. Then, the functionality stores C∗ and
chooses a random rank to every party r1, . . . , rn.

3. setCandidates(i, Ci): Upon receiving this command from the ideal adversary,
verify that that C∗ ⊆ Ci, and that for every k ∈ Ci there exists an honest j
such that validate(j, k) was recorded. The functionality sets �i = argmax{rk |
k ∈ Ci}. Add (output, i, �i) to all parties, and send (rk)k∈Ci

to the ideal
adversary.
It is assumed that the adversary sends setCandidates(j, Cj) for every honest
party Pj , and it might also send such commands for some corrupted parties,
according to its choice.

Asynchronous Agreement on a Core Set 475

We assume the exact same input assumption as in Input Assumption 4.2.

Properties of the Ideal Functionality. We show that the functionality sat-
isfies the following properties. In particular, we show that with a probability of
at least 1/3, all honest parties agree on an honest leader, and the output of the
corrupted parties (if it exists) also defines the same leader.

Claim 6.2. The following properties hold:

1. With probability at least 1/3, there exists an index of an honest party �∗, such
that �i = �∗ for all i for which (output, i, �i) has been sent to all parties (no
matter whether Pi is honest or corrupted). Furthermore, �∗ is defined at the
time that the first (output, i, �i) has been sent by the functionality.

2. For every (output, i, �i) that has been transmitted by the functionality to all
parties, there exists an honest j such that the command validate(j, �i) has been
received.

Proof. From the properties of the functionality, at the first time the functionality
sent (output, j, Cj), there exists a core C∗ of at least n−t indices, such that every
Ci ⊆ C∗. Note that the ranks are chosen only after the core C∗ is fixed. Moreover,
the adversary cannot see the rank ri of some party Pi, unless i is included in
some Cj in some setCandidates(j, Cj) command.

Each party i ∈ C∗ has probability 1/n to have the maximal rank3. among all
[n], i.e., including all supersets of C∗. Since |C∗| ≥ n − t, we have at least n − 2t
honest parties in C∗, and therefore the probability that some honest party �∗ in
C∗ has the maximal rank in [n] is at least (n − 2t)/n ≥ 1/3. Since each Ci must
include C∗, all output messages have �∗ as the leader. This is true even though
the adversary chooses Ci adaptively, as Ci is chosen after C∗ and all the ranks
are determined.

For the second part of the claim, whenever the functionality receives some
setCandidates(i, Ci) message it verifies that all parties in Ci has been validated
(i.e., for each k ∈ Ci, some honest Pj has sent validate(j, k)). The chosen �i is
some index in Ci, and therefore �i must have been validated.

The VLE protocol, a proof of its correctness and a complexity analysis can
be found in the full version of the paper.

7 Asynchronously Validated Asynchronous Byzantine
Agreement

This section deals with constructing our AVABA protocol, which is built upon
ideas in [6] and [8] and adapts them to the asynchronous information-theoretic
setting.

3 We ignore a negligible probability of two parties having the same rank. This can be
accounted for by sampling from a large enough F and noting that n−2t

n
≥ n

3
+ 1

n
.

476 I. Abraham et al.

7.1 The Functionality

Assuming once again a cooperative adversary (see Sect. 3.3), the functionality is
relatively simple to describe: There is an external validity command, where each
party might validate some value v ∈ V. At some point, the adversary decides
on a value x and sends it to the functionality. If x has been validated by some
honest party, then this value is accepted and is sent to all parties as output.

Functionality 7.1: FAVABA

The functionality is parameterized with a domain V, and support the following
commands:

validate(i, x): Upon receiving this command from party Pi with a value v ∈ V,
forward the command to the adversary and store this command.

setInput(j, xj) Upon receiving this command from an honest Pj with xj ∈ V,
forward the command to the adversary and store this command.

setOutput(x): Upon receiving this command from the ideal adversary with x ∈ V,
verify that there exists an honest j such that validate(j, x) or setInput(j, xj) is
recorded, send (output, x) to all parties and terminate.

Input Assumption 7.2. We prove that the protocol implements the function-
ality for restricted environments that follow the following assumptions:

1. If for some honest party Pj the environment issued setInput(j, xj) or
validate(j, xj) then for every other honest party Pk a command setInput(k, xk)
or validate(k, xk) will be issued.

We remark that our protocol actually satisfies a stronger property, named
“α-quality”: With probability α, all parties output the input xj of a party Pj

that was honest when starting the protocol. This is not reflected in our func-
tionality, and we will prove this property as a property-based definition. This
property is unnecessary for achieving the final ACS in Sect. 8, and we prove it
for completeness.

7.2 The Protocol

The protocol of [6] heavily relies on cryptographic primitives (signatures) to
obtain externally valid outputs. Here we use asynchronous external validity
instead. This requires redefining and adapting new information-theoretic variants
of verifiable gather (party gather) and verifiable leader election. The protocol of
[8] modifies the cryptographic protocol of [30] to the information-theoretic set-
ting in partial synchrony. Here we show how to extend this to full asynchronous
network conditions, which in turn requires a new information-theoretic view
change protocol and consistency checks for sent values.

In the AVABA protocol, parties proceed in “views”, which are just an iteration
number (asynchronous “phases”). In each view, parties propose values to agree

Asynchronous Agreement on a Core Set 477

upon and then try to choose an honest leader using the VLE protocol. Recall
that the VLE protocol might fail: either by not agreeing on the chosen leader, or
by electing a corrupt leader. However, once an honest leader is chosen, its value
will be adopted and the parties will terminate.

AVABA uses the “Key-Lock-Commit” paradigm used in previous HotStuff
protocols (VABA, IT-HS and NWH) to maintain safety and liveness. Given a
value, a party first puts a “key” on it (this is just an indicator on the view num-
ber), then a “lock”, and finally “commits” to it. Intuitively, locks help guarantee
safety by forcing parties to ignore old values, and ensuring that parties can com-
mit. Keys are used to ensure progress by convincing parties to accept proposed
values in spite of their locks if no commitment was made. In more detail:

– Commit: When a party commits to a value, it knows that this value will be
the output, and it pushes toward termination. It sends to other parties that
it is ready to terminate.

– Lock: A lock consists of two values: lock, which is a view number, and lock val
which is the value seen when setting the lock (which is the potential output).
A party might lock a value, but this lock can still be later removed. However,
it indicates that this is a value that the parties should agree on, and it tells
it to all other parties. Once it hears n − t locks on the same value from other
parties, it changes its status to “commit”.

– Key: This indicates that a party is witness to a current value; If it hears
enough “key” messages on the same value – it moves to “lock”. Just like a
lock, a key consists of two values: key, which is a view number, and key val
which is the suggested value.

Overview. The parties proceed in 5 (asynchronous) rounds in each view. The
general idea is that parties first confirm that they all agree on the leader elected
in the VLE protocol, set a key, set a lock to the elected leader’s proposal, confirm
that they are all locked, commit to the lock, and terminate.

If at any point they see that the VLE failed, they move onto a new view and
announce that they are doing so. Recall that in VLE, eventually each party sees
the output of the other parties, and therefore if two leaders are elected, then all
parties will see that eventually.

In the NWH protocol, parties provided cryptographic proofs for their keys
and locks in the form of signatures on echo and key messages respectively. These
signatures are inherently transferable since they can be sent to any party who
can verify those signatures on their own. We cannot use signatures. To allow the
“transfer” of such proofs, parties broadcast their echo and key messages. This
allows a party that formed a key or a lock to know that any other party will
eventually hear the same echo and key messages and believe that it could have
formed that key or lock. Similar techniques are employed when providing blame
messages, which are used to inform parties of a failed VLE session.

In each view (iteration), the parties run two protocols in parallel:

1. viewChange: The parties send each other suggestions for the current view.
Parties then compute their proposal for the current view. Every Pi broadcasts

478 I. Abraham et al.

this proposal, which is later used if it is chosen as a leader. Initially, this is
the input of Pi, but later in the protocol, Pi might adopt some other value
based on other parties’ suggestions.

2. processMessages: This is the key-lock-commit mechanism. The leader is cho-
sen, and the parties proceed to see if they can agree on the proposal of the
leader.

Round 1: The first round in each view begins with a viewChange protocol. In
viewChange parties choose their proposals and broadcast them. They send their
current key to all other parties in a suggest message. Before accepting a key,
parties make sure that it could have been achieved in the relevant view by waiting
to receive the broadcasted messages required to form a key (echo messages to
be explained later). Upon accepting n− t keys, parties choose the key and value
from the most recent view and broadcast the chosen key and value in a proposal
message. Following that, they call the VLE protocol to choose a leader for the
current view, while Pi validates Pj in VLE only if Pj has broadcasted a valid
proposal. This guarantees that any chosen leader has broadcasted a proposal.

Round 2: In the second round, parties check whether the VLE was successful or
not. If it was successful they continue in the view, but if it was not, they inform
each other and proceed to the next view.

– Upon electing a leader using the VLE protocol, if the leader’s proposed value
is correct, i.e. it contains a key and value pair that could have been set in
a view later than the current lock, then send an echo message to all other
parties.

– If the leader’s proposed value is “incorrect”, send a blame message and pro-
ceed to the next view. In this context, by an “incorrect proposal” we mean
that its key is not high enough to open the receiving party’s current lock.
Since a party puts a lock on a value based on public messages, every party
can check that the purported lock could have been set in a later view by wait-
ing to receive the same broadcasted key messages required to set that lock,
and verify whether the blame message is valid (note, however, that we cannot
verify that a particular blame message is false). Upon sending or receiving a
valid blame message, reject the leader, and proceed to the next view.

– Since each party Pi can see the outputs of all other parties from the VLE
protocol, it can verify if two different parties elected different leaders. In that
case, the leader election fails, and the party proceeds to the next view.

Round 3: Parties proceed to this round if they have received many echo mes-
sages without seeing an error in the form of a blame or that of two different
elected leaders. This also means that no other value was committed to in an ear-
lier view, meaning that a key can be formed. Upon receiving n−t echo messages,
update the key and key val fields before sending a key message to all parties.

Round 4: Upon receiving n−t key messages, update the lock and lock val fields
before sending a lock message to all parties. Before setting a lock, every party

Asynchronous Agreement on a Core Set 479

makes sure that at least t + 1 honest parties set their keys to the current value.
By doing that, every party guarantees that when choosing which value and key
to input to the VLE protocol, all honest parties will hear of the current value
and will be capable of opening any older lock an honest party might have.

Round 5: Finally, upon receiving n − t correct lock messages, parties send
commit messages with the same value. Before committing to a value, every party
makes sure that at least t+1 honest parties have set their lock in the current view.
These parties will not echo any message about any other value in subsequent
views unless an adequate key is provided. Since forming a key requires a message
from one of those parties, we can reason inductively that no correct key will be
formed for a differing value in any subsequent view.
Output: In order to allow parties to terminate, a termination gadget is also
run outside of any specific view. Similarly to Bracha broadcast [14], every party
echoes a commit message if it sees t + 1 such messages with the same value.
Finally, parties terminate after seeing n − t such messages.

8 Agreement on a Core Set (ACS)

We now turn to the main functionality: agreement on a core set, which is a
simple corollary of Sect. 7. Recall the main application for MPC: Each party
secret shares its input. If the dealer is honest, it is guaranteed that the sharing
phase will terminate and all honest parties will receive their shares. If the dealer
is corrupted, and the sharing phase terminated for one honest party, then it will
eventually terminate for all other honest parties. The goal of ACS is to agree on
a set of parties whose sharing phase has terminated.

The input assumption is the same as in Assumption 4.2: All honest parties
validate each other, and if some honest party validates a corrupted party Pi, then
eventually all honest parties will validate Pi. The functionality has a validate(i, j)
command (“Pi sees that the sharing phase of Pj has terminated”). The adversary
eventually chooses a set C of n − t parties, and all parties receive C as output.
The guarantee is that for every k ∈ C, there is some honest party that validated
k. Again, we assume a cooperative adversary; otherwise, the functionality is
slightly more complicated. In that case, core set C is set to be the indices k for
which there is some honest party that validated k, and the parties receive that
output when n − t honest parties validated n − t parties each. We now proceed
to the definition of the functionality and the protocol.

Functionality 8.1: FACS – Agreement on a Core Set Functionality

– validate(i, j): Whenever this functionality receives this command from some
party Pi (via the router), forward the command to the ideal adversary and
record the command.

– setOutput(C): Whenever the ideal adversary sends this command, verify that
|C| ≥ n− t and that for every x ∈ C, there exists a recorded validate(�, x) for
an honest P�. Send (output, C) to all parties and terminate.

480 I. Abraham et al.

A construction of the protocol, proofs of its correctness and a complexity
analysis are provided in the full version of the paper.

Acknowledgements. We would like to thank Victor Shoup for valuable discussions
and feedback. G. Asharov was supported by the Israel Science Foundation (grant No.
2439/20), and by JPM Faculty Research Award. G. Stern was supported in part by ISF
2338/23, AFOSR Award FA9550-23-1-0387, AFOSR Award FA9550-23-1-0312, and an
Algorand Foundation grant. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government, AFOSR or the Algorand Foundation.

References

1. Abraham, I., Asharov, G., Patil, S., Patra, A.: Asymptotically free broadcast in
constant expected time via packed VSS. In: Kiltz, E., Vaikuntanathan, V. (eds.)
Theory of Cryptography, TCC 2022, Part I. LNCS, vol. 13747, pp. 384–414.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1 14

2. Abraham, I., Asharov, G., Patil, S., Patra, A.: Detect, pack and batch: perfectly-
secure MPC with linear communication and constant expected time. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 251–281.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30617-4 9

3. Abraham, I., Asharov, G., Patil, S., Patra, A.: Perfect asynchronous MPC with
linear communication overhead. In: Joye, M., Leander, G. (eds.) EUROCRYPT
2024, Part V. LNCS, vol. 14655, pp. 280–309. Springer, Cham (2024). https://doi.
org/10.1007/978-3-031-58740-5 10

4. Abraham, I., Asharov, G., Patra, A., Stern, G.: Asynchronous agreement on a core
set in constant expected time and more efficient asynchronous VSS and MPC.
Cryptology ePrint Archive, Paper 2023/1130 (2023). https://eprint.iacr.org/2023/
1130

5. Abraham, I., Dolev, D., Stern, G.: Revisiting asynchronous fault tolerant compu-
tation with optimal resilience. Distrib. Comput. 35(4), 333–355 (2022)

6. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Reaching consensus for asynchronous distributed key generation. In: Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing, pp. 363–373
(2021)

7. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asyn-
chronous byzantine agreement. In: Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pp. 337–346. ACM, New York, July 2019.
https://doi.org/10.1145/3293611.3331612

8. Abraham, I., Stern, G.: Information theoretic hotstuff. In: OPODIS. LIPIcs, vol.
184, pp. 11:1–11:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2020)

9. Alhaddad, N., Das, S., Duan, S., Ren, L., Varia, M., Xiang, Z., Zhang, H.: Balanced
byzantine reliable broadcast with near-optimal communication and improved com-
putation. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, PODC 2022, pp. 399–417. Association for Computing Machinery, New
York. (2022). https://doi.org/10.1145/3519270.3538475

10. Bangalore, L., Choudhury, A., Patra, A.: Almost-surely terminating asynchronous
byzantine agreement revisited. In: Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, pp. 295–304 (2018)

https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/978-3-031-58740-5_10
https://doi.org/10.1007/978-3-031-58740-5_10
https://eprint.iacr.org/2023/1130
https://eprint.iacr.org/2023/1130
https://doi.org/10.1145/3293611.3331612
https://doi.org/10.1145/3519270.3538475

Asynchronous Agreement on a Core Set 481

11. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
STOC 1993, pp. 52–61. Association for Computing Machinery, New York (1993).
https://doi.org/10.1145/167088.167109

12. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant
time. Distrib. Comput. 16(4), 249–262 (2003). https://doi.org/10.1007/s00446-
002-0083-3

13. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing, PODC 1994, pp. 183–192.
Association for Computing Machinery, New York (1994). https://doi.org/10.1145/
197917.198088

14. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987)

15. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Citeseer (1996)

16. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 1

17. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on The-
ory of Computing, STOC 1993, pp. 42–51. Association for Computing Machinery,
New York (1993). https://doi.org/10.1145/167088.167105

18. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Seltzer, M.I., Leach,
P.J. (eds.) Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA, 22–25 Febru-
ary 1999, pp. 173–186. USENIX Association (1999). https://dl.acm.org/citation.
cfm?id=296824

19. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure mul-
tiparty computation. IEEE Trans. Inf. Theory (2016)

20. Choudhury, A., Patra, A.: On the communication efficiency of statistically-secure
asynchronous MPC with optimal resilience. Cryptology ePrint Archive, Paper
2022/913 (2022). https://eprint.iacr.org/2022/913

21. Cohen, R., Forghani, P., Garay, J., Patel, R., Zikas, V.: Concurrent asynchronous
byzantine agreement in expected-constant rounds, revisited. Cryptology ePrint
Archive (2023)

22. Das, S., Duan, S., Liu, S., Momose, A., Ren, L., Shoup, V.: Asynchronous consen-
sus without trusted setup or public-key cryptography. Cryptology ePrint Archive,
Paper 2024/677 (2024). https://doi.org/10.1145/3658644.3670327. https://eprint.
iacr.org/2024/677

23. Duan, S., Wang, X., Zhang, H.: Practical signature-free asynchronous common
subset in constant time. IACR Cryptol. ePrint Arch. p. 154 (2023). https://eprint.
iacr.org/2023/154

24. Feldman, P.N.: Optimal algorithms for Byzantine agreement. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1988)

25. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/
3149.214121

https://doi.org/10.1145/167088.167109
https://doi.org/10.1007/s00446-002-0083-3
https://doi.org/10.1007/s00446-002-0083-3
https://doi.org/10.1145/197917.198088
https://doi.org/10.1145/197917.198088
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1145/167088.167105
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://eprint.iacr.org/2022/913
https://doi.org/10.1145/3658644.3670327
https://eprint.iacr.org/2024/677
https://eprint.iacr.org/2024/677
https://eprint.iacr.org/2023/154
https://eprint.iacr.org/2023/154
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121

482 I. Abraham et al.

26. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part II. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26951-7 4

27. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

28. Nielsen, J.B.: MPC techniques series, part 4: Beaver’s trick (2021). https://
medium.com/partisia-blockchain/beavers-trick-e275e79839cc

29. Patra, A., Choudhury, A., Rangan, C.P.: Efficient asynchronous verifiable secret
sharing and multiparty computation. J. Cryptol. 28(1), 49–109 (2015). https://
doi.org/10.1007/s00145-013-9172-7

30. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, pp. 347–356.
Association for Computing Machinery, New York (2019).https://doi.org/10.1145/
3293611.3331591

https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://medium.com/partisia-blockchain/beavers-trick-e275e79839cc
https://medium.com/partisia-blockchain/beavers-trick-e275e79839cc
https://doi.org/10.1007/s00145-013-9172-7
https://doi.org/10.1007/s00145-013-9172-7
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591

Secret Sharing

Distributing Keys and Random Secrets
with Constant Complexity

Benny Applebaum1(B) and Benny Pinkas2

1 Tel Aviv University, Tel Aviv, Israel
bennyap@post.tau.ac.il

2 Aptos Labs and Bar Ilan University, Ramat Gan, Israel
benny@pinkas.net

Abstract. In the Distributed Secret Sharing Generation (DSG) prob-
lem n parties wish to obliviously sample a secret-sharing of a random
value s taken from some finite field, without letting any of the parties
learn s. Distributed Key Generation (DKG) is a closely related variant of
the problem in which, in addition to their private shares, the parties also
generate a public “commitment” gs to the secret. Both DSG and DKG
are central primitives in the domain of secure multiparty computation
and threshold cryptography.

In this paper, we study the communication complexity of DSG and
DKG. Motivated by large-scale cryptocurrency and blockchain applica-
tions, we ask whether it is possible to obtain protocols in which the com-
munication per party is a constant that does not grow with the number
of parties. We answer this question to the affirmative in a model where
broadcast communication is implemented via a public bulletin board
(e.g., a ledger). Specifically, we present a constant-round DSG/DKG pro-
tocol in which the number of bits that each party sends/receives from
the public bulletin board is a constant that depends only on the security
parameter and the field size but does not grow with the number of par-
ties n. In contrast, in all existing solutions at least some of the parties
send Ω(n) bits.

Our protocol works in the near-threshold setting. Given arbitrary pri-
vacy/correctness parameters 0 < τp < τc < 1, the protocol tolerates
up to τpn actively corrupted parties and delivers shares of a random
secret according to some τpn-private τcn-correct secret sharing scheme,
such that the adversary cannot bias the secret or learn anything about
it. The protocol is based on non-interactive zero-knowledge proofs, non-
interactive commitments and a novel secret-sharing scheme with special
robustness properties that is based on Low-Density Parity-Check codes.
As a secondary contribution, we extend the formal MPC-based treatment
of DKG/DSG, and study new aspects of Affine Secret Sharing Schemes.

Keywords: Secret Sharing · Distributed Key Generation · Secure
Computation

B. A. is supported by ISF grant no. 2805/21 and by the European Union (ERC-2022-
ADG) under grant agreement no.101097959 NFITSC.
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 485–516, 2025.
https://doi.org/10.1007/978-3-031-78023-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_16&domain=pdf
http://orcid.org/0000-0003-4792-369X
http://orcid.org/0000-0002-9053-3024
https://doi.org/10.1007/978-3-031-78023-3_16

486 B. Applebaum and B. Pinkas

1 Introduction

Consider the following secure multiparty computation problem: n parties wish
to obliviously sample a secret sharing of a random value s taken from some finite
field F without letting any of the parties learn the value of s. Roughly speaking,
given a privacy threshold and a correctness threshold tp < tc, the protocol must
ensure that any adversary A that actively (aka maliciously) corrupts up to tp
parties learns nothing about the secret s and cannot bias it, and that any set of
tc honest parties can recover the secret even in the presence of A.

This task, hereafter referred to as Distributed Secret Sharing Generation
(DSG), can be viewed as a natural extension of Verifiable Secret Sharing (VSS),
with the difference being that in DSG the secret is obliviously sampled, whereas
in VSS it is chosen by a designated dealer. DSG plays an important role in many
secure multiparty computation protocols (MPC), especially in the online/offline
setting. It is also closely related to the problem of Distributed Key Generation
(DKG), in which, at the end of the sharing phase, the protocol publishes a com-
mitment to the secret (e.g., the value gs where g is a generator of a cyclic group
of appropriate order).1 (See, e.g. [8,10,16,18,19,21,23,26,29,33,38].) DKG pro-
tocols are typically employed to distribute a private key s and publish a cor-
responding public key for a threshold signature scheme or cryptosystem (e.g.,
ElGamal, ECDSA, Schnorr, and BLS). The rise of digital currencies and proof-
of-stake blockchains have lead to the deployment of DSG protocols for large
scale systems with hundreds and even thousands of users [12,22]. As a result, an
extensive body of research is currently devoted to the study of DSG protocols
and their complexity. There are also many real-world implementations of DKG,
e.g. [4,12–14,32,35,36,39].

The communication Complexity of DSG and DKG. In this work we study the
communication complexity of DSG and DKG.Motivated by recent applications,
we assume that the vast majority of the communication is performed via a
public ledger. That is, in the distribution protocol parties write messages on a
public bulletin board (BB) and read messages from the board, but cannot erase
anything. The communication to the BB is non-anonymous and authenticated
(e.g., via digital signatures and PKI). We also allow parties to send messages via
private authenticated channels though such channels can be emulated over the
public board assuming public-key encryption. Qualitatively, the BB can be sim-
ply viewed as an implementation of a broadcast channel. However it allows for a
refined communication complexity measure. Specifically, we define the upstream
complexity of a party as the number of bits that the party sends either to the BB
or via private channels, the downstream complexity as the number of bits that a
party reads from the BB or receives via private channels, and refer to the sum
1 There are several definitions and variants of DSG and DKG. In particular, sometimes

the protocol is required to generate public commitments to the private shares, and,
typically, one should be able to securely recover the secret in the exponent of a given
group element h. To simplify the exposition, we postpone the formal definition, but
mention for now that our protocols support these features.

Distributing Keys and Random Secrets with Constant Complexity 487

of the upstream complexity and downstream complexity as the communication
complexity of the party. The total communication complexity is the sum of the
communication complexity of all parties. For example, if Alice publishes 10 bits
on the BB and Bob reads only the first 2 bits then Alice’s communication com-
plexity is 10 but Bob’s communication complexity is only 2. When measuring
the communication complexity of DSG and DKG we will focus on the distribu-
tion phase and ignore the communication complexity of the task of recovering
the secret. Indeed, in all standard protocols (including the ones in this paper)
one can release the secret s (or a committed version of it) to a receiver R via a
single-round protocol with a linear communication complexity. If only a few par-
ties need to recover the secret, the reduction in the communication is effective.
For example, in the setting of threshold signatures, where a single client receives
a signature on a document, only the client has to read O(n) symbols from the
BB whereas the n servers only have constant communication.

Existing Solutions. The most common approach is to reduce the DSG problem
to n parallel calls to verifiable secret sharing (VSS), where in each call a different
party Pj deals shares of a random secret according to some linear secret sharing
scheme (e.g., Shamir [37]), and where the final shares are defined by locally
summing-up the received shares. One can optimize the protocol a little bit by
using only tp + 1 dealers. Assuming that tp, tc are both linear in n (which will
be taken to be our default setting), the total communication complexity of this
protocol is about Ω(n2) field elements since Ω(n) parties must each communicate
at least Ω(n) field elements (even if the protocol is only passively secure). General
MPC solutions for computing the randomized sharing functionality also lead to
a similar communication cost. One can slightly improve the communication by
running the protocol over a small super-logarithmic size sub-committee that is
chosen at random via collective random coin-tossing. Ignoring the cost of the
coin-tossing protocol, this reduces the total communication to ω(n log n) field
elements although the communication overhead is unbalanced and some parties
still have a communication complexity of Θ(n).2 Finally, we mention that if
many instances of DSG are needed then one can amortize the communication
cost to O(1) per instance (e.g., via the use of hyper-invertible matrices [5]).
This approach is typically useful for MPC applications, but is less useful in the
DKG setting when the protocol is being used to set-up a single private key.
Our main goal is to understand whether a constant cost can be established in a
non-amortized setting. That is, we ask:

How does the communication complexity of DSG and DKG protocols scale
with the number of parties n? Specifically, is it possible to design a protocol

2 In the standard model where there is no external source of randomness (e.g., random
beacon), coin-tossing protocols suffer from a quadratic downstream communication
cost (since Ω(n) parties contribute randomness to the process and each party has
to read these contributions). Also, in the standard model, this solution is restricted
to non-adaptive adversaries that select the corrupted parties before the committee
is established.

488 B. Applebaum and B. Pinkas

where the communication complexity of each party is a constant that is
independent of n?

The Information Bottleneck. All existing protocols suffer from the following
“information bottleneck” which affects their communication overhead: There are
some (typically, Ω(n)) parties whose input influences the outputs of Ω(n) parties.
However, in a constant-round protocol with a constant communication overhead
per party each party can only affect the output of a constant number of parties.

2 Our Results

We show that n parties can obliviously sample a secret sharing for a random
secret with constant communication complexity per party. Formally, we prove
the following theorem.

Theorem 1 (main Theorem). Assuming the existence of NIZKs the follow-
ing holds. For any constants 0 < τp < τc < 1 and every field F of size super-
polynomial in the number of parties, there exists a constant-round n-party DSG
(resp., DKG) protocol over F with privacy threshold of τpn and recovery threshold
of τcn such that each party sends and receives only a constant number of field ele-
ments and a constant number of commitments and NIZK proofs for constant-size
relations. Moreover, each party computes only a constant number of arithmetic
operations and cryptographic operations.

In contrast, existing protocols fail to achieve constant communication even in
relaxed models, e.g., if the downstream complexity is ignored and broadcasting
a bit is counted as a unit cost operation or if the upstream complexity is ignored
and only downstream complexity is counted. We proceed with some comments.

1. (About the thresholds) The protocol guarantees that even if the adversary
actively corrupts up to tp = τpn parties, at the end of the protocol the (honest)
parties hold shares of a random secret according to tp-private tc-correct secret-
sharing scheme for tc = τcn. For example, we can assume that every un-
corrupted party will be participating in the reconstruction procedure and so
we can take tp = n − tc (e.g., tp = n/3 and tc = 2n/3). We note that the
theorem is still meaningful even when tp + tc �= n. (For example, to support
the case of some honest parties being offline and not participating in the
reconstruction of the secret, the parameters can be set such that tp + tc < n,
e.g., tp = n/3 and tc = 0.5n to support up to n/6 honest parties being offline.
As another example, to support the case of parties that are passively dishonest
and thus leak their shares while still participating in the reconstruction, the
parameters can set such that tp + tc > n, e.g., tp = 0.6n and tc = 0.7n.)3
It should be emphasized that, unlike Shamir-based schemes, we do not get
an exact threshold of tc = tp + 1, rather we only get near-threshold secret
sharing.

3 Formally, we capture this property via the use of a mixed adversary [15] that applies
different types of corruptions. See Sect. 5.

Distributing Keys and Random Secrets with Constant Complexity 489

2. (The field size) The limitation on the field size being super-polynomial in n
can be completely waived at the expense of allowing a large constant gap
between the parameters τc and τp. That is, for any finite field (including the
binary field) the theorem can be proved for some constants τc < τp. (See
Remark 6.) We focus on large fields since this is the natural setting for DKG
applications (e.g., when the secret is taken to be the private key of a DLOG-
based system).

3. (Formalizing security) Despite the popularity of DKG, there is no single
canonical definition for its security. Building on Katz [27] and Gennaro et
al. [19], we formalize security via an MPC framework by presenting abstract
DSG/DKG functionalities that are independent of any concrete secret sharing
scheme (similarly to the abstract definition of a commitment functionality).
We assume that the network is synchronous and consider computationally-
bounded, rushing, non-adaptive adversaries. Simple variants of our protocol
achieve adaptive security assuming secure erasures and perfect commitments.
Our simulators are straight-line black-box, so given UC-secure building blocks
the protocol can be proved to be UC-secure.

4. (Round complexity) The number of rounds is a constant that grows linearly
with the privacy-to-correctness gap τc − τp. We can optimize the round com-
plexity and get 3 rounds if we allow a larger correctness-to-privacy gap (i.e.,
settle on some universal constants τp < τc). For DSG, we can even reduce the
round complexity to 2, assuming a public-key infrastructure. This two-round
solution can be also applied to DKG at the expense of a slight relaxation of
the functionality (see the full version [3]).

5. (Concrete communication) Using DLOG-based primitives (e.g., ElGamal
commitments and RO-based NIZK), each party communicates a constant
number of elements from F and the underlying group G, where the constant
is determined by information-theoretic objects (the sparsity of some low-
density parity-check matrices). A concrete instantiation is described in the
full version [3]. It therefore seems likely that one can get competitive practi-
cal results, at least for some range of parameters. We leave this direction for
future work.

6. (The cost of recovering of the secret) Our DSG protocol generates O(n) pub-
lic elements on the BB. To recover the secret (either directly or taken to the
power of some public group element h) one has to read these values from the
BB and receive O(1) values from each of at least tc honest parties. Other exist-
ing protocols typically suffer from a similar cost as they have to read some
certificates for the validity of the submitted shares (e.g., commitments). How-
ever, unlike other protocols, in our setting such access to the BB is necessary
even if the adversary remains silent and only valid honestly-generated shares
are being used. Put differently, our protocol suffers from the non-standard
caveat that the local shares of authorized coalitions of size tc have no infor-
mation about the secret, and recovery is possible only when these shares are
accompanied by the public values that are published on the BB. Similarly,
in the context of DKG, computing the “public key” gs requires reading Ω(n)
public values that are available on the BB. Of course, such a computation can

490 B. Applebaum and B. Pinkas

be done once and for all, and can be verified later by anyone based on public
values. So in terms of usability, this property does not seem very limiting.
Interestingly, it turns out that this non-standard property is necessary for
bypassing the aforementioned information bottleneck, as we prove in the full
version [3, Appendix A].

2.1 Technical Overview

To prove Theorem 1, we will try to design a special-purpose secret-sharing
scheme (SS) that natively supports distributed sampling. This requirement is
satisfied if the shares are independently distributed. On the other hand, the cor-
rectness requirement implies that shares must be highly correlated. To bypass
this problem, we design a scheme in which the shares are sampled independently
at random and the correlation is achieved by publishing global public informa-
tion that depends on all the shares. For example, think of the following variant of
Shamir’s scheme where each party i locally samples a random field element yi as
its share. We can think of these shares as defining a polynomial f of degree n−1
for which f(i) = yi,∀i ∈ [n]. To add redundancy, the parties securely evaluate
the polynomial f in additional m = n− t points n+1, ..., n+m and publish the
resulting vector y = (yn+1, . . . , yn+m) on the BB as a “public header”. Given this
information, every set of t parties can recover the secret f(0). Now, our goal is
to securely compute a function that takes a single field element from each party
and publishes O(n) field elements on the BB. At least in terms of information
(ignoring secrecy), this may be doable by using O(1) communication per party.
While it is not clear how to do it securely, at least we do not face the previous
information bottleneck.

The AFS Abstraction. Let us abstract the above idea. Our goal is to design a
secret-sharing with public header y that is available to all parties such that (1)
a random sharing x = (x1, . . . , xn) can be sampled by letting each party sample
her share xi uniformly at random, and (2) the header y can be securely computed
based on x. We note that any linear secret sharing (LSS) Σ can be brought to
this form. To see this, observe that a random sharing x = (x1, . . . , xn) ∈ F

n

according to Σ is a random vector in the Kernel of some m × n “constraint”
matrix M (i.e. M · x = 0), and the secret s associated with x can always be
written as some linear combination v ∈ F

n of the shares, i.e., s =
∑

i vixi.
Consider a new secret sharing scheme in which x = (x1, . . . , xn) are sampled
uniformly at random, rather than be sampled subject to M · x = 0, and where
the public header y ∈ F

m is taken to be the “syndrome” M ·x. It is not hard to see
that a set T of parties can reconstruct the secret in the new scheme (given y) if
and only if it can reconstruct the secret in the original scheme Σ. Thus, any LSS,
specified by M and v, gives rise to an affine secret sharing scheme (AFS) with
similar privacy and correctness thresholds. More generally, the scheme remains
secure for any fixing of the public header y when the vector of shares x is sampled
uniformly subject to Mx = y. (See Sect. 4 for formal definitions and statements.)

Distributing Keys and Random Secrets with Constant Complexity 491

Computing the Public Header Efficiently. Our goal now is to find an MPC-
friendly AFS such that the mapping F : x �→ y given by y = Mx can be securely
computed with low communication. (The output of F should also consist of com-
mitments to the private shares xi, but let us ignore this for simplicity.) The func-
tionality F takes a single field element from each party and publishes m = Ω(n)
elements, and generic protocols for this task consume Ω(n2) communication even
in the presence of a broadcast channel. To cope with this problem, we employ a
concrete secret-sharing scheme in which the constraint matrix M is sparse, i.e.,
each row and column have only a constant number of ones. Such a scheme was
recently suggested by [2] based on Low-Density-Parity-Check Codes (LDPC).
We extend their construction and show that such secret-sharing schemes can
achieve near-threshold parameters.4 Since the matrix is sparse, each output yi

depends on a constant number of inputs, and each party i affects a constant num-
ber of outputs. In the passive (aka semi-honest) setting, this immediately leads
to a highly efficient protocol for computing the public header y. For instance, to
compute an output yi = x1+ . . .+xd, the d relevant parties collectively generate
an additive sharing of zero, with shares r1, . . . , rd given to the d parties, and
post to the BB the values xi + ri that sum-up to yi. (To generate a sharing of
zero we let each relevant party additively share the value zero and take the sum
of these shares.)

One can handle active (malicious) adversaries by applying the GMW com-
piler (or cheaper variants of it). That is, we let the parties publicly commit
to their inputs and randomness, send private messages publicly via the use of
public-key encryption, and use NIZK to prove the consistency of their messages
with the committed values and the previous rounds. The communication per
party remains constant. One may worry that the adversary chooses its shares in
a non-uniform way, however, it is not hard to show that such an attack does not
violate the security of the secret. (The adversary still has no control or knowl-
edge about the secret.) A more serious problem arises when the adversary aborts
some of the outputs. Indeed, if a corrupt party aborts then it is impossible to
compute any output yi that depends on the input of that party.

Handling Aborts. Assuming an honest majority, a naive solution for aborts is
to force parties to share their inputs at the beginning of the protocol, and later
when a party aborts have the other parties reveal the corresponding input. This
solution has a linear communication cost per party and is therefore not applicable
in our context. Alternatively, since the aborts in our case are identifiable [25]
(i.e., we can identify a corrupted party that misbehaves) we can repeat the
computation for an aborted output yi without the corrupted parties. It is possible
to implement this solution with low communication. However, it can be shown
that the adversary can force a linear number of rounds by corrupting only a single

4 Along the way, we prove that, over large fields, LDPC codes can approach the sin-
gleton bound – a result that may be of independent interest. See Remark 1.

492 B. Applebaum and B. Pinkas

party in each “correction round”.5 To derive a constant round solution, we take
a different route and require the underlying AFS to be robust against a bounded
number of erasures of the public header. (This notion of robustness should not
be confused with the standard notion of robust secret sharing tolerating faulty
shares.)

Robust AFS. Roughly speaking, in robust AFS, we want the secret to be recov-
erable even if the adversary erases some subset B ⊂ [m] of the entries of
y = (y1, . . . , ym). (Think of |B| as a small constant fraction of m.) Intuitively,
this means that a subset of tc honest parties T that holds the shares (xi)i∈T

should be able to recover the secret s =
∑

i vixi given only some of the public
shares (yi)i/∈B . Unfortunately, when the matrix is sparse such a strong level of
robustness cannot be achieved since the adversary can erase all the O(1) equa-
tions in which, say, the first honest party participates. This means that an hon-
est coalition that does not contain the first honest party cannot recover x1 and
thus cannot reconstruct the secret s =

∑
i vixi. Indeed, erasures can effectively

remove all the information about the shares of some of the (possibly honest)
parties. We solve the problem by compromising on the following weaker notion
of robustness: After the removal of B it should be possible to efficiently locate
a set A of parties such that after their removal, the residual scheme (M ′, y′, v′)
obtained by removing (more precisely zero-ing) the B entries of y, the A entries
of v, and the B × A submatrix of M , still supports recovery for a sufficiently
large correctness threshold tc. This means that we can “sacrifice” the B entries
of y and still recover the newly defined secret s′ =

∑
i/∈A vixi. Observe that the

adversary effectively shifts the secret to s′, moreover, the adversary (which is
rushing) can choose which subset B to abort after seeing the entire vector of
pubic shares y. The robustness definition takes this into account and guarantees
that, even under such an attack, security holds (i.e., the secret remains private
and independent of the adversary’s attack). To make this approach work, we
show that sparse matrices can be used to derive robust AFS. We also need to
carefully define ideal functionalities that capture the adversary’s behavior and
show that, when instantiated with robust-AFS, they realize the abstract DSG
and DKG functionalities.

Achieving Constant Rounds, Constant Communication and Near-Threshold.
With the help of robust-AFS, we can run the GMW-based protocol for comput-
ing the headers y = Mx and simply give up on the “erased” header (yi), i ∈ B.
This immediately yields a three-round protocol with low communication assum-
ing that the adversary can erase up to b entries where b is the robustness param-
eter of the AFS. This limitation induces a very small (yet linear) bound on
the privacy threshold tp. In order to improve this and derive near-threshold

5 Such a protocol has an “optimistic” constant round complexity (when there are
no aborts), and a “pessimistic” linear round complexity. Moreover, if the adversary
delays the protocol by r ≤ tp rounds it must publicly reveal Ω(r) corrupted parties.
Assuming some penalty mechanism, such a protocol may be acceptable in practice.

Distributing Keys and Random Secrets with Constant Complexity 493

scheme, we apply the robustness property in a less aggressive way. Specifically,
the robustness parameter b is taken to be some small (linear in n) value, and we
apply robustness only if there are less than b erasures. If the number of erasures
is larger, we remove the parties that were publicly identified as cheaters and re-
compute the missing entries. This is done repeatedly, and it can be shown that
after a constant number of rounds (that depends on the tp, tc and b), the number
of erasures is sufficiently small and robustness can be applied. This strategy is
non-trivial to implement with constant downstream communication (since we
do not even have enough bandwidth to publish the number of missing entries),
nevertheless we realize this approach with constant communication by carefully
postponing some of the computation to a post-processing public-decoding phase
that is invoked after the sharing phase as part of the reconstruction.

Organization. Following some preliminaries in Sect. 3, we devote Sect. 4 to the
study of AFS including definitions, properties, and sparse constructions. In
Sect. 5 we formalize DSG and DKG protocols in an MPC framework and show
how to realize these notions based on appropriate protocols for robust-AFS.
Communication-efficient protocols for distributing a secret according to a sparse
robust-AFS are presented in Sect. 6. A concrete instantiation of this protocol
appears in the full version [3].

3 Preliminaries

General Notation. We let [n] denote the set of integers {1, . . . , n}. For an m×n
matrix M = (Mj,i)j∈[m],i∈[n] and sets R ⊂ [m] and C ⊂ [n], we let M [R;C]
denote the m × n matrix whose (j, i)th entry is Mj,i if (j, i) ∈ R × C and zero
otherwise. We also let M [;C] := M [[m];C] be the matrix that agrees with M on
the columns in C and takes the value zero in all other columns. The complement
of a set T ⊂ [n] is denoted by T̄ . For random variables X and Y , we write X ≡ Y
to denote that X and Y are identically distributed.

Cryptographic Definitions and Primitives. We use the standard notion of a non-
interactive commitment scheme Comcrscm(x; k) where crscm is a random reference
string crscm, x is a message and k is a random commitment key k. (See the
full version [3] for a definition.) To simplify notation, we typically omit the
reference string crscm from the description of the commitment algorithm. Such
commitments can be constructed based on one-way functions [24,31].

We employ Non-interactive zero-knowledge proofs of knowledge (NIZK).
Specifically, following [27], we rely on ID-based simulation-sound NIZK proof
system (see also [28,34]). Syntactically, this means that proofs are generated
with respect to an identifier. Roughly, zero-knowledge requires that simulated
proofs are indistinguishable from real proofs even for adaptively chosen state-
ments. Simulation soundness requires that if an adversary who is given an access
to simulated proofs with respect to a set of identities H, can generate a valid proof
with respect to any identity outside H, then a valid witness can be extracted.
The formal definition appears in the full version [3].

494 B. Applebaum and B. Pinkas

We assume familiarity with standard MPC definitions (see, e.g., [7,20]).
Throughout the paper we let C denote the set of corrupted parties and H denote
the set of honest parties.

The BB Model. We assume that parties have an access to a public bulletin board
(BB) that is abstracted as an array or dictionary with random access. The array
is partitioned to sections, and each party has an exclusive write-once permission
for her section, i.e., only party i can write an element to the ith sub-array and
once an element was written to cell number j, this value remains unchanged
forever, and so parties who read these cell will always agree on its value. We
view the elements on the BB as publicly available to all the parties, that is, all
the parties have read permission to all sections. Our protocols naturally define
for every message an address (or a key) in which it is stored, and instruct each
party which addresses to read from the BB in each step.6 (Malicious parties can,
of course, read everything.) For the sake of clarity, when describing a protocol,
we typically treat the BB as a broadcast channel (keeping the mapping between
messages and their addresses implicit), and only later analyze the fine-grained
communication and see how many elements a party reads/writes during the
protocol.

4 Secret Sharing

4.1 Definitions and Basic Facts

Through the paper, we assume that F is a finite field or a family F = {Fn}
of finite fields whose size grows with the security parameter or the number of
parties. In the latter case, we assume that field operations can be implemented
in polynomial time, and keep the dependency in n implicit.

We use a slightly non-standard variant of the notion of Linear Secret Shar-
ing schemes. Roughly, (1) we assume that the share of each party is a single
field element and (2) we replace linearity with affineness. (See Remark 2 for
an explanation about the usage of affineness.) In addition, for convenience, our
definition is centered around the process of sampling a random secret sharing
vector that corresponds to a random secret, as opposed to sharing a given secret.
(This difference is mainly syntactic and one can easily move between these two
variants.)

Definition 1 (AFS: Semantics). An n-party (tp, tc) Affine Secret Sharing
Scheme (AFS) over a finite field F is a pair (Σ,Rec) where Σ is a probability
distribution of sampling shares over an affine subspace of Fn and Rec is a recovery
algorithm that takes a subset T ⊂ [n] and a vector of shares x[T] = (xi)i∈T ∈ F

|T |

and outputs a secret s ∈ F with the following properties:
6 We note that this convention is aligned with modern blockchains (e.g., Ethereum,

Solana, Aptos) that implement storage as a key-value store (RocksDB in the latter
two), and support direct retrieval of data using keys. Thus the download channel of
reading values from the BB is cheap and straightforward.

Distributing Keys and Random Secrets with Constant Complexity 495

– tc-Correctness: For every subset T ⊂ [n] of size at least tc (hereafter referred
to as “authorized”) it holds that

Pr
x

R←Σ

[Rec(T, x[T]) = s(x)] = 1,

where s(x) = Rec([n], x) is referred to as the secret associated with the vector
of sharing x. Furthermore, for every fixing of T the mapping Rec(T, ·) : F|T | →
F is a linear mapping.

– tp-Privacy: For every set T ⊂ [n] of size at most tp (hereafter referred to as
“unauthorized”), we have

(x[T], s(x)) ≡ (x[T], s′),

where x
R← Σ, and s′ R← F is chosen independently and uniformly.

Standard Representation. By default, we assume that the AFS works as follows:

– The AFS is specified by an m×n constraint matrix M , a column offset vector
y ∈ F

m, and a row vector v ∈ F
n referred to as the extraction vector.

– The sampling algorithm ΣM,y,v samples a uniform solution x ∈ F
n to the set

of equations Mx = y. When y is the all zero vector the scheme is linear as
opposed to affine.

– The underlying secret s(x) =
∑

i xivi is taken to be the inner-product between
the vector of shares x and the extraction vector v. (The terminology is bor-
rowed from the notion of randomness extractors, i.e., we extract the secret
from the randomness of the parties).

– The recovery algorithm expresses the missing shares as a linear combination
of the existing shares, and outputs the multiplication of v by the vector of
shares. More precisely, the recovery algorithm RecM,y,v(T, x[T]) finds a row
vector α ∈ F

m such that α · M [; T̄] = v[T̄], and outputs
∑

i∈T vixi +α · (y −
M [;T] · x[T]).
If there is no such vector α, i.e., v[T̄] is not in the row-span of M [; T̄],
the recovery algorithm fails. Note that both Σ and Rec can be computed
efficiently by making poly(n) number of arithmetic operations over F.

The following simple fact characterizes the correctness and privacy in linear
algebraic terms. (This is a straightforward generalization of the well-known linear
algebraic characterization of linear secert sharing to the affine setting).

Fact 2 (linear-algebraic characterization of privacy and correctness).
Let M ∈ F

m×n, y ∈ F
m and v ∈ F

n, and assume that the offset vector y is
a vector in the image of the constraint matrix M . Let x be a uniformly chosen
solution to the system Mx = y and let s(x) =

∑
i xivi denote the random variable

induced by the choice of x. For every set T ⊂ [n], if v[T̄] ∈ rowspan(M [; T̄])
then

Pr
x
[RecM,y,z(T, x[T]) = s(x)] = 1,

496 B. Applebaum and B. Pinkas

and otherwise,
(x[T], s(x)) ≡ (x[T], s′)

where s′ is uniform over F. Consequently, (ΣM,y,v,RecM,y,v) is tc-correct (resp.,
tp-private) if and only if for every set T ⊂ [n] of size tc (resp., tp) the vector
v[T̄] is spanned (resp., not spanned) by M [; T̄].

We say that (M,y, v) is tc-correct (resp., tp-private) if the AFS given by
(ΣM,y,v,RecM,y,v) is tc-correct (resp., tp-private). By Fact 2, the offset vector
y plays no role in the privacy/correctness of the scheme as long as it is in the
image of M .We will always assume that the offset vector y is in the image of
the constraint matrix M , and accordingly refer to (M,v) as tc-correct (resp.,
tp-private) if (M,y, v) is tc-correct (resp., tp-private) for every y is in the image
of M .

From Codes to an Affine Secret Sharing Scheme (AFS). It is not hard to see that
the correctness property can be based solely on the error correction properties
of the constraint matrix M , regardless of the choice of v. Formally, define the
dual distance of M , denoted by dd(M), to be the smallest number of linearly
dependent columns of M (over F). Note that this means that for every subset
T ⊂ [n] of size lesser than dd(M) the matrix M [;T] is of rank at least |T |
and so v[T̄] ∈ rowspan(M [; T̄]) for every vector v ∈ F

n. Therefore, the tuple
(M,y, v) is (n − dd(M) + 1)-correct no matter how the extraction vector v is
chosen. Privacy now boils down to the selection of the extraction vector. We say
that the extraction vector v is tp-private for M (over F) if for every tp-subset
T ⊂ [n], it holds that v[T̄] /∈ rowspan(M [; T̄]). Then, we have the following
immediate claim (whose proof is implicit in [2] and is closely related to the
general transformation of [11]).

Claim 3. For every m × n matrix M , vector y ∈ F
m in the image of M

and extraction vector v ∈ F
n which is tp-private for M , the tuple (M,y, v)

is (n − dd(M) + 1)-correct and tp-private. Moreover, except with probability
|F|−(n−m−tp)

(
n
tp

)
, a randomly chosen vector v

R← F
n is tp-private for M .

Proof. The first part follows from the above discussion and Fact 2. The “More-
over” part, follows by noting that for any fixed tp-subset T ⊂ [n], the rank of
M [; T̄] is m, and therefore, the probability that v[T̄] ∈ rowspan(M [; T̄]) is at
most |F|m/|F|n−tp . By applying a union-bound over all possible tp-subsets, we
get a failure probability of |F|−(n−tp−m)

(
n
tp

)
, as required.
�

Remark 1 (Near-Threshold AFS). Assuming that the field size grows asymptoti-
cally with the number of parties (e.g., |F| > ω(1)) we can take tp = (1−ε)(n−m)
for an arbitrary small constant ε > 0, and still get a negligible failure probabil-
ity of 2−Ω(n).7 If the distance of the code approaches the singleton bound, i.e.,

7 If the field is exponentially large (which is a reasonable scenario in the context of
threshold cryptography), we can even take tp = (n − m).

Distributing Keys and Random Secrets with Constant Complexity 497

dd(M) > (1− ε)m, then tc = (1+ ε)(n − m). Altogether, we get an almost-tight
privacy-to-correctness gap tc − tp ≤ 2ε(n − m).

For small fields (including the case of the binary field), we cannot hope to
get arbitrarily small gap [6]. Still for a code with constant relative distance and
constant rate, we still get, except with negligible probability, some non-trivial
constants 0 < tp < tc < 1 that are bounded-away from zero and one.

Collections of AFS. A (τp, τc)-AFS collection with error ε(·) is specified by a
probabilistic polynomial-time algorithm Z that given 1n samples an index z =
(M,y, v) such that, except with probability ε(n), the pair (Σz,Recz) forms an
n-party (τpn, τcn)-AFS. By default, we assume that the error parameter ε is
negligible in n. We may also assume that Z samples only the constraint matrix
M and the extraction vector v since any y in the image of M can be used. We
say that an AFS collection is sparse if the number of non-zero elements in every
row and column of the constraint matrix is bounded by a fixed constant that
does not grow with n.

Remark 2 (Why Should We Use Affine Schemes?). By Fact 2, privacy and
correctness depend only on the constraint matrix M and the extraction vector
v, and any offset vector y (in the column span of M) can be used. For this reason,
the standard choice in the literature is to focus on LSS (as opposed to AFS) and
assume that y is the all-zero vector. Still, for computational efficiency, it will be
beneficial to employ a non-zero y since, in some cases sampling x conditioned
on Mx = 0 is more expensive than sampling a uniform x and setting y = Mx.
In particular, in a distributed setting, each party can sample its own share xi

independently at random, and then the parties reveal y via MPC. This approach
will be used in our DSG and DKG constructions. Getting back to the information
bottleneck mentioned in the introduction, the use of a non-zero vector y is in
fact necessary for achieving our results.

Remark 3 (From Affine to Linear). In many applications of secret sharing affine-
ness provides a sufficiently good substitute for linearity. Moreover, if this is not
the case then one can easily turn an affine sharing x of a random secret s under
the AFS z = (M,y, v) into a linear sharing of a random secret s′ under the linear
secret sharing scheme (M,0). This can be done by letting each party i locally
redefine its share to xi − x′

i where x′ ∈ F
n is some canonical vector for which

Mx′ = y. It is not hard to verify that the resulting sharing vector x − x′ is a
random sharing under the scheme z′ = (M,0, v) of the shifted secret s−s′ where
s′ =

∑
i x′

ivi is the secret associated with x′ under z = (M,y, v). Moreover, if
(M,y, v) is (tp, tc)-AFS then the scheme (M,0, v) is an (tp, tc)-LSS.

4.2 AFS from Expanders

In this section we define a certain expansion property for matrices, use existing
techniques (Fact 4) to sample matrices with this property, and prove (Theorem 5)
that such expanders can be used to construct a near-threshold sparse-AFS.

498 B. Applebaum and B. Pinkas

Matrices, Sparsity, and Expansion. Let M = (Mj,i)j∈[m],i∈[n] be an m×n matrix.
We say that M is d-sparse if every column of M has at most d non-zero elements,
and say that it is (d, r)-sparse if, in addition, every row of M has at most r
elements. We say that M is (, e) column-expanding (or just expanding) if for
every set S of at most 	 columns, the submatrix M [;S] has at least e · |S|
non-zero rows. Let ηe(M) denote the largest 	 for which M is (, e) expanding.
Note that ηe(M) is monotonically decreasing with e and, for d-sparse matrices,
ηe(M) = 0 for any e > d. It is well known (see, e.g., [40, Problem 5.5.]) that for
(d, r)-sparse matrices and every a > d/2,

ηa(M) ≤ dd(M) − 1 ≤ η1(M), (1)

where the equation holds regardless of the choice of the finite field F over
which the dual-distance is computed. That is, expansion beyond half-the-column-
sparsity, d/2, guarantees good distance, whereas non-shrinkage (expansion of at
least 1) is necessary for good distance. Jumping ahead, we note that for large
fields and properly chosen matrices, non-shrinkage is also sufficient for good
distance.

Collections of Matrices. For constants μ ∈ (0, 1) and d, r ∈ N, a collection of
(μ, d, r)-matrices is defined by a (possibly randomized) polynomial-time algo-
rithm M that given 1n outputs a (d, r)-sparse μn × n matrix over F. We say
that the collection is (λ, e) expanding with error ε(n) (resp., has distance dd
with error ε(n)) if the resulting matrix is (λn, e) expanding (resp., has distance
ddn) except with probability ε(n). By default, we assume that ε is a negligible
function. The following constructions are based on [1,9].

Fact 4 (Expanding Collections). For every constant μ ∈ (0, 1), constant
ε > 0, and constant λ < μ/(1 + ε) there exist constants d, r, and a collection
of (μ, d, r) binary matrices that are (λ, 1 + ε) expanding with a negligible error
probability.

Also, for every constant μ ∈ (0, 1), there exist constants d, r, λ and a col-
lection of (μ, d, r) binary matrices that are (λ, 0.9d) expanding with zero error
probability.

We note that the constant 0.9 in the second part of the fact was chosen arbi-
trarily, and could be replaced by any constant larger than 0.5.

Proof. Observe that it suffices to prove the statement without worrying about
the row sparsity. Indeed, the average row sparsity must be d/μ and so, by
Markov’s inequality, for every α > 0, all but α-fraction of the rows have weight
at most r = d/(μα). By removing these heavy rows we get (d, r)-sparsity at the
expense of a small constant degradation in the parameter λ. The second part of
the theorem now follows immediately from the celebrated result of [9].

To prove the first part we rely on [1]. Since the statement in the original paper
refers to a slightly different regime of parameters, we sketch the argument here.
Consider a random μn × n binary matrix R that each of its columns is sampled

Distributing Keys and Random Secrets with Constant Complexity 499

independently at random so that each column contains d ones. Let p� denote the
probability that there exists a non-expanding set of exactly 	 columns, i.e., a set
that fails to expand by a factor of 1 + ε. A standard calculation shows that

p� ≤
[

cε,μ

(
(1 + ε)	

μn

)d−2−ε
]�

,

where cε,μ is a constant that depends on ε and μ but is independent of d. By
taking d to be a sufficiently large constant, we can guarantee that p� is negligible
for every ω(1) < 	 < μn/(1+ ε). However, for constant size 	’s we get an inverse
polynomial failure probability, which means that the overall failure probability∑

�≤μn/(1+ε) p� is inverse polynomial in n. To reduce the error to be negligible,
we use the construction from [1] that samples a sparse matrix M ′ such that,
except with negligible probability γ(n), there are no non-expanding sets of size
smaller than 	0 for some super-constant parameter 	0 = ω(1). Let M denote
the matrix obtained by taking the union of M ′ with a random sparse matrix R
(i.e., Mi,j = M ′

i,j ∨ Ri,j for each i, j). Then M is a sparse matrix that does not
have a non-expanding set of size smaller than μn/(1+ε) except with probability
γ(n) +

∑
�0<�≤μn/(1+ε) p� which is negligible in n.
�

Theorem 5 (near-threshold sparse-AFS from expanders). For every
constants τp < τc there exists constants d, r such that for every field F of
size super-polynomial nω(1), there exists a (τp, τc)-AFS over F whose constraint
matrix is (d, r)-sparse. Furthermore, except with negligible probability the dual
distance of the constraint matrix is (1 − τc)n.

Proof. Let μ ∈ (1 − τc, 1 − τp) be a constant. Given 1n, we sample a tuple
(M,y, v) as follows. (1) Use the first part of Fact 4 to sample a sparse μn × n
binary matrix which is ((1 − τc)μ, 1 + ε) expanding for some constant ε > 0.
Next, replace each non-zero position by a uniformly chosen field element and
let M denote the resulting matrix. It is shown in [41, Lemma 3.9] that, except
with negligible probability |F|−1, the dual distance of M over F, is at least as
large as the expansion parameter (1 − τc)n. Sample a random reconstruction
vector v

R← F
n and take y to be an arbitrary vector in the image of M . By

Remark 1, except with exponentially small probability, we get a (τcn, τpn)-AFS
(since τp < 1 − μ and τc = 1 − dd(M)/n), as required.
�
Remark 4 (LDPC Codes that Almost Achieve the Singleton Bound). Our proof
implicitly shows that when the field F is sufficiently large (say super-polynomial
in n), for every ε > 0 there are dε-sparse m × n parity-check matrices whose
distance Δ approaches the singleton bound, i.e., Δ > (1 − ε)n. Moreover, such
codes can be efficiently sampled with negligible error probability. To the best of
our knowledge, this result does not appear in the literature. For comparison, the
work of [30, Thm. 2.14] shows that such codes can achieve the Gilbert-Varshamov
bound when the sparsity grows with the field size.

500 B. Applebaum and B. Pinkas

Remark 5 (Sparse-AFS Over Small Fields). One can efficiently construct matri-
ces that achieve a constant rate and a constant distance even under constant
size fields [17]. In fact, by using the second part of Fact 4 and the connection
between expansion beyond half-the-column-sparsity d/2 in Eq. (1), one can get
binary matrices that achieve constant distance over any finite field. By sampling
a random extraction vector as in Claim 3, we get a (τp, τc)-AFS, for some non-
trivial constants 0 < τp < τc < 0, that works over small fields whose constraint
matrix is a sparse binary matrix. (In fact, by using the techniques of [2], we can
get a single scheme that works universally over all finite fields that also enjoys
several efficiency features in reconstruction.)

Example 1 (Sparse-AFS Over Large Fields: Concrete Numbers). Say that the
field is of size at least 2100 (in threshold systems the size is typically larger, e.g.,
≈ 2255 for Schnorr’s signature). Consider the following examples:

1. Say that we have n ≥ 10 parties and take an AFS matrix with μ · n rows
where μ = 0.5. By standard expansion calculations, there are sparse matrices
with d = 8 and r ≈ 16, that achieve τc = 0.66.8 By choosing a random
extraction vector, we get τp = 0.4 except with failure probability 2−100. So we
get a (8, 16)-sparse (0.4, 0.66)-AFS. (This favorably compares to the canonical
setting of 1/3 corrupt vs 2/3 honest that is used in many scenarios.)

2. As another data point, assume that the field F is of size at 2255 and that the
number of parties n > 50. Then, by taking μ = 0.6, we can get a (4, 10)-sparse
matrix with τp = 0.39, τc = 0.9.

4.3 Robust AFS

Motivation. When a DKG is run, some participants might behave maliciously
and corrupt some of the shares that are needed for reconstructing the newly
distributed key. We need the AFS to be robust to such attempts. For concrete-
ness, consider the following scenario. Given an AFS z = (M,y, v), we distribute
a vector of random shares x ∈ F

n by sampling a uniform solution to the system
Mx = y. Then, an adversary who controls a tp-subset T ⊂ [n] of the parties gets
his shares x[T] and is allowed to corrupt the index z by erasing a small subset B
of the entries of the vector y. (Think of B as a small constant fraction of n.) Intu-
itively, we want the secret to still be recoverable given only (M [B̄;], y[B̄], v).
Unfortunately, when the matrix is sparse this is impossible since the adversary
can, for example, include in B and erase all the O(1) equations in which the
first honest party participates. In this case, an honest coalition that does not
contain the first honest party has no information on x1 and cannot reconstruct
the secret s =

∑
i vixi.

8 The calculation here is based on the probabilistic method (i.e., we bound the prob-
ability that a random sparse matrix fails to expand well). We ignore here the issue
of finding explicit expanding matrices and note that this can be done via several
existing techniques, e.g., [1].

Distributing Keys and Random Secrets with Constant Complexity 501

Indeed, erasures in z effectively remove all the information about the shares
of some of the (possibly honest) parties. The key idea is to make sure that
these “lost” parties will not affect the secret by zero-ing the corresponding
entries of the extraction vector. This way the secret remains recoverable even
without the missing shares. In more details, we compromise on the following
weaker notion of robustness: After the removal of B, it should be possible to
locate a set A of parties such that even if their shares are lost, the residual
scheme z2 = (M [B̄; Ā], y[B̄], v[Ā]), namely the n-party scheme containing all
the original shares except those of A that are effectively taken to be zero, still
supports recovery for a sufficiently large correctness threshold tc. That is, for
z2 = (M [B̄; Ā], y[B̄], v[Ā]), the recovery algorithm Recz2 can tc-recover the secret
s′ =

∑
i∈Ā xivi even when the shares x are sampled according to Σz (i.e., as a

uniform solution to Mx = y). Note that the secret associated with x is changed
to s′ since we use the restricted extraction vector v[Ā]. So privacy now means
that the secret s′ should remain information-theoretically hidden given x[T].
That is, the restricted extraction vector v[Ā] should be tp-private for the origi-
nal matrix M . Jumping ahead, note that by erasing B, the adversary effectively
shifts the shared secret from s to s′. Still this does not bias the output since s′

is still uniform and since our DSG/DKG protocols will ensure that the choice of
B is independent of the secret. We continue with a formal definition of robust
AFS.

Definition 2 (Robust AFS). Let M be an m×n matrix, y be a vector in the
column span of M , and v ∈ F

n. We say that the tuple z = (M,y, v) is b-robust
(tp, tc)-AFS if for every b-subset B ⊂ [m] there exists a set A = A(B) ⊂ [n],
referred to as the sacrificed set of B, such that for

z1 = (M,y, v[Ā]) and z2 = (M [B̄; Ā], y[B̄], v[Ā])

the pair (Σz1 ,Recz2) forms a (tp, tc)-AFS. (We use this pair of algorithms since
the secret is shared with Σz1 and recovered with Recz2 .) We further assume that
if B is an empty set then A must be an empty set as well, and therefore every
b-robust (tp, tc)-AFS, for b ≥ 0, is also (tp, tc)-AFS, and a 0-robust (tp, tc)-AFS
is simply a (tp, tc)-AFS.

An AFS ensemble with an index sampler Z is β-robust (τp, τc)-AFS if for all
but negligible probability over (M,y, v) R← Z(1n), the AFS (M,y, v) is βn-robust
(τpn, τcn)-AFS. We also require that the set A should be efficiently computable
given (M,B).

Importantly, the residual scheme is defined over n parties, and the defini-
tion guarantees that even after the erasure, every subset of tc parties (possibly
including parties in A) can recover the secret.

Lemma 1 (Sparse AFS are Robust). Suppose that (M,y, v) is a (tp, tc)-
AFS and that M is a (d, r)-sparse matrix whose dual distance is Δ = n− tc +1.
Then (M,y, v) is a b-robust (tp − b · r, tc)-AFS for every b. Furthermore, the set
A(B) is taken to be the columns whose support intersects with B, i.e., A(B) =
{i : ∃j ∈ B,M [j, i] �= 0}.

502 B. Applebaum and B. Pinkas

Note that the lemma keeps the correctness parameter tc unchanged, and the
extra robustness property only affects the privacy thershold.

Proof (of Lemma 1). Fix a b-subset B ⊂ [m] and let A = A(B) as defined above.
We begin by claiming that (�) the B̄ × Ā sub-matrix L of M has distance of at
least Δ = n − tc + 1. For this it suffices to show that any set of Δ − 1 columns
{wi}i∈S in L are linearly independent. To see this, recall that each column vector
wi is obtained from a column ŵi of M via the projection wi = ŵi[B̄] where the
B-coordinates of wi are known to be zero (otherwise i ∈ A and wi is not a column
of L). This means that {wi}i∈S is linearly independent if the M -vectors {ŵi}i∈S

are linearly dependent, which is the case by the assumption on the distance of
M .

Let t′p = tp − b · r. We will now prove that (Σz1 ,Recz2) forms a (t′p, tc)-AFS
where z1, z2 are defined as in Definition 2. Let x ∈ F

n be a random solution to
the system Mx = y. Then, x′ = x[Ā] is also a solution to the system defined by
M ′ = M [B̄; Ā] and y′ = y[B̄]). Let v′ = v[Ā]. Fix a set T ⊂ [n] of size at least
tc. Given x[T], the recovery algorithm Recz2 recovers the secret s′ =

∑
i v′

ix
′
i if

and only if v′[T̄] is spanned by the rows of M ′[; T̄]. This condition is equivalent
to the condition that v′[T̄ ∩ Ā] is spanned by the rows of M ′[; T̄ ∩ Ā] (since the
A entries/columns are set to zero). This is indeed the case, since the set T̄ ∩ Ā
is of size at most n − tc which is smaller than the distance, Δ, of the Ā × B̄
sub-matrix L of M , as shown in (�).

Fix a t′p-subset T ⊂ [n]. To show that s′ is distributed independently of x[T],
it suffices to show that

v′[T̄] = v[Ā ∩ T̄] is not in colspan(M [; T̄]). (2)

Taking S := A ∪ T , it holds that S̄ = Ā ∩ T̄ , and so (2) holds if v[S̄] /∈
colspan(M [; T̄]) which must be the case since |S| = (t′p + |A|) ≤ t′p + br = tp
and since v is tp-private for M by assumption. (The inequality |A| ≤ b · r follows
by the sparsity condition on the matrix).
�

By combining Lemma 1 with Theorem 5 we derive the following corollary.

Corollary 1 (Near-Threshold Robust Sparse-AFS). For every constants
τp < τc there exists constants d, r such that for every field F of size super-
polynomial nω(1), there exists a (d, r)-sparse AFS collection which is β-robust
(τp − rβ, τc)-AFS over F for every β ≥ 0.

Remark 6 (Robust Sparse Binary AFS). For constant-size fields (e.g., the binary
field), a similar corollary can be obtained for some constants τp < τc, by com-
bining Lemma 1 with Remark 5.

5 Distributed Secret-Sharing Generation

Following Katz [27] we define distributed key generation in the discrete-logarithm
setting (hereafter referred to as DKG), and distributed secret-sharing generation

Distributing Keys and Random Secrets with Constant Complexity 503

DSG, via an MPC framework. While Katz’s definitions are tailored to Shamir-
based DKG, we will need slightly more general definitions that are compatible
with general collections of AFS schemes. We begin with an abstract version that
captures the desired security properties and move on to more concrete variants,
formally captured by canonical protocols, that provide additional efficiency fea-
tures.

5.1 DSG and DKG: Abstract Version

Syntactically, a DSG is a two-stage n-party protocol where the parties hold
no input. The first phase, Share, distributes to each party a private share and
generates some public information. At the second phase, Rec, the parties recover
the secret s ∈ F, where the field F = Fp is implicitly specified as part of the
parameters of the scheme. For technical reasons, it will be convenient to add a
special party, a “client”, whose role is to invoke the two stages of the protocol.
The syntax of DKG is similar, except that after the sharing phase, the protocol
reveals also the public key gs as part of the public information where g generates
a cyclic group G of order p that is given implicitly as part of the parameters of
the scheme. In its most abstract form, the scheme should realize the following
reactive ideal functionality (Functionality 6). The term “broadcasts” should be
interpreted as writing a message on the public BB.

Functionality 6 (Fdsg and Fdkg). The functionality has two phases
that are invoked by the client:

1. Share phase: the functionality samples a secret s ∈ F and broadcasts
the message “shared”, and, in the case of Fdkg, also the value gs.

2. Recovery phase: the functionality broadcasts the secret s.
(For Fdkg, we can consider a variant in which the client specifies a pub-
lic group element h, and the functionality broadcasts the pair (h, hs).)

We will say that a protocol (tp, tc)-realizes Fdsg (resp., (tp, tc)-realizes Fdkg)
if it realizes Fdsg (resp., Fdkg) in the presence of a mixed adversary that controls
the client, and corrupts up to tp parties with an arbitrary mix of t1 passive and
t2 active corruptions as long as t1 + t2 ≤ tp. In addition, at the reconstruction
phase, the adversary is allowed to abort (i.e., “crash”) additional t3 honest parties
as long as n − (t1 + t3) ≥ tc, i.e., at least tc parties honestly participate in
the reconstruction. This definition implies that any set of tc honest/passively
corrupted parties can recover the secret even when the adversary submits faulty
shares on behalf of the actively corrupted parties. Such a protocol is also private
in the sense that during the sharing phase, an adversary controlling up to tp
parties cannot bias the distribution of the secret and cannot learn anything
about s (except for what follows from gs in the case of DKG). In particular,
the above MPC-based definition implies the property-based definition of DKG
from [19] in its strongest form. We always assume that tp < tc and note that the
definition is meaningful even when tc+tp �= n (due the use of a mixed adversary).

504 B. Applebaum and B. Pinkas

Remark 7 (Relaxation). For completeness, we present here a relaxed variant of
the definition, which is not used in our work. In some scenarios, it makes sense
to relax the definition by requiring simulatability only for the sharing phase.
Formally, we say that a two-phase protocol Π weakly realizes Fdsg if for every
adversary A there exists an efficient simulator Sim such that the random variable
(ViewShare

A,Π ,OutputRecA,Π), consisting of the view of the adversary after the sharing
phase and the output of the honest parties after the recovery phase, is computa-
tionally indistinguishable from the pair (Sim, s) where Sim is the output of the
simulator and s

R← F is a uniformly chosen secret. For the case of DKG, the
simulator also gets gs as an input. Indeed, the DKG variant of this definition is
essentially equivalent to the property-based definition from [19].

5.2 Canonical Schemes

While the above definition nicely captures the desired security properties of DSG
and DKG, it misses some useful “efficiency” aspects such as non-interactive recon-
struction or the ability to reconstruct shares via linear operations – a feature that
is necessary for “reconstruction-in-the-exponent” in DLOG-based threshold sys-
tems. To capture these additional properties (which are common to most existing
schemes), we introduce the notion of canonical schemes and focus throughout
the paper on such schemes.9

Let E be a non-interactive commitment scheme. We say that a DSG is in
canonical form if, at the end of the sharing phase, each honest party holds a
share xi ∈ F of the secret s according to some (tp, tc)-AFS that is specified by
the public values z = (M,y, v) that are known to all parties (e.g., broadcast
during the protocol). In addition, at the end of the sharing phase all the parties
learn commitments (αi = E(xi; ρi))i∈[n] to all the shares. In this case, the recov-
ery phase can be implemented by the following single-round canonical recovery
protocol (Protocol 7).

Protocol 7 (Canonical Recovery Protocol ΠRec). We assume a
common reference string crspf, public index z = (M,y, v) and public
share commitments α = (αi)i∈[n]. In addition, each honest party Pi holds
(xi, ρi) such that αi = E(xi; ρi).

– R1: Each party Pi broadcasts xi and a NIZK πi (with respect to crspf)
that xi and αi satisfy the equality αi = E(xi; ρi) with respect to the
witness ρi.

– Output Let (x′
i, α

′
i) denote the values broadcasted by the ith party and

let T ⊂ [n] be the set of indices i ∈ [n] for which the proof π′
i passes

verification with respect to α′
i and x′

i. Compute the linear recovery
algorithm RecM,y,v(T, x′[T]) and output the result.

9 Alternatively, one could try to formalize an these properties as part of the ideal
functionality (e.g., by letting the functionality distribute “handles” for the secret).
We feel that the current solution is simpler and more intuitive.

Distributing Keys and Random Secrets with Constant Complexity 505

If we strive for the weaker variant of DSG/DKG that is mentioned in
Remark 7 then we can simply open the commitment in the recovery phase and
avoid the NIZK. (See the full version [3] for more details.)

Remark 8 (Canonical Recovery in the Exponent). The above protocol can be
easily modified to allow the reconstruction of the secret s in the exponent of
a public group element h ∈ G (which is broadcasted to all the parties by the
“client”). In the first round, each party sends hxi together with NIZK that cer-
tifies that xi is consistent with its commitment αi. At this point any (possibly
external) party can compute hs by dropping the invalid elements (whose validity
proofs fail) and by computing the linear reconstruction algorithm Recz “in the
exponent”. Thus canonical protocols efficiently support “reconstruction in the
exponent”, which is a crucial feature in the context of DLOG-based threshold
cryptography. We emphasize that most threshold cryptography applications use
recovery in the exponent, for example to compute BLS signatures or to com-
pute a verifiable random function (VRF). The secret is used as the key for these
functions. Furthermore, in these applications, when there are multiple invoca-
tions of the threshold function, the same secret is recovered multiple times in
the exponent, using different random public bases. (One can capture this by
defining the DSG/DKG functionality as a reactive multi-phase functionality in
which sharing happens once during initialization and recovery-in-the-exponent
can be called multiple times with different group elements h; Our protocols hold
in this setting as well.)

Given the above discussion, to realize a canonical DSG it suffices to imple-
ment a secure protocol for the sharing phase. This is formalized by Functional-
ity 1 in Fig. 1. The ideal functionality Fcdsg,b is parameterized with a robustness
parameter b and is implicitly parameterized by a non-interactive commitment
scheme E and by a b-robust (tp, tc)-AFS. The latter is specified by a public m×n
constraint matrix M , and a public extraction vector v ∈ F

n such that for every
y ∈ F

m in the image of M the AFS (M,y, v) is b-robust (tp, tc)-AFS.10 The
non-robust variant is handled by taking the robustness parameter b to be zero.
Jumping ahead, we will show later (Lemma 2) that security holds even if the
adversary is allowed to choose her own shares based on the residual value of the
offset y and to erase up to b of entries of the resulting offset vector.

To understand the definition, let us focus on the non-robust version where the
adversary does not erase entries, i.e., B = ∅. Intuitively, security holds since for
any fixing of y in the image of M , and any fixing for the shares of the corrupted
parties, x[C], if we choose the shares of the honest parties x[H] uniformly at
random subject to Mx = y, then the secret s =

∑
i vixi is uniformly distributed.

Formally, we prove the following lemma.

Lemma 2. Let Π be a protocol that tp-realizes Fcdsg,b for some b-robust (tp, tc)-
AFS (M,y) and let ΠRec denote the canonical recovery protocol. Then, (Π,ΠRec),
10 Asymptotically, we may assume that M and v are sampled from some b-robust

(tp, tc)-AFS sampler Z(1n) during a one-time set-up phase; Such a phase is needed
any way to set the field and the underlying cyclic group G.

506 B. Applebaum and B. Pinkas

Fig. 1. Functionality 1 – sharing phase for a canonical DSG.

viewed as a two-phase protocol, (tp, tc)-realizes Fdsg where we assume that ΠRec

is applied to the index (M [Ā; B̄], y[B̄], v[Ā]) where B, y[B̄] are the public output
of the first phase and A is the sacrificed set of B (which is computed based on
B and M by using the specification of the AFS).

Proof (sketch). We begin with a brief intuition under the simplifying assump-
tion that the commitment scheme is perfectly hiding. (This assumption will be
waived in actual proof.) In this case, by the privacy properties of the AFS, for
any fixing of the view of the adversary after the sharing phase, the distribu-
tion of the secret is uniform and independent of the view. Furthermore, assume
that in the reconstruction phase, the adversary aborts all but tc parties that
submit honest (uncorrupted) shares. Then, by the correctness and robustness
properties, the secret is recovered properly. In the actual proof, we argue that
(1) computationally hiding commitments suffice for achieving computationally
close simulation and that (2) the binding properties and the NIZK guarantee
that a computationally bounded adversary cannot modify its shares during the
reconstruction. The full proof is deferred to the full version [3].
�

5.3 From DSG to DKG

We reduce Fdkg to canonical DSG, Fcdsg, by adding a single round of “recon-
struction in the exponent” of the generator g. (Party i broadcasts gsi with a
NIZK that proves consistency with αi, and the valid elements can be combined
into gs as explained in Remark 8.) This allows everyone to recover the public
key gs without revealing any additional information on s. The communication

Distributing Keys and Random Secrets with Constant Complexity 507

per party is constant (it depends on the security parameter but does not grow
with n). Formally, we have the following lemma whose proof is deferred to the
full version [3].

Lemma 3. Let Π be a protocol that tp-realizes Fcdsg,b for some b-robust (tp, tc)-
AFS (M,y) and let Π ′

Rec denote the “canonical recovery in the exponent” protocol
from Remark 8. Then, the functionality Fdkg is (tp, tc)-realized by the following
two-phase protocol:

– (Sharing) Invoke Π and then apply Π ′
Rec with the public group generator g

and where the index of the AFS is taken to be (M [Ā; B̄], y[B̄], v[Ā]) where
B, y[B̄] are the public output of Π and A is the sacrificed set of B (which is
computed based on B and M by using the specification of the AFS).

– (Reconstruction in the exponent) Given public group generator h, invoke
Π ′

Rec with the generator h and where the index of the AFS is taken to be
(M [Ā; B̄], y[B̄], v[Ā]) as defined above.

The drawback of the above approach is that it adds a single round of commu-
nication in order to reconstruct the secret in the exponent. This can be avoided
if we are willing to realize a weaker variant of the DKG functionality. The idea is
to make a single call to the Fcdsg functionality while setting the underlying com-
mitment scheme in Fcdsg to E(xi; ρi) := gxi . We refer to this variant as canonical
DKG, Fcdkg. Although E is not a valid commitment scheme (being deterministic
it fails to satisfy semantic security), the values (gxi)i∈[n] leak exactly the public
key gs which should be revealed anyway. Still, strictly speaking, Fcdkg does not
realize Fdkg since the adversary can choose its inputs after seeing the “exponen-
tiated shares” of the honest parties, and so the adversary can effectively shift the
public key by an arbitrary shift Δ ∈ F. This issue is discussed by [19] who show
that this variant suffices for typical applications of threshold cryptography (e.g.,
Schnorr’s signatures). Intuitively, if the underlying hardness assumption (e.g.,
in-feasibility of extracting DLOG) holds over the un-shifted key, then it also
holds with respect to the shifted public key since the shift Δ can be extracted
from the adversary. We note that this variant can be formalized by a variant of
the DKG ideal functionality in which the functionality first sends the public key
gs to the adversary who is allowed to shift it by a chosen Δ, and then forwards
the shifted public key gs+Δ to the honest parties.

6 Realizing Robust Canonical DSG

In Sect. 5 we showed that the task of realizing DSG/DKG reduces (with constant
overhead) to the task of realizing the Fcdsg,b functionality. In this section we
present two protocols that realize Fcdsg,b. In both cases, each party reads/writes
O(1) elements from the BB such that at the end of the protocol each party
holds her private output. In addition, everyone can recover the public outputs
by reading the content of the BB. Our first “basic” protocol (Sect. 6.2) achieves
a relatively low, yet constant, privacy threshold, and our second “extended”

508 B. Applebaum and B. Pinkas

protocol (Sect. 6.3) provides a near-threshold result, namely an arbitrarily small
gap between the privacy and correctness thresholds, τp and τc. We begin with
some preliminaries (Sect. 6.1).

6.1 Notation and Tools

Notation. Let M = (Mj,i)j∈[m],i∈[n] be a sparse m×n matrix. We focus on binary
matrices though the following can be easily generalized to the non-binary case.
The support of column number i ∈ [n] is denoted by Ri = {j ∈ [m] : Mj,i �= 0}
and the support of row number j ∈ [m] is denoted by Lj = {i ∈ [n] : Mj,i �= 0}.
We let Lj,−i denote the set Lj \ {i}. The matrix M will be used as a mapping
from vectors x ∈ F

n to vectors y ∈ F
m where y = Mx. Accordingly, each column

of M corresponds to an input and each row corresponds to an output, and so
j ∈ Ri means that the output j is influenced by the input i and by the inputs in
Lj,−i. For a set of inputs I ⊂ [n], we let R(I) = ∪i∈IRi denote the set of outputs
that are affected by inputs in I. Throughout the section, Eρ(x) is taken to be a
non-interactive commitment scheme that is specified as part of the description
of Fcdsg,b. The algorithm E takes a field element x ∈ F and a key ρ as input,
and outputs some “tag”.

Tools. We will need non-interactive commitments Comcrscm(x; k), and for clarity
we distinguish between these commitments and the “internal” commitments E
that is specified by Fcdsg,b. We will also need an ID-based simulation-sound NIZK
proof system for the following relations: The E-relation, defined wrt the tagging-
algorithm E, via RE := {(α, (ρ, x)) : α = Eρ(x)} , and an additive commitment
relation, about a value y being equal to a linear combination of committed values.
For a coefficient vector v ∈ F

κ, it is defined as

Rv = {(crscm, y, α, (ci)i∈[κ]), (x, ρ, (xi, ki)i∈[κ] :

∀i ∈ [κ], ci = Comcrscm(xi; ki), α = Eρ(x), y = x +
∑

i

vi · xi}.

To simplify notation, we typically omit the CRS crscm from the subscript of
the commitment and from the relations.

6.2 The Basic Protocol

Protocol 2 in Fig. 2 describes a basic DSG protocol that realized Fcdsg,b. Intu-
itively, the protocol ΠM,E securely computes the mapping x = (x1, . . . , xn) �→
y = Mx for an arbitrary security threshold t, except that it allows the adver-
sary to abort outputs that depend on the adversary’s inputs.11 Since the matrix
11 We emphasize again that we used affine secret sharing in order to let each participant

choose its share xi at random, and have the system publish y = Mx to enable
recovering the joint secret. If, instead, we were using secret sharing where y = Mx =
0 then the participants would have needed to coordinate their share generation, to
ensure that Mx = 0.

Distributing Keys and Random Secrets with Constant Complexity 509

Fig. 2. The basic protocol ΠM,E .

is sparse and each column contains at most d non-zero elements, an adversary
that corrupts t parties can only abort at most dt outputs. As a result, if (M,v)
is a b-robust (tp, tc)-AFS then ΠM,E realizes Fcdsg,b with security threshold of
t′p = min(tp, b/d). We also note that the protocol publicly identifies some of the
corrupted parties (i.e., the “auxiliary output” C′) – a feature that is not needed
under the definition of Fcdsg,b. To match the syntax of Fcdsg,b we can always

510 B. Applebaum and B. Pinkas

assume that C′ is dropped from the output. The following theorem is proved in
the full version [3].

Theorem 9. Suppose that M is a (d, r)-sparse constraint matrix that together
with a recovery vector v forms a b-robust (tp, tc)-AFS. Then, ΠM,E t′p-realizes
the functionality Fcdsg,b for t′p = min(tp, b/d).

Remark 9 (The complexity of ΠM,E). The protocol has 3 rounds of interaction
and each party sends (either privately or to the BB via broadcast) at most
O(d · r · max(κ, log |F|)) bits where d and r are the maximal number of non-
zero elements in a column of M and the maximal number of non-zero elements
in a row of M , respectively. Similarly, each party Pi receives at most O(d · r ·
max(κ, log |F|)) bits via point-to-point communication and has to read a similar
amount of bits from the BB (basically, only the commitments sent by parties
that influence an output that is also influenced by Pi). Since r = d = O(1), the
communication per party is a constant that does not grow with the number of
parties. The computational complexity per party is O(rd) = O(1) cryptographic
operations/field operations during the execution of the protocol. The final public
decoding costs O(n) downstream communication and O(n) operations and it can
be postponed to the recovery phase.

Variants: The above protocol can be tweaked in many ways to optimize different
goals. See the full version [3] for a discussion.

6.3 Improving Security by Limiting Aborts

In order to achieve near-threshold results (i.e., an arbitrarily small gap between
the privacy τp and correctness τc thresholds), we need to limit the number of
aborts. Recall that the basic protocol ΠM,E aborts each output that depends on
an input from a party that was publicly identified as being corrupted. To limit
the number of aborts, we invoke the basic protocol ΠM,E and then try to recover
the aborted outputs by using an additional sub-protocol. (Protocol 3 in Fig. 3.)

Informally, the idea is to remove the set of publicly corrupted parties, and to
re-compute the corresponding outputs over the inputs of the other parties as if all
the inputs of the publicly corrupted parties were taken to be zero. This approach
means that all the outputs o ∈ RC′ that are affected by publicly corrupted parties
(including valid ones) have to be re-computed. Fortunately, re-computing such
values is quite simple given the information that was gathered in ΠM,E : All
that is needed is to reveal the randomizers ro,i,j that correspond to a pair (i, j)
consisting of a party i /∈ C′ and a publicly corrupted party j ∈ C′ (or vice versa).
Since each such value was already committed to, and the honest party from the
pair knows it, that party can simply open the corresponding commitment.

A potential difficulty is that malicious parties that acted honestly in ΠM,E

and were not detected, may decide not to collaborate in this new sub-protocol.
Namely, these parties will not open in the new sub-protocol the commitments
that the protocol requires them to open. This behavior will be detected during

Distributing Keys and Random Secrets with Constant Complexity 511

the new sub-protocol, the corresponding parties will be added to the set of
publicly corrupted parties, and as a result their inputs will be set to zero and
additional outputs will need to be computed. This process might cascade over
multiple iterations of running the sub-protocol, if in each iteration a new party
is identified as being corrupted, and as a result its inputs must be set to zero.
Fortunately, it can be shown that the amount of communication is still constant
per party. Moreover, if the number of aborts is linear and is equal to b = βn for
some small constant β, then the round complexity will be constant as well. The
resulting protocol, ΠM,E,b, is described in Protocol 3 in Fig. 3. It is parameterized
with the number b of outputs that the adversary is allowed to abort (which
corresponds to the robustness parameter).

To simplify the presentation, the protocol description ignores communication
complexity limitations. It will be also convenient to drop the distinction between
online protocol operations and public-decoding operations that will be post-
processed after the execution (e.g., as part of the recovery phase) based on
publicly available values that appear on the BB. Still, we highlight such public
operations by the label “All:” that indicates that the following operations can
be computed based on public values. We will later explain how to obtain a
communication-efficient variant of the protocol.

Analysis. It is not hard to verify that C′ contains only corrupted parties, that
B ⊆ R(C′), and that if the procedure halts then |B| ≤ b. We also prove an
upper-bound on the number of iterations needed for the procedure to halt.

Claim 12. The sub-protocol Π2 halts after at most 1+ |C| · d/(b+1) iterations.

Proof. At the end of each iteration, if an output o is in B, then there must exist
at least one new publicly-corrupted input i ∈ Lo that influences o. Since such
a party i can influence at most d outputs, we discover at least (b + 1)/d new
corrupt parties in each iteration (except for the last one), and the number of
iterations is at most 1 + |C| · d/(b + 1).
�

Hence, when the robustness parameter is b = 0, we need a linear number of
iterations, and when b = βn for a constant β, only a constant number of O(1/β)
iterations is needed. In fact, even if b = 0, the proof shows that the number
of rounds scales linearly with the number of (identifiable) corrupted parties.
So an adversary can only slow down the process at the expense of revealing
the identities of corrupted parties. (Specifically, in an optimistic execution path
where all the parties behave honestly, the above extension adds no overhead.)

Intuitively, the security of the protocol relies on the following observations:
(1) The information revealed during Π2 (i.e., the randomizers adjacent to the
publicly corrupted parties) does not violate privacy since it is already known
to the adversary; and (2) Assuming that the adversary cannot violate the bind-
ing of the commitments, the outputs (yo)o/∈B are consistent with the inputs
(xi)i∈H, (x′

i)i∈C where x′
i is either the witness used to generate πi (for parties

that weren’t caught cheating), or zero otherwise. Formally, in the full version [3]
we prove the following theorem.

512 B. Applebaum and B. Pinkas

Fig. 3. The extended protocol ΠM,E,b.

Theorem 13. Suppose that M is a (d, r)-sparse constraint matrix that together
with a recovery vector v forms a b-robust (tp, tc)-AFS. Then, the protocol ΠM,E,b

tp-realizes the functionality Fcdsg,b.

Remark 10 (Reducing the Communication). Let d and r be the maximal number
of non-zero elements in a column of M and the maximal number of non-zero ele-
ments in a row of M , respectively. Observe that each party needs to communicate
at most d(r − 1) openings during the protocol (since this is the number of ran-
domizers that are “adjacent” to her). So the upstream communication per party
is constant. To obtain constant downstream communication, we split the proto-
col into an online part and a post-processing public-decoding part. In the online
part, we apply the first step of the protocol for T = 1 + tp · d/(b + 1) iterations
while updating the set C′. (Below we show that this can be done with constant
downstream complexity.) In the decoding phase, we iteratively repeat over Steps
2–4 while in each iteration i we use the values that were computed in the ith

Distributing Keys and Random Secrets with Constant Complexity 513

iteration of the online phase. We terminate the post-processing public-decoding
once B is smaller than b, which, by Claim 12, takes at most T iterations.12

Let us get back to the online part and analyze the downstream complexity.
Assuming that b = Ω(n), the number of iterations is constant. We will show
that the downstream complexity of every party Pi is also constant. Call Pj a
neighbor of Pi if they both influence a common output o. Recall that in each
iteration Pi has to check, for each of her neighbors Pj , whether Pj publicly
cheated, i.e., if j ∈ C′. Let us denote by C′

k the set of parties that publicly
cheated for the first time at the kth iteration where C′

0 is the set of parties
that publicly cheated in ΠM,E . At the first iteration, the communication cost of
checking if Pj is in C′

0 is constant (since it suffices to check the validity of the
proofs sent by Pj during ΠM,E). For k > 0, the party Pj is in C′

k if (a) Pj is
supposed to open a commitment; and (b) the opening is either invalid or was
not sent. Condition (b) is easy to verify with O(1) communication (by accessing
the opening and verifying against the commitment). Condition (a) boils down to
checking whether Pj has a neighbor that publicly cheated in the k − 1 iteration.
Denoting by ck the downstream communication needed for checking if a party
is in C′

k, we have that ck = O(D · ck−1) where D = d(r − 1) is the maximal
number of neighbors of a party. It follows that the communication in the kth
iteration is O(Dk) which is still constant since the number of rounds is constant.
Furthermore, the computational complexity of each party is constant as well.
(See the full version [3] for a more detailed description.)

By combining Theorem 13 with Lemma 2 (or Lemma 3 for the case of DKG)
and with Corollary 5, we derive the following corollary (formal version of the
main theorem).

Corollary 2 (near-threshold DSG and DKG). Assuming the existence of
NIZKs the following holds. For every constants τp < τc and every field F of
size super-polynomial nω(1), there exists a protocol that (τp, τc) realizes the Fdsg

functionality (resp., Fdkg functionality) over F in which each party sends and
receives only a constant number of field elements and commitments/NIZKs and
computes a constant number of arithmetic and cryptographic operations. More-
over, the sharing phase has a constant number of rounds.

Acknowledgements. We thank Noga Ron-Zewi for helpful discussions and the
anonymous TCC reviewers for their comments.

12 In the online phase, we do not update the size of B since this is communication
expensive, and therefore just iterate T times.

514 B. Applebaum and B. Pinkas

References

1. Applebaum, B., Kachlon, E.: Sampling graphs without forbidden subgraphs
and unbalanced expanders with negligible error. SIAM J. Comput. 52(6),
1321–1368 (2023). https://doi.org/10.1137/22M1484134 https://doi.org/10.1137/
22m1484134 https://doi.org/10.1137/22m1484134

2. Applebaum, B., Nir, O., Pinkas, B.: How to recover a secret with o(n) additions.
In: Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryp-
tology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part I, pp. 236–262 (2023). https://doi.org/10.1007/978-3-031-38557-
5_8

3. Applebaum, B., Pinkas, B.: Distributing keys and random secrets with constant
complexity. Cryptology ePrint Archive, Paper 2024/876 (2024). https://eprint.iacr.
org/2024/876

4. Bacho, R., Lenzen, C., Loss, J., Ochsenreither, S., Papachristoudis, D.: GRandLine:
adaptively secure DKG and randomness beacon with (log-)quadratic communica-
tion complexity. Cryptology ePrint Archive, Paper 2023/1887 (2023). https://doi.
org/10.1145/3658644.3690287, https://eprint.iacr.org/2023/1887

5. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communi-
cation complexity. In: Theory of Cryptography Conference, TCC 2008. LNCS,
vol. 4948, pp. 213–230. Springer (2008)

6. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear-
size alphabet. Theory Comput. 16, 1–18 (2020). https://doi.org/10.4086/TOC.
2020.V016A002, https://doi.org/10.4086/toc.2020.v016a002

7. Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020).
https://doi.org/10.1145/3402457

8. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive secu-
rity for threshold cryptosystems. In: CRYPTO ’99. LNCS, vol. 1666, pp. 98–115.
Springer (1999)

9. Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conduc-
tors and constant-degree lossless expanders. In: Reif, J.H. (ed.) Proceedings on 34th
Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada, pp. 659–668. ACM (2002)

10. Cascudo, I., David, B.: Publicly verifiable secret sharing over class groups and
applications to DKG and YOSO. Cryptology ePrint Archive (2023)

11. Cramer, R., Damgård, I.B., Döttling, N., Fehr, S., Spini, G.: Linear Secret sharing
schemes from error correcting codes and universal hash functions. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 313–336. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_11

12. Das, S., Pinkas, B., Tomescu, A., Xiang, Z.: Distributed randomness using weighted
VRFs. Cryptology ePrint Archive, Paper 2024/198 (2024). https://eprint.iacr.org/
2024/198, https://eprint.iacr.org/2024/198

13. DKGPG developers: DKGPG: Distributed Key Generation for Pretty Good Pri-
vacy (PGP) (2017). https://www.nongnu.org/dkgpg/ Accessed 14 Feb 2024

14. drand: drand: Distributed Randomness Beacon Service (2020). https://github.
com/drand/drand. Accessed 14 Feb 2024

https://doi.org/10.1137/22M1484134
https://doi.org/10.1137/22m1484134
https://doi.org/10.1137/22m1484134
https://doi.org/10.1137/22m1484134
https://doi.org/10.1007/978-3-031-38557-5_8
https://doi.org/10.1007/978-3-031-38557-5_8
https://eprint.iacr.org/2024/876
https://eprint.iacr.org/2024/876
https://doi.org/10.1145/3658644.3690287
https://doi.org/10.1145/3658644.3690287
https://eprint.iacr.org/2023/1887
https://doi.org/10.4086/TOC.2020.V016A002
https://doi.org/10.4086/TOC.2020.V016A002
https://doi.org/10.4086/toc.2020.v016a002
https://doi.org/10.1145/3402457
https://doi.org/10.1007/978-3-662-46803-6_11
https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/198
https://www.nongnu.org/dkgpg/
https://github.com/drand/drand
https://github.com/drand/drand

Distributing Keys and Random Secrets with Constant Complexity 515

15. Fitzi, M., Hirt, M., Maurer, U.M.: Trading correctness for privacy in unconditional
multi-party computation (extended abstract). In: Krawczyk, H. (ed.) Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998, Proceedings. Lecture Notes
in Computer Science, vol. 1462, pp. 121–136. Springer (1998). https://doi.org/10.
1007/BFB0055724

16. Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: International Workshop on Public Key Cryptography, pp.
300–316. Springer (2001)

17. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962)

18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of pedersen’s
distributed key generation protocol. In: Topics in Cryptology - CT-RSA 2003, The
Cryptographers’ Track at the RSA Conference 2003. LNCS, vol. 2612, pp. 373–390.
Springer (2003)

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007). https://
doi.org/10.1007/S00145-006-0347-3

20. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511721656

21. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Arch. (2021)

22. Groth, J., Shoup, V.: Design and analysis of a distributed ECDSA signing service.
Cryptology ePrint Archive, Paper 2022/506 (2022). https://eprint.iacr.org/2022/
506

23. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5_6

24. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

25. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1_21

26. Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Thyagarajan, S.A.K.: Non-
interactive VSS using class groups and application to DKG. Cryptology ePrint
Arch. (2023)

27. Katz, J.: Round optimal robust distributed key generation. IACR Cryptol. ePrint
Arch. 2023, 1094 (2023). https://eprint.iacr.org/2023/1094

28. Katz, J., Ostrovsky, R., Rabin, M.O.: Identity-based zero knowledge. In: Blundo,
C., Cimato, S. (eds.) Security in Communication Networks, 4th International Con-
ference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 3352, pp. 180–192. Springer (2004).
https://doi.org/10.1007/978-3-540-30598-9_13

29. Komlo, C., Goldberg, I., Stebila, D.: A formal treatment of distributed key gen-
eration, and new constructions. IACR Cryptol. ePrint Arch. 292 (2023). https://
eprint.iacr.org/2023/292

https://doi.org/10.1007/BFB0055724
https://doi.org/10.1007/BFB0055724
https://doi.org/10.1007/S00145-006-0347-3
https://doi.org/10.1007/S00145-006-0347-3
https://doi.org/10.1017/CBO9780511721656
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506
https://doi.org/10.1007/978-3-030-77870-5_6
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://eprint.iacr.org/2023/1094
https://doi.org/10.1007/978-3-540-30598-9_13
https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2023/292

516 B. Applebaum and B. Pinkas

30. Mosheiff, J., Resch, N., Ron-Zewi, N., Silas, S., Wootters, M.: LDPC codes achieve
list decoding capacity. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pp. 458–469. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00050

31. Naor, M.: Bit commitment using pseudo-randomness. In: CRYPTO ’89. LNCS,
vol. 435, pp. 128–136. Springer (1989)

32. Orbs-Network: DKG-on-EVM: A Distributed Key Generation Protocol for
Ethereum Virtual Machine (2018). https://github.com/orbs-network/dkg-on-evm.
Accessed 14 Feb (2024)

33. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO ’91. LNCS, vol. 576, pp. 129–140. Springer (1991)

34. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

35. Schindler, P.: ethDKG: an Ethereum-based DKG Implementation (2020). https://
github.com/PhilippSchindler/ethdkg Accessed 14 Feb 2024

36. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: EthDKG: distributed key gen-
eration with ethereum smart contracts. Cryptology ePrint Archive, Paper 2019/985
(2019). https://eprint.iacr.org/2019/985

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
38. Shrestha, N., Bhat, A., Kate, A., Nayak, K.: Synchronous distributed key genera-

tion without broadcasts. IACR Cryptol. ePrint Arch. 1635 (2021). https://eprint.
iacr.org/2021/1635

39. Stamer, H.: Gnosis DKG: A Distributed Key Generation Library (2018). https://
github.com/gnosis/dkg. Accessed 14 Feb 2024

40. Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1-3), 1–
336 (2012). https://doi.org/10.1561/0400000010

41. Zichron, L.: Locally Computable Arithmetic Pseudorandom Generators. Master
thesis, Tel Aviv University (2017). https://www.bennyapplebaum.sites.tau.ac.il/_
files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf

https://doi.org/10.1109/FOCS46700.2020.00050
https://github.com/orbs-network/dkg-on-evm
https://doi.org/10.1007/3-540-44647-8_33
https://github.com/PhilippSchindler/ethdkg
https://github.com/PhilippSchindler/ethdkg
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2021/1635
https://eprint.iacr.org/2021/1635
https://github.com/gnosis/dkg
https://github.com/gnosis/dkg
https://doi.org/10.1561/0400000010
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf

Reducing the Share Size of Weighted
Threshold Secret Sharing Schemes

via Chow Parameters Approximation

Oriol Farràs(B) and Miquel Guiot

Universitat Rovira i Virgili, Tarragona, Spain
{oriol.farras,miquel.guiot}@urv.cat

Abstract. A secret sharing scheme is a cryptographic primitive that
allows a dealer to share a secret among a set of parties, so that only
authorized subsets of them can recover it. The access structure of the
scheme is the family of authorized subsets.

In a weighted threshold access structure, each party is assigned a
weight according to its importance, and the authorized subsets are those
in which the sum of their weights is at least the threshold value. For
these access structures, the share size of the best known secret sharing
schemes is either linear on the weights or quasipolynomial on the number
of parties, which leads to long shares, in general.

In certain settings, a way to circumvent this efficiency problem is to
approximate the access structure by another one that admits more effi-
cient schemes. This work is dedicated to the open problem posed by this
strategy: Finding secret sharing schemes with a good tradeoff between
the efficiency and the accuracy of the approximation.

We present a method to approximate weighted threshold access struc-
tures by others that admit schemes with small shares. This method is
based on the techniques for the approximation of the Chow parameters
developed by De et al. [Journal of the ACM, 2014]. Our method provides
secret sharing schemes with share size n1+o(1), where n is the number of
parties, and whose access structure is close to the original one. Namely,
in this approximation the condition of being authorized or not is pre-
served for almost all subsets of parties.

In addition, we apply the recent results on computational secret shar-
ing schemes by Applebaum et al. [STOC, 2023] to construct computa-
tional secret sharing schemes whose share size is polylogarithmic in the
number of parties.

Keywords: Secret sharing scheme · weighted threshold access
structure · threshold cryptography · Chow parameters

1 Introduction

A secret sharing scheme is a cryptographic primitive that allows a dealer to share
a secret among a set of parties in such a way that only some subsets of parties,
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 517–547, 2025.
https://doi.org/10.1007/978-3-031-78023-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_17&domain=pdf
http://orcid.org/0000-0002-7495-5980
http://orcid.org/0009-0006-3187-2321
https://doi.org/10.1007/978-3-031-78023-3_17

518 O. Farràs and M. Guiot

called authorized, can recover the secret. The family of authorized subsets is
called the access structure of the scheme.

Secret sharing schemes were introduced independently by Shamir [Sha79] and
Blakley [Bla79] in 1979, when they presented methods for constructing secret
sharing schemes for threshold access structures. In these schemes, the authorized
subsets are those whose size is at least a given threshold. Interestingly, these
constructions are ideal, in the sense that the length of the share received by each
party is equal to the length of the secret. This is the best situation we can hope
for [KGH83].

Secret sharing schemes are used as a building box of cryptographic protocols
for secure multiparty computation and threshold encryption, for example [Bei11].
In many of these applications, schemes with threshold access structures are con-
venient. However, there are situations that require more general access struc-
tures. This is the case when using secret sharing schemes for protocols in the
proof-of-stake model, where each validator has a stake that depends on the
amount of coins it has and the importance in the system is proportional to the
stake, resulting in a non-uniformly distribution [KRDO17,BCC+21,DPTX24].
Another common case can be found in the stock exchange, where the shares of
a company are non-uniform distributed among the shareholders and the weight
of their vote depends on the share. In such cases, there is a need of secret shar-
ing schemes with weighted threshold access structures (WTASs). In these access
structures, each party is assigned a weight according to its importance and the
authorized subsets are those in which the sum of their weights is at least the
threshold value.

The share size of best known secret sharing schemes for general weighted
threshold access structures is either linear on the weights [Sha79] or quasipolyno-
mial on the number of parties [BW06], which may lead to long shares, in general.
Recently, there were proposals trying to circumvent this efficiency problem by
approximating the weights by smaller ones or by relaxing the privacy and cor-
rectness requirements [BHS23,GJM+23,DPTX24,TF24], considering approxi-
mations of weighted threshold access structures. This work is dedicated to the
open problem posed by this strategy: Finding secret sharing schemes with a good
tradeoff between the efficiency and the accuracy of the approximation.

1.1 Our Results

In this work, we present a method that, given a weighted threshold access struc-
ture Γ , it provides a secret sharing scheme with small shares that realizes a
weighted threshold access structure Γ ′ that is close to Γ . For that, we translate
our problem into a problem of approximation of monotone Linear Threshold
Functions (LTF) and, in this richer complexity theory framework, we develop
techniques for the approximation of these functions. The approximation error
we consider is the fraction of sets in which the access structures differ. Namely,
the approximation error is d/2n, where d is the number of subsets that are either
in Γ but not in Γ ′, or viceversa. Our main result is as follows.

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 519

Theorem 1.1 (Informal). For any weighted threshold access structure Γ on n
parties, there exists a secret sharing scheme with share size n1+o(1) whose access
structure is o(1)-close to Γ .

The result is constructive, and we provide an efficient algorithm that, given
a weighted threshold access structure Γ , it outputs another weighted threshold
access structure Γ ′ whose weights are much smaller, the distance between Γ
and Γ ′ is small, and the hierarchy among parties is preserved. Then, with the
new weights, it is enough to use the construction of Shamir [Sha79] for weighted
threshold access structures to obtain the secret sharing scheme. The approxima-
tion error is o(1), which means that for almost all subsets of parties the condition
of being authorized or not is not modified in the approximation. Moreover, our
scheme is linear for finite fields F with size log |F| = Ω(log n).

Previous best solutions had different trade-offs, illustrated in Fig. 1. In some
previous works, the bounds are for the total share size, and not for the share
size. Because of that, we have decided to present the bounds for the total share
size, that is, the sum of the size of the shares of all parties. In our information-
theoretic construction, it is simply n · n1+o(1).

Our main technical contribution is the use of Chow parameters in the con-
struction of secret sharing schemes for weighted threshold access structures. In
this regard, the approximation of linear threshold functions by Chow parame-
ters is a problem that has been thoroughly studied in the past, giving positive
and negative results (see, for example, [Ser06,OS11,DDFS14]). In particular,
we modify an algorithm for the approximation of Chow parameters by De et
al. [DDFS14] to solve this problem in the monotone case. That is, to guarantee
that all the weights of the approximation are positive. With that, we can approx-
imate weighted threshold access structures with small weights. In this context,
our main result is the following.

Theorem 1.2 (Informal). Let f be a monotone LTF. For any 0 < ε there
exists an ε-close monotone LTF g represented by an integer vector with norm√

n · quasipoly
(
1
ε

)
.

Previous proposals also consider reductions of the weights, by scaling or
rounding them [BHS23,DPTX24,TF24], leading to approximated access struc-
tures. These techniques can be replaced by the Chow parameters approximation
technique developed in this work. Furthermore, we give a lower bound on the
size of the weights obtained by any approximation technique and show that our
strategy is nearly optimal for this task. This is summarized in the following
statement.

Theorem 1.3 (Informal). Let n ∈ N. For any ε ∈ (0, 1
10) there exists a mono-

tone LTF f over n variables such that any monotone LTF that is ε-close to f
has integer weights of size Ω

(√
n, quasipoly

(
1
ε

))
.

If, instead of constructing schemes in the information-theoretic setting, we
consider computational assumptions, it is possible to build more efficient secret

520 O. Farràs and M. Guiot

Fig. 1. Summary of secret sharing schemes for weighted threshold access structures.
In the second column, we give an upper bound on the total share size of the schemes,
considering secrets of 1-bit. We use the fact that the best upper bound for the size
of the weights in weighted threshold access structures is W = 2O(n log n) [Mur71],
which is tight [H̊as94]. In the fifth, sixth and eighth rows, the bound is obtained by
multiplying the bound on the individual share size by n. In the Access structure column,
we distinguish between perfect WTAS and ramp WTAS. In the Error column, we
bound the error in the approximation of weighted threshold access structures. If the
scheme realize exactly the access structure, we set the error to be 0. Ramp WTASs can
also be used to approximate perfect WTAS, but we could not find any non-trivial upper
bound on the error, as discussed in the full version of this work [FG24]. In the Privacy
column, we distinguish between perfect, statistical, and computational security.

sharing schemes. This can be done by directly applying the recent results on
succinct computational secret sharing schemes by Applebaum et al. [ABI+23]
to the polynomial size monotone circuits for weighted threshold functions con-
structed by Beimel and Weinreb [BW06]. More in detail, the existence of an
efficient Projective Pseudorandom Generator (pPRG) allows to obtain a com-
putational secret sharing scheme for weighted threshold access structures with
polylogarithmic share size in the number of parties. This is stated in the following
theorem.

Theorem 1.4 (Informal). Under the subexponential RSA assumption, any
weighted threshold access structure over n parties admits a computational secret
sharing scheme where the size of the shares is polylog(n) and the size of the
public information is poly(n).

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 521

Furthermore, we show how to improve the result of Theorem 1.4 by com-
bining it with our approximation technique. In particular, we can give a better
upper bound at the cost of considering an o(1)-close weighted threshold access
structure.

Open Questions. Our results leave several open questions about the search
of better secret sharing schemes for weighted threshold access structures. The
schemes presented in this work can be improved in the two main stages, which
are the approximation of the weighted threshold access structures and the con-
struction of schemes for small weights. In the first stage, the existing approx-
imation techniques have limitations that are similar to the ones in [DDFS14],
whose bounds are close to the optimal in the worst case. However, it could be
that the weight bounds could be improved in the average case, or for interesting
distributions of weights.

For certain practical applications, it would be useful to find good approxima-
tions according to a ramp criteria in terms of the original weights and threshold t:
Guarantee that subsets of weight at least t1 > t are authorized in the new access
structure, while those of weight smaller than t2 < t are not authorized. We did
not find a way to give valuable thresholds t1 and t2 without assuming distribu-
tions on the weights or decreasing a lot the approximation error (making the
upper bound of shares much bigger). Despite that, we discuss some relations
between these notions in Sect. 3.2.

In the second stage, our approach is simpler, because we directly apply exist-
ing techniques that take benefit of a short description of the access structure by
means of weights or monotone circuits: for the information-theoretic scheme we
use the virtualization technique from Shamir [Sha79], and for the computational
scheme we apply the results from Applebaum et al. [ABI+23]. It is natural
to expect improvements in this stage by using alternative descriptions of the
access structure with more complex gates [LV18], with hierarchical access struc-
tures [FP12], with wiretap techniques [BHS23], or with ad-hoc linear schemes.

Improving the upper and lower bounds on the share size for weighted thresh-
old access structures is still the most important open problem in this area. The
current bounds are far: The best lower bound is Ω(

√
n), while the best upper

bound is nO(log n). On the positive side, we have characterizations of the ideal
weighted threshold access structures [BW06,FP12]. However, we do not know
how to take advantage of this to find a useful characterization of access structures
that admit schemes with polynomial share size.

1.2 Our Techniques

Given a weighted threshold access structure Γ , our main objective is to construct
another weighted threshold access structure Γ ′ that is close to Γ and whose
weights are small. This is because there exist weighted threshold secret sharing
constructions whose share size is linear on the weights.

With this in mind, since every access structure can be described by a mono-
tone Boolean function, the starting point of our work is to translate the problem

522 O. Farràs and M. Guiot

of approximating weighted threshold access structures to the problem of approx-
imating monotone Boolean functions. The distance between Boolean functions
is defined as the number of inputs in which they differ, and we say that two
functions are ε-close if the fraction of inputs they differ is ε.

In the case of a weighted threshold access structure defined by a threshold
T and a vector of positive weights w = (w1, . . . , wn) assigned to the parties, the
access structure is determined by a monotone Boolean function of the form

f(x) = sign(w · x − T),

which are known as monotone LTFs in the context of complexity theory.
We can therefore study weighted threshold access structures from the per-

spective of complexity theory simply by considering the monotone LTFs assigned
to them. More in detail, our proposal consists in approximating Γ by reducing
the weights and the threshold of its associated monotone LTF f . We do this by
taking advantage of the description of f in terms of its Chow parameters. This
procedure is summarized in Fig. 2 and can be done in five steps.

1. Consider the monotone LTF f associated to Γ .
2. Compute the Chow parameters χf of f .
3. Find the Chow parameters χg of a monotone LTF g that is ε-close to f and

has small weights.
4. Construct the monotone LTF g from χg.
5. Consider the weighted threshold access structure Γ ′ associated to g.

Fig. 2. Procedure for approximating any weighted threshold access structure.

Steps (1), (2), and (5) of Fig. 2 are immediate. For this reason, throughout
this work we skip steps (1) and (5) and we deal directly with the monotone LTFs
associated to the access structures. All the effort remains in deriving steps (3)
and (4). To do so, we adapt the results of De et al. [DDFS14], in which they
construct an approximate LTF with smaller weights by solving a problem related
to the Chow parameters, described next.

The Chow Parameters Problem. Any Boolean function can be uniquely
expressed as a real multilinear polynomial whose degree-0 and degree-1 coef-
ficients are known as the Chow parameters [O’D14]. The notion of the Chow
parameters is of greater importance in the case of LTFs, since they uniquely

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 523

determine LTFs within the space of all Boolean functions [Cho61] and, when
the function is monotone, these parameters quantify the influence of each vari-
able on the output result. In this context, the Chow parameters problem consists
in efficiently reconstructing a LTF from its Chow parameters.

De et al. [DDFS14] give a solution to the approximate version of the Chow
parameters problem by constructing a LTF that is close to the exact one. More
specifically, they design an iterative algorithm that starts with an approximation
of the Chow parameters and, step by step, it modifies the parameters until the
desired LTF is obtained. Moreover, their construction has the advantage that
the resulting LTF has weights that depend sublinearly in the input length and
quasipolynomially in the error.

In this work, we adapt the construction of De et al. [DDFS14] to the monotone
setup to guarantee that the resulting LTF is monotone. Moreover, we also analyse
the running time of the procedure to ensure its efficiency.

Secret Sharing Schemes Construction. Once we have derived a low-weight
approximator for the original access structure, we still need to construct the
information-theoretic and the computational secret sharing schemes. In both
cases, we apply already known constructions that allow us to maximize the
benefits of having an approximate weighted threshold access structure with small
weights.

In the case of the information-theoretic scheme, we use Shamir’s virtualiza-
tion technique [Sha79] . The total share size of the resulting scheme is W log W ,
where W is the total weight, which we know that is small due to the approxi-
mation procedure.

In the computational setting, it suffices to apply the recent work of Apple-
baum et al. [ABI+23] that introduces a new cryptographic primitive known as
Projective Pseudorandom Generator (pPRG). They use it to obtain secret shar-
ing schemes for monotone circuits of polynomial size in which the size of the
shares is polylogarithmic in the number of gates. In more detail, combining this
construction with the existence of a monotone circuit of polynomial size for any
weighted threshold access structure [BW06] yields a scheme with polylogarith-
mic shares. Furthermore, we use our approximation technique to reduce the size
of the public information.

In both schemes, we also tune the parameters in order to find a good trade-
off between the accuracy of the approximation and the share size. In particular,
we perform a fine-grained analysis of the size of the Chow parameters to obtain
secret sharing schemes with even smaller share size.

1.3 Related Work

In this section, we restrict the discussion to the previous works on secret sharing
schemes for weighted threshold access structures.

In 1979, Shamir [Sha79] and Blakley [Bla79] presented the first secret sharing
schemes for threshold access structures. Shamir also presented a way to realize

524 O. Farràs and M. Guiot

weighted threshold access structures with threshold schemes via virtualization:
Given the weights wi and the threshold t, the dealer treats party i as wi dif-
ferent parties, sending wi different shares of the t-threshold scheme to party i.
This technique gives a scheme with total share size O(W log W) for any access
structure, where W is the sum of the weights.

Weighted threshold access structures are a specific kind of hierarchical access
structures. In these access structures, parties are partitioned into clusters that
are hierarchically ordered, being the parties in higher levels more powerful than
the ones in lower levels. Simmons [Sim88] considered some hierarchical access
structures, and Brickell [Bri89] found ideal schemes for them, providing new
tools for the construction of linear schemes. By using different kinds of poly-
nomial interpolation, Tassa [Tas07], and Tassa and Dyn [TD09] proposed con-
structions of ideal secret sharing schemes for some kinds of hierarchies. Beimel,
Tassa and Weinreb [BTW08] presented a characterization of the ideal weighted
threshold access structures, generalizing some partial results in [MPSV99,PS00].
Farràs and Padró [FP12] characterized the family of ideal hierarchical access
structures, and presented ideal schemes for them. That work included an alter-
native characterization of ideal weighted threshold access structures. Charac-
terizations in [BTW08,FP12] use the connections between ideal access struc-
tures and matroids by Brickell and Davenport [BD91]. Recently, Mo [Mo23] and
Padró [Pad24] showed that ideal hierarchical access structures are connected to
lattice path matroids, and Chen, Tang and Lin presented an efficient method to
construct ideal hierarchical schemes [CTL22]. Beyond the ideal case, the char-
acterization of weighted threshold access structures that admit efficient schemes
is open.

Beimel and Weinreb [BW06] proved that all weighted threshold access struc-
tures admit secret sharing schemes with share size nO(log(n)). This is done by
first building a monotone circuit with logarithmic depth and polynomial size that
describes the access structure, and then converting this circuit into a scheme.
The upper bound is obtained by using the fact that every weighted threshold
access structure admits an equivalent description with weights that are at most
exponential [Mur71]. Taking into account that most weighted threshold access
structures require weights of exponential size [SB91], this is the best general
construction known to date. This result reveals that weighted threshold access
structures are in a privileged position from the efficiency point of view, because
most of the general access structures require linear schemes of normalized share
size 2n/3+o(n) [BF20]. The best lower bound on the information ratio is Ω(

√
n),

and it was found by Padró and Sáez in [PS00] analyzing weighted threshold
access structures where there are only two possible weights. This is also the best
lower bound on the share size.

In the computational side, Beimel and Weinreb [BW06] obtained an even
more efficient scheme by applying Yao’s technique [Yao89] for monotone circuits.
Under the assumption of the existence of secure one-way functions, their com-
putational scheme produces shares and public information of polynomial size in
the number of parties. Furthermore, under the stronger assumption that subex-

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 525

ponentially secure one-way functions exist the share size in their construction
can be further reduced to be polylogarithmic in the number of parties.

Recently, Benhamouda, Halevi, and Stambler [BHS23], Garg et al.
[GJM+23], and Tonkikh and Freitas [TF24] explored a relaxed weighted thresh-
old model, considering ramp weighted threshold access structures. In these access
structures, there are privacy and correctness thresholds, and each party has a sin-
gle weight. This setting is less restrictive and admits schemes that are not perfect,
allowing a reduction of the share size. The schemes in [BHS23] have a privacy
threshold αW and a reconstruction threshold βW for some 0 < α < β < 1.
In this setup, their first proposal is based on a rounding technique of weights
that leads to a share size of n

β−α . For the second construction, they establish
an interesting connection between wiretap channels and secret sharing schemes.
Choosing specific parameters, it is possible to get a scheme with 2−λ-statistical
security and total share size n · max

{
λ2,poly(1/(α − β))

}
.

The construction of Garg et al. [GJM+23] uses as a primitive a scheme
whose security is guaranteed by the Chinese Reminder Theorem [Mig83]. The
privacy is statistical, and the gap between privacy and reconstructions thresholds
depends on the security parameter λ. With this security relaxation, it is possible
to improve the share size bound from Shamir’s scheme, obtaining O(W). The
resulting scheme is not linear, but there are still ways to use it as a building
block [GJM+23].

Tonkikh and Freitas [TF24] present a transformation to map large real
weights into smaller integer weights for a wide variety of weighted distributed
protocols. They propose a method to find a ramp weighted threshold access
structure with small weights where the new authorized and forbidden subsets
were already authorized and forbidden, respectively. The size of the new shares
can be decreased by increasing the gap.

The main difference of our approach with respect to the previous ones is that
we are focused in finding efficient schemes with access structures that approxi-
mate the desired one, controlling the approximation error. In particular, we limit
the number of inputs where the approximated access structure differs from the
original one.

1.4 Organization

In Sect. 2 we lay out the preliminaries on the analysis of Boolean functions and
secret sharing schemes. In Sect. 3 we present the technique for approximating
monotone LTFs, obtaining Theorem 1.2 and proving the optimality of its bounds,
i.e. Theorem 1.3. In Sect. 4 we construct the information-theoretic secret sharing
scheme of Theorem 1.1, while in Sect. 5 we construct the computational secret
sharing scheme of Theorem 1.4. Deferred proofs and details can be found in the
full version of this work [FG24].

526 O. Farràs and M. Guiot

2 Preliminaries

Notation. We notate N and R+ for the sets of the non-negative integer and
real numbers, respectively. For n ∈ N, we denote the set {1, . . . , n} as [n]. For
a set S, we denote its cardinal as |S|. We denote vectors x using bold symbols,
their i-th coordinates as xi, their Euclidean norm as ‖x‖ =

√
x2
1 + . . . + x2

n,
and their support as supp(x) = {i ∈ [n] : xi �= 0}. The unary vector is
denoted by 1n ∈ R

n and the zero vector is denoted by 0n. For any vectors
x,y ∈ R

n, we denote its scalar product as x · y, its Hamming distance as
distHam(x,y) = |{i ∈ [n] : xi �= yi}|, and we say that x ≤ y if and only if
xi ≤ yi for all i ∈ [n]. For x ∈ {0, 1}, x denotes its complementary, and for
x ∈ {0, 1}n, we set x⊕i = (x1, . . . , xi−1, xi, xi+1, . . . , xn).

Next, we define three functions over the reals. We set sign : R −→ {−1, 1} as
the function with sign(x) = 1 if and only if x ≥ 0; we set sign0 : R −→ {0, 1} as
the function with sign0(x) = 1 if and only if x ≥ 0; and we set P1 : R −→ [−1, 1]
as the function with P1(x) = x if x ∈ [−1, 1] and P1(x) = sign(x) otherwise. For
x,w ∈ R

n and σ ∈ R we define

– WTF(w, σ)(x) = sign0(w · x − σ),
– LTF(w, σ)(x) = sign(w · x − σ), and
– LBF(w, σ)(x) = P1(w · x − σ).

Throughout this work, all probability distributions P assume picking ele-
ments uniformly at random.

2.1 Analysis of Boolean Functions

In this section, we introduce all the definitions and technical results about
Boolean functions we need. First, we focus on the families of weighted and linear
threshold functions and their properties. Then, we state some results about the
Chow parameters. Finally, we introduce the notion of distance between Boolean
functions and relate it with the Chow parameters. The statements and proofs of
the switching lemmas, and the proofs of Lemma 2.13 and Lemma 2.18 can be
found in [FG24].

Weighted and Linear Threshold Functions. We start by presenting the
main building block of our construction: weighted threshold functions.

Definition 2.1 (Weighted Threshold Function). Let w ∈ R
n and σ ∈ R. A

Weighted Threshold Function (WTF) is a Boolean function f : {0, 1}n −→ {0, 1}
of the form f(x) = WTF(w, σ)(x). The vector (w, σ) is said to represent f ,
while the vector x ∈ {0, 1}n is said to be authorized (resp. forbidden) if f(x) = 1
(resp. f(x) = 0).

Among all WTFs, we are interested in those that are monotone because they
are in one-to-one correspondence with weighted threshold access structures. In
this regard, the following remark gives a characterization of monotone WTFs.

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 527

Remark 2.2. A WTF given by f(x) = WTF(w, σ)(x) is monotone if and only
if there exists a representation of f with wi ≥ 0 for any i ∈ [n]. Indeed, if f is
monotone increasing and wi < 0, then f does not depend on xi, and we can set
its weight to 0.

An important result about monotone WTFs is that they can be computed
by polynomial size logarithmic depth monotone circuits of unbounded fan-in
[BW06].

Theorem 2.3 ([BW06]). Every weighted threshold function is in mAC1.

It is also usual to define Boolean functions by taking {−1, 1}n as domain
instead of {0, 1}n. Indeed, one can pass from one domain to the other by con-
sidering the bijection φ(x) = (−1)x for x ∈ {0, 1} and extending it naturally to
{0, 1}n. For this reason, we now define linear threshold functions, which are an
analogue of WTF in the {−1, 1}n domain.

Definition 2.4 (Linear Threshold Function). Let w ∈ R
n and σ ∈ R. A

Linear Threshold Function (LTF) is a Boolean function f : {−1, 1}n −→ {−1, 1}
of the form f(x) = LTF(w, σ)(x). The vector (w, σ) is said to represent f , while
the vector x ∈ {−1, 1}n is said to be authorized (resp. forbidden) if and only if
f(x) = 1 (resp. f(x) = −1).

Related to this, using φ we can switch from any monotone WTF to an equiv-
alent monotone LTF and vice versa without modifying the weight of any coordi-
nate. Namely, the switching lemmas (for more details, see [FG24]) imply that the
weight vector representing a monotone LTF (resp. WTF) is not affected when
converting it to a monotone WTF (resp. LTF). For this reason, along this work
we will switch between both notions depending on which one is more useful for
us at any given time. For technical reasons, we need to define linear bounded
functions, which generalize LTFs.

Next, we define the notion of influence of a coordinate of a LTF, and the
family of linear bounded functions.

Definition 2.5. Let f : {−1, 1}n −→ {−1, 1} be a Boolean function. For any
i ∈ [n], the influence of the i-th coordinate on f is the fraction of input values
in which it affects the output, i.e. Inf i[f] = P[f(x) �= f(x⊕i)].

Definition 2.6 (Linear Bounded Function). Let w ∈ R
n and σ ∈ R. A

Linear Bounded Function (LBF) is a function f : {−1, 1}n −→ [1, 1] of the form
f(x) = LBF(w, σ)(x). The vector (w, σ) is said to represent f .

We end this section by stating two useful results about the weights of mono-
tone LTFs. The first one shows that any monotone LTF can be expressed by a
monotone formula of size polynomial in the sum of the weights. The second is a
known upper bound on the size of the weights of any monotone LTF.

Theorem 2.7 ([Ser04]). For any w ∈ R
n
+ and σ ∈ R, the monotone LTF given

by f(x) = LTF(w, σ)(x) has a monotone formula of size O(W 5.3), where W =
w · 1n.

528 O. Farràs and M. Guiot

Theorem 2.8 ([Mur71]). For any monotone LTF f with n variables, there exist
w1, . . . , wn, σ ∈ N smaller than 2�n log(n)� such that f(x) = LTF(w, σ)(x), where
w = (w1, . . . , wn).

Chow Parameters. We first give the definition of the Chow parameters. We
denote the expectancy of a discrete random variable by E.

Definition 2.9 (Chow Parameters). The Chow parameters of a function f :
{−1, 1}n −→ R are the n + 1 values f̂(0) = E[f(x)] and f̂(i) = E[f(x)xi] for
any i ∈ [n], taking uniform distribution on its domain. The Chow vector of f is
χf = (f̂(0), . . . , f̂(n)).

Chow parameters are a particular case of a much more general family of
parameters, the Fourier coefficients of Boolean functions. More in detail, each
function f : {−1, 1}n −→ R can be uniquely expressed as a multilinear polynomial
whose coefficients are defined as the Fourier coefficients of f . In this setting,
it can be shown that the Chow parameters simply correspond to the Fourier
coefficients of degree 0 and 1. The book of O’Donnell [O’D14] offers a detailed
discussion of this topic.

Following the later construction, we could also have defined the Fourier coef-
ficients (and in particular the Chow parameters) for Boolean functions in the
{0, 1} domain. However, in this case, we can no longer define the Chow param-
eters in terms of expectations as is done in Definition 2.9. This is because this
basis is not orthonormal. Therefore, when it comes to Chow parameters, we
always consider Boolean functions in the {−1, 1} domain.

In this regard, recall that for monotone LTFs we can always move from one
domain to the other. Hence, by an abuse of notation, when we consider the Chow
parameters of a WTF, we refer to the Chow parameters of its LTF analogue.

An important result regarding the Fourier coefficients is the following one,
known as Plancherel’s Theorem.

Theorem 2.10 (Plancherel’s Theorem [O’D14]). For any functions f, g :
{−1, 1}n −→ R we have that E[f(x)g(x)] =

∑
S⊆[n] f̂(S)ĝ(S).

Nowadays, Chow parameters (and by extension the Fourier coefficients) are
among the most common tools for the study of Boolean functions. In the case of
LTFs, this is mainly motivated by the next theorem, known as Chow’s Theorem.

Theorem 2.11 (Chow’s Theorem [Cho61]). Any LTF is uniquely determined
within the space of Boolean functions by its Chow parameters.

Moreover, in the case of monotone Boolean functions, the Chow parameters
have an additional interpretation as gauges of the influence of each coordinate.
This is stated in the following proposition.

Proposition 2.12 ([O’D14]). Let f : {−1, 1}n −→ {−1, 1} be a monotone
Boolean function. Then f̂(i) = Inf i[f] for any i ∈ [n].

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 529

We conclude this section by presenting a useful lemma relating monotonicity,
projections and Chow parameters. Its proof can be found in [FG24].

Lemma 2.13. Let f : {−1, 1}n −→ R be a monotone function and g(x) =
P1(f(x)). Then f̂(i) ≥ ĝ(i) ≥ 0 for any i ∈ [n].

To simplify the notation, from now on we will assume that any LTF has the
weights sorted in decreasing order, which immediately implies a decreasing order
in its Chow parameters except for f̂(0).

Distance. The concept of distance between Boolean functions gives a way to
measure the similarity of two access structures. Hence, we introduce it to formally
define the notion of closeness between monotone LTFs.

Definition 2.14 (Function Distance). Let X be a finite set. The distance
between two functions f, g : X −→ R is defined as dist(f, g) = E[|f(x) − g(x)|].
If dist(f, g) < ε we say that f and g are ε-close. Moreover, the Chow distance
between f and g is defined as distChow(f, g) = ‖χf − χg‖.

Remark 2.15. Notice that if f, g are WTFs then dist(f, g) = P[f(x) �= g(x)],
while if f, g are LTFs then dist(f, g) = 2P[f(x) �= g(x)].

The notions of function distance and Chow distance are closely related. In
particular, for the case of LTFs each of them can be bounded in terms of the
other. This is stated in the theorems that follow.

Theorem 2.16 ([OS11]). For every f, g : {−1, 1}n −→ R, it holds that
distChow(f, g) ≤ 2

√
dist(f, g).

Theorem 2.17 ([DDFS14]). Let f be a LTF and let g : {−1, 1}n −→ [−1, 1] be
any function. If distChow(f, g) ≤ ε, then dist(f, g) ≤ 2−Ω(3

√
log 1

ε).

Theorem 2.16 and Theorem 2.17 establish a relation between the upper
bounds given by the distances of LTFs and their Chow distances, which pro-
vides a strategy to check closeness between LTFs simply by looking at their
Chow parameters. Indeed, this is the key observation that we will exploit in the
next section to approximate monotone LTFs.

Moreover, there is also a relation between the distance of monotone functions
and the number of input coordinate swaps needed to guarantee the same output
in both functions. This result, which is useful when viewing monotone functions
as descriptions of access structures, is stated next.

Lemma 2.18. Let ε ∈ (0, 1) and let f, g : {−1, 1}n −→ {−1, 1} be non-constant
ε-close monotone functions. For any x ∈ {−1, 1}n such that f(x) �= g(x), there
exists y ∈ {−1, 1}n such that f(y) = g(x) and distHam(x,y) ≤ n + 1 − log

(
1
ε

)
.

530 O. Farràs and M. Guiot

2.2 Secret Sharing Schemes

For convenience, we work with access structures described by monotone Boolean
functions, which is equivalent to work with monotone increasing families of sub-
sets.

Definition 2.19 (Access Structure). An n-party access structure is a mono-
tone Boolean function f : {0, 1}n → {0, 1} such that f(0n) = 0 and f(1n) = 1.

If f(x) = 1, we say that the set A = supp(x) is authorized, and else we say
that A is forbidden.

Definition 2.19 implies that non-constant monotone WTF are a particular
case of access structures. In this context, they are also called weighted threshold
access structures.

Remark 2.20. In the case of a weighted threshold access structure given by
f(x) = WTF (w, σ)(x), the family of authorized subsets corresponds to

Γ =

{

A ⊆ [n] :
∑

i∈A

wi ≥ σ

}

.

Moreover, note that if two functions f and f ′ are ε-close, the corresponding
monotone families of subsets Γ and Γ ′ satisfy |Γ ∪ Γ ′| − |Γ ∩ Γ ′| < ε2n.

In this work, we construct information-theoretic and computational secret
sharing schemes. By default, when we talk about secret sharing schemes we
refer to the first ones.

Definition 2.21 (Information-Theoretic Secret Sharing Scheme). Let S
be a finite set and let f be an access structure over n parties. A secret shar-
ing scheme for f is a pair consisting of a randomized algorithm Share and a
deterministic algorithm ReconstructA such that

– Perfect correctness. For any secret s ∈ S and any authorized set A, it
holds that

P[s = ReconstructA(Share(s)A)] = 1,

where Share(s)A denotes the restriction of the output of Share(s) to the parties
in A.

– Perfect privacy. For any secrets s, s′ ∈ S, any forbidden set B, and any
possible set of shares {si}i∈B, it holds that

P[{si}i∈B = Share(s)B] = P[{si}i∈B = Share(s′)B].

The best general weighted threshold secret sharing schemes in terms of the
share size are given in the following result [BW06]. This result is obtained by
finding a monotone circuit that computes the weighted threshold function, trans-
forming it to a monotone formula, and then constructing a scheme for the for-
mula [BL88]. Indeed, it is a consequence of Theorem 2.3.

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 531

Theorem 2.22 ([BW06]). Every weighted threshold access structure over n par-
ties admits a secret sharing scheme with share size nO(log n).

We now state the definition of computational secret sharing schemes. The
security of computational secret sharing schemes is given in terms of a game
between an adversary and a challenger. The details can be found in [FG24].

Definition 2.23 (Computational Secret Sharing Scheme). Let S be a
finite set, let λ ∈ N be the security parameter, and let f be an access struc-
ture over n parties. A computational secret sharing scheme for f is a pair of
a randomized polynomial-time algorithm Share and a deterministic polynomial-
time algorithm ReconstructA such that

– Correctness. For any secret s ∈ S, any authorized set A, and a description
D of f it holds that

P[s = ReconstructA(Share(s,D,1λ)A,D)] = 1,

where Share(s,D,1λ)A denotes the restriction of the output of Share(s,D,1λ)
to the parties in A.

– Privacy. The scheme is t(λ)-secure if any t(λ)-time adversary wins the secu-
rity game with probability at most 1

t(λ) .

3 Approximation of Monotone Linear Threshold
Functions

The aim of this section is to approximate a monotone LTF with another mono-
tone LTF with small integer weights. To do so, we adapt to the monotone setup
the work of De et al. [DDFS14], in which an algorithm for approximating LTFs
is presented. To simplify the presentation of this and the following results, we
use Õ notation, which ignores polylogarithmic factors. The main result of this
section is the following theorem.

Theorem 3.1 (Theorem 1.2 restated). Let κ(ε) = 2−O(log3(1
ε)) and let

μ(n) ∈ R be a function that satisfies μ(n) ≥ 2
√

n + 1. For δ, ε ∈ (0, 1), there
exists a randomized algorithm ApproximateLTF that given a monotone LTF over
n variables f with κ(ε) ≤ f̂(n)μ(n), outputs with probability 1 − δ a monotone
function g(x) = LTF(v, v0)(x) with the following properties:

1. g is ε-close to f ,

2. v ∈ N
n, v0 ∈ Z, and ‖v‖ = O

(
μ(n)

(
1
ε

)O(log2(1
ε))

)
.

Further, the algorithm runs in time Õ
(
nμ(n)2poly

(
1

κ(ε)

)
log

(
1
δ

))
.

The proof of Theorem 3.1 is constructive. First, we show in Theorem 3.2 the
existence of a similar algorithm ApproximateLBF whose output is a monotone
LBF. The proof of Theorem 3.2 is more involved, and it deferred to Sect. 3.1.
Then, we show how to use it to construct the desired ApproximateLTF algorithm.

532 O. Farràs and M. Guiot

Theorem 3.2. Let μ(n) ∈ R be a function that satisfies μ(n) ≥ 2
√

n + 1. For
δ, ε ∈ (0, 1), there exists a randomized algorithm ApproximateLBF that given a
monotone LTF over n variables f with ε ≤ f̂(n)μ(n), outputs with probability
1−δ a monotone function g(x) = LBF(kv, kv0)(x) with the following properties:

1. distChow(f, g) ≤ 3ε,
2. k ∈ R,v ∈ N

n, v0 ∈ Z, and ‖v‖ = O
(

μ(n)
ε3

)
.

Further, the algorithm runs in time Õ
(
nμ(n)2

ε4 log
(
1
δ

))
.

Proof of Theorem 3.1. A direct application of Theorem 3.2 guarantees that in
a running time of Õ

(
nμ(n)2poly

(
1

κ(ε)

)
log

(
1
δ

))
we obtain a monotone LBF

g(x) = LBF(v, v0) such that distChow(f, g) ≤ 3κ(ε) with probability 1− δ. From
there, adjusting properly the constants of κ(ε) and applying Theorem 2.17 we
get that dist(f, g) ≤ ε

2 .
Now, defining the function f ′(x) = LTF(v, v0)(x), it is straightforward to

check that f ′ is monotone and dist(f, f ′) ≤ 2dist(f, g) ≤ ε. Moreover, we have

that ‖v‖ = O
(

μ(n)
κ(ε)3

)
= O

(
μ(n)

(
1
ε

)O(log2(1
ε))

)
by Theorem 3.2. �

3.1 Proof of Theorem 3.2

We first present a high-level overview of the construction of the ApproximateLBF
algorithm, which is an adaptation of the algorithm from De et al. [DDFS14] to
the monotone case. The construction relies in the straightforward observation
that the function f̂(0) +

∑n
i=1 f̂(i)xi has exactly the same Chow parameters as

the input LTF f .
Starting from there, the function g(x) = P1(f̂(0) +

∑n
i=1 f̂(i)xi) is a candi-

date for being the monotone LBF output by the algorithm because it is build
with the Chow parameters of f . However, taking the projection of a function
leads to a modification of the original Chow parameters, so our candidate g may
not satisfy the desired condition on the Chow distance.

To solve this problem, we correct this gap in the Chow distance following
a similar procedure as before. In particular, we construct a function h whose
Chow parameters correspond to the difference between χf and χg, i.e. h(x) =
f̂(0) − ĝ(0) +

∑n
i=1(f̂(i) − ĝ(i))xi, and add it to g with the aim of obtaining a

better output candidate P1(g + h).
Then, we face again the problem of checking up to which point the projection

operation has modified the Chow parameters of our output candidate. Hence,
we can repeat the previous procedure iteratively seeking that at each step we
will get closer to the desired result.

In essence, ApproximateLBF algorithm implements the idea we have just pre-
sented. Nevertheless, some minor changes are introduced to deal with techni-
calities regarding monotonicity, the bounds on the weights, and the running

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 533

time. The ApproximateLBF algorithm is depicted in detail in Algorithm 1, while
Algorithm 2 presents an auxiliary routine.

Notice that the context of the work of De et al. [DDFS14] is slightly different.
Their algorithm aims to solve the approximate Chow problem, i.e. given the
approximate Chow parameters of an unknown LTF f , they find another LTF
that is ε-close to f . The two main differences with our setup are that we assume
we know in advance the original monotone LTF and its Chow parameters, and
that in our case the constructed LTF has to be monotone. Hence, all the changes
made in the statement and proof of Theorem 3.2 are due to these differences.

In this regard, from a practical point of view, it should be noted that even if
the original monotone LTF is available, calculating its exact Chow parameters
requires exponential time in the number of coordinates because of their definition
as expected values of the monotone LTF. To circumvent this limitation, we can
slightly modify ApproximateLBF (Algorithm 1) to work with an approximation of
the Chow parameters of the input LTF as done in the work of De et al. [DDFS14]
without affecting the properties of the output function.

Algorithm 1. ApproximateLBF

Input: Monotone f(x) = LTF(w, w0)(x), Chow parameters χf , and δ, ε ∈ (0, 1)

Output: Monotone g(x) = LBF(kv, kv0)(x) with distChow(f, g) ≤ 3ε, ‖v‖ = O
(

μ(n)

ε3

)

Require: μ(n) ≥ 2
√

n + 1 and ε ≤ f̂(n)μ(n)
1: g′ ← 0, g ← P1(g

′)
2: χg̃ ← VectorApprox(χf , χg, ε)
3: while ‖χf − χg̃‖ > 2ε do
4: h ← ∑n

i=0(f̂(i) − g̃(i))xi

5: g′ ← g′ + h
2

6: g ← P1(g
′)

7: Compute χg with precision ε
2μ(n)

� Chow parameters of g

8: χg̃ ← VectorApprox(χf , χg, ε) � Rounding to ensure integer difference
9: end while

10: return g

Algorithm 2. VectorApprox
Input: Chow parameters χf , χg ∈ R

n+1 and ε ∈ (0, 1)
Output: Vector χg̃ ∈ R

n+1

1: for i = 0, . . . , n do
2: g̃(i) ← the closest value to ĝ(i) such that f̂(i) − g̃(i) = k ε

μ(n)
with k ∈ Z

3: end for
4: return χg̃ = (g̃(0), . . . , g̃(n))

To prove Theorem 3.2 it suffices to check that ApproximateLBF (Algorithm 1)
satisfies all the conditions of the statement. In comparison to the work of De et

534 O. Farràs and M. Guiot

al. [DDFS14], apart from slightly differences in the bounds of some norms, our
proof requires a more fine-grained analysis to ensure that the resulting approxi-
mate function is also monotone. For this reason, we divide it into several lemmas:
One for checking the monotonicity of the output, another to ensure the halting
of the algorithm, and a last one for the bounds on the weights and the running
time. The proof of all these lemmas can be found in [FG24].

We start by proving that the output of ApproximateLBF (Algorithm 1) corre-
sponds to a monotone LBF satisfying the gap in the Chow distance. Indeed, this
is the part in which our work differs the most from the one of De et al. [DDFS14],
since it is where we impose the monotonicity condition on the output.

Lemma 3.3. ApproximateLBF (Algorithm 1) outputs with probability 1 − δ a
monotone LBF g such that distChow(f, g) ≤ 3ε.

Lemma 3.3 ensures that the output of ApproximateLBF (Algorithm 1) is a
monotone LBF satisfying the required distance in the Chow parameters. How-
ever, this is a meaningless result unless we prove that ApproximateLBF (Algo-
rithm 1) always halts, since apparently nothing prevents the algorithm to stay
indefinitely in the main loop (steps 4–8). The next lemma shows that this situ-
ation can not happen.

Lemma 3.4. The main loop of ApproximateLBF (Algorithm 1, steps 4–8)
requires at most 1

ε2 iterations.

Finally, the remaining lemma gives the bound on the weights and the run-
ning time. It is a crucial result, since the bound on the weights is what later
enables the construction of secret sharing schemes for weighted threshold access
structures with small share size. Moreover, the bound on the running time shows
the feasibility of this strategy.

Lemma 3.5. The function g(x) = LBF(kv, kv0)(x) output by ApproximateLBF
(Algorithm 1) has the following properties:

1. k ∈ R,v ∈ N
n, v0 ∈ Z, and ‖v‖ = O

(
μ(n)
ε3

)
.

2. Its running time is Õ
(
nμ(n)2

ε4 log
(
1
δ

))
.

At this point, to prove Theorem 3.2 it suffices to combine the results of
Lemma 3.3, Lemma 3.4 and Lemma 3.5.

3.2 Remarks on the Error and the Weight Bound of Theorem 3.1

Theorem 3.1 sets a method for approximating monotone LTFs up to any accu-
racy and gives a bound on the resulting weights in terms of the number of vari-
ables and the error. In this section, we show that our approximation technique
preserves the hierarchy among the participants and we discuss the optimality
of the technique. First, we show that the error has a negligible impact on the
original hierarchy of the coordinates. Second, we prove the optimality of the

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 535

algorithm with respect to the weight bound. Later, we perform an analysis on
the trade-off between both notions: The error and the size of the weights. More-
over, in the full version [FG24] we show how to relate the approximation error
to a ramp criteria assuming bounds on the weights.

On the Error and the Preservation of the Weights Hierarchy. One
of the biggest concerns when approximating a monotone LTF is to preserve the
hierarchical properties of the original function. In this regard, we can ensure that
the error produced does not cause a drastic change in the impact of each coordi-
nate to the output of the function. Namely, we can show that the approximating
technique also preserves the influence of the coordinates.

Theorem 3.6. Let f, g be two o(1)-close monotone LTFs. Then, |Inf i[f] −
Inf i[g]| = o(1) for every i ∈ [n].

Proof. If dist(f, g) = o(1), then distChow(f, g) = o(1) by Theorem 2.16. By
Proposition 2.12, the difference between influences is also o(1). �

Another natural requirement for the approximation procedure is to maintain
the hierarchy. That is, we demand that whenever one coordinate has a greater
weight than another in the original function, the same happens after the approx-
imation. If the output of our algorithm does not satisfy it, this requirement can
be achieved simply by rearranging the weights of the output function. The next
lemma shows that this additional modification does not increase the error of the
approximation.

Lemma 3.7. Let f be a monotone LTF, let g(x) = LTF(w, w0)(x) be a mono-
tone LTF ε-close to f , and let h(x) = LTF(w′, w0)(x), where w′ is the weight
vector w sorted in decreasing order. It holds that dist(f, h) ≤ ε.

Proof. First, note that it suffices to prove the statement for the case where the
vector w′ is equal to w except for the flipping of any two coordinates i < j with
wi < wj , since the case where w′ is decreasingly ordered can be obtained by
iterating this flipping process.

Now, to show that dist(f, h) ≤ ε we show that for any x ∈ {−1, 1}n with
xi, xj = −1 it holds that

∣
∣{f(y) = g(y) : y ∈ {x⊕i,x⊕j}

}∣
∣ ≤

∣
∣{f(y) = h(y) : y ∈ {x⊕i,x⊕j}

}∣
∣ .

Since both f and g, are monotone LTFs, each of them has only three possible
outputs for any pair of inputs x⊕i,x⊕j . In more detail, either f(x⊕i) = f(x⊕j) =
−1, f(x⊕i) = f(x⊕j) = 1, or f(x⊕i) = 1 > f(x⊕j) = −1 (and similarly for g).
Therefore, we are left with a total of 9 different cases. Observe that the case

f(x⊕i) = 1, f(x⊕j) = −1, g(x⊕i) = 1, and g(x⊕j) = −1.

is not possible because wi < wj by hypothesis.

536 O. Farràs and M. Guiot

We now prove the case where

f(x⊕i) = 1, f(x⊕j) = −1, g(x⊕i) = −1, and g(x⊕j) = 1.

By hypothesis, we have that
∣
∣{f(y) = g(y) : y ∈ {x⊕i,x⊕j}

}∣
∣ = 0.

Moreover, by the definition of h we have that g(x⊕i) = −1 implies that h(x⊕j) =
−1, and that g(x⊕j) = 1 implies that h(x⊕i) = 1. Therefore, we get that

∣
∣{f(y) = h(y) : y ∈ {x⊕i,x⊕j}

}∣
∣ = 2,

which proves this case. The remaining cases can be proved analogously. �

Therefore, we can conclude that our technique also preserves the original
hierarchy on the weights and the influence of each coordinate.

Optimality of the Weight Bound. A natural question is if the weight bound
of Theorem 3.1 can be improved in terms of its dependency on n or ε. We answer
this question by showing that the bound is optimal in terms of n and is close of
being optimal in terms of ε. In particular, we prove the following theorem.

Theorem 3.8 (Theorem 1.3 restated). Let κ = min{√
n,

(
1
ε

)Ω(log(log(1
ε)))}.

For any n and ε ∈ (0, 1
10), there exists a monotone LTF f over n variables such

that any monotone LTF that is ε-close to f has integer weights of size Ω(κ).

Remark 3.9. In the statement of Theorem 3.1 the weight bound, with respect to
n, corresponds to any μ(n) ≥ 2

√
n + 1. Therefore, when we look at the optimality

of the bound in Theorem 3.8 we can replace μ(n) by
√

n.

As we did with Theorem 3.1, we split the proof of Theorem 3.8 in two steps.
First, we prove that the bound is optimal in terms of its dependency on n. Later,
we study the optimality of the bound with respect to ε.

To show that the bound can not be improved in terms of n it suffices to give
an explicit monotone LTF f over n variables such that for ε = 1

10 any LTF g
ε-close to f has some weight of size Ω(

√
n).1 This is precisely what Servedio did

in [Ser06], where he proved the following result.

Theorem 3.10 ([Ser06]). Let w = (1, . . . , 1, n) ∈ Z
n, let f be the monotone

LTF given by f(x) = LTF(w, n)(x), and let g : {−1, 1}n −→ {−1, 1} be an LTF
that is 1

10 -close to f . Then any integer representation of g must have some weight
of size Ω(

√
n − 1).

1 Since we are looking for a lower bound in terms of n, note that we can set in advance
the approximation error ε to a concrete value and the approximate LTF g does not
need to be monotone.

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 537

Next, we move to study the optimality of the bound in terms of 1
ε . To obtain

the bound stated in Theorem 3.8 we rely on a particular LTF introduced by
Hästadt [H̊as94] that requires integer weights of size 2Ω(n log(n)).

Theorem 3.11. There exist a monotone LTF f and ε ∈ (0, 1) for which any

monotone LTF g that is ε-close to f has some weight of size
(
1
ε

)Ω(log(log(1
ε))).

Proof. We argue by contradiction. Suppose that for any monotone LTF f and
ε ∈ (0, 1) we can construct a monotone LTF g that is ε-close to f with weights

of size
(
1
ε

)o(log(log(1
ε))). Now, let f be the LTF introduced by Hästadt [H̊as94]

that requires integer weights of size 2Ω(n log(n)). Without loss of generality, we
can suppose that f is also monotone.2 Then, by hypothesis, for any ε < 1

2n we
can construct a monotone LTF g with integer weights of size 2o(n log(n)) that is
ε-close to f . Since there are only 2n < 1

ε distinct input values, this implies that
f = g. But this clearly contradicts the lower bound on the weights of f . �

If we see Theorem 3.1 as a strategy to reduce the weights of a given monotone
LTF, we can interpret Theorem 3.8 not only as a limitation of this technique but
also as a limitation of any approximation technique based on the reduction of
the weights, as for example rounding. However, since Theorem 3.1 is a general
result, it is possible that some families of monotone LTFs admit approximations
with smaller weights.

Trade-Off Between the Error and the Weight Bound. Next, we study
the trade-off between the size of the weights and the error of Theorem 3.1.
Since the weight bound of Theorem 3.1 depends on ε, the more accurate the
approximation, the higher the weight bound will be. Moreover, this factor is of
the form quasipoly

(
1
ε

)
, which implies that the weight bound grows faster than

the accuracy of the approximation does.
In this regard, note that, at the cost of increasing the weight bound, we can

make the error ε as small as desired because there is no lower restriction apart
from the trivial ε > 0. However, we can not increase ε freely since Theorem 3.1
requires that 2−O(log3(1

ε)) < f̂(n)μ(n). This can be annoying in case we want to
minimize the size of the weights.

To overcome this limitation, we can try to increase ε by pushing up the
value of its upper bound f̂(n)μ(n). In that sense, the factor f̂(n) is given by
the original LTF and Proposition 2.12 implies that, in the worst case, it can be
equal to 1

2n−1 . Hence, our only option is to increase the value of μ(n), which is
lower bounded by 2

√
n + 1.

Nevertheless, note that μ(n) also appears as a linear factor of the weight
bound. For this reason, we must be careful when increasing the value of μ(n)
2 By definition, any LTF can be converted into a monotone LTF simply by flipping

some of its input variables. If f is not monotone, it suffices to define f ′ as the
monotone LTF obtained from f by this procedure. It is clear that the magnitude of
the weights of f ′ is the same as that of the weights of f .

538 O. Farràs and M. Guiot

with the aim of decreasing the weight bound, since pushing it too high may go
against our interests.

A more fine-grained analysis of this trade-off will appear later in Sect. 4 in
the proof of Theorem 4.3. As we will see, a better result can be obtained by
discarding the Chow parameters with the lowest values.

4 Secret Sharing Schemes for Approximate Weighted
Threshold Access Structures

In this section we apply the results on low-weight approximators for monotone
LTFs to construct information-theoretic secret sharing schemes for weighted
threshold access structures with small share size. First, we introduce our pro-
posal and discuss some alternatives. Later, we compare it with state-of-the-art
solutions.

4.1 Scheme Construction

The main result of this section is the following theorem.

Theorem 4.1. Let κ(ε) = 2−O(log3(1
ε)) and let μ(n) ∈ R be a function that

satisfies μ(n) ≥ 2
√

n + 1. For any weighted threshold access structure f over n

parties and ε ∈ (0, 1) with κ(ε) ≤ f̂(n)μ(n), there exists a weighted threshold
access structure over n parties ε-close to f admitting an information-theoretic

secret sharing scheme with share size Õ

(
μ(n)

(
1
ε

)O(log2(1
ε))

)
.

Proof. First, recall that we can work indistinctly with f and its equivalent mono-
tone WTF. Hence, in this proof we will not make any distinction between them.

Now, given μ(n) > 2
√

n + 1 and ε ∈
(
0, f̂(n)μ(n)

]
we apply Theorem 3.1 to

obtain a monotone function g(x) = LTF(v, v0)(x) that is ε-close to f . Moreover,

it holds that v ∈ N
n, v0 ∈ Z, and ‖v‖ = O

(
μ(n)

(
1
ε

)O(log2(1
ε))

)
.

By construction, g is a weighted threshold access structure with weights v,
threshold v′

0, and with dist(f, g) < ε. In addition, since we know that ‖v‖ =

O

(
μ(n)

(
1
ε

)O(log2(1
ε))

)
it suffices to use Shamir’s virtualization technique to

obtain the desired secret sharing scheme for g. �

Remark 4.2. Since we use Shamir’s virtualization technique, the secret sharing
scheme constructed in Theorem 4.1 is also linear. This implies that our proposal
has homomorphic properties and efficient Share and Reconstruction algorithms.

Following the arguments of Sect. 3.2, it seems inevitable that to obtain a small
upper bound on the share size in Theorem 3.1, the Chow parameters associated
to the weighted threshold access structure must be big enough. Otherwise, the

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 539

inequality κ(ε) ≤ f̂(n)μ(n) would imply that either ε is too small or μ(n) is too
big, which in both cases would lead to an increase in the upper bound on the
share size. In this regard, note that the resulting upper bound applies to the
worst case, but does not provide information about the average case.

However, if some of the Chow parameters are small, we can still obtain a
small upper bound on the share size simply by discarding those parties from the
original weighted threshold access structure. More in detail, thanks to Proposi-
tion 2.12 we can view each Chow parameter as the influence of a specific party
in the access structure. Therefore, if some of the Chow parameters are small, we
can guarantee that removing them from the access structure would not modify it
too much. In this way, we can always control the value of the f̂(n) that appears
in the statement of Theorem 3.1.

As a consequence of combining this observation with Theorem 4.1 we obtain
the following result.

Theorem 4.3 (Theorem 1.1 restated). Let k ∈ N. For any weighted thresh-
old access structure f over n parties, there exists a weighted threshold access
structure over n parties 1

logk(n)
-close to f admitting an information-theoretic

secret sharing scheme with share size n1+o(1).

Proof. Let w be the weight vector of f , let σ be its threshold value, and let
l ∈ [n] be the maximum value such that f̂(l) ≥ 1

2n logk(n)
.

We consider the weighted threshold access structure f ′ over l parties given
by the weight vector (w1, . . . , wl) and threshold σ. Proposition 2.12 implies that
dist(f, f ′) ≤ n

2n logk(n)
= 1

2 logk(n)
.

Next, we set μ(n) = n ≥ 2
√

n + 1, ε = 1
2 log(n) , and κ(ε) := 2−O(log3(1

ε)). For
sufficiently large n we have that

κ(ε) =
1

2O(log3(2 logk(n)))
≤ 1

2 logk(n)
=

n

2n logk(n)
= f̂(l)μ(n).

Hence, we can apply Theorem 4.1 to f ′ to get a weighted threshold access
structure over n parties g that is 1

logk(n)
-close to f ′ and admits an information-

theoretic secret sharing scheme with share size Õ

(
n

(
1
ε

)O(log2(1
ε))

)
. Moreover,

it holds that
(

1
ε

)O(log2(1
ε))

= n
O(log3(1

ε))
log(n) = n

O(log3(2 logk(n)))
log(n) = no(1),

which implies that the share size is n1+o(1). Finally, the triangle inequality implies
that

dist(f, g) ≤ dist(f, f ′) + dist(f ′, g) ≤ 1
2 logk(n)

+
1

2 logk(n)
=

1
logk(n)

.

�

540 O. Farràs and M. Guiot

4.2 Remarks on the Secret Sharing Techniques

At the end of the proof of Theorem 4.1, we have used Shamir’s virtualization
technique to construct our secret sharing scheme. Hence, one may wonder if
the use of an alternative construction may lead to smaller shares. To answer
this question, we move to combine our technique with the other existing pro-
posals. First, we target the work of Benaloh and Leichter based on monotone
formulae [BL88]. Later, we focus our attention on the work of Beimel and Wein-
reb using monotone circuits [BW06]. From there, we observe that the result-
ing schemes have larger share size than the one from Theorem 4.1. Finally, we
present a brief discussion about lower bounds on information-theoretic secret
sharing schemes for weighted threshold access structures.

Alternative Secret Sharing Schemes Constructions. Benaloh and
Leichter [BL88] presented a secret sharing construction whose share size is lin-
ear in the size of any monotone formula realizing the access structure. In this
regard, note that Theorem 2.7 states that any weighted threshold access struc-
ture has a monotone formula of polynomial size in the total weight. Therefore,
given any weighted threshold access structure we can combine our approxima-
tion technique with these two results to obtain an information-theoretic secret

sharing scheme with total share size O

(
μ(n)10.6

(
1
ε

)O(log2(1
ε))

)
for an ε-close

weighted threshold access structure. More specifically, we first apply Theorem
3.1 to construct an ε-close weighted threshold access structure, then we use The-
orem 2.7 to obtain a polynomial size monotone formula, and finally we construct
the secret sharing scheme with polynomial share size.

The construction by Beimel and Weinreb [BW06] has two main steps. First,
they describe logarithmic depth and polynomial size unbounded fan-in mono-
tone circuits that compute any monotone weighted threshold function (Theorem
2.3). Later, they transform the circuit into a monotone boolean formula, that
is transformed into a scheme by the technique mentioned above, obtaining the
share size in Theorem 2.22. To construct these circuits they use the upper bound
on the weights of 2�n log(n)� of Theorem 2.8. Hence, we can use our approxima-
tion technique to avoid using this bound. More in detail, we can apply Theorem
3.1 to construct an ε-close weighted threshold access structure and bound the

weights by μ(n)
(
1
ε

)O(log2(1
ε)). However, this strategy only leads to secret shar-

ing schemes with share size nO(log(log(μ(n), 1ε))), which is still quasipolynomial.
This is because the quasipolynomial magnitude is due to the conversion from
monotone circuits to monotone formulae, something in which our technique does
not help.

On the Share Size Lower Bounds. The best lower bound on the share size
is Ω(

√
n) [PS00], and it is indeed a bound on the information ratio. A common

technique for obtaining lower bounds on the share size for linear schemes is
through counting arguments. In this regard, the next theorem gives upper and

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 541

lower bounds on the number of weighted threshold access structures over n
parties and shows that they correspond to a small subset within the set of
monotone Boolean functions. Counting arguments like the ones in [KW93] give
trivial bounds, in this case.

Theorem 4.4. The number of weighted threshold access structures over n par-
ties is 2Θ(n2).

Proof. First, notice that finding the number of weighted threshold access struc-
tures over n parties is equivalent to finding the number of monotone WTFs over
n variables.

Now, let T (resp. TM) denote the set of all WTFs (resp. monotone WTFs)
with n variables. Muroga [Mur71] proved that

2
n2
2 ≤ |T | ≤ 2n2

for any n.

Hence, to prove the theorem it suffices to show that |T |
2n ≤ |TM |.

To do so, we define a surjective mapping ϕ : T ′
M −→ T , where T ′

M is the set
containing 2n copies of each monotone LTF ordered from 0 to 2n − 1. In this
setup, ϕ simply consists in taking the positive representation of any monotone
LTF given by Remark 2.2 and mapping its k-th copy to the LTF obtained by
negating the weights corresponding to the coordinates referred by the binary
representation of k.

Hence, ϕ is surjective by construction because for any LTF with k weights
smaller than zero we obtain a monotone LTF by taking the absolute value of
these weights. In particular, its preimage consists in the k-th copy of some mono-
tone LTF. �

4.3 Comparison with State-of-the-Art Proposals

We now compare our proposal with the state-of-the-art constructions. This is
summarized in Fig. 1.

Share Size. The constructions of Tonkikh and Freitas [TF24], Benhamouda,
Halevi, and Stambler [BHS23], and ours guarantee polynomial share size for
approximations of weighted threshold structures. However, the share size of
the approximations in [BHS23,TF24] also depend on the inverse of the gap
β −α, which leads to an increase of the share size when targeting ramp weighted
threshold access structures with small gaps. With respect to the proposals from
Shamir [Sha79] and Garg et al. [GJM+23], their share size depends on the
weights, which can be exponential in terms of the number of parties as stated in
Theorem 2.8. For this reason, these proposals are more suitable for the cases in
which there are lots of parties with small weights. The size of the shares of the
scheme by Beimel and Weinreb [BW06] does not have this direct dependence
with the size of weights, and the share size is quasipolynomial in the number of
parties.

542 O. Farràs and M. Guiot

Access Structure. The main general constructions for weighted threshold
access structures are the ones from Shamir [Sha79] and Beimel and Wein-
reb [BW06]. The proposals in [BHS23,GJM+23,TF24] rely on the more flexible
setting of ramp weighted threshold access structures.

In our case, we approximate a weighted threshold access structure by another
one that admits small weights. The approximation error is 1

polylog(n) = o(1) Fur-
thermore, since our proposal has the error as an input parameter, we are able
to tune the accuracy of the approximation as desired. In contrast, if we approx-
imate weighted threshold access structures by a ramp weighted threshold access
structures, it is hard to establish an upper bound on the gap that guarantees
efficient schemes with a certain approximation error.

Privacy and Linearity. The previous works [Sha79,BW06,BHS23,TF24]
present linear schemes that have perfect privacy. These properties facilitate their
use as a building block in secure multiparty computation applications. This is
also the case of our construction.

5 Computational Secret Sharing Schemes
for Approximate Weighted Threshold Access
Structures

In this section, we construct computational secret sharing schemes for weighted
threshold access structures with small share size. First, we introduce some auxil-
iary results necessary for our work. Later, we present the construction and show
how to quantify the public information size with our approximation technique.

5.1 Succinct Computational Secret Sharing Schemes

In a recent work, Applebaum et al. [ABI+23] construct computational secret
sharing schemes with small share size for a wide set of access structures. In
more detail, they introduce a new cryptographic primitive known as Projec-
tive Pseudorandom Generator (pPRG), show how to construct it from several
assumptions such as RSA or the existence of one-way functions, and use it to
obtain succinct computational secret sharing schemes, i.e. schemes whose share
size is considerably small. We defer the definition of pPRG to [FG24].

Theorem 5.1 ([ABI+23]). Under the subexponential (resp. polynomial) RSA
assumption, there exists a subexponential-robust pPRG (resp. polynomial-robust
pPRG) with subexponential stretch (resp. arbitrary polynomial stretch) whose
projective keys and public parameters are both strongly succinct, i.e. of length
log(m) · poly(λ), where m is the output length and λ is the security parameter.
The running time of generating the m-bit output of the pPRG is Õ(m) ·poly(λ).

For our purposes, we require a generalization of the notion of pPRG known
as block-pPRG (see [ABI+23,FG24] for details). Block-pPRG are important

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 543

because they are the building blocks for computational secret sharing schemes
for monotone circuits with unbounded fan-in in which the share size is polylog-
arithmic in the number of gates. This is summarized in the following theorem.

Theorem 5.2 ([ABI+23]). Let λ be the security parameter. Assume that there
is a robust block-pPRG in which the length of the projective keys is log(mλ) ·
poly(λ) and the length of the public parameters is log(mλ) · poly(λ), where m is
the output length (number of blocks) of the generator and each block is of length
λ. Then, there is a computational secret sharing scheme for monotone unbounded
fan-in circuits whose share size is log(mλ) · poly(λ) and its public information
size is poly (log (m) , λ) + m∧λ, where m is the number of gates and m∧ is the
number of AND-gates.

5.2 Scheme Construction

A direct application of Theorem 5.1 and Theorem 5.2 to the polynomial size log-
arithmic depth monotone circuits for monotone WTF of Theorem 2.3 leads to
the construction of a computational secret sharing scheme for weighted thresh-
old access structures with polylogarithmic share size and public information of
polynomial size in the number of parties. This is stated in the next theorem.

Theorem 5.3 (Theorem 1.4 restated). Let λ be the security parameter.
Under the subexponential RSA assumption, any weighted threshold access struc-
ture over n parties admits a computational secret sharing scheme where the
size of the shares is poly(log (n) , λ) and the size of the public information is
poly(n, λ).

Proof. Given a weighted threshold access structure f , we use Theorem 2.3 to
compute its polynomial size logarithmic depth monotone circuit. Then, we apply
Theorem 5.1 and Theorem 5.2 to this circuit to obtain the desired computational
secret sharing scheme.

The main drawback of the secret sharing scheme construction of Theorem
5.3 is that its public information size corresponds to the size of the monotone
circuit, which is a polynomial of unspecified degree. For this reason, it is worth
trying to pin down the degree of that polynomial.

In order to do so, we combine our results on low-weight approximators for
monotone LTFs with the work from Applebaum et al. [ABI+23]. In particular,
we construct computational secret sharing schemes for approximate weighted
threshold access structures that maintain the share size of Theorem 5.3 and
whose public information size is a polynomial of concrete degree. The main
statement follows.

Theorem 5.4. Let λ be the security parameter, let κ(ε) = 2−O(log3(1
ε)) and let

μ(n) ∈ R be a function that satisfies μ(n) ≥ 2
√

n + 1. Under the subexponential
RSA assumption, for any weighted threshold access structure over n parties f
and ε ∈ (0, 1) with κ(ε) ≤ f̂(n)μ(n), there exists a weighted threshold access

544 O. Farràs and M. Guiot

structure over n parties that is ε-close to f admitting a computational secret
sharing scheme where the size of the shares is poly

(
log

(
μ(n), 1

ε

)
, λ

)
and the

size of public information is O

(
μ(n)10.6

(
1
ε

)O(log2(1
ε))

,poly (λ)
)

.

Proof. The first part of the proof is analogue to that of Theorem 4.1, i.e. we use
the switching lemmas and Theorem 3.1 to obtain a weighted threshold access
structure g with weight vector v, threshold v0, and dist(f, g) < ε.

From there, instead of applying Shamir’s virtualization technique,
we use Theorem 2.7 to obtain a monotone formula for g of size

O

(
μ(n)10.6

(
1
ε

)O(log2(1
ε))

)
. Now, since a monotone formula is indeed a

monotone circuit, we can combine Theorem 5.1 and Theorem 5.2 to con-
struct a computational secret sharing scheme for g where the size of
the shares is poly

(
log

(
μ(n), 1

ε

)
, λ

)
and the size of public information is

O

(
μ(n)10.6

(
1
ε

)O(log2(1
ε))

,poly (λ)
)

. �

Now, we can mimic the approach done in the information-theoretic setting
to obtain the following result as a consequence of Theorem 5.4.

Theorem 5.5. Let k ∈ N. Under the subexponential RSA assumption, for any
weighted threshold access structure f over n parties, there exists a weighted
threshold access structure that is 1

logk(n)
-close to f admitting a computational

secret sharing scheme where the size of the shares is poly (log(n), λ) and the size
of the public information is O

(
n10.6+o(1),poly (λ)

)
.

Proof. The proof follows the same steps as the proof of Theorem 4.3. The only
difference is that we apply Theorem 5.4 to the intermediate weighted threshold
access structure f ′ instead of Theorem 4.1. In this way, at the end of the proce-
dure we obtain a computational secret sharing scheme for g with shares of size
poly (log (n) , λ) and public information of size O

(
n10.6+o(1),poly (λ)

)
. �

5.3 Comparison with State-of-the-Art Proposals

The construction of Beimel and Weinreb [BW06] has polynomial share size, while
the one in Theorem 5.3 has polylogarithmic share size. Nevertheless, following
the arguments of [ABI+23], under the stronger assumption that subexponen-
tially secure one-way functions exist, the scheme of Beimel and Weinreb could
reach the same share size as that of Theorem 5.3 because both rely on the same
monotone circuit for WTFs. However, the public information in Theorem 5.3
and Theorem 5.5 is linear in the number of gates, whereas in the work of Beimel
and Weinreb the size of the public information is linear in the number of wires.
This results in a quadratic improvement for our proposals in the context of gen-
eral circuits. The key difference lies in the use of the computational scheme by
Applebaum et al. [ABI+23] for monotone circuits in Theorem 5.3, while Beimel
and Weinreb construction adopts Yao’s scheme [Yao89]. Another difference is

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 545

that the construction of Beimel and Weinreb [BW06] assumes the existence of
secure one-way functions, while the constructions in Theorem 5.3 and Theorem
5.5 are based on the RSA assumption. This is summarized in Fig. 1.

Regarding the access structure, both the Beimel and Weinreb scheme and
Theorem 5.3 can realize any weighted threshold access structure. However, in
Theorem 5.5, we approximate the original weighted threshold access structure
to further reduce the share size.

Acknowledgments. We thank Amos Beimel, Carles Padró, and the TCC reviewers
for valuable comments and suggestions.

The authors are supported by grant 2021 SGR 00115 from the Govern-
ment of Catalonia, by the project ACITHEC PID2021-124928NB-I00 funded by
MCIN/AEI/10.13039/501100011033/FEDER, EU, and by the project HERMES,
funded by the European Union NextGenerationEU/PRTR via INCIBE.

References

ABI+23. Applebaum, B., Beimel, A., Ishai, Y., Kushilevitz, E., Liu, T., Vaikun-
tanathan, V.: Succinct computational secret sharing. In: STOC 2023, pp.
1553–1566. ACM (2023)

BCC+21. Breidenbach, L., et al.: Chainlink 2.0: Next steps in the evolution of decen-
tralized oracle networks. Technical report, Chainlink Labs (2021)

BD91. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing
schemes. J. Cryptology 4(73), 123–134 (1991)

Bei11. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling,
S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol.
6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20901-7 2

BF20. Beimel, A., Farràs, O.: The share size of secret-sharing schemes for almost
all access structures and graphs. IACR Cryptol. ePrint Arch. 2020, 664
(2020)

BHS23. Benhamouda, F., Halevi, S., Stambler, L.: Weighted secret sharing from
wiretap channels. In: 4th Conference on Information-Theoretic Cryptogra-
phy, ITC 2023, vol. 267. LIPIcs, pp. 8:1–8:19 (2023)

BL88. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone func-
tions. In: Goldwasser, S., (ed.) CRYPTO ’88, vol. 403. LNCS, pp. 27–35.
Springer (1988)

Bla79. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the 1979 AFIPS
National Computer Conference, vol. 48. AFIPS Conference proceedings, pp.
313–317. AFIPS Press (1979)

Bri89. Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. Combin.
Comput. 6, 105–113 (1989)

BTW08. Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold
secret sharing. SIAM J. Discrete Math. 22(1), 360–397 (2008)

BW06. Beimel, A., Weinreb, E.: Monotone circuits for monotone weighted threshold
functions. Inform. Process. Lett. 97(1), 12–18 (2006). Conference version:
Proc. of 20th Annu. IEEE Conf. on Computational Complexity, pp. 67–75
(2005)

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2

546 O. Farràs and M. Guiot

Cho61. Chow, C.K.: On the characterization of threshold functions. In: 2nd Annual
Symposium on Switching Circuit Theory and Logical Design (SWCT 1961),
pp. 34–38 (1961)

CTL22. Chen, Q., Tang, C., Lin, Z.: Efficient explicit constructions of multipartite
secret sharing schemes. IEEE Trans. Inf. Theory 68, 601–631 (2022)

DDFS14. De, A., Diakonikolas, I., Feldman, V., Servedio, R.A.: Nearly optimal solu-
tions for the chow parameters problem and low-weight approximation of
halfspaces. J. ACM 61(2), April 2014

DPTX24. Das, S., Pinkas, B., Tomescu, A., Xiang, Z.: Distributed randomness using
weighted vrfs. Cryptology ePrint Archive, Report 2024/198 (2024). https://
eprint.iacr.org/2024/198

FG24. Farràs, O., Guiot, M.: Reducing the share size of weighted threshold secret
sharing schemes via chow parameters approximation. Cryptology ePrint
Archive, Report 2024/772 (2024). https://eprint.iacr.org/2024/772

FP12. Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. IEEE Trans.
Inf. Theory 58(5), 3273–3286 (2012)

GJM+23. Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: Cryp-
tography with weights: Mpc, encryption and signatures. In: Handschuh,
H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, pp.
295–327. Springer, Switzerland (2023)

H̊as94. H̊astad, J.: On the size of weights for threshold gates. SIAM J. Discrete
Math. 7(3), 484–492 (1994)

KGH83. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems.
IEEE Trans. Inf. Theory 29(1), 35–41 (1983)

KRDO17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably
secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.)
Advances in Cryptology – CRYPTO 2017, pp. 357–388. Springer (2017)

KW93. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Com-
plexity Theory, pp. 102–111 (1993)

LV18. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret shar-
ing. In: 50th STOC, pp. 699–708 (2018)

Mig83. Mignotte, M.: How to share a secret. In: Beth, T., (ed.) Cryptography, pp.
371–375. Springer, Heidelberg (1983)

Mo23. Mo, S.: Ideal hierarchical secret sharing and lattice path matroids. Des.
Codes Cryptogr. 91(4), 1335–1349 (2023)

MPSV99. Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted threshold secret
sharing schemes. Inform. Process. Lett. 70(5), 211–216 (1999)

Mur71. Muroga, S.: Threshold Logic and Its Applications. Wiley-Interscience (1971)
O’D14. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press,

USA (2014)
OS11. O’Donnell, R., Servedio, R.A.: The chow parameters problem. SIAM J.

Comput. 40(1), 165–199 (2011)
Pad24. Padró, C.: Efficient representation of lattice path matroids. Ann. Comb.

(2024)
PS00. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure.

IEEE Trans. Inf. Theory 46(7), 2596–2604 (2000)
SB91. Siu, K.-Y., Bruck, J.: On the power of threshold circuits with small weights.

SIAM J. Discret. Math. 4(3), 423–435 (1991)
Ser04. Servedio, R.A.: Monotone Boolean formulas can approximate monotone lin-

ear threshold functions. Discrete Appl. Math. 142(1–3), 181–187 (2004)

https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/772

Reducing the Share Size of Weighted Threshold Secret Sharing Schemes 547

Ser06. Servedio, R.A.: Every linear threshold function has a low-weight approx-
imator. In: 21st Annual IEEE Conference on Computational Complexity
(CCC’06), pp. 18–32 (2006)

Sha79. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
Sim88. Simmons, G.J.: How to (really) share a secret. In: CRYPTO, pp. 390–448

(1988)
Tas07. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptology 20(2), 237–

264 (2007)
TD09. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation.

J. Cryptology 22(2), 227–258 (2009)
TF24. Tonkikh, A., Freitas, L.: Swiper: a new paradigm for efficient weighted dis-

tributed protocols. In: Proceedings of the 43rd ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’24, pp. 283–294. Association for
Computing Machinery (2024)

Yao89. Yao, A.C.: Unpublished manuscript, 1989. Presented at Oberwolfach and
DIMACS Workshops

New Upper Bounds for Evolving Secret
Sharing via Infinite Branching Programs

Bar Alon3 , Amos Beimel1 , Tamar Ben David2 , Eran Omri2(B) ,
and Anat Paskin-Cherniavsky2

1 Department of Computer Science, Ben Gurion University, Beer Sheva, Israel
2 Department of Computer Science, Ariel University, Ariel Cyber Innovation

Center (ACIC), Ariel, Israel
omrier@ariel.ac.il

3 Georgetown University, Washington, USA

Abstract. Evolving secret-sharing schemes, defined by Komargodski,
Naor, and Yogev [TCC 2016B], are secret-sharing schemes in which there
is no a-priory bound on the number of parties. In such schemes, parties
arrive one by one; when a party arrives, the dealer gives it a share and
cannot update this share in later stages. The requirement is that some
predefined sets (called authorized sets) should be able to reconstruct the
secret, while other sets should learn no information on the secret. The
collection of authorized sets that can reconstruct the secret is called an
evolving access structure. The challenge of the dealer is to be able to give
short shares to the current parties without knowing how many parties
will arrive in the future. The requirement that the dealer cannot update
shares is designed to prevent expensive updates.

Komargodski et al. constructed an evolving secret-sharing scheme
for every monotone evolving access structure; the share size of the
tth party in this scheme is 2t−1. Recently, Mazor [ITC 2023] proved
that evolving secret-sharing schemes require exponentially-long shares
for some evolving access structures, namely shares of size 2t−o(t). In
light of these results, our goal is to construct evolving secret-sharing
schemes with non-trivial share size for wide classes of evolving access
structures; e.g., schemes with share size 2ct for c < 1 or even poly-
nomial size. We provide several results achieving this goal: (1) We
define layered infinite branching programs representing evolving access
structures, show how to transform them into generalized infinite deci-
sion trees, and show how to construct evolving secret-sharing schemes
for generalized infinite decision trees. Combining these steps, we get
a secret-sharing scheme realizing the evolving access structure. As an
application of this framework, we construct an evolving secret-sharing
scheme with non-trivial share size for access structures that can be rep-
resented by layered infinite branching programs with width at layer t
of at most 20.15t. If the width is polynomial, then we get an evolving
secret-sharing scheme with quasi-polynomial share size. (2) We con-
struct efficient evolving secret-sharing schemes for dynamic-threshold
access structures with high dynamic-threshold and for infinite 2-slice
and 3-slice access structures. (3) We prove lower bounds on the share

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 548–580, 2025.
https://doi.org/10.1007/978-3-031-78023-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_18&domain=pdf
http://orcid.org/0000-0002-8392-0245
http://orcid.org/0000-0002-6572-4195
http://orcid.org/0009-0009-9149-7334
http://orcid.org/0000-0001-8928-0587
http://orcid.org/0000-0001-6566-2644
https://doi.org/10.1007/978-3-031-78023-3_18

New Upper Bounds for Evolving Secret Sharing 549

size of evolving secret-sharing schemes for infinite k-hypergraph access
structures and for infinite directed st-connectivity access structures. As
a by-product of the lower bounds, we provide the first non-trivial lower
bound for finite directed st-connectivity access structures for general
secret-sharing schemes.

1 Introduction

In the common model of secret-sharing schemes [13,28,41], there are n parties
and a dealer, which holds a secret. The dealer applies some randomized algorithm
to the secret, resulting in n strings, called shares; it gives the ith share to the ith

party. There are two requirements. (1) correctness: some predefined subsets of
the parties can jointly reconstruct the secret from their shares, and (2) security:
any other set gets no information on the secret. The collection of predefined
authorized sets is called an access structure. These schemes are well-studied and
have many applications. This model assumes that the number of parties is known
when preparing the shares and giving the shares to the parties; furthermore, the
sharing algorithm and the share size are determined by the number of parties,
e.g. in the best-known secret-sharing scheme for an arbitrary n-party access
structure the share size is 20.585n [5].

The assumption that the number of parties is known in advance is prob-
lematic in many scenarios. Of course, one can take some upper bound on the
number of parties. On one hand, if this bound is big, then the share size will be
large even if only few parties actually participate in the scheme. On the other
hand, if this bound is small, then there is a risk that too many parties will arrive
and no further shares can be produced; this will require an expensive re-sharing
of the secret and updating all shares (which can be impossible if some parties
are temporally off-line). Thus, we need to consider models with an unbounded
number of parties.

Komargodski, Naor, and Yogev [31] defined evolving secret-sharing schemes
with an unbounded number of parties. In this model, parties arrive one after the
other and the number of parties that will arrive is not known. At the beginning of
the execution, the dealer holds a secret (as in the common model). When a party
arrives, the dealer computes a share and gives it to the party; this share cannot
be updated in the future. Thus, when preparing the tth share, the dealer cannot
assume any bound on the number of parties that will eventually arrive; the size
of the tth share should be measured as a function of t. We require correctness
and privacy with respect to an evolving access structure, where the parties are
{pi}i∈N and the evolving access structure is a collection of finite subsets of the
parties that are authorized to reconstruct the secret.1

We next briefly discuss the known results on evolving secret-sharing schemes.
A longer discussion can be found in Sect. 1.2. Komargodski et al. [31] showed
that every monotone evolving access structure can be realized by an evolving
1 We assume that the order that the parties arrive is known in advance, or, alterna-

tively, the tth party to arrive assumes the role of the tth party.

550 B. Alon et al.

secret-sharing scheme; in this scheme the size of the tth share is 2t−1. Recently,
Mazor [36] proved that evolving secret-sharing schemes require exponentially
long shares – there is an evolving access structure such that in any evolving
secret-sharing scheme realizing it the size of share of the tth party is 2t−o(t)

(for infinitely many t’s). On the positive side, Komargodski et al. and follow-up
works [9,10,16,21–23,26,32,37–39,43,44] constructed efficient evolving secret-
sharing schemes for natural access structures.

1.1 Our Results

Having the result of Mazor [36] in mind, our research has 3 goals. Our first goal
is to identify a class of evolving access structures that can be realized with an
evolving secret-sharing scheme that has non-trivial share size; e.g., schemes with
share size 2ct for c < 1 or sub-exponential share size. We do so by defining a
computational model that represents evolving access structures, and then show
how to realize it with a non-trivial evolving secret-sharing scheme. Our second
goal is to construct efficient evolving secret-sharing schemes, i.e., schemes with
polynomial-size shares, for several natural classes of evolving access structures.
Finally, we provide lower bounds on the share size for several interesting evolving
access structures. See Table 1 for a summary of our results. Below, we review
our results in more detail.

Evolving Secret-Sharing Schemes for Infinite Branching Programs. We abstract
and generalize the constructions of [31,32] of evolving secret-sharing schemes.
We define infinite branching programs (defined informally below and formally
in Definition 3.1), which represent evolving access structures, show how to trans-
form them to a simpler computation model we call generalized infinite decision
trees (abbreviated GIDT), and show how to construct evolving secret-sharing
schemes for generalized infinite decision trees. We defer the discussion on GIDTs
to Sect. 1.3. Thus, to construct an evolving secret-sharing scheme for an evolving
access structure using our framework, one can either represent it as an infinite
branching program and use our transformation to construct a generalized infinite
decision tree or directly represent the evolving access structure as a generalized
infinite decision tree. We note that many secret-sharing schemes for finite access
structures use a representation of the access structure by some computational
model to construct a secret-sharing scheme realizing the access structure, e.g.,
CNF and DNF formulas are used in [28], monotone formulas are used in [12],
and monotone span programs are used in [29].

An infinite monotone non-deterministic branching program (abbreviated
IBP) computes a monotone function f : {0, 1}∗ → {0, 1}; this function is the
characteristic function of an evolving access structure.2 An IBP is an infinite
directed acyclic graph G, where each edge is labeled by a variable from {xi}i∈N

or by the constant 1. For every input σ ∈ {0, 1}t (interpreted as an assignment to

2 That is, f(σ1, . . . , σt) = 1 if an only if {pi : 1 ≤ i ≤ t, σi = 1} is in the access struc-
ture.

New Upper Bounds for Evolving Secret Sharing 551

the variables x1, . . . , xt) it holds that f(σ) = 1 if and only if there exists a path
in G from the source vertex to a leaf (a vertex without out-going edges) that is
satisfied by σ, namely, each edge in the path is either labeled by 1 or labeled
with a variable xi such that 1 ≤ i ≤ t and σi = 1 (see Definition 3.1 for a formal
definition). A layered IBP (abbreviated LIBP) is an IBP where the vertices are
partitioned into finite layers, all edges are directed from some layer i to layer
i + 1, and all edges entering layer i are labeled by either 1 or by xi. See Fig. 1
for an illustration of an LIBP. Intuitively, when using LIBPs for constructing an
evolving secret-sharing scheme, passing through an edge that is labeled by xi is
interpreted as using the share of the ith party in the reconstruction.

We show how to reduce the question of realizing an evolving access structure
represented as an LIBP to the question of realizing certain finite access struc-
tures. One parameter that determines the share size of the resulting evolving
secret-sharing scheme is the width of the LIBP, where the width of an LIBP
at layer t, denoted by w(t), is the number of vertices in layer t. We prove the
following theorem.

Theorem 1.1 (Realizing LIBPs – Informal). Let B be an LIBP. There
exists an evolving secret-sharing scheme realizing B in which the share of party
pt is the shares of pt in

(∏
1≤j≤log t w(2j)

)
secret-sharing schemes realizing some

finite access structures.

As an application of this framework, we construct evolving secret-sharing
schemes for LIBPs with bounded width.

Theorem 1.2 (Realizing Bounded Width LIBPs – Informal). For every
function ε(t) < 0.04, every LIBP of width w(t) ≤ 2ε(t)·t can be realized by
an evolving secret-sharing scheme in which the share size of the tth party is

2O
(
min{∗} ε(t) log t,

√
ε(t)

)
·t

.

In the above theorem, ε(t) can be an arbitrary function that is smaller than
1. For example, for LIBPs whose width is at most 20.15t (i.e., ε(t) = 0.15),
we get share size 20.97t. As another example, if the width is polynomial (i.e.,
ε(t) = O(log(t)/t)), then we get an evolving secret-sharing scheme with quasi-
polynomial share size. Thus, evolving access structures that can be represented
by LIBPs with bounded width can be realized with non-trivial share size. This
is in contrast with the lower bound of [36], proving that there exists an evolving
access structure requiring shares of size at least 2t−o(t).

As another application of our framework, we construct evolving secret-
sharing schemes for evolving directed layered st-connectivity access structures.
In this access structure, the parties are edges of an infinite layered graph, and a
set is authorized if and only if it contains a path from a source vertex to a target
vertex. Additionally, the order of arrival is such that first the parties from layer
0 to layer 1 arrive, then from layer 1 to layer 2, and so on. The share size in our
construction is at most polynomially larger than the share size of the best-known
scheme for finite directed st-connectivity access structure [12].

552 B. Alon et al.

Theorem 1.3. Any evolving directed layered st-connectivity access structure can
be realized with an evolving secret-sharing scheme, such that for all t ∈ N the
share size of the tth party is tO(log t).

Efficient Evolving Secret-Sharing Schemes for Dynamic-Threshold for Large
Thresholds. In an evolving tr(·)-dynamic-threshold access structure, where
tr : N → N is a function, a set of parties A is authorized if, for some t ∈ N, the set
A contains at least tr(t) parties from the first t parties. This is a natural general-
ization of a fixed k-threshold evolving access structure, where a set is authorized
if at some point k parties have arrived [30]. Dynamic-threshold evolving access
structures were first considered by Komargodski and Paskin-Cherniavsky [32],
who constructed an evolving tr(·)-dynamic-threshold secret-sharing scheme in
which the share size of the tth party is Õ(t4). Subsequent works on dynamic-
threshold appeared in [9,10,43]. Most related to our results is the work by Xing
and Yuan [43], who constructed a more efficient scheme, when the dynamic-
threshold function is small, i.e., tr(t) = tβ for some constant 0 < β < 1. We, on
the other hand, show how to construct a more efficient evolving secret-sharing
scheme when the dynamic-threshold function is large, i.e., tr(t) ≥ t− tβ for some
constant 0 < β < 1.

Theorem 1.4 ((t − tβ)-Dynamic-Threshold Secret-Sharing Schemes –
Informal). Let β ∈ (0, 1) be a constant and tr(t) ≥ t−tβ. There exists an evolv-
ing secret-sharing scheme realizing the evolving tr(·)-dynamic-threshold access
structure in which the share size of the tth party is at most Õ(t1+2

√
β+β).

For all β < 1, our scheme is more efficient than the scheme of [32]. For
example, for tr(t) = t − t1/4, the share size in our scheme is Õ(t2.25) (compared
to Õ(t4) in the scheme of [32]).

Efficient Evolving Secret-Sharing Schemes for Slice Access Structures. An infi-
nite k-slice access structure is an access structure where all sets of size at most
k−1 are unauthorized, all finite sets of size at least k+1 are authorized, and each
set of size k can be either authorized or unauthorized; that is, to specify a k-slice
access structure we need to specify which sets of size k (i.e., in the kth-slice) are
authorized. Secret sharing for finite slice access structures have been extensively
studied (see, for example, the citations in [3]); they are equivalent to conditional
disclosure of secrets (CDS) protocols, a cryptographic primitive introduced by
Gertner et al. [27]. 2-slice access structures are also known as forbidden-graph
secret-sharing schemes [42]. We construct evolving secret-sharing schemes with
sub-linear size shares for evolving 2-slice and 3-slice access structures.

Theorem 1.5 (Realizing 2-Slice and 3-Slice Access Structures – Infor-
mal). Every 2-slice and 3-slice access structure can be realized by an evolving

secret-sharing scheme in which the share size of the tth party is 2Õ
(
(log t)ε+1/

√
2
)
,

for any constant ε > 0.

New Upper Bounds for Evolving Secret Sharing 553

The share size in the best-known secret-sharing schemes for finite n-party
k-slice access structures for constant k is 2Õ(k+

√
k log n) = 2Õ(

√
log n) (using the

CDS protocols of [34,35] and the transformation of [2,7]). For infinite 2-slice
and infinite 3-slice access structures, the share size in our evolving secret-sharing
scheme is comparable.

Lower Bounds. We prove lower bounds on the share size of evolving secret-
sharing schemes for two natural classes of access structures. We first consider
infinite directed st-connectivity access structures; in these access structures the
parties are edges of an infinite graph (with some order on the edges determining
when they arrive in the evolving access structure); a set of parties (i.e., edges) is
authorized if and only if it contains a path from a fixed source vertex to a fixed
target vertex. We prove the following lower bound.

Theorem 1.6 (Lower Bounds for Evolving Directed st-Connectivity –
Informal). There exists an evolving directed st-connectivity access structure,
such that in every evolving secret-sharing scheme realizing it the share size of
the tth party, for infinitely many t’s, is at least Ω(t).

As a by-product of the lower bounds, we provide the first non-trivial lower
bound for finite directed st-connectivity access structures for general secret-
sharing schemes.

Theorem 1.7 (Lower Bounds for Finite Directed st-connectivity –
Informal). For every n ∈ N there exists an n-party directed st-connectivity
access structure, such that in every secret-sharing scheme realizing it, there exists
at least one party whose share size is at least Ω(

√
n).

Previously, no non-trivial lower bound was known for finite st-connectivity
access structures for general secret-sharing schemes. A lower bound of nΩ(log n)

for linear secret-sharing schemes was proven by Pitassi and Robere [40].
We also prove lower bounds on the share size of evolving secret-sharing

schemes for infinite k-hypergraph access structures for a constant k; in these
access structures the minimal authorized sets are of size exactly k; however,
there can be large unauthorized sets. Our lower bounds for infinite k-hypergraph
access structures for constant k are tight as a fairly naive evolving secret-sharing
scheme provides a matching upper bound on the share size.

Theorem 1.8 (Lower Bounds for Evolving k-Hypergraphs – Informal).
For every constant k there exists an evolving k-hypergraph access structure, such
that in every evolving secret-sharing scheme realizing it, the share size of the tth

party, for infinitely many t’s is at least Ω(tk−2).

1.2 Previous Results

1.2.1 Evolving Secret-Sharing Schemes
We first mention two related works that preceded [31]. Cachin [15] and Csirmaz
and Tardos [20] studied online secret sharing, which is similar to evolving secret-
sharing schemes. As in evolving secret-sharing schemes, in online secret-sharing,

554 B. Alon et al.

Table 1. A summary of the known lower and upper bounds on the share size in evolving
secret-sharing schemes for the evolving access structures considered in this paper.

Upper bounds Lower bounds

General evolving
access structures

2t−1

[31]
2t−o(t)

[36]

LIBPs with
width ≤ 2ε(t)·t

2O(min{(
√

ε(t),ε(t) log t}·t)

Theorems 3.15, 3.17

Evolving
k-hypergraphs

O(tk−1)
[1, Theorem (A.1)]

Ω(tk−2)
[1, Theorem (6.8)]

Evolving 2, 3-slices 2
Õ

(
(log t)1/

√
2+ε

)

for any constant ε > 0
[1, Thms. (5.4), (5.6)]

(t − tβ)-dynamic
threshold for a
constant β ∈ (0, 1).

Õ(t1+2
√

β+β)
[1, Theorem (4.1)]

Evolving directed
st-connectivity

tO(log t) (layered graphs)
[1, Theorem (3.19)]

Ω(t)
[1, Theorem (6.7)]

parties arrive one after the other and the number of parties is unbounded. How-
ever, in [20] the number of authorized sets that a party can join is bounded and
in [15] there is a large public bulletin board.

Evolving Threshold Secret-Sharing Schemes. Komargodski et al. [31] constructed
an evolving k-threshold secret-sharing scheme for any constant k in which the size
of the share of the tth party is O(k log t). D’Arco, De Prisco, and De Santis [21]
constructed an improved evolving 3-threshold secret-sharing scheme in which
the size of the share of the tth party is (4/3 + ε) log t for arbitrary small ε (the
share size in the evolving 3-threshold scheme of [31] is at least 2 log t). D’Arco et
al. [22] constructed probabilistic evolving k-threshold secret-sharing schemes in
which the share size is O(1); in these schemes, the secret is reconstructed only
with a constant probability p < 1. Other constructions of evolving threshold
secret-sharing schemes were given in [17,23,37,44].

Evolving Dynamic-Threshold Secret-Sharing Schemes. Komargodski and
Paskin-Cherniavsky [32] constructed an evolving tr(·)-dynamic-threshold secret-
sharing scheme in which the share size of the tth party is O(t4 log t). Xing and
Yuan [43] showed an alternative construction of evolving tr(·)-dynamic secret
sharing scheme. Their construction saves a factor of log t compared to the evolv-
ing scheme of a [32]. They also considered the evolving tr(t) = tβ-dynamic-
threshold secret-sharing schemes (that is, the dynamic-threshold is small) and
showed that it can be realized by an evolving secrets-sharing scheme in which
the share size of the tth party is O(t4β). We show that this can be achieved (up
to a factor of log t) by a variation of the scheme of [32]. In this paper we use the
construction of [43] to construct evolving tr(t)-dynamic-threshold secret-sharing
schemes for large dynamic-threshold tr(·) ≥ t − tβ for some constant β.

New Upper Bounds for Evolving Secret Sharing 555

Evolving Secret-Sharing Schemes for Other Access Structures. Chaudhury,
Dutta, and Sakurai [16] constructed evolving threshold schemes that can be
implemented in the complexity class AC0. Dutta, Roy, Fukushima, Kiyomoto,
and Sakurai [24] and Phalakarn, Suppakitpaisarn, Attrapadung, and Mat-
suura [39] constructed evolving hierarchical secret-sharing schemes (in the latter
paper the schemes are homomorphic). Beimel and Othman [9,10] constructed
evolving ramp secret-sharing schemes, i.e., schemes in which there is a gap
between the dynamic threshold tr2(·) for authorized sets and the dynamic-
threshold tr1(·) for unauthorized sets. They showed that for every constants
0 < α < β < 1, there is an evolving (tr1(t) = α · t, tr2(t) = β · t)-ramp secret-
sharing scheme in which the size of the shares of each party is O(1).

Computational Evolving Secret-Sharing Schemes. Francati and Venturi [26]
defined a computational variant of evolving secret-sharing schemes. In this set-
ting, the dealer and the adversary are computationally bounded, and the number
of parties is bounded by some polynomial in the security parameter; the polyno-
mial is unknown to the dealer. They constructed computational evolving secret-
sharing schemes for many evolving access structures, including graphs access
structures, DNF and CNF formulas access structures, monotone circuits access
structures, threshold access structures, and dynamic-threshold access structures.

Since their results hold in the computational setting, they are incomparable
to ours. Additionally, there is a difference in the representation of evolving access
structures. While we represent them using infinite branching programs (IBP),
Francati and Venturi [26] represent them as infinite monotone circuits (IMC).
The two models have different complexity parameters (width for IBP and number
of gates for IMC). Therefore, it is unclear which model can be used to give a
better construction for evolving secret-sharing schemes, even for the same type
of security (namely, computational or information-theoretic).

Evolving Conditional Disclosure of Secrets. Peter [38] defined evolving condi-
tional disclosure of secrets (CDS) protocols. In this setting, parties arrive in
sequential order and there is no a-priory bound on the number of parties. Each
party holds a private input, and when it arrives, it sends a random message
to a referee. At any stage of the protocol, the referee should be able to recon-
struct a secret string held by all the parties from the messages it gets, if and
only if the inputs of the parties that arrived satisfy some condition. Peter [38]
accompanied the new definition with constructions of evolving CDS protocols
for general evolving predicates, evolving min-sum predicates, and evolving con-
strained predicates.

1.2.2 Some Related Works on Secret-Sharing Schemes for Finite
Access Structures
Secret-sharing schemes for arbitrary access structures were introduced by Ito,
Saito, and Nishiseki [28]; they constructed for every monotone n-party access
structure a secret-sharing scheme in which the size of the share of each party is

556 B. Alon et al.

2n. In a breakthrough work, Liu, and Vaikuntanathan [33] constructed a secret-
sharing scheme for arbitrary access structures with share size 20.944n. This was
improved in a sequence of works [3–5,35]; currently, the best known secret-
sharing schemes for arbitrary access structures were constructed by Applebaum
and Nir [5] and have share size 20.585n. The best known lower bound on the
share size is by Csirmaz [18,19], proving that for every n ∈ N there is an n-party
access structure in which the share size of at least one party is Ω(n/ log n) and
its total share size is at least Ω(n2/ log n).

We next mention some results for finite counterparts of the evolving access
structures considered in this paper. Finite undirected st-connectivity access
structures can be realized by a secret-sharing scheme in which each share and
the secret is a bit [11]. The best known secret sharing scheme for finite directed
st-connectivity access structures is by using the formula based-secret-sharing
scheme of [12] and has share size nO(log n) for realizing a graph with n edges.
This scheme can be used to realize an access structure represented as a finite
non-deterministic branching program of size n with share size nO(log n). The best
constructions for k-slice access structures are by various transformations from the
k-server CDS protocols of [34,35]; the best schemes known today have share size
min{2O(k)+Õ(

√
k log n), kn · 2Õ(

√
k log n), 2Õ(

√
n)} [2,3,8]. The naive secret-sharing

scheme for k-hypergraph access structures is to share the secret independently
for each minimal authorized set, this results in share size O(

(
n

k−1

)
) per party.

This can be improved by a factor of log n using a result of Erdös and Pyber [25].
Recently, it was proved by Beimel [6] that for every n and every 3 ≤ k ≤ log n,
there is a k-hypergraph with n vertices in which the share size of at least one
party is Ω(n1−1/(k−1)/k) and its total share size is at least Ω(n2−1/(k−1)/k).

1.3 Our Techniques

Layered Infinite Branching Programs and Generalized Infinite Decisions Trees.
Our task is to design an evolving secret-sharing scheme for LIBPs. We do not
know how to construct such a scheme directly. We know how to realize LIBPs
when the infinite graph of the infinite branching program is a tree, using the
evolving secret-sharing scheme of [31] for undirected st-connectivity. However,
transforming a (layered) graph of a LIBP B to a tree results in a tree whose
width is huge – for every path u0, uj1 , . . . , ujt

from the source vertex to a vertex
in the tth-layer there is a vertex uj1,...,jt

in the tth layer of the tree.
Following [31,32], we overcome this problem by partitioning the variables of

the layered branching program into consecutive sets, called generations. The gen-
erations are defined by some function h : N → N; the ith generation contains the
variables xh(i−1)+1, . . . , xh(i). In the infinite decision tree T we construct, there
is a vertex uj1,...,ji

for any sequence of vertices uj1 , . . . , uji
in layers h(1), . . . , h(i)

respectively. If the width of the LIBP B in layer t (i.e., the number of vertices in
the layer) is w(t), then the number of vertices in the resulting infinite branching
program T is O

(∏
1≤j≤i w(h(j))

)
(this is the expression in Theorem 1.1, taking

h(i) = 2i). We add an edge (uj1,...,ji−1 , uj1,...,ji−1,ji
) to T representing all paths

New Upper Bounds for Evolving Secret Sharing 557

in B from uji−1 in layer h(i−1) to uji
in layer h(i); this edge should be satisfied

by an assignment σ if and only if σ satisfies some path in B from uji−1 to uji
.

We abstract the above construction by defining a generalized infinite decisions
tree (abbreviated GIDT), which is an infinite tree together with a partition
function h : N → N; a GIDT is an infinite tree in which each edge between
layer i − 1 and layer i in the tree is labeled by a predicate that depends on
the variables in the ith generation, i.e., on xh(i−1)+1, . . . , xh(i). To construct an
evolving secret-sharing scheme for a GIDT, we first execute the evolving secret-
sharing scheme of [31] for the tree; in this scheme the parties are the edges of
the tree. Next, for each edge in the tree we take the share she of the edge and
share it using a secret-sharing realizing the predicate of the edge (here, again,
we represent an access structure by a predicate).

Evolving Secret-Sharing Schemes for LIBPs with Bounded Width. The main
application of our construction of evolving secret-sharing schemes for LIBPs is
an evolving secret-sharing scheme with non-trivial share size realizing LIBPs
with bounded width. In Theorems 3.15 and 3.17, we present two constructions
for LIBPs with bounded width. Both constructions use the transformation from
LIBPs to GIDTs and use the evolving secret-sharing scheme realizing the GIDT,
that is, we use Theorem 1.1. For example, by Theorem 1.1, if the width of the
LIBP is w(t) = 20.04t, then the number of shares of secret-sharing schemes for
finite access structures that the tth party holds is

O

⎛
⎝ ∏

1≤j≤log t

w(2j)

⎞
⎠ = O

⎛
⎝ ∏

1≤j≤log t

20.04·2j

⎞
⎠ = O

(
20.04·∑1≤j≤log t 2

j
)

≤ O
(
20.04·2log(t+1)

)
= O

(
20.04(t+1)

)
.

Thus, the number of shares for width w(t) = 20.04t is non-trivial. We still need to
specify how we realize the finite access structures determined by the labels of the
GIDT. In the first construction, we use the best-known secret-sharing scheme
for arbitrary n-party access structures of Applebaum and Nir [5]; the share size
in this scheme is 20.585n. In the second construction, we use the formula-based
secret-sharing scheme of Benaloh and Leichter [12] using a monotone formula
for the graph reachability problem. When the width of the LIBP is smaller than
2t/ log2 t, the second construction is more efficient.

Evolving Secret-Sharing Schemes for Evolving dynamic-threshold Access Struc-
ture with Large Threshold. We use the evolving secret-sharing scheme of
Xing and Yuan [43] for dynamic-threshold access structures. In this scheme,
the parties are partitioned into generations. In each generation, with parties
{pi, pi+1, . . . , pi+g}, two schemes are executed: (1) a secret-sharing realizing the
finite restriction of the evolving tr(·)-dynamic-threshold access structure to the
parties of the generation, and (2) Shamir’s tr(g)-out-of-(g + tr(g)) threshold
secret-sharing scheme. Each party in the generation gets a share of each scheme

558 B. Alon et al.

and the last tr(g) shares of Shamir’s scheme are recursively shared using the
evolving scheme of Xing and Yuan among the next generations.

We improve the share size for large dynamic-threshold access structures, i.e.,
when tr(t) ≥ t − tβ for some constant 0 < β < 1, by constructing a better
secret-sharing scheme for the finite (t − tβ)-dynamic-threshold access structure.
Specifically, we consider the access structure whose parties are {p1, . . . , pg} and
a set A is authorized if |A∩{p1, . . . , pt}| ≥ tr(t) = t−tβ for some 1 ≤ t ≤ g. This
access structure can be realized by executing g copies of Shamir’s secret-sharing
scheme, i.e., for each 1 ≤ t ≤ g we execute Shamir’s tr(t)-out-of-t secret-sharing
scheme. We prove that for large tr(·) it suffices to execute only tβ copies of
Shamir’s scheme. Assume that tr(t) ≥ tr(t − 1) + 1 and consider an autho-
rized set A whose maximum party is pt; if |A ∩ {p1, . . . , pt}| ≥ tr(t), then
|A ∩ {p1, . . . , pt−1}| ≥ |A ∩ {p1, . . . , pt}| − 1 ≥ tr(t) − 1 ≥ tr(t − 1). Thus, if
tr(t) ≥ tr(t − 1) + 1 we do not need to execute the tr(t)-out-of-t secret-sharing
scheme. We show that this leaves us with at most tβ schemes.

Evolving Secret-Sharing Scheme for Evolving Slice Access Structures. We next
explain the ideas of our construction of an evolving secret-sharing scheme for a
2-slice access structure, in which the authorized sets are some sets of size two
and all sets of size at least 3. First, we handle authorized sets of size at least 3
using the scheme of Komargodski et al. [31]. For authorized sets of size exactly
2 we do the following. Partition the parties into generations. Let Gi denote the
ith generation, and let k be a large constant. We then use the secret-sharing
scheme for finite slice functions [7,34] to share s among the parties of every k
consecutive generations. Finally, we need to handle pairs of parties in the access
structure that are not in k consecutive generations; here for every j ∈ N we give
the jth party, which is in some generation Gi, a random bit rj . Then, for every t
in generation at least i + k, if the jth and tth parties are in the access structure,
we give s ⊕ rj to the tth party. The size of the share of the tth party in some
generation i is dominated by the share in the secret-sharing scheme for the finite
slice functions and the number of bits s ⊕ rj that it gets; the latter number is
at most the number of parties in the first i − k generations. By choosing the
correct size of the generations (namely 2log

c i for some constant c), we get the
desired share size. By considering arbitrarily large k, we show that the share size
decreases.

The evolving secret-sharing scheme for a 3-slice access structure uses similar
ideas; however, it is more complicated. The complicated case in constructing an
evolving secret-sharing scheme for 3-slice access structures is in the case where
there are two parties in some generation and one party from a future generation.
To handle this case we use a CDS protocol for the finite index function. The
details on this scheme are given in the full version [1].

Lower Bounds for Evolving Secret Sharing of Some Natural Access Structures.
We prove lower bounds on the share size for explicit natural evolving access
structures. Toward proving these results, we first show a general lower bound.
This lower bound generalizes the recent result of [36] to include more access

New Upper Bounds for Evolving Secret Sharing 559

structures, and is inspired by the generalization of Csirmaz’s lower bound [19]
due to Blundo et al. [14]. The idea is to define an infinite independent sequence:
we partition the parties into two sets A = {pai

}i∈N and B = {pbi
}i∈N and

consider an infinite sequence of sets A1, A2, . . . , each of them is a finite subset
of A, and consider an evolving access structure whose minimal authorized sets
are {Ai ∪ {bi}}i∈N (the definition of an infinite independent sequence is more
general; see the full version [1]). Using the lower bound of [14,19] for finite access
structures, we deduce that for every i the total share of Pi � {pa1 , . . . , pai

} is at
least the number of sets in the sequence contained in Pi. As in [36], we schedule
the parties in B to appear sparsely in {pi}i∈N and get a lower bound on the total
share size of the first t parties in the evolving access structure.

We use the above general lower bound to get lower bounds for two interesting
families of access structures. We first construct an infinite independent sequence
for an infinite directed st-connectivity access structure. We consider a layered
graph with 3 layers. Interestingly, we also obtain a lower bound of Ω(

√
n) on the

share size of finite (i.e., not evolving) directed st-connectivity, by taking finite
prefixes of the infinite independent sequence. We also prove lower bounds for
infinite k-hypergraph access structures for constant k; this is done by generalizing
the finite independent sequence for finite k-hypergraph access structures given
in [6]. For example, for k = 3, we consider the independent sequence that contains
all subsets of A of size 2 (hence the set Ai ∪ {bi} is of size 3 as required for 3-
hypergraph access structures). The number of subsets of A of size 2 contained in
{pa1 , . . . , pai

} is Θ(i2); we deduce that the total share size of the first t parties
in any evolving secret-sharing scheme realizing this access structure is Ω(t2). By
a fairly simple construction of an evolving k-hypergraph secret-sharing scheme,
our lower bound is tight for k-hypergraph access structures.

2 Preliminaries

In this section, we present formal definitions of secret-sharing schemes and evolv-
ing secret-sharing schemes.

Notations. For n ∈ N we use the notation [n] to denote the set {1, 2, . . . , n}.
We denote by log the logarithmic function with base 2. When we refer to a set of
parties A = {pi1 , pi2 , . . . , pit

}, we assume that i1 < i2 < · · · < it. We let poly(t)
denote an unspecified polynomial.

2.1 Secret-Sharing Schemes

We start by defining (perfect) secret-sharing schemes for a finite set of parties.

Definition 2.1 (Access Structures). Let P = {p1, . . . , pn} be a set of parties. A
collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ ⊆ 2{p1,...,pn} is a monotone collection of non-empty sets.
Sets in Γ are called authorized, and sets not in Γ are called unauthorized. We
will represent an n-party access structure by a function f : {0, 1}n → {0, 1},

560 B. Alon et al.

where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈ {0, 1}n represents the set
Aσ = {pi : i ∈ [n], σi = 1}, and f(σ) = 1 if and only if A ∈ Γ . We will also call
f an access structure.

A secret-sharing scheme defines a way to distribute shares to parties. Such a
scheme is said to realize an access structure Γ if the shares held by any authorized
set of parties (i.e., a set in the access structure) can be used to reconstruct the
secret, and the shares held by any unauthorized set of parties reveal nothing
about the secret. The formal definition is given as follows.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π over a
set of parties P = {p1, . . . , pn} with domain of secrets S and domain of random
strings R is a mapping from S × R to a set of n-tuples S1 × S2 × · · · × Sn

(the set Sj is called the domain of shares of pj). A dealer distributes a secret
s ∈ S according to Π by first sampling a random string r ∈ R with uniform
distribution, computing a vector of shares Π(s; r) = (sh1, . . . , shn), and privately
communicating each share shj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote
ΠA(s; r) as the restriction of Π(s; r) to its A-entries (i.e., the shares of the
parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access struc-
ture Γ if the following two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties.
That is, for any authorized set B = {pi1 , . . . , pi|B|} ∈ Γ , there exists a recon-
struction function ReconB : Si1 × · · · × Si|B| → S such that for every secret
s ∈ S and every random string r ∈ R, it holds that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T /∈ Γ , every two secrets s1, s2 ∈ S,
and every possible vector of shares 〈shj〉pj∈T , Pr

[
ΠT (s1; r) = 〈shj〉pj∈T

]
=

Pr
[
ΠT (s2; r) = 〈shj〉pj∈T

]
, where the probability is over the choice of r from

R with uniform distribution.

The size of the share of party pj is defined as log |Sj | and the size of the shares
of Π is defined as max1≤j≤n log |Sj |. The total share size of Π is defined as∑n

j=1 log |Sj |.
We will use the following result on a construction of secret-sharing schemes

from monotone formulas in our constructions.

Theorem 2.3 (Secret Sharing from Monotone Formulas [12]). Let f :
{0, 1}n → {0, 1} be a monotone function (i.e., an access structure). If there is
a monotone formula with m leaves that computes f , then f can be realized by a
secret-sharing scheme in which the total share size is m.

Below we list the access structures that are of interest in this paper.

New Upper Bounds for Evolving Secret Sharing 561

Threshold Access Structures. The most basic and well-known access structure is
the threshold access structure:

Definition 2.4 (Threshold Access Structures). Let 1 ≤ k ≤ n. A k-out-of-n
threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the access
structure containing all subsets of size at least k, that is, Γ = {A ⊆ P : |A| ≥ k}.

The well-known scheme of Shamir for the k-out-of-n threshold access struc-
ture (based on polynomial interpolation) is an efficient threshold secret-sharing
scheme; the properties of Shamir’s scheme over F2m for an appropriate m ∈ N

are summarized in the next theorem.

Theorem 2.5 (Shamir [41]). For every n ∈ N, and k ∈ [n], there is a secret-
sharing scheme for secrets of size
 (i.e., the domain of secrets is S = {0, 1}�)
realizing the k-out-of-n threshold access structure, in which the share size is
max{
, log(n + 1)�}. Moreover, the shares of the scheme are elements of the
field F2�+log n .

st-connectivity Access Structures. The second access structure we consider is the
st-connectivity access structure. It is defined as follows.

Definition 2.6 (The Undirected/Directed st-connectivity Access Structures).
Let G = (V,E) be the complete undirected (respectively directed) graph such that
us, ut ∈ V . We define the st-connectivity access structure as follows: The parties
correspond to edges of G. A set of parties is authorized if and only if it contains
an undirected (respectively a directed) path from us to ut.

Benaloh and Rudich [11] constructed a secret-sharing scheme for undirected
st-connectivity in which the secret and each share is a bit. The best known
secret-sharing scheme for directed st-connectivity is the formula-based scheme
of [12] and has share size nO(log n) (we describe the monotone formula for st-
connectivity in Claim 3.16).

Access Structures Defined by Hypergraphs. A hypergraph is a pair H = (V,E)
where V is a set of vertices and E ⊆ 2V \{∅} is the set of hyperedges. A
hypergraph where all hyperedges are of size exactly k is called a k-hypergraph.
We say H is finite if V is finite. A k-partite hypergraph is a k-hypergraph
H = (V,E), for which there is a partition of V to k disjoint sets D1, . . . , Dk such
that every hyperedge e ∈ E satisfies |e ∩ Di| = 1 for every 1 ≤ i ≤ k (i.e., each
hyperedge contains exactly one vertex from each part). An access structure Γ
is a k-hypergraph access structure (also called k-homogeneous access structure)
if all minimal authorized sets are of size exactly k (described by a hypergraph).
Formally, it is defined as follows.

Definition 2.7 (k-Hypergraph Access Structures). An access structure Γ is a
k-hypergraph access structure if there exists a finite k-hypergraph H = (V,E)
such that the parties of Γ are the vertices V and a set of parties is authorized if
and only if it contains a hyperedge (in other words, the minimal authorized sets
of Γ are the hyperedges). An access structure Γ is a k-partite access structure if
its k-hypergraph is k-partite.

562 B. Alon et al.

Every k-hypergraph access structure with n parties has a monotone formula
of size O(nk/ log n) (by using a result of [25]), thus it can be realized by the
secret-sharing scheme of [12] with total share size O(nk/ log n).

k-Slice Access Structures. An access structure Γ is a k-slice access structure if
all sets of size at most k − 1 are unauthorized, all sets of size at least k + 1
are authorized, and sets of size k can be either authorized or unauthorized; we
describe the authorized sets of size k by a k-hypergraph.

Definition 2.8 (k-Slice Access Structures). An access structure Γ is a k-slice
access structure if there exists a finite k-hypergraph H = (V,E) such that the
parties of Γ are the vertices V and a set of parties is authorized if and only if
it contains at least k + 1 parties or the set contains a hyperedge (in other words,
the minimal authorized sets of Γ are the hyperedges and all sets of size k + 1
that do not contain a hyperedge).

We will use the following constructions for finite slice access structures as
a building block in our evolving secret-sharing schemes for infinite slice access
structures. They are implied by the CDS protocols of [34,35] and the transfor-
mation of [2,7].

Theorem 2.9. Let Γ be a (finite) 2-slice access structure with n parties. Then
there is a secret-sharing scheme realizing Γ , in which the share size of every
party is at most 2O(

√
log n·log log n).

Theorem 2.10. Let k ≥ 2 and let Γ be a (finite) k-slice access structure with
n parties. Then there is a secret-sharing scheme realizing Γ , in which the share
size of every party is at most 2O(

√
log n·log log n).

2.2 Evolving Secret-Sharing Schemes

In an evolving secret-sharing scheme, defined by [31], the number of parties is
unbounded. Parties arrive one after the other; when a party pt arrives the dealer
gives it a share. The dealer cannot update the share later and does not know how
many parties will arrive after party pt. Thus, we measure the share size of pt as
a function of t. We start by defining an evolving access structure, which specifies
the authorized sets. The number of parties in an evolving access structure is
infinite, however every authorized set is finite.

Definition 2.11 (Evolving Access Structures). Let P = {pi}i∈N
be an infinite

set of parties. A collection of finite sets Γ ⊆ 2P is an evolving access structure
if for every t ∈ N the collections Γ t � Γ ∩ 2{p1,...,pt} is an access structure as
defined in Definition 2.1. We will represent an access structure by a function
f : {0, 1}∗ → {0, 1}, where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈ {0, 1}n

represents the set Aσ = {pi : i ∈ [n], σi = 1},3 and f(σ) = 1 if and only if
Aσ ∈ Γ . We will also call f an evolving access structure.
3 In particular, the same set has infinitely many representations by inputs of various

lengths, using sufficiently many trailing zeros.

New Upper Bounds for Evolving Secret Sharing 563

Definition 2.12 (Evolving Secret-Sharing Schemes). Let S be a domain of
secrets, where |S| ≥ 2, and {Rt}t∈N

, {St}t∈N
be two sequences of finite sets.

An evolving secret-sharing scheme with domain of secrets S is a sequence
of mappings Π = {Πt}t∈N

, where for every t ∈ N, Πt is a mapping Πt :
S × R1 × · · · × Rt → St (this mapping returns the share sht of pt).

An evolving secret-sharing scheme Π = {Πt}t∈N
realizes an evolving access

structure Γ if for every t ∈ N the secret-sharing scheme Πt (s; (r1, . . . , rt))
�

〈
Π1 (s; r1) , . . . , Πt (s; r1, . . . , rt)

〉
(i.e., the shares of the first t parties) is a

secret-sharing scheme realizing Γ t according to Definition 2.2.

By default, the domain of secrets of an evolving secret-sharing scheme is
{0, 1}. The following result shows that every evolving access structure can be
realized by an evolving secret-sharing scheme (with exponentially long secrets).

We next define the evolving access structures that we will consider in this
paper; they generalize the finite access structures defined in Sect. 2.1.

Definition 2.13 (Evolving Threshold Access Structures). Let k ∈ N. The
evolving k-threshold access structure is the evolving access structure Γ , where
Γ t is the k-out-of-t threshold access structure.

Komargodski et al. [31] showed that any evolving threshold access structure
can be realized by an efficient evolving secret-sharing scheme.

Theorem 2.14 ([31]). For every k ∈ N, there is a secret-sharing scheme real-
izing the evolving k-threshold access structure such that the share size of party
pt is (k − 1) · log t + poly(k) · o(log t).

A natural generalization of an evolving threshold access structure is to allow
the threshold to depend on the index of the arriving party.

Definition 2.15 (Dynamic-Threshold Access Structures). Let tr : N → N be a
non-decreasing function. A tr(t)-dynamic-threshold access structure is defined
as follows: A finite set of parties A is authorized if and only if there exists t such
that |A ∩ {p1, . . . , pt}| ≥ tr(t). Stated differently, a set A is unauthorized if and
only if for every t, it holds that |A ∩ {p1, . . . , pt}| < tr(t).

Komargodski and Paskin-Cherniavsky [32] showed that any dynamic-
threshold access can be realized with an evolving secret-sharing scheme with
a polynomial share size.

Theorem 2.16 ([32]). For any dynamic-threshold access structure, there exists
an evolving secret-sharing scheme in which the share size of party pt is O(t4 ·
log t).

Definition 2.17 (Evolving Undirected/Directed st-connectivity Access Struc-
tures). An evolving undirected (resp. directed) st-connectivity access structure is
defined as follows. The parties in the access structure are the edges of an undi-
rected (resp. directed) graph G = (V,E), where V is countably infinite, with some
order on the edges that specifies the order that the parties arrive. There are two

564 B. Alon et al.

fixed vertices in the graph us, ut ∈ V , where us is called the source vertex and ut

the target vertex. A finite set of parties (i.e., edges) is authorized if and only if
they contain an undirected (resp. a directed) path from us to ut.

Komargodski et al. [31] showed that every undirected st-connectivity access
structure can be realized by an evolving secret-sharing scheme in which the share
of each party is a bit.

Evolving k-Hypergraph access structures and evolving k-slice access struc-
tures are defined as their finite counterparts, except that the k-hypergraph H
is countably infinite. In these access structures, we assume that there is some
order on the vertices of the hypergraph that specifies the order that the parties
(i.e., vertices) arrive.

3 Evolving Secret-Sharing Schemes for Infinite Branching
Programs

Infinite decision trees were used in [31,32] to construct evolving secret-sharing
schemes. In this section, we define infinite non-deterministic branching programs
(see Sect. 3.1.1), show how to transform them to generalized infinite decision
trees (see Sect. 3.1.3), and show how to construct secret-sharing schemes for
generalized infinite decision trees (see Sect. 3.1.2). This setting will be used in our
constructions of schemes for various functions, i.e., for evolving access structures
that have infinite branching programs with bounded-width (see Sect. 3.3).

3.1 Constructing an Evolving Secret-Sharing Schemes for Infinite
Branching Programs

3.1.1 Infinite Branching Programs and Generalized Infinite Decision
Trees
An infinite monotone non-deterministic branching program (IBP) is a general-
ization of finite monotone non-deterministic branching programs except that the
number of edges and variables is infinite. Such a branching program computes
a monotone function f : {0, 1}∗ → {0, 1} on all finite inputs; i.e., defines an
evolving access structure (see Definition 2.11).

Recall that a finite monotone non-deterministic branching program is a
directed acyclic graph, where each edge is labeled by a variable from x1, . . . , xt.
For every input σ ∈ {0, 1}t (interpreted as an assignment to the variables
x1, . . . , xt) it holds that f(σ) = 1 if and only if there exists a satisfied path
in G from the source vertex to the target vertex, that is, each edge in the path
is labeled with a variable xi that is assigned 1, i.e., σi = 1. Below we generalize
this notion to infinite branching programs. In this definition we will allow many
target vertices and we will allow the edges to be labeled by 1, meaning that
every assignment satisfies them.

Definition 3.1 (Infinite Monotone Non-Deterministic Branching Programs –
IBP). An infinite monotone non-deterministic branching program is a triple B =

New Upper Bounds for Evolving Secret Sharing 565

(G = (V,E), u0, μ), where V is a countable set of vertices, G is an infinite
directed acyclic graph, u0 is a source vertex, and μ : E → {xi : i ∈ N} ∪ {1} is
a labeling of the edges by variables or by 1 (we will sometimes use the notation
μe instead of μ(e)). We denote by Uleaf the set of vertices in V with out-degree
0, i.e., the leaves.

For a path P in the branching program and a finite input (an assignment for
the variables on the path) σ ∈ {0, 1}t for some t ∈ N, we say that σ satisfies P
and denote satP (σ) = 1 if σ satisfies all variables on the path, i.e., for each edge
e on the path either μe = 1 or μe = xi for some 1 ≤ i ≤ t such that σi = 1. The
branching program accepts an input σ if there exists a directed path P starting
in the source vertex u0 and leading to some leaf u ∈ Uleaf such that satP (σ) = 1.
The function f : {0, 1}∗ → {0, 1} computed by B is the function f such that
f(σ) = 1 if and only if B accepts σ.

To clarify what it means for an assignment σ to satisfy a path P , consider
as an example P = (e1, e2, e3, e4), with respective labels (x7, x3, 1, x25). Then,
the assignment α ∈ {0, 1}30 with αi = 1 if and only if i is odd satisfies P , an
assignment β ∈ {0, 1}25 with β3 = 0 does not satisfy P , and the assignment
γ = 120 also does not satisfy P , since it is too short.

We will construct evolving secret-sharing schemes for IBPs that are layered
as defined below. Intuitively, a layered IBP is a restriction of IBP, defined over
layered (infinite, directed, acyclic) graphs (i.e., with edges going only from any
one layer to its consecutive layer) with the additional requirement that the label
of any edge from layer i − 1 to layer i is either xi or 1.

Definition 3.2 (Layered IBP). An infinite monotone non-deterministic branch-
ing program (abbreviated LIBP) is layered if the vertices of G can be partitioned
into finite sets (Li)i∈N∪{0}, such that L0 = {u0}, there are edges only from layer
i−1 to layer i for some i ∈ N, and all edges entering layer i are labeled either by
xi or by 1. For a vertex u ∈ V , we denote L(u) as the layer of u, i.e., the index
i such that u ∈ Li. The width of the branching program at layer i, denoted w(i),
is the number of vertices in layer Li. For a LIBP B = (G, u0, μ) and vertices
u, v, we define the predicate reachu,v as reachu,v = 0 if there is no path in G
from u to v, and otherwise

reachu,v(xL(u)+1, . . . , xL(v)) =
∨

P is a path in G
from u to v

satP (xL(u)+1, . . . , xL(v)),

i.e., an input satisfies reachu,v if and only if it satisfies at least one path from u
to v. We stress that, unlike Definition 3.1, here we consider an assignment to the
predicate satP that only contains the variables that can appear on the path, i.e.,
we consider assignments σL(u)+1, . . . , σL(v) to the variables xL(u)+1, . . . , xL(v).

Our goal is to construct an evolving secret-sharing scheme for the access
structure described by a LIBP B; we call such a scheme an evolving secret-
sharing realizing B.

566 B. Alon et al.

Example 3.3. We next describe an LIBP B = (G = (V,E), u0
0, μ) for the 3-

threshold function access structure (as defined in Definition 2.13). The layers of
the graph are Lt = {ut

0, . . . , u
t
min{3,t}} for t ∈ N ∪ {0} and the vertices of the

graph are V = ∪t∈N∪{0}Lt. For every t ∈ N and 0 ≤ i ≤ 2 there are two edges:
an edge (ut−1

i , ut
i) labeled by 1 and an edge (ut−1

i , ut
i+1) labeled by xt. Notice

that the leaves are Uleaf = {ut
3 : t ∈ N, t ≥ 3}. An illustration of this construction

appears in Fig. 1.
Informally, reaching the vertex ut

i in the LIBP means that an input σ of length
t contains at least i ones. Indeed, let σ ∈ {0, 1}t be an input that contains i < 3
ones. Then, any path in G that is satisfied by σ contains at most i edges that
are not 1-labeled, and hence ends in a node of the form ut′

j for j < 3, i.e., not in
any leaf. Conversely, let σ ∈ {0, 1}t be an input that contains i ≥ 3 ones, and let
t1 < t2 < t3 be the first three coordinates in σ that are 1. It is possible to define
a path from u0

0 to the leaf ut3
3 that is satisfied by σ, as follows. At each step

the 1-labeled edge is taken, except for steps t1, t2, and t3, at which the edges
(ut1−1

0 , ut1
1), (ut2−1

1 , ut2
2), and (ut3−1

2 , ut3
3)) are taken, respectively.

Fig. 1. The first five layers of the LIBP for the 3-threshold function. For example, u4
3

is a leaf and the input σ = 1, 1, 0, 1 satisfies the path u0
0, u

1
1, u

2
2, u

3
2, u

4
3.

In our constructions, we use generalized infinite decision trees. On one hand,
we limit the graph to be an infinite tree. On the other hand, each edge, instead
of being labeled by a variable xi, is labeled by a predicate of some variables
xi, . . . , xj . Being a bit more specific, we divide the variables into generations
{Gi}i∈N, and let an edge of distance i from the root be labeled with a predicate
on the variables in generation Gi.

Definition 3.4 (Generalized Infinite Decision Trees – GIDT). A generalized
infinite decision tree is a quadruple T = (G = (V,E), u0, μ, h), where

– V is a countable set of vertices,
– G = (V,E) is an infinite directed tree with root vertex u0 such that the

out-degree of each vertex is finite. We denote the ith level Li as {u ∈ V :
u is at distance i from u0}, and refer to Li as the ith layer.

New Upper Bounds for Evolving Secret Sharing 567

– h : N → N is an increasing function that partitions the variables
into generations, where for i ∈ N, generation i is the variables Gi �
{xh(i−1)+1, . . . , xh(i)} (where we define h(0) = 0),

– μ is a labeling of the edges by predicates, where for every edge e from level
Li−1 to level Li, the labeling μe is some monotone predicate on the variables of
generation i, of the form ϕ(xh(i−1)+1, . . . , xh(i)) : {0, 1}h(i)−h(i−1) → {0, 1}.
For a path P in the tree ending at a vertex in layer i, we say that P is

satisfied by an input σ ∈ {0, 1}t, denoted by satP (σ) = 1, if h(i) ≤ t (that is, the
variables in all predicates labeling edges in P are from x1, . . . , xt) and for each
edge e on the path the predicate μe is satisfied by σ. The GIDT T accepts an
input σ if there is at least one directed path P starting in the source vertex u0

and leading to a leaf such that satP (σ) = 1. The function f : {0, 1}∗ → {0, 1}
computed by T is the function f such that f(σ) = 1 if and only if T accepts σ.

Example 3.5. We show an example of a GIDT T = (G = (V,E), u0, μ, h)
for a dynamic 3-threshold function (i.e., defined by a function tr(t) = 3).
Let h : N → N be any increasing function. The layers of G are Li =
{ub0,b1,...,bi

: 0 = b0 ≤ b1 ≤ · · · ≤ bi−1 ≤ bi ≤ 3, bi−1 ≤ 2}. The vertices of G are
V = ∪i∈N∪{0}Li. There is an edges (ub0,...,bi−1 , ub0,...,bi−1,bi

) in G for every i ∈ N

and every sequence b0, b1, . . . , bi, where 0 = b0 ≤ b1 ≤ · · · ≤ bi−1 ≤ bi ≤
3, bi−1 ≤ 2, and this edge is labeled by Thrbi−bi−1(xh(i−1)+1, . . . , xh(i)). Thrb is
the b-threshold predicate, i.e., Thrb(y1, . . . , ym) = 1 iff

∑m
j=1 yj ≥ b. For exam-

ple, if bi = bi−1, then the label of the edge is 1. The leaves of the GIDT T
are Uleaf = {ub0,b1,...,bi

: i ∈ N, 0 = b0 ≤ b1 ≤ · · · ≤ bi−1 < bi = 3}. The GIDT is
described in Fig. 2.

Informally, the GIDT counts the number of ones in an input σ in each gener-
ation. More formally, there is a path from the root u0 to a vertex ub0,b1,...,bi

(for
i ∈ N) that is satisfied by an input σ ∈ {0, 1}t if and only if σ contains at least
bj − bj−1 ones from generation j for each 1 ≤ j ≤ i. In particular, T accepts an
input σ if and only if there is a path from u0 to a leaf ub0,b1,...,bi

, where bi = 3,
that is satisfied by σ if and only if σ contains at least 3 ones.

3.1.2 An Evolving Secret-Sharing Scheme for GIDTs
We next present an evolving secret-sharing scheme for GIDTs. As a first step,
we present an evolving secret-sharing scheme for simple infinite decision trees,
defined next.

Definition 3.6 (Infinite decision trees – IDT). An infinite decision tree T =
(G = (V,E), u0 = 0, μ) is a special case of GIDT, where each edge (u, v) is either
labeled by the constant 1 or by a variable xv, where for simplicity we assume that
V = N∪{0} (i.e., a vertex is a non-negative integer). As G is a tree, each variable
labels at most one edge. Furthermore, we assume that the vertices are ordered
by the layers, i.e., L0 = {0}, L1 = {1, . . . , w(1)}, and so on (where w(i) is the
width of layer Li). The variables in generation i are {xj : j ∈ Li} (thus, we do
not need to specify h for an IDT).

568 B. Alon et al.

Fig. 2. The first five layers of the GIDT for 3-threshold function where h(0) = 0 and
h(t) = 3t.

We note that IDT is not a special case of LIBP, since in IDT different edges
of the same layer may be labeled by different variables, where in LIBP labels
from layer i are labeled either by 1 or by xi+1. We next recall the evolving secret-
sharing scheme for infinite decision trees from [31,32]; the scheme we present also
deals with edges labeled by 1. We will use this scheme to construct an evolving
secret-sharing scheme for GIDTs and LIBPs. For technical reasons we assume
that all edges entering leaves are labeled by a variable.4

Construction 3.7 (An Evolving Secret-Sharing Scheme ΠIDT for an
IDT T = (G, u0, μ)).
Input: s ∈ {0, 1}.
The sharing algorithm:

– For i = 1 to ∞:
• For every vertex u ∈ Li−1 and v ∈ Li, when party pv arrives choose a bit

rv as follows:
∗ If v is a leaf, then let u0, v1, . . . , vt−1, v be the path from the root u0

to v in G and assign rv ← s ⊕ ⊕t−1
j=1 rvj

.
∗ If v is not a leaf and μ(u,v) = xv, then rv is a uniformly distributed

random bit.
∗ If v is not a leaf and μ(u,v) = 1, then rv ← 0.

• The share of pv is shv = rv.

Claim 3.8. The evolving secret-sharing scheme ΠIDT realizes the infinite deci-
sion tree T = (G, u0, μ), where the share of pt is a bit.

Proof. First we prove the correctness of the scheme. Let σ = σ1, . . . , σt be an
input accepted by T , where σ1, . . . , σt−1 is not accepted by T (in particular,
σt = 1), and let A = {pi : σi = 1} be the corresponding set of parties. There
4 As the function computed by an IDT describes an access structure, we assume that

the empty set is rejected by the IDT. For every vertex u in the tree whose in-coming
edge is labeled by a variable, if there exists a path from v to a leaf such that all
labels on the path are 1, we remove the subtree of v (i.e., v becomes a leaf).

New Upper Bounds for Evolving Secret Sharing 569

is a path u0, v1, . . . , vt−1, t in G from u0 to the leaf t such that σ satisfies all
labels on this path. By our assumption, the edge (vt−1, t) is labeled by xt. As
σt = 1, the party pt is in A and the parties in A have the bit rt = s ⊕ ⊕t−1

j=1 rvj
.

Furthermore, for every j either μ(vj−1,vj) = 1 and rvj
= 1 or μ(vj−1,vj) = xvj

,
thus, σj = 1 and the parties in A hold rvj

. We conclude that the parties in A
can reconstruct s.

Next we prove the security of the scheme. It would be convenient to view
the scheme ΠIDT as a recursive procedure. To share a secret s in ΠIDT for the
subtree of T rooted at a vertex u, the dealer independently executes a secret-
sharing scheme for each vertex v such that (u, v) ∈ E:

– If μ(u,v) = 1, the dealer shares s recursively for the subtree of G rooted at v.
– If μ(u,v) = xv, the dealer chooses a random bit rv, gives rv to pv, and shares

s ⊕ rv recursively for the subtree of G rooted at v.

(If u is a leaf then there are no recursive calls.) Let σ = σu+1, . . . , σt be an input
not accepted by the subtree of T rooted at u, and let A = {pi : σi = 1} be the
corresponding set of parties. We prove the security, that is, that the parties in A
learn no information on the secret, by induction on |σ|. For the basis case when
|σ| = 1, the vertex t is not a leaf and the share of pt is either 1 or a random
bit. For the induction step, as the infinite decision tree rooted at u rejects the
input σ = σu, . . . , σt, there is no path from u to a leaf that is satisfied by σ.
We will show that the set A does not learn information from the secret-sharing
scheme for each vertex v such that (u, v) ∈ E. Since each secret-sharing scheme
is independently executed, this will imply the security. Fix such a vertex v. If
μ(u,v) = 1, there is no path from v to a leaf that is satisfied by σv+1, . . . , σt;
by induction, the set {pi : v + 1 ≤ i ≤ t, σi = 1} learns no information on s from
this execution (and the shares of A \ {pi : v + 1 ≤ i ≤ t, σi = 1} are independent
of the shares of the recursive call to v). If μ(u,v) = xv, there are two cases:

– If σv = 1, then there is no path from v to a leaf that is satisfied by σv+1, . . . , σt;
by induction, the set A \ {pv} learns no information on s ⊕ rv from this
execution, hence learns no information on s.

– If σv = 0, then pv /∈ A, and the set A learns no information on rv, thus
although it might learn s ⊕ rv, it learns no information on s.

��
We next show how to realize the access structure of a GIDT using the secret-

sharing scheme ΠIDT realizing a related infinite decision tree (where edges are
labeled by variables or by the constant 1). In a GIDT each edge e is labeled
by a predicate ae; in the following scheme ΠGIDT we consider this predicate as
describing an access structure over the parties of the generation.

Construction 3.9 (An Evolving Secret-Sharing Scheme ΠGIDT for a
GIDT T = (G = (V,E), u0, μ, h)).
Input: s ∈ {0, 1}.

570 B. Alon et al.

– Construct from the GIDT T = (G = (V,E), u0, μ, h) an IDT T ′ = (G =
(V,E), u0, μ

′) whose variables are {yi : i ∈ N}, where for every edge (u, v) ∈ E
if the predicate μ(u,v) is the constant predicate 1, then μ′(u, v) = 1; otherwise
μ′(u, v) = yv.

– Execute the scheme ΠIDT for T ′ and use its shares as follows:
(∗ Recall that in ΠIDT the parties arrive according to layers, where inside a
layer the order is some arbitrary fixed order ∗)

– For i = 1 to ∞ do:
• When party ph(i−1)+1 arrives do:

∗ For every (u, v) ∈ E, where u ∈ Li−1, v ∈ Li, and μ(u,v) �= 1, generate
the share rv of yv in the scheme ΠIDT and share rv using a secret-
sharing scheme realizing the access structure defined by μ(u,v) among
the parties ph(i−1)+1, . . . , ph(i).

∗ Let sht, for h(i−1)+1 ≤ t ≤ h(i), be the concatenation of the shares
of pt in all these schemes.

∗ Give party ph(i−1)+1 the share shh(i−1)+1.
• For t = h(i − 1) + 2 to h(i) do:

∗ When party pt arrives give it the share sht.

Claim 3.10. The evolving secret-sharing scheme ΠGIDT realizes the GIDT T =
(G, u0, μ, h). For a party pt in generation i (that is, h(i − 1) + 1 ≤ t ≤ h(i)), the
size of the share of pt is the sum of the sizes of the shares of pt in the secret-
sharing schemes for μ(u,v) for every (u, v) ∈ E such that u ∈ Li−1, v ∈ Li, and
μ(u,v) �= 1 (there are at most w(i) such schemes).

Proof. First we prove the correctness of the scheme. Let σ be an input accepted
by T and A = {pi : σi = 1}. Thus, there exists an accepting path P from u0

to a leaf such that satP (σ) = 1. For every edge e = (u, v) ∈ P , the input σ
satisfies μe. If μe �= 1, the parties in A can reconstruct rv using the shares of
the secret-sharing scheme realizing μe. If μe = 1, according Construction 3.7,
rv = 0. By the correctness of Construction 3.7, the parties in A can reconstruct
s by computing the exclusive-or of the bits of the vertices on P .

Next we prove the security of the scheme. Let σ be an input rejected by T
and A = {pi : σi = 1}. The parties in A can reconstruct the shares rv in ΠIDT

for edges (u, v) such that μ(u,v)(σ) = 1 and do not get any information on shares
rv for edge (u, v) such that μ(u,v)(σ) = 0. Since σ is rejected by T , there does
not exists an accepting a path P from u0 to a leaf such that satP (σ) = 1. That
is, the parties in A hold shares in ΠIDT of an unauthorized set in T ′. By the
security of ΠIDT, the shares rv that the parties in T can reconstruct are equally
distributed when s = 0 and when s = 1.

For the share size, party pt obtains a share in the secret-sharing scheme
realizing μ(u,v) for each edge (u, v) where u ∈ Li−1 and v ∈ Li. ��

3.1.3 A Transformation from LIBPs to GIDTs
We next describe a transformation from an LIBP B to a GIDT T computing
the same function. We start with an informal description of the transformation.

New Upper Bounds for Evolving Secret Sharing 571

To transform an LIBP B to an IDT T (where each edge is labeled by a variable
or the constant 1), we duplicate vertices and have in T a vertex u0,j1,...,ji−1,ji

for every path u0, uj1 , . . . , uji−1 , uji
in B starting from the root, and add an

edge (u0,j1,...,ji−1 , u0,j1,...,ji−1,ji
) whose label is the label of the edge (uji−1 , uji

).
The problem with this construction is that the resulting IDT is to big. To con-
struct more efficient GIDT (which will result in more efficient evolving secret-
sharing schemes), we partition the variables into generations (described by a
function h : N → N), the vertices in layer i of T are u0,j1,j2,...,ji

for vertices
u0, uj1 , uj2 , . . . , uji

in the layers 0, h(1), h(2), . . . , h(i) in B respectively. That is,
the number of vertices in the resulting GIDT is much smaller. Now an edge
(u0,j1,...,ji−1 , u0,j1,...,ji−1,ji

) represents all paths in B from uji−1 to uji
, i.e., the

predicate of this edge is satisfied by an input σ if and only if σ satisfies some
path in B from uji−1 to uji

. The formal construction is described below.

Construction 3.11 (A Transformation from a LIBP to a GIDT).
Input: A LIBP B = (G = (V,E), u0, μ) and an increasing function h : N → N.
(∗ We use the following notation for the vertices of the LIBP B – the vertices in
the i-layer of B are Li = {ui

1, . . . , u
i
w(i)} for i ∈ N ∪ {0}. ∗)

Output: A GIDT T = (G′ = (V ′, E′), u′
0, μ

′, h).
The transformation:

– The vertices in layer i of the tree G′ are L′
0 = {u0} and for i ∈ N define

L′
i = {u0,j1,...,,ji

: 1 ≤ j1 ≤ w(h(1)), j1 /∈ Uleaf , . . . , 1 ≤ ji ≤ w(h(i)), ji /∈ Uleaf}⋃{
v0,j1,...,ji−1 : 1 ≤ j1 ≤ w(h(1)),

j1 /∈ Uleaf , . . . , 1 ≤ ji−1 ≤ w(h(i − 1)), ji−1 /∈ Uleaf} .

The vertices of G′ are V ′ = ∪i∈N∪{0}L′
i. The leaves are U ′

leaf =
∪i∈N{v0,j1,...,ji−1 : 1 ≤ j1 ≤ w(h(1)), j1 /∈ Uleaf , . . . , 1 ≤ ji−1 ≤ w(h(i −
1)), ji−1 /∈ Uleaf}.

– The edges are

E′ =
{
(u0,j1,...,ji−1 , u0,j1,...,ji−1,ji

) : i ∈ N, u0,j1,...,ji−1,ji
∈ V ′}

⋃ {
(u0,j1,...,ji−1 , v0,j1,...,ji−1) : i ∈ N, u0,j1,...,ji−1 ∈ V ′} .

– For every e =
(
u0,j1,...,ji−1 , u0,j1,...,ji−1,ji

) ∈ E′, let u = u
h(i−1)
ji−1

, v = u
h(i)
ji

and
define

μ′
e(xh(i−1)+1, . . . , xh(i)) = reachu,v(xh(i−1)+1, . . . , xh(i)).

– For every e =
(
u0,j1,...,ji−1 , v0,j1,...,ji−1

) ∈ E′, let u = u
h(i−1)
ji−1

and define

μ′
e(xh(i−1)+1, . . . , xh(i)) =

∨
v is a leaf in layers

h(i−1)+1,...,h(i) in B

reachu,v(xh(i−1)+1, . . . , xL(v)).

572 B. Alon et al.

Claim 3.12. Construction 3.11 outputs a GIDT T which computes the same
function as B. Furthermore, the number of vertices in layer i of T is |L′

i| =(∏
1≤j<i(w(h(j))

)
· (w(h(i)) + 1).

Proof. We first prove the equivalence of B and T , that is, we prove that B accepts
an input σ = σ1, . . . , σt if and only if T accepts σ. Let
 be the generation of t,
that is h(
 − 1) + 1 ≤ t ≤ h(
).

First assume that B accepts σ. W.l.o.g., assume that no proper prefix of
σ is accepted by B (otherwise apply the following arguments to such minimal
prefix). Then, there exists a path P = (u0

0, u
1
j1

, . . . , ut
jt

) in G where ut
jt

∈ Uleaf

and satP (σ) = 1. Consider the path

P ′ = (u0, u0,jh(1) , . . . , u0,jh(1),jh(2),...,jh(�−1) , v0,jh(1),jh(2),...,jh(�−1))

in G′. We partition the path P in G to sub-paths – for every 1 ≤ i ≤
 − 1,
let P i = (uh(i−1)

jh(i−1)
, . . . , u

h(i)
jh(i)

) and let P � = (uh(�−1)
jh(�−1)

, . . . , ut
jt

). Since satP (σ) =
1, we deduce that satP i(σh(i−1)+1, . . . , σh(i)) = 1 for 1 ≤ i ≤
 − 1 and
satP �(σh(i−1)+1, . . . , σt) = 1. By the definition of reachu,v, this implies that

reach
u

h(i−1)
jh(i−1)

,u
h(i)
jh(i)

(σh(i−1)+1, . . . , σh(i)) = 1

for every 1 ≤ i ≤
 − 1 and reach
u

h(�−1)
jh(�−1)

,ut
jt

(σh(i−1)+1, . . . , σt) = 1, where ut
jt

is

a leaf in B. Thus, in T we have

satP ′(σ) =

⎛
⎜⎜⎝

∨
v is a leaf in layers

h(�−1)+1,...,h(�) in B

reach
u

h(�−1)
jh(�−1)

,v
(σh(�−1)+1, . . . , σL(v))

⎞
⎟⎟⎠

∧
⎛
⎝ ∧

1≤i≤�−1

reach
u

h(i−1)
jh(i−1)

,u
h(i)
jh(i)

(σh(i−1)+1, . . . , σh(i))

⎞
⎠ = 1.

In the other direction, assume that T accepts σ. W.l.o.g., assume that no
proper prefix of σ is accepted by T . Then in T there exists a path P ′ =
(u0, u0,j1 , . . . , u0,j1,...,j�−1 , v0,j1,...,j�−1) where v0,j1,...,j�−2 is a leaf and satP ′(σ) =
1. This implies that for every 1 ≤ i ≤
 − 1

μ′
(u0,j1,...,ji−1 ,u0,j1,...,ji−1,ji

)(σh(i−1)+1, . . . , σh(i))

= reachui−1
ji−1

,ui
ji

(σh(i−1)+1, . . . , σh(i)) = 1.

Thus, for each 1 ≤ i ≤
 − 1, there exists some path P i

from ui−1
ji

to ui
ji

in G such that satP i(σ) = 1. Furthermore, since
μ′
(u0,j1,...,j�−1 ,v0,j1,...,j�−1)

(σh(�−1)+1, . . . , σt) = 1 there exists a leaf v in B such

that reachu�−1
j�−1

,v(σh(�−1)+1, . . . , σt) = 1 and, therefore, in G there exists a path

New Upper Bounds for Evolving Secret Sharing 573

P � from u�−1
j�−1

to a leaf v such satP �(σ) = 1. By concatenating the paths
P 1, . . . , P �, we obtain a path P in G from u0 to a leaf for which satP (σ) = 1;
thus, B accepts σ.

To bound |L′
i|, recall that a vertex in layer i of T is either u0,j1,...,ji

or a leaf

v0,j1,...,ji−1 , thus |L′
i| ≤

(∏
1≤j≤i−1 w(h(i))

) (
w(h(i)) + 1)

)
. ��

3.1.4 Putting Everything Together
Next, we combine our results from Sects. 3.1.1 to 3.1.3 and construct an evolving
secret-sharing scheme for LIBPs.

Theorem 3.13. Let B = (G = (V,E), u0, μ) be an LIBP and h : N → N be
an increasing function, where h(0) = 0. There exists an evolving secret-sharing
scheme realizing B in which the share of a party pt in generation i, i.e., h(i −
1) + 1 ≤ t ≤ h(i), is the shares of pt in the

(∏
1≤j≤i−1 w(h(j))

)
(w(h(i)) + 1)

secret-sharing schemes realizing the predicates of the edges between layer i − 1
and layer i in the GIDT constructed in Construction 3.11.

Proof. We apply Construction 3.11 to transform B into an equivalent GIDT T
with the specified h. Then apply Construction 3.9 to T to obtain an evolving
secret-sharing scheme realizing T . By Claim 3.12 and Claim 3.10, we obtain
an evolving secret-sharing scheme realizing B with the shares as stated in the
theorem. ��
Remark 3.14. Theorem 3.13 does not state how to choose the function h for
a given LIBP B. The choice of h that will minimize the share size depends
on the particular LIBP B. On one hand, when h grows slowly, the number of
vertices in each level of the GIDT T obtained from B becomes larger. On the
other hand, if h grows fast, there are more parties in each generation and the
predicates labeling the edges of T become more complicated. The optimal choice
of h should balance these two conflicting complexities.

3.2 Evolving Secret-Sharing Schemes for Dynamic-Threshold
via LIBPs

Komargodski and Paskin-Cherniavsky [32] have constructed an evolving secret-
sharing scheme for dynamic-threshold access structures; their construction uses
GIDTs. As an example of our construction of an evolving secret-sharing schemes
for LIBPs, we describe their construction using our framework.

Fix a non-decreasing function tr : N → N. We first describe an LIBP
BDynTr = (GDynTr = (V,E), u0

0, μ) for the tr(t)-dynamic-threshold function
access structure (as defined in Definition 2.15); this construction generalizes
the ideas of Example 3.3. The construction we describe can be optimized; we
choose the specific BDynTr such that the predicates obtained after transforming
it to a GIDT are simple. For t ∈ N ∪ {0}, the tth layer of the graph GDynTr is
Lt = {ut

0, . . . , u
t
t, v

t
tr(t)}. The vertices of GDynTr are V = ∪t∈N∪{0}Lt. The source

574 B. Alon et al.

of BDynTr is u0
0 and the leaves are Uleaf = {vt

tr(t) : t ∈ N}. For every t ∈ N and
0 ≤ i ≤ t − 1 there are two edges: an edge (ut−1

i , ut
i) labeled by 1 and an edge

(ut−1
i , ut

i+1) labeled by xt. There are additional edges entering into the leaves:
for every t ∈ N there are two edges: an edge (ut−1

tr(t), v
t
tr(t)) labeled by 1 and an

edge (ut−1
tr(t)−1, v

t
tr(t)) labeled by xt.

Informally, the LIBP counts the number of ones in an input σ. Formally, let
σ ∈ {0, 1}t be an input. Then, there is a path from the source vertex u0

0 to a
vertex ut

i (for some 0 ≤ i ≤ t) that is satisfied by the input σ if and only if
σ contains at least i ones; furthermore there is a path from the source u0

0 to
a leaf vt

tr(t) that is satisfied by σ if and only if σ contains at least tr(t) ones
(this is proved by a simple induction). That is, the LIBP BDynTr computes the
tr(t)-dynamic-threshold function. The width BDynTr is w(t) = t + 1.

Let h : N → N be any increasing function. We next describe a GIDT TDynThr

– the output of the transformation described in Construction 3.11 given BDynThr

and h. The ith layer of TDynThr is

{u0,j1,...,ji
: 0 ≤ j1 ≤ h(1), . . . , 0 ≤ ji ≤ h(i)}

∪ {v0,j1,...,ji−1 : 0 ≤ j1 ≤ h(1), . . . , 0 ≤ ji−1 ≤ h(i − 1)}.

In BDynThr, an assignment σ = σh(i−1)+1, . . . , σh(i) satisfies a path from
u

h(i−1)
ji−1

to u
h(i)
ji

if and only if σ contains at least ji − ji−1 ones. Thus, in
TDynThr there is an edge (u0,j1,...ji−1 , u0,j1,...,ji−1,ji

) labeled by the threshold
function Thrji−ji−1(xh(i−1)+1, . . . , xh(i)) (where Thrb is the b-threshold func-
tion, that is, Thrb(y1, . . . , ym) = 1 if and only if

∑m
j=1 yj ≥ b). Further-

more, an assignment σ = σh(i−1)+1, . . . , σt satisfies a path from a vertex
u

h(i−1)
ji−1

to a leaf vt
g(t) (where h(i − 1) + 1 ≤ t ≤ h(i) and tr(t) − t +

h(i − 1) ≤ ji−1 ≤ tr(t)) if and only if σ contains at least tr(t) − ji−1

ones. Thus, in TDynThr there is an edge (u0,j1,...ji−1 , v0,j1,...ji−1) labeled by:∨
h(i−1)+1≤t≤h(t) Thrtr(t)−ji−1(xh(i−1)+1, . . . , xt). Informally, this label is satis-

fied in TDynThr if in BDynThr at least one path from u0,j1,...ji−1 to a leaf in the
i-the generation is satisfied. By Claim 3.12, the GIDT TDynThr computes the
tr(t)-dynamic-threshold function.

We implement TDynThr using the secret-sharing scheme of ΠGIDT, where
each threshold function is implemented using Shamir’s t-out-of-n secret-sharing
scheme with share size log(n+1). We next analyze the share size in this scheme
for a party pt in generation i, i.e., h(i − 1) + 1 ≤ t ≤ h(i). First, pt participates
in one secret-sharing scheme for each edge (u0,j1,...,ji−1 , u0,j1,...,ji

). There are∏
1≤j≤i(h(j)+ 1) such edges and the share size of Shamir’s scheme realizing the

label of each edge is log(h(i) − h(i − 1)) ≤ log(h(i)). Second, pt participates
in one secret-sharing scheme for each edge (u0,j1,...,ji−1 , v0,j1,...,ji−1). There are∏

1≤j≤i−1(h(j) + 1) such edges. Realizing the label of each edge requires h(i) −
h(i − 1) applications of Shamir’s secret-sharing scheme, resulting in share size∑h(i)

t=h(i−1)+1 log(t − h(i − 1)) < h(i) log(h(i)) per edge. To conclude, the share
size pt is log(h(i))

∏
1≤j≤i(h(j) + 1).

New Upper Bounds for Evolving Secret Sharing 575

To complete the analysis of the share size, we need to choose the function
h and compute the share size as a function of t. This was done in [32], taking
h(i) = 22

i −1. Thus, the share size is smaller than 2i ·∏1≤j≤i 22
j

= 2i ·2
∑i

j=1 2j

<

2i · 22i+1
. As t is in generation i, it must be that t ≥ h(i− 1)+1 = 22

i−1
and the

share size is O(t4 log t) (as 22
i+1

= 24·2i−1
=

(
22

i−1
)4

≤ t4).

Improved Evolving Secret-Sharing Schemes for Small tr(t). Xing and Yuan’s
result [43] showed that tr(t)-dynamic-threshold access structures when tr(t) = tβ

some for 0 < β < 1 can be realized by an evolving secret-sharing scheme with
share size O(t4β). We show that we can get a similar result using our frame-
work; we get a secret-sharing scheme with share size O(t4β log t) for tβ-dynamic-
threshold access structures. The main observation is that in the LIBP BDynThr

for tr(t) = tβ we can reduce the number of vertices in layers h(1), h(2), . . . – we
take Lh(i) = {u

h(i)
0 , . . . , u

h(i)

h(i)β−1
} ∪ {v

h(i)

h(i)β }. That is, if the number of ones in a
prefix of length h(i) of an input σ is at least tr(h(i)) = h(i)β , then the LIBP
can accept σ without looking at bits beyond this input. We do not change other
layers, thus the labels on the edges in the GIDT resulting from applying the
transformation of Construction 3.11 to the optimized LIBP remains the same
threshold functions. Again we take h(i) = 22

i − 1 and get share size

log(h(i))
h(i)∏
j=1

h(i)β = 2i ·
∏

1≤j≤i

2β·2j

= 2i · 2β·∑i
j=1 2j

< 2i · 2β·2i+1
.

As t is in generation i, it must be that t ≥ h(i − 1) + 1 = 22
i−1

and the share

size is O(t4β log t) (as 2β·2i+1
= 24β·2i−1

=
(
22

i−1
)4β

).

3.3 Evolving Secret-Sharing Schemes for LIBPs with Bounded
Width

In this section we show the main application of our construction of evolving
secret-sharing schemes for LIBPs, showing that LIBPs with small width can be
realized with small share size. We show two results for LIBPs with small width:

– A construction presented in Theorem 3.15 showing that if the width is at most
20.15t, then the LIBP can be realized with non-trivial share size of O(20.97t)
and if the width is 2εt for ε < 0.04 the share size is 22

√
ε·t. This is in contrast

with the lower bound of [36], proving that there exists an evolving access
structure such that in every evolving secret-sharing realizing it the share size
of infinitely many parties pt is at most 2t−o(t).

– A construction presented in Theorem 3.17 that LIBPs with width at most
w(t) can be realized by an evolving secret-sharing scheme with share size
(w(2t))O(log t); for example, if w(t) = tc, i.e., the width is polynomial, then
the share size of pt is quasi-polynomial. The second construction achieves
smaller share size than the first construction when w(t) � 2t/ log2 t. As an

576 B. Alon et al.

application of Theorem 3.17, we show an evolving secret-sharing scheme for
the evolving directed layered st-connectivity access structure, where for every
t ∈ N the share size of pt is at most tO(log t). Due to space limitation, the
construction is deferred to the full version [1].

Theorem 3.15. Every LIBP B of width w(t) ≤ 20.15t can be realized by an
evolving secret-sharing scheme with share size 20.97t. Furthermore, for ε(t) <
0.04, every LIBP B of width w(t) ≤ 2εt can be realized by an evolving secret-
sharing scheme with share size 22

√
ε(t)·t.5

Proof. Let ε = ε(t), and let c = c(t) > 1 to be determined later. We apply
Theorem 3.13 to B of width at most 2εt and h(i) = ci. To realize the predicates
of the edges, we use the best known secret-sharing scheme for arbitrary n-party
access structures of [5]. Fix a party pt and let i be the generation of pt, that is,
ci−1 + 1 ≤ t ≤ ci, in particular

ci ≤ tc. (1)

By Theorem 3.13, the number of shares of secret-sharing schemes of predicates
that pt holds is

⎛
⎝ ∏

1≤j≤i−1

w(h(j))

⎞
⎠ (w(h(i)) + 1) = O

⎛
⎝ ∏

1≤j≤i

2εcj

⎞
⎠ = O

(
2ε

∑
1≤j≤i cj

)

≤ O
(
2εci+1/(c−1)

)
≤ O

(
2εc2t/(c−1)

)
, (2)

where the last inequality is from (1). The share size of the secret-sharing scheme
of [5] for an n-party access structure is 20.585n; we apply it with the parties of a
generation i – there are h(i) − h(i − 1) = ci − ci−1 ≤ tc − t = (c − 1)t and the
share size for each invocation of the secret-sharing of [5] is 20.585(c−1)t. Thus, the
size of the share of pt is

O
(
2εc2t/(c−1) · 20.585(c−1)t

)
= O

(
2

(
εc2
c−1+0.585(c−1)

)
t
)

= O
(
2(ε(c+1)+ ε

c−1+0.585(c−1))t
)

. (3)

Taking ε = 0.15 and c = 1.46, we obtain from (3) that for every LIBP of
width w(t) ≤ 20.15t the share size of pt is less than 20.97t. For the second item
of the theorem, take c = 1 +

√
ε

0.585 ; for ε < 0.04 we get that c < 1.27 and the

share size we obtain from (3) is O
(
2(2.27ε+2

√
0.585ε)t

)
= 22

√
ε·t. ��

For LIBPs of width 2εt for ε < 0.04, the share size decreases as the width
decreases. When the width is w(t) ≤ 2o(t/ log2 t), we can get better share size by
using special-purpose secret-sharing schemes to realize the labels of the edges.
Recall in Construction 3.11, the label on each edge is reachu,v (or a conjunction

5 The constants in the theorem are not optimized.

New Upper Bounds for Evolving Secret Sharing 577

of such predicates). When the width of the LIBP is somewhat small, we can
use the formula-based secret-sharing scheme of [12] to realize reachu,v; in the
secret-sharing scheme of [12] the total share size is the number of leaves of
the monotone formula. For completeness, we next describe a monotone Boolean
formula for reachu,v.

Claim 3.16. For every layered finite non-deterministic branching program
Bfinite = (G, u0, μ) of width at most w and
 layers, there exists a monotone
Boolean formula with at most (2w)1+log � leaves.

Proof. The construction of the monotone Boolean formula is as follows, where
w.l.o.g., we assume that
 + 1 is a power of 2 (this can at most double
); we
number the layers of G by layer 0 to layer
 − 1. We construct the formula Fu,v

recursively. If
 = 2 (i.e., u and v are in consecutive layers), then if (u, v) /∈ E
then Fu,v = 0. Otherwise Fu,v is the label of the edge (u, v), i.e., either Fu,v = 1
or Fu,v = xi for some variable xi. If
 > 2, let u1, . . . , uw be the vertices in G
in layer (
 − 1)/2; any path from u to v in G passes via exactly one vertex ui

in layer (
 − 1)/2, hence Fu,v =
∨w

i=1(Fu,ui
∧ Fui,v), where Fu,ui

and Fui,v were
defined by the recursion.

We next compute the number of leaves in Fu,v. If
 = 2 the number of leaves is
at most 1. If
 > 2, the formula contains 2w formulas for graphs with (
−1)/2+1
layers; by induction, the number of leaves in Fu,v is at most (2w)log �. ��
Theorem 3.17. Let w : N → N be a non-decreasing function. Every LIBP B
of width w(t) can be realized by evolving secret-sharing scheme with share size
(w(2t))O(log(t)).

Proof. We apply Theorem 3.13 to B and h(i) = 2i. To realize the predicates
labeling the edges we use the formula-based secret-sharing scheme of [12] with
the formula for reachu,v described in Claim 3.16. Observe that the predicate∨

v is a leaf in layers h(i−1)+1,...,h(i) in B reachu,v can be transformed to one instance
of reachu,v′ by adding a new vertex v′ and connection each leaf v to v′ by adding
one path to the graph labeled by 1.

Fix a party pt and let i be the generation of pt, that is, 2i−1 + 1 ≤ t ≤ 2i, in
particular 2i ≤ 2t. The number of shares of secret-sharing schemes for reachu,v

that pt holds is at most
⎛
⎝ ∏

1≤j≤i−1

w(h(j))

⎞
⎠ (w(h(i)) + 1) ≤ O

⎛
⎝ ∏

1≤j≤i

w(2t)

⎞
⎠ ≤ (w(2t))O(log t), (4)

where the inequalities are obtained from (1) and the monotinicity of h. The share
size of the secret-sharing scheme of [12] for the monotone formula for reachu,v for
the graph with h(i)−h(i−1) ≤ h(i) layers and width at most w(h(i)) ≤ w(2t) is
(w(2t))O(log h(i)) = (w(2t))O(log(2i)) = (w(2t))O(log t). Thus, the size of the share
of pt is (w(2t))O(log t) · (w(2t))O(log t) = (w(2t))O(log t). ��

Acknowledgments. The first and second authors are supported by the ISF grant
391/21 and by the Frankel center for computer science.

578 B. Alon et al.

References

1. Alon, B., Beimel, A., Ben David, T., Omri, E., Paskin-Cherniavsky, A.: New upper
bounds for evolving secret sharing via infinite branching programs. Cryptology
ePrint Archive, Paper 2024/419 (2024). https://eprint.iacr.org/2024/419

2. Applebaum, B., Arkis, B.: On the power of amortization in secret sharing: d-
uniform secret sharing and CDS with constant information rate. In: TCC 2018,
vol. 11239. LNCS, pp. 317–344 (2018)

3. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes
for general and uniform access structures. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 441–471. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4 15

4. Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via robust
conditional disclosure of secrets. In: STOC 2020, pp. 280–293 (2020)

5. Applebaum, B., Nir, O.: Upslices, downslices, and secret-sharing with complexity
of 1.5n. In: CRYPTO 2021, vol. 12827, pp. 627–655. Springer (2021)

6. Beimel, A.: Lower bounds for secret-sharing schemes for k-hypergraphs. In Kai-
Min Chung, editor, ITC 2023, vol. 267. LIPIcs, pp. 16:1–16:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2023)

7. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 14

8. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 10

9. Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 313–332. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 17

10. Beimel, A., Othman, H.: Evolving ramp secret sharing with a small gap. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 529–555.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 19

11. Benaloh, J., Rudich, S.: Private communication (1989)
12. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In:

CRYPTO ’88, vol. 403. LNCS, pp. 27–35 (1988)
13. Blakley, G.R.: Safeguarding cryptographic keys. In: 1979 International Workshop

on Managing Requirements Knowledge (MARK), pp. 313–318 (1979)
14. Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the infor-

mation rate of secret sharing schemes. Des. Codes Cryptography 11(2), 107–122
(1997)

15. Cachin, C.: On-line secret sharing. In: Proc. of the 5th IMA International Confer-
ence on Cryptography and Coding, vol. 1025. LNCS, pp. 190–198 (1995)

16. Chaudhury, S.S., Dutta, S., Sakurai, K.: Ac0 constructions of secret sharing
schemes - accommodating new parties. In: NSS 2020, vol. 12570. LNCS, pp. 292–
308 (2020)

17. Cheng, Q., Cao, H., Lin, S.-J., Yu, N.: A construction of evolving k-threshold secret
sharing scheme over a polynomial ring. arXiv preprint arXiv:2402.01144 (2024)

18. Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia
Sci. Math. Hungar. 32(3–4), 429–437 (1996)

https://eprint.iacr.org/2024/419
https://doi.org/10.1007/978-3-030-17659-4_15
https://doi.org/10.1007/978-3-030-17659-4_15
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-98113-0_17
https://doi.org/10.1007/978-3-030-45721-1_19
http://arxiv.org/abs/2402.01144

New Upper Bounds for Evolving Secret Sharing 579

19. Csirmaz, L.: The size of a share must be large. J. Cryptol. 10(4), 223–231 (1997)
20. Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Cryptography 63(1),

127–147 (2012)
21. D’Arco, P., De Prisco, R., De Santis, A.: Secret sharing schemes for infinite sets of

participants: a new design technique. Theor. Comput. Sci. 859, 149–161 (2021)
22. D’Arco, P., De Prisco, R., De Santis, A., Pérez del Pozo, A., Vaccaro, U.: Proba-

bilistic Secret Sharing. In: MFCS 2018, vol. 117. LIPIcs, pp. 64:1–64:16 (2018)
23. Desmedt, Y., Dutta, S., Morozov, K.: Evolving perfect hash families: a combina-

torial viewpoint of evolving secret sharing. In: Cryptology and Network Security,
pp. 291–307 (2019)

24. Dutta, S., Roy, P.S., Fukushima, K., Kiyomoto, S., Sakurai, K.: Secret sharing on
evolving multi-level access structure. In: Information Security Applications, pp.
180–191 (2020)

25. Erdös, P., Pyber, L.: Covering a graph by complete bipartite graphs. Discret. Math.
170(1–3), 249–251 (1997)

26. Francati, D., Venturi, D.: Evolving secret sharing made short. Cryptology ePrint
Archive, Paper 2023/1534 (2023). https://eprint.iacr.org/2023/1534

27. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pp. 151–160. Association
for Computing Machinery, New York (1998)

28. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science) 72(9), 56–64 (1989)

29. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity
Theory, pp. 102–111 (1993)

30. Komargodski, I., Naor, M., Yogev, E.: How to Share a Secret, Infinitely. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 19

31. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. IEEE Trans.
Inf. Theory 64(6), 4179–4190 (2018)

32. Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresh-
olds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678,
pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-
3 12

33. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2018, pp. 699–708, New York, NY, USA. Association for Computing
Machinery (2018)

34. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional Disclosure of Secrets via Non-
linear Reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 25

35. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier
for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 21

36. Mazor, N.: A lower bound on the share size in evolving secret sharing. In: Chung,
K.-M. (ed.) 4th Conference on Information-Theoretic Cryptography, ITC 2023,
June 6-8, 2023, Aarhus University, Aarhus, Denmark, vol. 267. LIPIcs, pp. 2:1–2:9.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

https://eprint.iacr.org/2023/1534
https://doi.org/10.1007/978-3-662-53644-5_19
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-319-78381-9_21

580 B. Alon et al.

37. Okamura, R., Koga, H.: New constructions of an evolving 2-threshold scheme based
on binary or d-ary prefix codes. In: 2020 International Symposium on Information
Theory and Its Applications (ISITA), pp. 432–436 (2020)

38. Peter, N.: Evolving conditional disclosure of secrets. In: Information Security: 26th
International Conference, ISC 2023, Groningen, The Netherlands, November 15–
17, 2023, Proceedings, pp. 327–347. Springer, Heidelberg (2023)

39. Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Evolving
homomorphic secret sharing for hierarchical access structures. In: Nakanishi, T.,
Nojima, R. (eds.) IWSEC 2021. LNCS, vol. 12835, pp. 77–96. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85987-9 5

40. Pitassi, T., Robere, R.: Lifting nullstellensatz to monotone span programs over any
field. In: 50th STOC, pp. 1207–1219 (2018)

41. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
42. Sun, H.-M., Shieh, S.-P.: Secret sharing in graph-based prohibited structures. In:

INFOCOM ’97, pp. 718–724. IEEE (1997)
43. Xing, C., Yuan, C.: Evolving secret sharing schemes based on polynomial evalu-

ations and algebraic geometry codes. IEEE Trans. Inf. Theory 70(5), 3718–3728
(2024)

44. Yan, W., Lin, S.-J., Han, Y.S.: A new metric and the construction for evolving
2-threshold secret sharing schemes based on prefix coding of integers. IEEE Trans.
Commun. 71(5), 2906–2915 (2023)

https://doi.org/10.1007/978-3-030-85987-9_5

Secret-Sharing Schemes for High Slices

Amos Beimel1(B) , Oriol Farràs2 , Or Lasri1 , and Oded Nir3

1 Ben-Gurion University of the Negev, Be’er-Sheva, Israel
beimel@bgu.ac.il, orshlomo@post.bgu.ac.il
2 Universitat Rovira i Virgili, Tarragona, Spain

oriol.farras@urv.cat
3 Tel Aviv University, Tel Aviv, Israel

odednir@mail.tau.ac.il

Abstract. In a secret-sharing scheme, a secret is shared among n parties
such that the secret can be recovered by authorized coalitions, while it
should be kept hidden from unauthorized coalitions. In this work we
study secret-sharing for k-slice access structures, in which coalitions of
size k are either authorized or not, larger coalitions are authorized and
smaller are unauthorized. Known schemes for these access structures
had smaller shares for small k’s than for large ones; hence our focus is
on “high” (n − k)-slices where k is small.

Our work is inspired by several motivations: 1) Obtaining efficient
schemes (with perfect or computational security) for natural families of
access structures; 2) Making progress in the search for better schemes
for general access structures, which are often based on schemes for slice
access structures; 3) Proving or disproving the conjecture by Csirmaz
(J. Math. Cryptol., 2020) that an access structures and its dual can be
realized by secret-sharing schemes with the same share size.

The main results of this work are:
Perfect schemes for high slices. We present a scheme for (n−k)-slices

with information-theoretic security and share size kn · 2Õ(
√
k logn).

Using a different scheme with slightly larger shares, we prove that
the ratio between the optimal share size of k-slices and that of their
dual (n − k)-slices is bounded by n.

Computational schemes for high slices. We present a scheme for
(n−k)-slices with computational security and share size O(k2λ log n)
based on the existence of one-way functions. Our scheme makes use
of a non-standard view point on Shamir secret-sharing schemes that
allows to share many secrets with different thresholds with low cost.

Multislice access structures. (a : b)-multislices are access structures
that behave similarly to slices, but are unconstrained on coalitions
in a wider range of cardinalities between a and b. We use our new
schemes for high slices to realize multislices with the same share sizes
that their duals have today. This solves an open question raised by
Applebaum and Nir (Crypto, 2021), and allows to realize hypergraph
access structures that are chosen uniformly at random under a nat-
ural set of distributions with share size 20.491n+o(n) compared to the
previous result of 20.5n+o(n).

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 581–613, 2025.
https://doi.org/10.1007/978-3-031-78023-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_19&domain=pdf
http://orcid.org/0000-0002-6572-4195
http://orcid.org/0000-0002-7495-5980
http://orcid.org/0009-0006-7419-1454
http://orcid.org/0009-0008-7860-8151
https://doi.org/10.1007/978-3-031-78023-3_19

582 A. Beimel et al.

1 Introduction

Secret-sharing schemes, introduced by Shamir [Sha79] and Blakley [Bla79], is
a pivotal cryptographic primitive that has many applications in cryptography
and in neighboring fields. In a secret-sharing scheme, a dealer that holds a
secret shares it among n parties, by sending each party a single message (called
a share). It is required that predefined authorized coalitions will be able to
recover the secret from their shares and that the secret will remain hidden from
all unauthorized coalitions. A scheme is called perfect when the secret is kept
information-theoretically hidden from unauthorized sets (i.e. they cannot learn
anything about the secret from their shares even if they are computationally
unbounded); it is called computational if secrecy is held against parties that are
computationally bounded. The collection of authorized coalitions is called an
access structure, and it can be captured by a monotone function f : {0, 1}n →
{0, 1} that outputs 1 on an input x ∈ {0, 1}n iff x is the characteristic vector of
an authorized set.

The most important efficiency measure for secret-sharing schemes is the
size of the shares dealt to the participating parties. Hence, the goal of many
research works has been to realize all (general) n-party access structures with
small shares. Towards this end, modern schemes (following the seminal work
of Liu and Vaikuntanathan [LV18]) typically first realize restricted families of
access structures with non-trivially small shares and then compose them, in
some “sophisticated” way, to get better schemes for general access structures.
Improving the share size of such restricted families of access structure became
a relatively central problem in the field. Among the families used in the above-
mentioned paradigm, we can list k-slices (also known as k-uniform access struc-
tures) and (a : b)-multislices. A k-slice function can output arbitrary values for
inputs of Hamming weight k, and must output 0 on lighter inputs and 1 on
heavier ones. (a : b)-multislices are monotone functions that are unconstrained
on inputs of Hamming weight between a and b, but must take the value 0 on
lighter inputs, and the value 1 on heavier inputs. Note that a (k : k)-multislice
is a k-slice.

Despite the growing importance of these access-structure families, works that
have studied them so far have been, in some sense, incomprehensive, as they
mainly focused on the regime where k � n. For example, there are at least
a dozen papers dealing with secret-sharing schemes for 2-slices (also known as
forbidden graph access structures (see, e.g., [SS97,BIKK14,BFMP22]). To the
best of our knowledge, no previous papers study (n − 2)-slices. Moreover, the
best perfect schemes for slices have much smaller shares when k is small (“low
slices”), compared to when k is large (“high slices”). For computational schemes
the situation is even worse, as we do not know of any work that studied compu-
tational secret-sharing schemes for slices based on most basic assumption of the
existence of one-way functions (OWF).1 We therefore bring forward the following
questions:

1 Computational schemes for low slices follow from combining results of [ABF+19,
ABI+23b].

Secret-Sharing Schemes for High Slices 583

– Can high slices be realized by a perfect scheme with the same share
sizes as low slices?

– Can better schemes for high slices help improve schemes for general
access structures?

– Can natural families of functions like slices be realized with smaller
shares assuming OWFs exist?

Before we move on to survey the literature regarding the topics discussed so
far, we note that these questions are also closely related to the concept of secret-
sharing duality. In the notation of functions, the dual of an access structure
f : {0, 1}n → {0, 1} is the function f∗ that satisfies f∗(x) = 1 − f(x), where
x is the string for which xi = 1 − xi in every i ∈ [n]. We observe that if f is
monotone then so is f∗, that for every function f it holds that (f∗)∗ = f , that
the duals of k-slices are (n − k)-slices, and that the duals of (a : b)-multislices
are (n− b : n− a)-multislices. For linear and multi-linear secret-sharing schemes
(see Definition 2.2), the optimal share size of every function and its dual are
identical [Gál95,Feh98,FHKP17], but it is not known whether this property
holds for general schemes. In his work from 2020, Csirmaz [Csi20] focused on
this question and formalized the following conjecture:

Conjecture 1.1 (Csirmaz’s conjecture). The optimal share size per bit of the
secret (also known as the information ratio) of primal and dual access structures
is equal.

Csirmaz showed that in a relaxed model of secret sharing (where errors in recov-
ery or security may occur with negligible probability), the conjecture is false.
It is entirely unclear whether this says anything about duality in the standard
(error-free) model when sharing one-bit secrets. In fact, we can neither exclude
the possibility that the conjecture is true nor the possibility of an exponential gap
between the share size of access structures and their duals. On the positive side,
it is known that for simple functions such as thresholds the dual and primal share
sizes are equal for large enough secrets, and Bogdanov [Bog23] recently proved
that the optimal share size of 2-thresholds and (n − 1)-thresholds is exactly the
same for every n. Hence, studying duality of more complex families of functions
seems like a natural next step in better understanding Csirmaz’s conjecture. We
ask the following question about the share size of slices:

– Can we bound the gap between the share sizes of slices and their duals?
I.e., given a scheme for k-slices with share size L, can we realize their
dual (n − k)-slices with shares of size L · t(n, k) where t(n, k) is small?

1.1 Related Work

Perfect Schemes for General Access Structures. The first perfect schemes for gen-
eral access structures that were introduced by Ito, Saito and Nishizeki. [ISN87]
had shares of size O(2n). A generalization of these schemes was presented by
Benaloh and Leiscter [BL88], showing that if a function can be computed by a

584 A. Beimel et al.

monotone formula of size L then it can be realized by a secret-sharing scheme
with total share size L. In [KW93], it was shown that the share size of any
function can also be tied to its monotone span-program complexity, but this
is still O(2n) in the worst case. A breakthrough result of Liu and Vaikun-
tanathan [LV18] followed decades later, describing a scheme with share size
O(20.994n). Since then, the state of the art has further improved several times
[ABF+19,ABNP20,AN21]. In the latest among these developments, Applebaum
and Nir [AN21] showed how to realize general access structures with shares of
size 1.5n+o(n). On the lower bound front, Csirmaz [Csi97] described an access
structure that requires shares of size Ω(n/ log n), and it was proved in [ABN+22]
that the modern techniques following the breakthrough of [LV18] cannot realize
all access structures with shares smaller than 2o(n/ log2 n).

Perfect Schemes for Slices and Multislices. Secret-sharing schemes for slice
access structures, also called uniform access structures, were previously stud-
ied in several works as [AA18,BKN18,BP18,LV18,ABF+19,AN21,ABN+22].
There exists a simple scheme that realizes every k-slice f by taking a monotone
DNF or CNF formulas for f and applying the formula-to-scheme transforma-
tion of [BL88]. For one-bit secrets,2 this scheme has shares of size

(
n−1
k−1

)
for

k-slices and
(

n−1
n−k

)
for (n − k)-slices for k ≤ n/2. The best-known upper bounds

on the share size of slices in literature outperform the naive scheme above in
some regimes, as detailed in the following g Fig. 1. Prior to this work (see the
bounds stated in Fig. 1), there exists a gap between the share sizes of slices and
their duals. When k is constant, k-slices have share sizes of no(1) while their
dual (n − k)-slices have share sizes of O

((
n−1
n−k

))
= O(nk−1). When k = log n

(a regime is relevant for realizing multislices and general functions) the gap
will be between nO(log log n) for low slices and O(nlog n) for high ones. We also
note that the multi-linear scheme of [AA18] for k-slices has information ratio
2O(k) for secrets with size that is double-exponential in n. By the duality closure
properties for multi-linear schemes, this implies that there exists a scheme for
(n − k)-slices with the same information ratio.

For multislice access structures, the situation is similar. Applebaum
and Nir [AN21] designed a scheme for (a : b)-multislices as a stepping
stone for schemes for general functions with shares of size min{(b

≥a

) ·
2o(n), 20.585n+o(n)}, where

(
b

≥a

)
:=

∑
a≤i≤b

(
b
i

)
. It is not hard to see that this

scheme is not “balanced” with respect to duality. For example, the share size for
(0 : 0.1n)-multislices is 20.1n+o(n) while that of their dual (0.9n : n)-multislices
is 2H2(0.9)n+o(n) > 20.45n, where H2 is the binary entropy function.

2 For long secrets it is sometimes known how to realize schemes with smaller share
sizes per secret bit (better information ratio) with amortization techniques. The
share size of mentioned scheme based on formulas can be improved by a factor of
log n for moderately long secrets and k ≤ n/2 [EP97,Bei23], and a k-slice scheme
of [ABF+19] has information ratio k2 for secrets of size that is doubly-exponential
in n.

Secret-Sharing Schemes for High Slices 585

Fig. 1. The best-known bounds on the share size of perfect secret-sharing schemes for
k-slices for 1 < k < n − 2. For k = 1 there exist simple schemes with share size log n,
and for k = n−2 shares of size O(

√
n) can be obtained by taking the dual scheme of the

2-slice scheme of [GKW15]. The Ω(log n) lower bound by [KN90,CCX13] was proved
for the 2-threshold function (which is also a 2-slice function). The same bound was
later proved in [BGK16] for all k-slices. The borders between the ranges of parameters
are written without asymptotical notation for better readability (e.g., should be Θ(

√
n)

instead of
√

n).

Computational Secret-Sharing Schemes Based on OWF. Computational secret-
sharing schemes (CSSS) can be based on a variety of cryptographic hardness
assumptions. In this work, we will focus on the most basic one: the existence
of one-way functions (OWFs). In the computational setting, the efficiency of
schemes will also be measured with respect to a security parameter λ.3 Yao
[Yao89] (see also [VNS+03]) was the first to consider secret-sharing schemes in
the computational setting. He showed that assuming the existence of one-way
functions, any function that can be computed by a monotone circuit with C
wires can be realized by a CSSS with share size O(λC).4

Krawczyk [Kra94] showed how to share large secrets of size S according to a
k-threshold function with shares of size |S|/k+λ, thus bypassing an information-
theoretic lower bound [KGH83] that states that shares cannot be smaller than
the secret size. In this example, as opposed to the perfect schemes mentioned
so far, the share sizes decrease when the cardinality k of the authorized sets
increases.

3 In the computational setting, the share size may also be reduced by using public
information.

4 Alternatively, with a CSSS with shares of size O(λ) and public information of size
O(λC). As mentioned before, in the information-theoretic setting, a similar result is
only known for monotone formulas [BL88].

586 A. Beimel et al.

In the latest exciting study of computational schemes by Applebaum et
al. [ABI+23b], they introduced new efficient schemes based on one-way functions
for several families of access structures, including DNF formulas with long terms
and CDS protocols (which are essentially a special class of slice functions, see dis-
cussion below). Their k-server CDS protocols have messages of size λ+O(1) and
poly(t(λ))-security (for a binary domain of inputs). By the connections between
CDS protocols and secret-sharing schemes for slices [ABF+19,AA18], it can be
shown (similarly to the proof in Sect. 4) that this implies that k-slices can be real-
ized with shares of size O

(
λ log n · min

{
kn, 2O(k)

})
for k ≤ √

n or k ≥ n − √
n

if OWF exist. Unlike the scheme of Krawczyk for thresholds, here the share size
grows with k, the cardinality of the minimal authorized sets, and high slices
are more expensive than low ones. Constructing computational secret-sharing
schemes based on one-way functions for additional families of access structures,
or even for all access structures, is an interesting open problem.

Besides the results discussed so far that are based on one-way functions, some
schemes in the literature were based on stronger assumptions. In [ABI+23b],
they designed several such schemes. Under the RSA assumption, they describe
a CSSS that, given an arbitrary access structure f , represented by a truth table
of size N = 2n, produces shares of size poly(n) in time Õ(N). Weaker results are
obtained under the decisional Diffie-Hellman and the decisional bilinear Diffie-
Hellman assumptions. Under the RSA assumption, they also realize monotone
CNF formulas with share size polylog(m), where m is the number of clauses in
the CNF formula. When considering (n − k)-slices that can be computed by a
CNF with O(nk) clauses, the RSA based scheme with shares of size poly(k log n).
In [KNY17], they give a construction of a computational secret-sharing scheme
for any monotone function in NP assuming witness encryption for NP and the
existence of one-way functions.

1.2 Our Results

We present several secret-sharing schemes for high slice functions, aiming to
narrow or close as many gaps as possible between the share size of low slices and
that of high slices. Our computational scheme for high slices will perform even
better than its counterpart for low slices.

We prove the following theorem for perfect schemes:

Theorem 1.2 (Perfect Schemes for High Slices). Let k ≤ n/2 be positive
integers. For every (n − k)-slice function f , there exists a secret-sharing scheme
realizing f with share size kn · 2Õ(

√
k log n).

Our scheme closes the current gap in share sizes between slices and their duals
when k is logarithmic in n (share size of nO(log log n) in both cases), and narrows
it down substantially when k is constant (n1+o(1) compared to no(1) for low
constant-k slices). We note that given any constant integer k, our scheme for
(n − k)-slices even outperform the scheme by Applebaum et al. [ABF+19] that
only works for long secrets of size at least 2nn−k

, and has shares of size O(n2)
per secret bit.

Secret-Sharing Schemes for High Slices 587

We also present a scheme for (n − k)-slices with a simpler structure that
proves the following theorem:

Theorem 1.3 (Duality and Slices). For every two integers k < n, if there
exists an n-party secret-sharing scheme for k-slices with share size L, then there
exists an n-party secret-sharing scheme for (n − k)-slices with share size L · n.

Our scheme works for every k, and so it allows to realize high slice functions with
low ones or the other way around. Thus, by Theorem 1.3 the ratio between the
share size of slice functions and their duals is bounded by n in both directions.
We remark that for a given (n − k)-slice, our construction uses a k-slice that is
not its dual.

Next, we present a computational scheme for high slices, which implies the
following theorem:

Theorem 1.4 (Computational Scheme for High Slices, Informal). Let
f be an (n − k)-slice with k ≤ √

n. Then if OWF exist, f can be realized by a
computationally-secure secret-sharing scheme with share size O(k2λ log n) (where
λ is the security parameter). The running time of the sharing and reconstruction
algorithms in the CSSS is poly(

(
n
k

)
, λ).5

Recall that by the previously-best scheme for k-slices based on OWFs has shares
of size min{kn, 2O(k)} ·λ log n [AA18,ABF+19,ABI+23b]. Similarly to the com-
putational scheme of Krawczyk and unlike perfect schemes, by Theorem 1.4 high
slices now have smaller shares than low slices in CSSS (Fig. 2).

Fig. 2. The best-known upper and lower bounds on the share size for computational
secret-sharing schemes for k-slice and (n − k)-slices based on OWF, for k ≤ n/2. The
lower bound [ABI+23a] does not require the OWF assumption; if we allow public
information only a weaker bound of Ω(log log n) is proved in [ABI+23a].

Applications for Multislices. As applications of our perfect schemes for high
slices, we present two schemes for (a : b)-multislices. The first one, optimized for

5 As implied by [LS20,ABI+23b], this running time is necessary for every CSSS for
(n − k)-slices.

588 A. Beimel et al.

the case where a and b are linear in n, solves an open question raised in [AN21],
and has implications on the share size of general access structures. The second
scheme is optimized for the regime where a = n − k and b = n. The first scheme
allows us to prove the following theorem:

Theorem 1.5 (Share Size of General Multislices). For every 1 ≤ a ≤ b ≤
n, every (a : b)-multislice can be realized by a secret-sharing scheme with share
size

(
n−a

≥n−b

) · 2o(n).

This scheme closes the duality gap for multislices in the relevant regime. I.e.,
if we combine our scheme with that of [AN21] the share sizes of (a : b)-multislices
and of their dual (n − b : n − a, n)-multislices are equal up to sub-exponential
factors in n. We also prove the following theorem based on our second scheme
for multislices, which is taylor-made for (n − k : n)-multislices for small k’s.

Theorem 1.6 (Share Size of (n − k : n)-Multislices). For every k <
log n(log log n)2, every (n − k : n)-multislice can be realized by a secret-sharing
scheme with share size k5kn2Õ(

√
k log n). For every log n(log log n)2 ≤ k ≤

n/ log2 n, every (n − k : n)-multislice can be realized by a secret-sharing scheme
with share size 2O(k).

For example, the share size for constant k’s in this scheme is n1+o(1), and
for k = log n it is nO(log log n), similarly to the (n − k)-slice schemes. When
log n ≤ k ≤ log n(log log n)2 the share size is k5k+o(k) and for larger values
of k, the share size is 2O(k). We note that our second construction also works
for (n − k)-hypergraph functions, which are a specific subclass of (n − k : n)-
multislices where the minterms are all of size (n − k). I.e., a k-hypergraph acts
the same as slices for inputs with weight ≤ k, but outputs 1 on a heavier input y
only if there exists a 1-input x of weight k such that y ≥ x.6 Hypergraph access
structures were studied, e.g., in [AN21,Bei23]. We also present computational,
linear, and multi-linear secret-sharing schemes for (n − k : n)-multislices (see
Theorems 5.9 and 5.10).

Applications for Random Hypergraph Access Structures. Applebaum
and Nir [AN21] studied the share size of “random hypergraphs”. They showed
that if a k-hypergraph f is chosen by drawing mk minterms uniformly at random
then with high probability the share size of f would be smaller than that of
general k-hypergraphs. A result in the same spirit was proved in [BF20a] for small
k’s. More formally (yet still omitting some technical details), using multislices
they proved that for every k and mk the share size of hypergraphs generated

according to the above-mentioned procedure is
√(

n
k

) · 2o(n) with probability

1 − 2−Ω(n). The hardest random k-hypergraph in this case is when k = n/2
with shares of size 2n/2+o(n). Applebaum and Nir also showed that balancing
existing schemes for multislices with respect to duality (i.e., proving Theorem

6 We say that y ≥ x if in every coordinate yi ≥ xi.

Secret-Sharing Schemes for High Slices 589

1.5), would further improve this result. Hence, we prove the following corollary.
We only state the improvement for the hardest random hypergraph, and refer
the reader to [AN21, Theorem 6.2] for the general expression for every k which
is somewhat involved.

Corollary 1.7 (Schemes for Random Hypergraphs). For every k ∈ [n],
mk ≤ (

n
k

)
, if a k-hypergraph is chosen by drawing mk minterms of size k uni-

formly at random, then it can be realized with share size 20.491n+o(n) with prob-
ability 1 − 2−Ω(n).

We note that general access structures can be easily realized given schemes for
k-hypergraphs for 1 ≤ k ≤ n; so this result may give hope for obtaining better
schemes for general access structures with share size below 20.5n.

Due to the space restrictions of this publication, we omit some results, proofs,
and comments that are available in full version of this work [BFLN24].

1.3 Our Techniques

Perfect Schemes for High Slices and Duality. Our first scheme for (n −
k)-slices relies on existing schemes for k-slices. The description below provides
correctness and security for sets of size exactly n−k; correctness and security for
sets of sizes below or above n−k can be easily achieved with additional threshold
schemes. To realize an (n − k)-slice access structure f , we start by generating
shares to a k-slice function f determined by f , defined as f(x) = f(x) for every x
of weight k. Then, each share shi of f is distributed with an (n−k)-out-of-(n−1)
threshold scheme among all of the parties except for the i-th one. Following this,
let A be set of size (n − k) whose characteristic vector x satisfies f(x) = 1, i.e.,
A = {Pi : xi = 1}. For each i such that xi = 1, i.e., xi = 0, Pi �∈ A and the
n−k parties of A can recover shi. For Pi such that Pi ∈ A, the parties only hold
n−k−1 shares of an (n−k)-threshold scheme, and thus will learn nothing about
shi. In total, the parties of A can recover k shares of f that correspond to the
coalition A = {Pi : xi = 0}, and since f(x) = f(x) = 1 this suffices to recover
the secret. Similarly, unauthorized sets will recover f -shares of unauthorized sets
under f , and thus will learn nothing about the secret. This construction uses
a “trick” introduced by Berkowitz [Ber82] of replacing a negated variable xi

with a threshold gate over all variables but the i’th one. Berkowitz used this
idea to construct monotone formulas for k-slices from non-monotone formulas
for k-slices, and Beimel, Kushilevitz and Nissim [BKN18] used it to construct
secret-sharing schemes for slices from CDS protocols

We now return to the open problem discussed earlier: Can we bound the gap
between the share sizes of slices and their duals? It is evident that our scheme
solves this problem. Given better schemes for k-slices, we would be able to plug
them into our construction and immediately get a better scheme for (n − k)-
slices. This proves Theorem 1.3 stated above. Following this theorem, we make
explicit some properties of our construction that we think may find future use
by defining duality compilers:

590 A. Beimel et al.

Definition 1.8 (Duality Compilers). Let F be a family of n-variable func-
tions and let F∗ def= {f∗ : f ∈ F} (where f∗ is the dual of f). A duality compiler
for F is a transformation that takes as input secret-sharing schemes with share
size cF (n) for every function in a family F and a function f∗ ∈ F∗ and outputs a
secret-sharing scheme realizing f∗ with share size cF∗(n). The goal in designing
such compilers is to have a small blow-up ratio cF∗(n)/cF (n).

This definition expands the standard viewpoint on secret-sharing duality.
Instead of examining specific functions and their duals, it shifts the focus to
families of functions and their duals, and enables to draw new conclusions. We
stress that in order to realize the function f , such duality compilers do not have
to use a scheme for f∗, and they may, for example, use a scheme for a different
function f ′ ∈ F or for a set of functions S ⊆ F . Our construction provides a
duality compiler for (n − k)-slices to their duals, i.e., k-slices, with blow-up n
(where for every (n − k)-slice f , the construction uses a secret-sharing scheme
for the k-slice f).

Perfect Schemes for High Slices via CDS. Our second scheme for (n − k)-
slices is based on conditional disclosure of secrets (CDS) protocols [GIKM00].
In a CDS protocol, there are k servers S1, . . . ,Sk, each holding a private input
xi, the secret s, and a common random string r, and a referee is holding the
inputs x1, . . . , xk. Each server computes a message as a function of its input
xi, the secret s, and the common random string r (the message of each server
is independent of the other inputs and is computed without seeing the other
messages). Each server sends its message to the referee. We say that the CDS
protocol realizes a function g if the referee can reconstruct s (from the k messages
and the k inputs) if and only if g(x1, . . . , xk) = 1.

Given an (n − k)-slice, we will use a CDS protocol for a function gf : [n]k →
{0, 1} that encodes the way f behaves on inputs with weight n−k: On an input
(i1, . . . , ik) the function gf outputs the same as f when given an input with 0’s in
the indices (i1, . . . , ik) and 1’s in all other indices. For example, on i1 = 2, i2 = 4
and n = 5 we define gf (2, 4) = f(10101). Then, our goal is to distribute CDS
messages generated according to gf in a way that for every input x of weight n−k
the set of parties A = {Pi : xi = 1} will be able to recover k CDS messages, one
from each server, that correspond to the input x. I.e., in the previous example,
{P1, P3, P5} should be able to reconstruct the message of the first server on input
i1 = 2 and the message of the second server on input i2 = 4. Keeping the scheme
based on slices in mind, a natural approach to do so would be to share every
CDS message of the j-th server with the input i with an (n − k)-out-of-(n − 1)
threshold scheme to all parties but the i-th one. However, this time a set of n−k
parties will be able to recover k messages of every CDS server, and in this case,
the protocol does not guarantee any privacy. We will solve this issue by sharing
the CDS messages in a more sophisticated way, inspired by the scheme for slices
of [ABF+19]. See examples and more technical details in Sect. 3.

Secret-Sharing Schemes for High Slices 591

Computational Schemes for High Slices. The starting point of our com-
putational schemes for (n − k)-slices is to take the previously described perfect
scheme based on CDS protocols and plug into it the computational CDS proto-
col of [ABI+23b]. The share size in this implementation would be O(nkλ log n).
While this is better than existing perfect schemes for high slices, we still need
to save a multiplicative factor of n/k to prove Theorem 1.4. To do so, we notice
that most of the shares dealt in the CDS-based scheme are of Shamir’s thresh-
old secret-sharing schemes with high thresholds. In an (n′ − t)-out-of-n′ Shamir
scheme, (n′ − t − 1) shares are independent random strings. Instead of dealing
these random strings directly to the parties, we give each party only a (shorter)
seed of a PRG, and the party generates its share from its seed. Our observation
is that the same seed can be used for all schemes, which allows for further sav-
ings in the share size. In Shamir’s scheme, t+1 of the shares are correlated with
previous shares and we need to give them explicitly to the parties; with careful
load balancing we can still get small shares as desired. For the full technical
details, see Sect. 4.

Schemes for Multislices. Existing schemes for (a : b)-multislices are better
when a and b are small. The scheme in [AN21] is aimed for the case where a = αn,
b = βn for constants α, β, and it has smaller shares when these constants are
small. A scheme in [BF20b] implicitly realizes (0 : k)-multislices, and has huge
shares for their dual (n − k : n)-multislices. We build schemes that complement
the mentioned schemes and equalize the best-known share size for primal and
dual multislices.

The constructions in [BF20b,AN21] both rely on formulas for multislices over
CDS gates. By simple duality properties of formulas (Lemma 5.1), given such
a formula F that computes a function f , if we replace in F every gate that
computes a function g with a gate that computes the dual g∗ of g, we will get
a formula of the same size that computes f∗. Hence, in order to transform the
known schemes for low multislices to schemes for high multislices it essentially
suffices to realize the duals of CDS gates with small shares. The duals of CDS
gates are functions that are somewhat contrived and hard to work with, and
the key observation in our scheme is that the duals of k-server CDS gates can
be replaced by (n − k)-slices. Hence, if we use our schemes for high slices we
can realize high multislices with the same share size as low ones, employing
the standard formula-to-scheme transformation (see Lemma 5.2 for a formal
version).

1.4 Open Questions

Better Perfect Schemes for General Access Structures. In this work, we construct
schemes for random hypergraphs. The obvious question to ask is whether these
ideas (and shares of size 2αn for α < 1/2) can be extended to schemes for worst-
case hypergraphs, and from there to general access structures. The other side of
this coin would be that random hypergraphs are easier for secret sharing than
worst case ones.

592 A. Beimel et al.

Better Computational Schemes for Multislices from OWFs. When we construct
(n − k : n)-multislices from (n − k)-slices, we follow a black-box transformation
that is analogous to the construction of Robust CDS protocols (a generalization
of CDS protocols defined in [ABNP20]) that adds a multiplicative factor of kO(k)

to the share size. An improvement of this technique would lead to a reduction of
the share size for multislices, and such an improvement may be easier to obtain
taking advantage of one-way functions.

A Candidate for Duality-Separation. The best-known share size for k-slices with
a constant k ≥ 2 is no(1), while that of their dual (n−k)-slices is now n1+o(1). It
will be interesting to see whether this gap can be closed, or rather to prove that
it is inherent. A possible path towards closing this gap may be to realize the
dual of k-server CDS gates directly and more cheaply than our implementations
of general (n − k)-slices.

Duality-Compilers. Duality-compilers seem like a useful abstraction that may
help obtain new bounds for secret sharing for families of functions. A natural
next step would be to describe duality-compilers with a small blow-up for other
families of functions. For example, the well-studied family of graph access struc-
tures where every minimal authorized coalition is of size 2, or its more general
version of k-hypergraphs where every minimal authorized set is of size k.

2 Preliminaries

Perfect Secret-Sharing Schemes. We define perfect secret-sharing scheme
as given in [CK93,BC94]; in these schemes the security is information theoretic.
Secret-sharing schemes with computational security will be defined in Sect. 2. For
more information about this definition and secret-sharing in general, see [Bei11].
We start by defining an access structure, which is the collection of sets of parties
that are authorized to reconstruct the secret. We describe an access structure
by a monotone Boolean function.

Notation on Monotone Boolean Functions. The weight of an input x ∈ {0, 1}n,
denoted wt(x), is the number of bits in x that are one, i.e., wt(x) = | {i : xi = 1} |.
For two strings x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ {0, 1}n, we say that x ≤ y if
xi ≤ yi for every 1 ≤ i ≤ n. A function f : {0, 1}n → {0, 1} is monotone if x ≤ y
implies f(x) ≤ f(y).

We will also consider partially defined functions, where f(x) = ∗ denotes
that f is undefined on x. A partially defined function f : {0, 1}n → {0, 1, ∗} is
monotone if there does not exist x, y ∈ {0, 1}n such that x ≤ y, f(x) = 1, and
f(y) = 0. A minterm of a monotone function f is a minimal input x ∈ {0, 1}n

such that f(x) = 1, i.e., for every y �= x if y ≤ x then f(y) ∈ {0, ∗}. A maxterm
of a monotone function f is a maximal input x ∈ {0, 1}n such that f(x) = 0,
i.e., for every y �= x if y ≥ x then f(y) ∈ {1, ∗}.

Secret-Sharing Schemes for High Slices 593

Definition 2.1 (Access Structures). An n-party access structure is a mono-
tone function f : {0, 1}n → {0, 1, ∗} such that f(0n) �= 1. Let P = {P1, . . . , Pn}
be a set of parties; for an input x = (x1, . . . , xn) ∈ {0, 1}, we define the set
of parties that it represents as Ix = {Pi : xi = 1}. For every x ∈ {0, 1}n, if
f(x) = 1, then we say that Ix is authorized; if f(x) = 0, then we say that Ix is
forbidden.

A secret-sharing scheme is a randomized mapping Π(s; r) whose input is a
secret and a random string. A dealer distributes a secret s ∈ S according to Π
by first sampling a random string r ∈ R with uniform distribution, computing a
vector of shares Π(s; r) = (sh1, . . . , shn), and privately communicating each share
shj to party Pj . We require that any authorized set of parties can reconstruct
the secret from its shares and any forbidden set cannot learn any information
on the secret.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π with
domain of secrets S, such that |S| ≥ 2, is a mapping from S×R, where R is some
finite set called the set of random strings, to a tuple of n-sets S1 ×S2 ×· · ·×Sn,
where Sj is called the domain of shares of Pj. For an input x ∈ {0, 1}n, we
denote Πx(s; r) as the restriction of Π(s; r) to its Ix-entries, i.e., (shj)j:xj=1.

A secret-sharing scheme Π with domain of secrets S realizes an access struc-
ture f : {0, 1}n → {0, 1, ∗} if the following two requirements hold:

Correctness.For any input x ∈ {0, 1}n such that f(x) = 1 there exists a recon-
struction function Reconx :

∏
{i:xi=1} Si → S such that Reconx (Πx(s; r)) = s

for every secret s ∈ S and every random string r ∈ R.
Security. For any input x ∈ {0, 1}n s.t. f(x) = 0 and every pair of secrets

s, s′ ∈ S, the distributions Πx(s; r) and Πx(s′; r) are identical, where the
distributions are over the choice of r from R with uniform distribution.

Given a secret-sharing scheme Π, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, the share size as max1≤j≤n {log |Sj |}, the total
share size as

∑n
j=1 log |Sj |, and the information ratio as max1≤j≤n{log |Sj |}

log |S| .

By default, when we talk about the share size of secret-sharing schemes for an
access structure, we consider schemes for one-bit secrets. Note that in Definition
2.2, there are no requirements for inputs x for which f(x) is undefined, e.g., the
parties in Ix can have partial information on the secret without being able to
reconstruct it.

We next define multi-linear and linear secret-sharing schemes, which are
schemes in which the mapping that the dealer uses to generate the shares is
linear. Many of the known constructions of secret-sharing schemes are linear
and multi-linear.

Definition 2.3 (Multi-Linear and Linear Secret-Sharing Schemes). Let
Π be a secret-sharing scheme with domain of secrets S. We say that Π is
a multi-linear secret-sharing scheme over a finite field F if there are integers

594 A. Beimel et al.

�d, �r, �1, . . . , �n such that S = F
�d , R = F

�r , S1 = F
�1 , . . . , Sn = F

�n , and the
mapping Π is a linear mapping over F from F

�d+�r to F
�1+···+�n . We say that a

scheme is linear over F if S = F (i.e., when �d = 1).

Slice, Mutislice, and Hypergraph Access Structures. In this work we construct
secret-sharing schemes for slices and for multislice access structures. A k-slice
(also called uniform access structure) is an access structure where all sets of size
smaller than k are forbidden, all sets of size larger than k are authorized, and
sets of size k can be either forbidden or authorized. An (a : b)-multislice is an
access structure where all sets of size smaller than a are forbidden, all sets of
size larger than b are authorized, and sets of size between a and b can be either
forbidden or authorized. A k-hypergraph access structure is an access structure
whose minimal authorized sets are of size k, and it can have forbidden sets of
size much larger than k.

Definition 2.4 (Slices, Multislices, and Hypergraphs). Let k, n be integers
such that k ≤ n. A (k, n)-slice is a function f : {0, 1}n → {0, 1} such that if
wt(x) < k, then f(x) = 0 and if wt(x) > k, then f(x) = 1. A partially defined
(k, n)-slice is a function that is defined on all inputs of weight k and is undefined
on all other inputs. When n is clear from the context, we write k slice instead of
(k, n)-slice. Let a, b, n be integers such that 1 ≤ a ≤ b ≤ n. An (a, b)-multislice is
a monotone function f : {0, 1}n → {0, 1} such that if wt(x) < a, then f(x) = 0
and if wt(x) > b, then f(x) = 1. A k-hypergraph access structure is a function
f : {0, 1}n → {0, 1} such that all its minterms have weight exactly k.

Note that a k-slice is a (k, k)-multislice and a k-hypergraph is a (k, n)-
multislice.

Remark 2.5. To construct a secret-sharing scheme for a (fully-defined) k-slice,
it suffices to construct a secret-sharing scheme for the partially defined function
f ′ : {0, 1}n → {0, 1, ∗}, where f ′(x) = f(x) if wt(x) = k and f ′(x) = ∗ otherwise.
Given a secret-sharing scheme Π ′ realizing f ′, we construct a secret-sharing
scheme Π with secret s ∈ {0, 1} realizing f as follows:

1. Share the secret s using a (k + 1)-out-of-n secret-sharing scheme and give
each party one share of this scheme.

2. Choose a random bit r1 with uniform distribution and compute r2 = r1 ⊕ s.
3. Share r1 using a k-out-of-n secret-sharing scheme and give each party one

share of this scheme.
4. Share r2 using the secret-sharing scheme Π ′ and give each party its share of

this scheme.

It can be verified that Π realizes the fully-defined k-slice f . The share size in Π
is equal to the share size in Π ′ up to an additive term of O(log n). Thus, in this
paper, we will realize partially defined slices.

Secret-Sharing Schemes for High Slices 595

Protocols for Conditional Disclosure of Secrets. We next define condi-
tional disclosure of secrets (CDS) protocols, a useful cryptographic primitive
introduced in [GIKM00]. In particular, this primitive is used to construct secret-
sharing schemes for general access structures, starting in the work of [LV18]. An
informal presentation of CDS protocols appears in the introduction.

Definition 2.6 (Conditional Disclosure of Secrets (CDS) Protocols).
A k-server CDS protocol P, with domain of secrets S, domain of common ran-
dom strings R, and finite message domains M1, . . . , Mk, consists of k encoding
functions Enc1, . . . ,Enck, where Enci : Xi ×S ×R → Mi for every i ∈ [k]. For
an input x = (x1, . . . , xk) ∈ X1 × · · ·×Xk, secret s ∈ S, and randomness r ∈ R,
we let Enc(x, s; r) = (Enc1(x1, s; r), . . . ,Enck(xk, s; r)).

Let g : X1 × · · · × Xk → {0, 1} be a k-input function. We say that P is a
CDS protocol for g if it satisfies the following properties:

Correctness. There is a deterministic reconstruction function Dec : X1 ×· · ·×
Xk × M1 × · · · × Mk → S such that for every input x = (x1, . . . , xk) ∈
X1 × · · · × Xk for which g(x1, . . . , xk) = 1, every secret s ∈ S, and every
common random string r ∈ R, it holds that Dec(x,Enc(x, s; r)) = s.

Security. For every input x = (x1, . . . , xk) ∈ X1 × · · · × Xk satisfying g(x1, . . . ,
xk) = 0 and every pair of secrets s, s′ ∈ S, the distributions Enc(x, s; r) and
Enc(x, s′; r) are equally distributed, where the probability distributions are
over the choice of r from R with uniform distribution.

The message size of a CDS protocol P is defined as the size of the largest
message sent by the servers, i.e., max1≤i≤k log |Mi|.

Computational Secret-Sharing Schemes and CDS Protocols. We quote
the definition of computational secret-sharing schemes (CSSS) from [ABI+23b].
In a t(λ)-secure CSSS the sharing and reconstruction are efficient, and no adver-
sary running in time t(λ) can learn non-negligible information about the secret
from the shares of any unauthorized set of parties (where λ is the security param-
eter). When defining “efficiency” it is important to consider the way the access
structure is represented. In this paper, we will mainly represent an access struc-
ture as a k-slice function, explicitly describing f(x) for every input x of weight
k. Nevertheless, in the definition of CSSS we use the abstract definition of a
representation model.

Definition 2.7 (Representation Model [ABI+23b]). A representation
model is a polynomial time computable function U : {0, 1}∗ × {0, 1}∗ → {0, 1},
where U(Prog, x) is referred to as the value returned by a “program” Prog on
an input x ∈ {0, 1}n. We assume that each Prog specifies the input size n and
|Prog | ≥ n. We say that Prog represents the function f : {0, 1}n → {0, 1} in
the representation model U if U(Prog, x) = f(x).

Definition 2.8 (Comp. Secret-Sharing Schemes. (CSSS) [ABI+23b]).
A CSSS for a representation model U consists of a pair of algorithms CSSS =
(CSSS.Share, CSSS.Recon) with the following syntax.

596 A. Beimel et al.

Sharing. CSSS.Share(1λ,Prog, s) → (sh1, . . . , shn) (where n denotes the input
length of Prog) is a randomized poly-time algorithm that takes as input a
security parameter λ, a program Prog, and a secret s ∈ {0, 1}; it outputs n
shares sh1, . . . , shn, where shi, for 1 ≤ i ≤ n, is the share of party Pi. 7

Reconstruction. CSSS.Recon(Prog, x, (shi)i:xi=1) → s is a deterministic
poly-time algorithm that takes as input a program Prog, an input x ∈ {0, 1}n

(where n denotes the input size of Prog), and shares of the parties in
Ix = {Pi : xi = 1}. The algorithm outputs a secret s ∈ {0, 1}.
We say that CSSS is correct (with respect to U) if for every λ, s, pro-

gram Prog, and input x ∈ {0, 1}n such that U(Prog, x) = 1 (where n denotes
the input length of Prog), the process of invoking CSSS.Share(1λ,Prog, s) →
(sh1, . . . , shn) and then invoking CSSS.Recon(Prog, x, (shi)i:xi=1) always
returns s.

To define the security of CSSS we consider the following game between a
non-uniform t(λ)-time adversary A and a challenger:

1. The adversary A on input 1λ chooses Prog and an input x ∈ {0, 1}n such
that U(Prog, x) = 0 (where n is the input size of Prog) and sends them to
the challenger.

2. The challenger chooses a secret s ←U {0, 1} uniformly at random. It com-
putes (sh1, . . . , shn) ← CSSS.Share(1λ,Prog, s) and sends (shi)xi=1 to the
adversary.

3. The adversary outputs a bit s′.

The adversary wins the game if s′ = s. We say that CSSS is t(λ)-secure if for
every non-uniform t(λ)-time adversary A and sufficiently large λ, the probability
that A wins is at most 1/2+1/t(λ). By default, we require t(λ)-security for every
polynomial t(·). In any case, we always assume that 1/t(λ) is negligible.8

A computational CDS (CCDS) protocol is defined similarly to CSSS. We
refer the reader to the full version of this work [BFLN24] for details. We use the
following result.

Theorem 2.9 ([ABI+23b]). Assuming t(λ)-secure one-way functions exist, for
all k-input functions g : ({0, 1}�)k → {0, 1}, represented by truth tables of size
N = 2�k, there exists a poly(t(λ))-secure CCDS protocol with message size
O(λ�). The running time of the encoding and decoding algorithms is O(2�kλ).

7 In [ABI+23b], the scheme also returns public information sh0 given to all parties (or
published in the cloud); in this work we do not use this public information.

8 A function ε(λ) is negligible if for every positive polynomial (λ) there exits λ0 such
that ε(λ) ≤ 1/p(λ) for every λ > λ0. Our results remain valid also when t(λ) ≥ λ,
as in [ABI+23b]; for simplicity of our notations we prefer to only consider negligible
functions.

Secret-Sharing Schemes for High Slices 597

3 Perfect Secret-Sharing Schemes for (n − k)-Slices

We provide two new constructions of perfect secret-sharing schemes for (n − k)-
slice functions. The first one is based on schemes for k-slices, and the second
one on k-server CDS protocols. By the current state of the art of CDS protocols
and secret-sharing schemes for slices, the second scheme is more efficient by a
factor of n. For small k’s it has shares of size kn1+o(1), compared to shares of
size kn2+o(1) for the first simpler scheme. However, if more efficient schemes for
slices will be constructed, the first scheme may become the leading one.

3.1 Construction from Schemes for k-Slices

In this section, we prove Theorem 3.1, which is a reformulation of Theorem 1.3.
We describe a simple scheme for (n − k)-slices based on a scheme for k-slices.
Specifically, we will show how to realize an (n−k)-slice f given a scheme for the
partially-defined k-slice f , where f(x) = f(x) for every input x of weight k and
undefined for other inputs.

Fig. 3. A secret-sharing scheme realizing a partially defined (n − k)-slice f using a
scheme Π for the partially defined k-slice f .

Theorem 3.1. Let f : {0, 1}n → bit be an (n − k)-slice. If there is a secret-
sharing scheme for the partially defined k-slice f with share size cslice(k, n),
then there is a secret-sharing scheme realizing the slice f with share size O(n ·
max {log n, cslice(k, n)}).

Proof. By Remark 2.5, it suffices to realize partially-defined slice functions, only
defined on inputs of weight n−k. The scheme for such a function f is described in
Fig. 3. We next prove the correctness and security of the scheme, only considering
inputs of weight n − k.

For correctness, if f(x) = 1 then by definition f(x) = f(x) = 1, and hence
the shares {shi : xi = 1} = {shi : xi = 0} of Π reveal the secret. For every i such
that xi = 0, the parties of Ix can compute every shi generated in Step 1 by
combining their corresponding n − k shares in the threshold sharing of shi dealt
in Step 2 (since Pi /∈ Ix), and thus can recover the secret s.

598 A. Beimel et al.

For security, if f(x) = 0 then by definition f(x) = f(x) = 0. For every i such
that xi = 1, the parties in Ix only hold the shares of Ix \ {Pi}, i.e., they hold
n−k−1 shares in a secret-sharing scheme with threshold n−k and these shares
are uniformly distributed. Thus, the parties in Ix can only obtain the shares
{shi : xi = 0} = {shi : xi = 1} of Π from the shares generated in Step 1 for the
access structure f . These are shares of the set Ix which is an unauthorized set
of f ; therefore they reveal no information on s.

The share of each party consists of n − 1 shares of shares of Π; each share
in a Shamir threshold scheme has size O(max {log n, cslice(n, k)}. �

Using the k-slice secret-sharing scheme of [ABF+19], which has share size
kn · 2Õ(

√
k log n), in Theorem 3.1, results in a scheme for (n − k)-slices with share

size n2k ·2Õ(
√

k log n). In the following section we prove Theorem 3.5 by presenting
a better scheme.

3.2 Construction from k-Server CDS Protocols

We now preset the second construction for (n − k)-slices. The structure of this
construction is similar to the construction from [ABF+19] of secret-sharing
schemes for k-slices from k-server CDS protocols. For that, we need to define
the following functions; in these functions we encodes an input of weight (n−k)
by the k indices in which the input is 0.

Definition 3.2 (The Function gf). Let f : {0, 1}n → {0, 1} be an (n − k)-
slice. For a sequence j1, . . . , jk of k distinct numbers in [n] we define an input
Xj1,...,jk = (x1, . . . , xn) as xj1 = xj2 = · · · = xjk

= 0 and all other bits of x
are 1; the weight of Xj1,...,jk is exactly n − k. We define the k-input function
gf : [n]k → {0, 1}, where gf (j1, . . . , jk) = 1 if and only if 1 ≤ j1 < · · · < jk ≤ n
and f(Xj1,...,jk) = 1.

Example 3.3. For the sequence (2, 3), the input X2,3 is 1001n−3. Let f be the
(n − 2)-slice function, where f(x) = 1 for an input x = (x1, . . . , xn) of weight
n − 2 if and only if there is an index 1 ≤ j ≤ n − 1 such that xj = xj+1 = 0. In
this case gf (j1, j2) = 1 if and only if j2 = j1 + 1. E.g., for n = 5,

gf (2, 3) = f(X2,3) = f(10011) = 1 and gf (2, 4) = f(X2,4) = f(10101) = 0.

In Fig. 4, we describe the secret-sharing scheme realizing a partially defined
(n−k)-slice f using a k-server CDS protocol for gf . We next describe the ideas of
the scheme, considering an (n−2)-slice f . We execute a 2-server CDS protocol for
gf ; let mi,j be the message of server Si in the 2-server CDS protocol with input
j ∈ [n]. Consider an input x of weight n − 2 such that f(x) = 1 and let j1 < j2
be the indices such that xj1 = xj2 = 0, i.e., x = Xj1,j2 . Thus, gf (j1, j2) = 1
and the secret can be reconstructed from m1,j1 ,m2,j2 . We can try and apply the
same strategy as in the scheme described in Fig. 3, that is, sharing each message
mi,j in an (n− 2)-out-of-(n− 1) secret-sharing scheme and give the shares to all
parties except for Pj . In this case, the parties in Ix can reconstruct m1,j1 ,m2,j2

Secret-Sharing Schemes for High Slices 599

and reconstruct the secret. However, when f(x = Xj1,j2) = 0 the parties in Ix

can also reconstruct m1,j2 ,m2,j1 (as, for example, the shares of m1,j2 are given
to all parties except for Pj2). In this case, the parties in Ix can reconstruct two
messages of the first server and there are no security guarantees from the CDS
protocol.9

We need to ensure that the parties in Ix can only reconstruct the message
m1,j , where j is the smallest index such that xj = 0. In this case x1 = · · · =
xj−1 = 1 and all the n − j bits xj+1, . . . , xn are 1 except for exactly one bit.
Thus, for every j we share m1,j in a 2-out-of-2 secret-sharing scheme. We share
the first share in a (j−1)-out-of-(j−1) secret-sharing scheme and give the shares
to the first j −1 parties. Similarly, we share the second share in a (n−j −1)-out-
of-(n− j) secret-sharing scheme and give the shares to the last n− j parties. We
treat m2,j symmetrically. Some technical details arise in the first and last indices.
For example, j2 ≥ 1, so we do not need to share m2,1. As another example, if
j1 = 1, there are no parties with index smaller than 1 and we share m1,1 in a
(n − k)-out-of-(n − 1) scheme (without sharing it in a 2-out-of-2 scheme).

The scheme for (n − k)-slice functions generalizes this idea, where each mes-
sage mi,j is shared using a 2-out-of-2 secret-sharing scheme, the first and second
shares are shared among the first j −1 parties and last n− j parties respectively
with appropriate thresholds.

Fig. 4. A secret-sharing scheme realizing a partially defined (n − k)-slice f using a
k-server CDS protocol P for gf .

9 This problem can be solved by using robust CDS protocols (as defined in [ABNP20]);
however, the known robust CDS protocols have very large message size. We use an
idea of [ABF+19] to solve this problem.

600 A. Beimel et al.

Lemma 3.4. Let f : {0, 1}n → {0, 1} be an (n − k)-slice. If there is a k-server
CDS protocol for gf : [n]k → {0, 1} with message size ccds(k, n), then there is a
secret-sharing scheme realizing f with share size O(k ·n ·max {log n, ccds(k, n))}.
Proof. By Remark 2.5, it suffices to realize partially-defined slice functions, only
defined on inputs of weight n− k. The scheme for such a function f is described
in Fig. 4. We next prove the correctness security of the scheme, only considering
inputs of weight n − k. That is, we consider an input x such that xji

= · · · =
xjk

= 0 for some indices 1 ≤ ji ≤ · · · ≤ jk ≤ n and all other bits in x are 1, i.e.,
x = Xji,··· ,jk .

Assume that f(x) = 1. We next explain how the parties in Ix can recover
mi,ji

for every i ∈ [k]. First observe that i ≤ ji ≤ n − k + i (since there are i − 1
bits in x that are zero before xji

and there are k − i bits that are zero after xji
).

If i = ji, then x1 = x2 = · · · = xi = 0 and Ix has (n− i)− (k − i) = n−k parties
with index greater than ji = i, i.e., the parties in Ix can recover m2

i,ji
= mi,ji

,
which is shared via a secret-sharing scheme with threshold n−k− ji + i = n−k.
Analogously, if ji = n − k + i, then xn−k+i = xn−k+i+1 = · · · = xn = 0 and Ix

has (ji − 1) − (i − 1) = n − k + i − 1 − i + 1 = n − k parties with index smaller
than ji = n−k + i, i.e., the parties in Ix can recover m1

i,ji
= mi,ji

. Now consider
the case that i + 1 ≤ ji ≤ n − k + i − 1. The subset Ix has ji − i parties with
index smaller than ji and n − ji − (k − i) parties with index greater than ji.
So the subset Ix can recover both m1

i,ji
and m2

i,ji
and so can compute mi,ji

. As
gf (j1, . . . , jk) = 1 and the parties in Ix can recover the messages m1,j1 , . . . , mk,jk

,
they can recover the secret.

Assume that f(x) = 0. In this case gf (j1, . . . , jk) = 0, hence the parties in
Ix cannot obtain any information on s from the messages mi,j1 , . . . , mk,jk

they
can recover. We next claim that the parties in Ix have no information on any
message mi,j , where j �= ji. Since j �= ji, the number of bits that are zero in
x in the first j bits of x is not i, i.e., either there are at least i bits that are
zero among the first j − 1 bits of x or there are at least k − i bits that are
zero among the last n − j bits of x (since exactly k bits of x are zero). In the
former case, the parties in Ix hold at most j − 1 − i shares in a secret-sharing
scheme of m1

i,j with threshold j − i, hence they have no information on m1
i,j ,

thus, they have no information on mi,j . In the latter case, the parties in Ix hold
at most (n − j) − (k − i) = n − k − j shares in a secret-sharing scheme of m2

i,j

with threshold n− k − j +1, hence they have no information on m2
i,j , thus, they

have no information on mi,j . As each mi,j is shared independently, the parties
in Ix gain no information from the sharing of all the messages (mi,j)i∈[k],j 	=ij

.
To conclude, the set Ix only obtains the messages mi,j1 , . . . , mk,jk

, which by the
security of the CDS protocol give no information on the secret.

The share of each party is composed of O(nk) shares in Shamir’s thresh-
old secret-sharing schemes with O(n) parties. Thus, the share size is O(nk ·
max{log n, ccds(k, n)}). �

Secret-Sharing Schemes for High Slices 601

Theorem 3.5 (Perfect Schemes for High Slices, Theorem 1.2
Restated). Let k ≤ n/2 be positive integers. For every (n − k)-slice function f ,
there exists a secret-sharing scheme realizing f with share size

kn · 2O(
√

k log n) log(k log n) = kn · 2Õ(
√

k log n).

Proof. By [LVW18], there is a k-server CDS protocol for functions g : [n]k →
{0, 1} with message size 2O(

√
k log n log(k log n)). Using this protocol in Lemma 3.4,

we get for every (n − k)-slice a secret-sharing scheme with the share size stated
in the theorem. �

4 Computationally-Secure Schemes for (n − k)-Slices

In this section, we construct CSSSs for (n−k)-slices. The first observation is that
for k ≤ √

n we can use the CCDS protocol of [ABI+23b] (see Theorem 2.9) in the
scheme of Lemma 3.4 and obtain a secret-sharing scheme for (n − k)-slices with
share size O(kλn log n); this is a slight improvement compared to the perfect
scheme we constructed. Similarly, for k ≤ √

n we can obtain a CSSS realizing
k-slices with share size O(min

{
2k, nk

}·kλ log n) by plugging the CCDS protocol
of [ABI+23b] in the schemes of [AA18,ABF+19].10

Our goal is to save a factor of n/k in the share size of CSSS realizing (n−k)-
slices compared to the above-mentioned CSSS for (n−k)-slices. Recall that in our
scheme described in Lemma 3.4, the share of each party contains O(kn) shares in
threshold secret-sharing schemes with secrets of size cccds(λ, k, n) = O(λ log n).
We show how to realize these secret-sharing schemes such that the share size of
each party in the O(kn) threshold schemes is O(k2λ log n). The idea is to give
each party a seed of a pseudorandom generator (PRG) that is expanded to a
pseudorandom string containing the O(kn) shares. The obstacle is that the n
shares are correlated. We use the fact that in the t-out-of-n secret-sharing of
Shamir [Sha79] the first t − 1 shares are uniformly distributed and independent.
While the schemes described in the previous paragraph are relatively simple
– they take a formula for f and realize some of its gates with computational
schemes instead of perfect ones, our scheme for (n − k)-slices treats the perfect
scheme as “white box”, replacing the shares that are random by pseudorandom
strings. This methodology is not new; however, the way we utilize it is new.

In Fig. 6, we present the sharing in Shamir’s scheme making this fact explicit;
in our presentation, the dealer gives a random element to a set A of t−1 parties
and then picks a polynomial Q that interpolates the t − 1 shares of A and
the secret to generate the shares for the rest of the parties B. Note that in this
scheme the polynomial Q is a uniformly distributed polynomial of degree at most
t − 1 such that Q(0) = s, that is, the sharing is exactly as in the more common
description of Shamir’s secret-sharing scheme. This is similar to the systematic
10 The proofs of the constructions of [AA18,ABF+19] and Lemma 3.4 are when the

CDS protocol is perfect; however, they can be updated to the computational setting,
similarly to the proof of Claim 4.2.

602 A. Beimel et al.

encoding of Reed-Solomon codes. We use Procedure Interpolate, described in
Fig. 5, to compute the polynomial. We will use this procedure in our scheme for
(n − k)-slices; the above sets A and B will be carefully chosen to minimize the
share size of each party.

Fig. 5. A description of Procedure Interpolate that, given shares of t − 1 parties and
a secret, uses interpolation to find the polynomial that passes via these points and
computes the other shares using this polynomial.

Fig. 6. Shamir’s t-out-of-n secret-sharing scheme with a systematic choice of the poly-
nomial.

We can change Shamir’s scheme as described in Fig. 6, giving each party in
A an independent seed wi of a pseudorandom generator (PRG), and for Pi ∈ A,
the party Pi and the dealer compute shi = PRG(wi). The dealer also computes
shares (shi)Pi∈B from (shi)Pi∈A and the secret (using Procedure Interpolate)
and gives these shares to the parties in B. The total share size in this scheme
is O(tλ + (n − t) log p) (where Shamir’s scheme is executed over Fp for a prime
p > n).11 In a single execution of this scheme, using PRGs reduces the total
share size when n − t is small and the length of the secret is bigger than the
security parameter (i.e., it avoids the lower bound of the length of the secret

11 The same results also hold for Fq, where q > n is a prime power. For the sake of
simplicity, we restrict the presentation to the case that q is a prime number.

Secret-Sharing Schemes for High Slices 603

that holds for perfect secret-sharing schemes [KGH83]). Note that Krawczyk’s
construction [Kra94] gives a smaller share size for this case.12

When using the scheme many times with different secrets, the saving is more
dramatic – the dealer can give each of the first t − 1 parties only one seed wi,
which will be expanded to the shares of the party in all the schemes, that is, the
share size of these parties is O(λ). This can be done even when the thresholds
in the various secret-sharing schemes are not the same, and for different sets
A. Specifically, in our secret-sharing scheme for (n − k)-slices we execute O(nk)
threshold t-out-of-n′ secret-sharing schemes with various t, n′ such that n′−t ≤ k
and log p = O(λ log n) (this is the length of the messages in the CCDS protocol,
which we need to share with Shamir’s scheme). The total share size in these
executions is O(nλ + k2λn log n), i.e., one seed per party and k “extra” shares
for each of the O(nk) executions of the threshold scheme, each “extra” share is
of length O(λ log n). We can balance the share size in these O(nk) executions by
giving each of the n parties “extra” shares only in O(k2) schemes; this results in
share size O(k2λ log n) per party.

The following Theorem 4.1 is a formal statement of Theorem 1.4 from the
introduction; in the formal statement of the theorem we deal with the family of
slice functions rather than a specific function (as required by Definition 2.8 –
the definition of CSSS).

Theorem 4.1. Let k : N → N be a function such that 2 ≤ k(n) ≤ √
n for

every n ∈ N. If t(λ)-secure one-way functions exist for some negligible function
1/t(λ), then there exists a poly(t(λ))-secure CSSS for (n − k(n))-slice func-
tions represented as a truth table of size

(
n

k(n)

)
with share size O(k2λ log n).

The running time of the sharing and reconstruction algorithms of the CSSS is
Õ(nk) · poly(λ) = poly(

(
n

k(n)

)
, λ).

Proof. By Remark 2.5, it suffices to realize partially-defined slice functions, only
defined on inputs of weight n − k. The CSSS for such a function f is described
in Fig. 7.

We first elaborate on the assumptions used in the scheme and prove that the
running time of the sharing algorithm is polynomial in the size of the represen-
tation of the slice function and the security parameter (as required in Definition
2.8). In the scheme, we assume that the PRG is poly(t(λ))-secure. By [HILL99],
such PRG can be built from a t(λ)-secure one-way function and its running
time for a pseudorandom string of length knc is knc · poly(λ). Furthermore, if
we use the CCDS protocol of [ABI+23b], the message size is c = O(λ log n)
and the running time of the encoding algorithm (for computing the nk mes-
sages) is nk · poly(λ) (see Theorem 2.9). Finally, interpolation can be imple-
mented using Õ(n) arithmetic operations over a field Fp (using FFT), where
log p ≈ c = O(λ log n); each arithmetic operation can be performed in time
Õ(log p) = Õ(λ log n) (using Schönhage-Strassen multiplication algorithm). As

12 We cannot use Krawczyk’s construction as we have a few schemes with different
thresholds and different sets of parties.

604 A. Beimel et al.

Fig. 7. A CSSS realizing a partially defined (n − k)-slice f .

Secret-Sharing Schemes for High Slices 605

the PRG is executed n times and there are O(nk) interpolations, the total run-
ning time of the sharing is nk · poly(λ) + Õ (n2k) · poly(λ). As the size of the
representation of the (n−k)-slice function f is

(
n

k(n)

) ≥ (n/k)k ≥ √
n

k = (nk)0.5

(as k(n) ≤ √
n), the running time is polynomial in the representation and the

security parameter.
We next prove the correctness and security of the scheme, only considering

inputs of weight n − k. This scheme is an optimization of the perfect secret-
sharing scheme described in Fig. 4, where we use a CCDS protocol instead of a
perfect CDS protocol and use procedure Interpolate to share the shares, using
correlated pseudorandom strings as the “random shares”; however these are valid
shares in Shamir’s secret-sharing scheme. Thus, the correctness follows from the
correctness of the scheme from Fig. 4.

For the security of the scheme described in Fig. 7, we assume that there is
an adversary ACSSS trying to break the CSSS and prove that if ACSSS succeeds
then there is either an adversary breaking the CCDS protocol or an adversary
breaking the PRG, contradicting their security. Recall that ACSSS, on input
1λ, chooses an (n − k)-slice function f and an input x ∈ {0, 1}n such that
wt(x) = n − k and f(x) = 0 and gets from the challenger shares (shi)xi=1

generated by the scheme for a random secret s ∈ {0, 1}.
We define n+1 hybrids, where in the d-th hybrid a secret s is chosen with uni-

form distribution, and the shares given to the adversary are generated similar to
the scheme in Fig. 7, where we replace some pseudorandom strings in step 1 with
truly random strings as follows: For every 1 ≤ � ≤ d, if x� = 0 we use for every
i ∈ [k], j ∈ [n] a truly random string for yi,j

� (instead of yi,j
� ← PRGi,j(w�)). All

other strings yi,j
� are generated as pseudorandom strings. Let prd be the proba-

bility that the adversary ACSSS guesses the secret given the shares generated in
the d-th hybrid for a uniformly distributed secret s ∈ {0, 1}.

Notice that in the 0-th hybrid the shares given to the adversary are generated
as in the scheme described in Fig. 7. On the other hand, in the n-th hybrid, for
all parties not in Ix, the shares are generated using truly random strings. In this
case, we will show that by the security of the CCDS protocol, the probability
that the adversary guesses s, i.e., prn is at most 1/2 + 1/poly(t(λ)). The proofs
of the following claims are in the full version [BFLN24].

Claim 4.2. Assume that the CCDS protocol used in the protocol described in
Fig. 4 is tα(λ)-secure for some constant α < 1 and that ACSSS runs in time
t0.4α(λ). Then, prn ≤ 1/2 + 1/tα(λ).

We next show that, by the security of the PRG, the probability that an
adversary guesses the secret in hybrid d is at most 1/tα(λ) greater than the
probability that it guesses the secret in hybrid d + 1.

Claim 4.3. Assume that the PRG used in the protocol described in Fig. 4 is
tα(λ)-secure for some constant α < 1 and that ACSSS runs in time t0.4α(λ).
Then, prd−1 − prd ≤ 1/tα(λ) for every 1 ≤ d ≤ n.

606 A. Beimel et al.

We have assumed that the PRG and the CCDS protocol used in the scheme
of Fig. 7 are 1/tα(λ) secure for some constant α < 1. Consider an adversary
ACSSS that runs in time t0.4α(λ). By Claim 4.2 and Claim 4.3,

pr0 = (pr0 − pr1) + · · · + (prn−1 − prn) + prn ≤ n

tα(λ)
+

1
2

+
1

tα(λ)
.

Thus, pr0 – the probability that an adversary guesses the secret in the 0-th
hybrid i.e., in the scheme described in Fig. 7 – is at most 1/2 + n+1

tα(λ) . As n ≤ λ

and 1/t(λ) is a negligible function, this probability is less than 1/2 + 1/t0.4α(λ).
To conclude, we have proved that the probability that any adversary running in
time at most t0.4α(λ) guesses the secret with probability at most 1/2+1/t0.4α(λ),
i.e., the CSSS is 1/t0.4α(λ)-secure.

We complete the proof by analyzing the share size. There are O(kn) execu-
tions of threshold t′-out-of-n′ secret-sharing schemes in the scheme described in
Fig. 7; in each one of them n′ − t′ ≤ k − 1. In each such scheme there are at
most k “extra” shares. The scheme distributes these “extra” shares such that
each party gets O(k2) “extra” shares, i.e., in the scheme for m1

i,j , which is shared
among the first j − 1 parties only the last i − 1 parties Pj−i, . . . , Pj−1 get the
“extra” shares and in the scheme for m2

i,j , which is shared among the last n−j−
parties only the first k − i parties Pj+1, . . . , Pj+k−i+1 get the “extra” shares. To
conclude, the share of each party contains one seed of size λ and O(k2) shares
in Shamir’s scheme with secrets of length O(λ log n) – the message size of the
CCDS protocol of [ABI+23b] (see Theorem 2.9). All together, the share size of
each party is O(k2λ log n). �

5 Applications to Multislices

In this section, we present implications for multislices of the improved schemes
for (n − k)-slices presented in Sects. 3 and 4. We split the results into different
subsections. In Sect. 5.1, we present some results we use about the construction of
secret-sharing schemes from monotone Boolean formulas. In Sect. 5.2, we present
general results for (a : b)-multislices, proving Theorem 1.5. For (n : n − k)-
multislices with k = o(n), we are able to find better schemes, and the rest of the
section is dedicated to this case. The proofs of the results about this particular
case, intermediate results, and additional remarks can be found in [BFLN24].

5.1 The Framework

First, we discuss the framework in which we use the schemes for (n − k)-slices.
Many general and multislice schemes from recent years are based on the following
paradigm:

1. Given a function f over n bits, build a constant-depth formula F for f that
uses AND and OR gates, together with gates that compute (k,N)-slice func-
tions for some N , and k = O(log N). In these formulas, all (k,N)-slice gates
are in the same level, that is, in every path from the root to a leaf there is at
most one (k,N)-slice gate.

Secret-Sharing Schemes for High Slices 607

2. Apply the closure properties of secret-sharing schemes over formulas to realize
a scheme for f according to F (Lemma 5.2). Whenever necessary, plug in a
black-box way an efficient scheme for k-slices (or k-server CDS protocols)
that has shares of size 2Õ(

√
k log N) [LVW18].

Given a scheme for a multislice function f that follows the above paradigm,
we will be able to use the following simple duality lemmas to realize the dual of
f . The first lemma is a folklore result that was stated and proved in [ABN+22].
The second one is a natural generalization of the [BL88] whose proof also appears
in [ABN+22].

Lemma 5.1 (Formulas and Duality). Let C be a formula that computes a
function f : {0, 1}n → {0, 1} and let G1, . . . , Gk be its gates. For any gate G
that computes a function g, denote by G∗ a gate that computes g∗. Then, a
formula C ′ with the same structure as C and with every gate Gi replaced with
G∗

i computes the dual function f∗.

Lemma 5.2 (Formulas and Secret Sharing). Suppose that a monotone
function f : {0, 1}n → {0, 1} can be implemented by a formula F over some
collection of monotone gates G, and assume that every gate g ∈ G can be real-
ized by a secret-sharing scheme whose share-size is wg. Then, f can be realized by
a secret-sharing scheme whose share size is maxi≤i≤n {wF,i}, where the weight
function wF,i is defined as follows.

– The weight wF (v) of a leaf v in F is the product
∏

j wgj
where gj is the jth

gate in the (unique) path from the root to v.
– The weight wF,i of the ith variable in the formula F is the sum of wF (v) of

all leaves v labeled by xi.

Similarly, if every gate g can be realized by a secret-sharing scheme whose infor-
mation ratio is w′

g, then f can be realized by a secret-sharing scheme with infor-
mation ratio of maxi≤i≤n

{
w′

F,i

}
.

It is worth noticing that if we consider a formula F whose gates can be real-
ized by a secret-sharing schemes with good information ratio, then the resulting
share size of party Pi will be between wF,i and w′

F,i. For instance, if F has k
layers of t-out-of-n threshold gates, the share size increases by log n in each path,
but not by logk n.

5.2 Schemes for (a : b)-Multislices

We restate and prove Theorem 1.5, which implies that the current gap between
the share sizes of the family of (a : b)-multislices and its dual can be narrowed
down to 2o(n). Recall that this has implications on the share size of random
hypergraph access structures (Corollary 1.7).

Theorem 5.3 (Share Size of Multislices, Theorem 1.5 Restated). For
every a < b ∈ [n], every (a : b)-multislice can be realized by a secret-sharing
scheme with share size

(
n−a

≥n−b

) · 2o(n).

608 A. Beimel et al.

Proof. As analyzed by [ABN+22], the scheme of Applebaum and Nir [AN21] for
(a : b)-multislices that has share sizes

(
b

≥a

)·2o(n) works according to the paradigm
specified in the introduction of this section. For each multislice, they construct a
formula F over AND and OR gates, combined with gates that compute (k,N)-
slice gates with k =

√
n, N =

√
n2

√
n.

By Lemma 5.1, if we replace every gate G in F by its dual gate G∗ we get a
formula F ∗ that computes f∗, the dual of f . This formula will consist of AND and
OR gates, together with (N −k,N)-slice gates with k =

√
n, N =

√
n2

√
n, which

are the duals of the slice gates that appeared in F . By Lemma 5.2, the overhead
of realizing a secret-sharing scheme for f∗ based on F ∗ compared to realizing f
based on F boils down solely to the difference in the cost of the different types
of slice gates used in each of the formulas. In [ABNP20] the (k,N)-slices of F

with the above parameters were realized with share size 2Õ(
√

n); by Theorem 3.5
we get the same asymptotical share size for the (N − k,N)-slices of F ∗, i.e., we
get share size kN2Õ(

√
k log N) = 2Õ(

√
n). Hence, since the scheme of [ABNP20]

realizes (n − b : n − a)-multislices with shares of size
(

n−a
≥n−b

) · 2o(n), their dual
(a : b)-multislices can also be realized with the same share size, as desired. �

5.3 Schemes for (n − k : n)-Multislices

In the rest of this section, we construct schemes for (n − k : n)-multislices that
are more efficient than the ones described in Theorem 1.5 when k = o(n). Our
main result for perfect schemes is in Theorem 5.10. The current best upper and
lower bounds for (n − k : n)-multislices are summarized in Fig. 8.

Fig. 8. The best-known bounds on the share size of perfect secret-sharing schemes for
(n − k : n)-multislices. See [BFLN24] for more details. The thresholds for the bounds
in the table are are t1 = 0.14n, t2 = n/ log2 n, and t3 = log n(log log n)2.

Definition 5.4 ((hi, k)-Hypergraphs). Let i ≤ k ≤ n and let TRk+1,n be
the threshold k + 1 function on n variables. Given an i-hypergraph hi (i.e., a
function whose minterms are of size exactly i), the (hi, k)-hypergraph is defined
as hi ∨ TRk+1,n.

We next show how to realize (n − k : n)-multislices from secret-sharing
schemes for the dual of (hi, k)-hypergraphs

Secret-Sharing Schemes for High Slices 609

Lemma 5.5 (Multislices from duals of (hi, k)-hypergraphs). Let f be an
(n − k : n)-multislice. Assume that for every i ≤ k < n and every i-hypergraph
hi, the dual of the (hi, k)-hypergraph can be realized by a secret-sharing scheme
with share size cdual(i, k, n). Then f can be realized by a secret-sharing schemes
with share size

∑k
i=1 cdual(i, k, n). If the secret-sharing schemes for the duals of

(hi, k)-hypergraphs are linear, the resulting scheme is linear.

In our schemes, we use a construction of [BF20b] for (hi, k) hypergraphs
(which follows from results of [ABNP20]) and an adaptation of a construction
of [ABNP20]. These constructions implicitly follow the framework of Sect. 5.1.

Theorem 5.6 (Share Size of (n − k : n)-Multislices, Theorem 1.6
Restated). For k ≤ log n(log log n)2, every (n − k : n)-multislice can be
realized by a secret-sharing scheme with share size k5k · n · 2Õ(

√
k log n). For

log n(log log n)2 < k < n/ log2 n, every (n − k : n)-multislice can be realized
by a secret-sharing scheme with share size 2O(k).

Remark 5.7. In Theorem 5.6, we implicitly construct a constant depth formula
for (n − k : n)-multislices of size O(k�k) with AND, OR, threshold, and dual of
partite slice gates, where the dual of partite slice gates are in the same level.
That is, we construct a formula for duals of (hi, k)-hypergraphs and construct
from it a formula for (n − k : n)-multislices. In most of our constructions, we
replace the dual of (κiNi − κi, κiNi)-partite slice gates by (κi, κiNi)-slices.

5.4 CSSS for (n − k : n)-Multislices

We next use the construction of Sect. 5.3 to construct CSSS for (n − k : n)-
multislices. For the CSSS we use a computational analogue of the formula-based
perfect secret-sharing scheme of Benaloh and Leichter [BL88]; in our scheme
we use CSSS to realize the gates. Proving the security of the resulting CSSS
requires analyzing the representation size of the gates and the share size as well
as running time of the CSSS implementing the gates. We prove the security for
the specific formula of Lemma 5.2. We remark that in the computational setting,
Yao [Yao89] showed that a CSSS can use a monotone circuit ; however, we do
not need this generalization.

Remark 5.8. The CSSS for (n − k : n)-multislices as described in Theorem 5.9
is interesting when k ≤ log n. For log n < k < log n(log log(n))2, it has share
size that is worse than the perfect secret-sharing scheme described in Theorem
5.6 by a factor of λ. Furthermore, for k > log n(log log(n)), we can obtain a
CSSS with share size O(2O(k)λ polylog(n)). As this secret-sharing scheme will
only outperform the perfect secret-sharing scheme described in Theorem 5.6 in
a small range of parameters, we omit these details.

610 A. Beimel et al.

Theorem 5.9 (CSSSs for (n − k : n)-Multislices). Let k ≤ √
n and t(λ) ≥

kck · polylog(n) for a sufficiently large constant c. Assuming the existence of
t(λ)-secure OWFs, there is a poly(t(λ))-secure CSSS for (n − k : n)-multislices,
represented as a truth table of all inputs of weight at least n − k. The share
size in the CSSS is O(k5kλ polylog(n)), where λ is the security parameter, and
the running time of the sharing and reconstruction algorithms of the CSSS is
Õ(n4k) · poly(λ) = poly(

(
n
k

)
, λ).

5.5 Linear and Multi-linear Schemes for (n − k : n)-Multislices

Next, we provide upper and lower bounds on the share size and information ratio
for linear and multi-linear schemes. Notice that the gap between the bounds is
asymptotically tight when k is constant.

Theorem 5.10 (Linear Schemes for (n − k : n)-Multislices). Let 1 <
k < n/ log2 n. Then (n − k : n)-multislices can be realized by a linear secret-
sharing scheme with share size Õ(k5kn(k−1)/2).

Theorem 5.11 (Multi-linear Secret-Sharing Schemes for (n − k : n)-
Multislices). For 1 < k < log n log log(n), every (n − k : n)-multislice f

can be realized by a multi-linear secret-sharing scheme with secrets of size 2nk−1

with information ratio O(k5k log2 n). For log n log log(n) < k < n/ log2 n, every
(n − k : n)-multislice f can be realized by a multi-linear secret-sharing scheme
with secrets of size 2nO(k)

with information ratio 2O(k).

Theorem 5.12. For almost all (n − k : n)-multislices, the total share size in
every linear secret-sharing scheme with a one-bit secret realizing these access
structures is Ω(n(k−1)/2/k(k+1)/2).

Acknowledgments. We thank Benny Applebaum and Eliran Kachlon for valuable
comments on earlier drafts of this paper. The first author is supported by the ISF
grant 391/21 and by the ERC grant 742754 (project NTSC). The second author is
supported by the grant 2021SGR 00115 from the Government of Catalonia, the project
ACITHEC PID2021-124928NB-I00 from the Government of Spain, and the project
HERMES funded by the European Union NextGenerationEU/PRTR via INCIBE. The
third author is supported by the ISF grant 391/21 and by the Frankel center for
computer science. The forth author is supported by ISF grant no. 2805/21 and by
the European Union (ERC, NFITSC, 101097959). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

Secret-Sharing Schemes for High Slices 611

References

AA18. Applebaum, B., Arkis, B.: On the power of amortization in secret sharing:
d-Uniform Secret Sharing and CDS with Constant Information Rate. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 317–
344. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 12

ABF+19. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing
schemes for general and uniform access structures. In: EUROCRYPT 2019,
vol. 11478. LNCS, pp. 441–471 (2019)

ABI+23a. Abram, D., Beimel, A., Ishai, Y., Kushilevitz, E., Narayanan, V.: Cryp-
tography from planted graphs: Security with logarithmic-size messages. In:
TCC 2023, vol. 14369. LNCS, pp. 286–315 (2023)

ABI+23b. Applebaum, B., Beimel, A., Ishai, Y., Kushilevitz, E., Liu, T., Vaikun-
tanathan, V.: Succinct computational secret sharing. In: STOC 2023, 1553–
1566 (2023)

ABN+22. Applebaum, B., Beimel, A., Nir, O., Peter, N., Pitassi, T.: Secret sharing,
slice formulas, and monotone real circuits. In: ITCS 2022, vol. 215. LIPIcs,
pp. 8:1–8:23 (2022)

ABNP20. Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via
robust conditional disclosure of secrets. In: STOC 2020, pp. 280–293 (2020)

AN21. Applebaum, B., Nir, O.: Upslices, downslices, and secret-sharing with com-
plexity of 1.5n. In: CRYPTO 2021, vol. 12827. LNCS, pp. 627–655 (2021)

BC94. Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans.
Inf. Theory 40(3), 786–794 (1994)

Bei11. Beimel, A.: Secret-sharing schemes: a survey. In: Coding and Cryptology
– Third International Workshop, IWCC 2011, vol. 6639. LNCS, pp. 11–46
(2011)

Bei23. Beimel, A.: Lower bounds for secret-sharing schemes for k-hypergraphs. In:
ITC 2023, vol. 267. LIPIcs, pp. 16:1–16:13 (2023)

Ber82. Berkowitz, S.: On some relationships between monotone and nonmonotone
circuit complexity. Technical report, Department of Computer Science, Uni-
versity of Toronto (1982)

BF20a. Beimel, A., Farràs, O.: The share size of secret-sharing schemes for almost
all access structures and graphs. IACR Cryptol. ePrint Arch. 2020, 664
(2020)

BF20b. Beimel, A., Farràs, O.: The share size of secret-sharing schemes for almost
all access structures and graphs. In: TCC 2020, vol. 12552. LNCS, pp. 499–
529 (2020)

BFLN24. Beimel, A., Farràs, O., Lasri, O., Nir, O.: Secret-sharing schemes for high
slices. Technical Report 2024/602, IACR Cryptology ePrint Archive (2024)

BFMP22. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes
for forbidden graph access structures. IEEE-TIT 68(3), 2083–2100 (2022)

BGK16. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires
a linear size alphabet. In: TCC 2016, vol. 9986. LNCS, pp. 471–484 (2016)

BIKK14. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic
complexity of the worst functions. In: TCC 2014, vol. 8349. LNCS, pp. 317–
342 (2014)

BKN18. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM
protocols and related models. In: EUROCRYPT 2018, vol. 10821. LNCS,
pp. 287–318 (2018)

https://doi.org/10.1007/978-3-030-03807-6_12

612 A. Beimel et al.

BL88. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone func-
tions. In: CRYPTO ’88, vol. 403. LNCS, pp. 27–35 (1988)

Bla79. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the 1979
AFIPS National Computer Conference, vol. 48. AFIPS Conference pro-
ceedings, pp. 313–317 (1979)

Bog23. Bogdanov, A.: Csirmaz’s duality conjecture and threshold secret sharing.
In: ITC, vol. 267. LIPIcs, pp. 3:1–3:6 (2023)

BP18. Beimel, A., Peter, N.: Optimal linear multiparty conditional disclosure of
secrets protocols. In: ASIACRYPT 2018, vol. 11274. LNCS, pp. 332–362
(2018)

CCX13. Cascudo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret
sharing and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612
(2013)

CK93. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol-
ogy 6(2), 87–96 (1993)

Csi97. Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231
(1997)

Csi20. Csirmaz, L.: Secret sharing and duality. J. Math. Cryptol. 15(1), 157–173
(2020)

EP97. Erdös, P., Pyber, L.: Covering a graph by complete bipartite graphs. Dis-
cret. Math. 170(1–3), 249–251 (1997)

Feh98. Fehr, S.: Span programs over rings and how to share a secret from a module.
Master’s thesis, ETH Zurich (1998)

FHKP17. Farràs, O., Hansen, T.B., Kaced, T., Padró, C.: On the information ratio of
non-perfect secret sharing schemes. Algorithmica 79(4), 987–1013 (2017)

Gál95. Gál. A.: Combinatorial Methods in Boolean Function Complexity. Ph.D.
thesis, U. of Chicago (1995)

GIKM00. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy
in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–
629 (2000)

GKW15. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In: CRYPTO 2015,
vol. 9216. LNCS, pp. 485–502 (2015)

HILL99. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of a
pseudo-random generator from any one-way function. SIAM J. Comput.
28(4), 1364–1396 (1999)

ISN87. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general
access structure. In Globecom 87, 99–102 (1987)

KGH83. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems.
IEEE Trans. Inf. Theory 29(1), 35–41 (1983)

KN90. Kilian, J., Nisan, N.: Unpublished result (1990)
KNY17. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. J. Cryptol.

30(2), 444–469 (2017)
Kra94. Krawczyk, H.: Secret sharing made short. In: CRYPTO ’93, vol. 773. LNCS,

pp. 136–146 (1994)
KW93. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in

Complexity Theory, pp. 102–111 (1993)
LS20. Larsen, K.G., Simkin, M.: Secret sharing lower bound: either reconstruction

is hard or shares are long. In: SCN 2020, vol. 12238. LNCS, 566–578 (2020)
LV18. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret shar-

ing. In: 50th STOC, pp. 699–708 (2018)

Secret-Sharing Schemes for High Slices 613

LVW18. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponen-
tial barrier for general secret sharing. In: EUROCRYPT 2018, vol. 10820.
LNCS, pp. 567–596 (2018)

Sha79. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
SS97. Sun, H.-M., Shieh, S.-P.: Secret sharing in graph-based prohibited struc-

tures. In: INFOCOM ’97, pp. 718–724 (1997)
VNS+03. Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On

the power of computational secret sharing. In: Indocrypt 2003, vol. 2904.
LNCS, pp. 162–176 (2003)

Yao89. Yao, A.C.: Unpublished manuscript. Presented at Oberwolfach and
DIMACS Workshops (1989)

Homomorphic Secret Sharing
with Verifiable Evaluation

Arka Rai Choudhuri1 , Aarushi Goel2 , Aditya Hegde3(B) ,
and Abhishek Jain3,4

1 Nexus, San Francisco, USA
2 Purdue University, West Lafayette, USA

aarushi@purdue.edu
3 Johns Hopkins University, Baltimore, USA

{ahegde,abhishek}@cs.jhu.edu
4 NTT Research, Sunnyvale, USA

Abstract. A homomorphic secret sharing (HSS) scheme allows a client
to delegate a computation to a group of untrusted servers while achiev-
ing input privacy as long as at least one server is honest. In recent years,
many HSS schemes have been constructed that have, in turn, found
numerous applications to cryptography.

Prior work on HSS focuses on the setting where the servers are semi-
honest. In this work we study HSS in the setting of malicious evaluators.
We propose the notion of HSS with verifiable evaluation (ve-HSS) that
guarantees correctness of output even when all the servers are corrupted.
ve-HSS retains all the attractive features of HSS and adds the new fea-
ture of succinct public verification of output.

We present black-box constructions of ve-HSS by devising generic
transformations for semi-honest HSS schemes (with negligible error).
This provides a new non-interactive method for verifiable and private
outsourcing of computation.

1 Introduction

In a t-private homomorphic secret sharing (HSS) scheme [16], a client uses a
sharing algorithm to split a secret x into multiple shares such that any subset
of at most t shares do not reveal anything about x. Such a scheme additionally
supports homomorphic computation on the shares via the following algorithms:

– A local evaluation algorithm Eval that given a function f , maps a share xi to
an output share yi.

– A reconstruction algorithm Rec that computes the output y = f(x) from the
output shares {yi}i.

Similar to additive secret sharing schemes, the reconstruction algorithm Rec is
simply an additive function over the output shares. This in turn implies that

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 614–650, 2025.
https://doi.org/10.1007/978-3-031-78023-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_20&domain=pdf
http://orcid.org/0000-0003-0452-3426
http://orcid.org/0000-0002-8903-6354
http://orcid.org/0000-0003-0888-5133
http://orcid.org/0000-0002-3572-7643
https://doi.org/10.1007/978-3-031-78023-3_20

Homomorphic Secret Sharing with Verifiable Evaluation 615

the size of each share output by Eval is succinct and only depends on the output
length of f1, and is otherwise independent of the description of f .

A t-private HSS allows a client to delegate a (possibly resource-intensive)
computation to a group of untrusted servers while achieving input privacy
against any t number of servers.2 This feature, in turn, has many applications
in cryptography, including sublinear-communication secure multiparty compu-
tation (MPC) [16,39,40,44], multi-server private information retrieval [16,54],
correlated-randomness generators [12,13], reusable MPC [3], constrained pseu-
dorandom functions [41], and more. By now, several constructions of HSS are
known from standard group-based [1,14,16,18,73,76], lattice-based [23,45] and
code-based assumptions [13,40,44]. Some of these schemes differ in the number
of servers they can support (two or more), the class of functions that can be
evaluated, as well as whether or not they have (non-negligible) correctness error.

Prior work in this area focuses on semi-honest servers who perform the local
evaluations honestly (see Sect. 1.3 for some exceptions). This means, in particu-
lar, that the output is only guaranteed to be correct when the servers are honest.
In this work, we study HSS in the setting where the servers may be malicious and
can deviate from the honest evaluation strategy. In particular, the new property
we seek is public verifiability of the output by any external auditor, even when
all the servers are malicious. Viewed from the lens of delegation of computation,
we seek verifiable and private delegation of computation.

HSS with Verifiable Evaluation. We propose a new notion of HSS with ver-
ifiable evaluation (ve-HSS) that retains the attractive features of HSS and adds
public verifiability to the output of the computation. Similar to (semi-honest)
HSS, a ve-HSS scheme is equipped with sharing, Eval and Rec algorithms that
provide the same functionality and efficiency properties. Since the evaluators
may be malicious, the reconstruction algorithm Rec in ve-HSS produces a “can-
didate” output. We require an additional algorithm Verify that either accepts or
rejects this output. Importantly, verification is succinct, namely, Verify runs in
time independent of the complexity of the evaluated function and the number
of servers.

We first augment the HSS privacy notion to require that the privacy of the
client’s input should hold even if the malicious servers learn whether the candi-
date output produced was accepted or rejected by the client. This augmentation
is necessary since malicious servers may produce maliciously computed shares,
and attempt to glean information based on the client behavior. As in the case of
HSS, we parameterize the privacy requirements by the number of corrupt servers
t.

Motivated by the application to verifiable delegation of computation, we
consider the following notions of soundness:

1 There is an additional dependence on the security paramter, which we omit here.
2 This is analogous to fully homomorphic encryption (FHE) which allows private del-

egation of computation to a single server.

616 A. R. Choudhuri et al.

– Local Soundness: This notion guarantees that for any shared input x =
(xpub, xpriv)—where xpub is the public input and xpriv is the private input
known only to the client—the Verify algorithm, given x, accepts a candidate
output y if and only if y is the result of evaluating the function f on x.

– Public Soundness: This notion guarantees that for any shared input x =
(xpub, xpriv), the Verify algorithm, given xpub, accepts a candidate output y if
and only if y = f(xpub, ·) for “some” private input.

Crucially, we require these soundness properties to hold even when all the
servers are corrupted. This means that an external auditor can publicly verify the
correctness of the output without knowing anything about (or placing any trust
assumptions in) the entities who computed the output. This property makes our
notion stronger than standard secure multiparty computation (MPC), which can
only guarantee output correctness when at least one party is honest.

It is easy to see that ve-HSS with succinct public verification implies succinct
non-interactive arguments (SNARGs) [71]. Indeed, the local soundness property
implies SNARGs for deterministic computations while public soundness implies
SNARGs for non-deterministic computations. The class of languages supported
by the SNARG is determined by the family of functions supported by the ve-
HSS scheme.

Multi-Client HSS with Verifiable Evaluation. We also study verifiability
for multi-client HSS, where a set of mutually distrusting clients can share their
inputs to a set of servers who can then perform joint evaluations on the inputs
of the clients. The notions of privacy and soundness in this setting are strength-
ened to allow for collusions between the clients and servers. In particular, local
soundness now allows each client to verify whether its private input xi was used
in the computation, i.e., y = f(·, xi, ·) even if all the remaining clients and all the
servers are corrupted. Public soundness, as before, guarantees that the output
was obtained by evaluating f on the fixed public input and “some” set of private
inputs, i.e., y = f(xpub, ·, ·), even if all parties are corrupt.

1.1 Our Results

In this work, we study HSS with verifiable evaluation with a focus on building
solutions that make only black-box use of cryptography. We obtain new results
both for the single-client and multi-client settings.

Single Client HSS with Verifiable Evaluation. We present two sets of
results for single-client homomorphic secret sharing (HSS) with verifiable eval-
uation: one in the generic group model and the other in the standard model.
Below, we present the results for each model separately, starting with our result
in the generic group model.

Theorem 1 (Generic Group Model, Single Client, Informal). In the
generic group model, we construct a single client m-server HSS with verifiable
evaluation that only makes black-box use of cryptography:

Homomorphic Secret Sharing with Verifiable Evaluation 617

– For NC1: from (i) class groups assumptions; (ii) Decisional Composite Resid-
uosity (DCR) assumption; or (iii) Learning with Errors (LWE) assumption.

– For P/poly: from (i) the security of indistinguishability obfuscation (iO) +
one-way functions (OWF); or (ii) security of fully homomorhpic encryption
(FHE).

In the standard model, we consider boolean circuits that are SIMD (single
instruction multiple data). We obtain analogous results as in the generic group
model, but in the SIMD setting.

Theorem 2 (Standard Model, Single Client, Informal). In the standard
model, we construct a single client m-server HSS with verifiable evaluation that
only makes black-box use of cryptography:

– For SIMD NC1: from the subgroup decision assumption in addition to either
(i) class groups assumptions; (ii) Decisional Composite Residuosity (DCR)
assumption; or (iii) Learning with Errors (LWE) assumption.

– For SIMD P/poly: from the subgroup decision assumption in addition to
either (i) the security of indistinguishability obfuscation (iO) + one-way func-
tions (OWF); or (ii) security of fully homomorhpic encryption (FHE).

Main Compiler. The results stated above for the single-client setting are based
on our current understanding of the HSS landscape. However, we derive these
results using a general compiler that takes as its starting point any standard
semi-honest HSS scheme, allowing for further instantiations as our understanding
of HSS schemes evolves.

At a high level, our compiler adds verifiability to a semi-honest HSS scheme
by requiring the servers to additionally compute a zero-knowledge succinct non-
interactive arguments (zkSNARGs) of correct computation under the hood using
the semi-honest HSS, i.e. the zkSNARG is computed in a distributed manner by
all the servers. In order to ensure that the compiler only makes black-box use
of cryptography, we enforce certain structural (and security) constraints on the
zkSNARGs. We formalize these properties via a new notion of of zkSNARGs
that we call splittable zkSNARGs.

We will describe the security properties shortly, but the primary ‘structural’
properties we require from such a splittable zkSNARG is that the computation
of the zkSNARG proof can be divided into an initial non-linear computation
phase over all of its input, followed by a computation phase that exclusively
performs linear operations on the output of the non-linear phase. Importantly,
we further require that the non-linear phase is non-cryptographic. We make this
distinction since in our compiler the non-linear phase will be computed via the
(semi-honest) HSS scheme, and the linear phase will be computed on the additive
shares obtained obtained from the aforementioned HSS evaluation.

With our new tool splittable zkSNARGs, we present below our main theorem
statement: a compiler for transforming any semi-honest single-client HSS scheme
with at most negligible correctness error into a single-client HSS with verifiable
evaluation (ve-HSS).

618 A. R. Choudhuri et al.

Theorem 3 (Main Compiler, Informal). Let HSS be a single-client m-
server HSS scheme for a class of circuits C with negligible correctness error.
Then given a splittable zkSNARG for C

′ where the non-linear computation phase
can be implemented using a circuit in C, there exists a single client m-server HSS
with verifiable evaluation ve-HSS for circuit class min{C,C′}, that only makes
black-box use of cryptography.

Here min{C,C′} simply refers to the smaller class among the two circuit classes.
We describe next our results for the aforementioned tool of splittable

zkSNARGs, needed to instantiate our compiler.

Splittable zkSNARGs. We have already described the structural requirements
for splittable SNARGs, where the computation of the proof can be split into
non-linear and linear phases of computation. For security, in addition to the
regular soundness properties of zkSNARGs, we require a splittable zkSNARG
to have robust verification, i.e. the verifier will reject all proofs that contain
additive errors. We defer a formal definition of this notion to later. We present
two instantiations of splittable zkSNARGs that can be used to instantiate our
compilers.

Spittable zkSNARGs for NP. Our first instantiation supports general NP lan-
guages and is based on the Groth16 zkSNARK3 [58] that achieve perfect zero-
knowledge and computational soundness (proven in the generic group model).
We show that the Groth16 zkSNARKs satisfy all the properties of a splittable
zkSNARG.

Moreover, we show that the non-linear computation phase in the Groth16
zkSNARK requires evaluating a circuit of depth O(D + log λ) if the relation
circuit has depth D.

Spittable zkSNARGs for batch-NP. Our second instantiation supports batch-NP
languages and can be based on standard assumptions. Recall that while SNARGs
for all NP languages are not known based on standard assumption, SNARGs
for batch-NP (also referred to as BARGs) [25,37,63] are known from standard
assumptions [34,37,38,60,80]. BARGs allow a prover to convince a verifier of
the validity of k NP statements using a proof that is significantly smaller than
the combined witness of the k statements. Our splittable zkSNARG for batch-
NP is based on the scheme of [80] that uses composite-order pairing groups and
achieves computational soundness under the subgroup-decision assumption.

We first show how to lift the BARGs of [80] to achieve the perfect zero-
knowledge property. Our construction only makes black-box use of cryptography.

Theorem 4 (Black-box Perfect Zero-knowledge BARGs, Informal).
Assuming the hardness of the subgroup decision problem in a composite-order
pairing group, there exists a BARG for boolean circuit satisfiability that achieves
perfect zero-knowledge and makes only black-box use of the group. The proof

3 We use zkSNARK instead of zkSNARG when the underlying scheme is also an
argument of knowledge.

Homomorphic Secret Sharing with Verifiable Evaluation 619

size is poly(λ, |C|), the CRS size is m2 · poly(λ) and the verification complexity
is poly(λ, |C|) + poly(λ,m, n), where λ is a security parameter, C : {0, 1}n ×
{0, 1}h → {0, 1} is the Boolean circuit, n is the statement size, and m is the
number of instances.

We note that, in general, zkBARGs can be obtained by compiling BARGs
with non-interactive zero knowledge proofs. Furthermore, recent works [8,24,
27] have shown how to construct NIZKs from BARGs, which in turn, yields
zkBARGs from BARGs. While these transformations are generic, they make
non-black-box use of cryptography in several steps. Theorem 4, in contrast, yields
a new and direct construction of zkBARGs based on pairing groups that makes
black-box use of the group.

We additionally demonstrate that our zkBARG construction obtained in the
above theorem is indeed a splittable zkSNARG for batch-NP. We shall use this
to construct ve-HSS schemes that can evaluate SIMD boolean circuits. In par-
ticular, we show that when computing the zkBARG for any SIMD computa-
tion, the non-linear computation phase can be computed by a circuit of depth
O(D + log λ), where D is the depth of the SIMD computation.

Instantiating our compiler in Theorem 3 using (i) semi-honest HSS schemes
for NC1 (assuming DCR [73,76] or LWE [23] or class groups [1]) and P/poly
(assuming iO + OWF [15] or FHE [19,45]) ; and (ii) splittable zkSNARGs for
NC1 and P/poly (in the generic group model) and SIMD NC1 and SIMD P/poly
(assuming hardness of the decision subgroup problem) give us our main results
in Theorems 1 and 2.

Multi-Client HSS with Verifiable Evaluation. Finally, we extend our
results to the multi-client setting. Starting from semi-honest public-key HSS
schemes4 with negligible error, we present a compiler for public-key multi-client
ve-HSS using Splittable zkSNARGs and obtain the following results:

1. Semi-Honest Clients: When clients are semi-honest, we present a compiler for
transforming any public-key HSS scheme with at most negligible correctness
error into a multi-client ve-HSS using a suitable Splittable zkSNARG, assum-
ing a secure “public-key setup”.
When instantiated with HSS schemes based on DCR [73,76] and class group
[1], our compiler yields a fully black-box solution for multi-client ve-HSS,
where the public key setup can either be generated by a trusted third party
or jointly by the servers using a black-box one-round maliciously secure dis-
tributed protocol from [1]. When using other HSS schemes to instantiate
our compiler, the setup must be done by a trusted entity. This is because
black-box protocols for public-key setup are not known for these other HSS
schemes.

4 There are secret-key and public-key variants of HSS schemes. In the public-key
variant, anyone with access to the public-key can generate shares of their secret
whereas in the secret-key variant one needs to know the key to generate secret
shares.

620 A. R. Choudhuri et al.

2. Malicious Clients: When the clients are malicious, we instantiate our compiler
using HSS schemes based on DCR [73,76] and class groups [1].
If some clients are malicious, it is crucial to ensure that they send well-
formed HSS shares of their respective inputs. In addition to the distributed
key setup protocol from [1], in this setting, we also use the black-box, one-
round, maliciously secure, input sharing protocol for these HSS schemes from
[1] to instantiate our compiler.

1.2 Applications

We now discuss some applications of our ve-HSS constructions.

Private Delegation of Computation. Our notion of ve-HSS provides a black-
box solution to the problem of private and verifiable delegation of computation
(by a single or multiple clients) to a group of untrusted servers. Our HSS-based
approach offers a significant advantage over the FHE-based approaches explored
in [2,51]. In the FHE-based approach, to make the final proof publicly verifiable,
the client must perform some post-processing on the output sent by the server. In
contrast, our approach yields a truly non-interactive solution, where the output
computed by the servers is already publicly verifiable and requires no additional
intervention from the client. To the best of our knowledge, this yields the first
such non-interactive and black-box solution for delegating the computation of
non-cryptographic functions.

Next, we demonstrate that our approach can also be used to delegate the
computation of some cryptographic functions, while also being black-box in the
cryptographic operations involved in the computation of these functions. Specifi-
cally, we highlight the application of our constructions to the problem of privacy-
preserving delegation of zkSNARG computations in a black-box manner—an
area that has recently garnered significant interest [32,50,51,69,74].

Private Delegation of zkSNARK Computation. Let R = {x,w |
C(x,w) = 1} be an NP relation defined by a circuit C. Consider a client who
wishes to compute a proof for the statement x using a particular zkSNARG
proof system Π. We show how if Π is a splittable zkSNARG, then the client
can use our single-client ve-HSS scheme—built using Π itself—to outsource this
proof computation.

A few remarks are in order: first, we note that our group-based ve-
HSS schemes can only support NC1 circuits (a limitation of known semi-honest
HSS schemes). Second, the above solution offers several advantages over recent
works [32,50,51,69] that employ general-purpose MPC techniques (or FHE) for
private-outsourcing of zkSNARGs: (i) MPC-based approaches [32,50,69] several
rounds of the interaction between the servers, with communication growing with
the size of the circuit C. In contrast, our approach necessitates zero interaction
amongst the servers. (ii) As discussed above, unlike the FHE-based approach in
[51], the proof computed by the servers in our solution is already publicly veri-
fiable and requires no additional intervention from the client. Moreover, unlike
[51], the final zkSNARK generated using our delegation framework does not

Homomorphic Secret Sharing with Verifiable Evaluation 621

reveal to the verifier whether it was generated by the client himself or using a
delegation scheme.

Private Delegation of Collaborative zkSNARK Computation. A recent
work by Ozdemir and Boneh [74] introduced the notion of collaborative
zkSNARKs as a general tool for publicly auditable privacy-preserving compu-
tations. Collaborative zkSNARKs is a distributed protocol enabling a set of
parties, each holding a share of an NP witness, to collectively compute a zero-
knowledge succinct non-interactive argument (zkSNARG) for a given statement.
Using similar ideas as in the single-client setting, our construction of multi-client
ve-HSS can be used by a group of clients to delegate the generation of a splittable
zkSNARG to a group of untrusted servers.

Ozdemir and Boneh’s approach requires communication proportional to the
size of the NP relation circuit. In contrast, a key advantage of our approach is
that it requires minimal interaction between the servers, which are only needed
for reconstructing the proof. The clients, meanwhile, only need to interact when
computing and transmitting HSS shares of their combined witness to the servers.
After this, the servers can independently compute the collaborative zkSNARG.

We refer the reader to Sect. 2.5, for a detailed overview of these applications.

1.3 Related Work

We provide a brief overview of related work.

Verifiable Function Secret Sharing. In a verfiable function secret sharing
scheme [10,17,26], the client may be malicious, and the servers want the guar-
antee that the function shares that they received from the client are well-formed,
thus preventing any attempt by the client to learn unauthorized information
about the servers’ database. This is quite different from our notion of verifiabil-
ity that aims to establish the correctness of evaluation in the face of malicious
servers.

Maliciously Secure Sublinear MPC Based on HSS. A recent work by
Abram, Damgård, Orlandi and Scholl [1] presents a black-box construction of
maliciously-secure sublinear MPC using HSS. Specifically, they construct two-
round sublinear MPC with a public-key setup from DCR-based HSS schemes
[73,76] as well as new HSS schemes based on class groups. The public-key setup
can be instantiated with a one round distributed protocol (using a trusted setup
for RSA parameter generation in the DCR case).

By virtue of being a maliciously-secure MPC protocol, their protocol guaran-
tees correctness of output as long as at least one of the servers is honest. However,
it does not imply our notion of HSS with verifiable evaluation which requires local
and public soundness properties even when all parties are corrupted.

Homomorphic Secret Sharing with Verifiability. Some prior works [28–
30,59,72,77–79,81,82] have previously considered different notions of verifiabil-
ity in homomorphic secret sharing (under the umbrella term “verifiable HSS”)
for limited class of functions. The constructions proposed in [77–79] are only for

622 A. R. Choudhuri et al.

computing a sum or product of all the clients’ inputs and the clients are always
assumed to be honest. While these results claim to achieve soundness (or veri-
fiability) even when all servers are corrupt, they were later shown to be broken
by [59,72]. None of the other results [28–30,81,82] consider soundness when all
servers are corrupt. [30,81] present HSS with verifiability of degree-d multipli-
cations, where d depends on the number of servers. Verifiable HSS schemes in
[28,29,82] are based on LWE and are designed for different degree polynomials
(where the degree of the polynomial is dependent on the number of servers or
the security parameter).

2 Technical Overview

As outlined in Sect. 1, our goal in this work is to design a ve-HSS scheme that
uses cryptographic operations in a black-box manner. In this section, we discuss
the main ideas underlying our result.

2.1 Single Client HSS with Verifiable Evaluation

We now describe the ideas underlying the construction of our HSS with verifiable
evaluation. Throughout this discussion, we will operate in a simplified setting,
assuming that there are only two servers5. These ideas can be easily generalized
to settings with more than two server.

Strawman Approach. A ve-HSS scheme proposes to add “verifiability” to exist-
ing HSS schemes. Within Cryptography, zero-knowledge proofs [56] are the most
widely used tool for adding “verifiability” to any computation. The celebrated
result by Goldreich, Micali, Wigderson (GMW) [55] showcased how any semi-
honest multiparty computation protocol can be upgraded to withstand malicious
corruptions, by requiring each participant to include a zero-knowledge proof (to
attest to their honest behavior) with every message they send. Similarly, the
folklore way to add verifiability to delegation of computation via FHE involves
asking the server to additionally compute a zero-knowledge proof attesting that
the FHE evaluation was done honestly.

This motivates the following natural (GMW-inspired) approach to adding
verifiability to existing HSS constructions: the servers each compute a zero-
knowledge proof alongside their outputs from the evaluation algorithm, certify-
ing that they executed the evaluation algorithm honestly. Since the evaluation
phase must be non-interactive and its output must be sublinear in the size of the
function being evaluated, the servers can employ a zero-knowledge proof that is
also a succinct non-interactive argument (SNARG) [65,71] that admits a suc-
cinct proof and sublinear verification time. This approach, however, inherently

5 Existing constructions of HSS [1,23,40,73,76] that meet our criteria of correctness
(and support more than constant-depth functions, without relying on heavy tools
such as iO and FHE) only support two servers. Other known construction of Multi-
party HSS [44] only satisfy weak correctness (which is not sufficient for us).

Homomorphic Secret Sharing with Verifiable Evaluation 623

requires non-black-box use of cryptography. Specifically, since the evaluation
algorithms of known HSS constructions rely heavily on cryptographic operations,
it is unclear if the servers can compute a zero-knowledge SNARG (zkSNARG) to
prove the honest execution of these operations without employing non-black-box
techniques.

We remark that, other malicious MPC techniques [31,43,52] involving
information-theoretic MAC based checks6 or the use of distributed zero-
knowledge proofs [9,20–22] to verify correctness of computation are also not
helpful in our setting. The soundness argument in these approaches hold only
if a subset of the servers are allowed to be corrupt. In contrast, as discussed in
Sect. 1, we demand stronger notions of soundness, that hold even if all servers
are corrupt.

Our Starting Idea. In order to avoid such non-black-box use of the cryptog-
raphy, our initial insight is to have the servers jointly compute a single SNARG
proof to prove that the computation is correct. In particular, instead of proving
that each server performed the evaluation honestly, this is a proof attesting that
the reconstructed output y is indeed a correct result of evaluating function f on
input x.

Now, we need to determine how the servers can compute such a proof. Our
second insight is to utilize HSS itself to compute this proof. In other words,
rather than generating the proofs “externally” to validate the correctness of HSS
Eval, we want to use HSS Eval itself to generate the joint proof. We would like to
rely on the self-authenticating property of SNARGs to prevent incorrect outputs
from being accepted. Implementing this idea, however, is not straightforward:

– A naïve implementation of this approach would entail non-black-box use of
the cryptographic operations involved in computing the underlying SNARG
proof, contrary to our requirements.

– To prove the security of the resulting ve-HSS scheme, the simulator/ideal
adversary in the ideal world must be able to abort the output if a malicious
server misbehaves. The standard method to simulate aborts in the GMW
paradigm is to check individual proofs sent by the corrupt parties. However,
in this approach, since we no longer require servers to attach individual proofs,
it is not immediately clear how one would detect and simulate aborts in the
ideal world.

Note that even if we are willing to forgo the black-box requirement, imple-
menting the aforementioned idea using non-black-box cryptographic operations
of the underlying SNARGs presents a significant obstacle. This is because sound-
ness of all known constructions of SNARGs for NP [4–6,42,49,53,57,58,68,71]
are proven in idealized models such as the random oracle model (ROM), generic
group model (GGM), or the algebraic group model (AGM). Employing the above
non-black-box approach for SNARGs based on ROM or GGM would inevitably

6 An information-theoretic MAC based approach is also used in the design of mali-
ciously secure sublinear MPC based on HSS [1].

624 A. R. Choudhuri et al.

require non-black-box descriptions of these oracles. For SNARGs based on AGM,
it remains unclear if the soundness of the SNARG computed using HSS (which
also relies on cryptographic assumptions) can be still be established in the AGM
model, or if it requires making additional hardness assumptions.

Consequently, a black-box approach appears to be the only viable option
for instantiating the above idea. However, it is not immediately clear whether
existing HSS schemes can support computation of a SNARG inside them, while
still being black-box in the underlying cryptographic operations. Nevertheless,
this idea of computing SNARGs using HSS Eval forms the starting point of our
approach, and we develop new ideas to overcome these challenges.

Splittable SNARGs. Since all SNARGs rely on cryptographic hardness
assumptions, generating a SNARG proof for arithmetic relations involves two
types of operations: cryptographic and non-cryptographic (i.e., simple field arith-
metic). To compute the SNARG proof within HSS (while being black-box), our
next insight is to make use of HSS Eval for the field arithmetic, and devise a sep-
arate method for the servers to compute the necessary cryptographic operations
outside of HSS. However, since these two types of operations within SNARG
generation may be highly intertwined, it may not be always be feasible to com-
pute the cryptographic operations in a distributed and non-interactive manner.
As such, it is unclear if it is even possible to implement this idea.

Our main contribution lies in showing that this idea is indeed feasible to
implement. All we require is for the SNARG at hand to satisfy the following
“split-prover” property. Namely, it must be possible to clearly divide the gener-
ation of splittable SNARG proofs into two steps:

1. Low Depth Non-Cryptographic Operations: The first step must only entail
non-cryptographic operations over a ring. The computational depth of this
step should be such that this overall computation is within the class of func-
tions that are currently supported by existing HSS constructions.7

2. Linearly Distributable Cryptographic Operations: The second step of the com-
putation may involve cryptographic operations. However, these operations
must be feasible to execute in a distributed manner without requiring inter-
action. Specifically, considering that the first step is computed using HSS
Eval, the servers will possess additive shares of the output from this phase.
Using these additive shares, each server should be capable of independently
performing certain operations and generating a partial SNARG proof. We will
sometimes refer to these partial proofs as shares of the proof. Importantly,
there must exist an efficient and simple algorithm to reconstruct the final
proof using the partial proofs computed by all servers.

We refer to such SNARGs that satisfy these two properties as splittable
SNARGs. Looking ahead, we will also require splittable SNARGs to satisfy a
third property - a weaker form of the well-studied notion called unambiguity [75].
7 Most existing HSS schemes support evaluating a limited class of circuits e.g., branch-

ing programs [1,14,16,18,23,44,47,73,76] and low-degree multi-variate polynomi-
als [13,33,40,44,48,61,66].

Homomorphic Secret Sharing with Verifiable Evaluation 625

We discuss this in more detail towards the end of this subsection. In subsequent
subsections, we demonstrate how some existing SNARGs do satisfy these prop-
erties.

Candidate Approach. Given a splittable SNARG, as described above, and
any HSS scheme with negligible correctness error, the servers run the evaluation
algorithm in our ve-HSS scheme as follows:

– Given HSS shares of the input (say x = (xpriv, xpub)), the servers execute
the evaluation algorithm of the underlying HSS scheme (say HSS.Eval) to
compute additive shares of y = f(x).

– Let Rlocal : {(f, x, y) | st, f(x) = y} be a deterministic relation, i.e., Rlocal ∈ P.
Using HSS shares of x, the servers use HSS Eval to compute additive shares of
the output of the first part of the computation (i.e., involving low depth non-
cryptographic operations) required for generating a SNARG for the relation
Rlocal

8.
– Using additive shares of x, y and additive shares of the outcome of the previous

computation, the servers then perform the second step of the computation
(i.e., linearly distributable cryptographic operations) in SNARG generation
to obtain shares of the final SNARG proof.

– The servers send additive shares of y as well as shares of the SNARG proof
to the client.

Finally, the client can reconstruct these shares, verify the proof (say πlocal)
w.r.t., x, y and accept y as the correct output only if this proof is successfully
verified. It is easy to see that if the servers do not have access to the shares of
the output or the proof and do not learn whether or not this proof verified, this
approach trivially achieves privacy against malicious servers. This is because, in
this non-interactive protocol, the view of the malicious server only consists of
the HSS share of x that was provided to it in the input sharing phase. From
the privacy guarantee of the underlying HSS scheme, it follows that this share
computationally hides the input x. Moreover, local soundness of this construction
follows from the soundness of the underlying SNARG.

Public Soundness. While the above approach suffices for local soundness, as
previously discussed, we require the vHSS scheme to also satisfy a notion of
public soundness. Moreoever, we require a stronger notion of privacy, where
the servers can learn the output as well as the outcome of the honest client’s
verification. Recall that public soundness necessitates that upon observing the
output of the evaluation phase, anyone (not solely the client) can be convinced
that there exists some xlocal such that y is a valid output of f given public
input xpub. To accomplish this, we can modify the aforementioned protocol as
follows: in addition to providing a “local proof” Πpriv for the client, as described
previously, the servers will also compute a “publicly verifiable SNARG” (say
8 Note that given x, since the computation of f(x) is deterministic, we do not need to

start with HSS shares of y for this computation. It can be assumed to be implicitly
computed as part of this computation.

626 A. R. Choudhuri et al.

Πpub) for the relation Rpub = {(f, xpub, y) | ∃xpriv, s.t., f(xpub, xpriv) = y} in a
similar manner. Shares of Πlocal will only be sent to the clients, while the shares
of the output y and this publicly verifiable proof Πpub will be published publicly.
The client will accept the output if and only if both Πlocal and Πpub verify. Note
that unlike Rlocal, Rpub is not in P. Therefore, while it suffices to use a SNARG
for P for the computation of Πlocal, we crucially require a SNARG for NP for
the computation of Πpub.

Privacy. Recall that our privacy notion requires that the view of the malicious
server, consisting of its input share and the decision of the Verify algorithm,
can be simulated solely based on the function output without the client’s input.
This mirrors the requirement in any MPC protocol achieving security with abort.
This strong privacy guarantee is crucial to prevent an adversary from causing
selective aborts based on xpriv (see [67], for a detailed discussion on this issue in
MPC protocols). An observant reader might notice that achieving this notion of
privacy is not as straightforward as before. This presents the following challenges:

Challenge 1: Since we allow for malicious corruptions of one of the servers, the
shares of the candidate y and Πpub computed in the evaluation phase are not
guaranteed to have been honestly computed.9 This incorrect output and proof
could potentially leak information about the private input.

Addressing this Challenge: We observe that unlike in an interactive protocol,
where the computation performed by the honest parties can be influenced by
the strategy adopted by the adversary, this is not feasible in a non-interactive
protocol. Since our evaluation phase in a non-interactive, the shares of y and Πpub

output by the honest party, cannot be influenced by the adversary. Therefore, an
incorrect output y-which can only result from the adversary sending an incorrect
share of y-does not compromise privacy.

Furthermore, since Πpub is publicly revealed, ensuring privacy necessitates
the use of a zero-knowledge SNARG (zkSNARG) to generate Πpub. We assume
that the randomness used to generate the zkSNARG Πpub is sampled and HSS-
shared by the client with the servers in the input sharing phase. Given HSS
shares of this randomness, the computation carried out by the servers in the
evaluation phase is deterministic.

Challenge 2: A rushing adversary might opt to wait for the honest server to pub-
lish their additive share of y and Πpub, and then adjust their output shares of
y, Πlocal and Πpub, accordingly. To prove security, we require the simulator/ideal
adversary in the ideal world to be able to efficiently simulate the joint view of the
adversarial server and the output of the honest client. However, if the adversary
chooses to transmit malformed shares of the proofs Πlocal, Πpub (while still pro-
viding an honestly computed share of y), it becomes unclear how the simulator
in the ideal world can accurately predict whether the resulting reconstructed
proofs will verify with respect to xpriv, xpub and an honestly computed y (i.e., it
cannot simulate the output of the honest client).
9 Since our evaluation phase is non-interactive, the servers have no way to verify that

this output and proof were honestly generated before reconstructing them.

Homomorphic Secret Sharing with Verifiable Evaluation 627

Note that since Πpub is publicly reconstructed, the simulator in the ideal
world can reconstruct this proof on its own and check whether it verifies w.r.t.
the reconstructed y. However, since it does not have xlocal and Πlocal (i.e., the
output of the honest client), the same strategy cannot be used for deciding the
outcome of Πlocal, which is verified w.r.t. xlocal.

Addressing this Challenge: As discussed earlier, this issue does not arise in a
GMW-style approach [55], where each server provides an individual proof con-
firming honest behavior. This is because each of these proofs can be indepen-
dently verified with respect to a public state. In our setting however, we have
a jointly computed proof that needs to be verified w.r.t. a private state. Never-
theless, in order to simulate the outcome of Verify, we would like our simulator
to perform a similar local verification based on the proof share of the corrupt
sever.

To enable this, we require the splittable zkSNARG used for generating Πlocal

to satisfy an additional property, which we term distributed-prover robust verifi-
cation (DP-robust verification). Informally speaking, this property dictates that
given a fixed (and honestly generated) share of Πlocal computed by the honest
server (using HSS shares of xpriv), a computationally bounded malicious server
can (w.h.p.) only find a unique share of Πlocal, such that the reconstructed Πlocal

verifies with respect to xpriv, y and xpub. Using this property, the simulator in
the security argument can determine the output of the honest client based on
whether (1) Πpub verifies; and (2) the share of Πlocal provided by the adversarial
server matches the one it should have computed given its share of xpriv.

Summary. We now summarize how we prove security of our proposed construc-
tion. As discussed earlier, local and public soundness follow from the soundness
of the underlying zkSNARGs. To prove privacy, our simulator in the ideal world
will proceed as follows:

1. The simulator queries the ideal functionality to learn y. In this non-interactive
protocol, the adversary can always learn the correct output.

2. It computes HSS shares of xpriv = 0 and some randomness to be used for gen-
erating πpub. Indistinguishability of these shares and the honestly generated
shares sent by an honest client in the real world follows from privacy of the
underlying HSS scheme.

3. It uses the simulator of the underlying zkSNARG to simulate an accepting
proof Πpub.

4. The simulator computes the “expected” shares of y (say yA), Πlocal (say ΠA
local)

and Πpub (say ΠA
pub) using HSS Eval and the HSS shares sent to the adversary.

5. It simulates the shares of y,Πpub sent by the honest server as follows: yH =
y−yA and ΠH

pub = Πpub−ΠA
pub. It is easy to see that yH is identical to the share

sent by an honest server in the real world. Indistinguishability of ΠH
pub from

that sent by the honest server in the real world follows from zero-knowledge
of the underlying zkSNARG.

6. Finally, upon receiving the shares ȳA, Π̄A
local, Π̄

A
pub sent by the adversarial

server, the simulator checks:

628 A. R. Choudhuri et al.

– If yA �= ȳA, then from soundness of the underlying zkSNARGs, it follows
that the adversary will not be able to produce shares such that the local
proof verifies. And therefore the output of the honest client in this case
must be ⊥.

– If yA = ȳA, but Π̄A
local �= ΠA

local, then from DP-robust verification of the
underlying zkSNARG, it follows that the output of the honest client in
this case must be ⊥.

– If yA = ȳA and Π̄A
local = ΠA

local, then the simulator checks if Π̄A
pub + ΠH

pub

is an accepting proof. If so, the output of the honest clients must be y,
else it must be ⊥.

This concludes a proof sketch for our proposed construction.

DP-Robust Verification. A few remarks on DP-robust verification are in
order:

– Robust verification implies DP-robust verification: Looking ahead in Sect. 3,
we first introduce a notion called robust verification (a single-prover analogue
of DP-robust verification) and then demonstrate that this notion implies DP-
robust verification. At a high level, we say that a zkSNARG satisfies robust
verification if, given a valid statement x and witness w of choice, an adversary
cannot, with high probability, find a non-zero additive error ε such that, if Π
is an honestly generated accepting proof for x, then Π+ε is also an accepting
proof for x.

– Robust Verification vs Unambiguity: It is worth noting that robust verification
represents a weaker variant of a well-studied notion [75] called unambiguity
of a proof system, which demands that a computationally bounded adver-
sary cannot produce an accepting proof different from the “true/prescribed
proof” even for true statements. This notion has recently found application in
connection to PPAD hardness [7,35,36,46,62,64,70]. However, achieving this
property is challenging and most proof systems (including the ones we will
instantiate our approach with) do not satisfy this property. Fortunately, we
only require a weaker variant (as described above) of this property. It is easy
to see that a proof system that satisfies the standard notion of unambiguity
will also satisfy robust verification. However, the inverse implication does not
hold true.

– Native Robust verification in randomized zkSNARGs: We are only able to
prove robust verification natively for randomized variants of the splittable
zkSNARGs that we use to instantiate our approach. Therefore, even though
Πlocal could potentially have been generated using a deterministic-prover
zkSNARG, we will compute it using a randomized-prover zkSNARG.

– Instantiations of Splittable zkSNARGs: We observe that all linear PCP-based
zkSNARGs [6] satisfy the structural properties of splittable zkSNARGs.
Specifically, the prover algorithm in these zkSNARGs can be divided into
two steps: low-depth non-cryptographic operations and linearly distributable
cryptographic operations. Additionally, we show that one such zkSNARG [58]
also satisfies robust verification. Determining whether other instantiations

Homomorphic Secret Sharing with Verifiable Evaluation 629

of linear PCP-based zkSNARGs satisfy robust verification remains an open
question. Furthermore, we present a zero-knowledge variant of the Waters-
Wu [80] BARG scheme, and demonstrate that it satisfies all the structural
properties of splittable zkSNARGs and has robust verification.

– DP-robust verification using information-theoretic MACs: It is natural to ask
whether one can leverage information-theoretic message authentication codes
(MACs) to achieve DP-robust verification. As a plausible candidate approach,
consider a scenario where the servers possess HSS shares of a key for an
information-theoretic MAC scheme. Alongside computing shares of the out-
put, local, and public proofs, the servers also compute shares of a MAC on
the local proof by exploiting the structural properties of a Splittable SNARG.
Specifically, the servers compute a MAC on the output of the low-depth non-
cryptographic computation and then exploit the linearity of the distributable
cryptographic operations to compute share of a MAC on the local proof.
Unforgeability of the MAC scheme (with sufficient repetitions) now ensures
that the corrupt party can w.h.p. find only a unique share of the local proof
and a unique share of the MAC on the local proof such that the following
property is satisfied: when combined with the MAC share and proof share
computed by the honest server, the reconstructed MAC verifies with respect
to the secret shared MAC key. While this serves as a generic approach to
ensure DP-robust verification, we show that some SNARGs inherently sat-
isfy the robust verification property; without any modifications. In particular,
this guarantees robust verification without requiring any private state (like
the MAC key) which might be a property of independent interest.

2.2 Groth16 ZkSNARKs [58] Are Splittable

[58] (henceforth referred to as the Groth16 zkSNARK) is a constant-sized
zkSNARK, wherein the final proof consists of only three group elements. This
scheme has perfect zero-knowledge, while its soundness holds in the generic group
model (GGM). We observe that this scheme satisfies robust verification and all
the other properties that we require from an splittable zkSNARK. In this section,
we briefly recall this scheme and then discuss why it can be used to instantiate
our approach.

Overview of Groth16 zkSNARKs. Let (p,G1,G2,GT , e, g1, g2, gT) be bilin-
ear groups such that G1,G2,GT are groups of prime order p with generators
g1, g2, gT respectively, that satisfy the relation e(g1, g2) = gT .

– Correlated Random Setup (CRS): The CRS is highly structured and is
relation-specific. It comprises of correlated group elements in G1 and G2.

– Proof Generation: The relation being proven is encoded as an instance of
Quadratic Arithmetic Program (QAP) [53]. The proof generation algorithm
comprises of the following steps:
1. Extended Witness Generation: The initial step involves deriving an

“extended witness” by using the statement and witness for the given rela-
tion. This extended witness can essentially be perceived as the complete

630 A. R. Choudhuri et al.

computation trace or the list of all intermediate wire values computed
during the evaluation of the relation circuit using the statement and wit-
ness as input.

2. Additional Constant-Depth Field Operations: The proof generation algo-
rithm requires performing a constant-depth computation over this
extended witness (and some additional randomness sampled by the prover
to ensure zero-knowledge).

3. Combining with CRS Terms: The output of the previous step is then used
to linearly combine (using group exponentiations) the group elements
from the CRS to compute the final proof, which comprises of three group
elements: A,C ∈ G1 and B ∈ G2.

– Verification: Given the CRS, statement and the proof elements A,B,C, the
verifier performs a constant number of pairing operations to verify if the proof
is accepting or not.

Splittable zkSNARG Properties. Recall that, in our application, the rela-
tion that will be proved using this zkSNARK is of the form: {f, xpub, xpriv, y |
st., f(xpub, xpriv) = y}, where f, y are always part of the statement and depend-
ing on the type of proof (i.e., local/public), xpriv is either part of the statement
or the witness.

The depth of the computation necessary for generating each element of the
extended witness for such relations is less than or equal to the depth of the
circuit representation of f . Since the additional computation over the extended
witness requires constant depth field operations, overall, the depth of the non-
cryptographic operations involved in the generation of Groth16 zkSNARKs is
asymptotically equivalent to that of f . However, most existing HSS schemes only
support evaluating a restricted class of circuits, called Restricted Multiplication
Straight-line (RMS) programs. Informally, an RMS program is an arithmetic
circuit over bounded integers, where one of the two inputs of a multiplication
gate must always be a circuit input wire. We show in the full version that for any
function f that can be computed by an NC1 circuit, an HSS scheme for RMS
programs10 can compute the non-cryptographic operations involved in Groth16.
We refer the reader to the full version for more details.

The only cryptographic operations involved in the generation of this SNARK
are the group exponentiations required when combing the CRS terms with the
output of the non-cryptographic operations. We now explain (using a simplified
example) how the servers can generate shares of A,B,C: Let a1, . . . , a� ∈ Zp be
some terms output by the non-cryptographic operations in the previous step,
and Q1, . . . , Q� ∈ G1 be some terms in the CRS. In Groth16 zkSNARKs, the
proof term A is computes as A =

∏�
1 Qai

i . Given additive shares of a1, . . . , a�

over Zp , the jth server can compute Aj =
∏�

1 Q
aj
i

i , where aj
i is the share of ai

held by the jth server (for each j ∈ {1, 2}). The final A can be reconstructed as
10 We require the HSS scheme to support evaluating RMS programs over super-

polynomially bounded integers. This is true for all HSS schemes with negliglble
correctness error.

Homomorphic Secret Sharing with Verifiable Evaluation 631

A = A1 · A2 using the shares computed by each of the servers11. Shares of the
other two terms B and C can also be computed in a similar manner. This idea of
computing group exponentiations in a distributed manner using additive shares
of the exponent has been explored in several prior works (see [74] and references
contained therein for more details).

Robust Verification. Given the above discussion, it is clear that Groth16
zkSNARK meets all the structural requirements we demand from splittable
zkSNARG. To establish that this proof system is applicable within our frame-
work, all that remains is to demonstrate that it also achieves robust verification.

Given the proof terms A,B,C, and the statement st :− (x = (xpriv, xpub), y),
the verifier in Groth16 checks the following equation:

e(A,B) ?= e(Q1, Q2) · e(Qxpriv

3 · Q
xpub

4 · Qy
5, Q6) · e(C,Q7)

where, Q1, . . . , Q7 correspond to some group elements in the CRS that are used
for this verification check.

To establish robust verification, we want to show that given some errors
gεA
1 , gεB

2 , gεC
1 by the adversary, if εA �= 0 or εB �= 0 or εC �= 0, and (A,B,C) is

an accepting proof, then the following is not an accepting proof (w.h.p):

Ā = A · gεA
1 B̄ = B · gεB

2 C̄ = C · gεC
1

The verification check given these malformed proof terms can now be written as

e(A · gεA
1 , B · gεB

2) ?= e(Q1, Q2) · e(Qxpriv

3 · Q
xpub

4 · Qy
5, Q6) · e(C · gεC

1 , Q7)
⇒ e(A,B) · e(gεA

1 , B) · e(A, gεB
2) · e(gεA

1 , gεB
2)

?= e(Q1, Q2) · e(Qxpriv

3 · Q
xpub

4 · Qy
5, Q6) · e(C,Q7) · e(gεC

1 , Q7)

⇒ e(gεA
1 , B) · e(A, gεB

2) · e(gεA
1 , gεB

2) ?= e(gεC
1 , Q7)

⇒ e(gεA
1 , B) · e(A, gεB

2) ?= e(gεC
1 , Q7) · e(gεA

1 , gεB
2)−1

We observe that because of the randomness used in the generation of A,B
is uniformly sampled from Zp, these proof terms A and B are uniformly dis-
tributed over G1 and G2. Moreover, we know that Q7 is guaranteed to not be
g02 . Therefore, the probability that an adversarial server who does not have the
randomness used in the generation of A and B can find non-zero field elements
εA, εB , εC such that the above check verifies, is exponentially small (in the size
of the field). As a result, this randomized variant of Groth16 satisfies robust
verification. We refer the reader to the full version for a formal proof for why
Groth16 zkSNARKs satisfy robust verification.

Recall that in the single-client scenario, for local proof we only need to prove
a relation in P. Moreover, since this proof is only sent to the client, one might
11 Note that this multiplicative reconstruction can also be viewed as additive recon-

struction over Zp in the exponent of g1.

632 A. R. Choudhuri et al.

intuitively consider using a de-randomized variant of Groth16 zkSNARKs. How-
ever, given that our proof of robust verification only holds for the randomized
version of Groth16, we must use this variant for local proofs as well. Overall,
instantiating our approach from Sect. 2.1 using the Groth16 zkSNARKs gives us
a single-client ve-HSS scheme. Since soundness of this proof system holds in the
generic group model, our resulting ve-HSS scheme is also secure in the generic
group model.

2.3 Splittable Zero-Knowledge BARGs

BARGs (Succinct Non-Interactive Batch Arguments) are SNARGs designed for
a specific set of relations where a batch of statements, all requiring verification
against the same NP relation, are involved. Thanks to recent advancements [34,
37,38,60,80], BARGs are now known from various standard assumptions, (i.e.,
without relying on any idealized models). As discussed in Sect. 1.1, [80] (referred
to hereafter as Waters-Wu BARGs) are the only known BARGs that avoid non-
black-box usage of cryptography, but they do not achieve zero-knowledge. In this
section, we discuss how we can adapt the Waters-Wu BARGs to obtain a black-
box construction of zero-knowledge BARG (zkBARGs). We then proceed to
show that this zkBARG is a splittable zkSNARG and can be used to instantiate
our approach.

Recap of Waters-Wu BARGs. We start by recalling the design of Waters-Wu
BARGs. At a high level, this BARG scheme is a commit-and-prove SNARG that
achieves non-adaptive soundness. Let G and GT be symmetric composite order
pairing groups of order N = pq for primes p and q. Thus G ∼= Gp ×Gq where Gp

is a subgroup of order p generated by gp = gq where g is the generator for G,
and Gp is a subgroup of order q generated by gq = gp. Further, there exists an
efficiently computable non-degenerate bilinear map, e : G × G → GT , such that
for all a, b ∈ ZN e(ga, gb) = e(g, g)ab. The subgroups Gp and Gq themselves are
orthogonal with respect to the pairing operation, i.e. e(gp, gq) = g0T where gT

is the generator for GT . The security of the construction relies on the decision
subgroup assumption [11] which states that a random element from the subgroup
Gp is indistinguishable from a random element in the full group G.

Let C : {0, 1}n × {0, 1}h → {0, 1} be the Boolean circuit (composed of only
NAND gates) used in the BARG, where the BARG proof is constructed over a
batch of T instances (x1, . . . , xT) such that for each i ∈ [T], there exists witness
wi such that C(xi, wi) = 1. The CRS is defined to be

crs =
({Ai = gαi

p }i∈[T], A =
∏

i∈[T]

Ai = g
∑

i∈[T] αi

p , {Bi,j = gαiαj
p }i,j �=i

)

where the αis are independently and randomly sampled from ZN .

– Algebraic Vector Commitment: For each wire k in the circuit C, a commitment
Uk is computed as Uk =

∏
i∈[T] A

wi,k

i ∈ Gp where wi,k is the k-th wire value
in the i-th instance. The number of such commitments produced is equal to
the number of wires in the circuit.

Homomorphic Secret Sharing with Verifiable Evaluation 633

– Wire Validity Check: To prove that each commitment commits to a
binary vector, the prover computes for each wire k, a proof term Vk =
∏

i�=j B
(1−wi,k)wj,k

i,j .
– Gate Validity Check: To prove that the (NAND) gate computation was done

correctly, for every gate � indexed by the two incoming wires k1 and k2 and
outgoing wire k3, the prover computes W� =

∏
i�=j B

wj,k3−wi,k1wj,k2−1

i,j .
– Verification: Given crs, the commitments {Uk}k, the wire validity proofs

{Vk}k and gate validity proofs {W�}�. The verifier checks for each k, if
e(A,Uk) = e(Uk, Uk) · e(gp, Vk); and for each gate tuple � = (k1, k2, k3),
if e(A,Uk3) · e(Uk1 , Uk2) = e(A,A) · e(gp,W). Additionally, the verifier re-
computes the commitments for the input wires corresponding to the state-
ments to check if they were honestly generated.

Adding Zero-Knowledge. Since the algebraic vector commitments to internal
wire values in this scheme are deterministically computed and hence are not
hiding, it is easy to see that as such these BARGs do not achieve zero-knowledge.
Towards adding zero-knowledge to this construction, our first idea is to use
a hiding commitment. Such commitments can be obtained by simply adding
randomness to the above algebraic vector commitments. In particular, for each
wire k in the circuit C, the prover first samples a random rk ∈ Zp and then
computes Uk = grk

p · ∏i∈[T] A
wi,k

i ∈ Gp.12 This randomized Uk now information-
theoretically hides the wi,k values.

For completeness, we now also need to modify Vk and W�, in such a way that
they can somehow be verified w.r.t. the randomized commitments Uk. Impor-
tantly, these modification should not break soundness of this proof system. We
propose to modify Vk as follows:

Vk =

∏
i�=j B

(1−wi,k)wj,k

i,j ·∏i∈[1,m] A
rk(1−2wi,k)
i

g
r2
k

p

. (1)

Interestingly, in the full version, we show that given the randomized commit-
ments Uk and these Vk terms, we can continue to use the same verification check
as in Waters-Wu BARGs for wire validity checks. In the full version, we show
that W� can also be modified in a similar manner, such that, together with the
randomized Uk, gate validity checks can be performed in a similar manner as in
Waters-Wu BARGs. While these modifications suffice for completeness, we still
need to show the resulting BARG achieves soundness and zero-knowledge.

Zero-Knowledge: Next, we show that our modified BARG achieves perfect zero-
knowledge. Our first observation here is that, each Uk is identically distributed to
an element that is obtained by first unformly sampling a random value (say zk)
from ZN and then computing gzk

p . Moreover, given these values of Uk and the crs,

12 Since the statement in public and need not be hidden, the prover can simply set
rk = 0 when computing commitments for the input wires corresponding to the
statements.

634 A. R. Choudhuri et al.

the remaining proof terms Vk and W� are uniquely determined by the verification
equations for wire-validity and gate-validity checks. Our proof for perfect zero-
knowledge, now follows from these observations in a straightforward manner.
Formally speaking, a simulator with knowledge of all the αi terms used for
generation of the crs can simulate an accepting proof for any batch of statements
as follows: (1) for each wire k, it first samples a random zk ∈ ZN and then
computes Uk = gzk

p . (2) Using knowledge of αis and the zk values, it can now
compute all the Vk and W� terms such that all the verification checks go through.
It is easy to see that this proof is perfectly indistinguishable from an honestly
generation proof for a true batch of statements.

Soundness: Observe that, our idea for adding zero-knowledge to the Waters-Wu
BARGs only entails making modifications to the proof generation algorithm.
Importantly, we do not require modifying the crs and the verification algorithm.
In other words, both the crs and the verification algorithm in this modified
construction are identical to that in Waters-Wu BARGs. As a result, soundness
of our scheme simply follows from the soundness of Waters-Wu BARGs.

Splittable zkSNARG Properties. Similar to the Groth16 zkSNARKs, the
first step in generating our zkBARG, involves computing all wire values corre-
sponding to the statements, followed by the computation of all the exponent
terms needed to compute Vk and W�. For instance, for each Vk, these exponent
terms are (1−wi,k)wj,k, rk(1−2wi,k) and r2k. Since these only involve operations
over ZN , they can be computed in a distributed manner using HSS Eval.

Given the crs terms, all wire values, and these exponent terms, the subse-
quent step is to compute Uk, Vk,W� using group exponentiations. As discussed
in Sect. 2.2, these operations can be performed in a non-interactive distributed
manner, provided additive shares of the wire values and the exponent terms are
available (which we obtain from the previous step). This establishes that our
zkBARG satisfies all the structural properties of a splittable zkSNARG.

Robust Verification. Finally, we show via a sequence of the following claims
that this scheme also has robust verification:

– Firstly, we observe that an adversary cannot add a non-zero error to the vec-
tor commitments corresponding to the statement. Recall that, since the state-
ments are public, we do not randomize these commitments in our zkBARG.
Similar to Water-Wu BARGs, the verifier verifies the correctness of these
commitments by recomputing them. Therefore, any deviation from an hon-
estly computed commitment to the statements will result in the proof being
rejected.

– Next, we establish that the probability of an adversary successfully choosing a
non-zero error on any of the remaining commitments Uk or the Vk terms, while
still surpassing the wire-validity checks, is exponentially small. The proof of
this claim employs a similar argument to our proof of robust verification for
Groth16 zkSNARKs and crucially relies on the fact that the randomness rk

used in the computation of Uk remains unknown to the adversary.

Homomorphic Secret Sharing with Verifiable Evaluation 635

– Lastly, if no errors are introduced on the Uk terms, then there exist unique
values of W� that will allow the gate-validity checks to pass. This ensures that
if the adversary sends errors for any of the W� terms, the verification will fail.

We defer a formal proof to the full version. Instantiating our approach from
Sect. 2.1 using this new construction of zkBARGs gives us a single-client ve-
HSS scheme for SIMD computations. The security of this scheme holds in the
standard model.

2.4 Multi-client HSS with Verifiable Evaluation

So far, our discussion has been limited to the single-client setting. Now, we shift
our focus to the scenario where multiple (say n) mutually distrustful clients seek
to share their inputs via HSS with the servers to compute a joint function on
these inputs. In this section, we now consider the setting where multiple mutually
distrusting clients (we consider both consider both semi-honest and malicious
client settings) have inputs that they wish to HSS share with the servers to have
them compute a joint function on these inputs.

Candidate Approach. In the single-client setting, the local proof assures
the client that the output was honestly computed using their input. In the
multi-client setting, we require the same assurance for every client who shares
their inputs via HSS with the servers. A straightforward way to achieve this
would be to have the servers compute multiple local proofs, one for each server.
Specifically, the local proof sent to the ith server will pertain to the relation
Ri = {xi, y, f, xpub : ∃{xj}n

j=1,i �=j , st., f(xpub, x1, . . . , xn) = y}. Observe that,
unlike in the single-client setting, this is no longer a deterministic relation.
To ensure privacy (of the other clients’ inputs), we must use a zero-knowledge
SNARG to generate this proof. The publicly verifiable proofs can be computed
using any splittable zkSNARG as in the single-client setting, albeit for the rela-
tion Rpub = {y, f, xpub : ∃{xi}n

i=1, st., f(xpub, x1, . . . , xn) = y}. Together these
two types of proofs ensure local and public soundness in the multi-client setting.
However, privacy of this candidate approach does not follow as easily as before.

Challenges in the Multi-Client Setting. Unlike in the single-client setting,
corrupt clients can also have inputs in the multi-client setting. This presents
some unique challenges in this setting.

– Privacy: In the single-client setting, the output y is uniquely determined by
the input of the honest client. As a result, if the local proof verifies, then
the correctness of the output y follows from the soundness of the underly-
ing splittable zkSNARG. However, in the multi-client setting, the output y
might not be determined by the input of any single client. Since the state-
ments proved using the local and public proofs consist of only a subset of the
inputs, we can no longer rely solely on these proofs to verify the correctness
of the reconstructed output.

636 A. R. Choudhuri et al.

We explain this using a simple example. Let us assume that we have two
clients C0,C1 with one bit input each (let Ci have input bit bi), who wish
to delegate the computation of the product of their inputs using ve-HSS. Let
us further assume that the malicious server employs the following strategy:
it first waits for the honest server to send its share of the output and then
chooses its share of the output adaptively, such that the reconstructed output
is always 0. Now consider the scenario, where both b0 and b1 are 1 and there-
fore the correct output is y = 1. However, using the aforementioned attack
strategy, if the adversarial server succeeds in forcing the reconstructed output
to be y = 0, it can still potentially generate convincing local proofs. This is
because the local proof for Ci only guarantees that there exists b1−i such that
the AND of bi and b1−i is 0.
The issue with our previous approach based on DP-robust verification is that
our simulator can only check validity of the proof share sent by an adversarial
server for the “correct” y. Here, since the resulting proof maybe w.r.t. a differ-
ent ȳ, DP-robust verification does not suffice. We need a stronger version of
DP-robust verification in this setting, that also allows the adversary to maul
the statement w.r.t. which the proof is generated.
Unfortunately, we do not know how to prove this strong DP-robust verifi-
cation for the splittable zkSNARGs considered in Sect. 2.2 and Sect. 2.3. To
circumvent this issue, in the full version, we show how to combine our ideas
from the single-client setting with information-theoretic MAC-based ideas
from [1] (see Sect. 1.3) to obtain a secure multi-client vHSS.

– Input Sharing: Unlike in the single-client setting, where the client can use
a secret-key HSS scheme to compute shares of its input, in the multi-client
setting, it is easier for the clients to compute HSS shares of their respective
inputs if they start with a public-key HSS scheme. However, this requires
the public key and the requisite evaluation keys to be generated in a secure
manner. Moreover, given the outcome of this setup procedure, in case some
of the clients may also be malicious, we also need to ensure that they send
well-formed HSS shares of their inputs. We address this as follows:
1. Semi-Honest Clients: When clients are semi-honest, our compiler can be

used to transform any public-key HSS scheme with at most negligible
correctness error into a multi-client ve-HSS using a suitable Splittable
zkSNARG, assuming a secure “public-key setup”.
Abram et al. [1] demonstrate that for DCR-based [73,76] and class group-
based [1] HSS schemes, there exists a maliciously secure one-round dis-
tributed protocol for public-key setup that only requires making a black-
box use of cryptography. When instantiated with these HSS schemes, our
compiler yields a fully black-box solution for multi-client ve-HSS, where
the public key setup can be done jointly by the servers using the dis-
tributed protocol from [1].
Alternatively, we can instantiate our compiler using other HSS schemes.
However, since black-box protocols for public-key setup are not known

Homomorphic Secret Sharing with Verifiable Evaluation 637

for these other HSS schemes, the setup in these cases must be done by a
trusted entity.13

2. Malicious Clients: Abram et al. [1] present a black-box, one-round, mali-
ciously secure input sharing protocol (in the random oracle model) for
HSS schemes based on DCR [73,76] and class groups [1]. We leverage
this (and their distributed protocol for key setup) to demonstrate that
our compiler can be instantiated with these HSS schemes to obtain a
black-box solution for multi-client ve-HSS.14

2.5 Applications

In this section, we discuss applications of our ve-HSS schemes to private delega-
tion of different types of functions.

Delegation of Non-Cryptographic Functions. Our notion of ve-HSS natu-
rally provides a framework for private outsourcing of computation, whether by a
single client or a group of clients, to two or more servers. It is easy to see that for
non-cryptographic functions, our constructions offer a black-box solution to this
problem. As discussed in Sect. 1.2, this offers several advantages over an FHE
based delegation.

Delegation of zkSNARK Computation. We now address the problem of
private outsourcing of zkSNARK computation to a group of untrusted servers
by a single client. Specifically, given a public statement x, consider a client who
wishes to obtain a proof (using a specific zkSNARK scheme Π) attesting that
it knows some witness w such that C(x,w) = 1. Instead of computing the proof
itself, the client wants to outsource this computation to a group of untrusted
servers. This problem has been explored in several recent works [32,50,51,69].

Since the computation of a zkSNARK is inherently cryptographic, naïvely
using any delegation framework for outsourcing this task may lead to non-black-
box use of the cryptographic operations involved in generating the zkSNARK,
even if the original delegation scheme is black-box in the underlying cryp-
tographic primitives used in its construction. However, we demonstrate that
our specific construction of single-client ve-HSS yields a solution for delegating
zkSNARK computation that remains black-box in the cryptographic operations
used in its generation.

In particular, we observe that if the zkSNARK Π the client wishes to employ
is a splittable zkSNARK, then our construction of a single-client ve-HSS provides
a fully black-box solution as follows:

1. The client first uses HSS Share to compute shares of (xpriv = w).
13 This setup could also be implement jointly by the servers using a generic interactive

maliciously secure MPC protocol. However, this would result in a non-black-box use
of cryptography during the key setup phase.

14 We note that initializing our compiler with other HSS schemes, for which such black-
box protocols for public-key setup and input sharing are not currently known, does
not result in a fully black-box solution.

638 A. R. Choudhuri et al.

2. The client then sends (xpub = x) along with these HSS shares of xpriv to
the servers and instructs them to compute C using our single-client ve-
HSS (instantiated with Π).

3. Recall that, in our ve-HSS construction, the output of Rec algorithm contains
the output C(x,w) = 1 a local proof Πlocal and a public proof Πpub. Here
Πpub is a zkSNARK proof for the relation Rpub = {(C, x = xpub, 1) | ∃w =
xpriv, s.t.,C(x,w) = 1}. This corresponds exactly to the zkSNARK that the
client wanted to delegate in the first place, so the servers in this construction
simply output their respective shares of Πpub and ignore the shares of the
local proofs.

This yields a fully non-interactive solution for the problem of private dele-
gation of zkSNARK computation. As discussed in Sect. 1.2, in contrast, prior
MPC-based approaches [32,50,69] require a large amount of communication
amongst the servers. An advantage of our solution over the FHE based app-
roach proposed in [51] is that the servers can independently compute shares of
the delegated zkSNARK proof, without requiring additional intervention from
the client.

Delegation of Collaborative zkSNARK Computation. Next, we consider
the setting where a group of mutually distrustful clients wish to jointly compute
a zkSNARK for some statement x using their combined witnesses (wi)i∈[n] for
the relation: R : {(C, x) | ∃(wi)i∈[n], st., C(x, (wi)i∈[n]) = 1}. Such zkSNARKs
were recently introduced in [74], and are referred to as Collaborative zkSNARKs.

We demonstrate that our construction for multi-client ve-HSS, yields a black-
box approach for private delegation of splittable collaborative zkSNARKs. This
can essentially be viewed as a multi-client analogue of the previous application.
While the main ideas used for enabling this application are similar to those used
in the previous application, there are some distinctions:

1. Unlike in the single-prover setting, where the prover knows whether it has a
valid witness corresponding to the given statement and relation, in collabora-
tive zkSNARKs, no individual party owns the entire witness. Consequently,
the clients do not know if the statement is true or not. As a result, the
definition of zero-knowledge is slightly different in collaborative zkSNARKs.
Specifically, in this setting, privacy of the honest clients’ witnesses must be
guaranteed irrespective of whether statement is true or false.
When using our multi-client ve-HSS scheme for delegating the computation of
collaborative zkSNARKs, we propose the following approach to always ensure
privacy of the honest clients’ witnesses: similar to our previous application,
upon receiving x and HSS shares of the witnesses, the servers compute (using
the a simplified version of our multi-client ve-HSS) shares of C(x, (wi)i∈[n])
and the public proof (while ignoring the local proofs). In this application,
before revealing their shares of the public proof, we instruct the servers to
use HSS Eval to multiply the output of C(x, (wi)i∈[n]) with the public proof.
In case C(x, (wi)i∈[n]) = 1, the resulting value corresponds the the desired
collaborative zkSNARK. Privacy of the honest clients’ witnesses follows

Homomorphic Secret Sharing with Verifiable Evaluation 639

from the zero-knowledge property of the underlying zkSNARK. And in case
C(x, (wi)i∈[n]) = 0, above modification ensures that no information (apart
from the outcome of C(x, (wi)i∈[n])) about the honest clients’ witnesses is
revealed.

2. As discussed in Sect. 2.4, we require clients to perform information-theoretic
MAC checks in the ve-HSS construction, based on ideas from [1], to ensure
that adversarial servers cannot tamper with the inputs of clients and deceive
them into accepting an incorrect output. Thus, our collaborative zkSNARK
construction requires the servers to also participate in the input-sharing phase
to send HSS input shares of their individual MAC keys. The servers then
locally perform the MAC check to verify that the relation circuit was evalu-
ated correctly. Since at least one server is assumed to be honest in the col-
laborative zkSNARK model, the soundness of the MAC check ensures that
the statement is indeed verified with the witness shared by clients. Moreover,
since the MAC check is run by the servers, the clients are no longer required
after the input-sharing phase.

2.6 Full Version

In the remainder of this paper we only include the formal definition of a Splittable
zkSNARG, its properties in the distributed prover setting, the definition of a ve-
HSS scheme, and our ve-HSS construction. We refer the reader to the full version
for the remaining constructions and proofs.

3 Splittable zkSNARG

In this section, we first define Splittable zkSNARGs and then state its properties.

Definition 1 (Splittable zkSNARG). Let CNL and CZK be two classes of
circuits. A zkSNARG SNARG = (Setup,Prove,Verify) is said to be a CNL-simple
Splittable zkSNARG for CZK-circuit satisfiability if it additionally satisfies the
following properties.

– Split Prover: The prover algorithm can be split into a non-linear phase
ProveNL and a linear phase ProveL such that for any circuit C ∈ CZK, we have
the following.

• ProveNL(C, x, y, w) → MNL is a PPT algorithm that takes the circuit C,
statement (x, y) and witness w as input and outputs a tuple MNL over a
ring R.

• ProveL(crs,MNL) =: π computes an R-linear map on MNL defined by crs.
We require that for all C ∈ CZK

{

π

∣
∣
∣
∣

crs ← Setup(1λ,C)
π ← Prove(crs, x, y, w)

}
c≈

⎧
⎨

⎩
π

∣
∣
∣
∣
∣
∣

crs ← Setup(1λ,C)
MNL ← ProveNL(C, x, y, w)

π := ProveL(crs,MNL)

⎫
⎬

⎭

where the ensembles are indexed by (λ, x, y, w) for λ ∈ N and C(x,w) = y.

640 A. R. Choudhuri et al.

– Efficiency: A CNL-simple Splittable zkSNARG should satisfy the following
efficiency properties.

• CNL-simple: We require that for every circuit C ∈ CZK there exists a cir-
cuit CNL ∈ CNL such that for all circuit inputs x and w, and randomness
r we have CNL(x,w, r) = ProveNL(C, x, y, w; r) where y = C(x,w).

• Succinct Randomness: The length of the random tape required by
ProveNL is poly(λ�inp) · o(|C|).

– Robust Verification: For all polynomial sized adversaries A there exists
a negligible function negl(·) such that for all λ ∈ N and circuits C ∈ CZK

we have

Pr

⎡

⎢
⎢
⎣

C(x,w) = y ∧
ε �= 0 ∧

Verify(crs, x, y, π) = 1

∣
∣
∣
∣
∣
∣
∣
∣

crs ← Setup(1λ,C)
(x, y, w, ε) ← A(1λ, crs)
π ← Prove(crs, x, y, w)

π := π + ε

⎤

⎥
⎥
⎦ ≤ negl(λ).

We next state the completeness and security properties of Splittable
zkSNARGs, when the proofs are computed in a distributed manner.

Lemma 1 (DP-Completeness). Let SNARG be a Splittable zkSNARG for
CZK-circuit satisfiability. Then for all polynomial sized adversaries A there exists
a negligible function negl(·) such that for all λ ∈ N and circuits C ∈ CZK we have

Pr
[

C(x,w) = y ∧
Verify(crs, x, y, π) = 0

∣
∣
∣
∣
(x, y, w,m, I, [MNL]I) ← A(1λ, crs)

∀i ∈ [1,m], [π]i := Mcrs · [MNL]i

]

≤ negl(λ)

where crs ← Setup(1λ,C), MNL ← ProveNL(C, x, y, w), [MNL]i∗ := MNL −∑
i∈I [MNL]i, π :=

∑m
i=1 [π]i, m ∈ Z

+ is the number of distributed provers,
I is a set of m − 1 corrupt provers, and i∗ is the index of the honest prover.

Lemma 2 (DP-Robust Verification). Let SNARG be a Splittable zkSNARG
for CZK-circuit satisfiability and let m ∈ N. Then for all polynomial sized adver-
saries A there exists a negligible function negl(·) such that for all λ ∈ N and
circuits C ∈ CZK we have

Pr

⎡

⎣
C(x,w) = y ∧

ε �= 0 ∧
Verify(crs, x, y, π) = 1

∣
∣
∣
∣
∣
∣

(x, y, w,m, I, [MNL]I , [π]I) ← A(1λ, crs)
∀i ∈ [1,m], [π]i := Mcrs · [MNL]i

ε :=
∑m

i=1 [π]i − [π]i

⎤

⎦ ≤ negl(λ)

where crs ← Setup(1λ,C), MNL ← ProveNL(C, x, y, w), [MNL]i∗ := MNL −∑
i∈I [MNL]i, [π]i∗ := [π]i∗ , π :=

∑m
i=1 [π]i, m ∈ Z

+ is the number of distributed
provers, I is a set of m − 1 corrupt provers, and i∗ is the index of the honest
prover.

In the full version, we prove that the [58] satisfies the Splittable zkSNARG prop-
erties and that the non-linear phase of the prover, for NC1 circuit satisfiability,
can be computed by an RMS program.

We also show that a randomized variant of the Waters-Wu BARG is
both zero-knowledge, and additionally meets the requirements for a Splittable
zkSNARG. The non-linear phase of the zero-knowledge BARG, for SIMD-NC1

circuit satisfiability, can be computed by an RMS program.

Homomorphic Secret Sharing with Verifiable Evaluation 641

4 HSS with Verifiable Evaluation

In this section we first define HSS with verifiable evaluation and then present
our construction in Fig. 2.

Fig. 1. ve-HSS privacy experiment.

Definition 2 (HSS with verifiable evaluation). Let m be a positive
integer and C be a class of boolean circuits. An m-server HSS with verifi-
able evaluation (ve-HSS) scheme for C is a tuple of algorithms ve-HSS =
(Setup,Share,Eval,Recon, LVerify,PVerify) with the following syntax.

– Setup(1λ,C) → crs is a PPT algorithm that takes the description of a circuit
C ∈ C as input and outputs the common reference string crs.

– Share(crs,x) → (〈x〉1, . . . , 〈x〉m) is a PPT algorithm that takes as input crs
and private input x ∈ M∗ and outputs a sharing of the inputs 〈x〉.

– Eval(crs, i,xpub, 〈x〉i) =: [out]i is a polynomial time algorithm that takes crs,
a server index i, the public input xpub ∈ M∗ and the share of the i-th server
and computes a share of the output [out]i.

– Recon(crs, [out]1, . . . , [out]m) =: (y, πloc, πpub) is a polynomial time algorithm
that takes crs and the shares of the output and reconstructs it to compute the
circuit output y ∈ {0, 1}∗ and proofs πloc and πpub.

642 A. R. Choudhuri et al.

Fig. 2. ve-HSS construction from HSS and Splittable zkSNARG.

– LVerify(crs,xpub,x,y, πloc) → b is a PPT algorithm that takes crs, the circuit
inputs xpub and x, the circuit output y and the local proof πloc, and outputs
a bit b indicating if the proof is accepted or rejected.

– PVerify(crs,xpub,y, πpub) → b is a PPT algorithm that takes crs, the public
inputs xpub, the circuit output y and the public proof πpub, and outputs a bit
b indicating if the proof is accepted or rejected.

A ve-HSS scheme should satisfy the following properties.

Homomorphic Secret Sharing with Verifiable Evaluation 643

– Efficiency: The ve-HSS scheme is said to be efficient if it has linear recon-
struction, succinct shares and succinct verification as defined below.

• Linear Reconstruction: Recon is linear in [out]1, . . . , [out]m.
• Succinct Shares: The runtime of Share is poly(mλ|x|) · o(|C|) and the

output length of Eval is poly(λ|y|) · o(|C|).
• Succinct Verification: The runtime of LVerify and PVerify are
poly(λ · (|xpub| + |x| + |y|)) · o(|C|) and poly(λ · (|xpub| + |y|)) · o(|C|),
respectively.

– Correctness: For all polynomial sized adversaries A there exists a negligible
function negl(·) such that for all λ ∈ N and circuits C ∈ C we have

Pr
[
y �= C(xpub,x) ∨ LVerify(crs,xpub,x,y, πloc) = 0 ∨

PVerify(crs,xpub,y, πpub) = 0

]

≤ negl(λ)

where the probability is over crs ← Setup(1λ,C), (xpub,x) ← A(crs),
(〈x〉1, . . . , 〈x〉m) ← Share(crs,x), [out]i := Eval(crs, i,xpub, 〈x〉i) for each
i ∈ [1,m], and (y, πloc, πpub) := Recon(crs, [out]1, . . . , [out]m).

– Privacy: There exists a PPT simulator Sim such that for all polynomial sized
adversaries A there exists a negligible function negl(·) and for all λ ∈ N and
circuits C ∈ C,

∣
∣Pr

[
Privacy0A,Sim,C(1

λ) = 1
] − Pr

[
Privacy1A,Sim,C(1

λ) = 1
]∣
∣ ≤ negl(λ)

where Privacyb
A,Sim,C(1

λ) is defined in Fig. 1.
– Local Soundness: For all polynomial sized adversaries A there exists a neg-

ligible function negl(·) such that for all λ ∈ N and circuits C ∈ C we have

Pr
[
y �= C(xpub,x) ∧ LVerify(crs,xpub,x,y, πloc) = 1

] ≤ negl(λ)

where the probability is over crs ← Setup(1λ,C), (xpub,x, st) ← A(crs),
(〈x〉1, . . . , 〈x〉m) ← Share(crs,x), ([out]1, . . . , [out]m) ← A(st, 〈x〉1, . . . , 〈x〉m),
and (y, πloc, πpub) := Recon(crs, [out]1, . . . , [out]m).

– Public Soundness: For all polynomial sized adversaries A there exists a
negligible function negl(·) such that for all λ ∈ N and circuits C ∈ C we have

Pr
[

(C,xpub,y) �∈ SAT ∧
PVerify(crs,xpub,y, πpub) = 1

∣
∣
∣
∣

crs ← Setup(1λ,C)
(xpub,y, πpub) ← A(crs)

]

≤ negl(λ).

Theorem 5. Let HSS be an m-server HSS scheme for a class of circuits Phss

over R. If there exists a Phss-complex Splittable zkSNARG for C-circuit satisfi-
ability such that C ⊆ Phss then Fig. 2 is an m-server ve-HSS scheme for C that
is black-box in HSS and the linear phase of SNARG.

Acknowledgements. A majority of this work was done while the first and second
authors were at NTT Research. The third and fourth authors were supported in part
by NSF CNS-1814919, NSF CAREER 1942789 and Johns Hopkins University Catalyst
award. The fourth author was additionally supported in part by JP Morgan Faculty
Award, and research gifts from Ethereum, Stellar and Cisco.

644 A. R. Choudhuri et al.

References

1. Abram, D., Damgård, I., Orlandi, C., Scholl, P.: An algebraic framework for silent
preprocessing with trustless setup and active security. In: Dodis, Y., Shrimpton, T.
(eds.) Advances in Cryptology – CRYPTO 2022, Part IV. LNCS, vol. 13510, pp.
421–452. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_15

2. Aranha, D.F., Costache, A., Guimarães, A., Soria-Vazquez, E.: HELIOPOLIS: ver-
ifiable computation over homomorphically encrypted data from interactive oracle
proofs is practical. Cryptology ePrint Archive, Report 2023/1949 (2023). https://
eprint.iacr.org/2023/1949

3. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from
DDH. In: Pass, R., Pietrzak, K. (eds.) TCC 2020: 18th Theory of Cryptogra-
phy Conference, Part II. LNCS, vol. 12551, pp. 320–348. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64378-2_12

4. Bitansky, N., et al.: The hunting of the SNARK. J. Cryptology 30(4), 989–1066
(2017). https://doi.org/10.1007/s00145-016-9241-9

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing,
pp. 111–120. ACM Press, Palo Alto, CA, USA (2013). https://doi.org/10.1145/
2488608.2488623

6. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013:
10th Theory of Cryptography Conference. LNCS, vol. 7785, pp. 315–333. Springer,
Berlin (2013). https://doi.org/10.1007/978-3-642-36594-2_18

7. Bitansky, N., et al.: PPAD is as hard as LWE and iterated squaring. In: Kiltz, E.,
Vaikuntanathan, V. (eds.) TCC 2022: 20th Theory of Cryptography Conference,
Part II. LNCS, vol. 13748, pp. 593–622. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-22365-5_21

8. Bitansky, N., Kamath, C., Paneth, O., Rothblum, R., Vasudevan, P.N.: Batch
proofs are statistically hiding. Cryptology ePrint Archive, Report 2023/754 (2023).
https://eprint.iacr.org/2023/754

9. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) Advances in Cryptology – CRYPTO 2019, Part III. LNCS, vol. 11694,
pp. 67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_3

10. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight tech-
niques for private heavy hitters. In: 2021 IEEE Symposium on Security and Pri-
vacy, pp. 762–776. IEEE Computer Society Press, San Francisco, CA, USA (2021).
https://doi.org/10.1109/SP40001.2021.00048

11. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts.
In: Kilian, J. (ed.) TCC 2005: 2nd Theory of Cryptography Conference. LNCS,
vol. 3378, pp. 325–341. Springer, Berlin (2005). https://doi.org/10.1007/978-3-
540-30576-7_18

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on
Computer and Communications Security, pp. 896–912. ACM Press, Toronto, ON,
Canada (2018). https://doi.org/10.1145/3243734.3243868

https://doi.org/10.1007/978-3-031-15985-5_15
https://eprint.iacr.org/2023/1949
https://eprint.iacr.org/2023/1949
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-031-22365-5_21
https://doi.org/10.1007/978-3-031-22365-5_21
https://eprint.iacr.org/2023/754
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1109/SP40001.2021.00048
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1145/3243734.3243868

Homomorphic Secret Sharing with Verifiable Evaluation 645

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: silent OT extension and more. In: Boldyreva, A.,
Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019, Part III. LNCS,
vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8_16

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: optimizations and applications. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communica-
tions Security, pp. 2105–2122. ACM Press, Dallas, TX, USA (2017). https://doi.
org/10.1145/3133956.3134107

15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M.
(eds.) Advances in Cryptology – EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
337–367. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-46803-6_12

16. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology
– CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Berlin (2016).
https://doi.org/10.1007/978-3-662-53018-4_19

17. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016: 23rd Conference on Computer and Communications Secu-
rity, pp. 1292–1303. ACM Press, Vienna, Austria (2017). https://doi.org/10.1145/
2976749.2978429

18. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.S., Nielsen, J.B. (eds.)
Advances in Cryptology – EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp.
163–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6

19. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018: 9th Innovations in Theoretical
Computer Science Conference. vol. 94, pp. 21:1–21:21. LIPIcs, Cambridge, MA,
USA (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.21

20. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and
Communications Security, pp. 869–886. ACM Press, London, UK (2019). https://
doi.org/10.1145/3319535.3363227

21. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via dis-
tributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) Advances in Cryp-
tology – ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 244–276. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_9

22. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Sublinear GMW-style compiler for MPC
with preprocessing. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology –
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 457–485. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1_16

23. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices with-
out FHE. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17656-3_1

24. Bradley, E., Waters, B., Wu, D.J.: Batch arguments to NIZKs from one-way func-
tions. Cryptology ePrint Archive, Report 2023/1938 (2023). https://eprint.iacr.
org/2023/1938

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1145/3133956.3134107
https://doi.org/10.1145/3133956.3134107
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1145/3319535.3363227
https://doi.org/10.1145/3319535.3363227
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-84245-1_16
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1
https://eprint.iacr.org/2023/1938
https://eprint.iacr.org/2023/1938

646 A. R. Choudhuri et al.

25. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: Hatami, H., McKen-
zie, P., King, V. (eds.) 49th Annual ACM Symposium on Theory of Computing,
pp. 474–482. ACM Press, Montreal, QC, Canada (2017). https://doi.org/10.1145/
3055399.3055497

26. de Castro, L., Polychroniadou, A.: Lightweight, maliciously secure verifiable func-
tion secret sharing. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryp-
tology – EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 150–179. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_6

27. Champion, J., Wu, D.J.: Non-interactive zero-knowledge from non-interactive
batch arguments. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryp-
tology – CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 38–71. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-38545-2_2

28. Chen, X.: Verifiable homomorphic secret sharing for machine learning classi-
fiers. IEEE Access 11, 43639–43647 (2023). https://doi.org/10.1109/ACCESS.
2023.3271319

29. Chen, X., Zhang, L.F.: Two-server verifiable homomorphic secret sharing for
high-degree polynomials. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R.
(eds.) ISC 2020: 23rd International Conference on Information Security. LNCS,
vol. 12472, pp. 75–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
62974-8_5

30. Chen, X., Zhang, L.F.: Two-server delegation of computation on label-encrypted
data. IEEE Trans. Cloud Comput. 9(4), 1645–1656 (2021). https://doi.org/10.
1109/TCC.2019.2913375

31. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018,
Part III. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0_2

32. Chiesa, A., Lehmkuhl, R., Mishra, P., Zhang, Y.: EOS: efficient private delegation
of zkSNARK provers. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security
2023: 32nd USENIX Security Symposium, pp. 6453–6469. USENIX Association,
Anaheim, CA, USA (2023)

33. Chillotti, I., Orsini, E., Scholl, P., Smart, N.P., Van Leeuwen, B.: Scooby: improved
multi-party homomorphic secret sharing based on FHE. In: Galdi, C., Jarecki,
S. (eds.) SCN 22: 13th International Conference on Security in Communication
Networks. LNCS, vol. 13409, pp. 540–563. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-14791-3_24

34. Choudhuri, A.R., Garg, S., Jain, A., Jin, Z., Zhang, J.: Correlation intractability
and SNARGs from sub-exponential DDH. In: Handschuh, H., Lysyanskaya, A.
(eds.) Advances in Cryptology – CRYPTO 2023, Part IV. LNCS, vol. 14084, pp.
635–668. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_20

35. Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a NASH equilibrium is no easier than breaking Fiat-Shamir. In:
Charikar, M., Cohen, E. (eds.) 51st Annual ACM Symposium on Theory of Com-
puting, pp. 1103–1114. ACM Press, Phoenix, AZ, USA (2019). https://doi.org/10.
1145/3313276.3316400

36. Choudhuri, A.R., Hubacek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. Cryptology ePrint
Archive, Report 2019/667 (2019). https://eprint.iacr.org/2019/667

https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1007/978-3-031-06944-4_6
https://doi.org/10.1007/978-3-031-38545-2_2
https://doi.org/10.1109/ACCESS.2023.3271319
https://doi.org/10.1109/ACCESS.2023.3271319
https://doi.org/10.1007/978-3-030-62974-8_5
https://doi.org/10.1007/978-3-030-62974-8_5
https://doi.org/10.1109/TCC.2019.2913375
https://doi.org/10.1109/TCC.2019.2913375
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-031-14791-3_24
https://doi.org/10.1007/978-3-031-14791-3_24
https://doi.org/10.1007/978-3-031-38551-3_20
https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1145/3313276.3316400
https://eprint.iacr.org/2019/667

Homomorphic Secret Sharing with Verifiable Evaluation 647

37. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology –
CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 394–423. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8_14

38. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: 62nd Annual
Symposium on Foundations of Computer Science, pp. 68–79. IEEE Computer Soci-
ety Press, Denver, CO, USA (2022). https://doi.org/10.1109/FOCS52979.2021.
00016

39. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 473–503.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_17

40. Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure computation
under quasi-polynomial LPN. In: Canteaut, A., Standaert, F.X. (eds.) Advances
in Cryptology – EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 842–870.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_29

41. Couteau, G., Meyer, P., Passelègue, A., Riahinia, M.: Constrained pseudoran-
dom functions from homomorphic secret sharing. In: Hazay, C., Stam, M. (eds.)
Advances in Cryptology – EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp.
194–224. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_7

42. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low commu-
nication. In: Cramer, R. (ed.) TCC 2012: 9th Theory of Cryptography Conference.
LNCS, vol. 7194, pp. 54–74. Springer, Berlin (2012). https://doi.org/10.1007/978-
3-642-28914-9_4

43. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology – CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer,
Berlin (2012). https://doi.org/10.1007/978-3-642-32009-5_38

44. Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret sharing
and sublinear MPC from sparse LPN. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 315–348.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2_11

45. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016,
Part III. LNCS, vol. 9816, pp. 93–122. Springer, Berlin (2016). https://doi.org/10.
1007/978-3-662-53015-3_4

46. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 125–154. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3_5

47. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic secret shar-
ing from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017: 11th International Conference on Provable Security. LNCS, vol.
10592, pp. 381–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68637-0_23

48. Fosli, I., Ishai, Y., Kolobov, V.I., Wootters, M.: On the download rate of homo-
morphic secret sharing. In: Braverman, M. (ed.) ITCS 2022: 13th Innovations in
Theoretical Computer Science Conference. vol. 215, pp. 71:1–71:22. LIPIcs, Berke-
ley, CA, USA (2022). https://doi.org/10.4230/LIPIcs.ITCS.2022.71

https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-77886-6_29
https://doi.org/10.1007/978-3-031-30620-4_7
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-031-38545-2_11
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.4230/LIPIcs.ITCS.2022.71

648 A. R. Choudhuri et al.

49. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

50. Garg, S., Goel, A., Jain, A., Policharla, G.V., Sekar, S.: zkSaaS: zero-knowledge
SNARKs as a service. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security
2023: 32nd USENIX Security Symposium, pp. 4427–4444. USENIX Association,
Anaheim, CA, USA (2023)

51. Garg, S., Goel, A., Wang, M.: How to prove statements obliviously? In: Reyzin,
L., Stebila, D. (eds.) Advances in Cryptology – CRYPTO 2024, Part X. LNCS,
vol. 14929, pp. 449–487. Springer, Cham, (2024). https://doi.org/10.1007/978-3-
031-68403-6_14

52. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th Annual ACM Symposium on Theory of Computing, pp. 495–504. ACM Press,
New York, NY, USA (2014). https://doi.org/10.1145/2591796.2591861

53. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Berlin
(2013). https://doi.org/10.1007/978-3-642-38348-9_37

54. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014.
LNCS, vol. 8441, pp. 640–658. Springer, Berlin (2014). https://doi.org/10.1007/
978-3-642-55220-5_35

55. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York
City, NY, USA (1987). https://doi.org/10.1145/28395.28420

56. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

57. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) Advances in Cryptology – ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–
340. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-17373-8_19

58. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 305–326. Springer, Berlin (2016). https://doi.org/10.1007/
978-3-662-49896-5_11

59. He, Y., Zhang, L.F.: Cheater-identifiable homomorphic secret sharing for outsourc-
ing computations. J. Ambient. Intell. Humaniz. Comput. 11(11), 5103–5113 (2020).
https://doi.org/10.1007/S12652-020-01814-5

60. Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from sub-
exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 520–549.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_18

61. Ishai, Y., Lai, R.W.F., Malavolta, G.: A geometric approach to homomorphic secret
sharing. In: Garay, J. (ed.) PKC 2021: 24th International Conference on Theory
and Practice of Public Key Cryptography, Part II. LNCS, vol. 12711, pp. 92–119.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_4

62. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: Khuller, S.,
Williams, V.V. (eds.) 53rd Annual ACM Symposium on Theory of Computing,
pp. 708–721. ACM Press, Italy (2021). https://doi.org/10.1145/3406325.3451055

https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/S12652-020-01814-5
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-030-75248-4_4
https://doi.org/10.1145/3406325.3451055

Homomorphic Secret Sharing with Verifiable Evaluation 649

63. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
Charikar, M., Cohen, E. (eds.) 51st Annual ACM Symposium on Theory of Com-
puting, pp. 1115–1124. ACM Press, Phoenix, AZ, USA (2019). https://doi.org/10.
1145/3313276.3316411

64. Kalai, Y.T., Paneth, O., Yang, L.: Delegation with updatable unambiguous proofs
and PPAD-hardness. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryp-
tology – CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 652–673. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1_23

65. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th Annual ACM Symposium on Theory of Computing, pp. 723–
732. ACM Press, Victoria, BC, Canada (1992). https://doi.org/10.1145/129712.
129782

66. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low
degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology
– ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 279–309. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3_11

67. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011: 8th Theory of Cryptography Conference.
LNCS, vol. 6597, pp. 329–346. Springer, Berlin (2011). https://doi.org/10.1007/
978-3-642-19571-6_20

68. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012: 9th Theory of Cryptography
Conference. LNCS, vol. 7194, pp. 169–189. Springer, Berlin (2012). https://doi.
org/10.1007/978-3-642-28914-9_10

69. Liu, X., Zhou, Z., Wang, Y., Zhang, B., Yang, X.: Scalable collaborative zk-
SNARK: fully distributed proof generation and malicious security. Cryptology
ePrint Archive, Report 2024/143 (2024). https://eprint.iacr.org/2024/143

70. Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring with appli-
cations to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart, T. (eds.)
Advances in Cryptology – CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 632–
651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_22

71. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foun-
dations of Computer Science, pp. 436–453. IEEE Computer Society Press, Santa
Fe, NM, USA (1994). https://doi.org/10.1109/SFCS.1994.365746

72. Mondal, A., Tiwari, P.R., Gupta, D.: Poster: fully homomorphic secret sharing
with output verifiability. NDSS Poster (2022). https://www.ndss-symposium.org/
wp-content/uploads/NDSS2022Poster_paper_36.pdf

73. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic secret shar-
ing and public-key silent OT. In: Canteaut, A., Standaert, F.X. (eds.) Advances in
Cryptology – EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708. Springer,
Cham, (2021). https://doi.org/10.1007/978-3-030-77870-5_24

74. Ozdemir, A., Boneh, D.: Experimenting with collaborative zk-SNARKs: zero-
knowledge proofs for distributed secrets. In: Butler, K.R.B., Thomas, K. (eds.)
USENIX Security 2022: 31st USENIX Security Symposium, pp. 4291–4308.
USENIX Association, Boston, MA, USA (2022)

75. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. SIAM J. Comput. 50(3) (2021)

76. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and appli-
cations. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021,
Part III. LNCS, vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-84252-9_23

https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-642-19571-6_20
https://doi.org/10.1007/978-3-642-19571-6_20
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://eprint.iacr.org/2024/143
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1109/SFCS.1994.365746
https://www.ndss-symposium.org/wp-content/uploads/NDSS2022Poster_paper_36.pdf
https://www.ndss-symposium.org/wp-content/uploads/NDSS2022Poster_paper_36.pdf
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-030-84252-9_23

650 A. R. Choudhuri et al.

77. Tsaloli, G., Banegas, G., Mitrokotsa, A.: Practical and provably secure distributed
aggregation: verifiable additive homomorphic secret sharing. Cryptogr. 4(3), 25
(2020). https://doi.org/10.3390/CRYPTOGRAPHY4030025

78. Tsaloli, G., Liang, B., Mitrokotsa, A.: Verifiable homomorphic secret sharing. In:
Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018: 12th International Conference on
Provable Security. LNCS, vol. 11192, pp. 40–55. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01446-9_3

79. Tsaloli, G., Mitrokotsa, A.: Sum it up: verifiable additive homomorphic secret
sharing. In: Seo, J.H. (ed.) ICISC 19: 22nd International Conference on Information
Security and Cryptology. LNCS, vol. 11975, pp. 115–132. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-40921-0_7

80. Waters, B., Wu, D.J.: Batch arguments for NP and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology –
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 433–463. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15979-4_15

81. Yoshida, M., Obana, S.: Verifiably multiplicative secret sharing. IEEE Trans. Inf.
Theory 65(5), 3233–3245 (2019). https://doi.org/10.1109/TIT.2018.2886262

82. Zhang, L.F., Wang, H.: Multi-server verifiable computation of low-degree poly-
nomials. In: 2022 IEEE Symposium on Security and Privacy, pp. 596–613. IEEE
Computer Society Press, San Francisco, CA, USA (2022). https://doi.org/10.1109/
SP46214.2022.9833792

https://doi.org/10.3390/CRYPTOGRAPHY4030025
https://doi.org/10.1007/978-3-030-01446-9_3
https://doi.org/10.1007/978-3-030-01446-9_3
https://doi.org/10.1007/978-3-030-40921-0_7
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1109/TIT.2018.2886262
https://doi.org/10.1109/SP46214.2022.9833792
https://doi.org/10.1109/SP46214.2022.9833792

Author Index

A
Abraham, Ittai 451
Alon, Bar 548
Applebaum, Benny 485
Ashsarov, Gilad 451

B
Beimel, Amos 548, 581
Ben David, Tamar 548
Brazitikos, Konstantinos 200

C
Canetti, Ran 37
Chamon, Claudio 37
Chandran, Nishanth 293
Charbit, Pierre 167
Choudhuri, Arka Rai 614
Couteau, Geoffroy 167

D
Damgård, Ivan 266
Deligios, Giovanni 362

F
Farràs, Oriol 517, 581

G
Garay, Juan 293
Goel, Aarushi 614
Guiot, Miquel 517

H
Hegde, Aditya 614

J
Jain, Abhishek 614

K
Kasser, Dustin 395
Konring, Anders 362

L
Lasri, Or 581
Liu, Feng-Hao 130
Liu-Zhang, Chen-Da 362

M
Malavolta, Giulio 98
Meyer, Pierre 71, 167
Misra, Ankit Kumar 293
Mucciolo, Eduardo R. 37

N
Narayanan, Varun 234, 362
Naserasr, Reza 167
Nir, Oded 581

O
Omri, Eran 548
Orlandi, Claudio 71
Ostrovsky, Rafail 293

P
Paskin-Cherniavsky, Anat 548
Patra, Arpita 451
Pawar, Shubham Vivek 234
Pinkas, Benny 485

R
Ragavan, Seyoon 3
Ravi, Divya 266
Roy, Lawrence 71, 266
Ruckenstein, Andrei E. 37

S
Scholl, Peter 71
Singh, Jaspal 423
Song, Yifan 329
Srinivasan, Akshayaram 234
Stern, Gilad 451

© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 651–652, 2025.
https://doi.org/10.1007/978-3-031-78023-3

https://doi.org/10.1007/978-3-031-78023-3

652 Author Index

T
Tschudi, Daniel 266

V
Vafa, Neekon 3
Vaikuntanathan, Vinod 3

W
Wang, Han 130
Wei, Yu 423

X
Xia, Han 130

Y
Yakoubov, Sophia 266
Ye, Xiaxi 329

Z
Zikas, Vassilis 200, 293, 423

	 Preface
	 Organization
	 Contents – Part IV
	Obfuscation and Homomorphism
	Indistinguishability Obfuscation from Bilinear Maps and LPN Variants
	1 Introduction
	1.1 Consequences

	2 Technical Overview
	2.1 Weakening the Polynomial-Stretch PRG in NC0 in [JLS22]
	2.2 Our SPRG Construction from LFN
	2.3 Our Use of FE Combiners

	3 Preliminaries
	3.1 Notation
	3.2 Locality and Degree
	3.3 LPN and Sparse LPN
	3.4 Relaxing Sparse LPN to LFN

	4 Structured-Seed PRGs
	4.1 SPRG Construction Details
	4.2 Sublinear-Time Seed Sampling

	References

	Towards General-Purpose Program Obfuscation via Local Mixing
	1 Introduction
	1.1 This Work
	1.2 Reversible Circuits and Their Pseudorandomness Properties
	1.3 New Notions of Security for Circuit Obfuscation
	1.4 From RIO to RO for All Circuits
	1.5 Constructing RIO Obfuscators
	1.6 Related Work

	2 Reversible Boolean Circuits
	2.1 Reversible Circuits as a Free Group

	3 Hardness Assumptions
	3.1 On the Distribution of Functionally Equivalent Reversible Circuits
	3.2 Hardness Assumptions Regarding Random Reversible Circuits

	4 Notions of Obfuscation for Reversible Circuits
	4.1 Random Output Obfuscators
	4.2 Random Input and Output Obfuscators

	5 From RIO Obfuscation to RO for All Circuits
	5.1 Random Identity Generators
	5.2 RO Obfuscation of Single Gates
	5.3 Soldering Obfuscated Circuits
	5.4 RO for All Circuits

	6 Constructing RIO Obfuscators
	References

	Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Technical Overview
	2.1 Arithmetic Garbled Circuits Through the Lense of Homomorphic Secret Sharing
	2.2 Achieving Rate-1
	2.3 Concrete Instantiation Using the Damgård-Jurik encryption scheme ch3PKC:DamJur01
	2.4 Removing the Circular-Security Assumption

	3 Preliminaries
	3.1 Arithmetic Garbled Circuits
	3.2 Damgård-Jurik Cryptosystem
	3.3 IND-KDM Security
	3.4 Distributed Discrete Logarithm

	4 Arithmetic Garbled Circuits
	4.1 From KDM Security of Damgård-Jurik
	4.2 From CPA Security of Damgård-Jurik

	References

	Key-Homomorphic and Aggregate Verifiable Random Functions
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Outline
	1.3 Related Work
	1.4 Open Problems

	2 Preliminaries
	2.1 Bilinear Groups

	3 Definitions
	3.1 Verifiable Random Functions
	3.2 Key Homomorphism
	3.3 Aggregation

	4 Key-Homomorphic VRFs from Bilinear Groups
	4.1 Base Scheme
	4.2 Aggregation
	4.3 Anonymity
	4.4 Threshold

	5 Applications
	5.1 Distributed VRF Without a Trusted Dealer
	5.2 Proof of Stake Blockchains
	5.3 Verifiable Symmetric-Key Proxy Re-Encryption

	6 Assumptions in the GGM
	References

	More Efficient Functional Bootstrapping for General Functions in Polynomial Modulus
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Other Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Subgaussian Random Variables
	2.3 Cyclotomic Rings
	2.4 (Ring) Learning with Errors
	2.5 (Ring) LWE-Based Symmetric Encryption

	3 Basic Homomorphic Computations
	3.1 BFV Homomorphic Multiplication
	3.2 Homomorphic Automorphism Evaluation
	3.3 Homomorphic Trace Evaluation
	3.4 Computational Complexity

	4 Functional Bootstrapping: A Warm-Up
	4.1 The Functional Bootstrapping Framework
	4.2 Arbitrary Function Evaluation over Prime Cyclotomic Rings

	5 The Case of Prime-Power Cyclotomic Rings
	6 The Case of Composite Cyclotomic Rings
	7 Conclusions and Future Work
	References

	Multi-party Computation
	A Note on Low-Communication Secure Multiparty Computation via Circuit Depth-Reduction
	1 Introduction
	1.1 Background
	1.2 Overview of Our Results
	1.3 Technical Overview

	2 Preliminaries
	2.1 Cryptographic Notions
	2.2 Graph-Theoretic Notions

	3 Depth-Reduction Pebbling Game
	3.1 The Depth-Reduction Problem for Directed Acyclic Graphs
	3.2 A Depth-Reduction Pebbling Abstraction
	3.3 Recasting MPC Protocols Through the Lens of DR Pebblings

	4 Depth-Reduction Algorithms for Fan-In Two Circuits
	4.1 Depth-Reduction of Low-Depth Circuits
	4.2 Depth-Reduction of General Circuits
	4.3 Lower Bounds on Depth-Reduction
	4.4 Applications to Cryptography

	References

	General Adversary Structures in Byzantine Agreement and Multi-party Computation with Active and Omission Corruption
	1 Introduction
	1.1 Related Literature
	1.2 The Model
	1.3 Organization of the Paper

	2 Technical Overview
	3 Byzantine Agreement with Active and Omission Corruption
	3.1 Security Conditions
	3.2 Detection of Omission-Failures on Public Point-to-Point Communication
	3.3 Weak Consensus
	3.4 Graded Consensus
	3.5 King Consensus
	3.6 Consensus
	3.7 Broadcast

	4 Multi-party Computation
	4.1 Detectable Secure Message Transmission
	4.2 Building Blocks and Tools for MPC
	4.3 Computing the Gates
	4.4 The MPC Protocol

	5 Conclusion and Open Problems
	References

	Secure Computation with Parallel Calls to 2-Ary Functions
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Impossibility of Achieving Statistical Security
	2.2 Securely Computing Degree-2 Polynomials with PwKO
	2.3 Relaxing to Computational Security

	3 Open Problems
	4 Definitions
	4.1 Multiparty Randomized Encoding
	4.2 One-Time Digital Signature

	5 Impossibility of Statistical Security with Abort
	6 Positive Results
	6.1 Conditional Disclosure Protocol
	6.2 Computing Degree-2 Functions with PwKO
	6.3 Achieving General Secure Computation with Abort
	6.4 Extensions

	References

	Efficient Secure Communication over Dynamic Incomplete Networks with Minimal Connectivity
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Adversary Model
	2.2 Communication Network
	2.3 Security
	2.4 Graphs

	3 Private Communication with Passive Corruption
	3.1 Private Communication on Directed Graphs
	3.2 Private Communication on Undirected Graphs

	4 Reliable Communication with Active Corruption
	4.1 Labeled Min-Cut
	4.2 Multicast Protocol

	5 Private Communication with Active Corruption
	5.1 Feasibility of Perfect Security When k > 2t

	6 Communication with Less Connectivity
	References

	Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC
	1 Introduction
	1.1 Communication Locality and Adaptive Security
	1.2 Erasures and Network Assumptions in CL Protocols
	1.3 Our Results
	1.4 Related Work

	2 Model
	2.1 Adversarial Model
	2.2 Atomicity Assumptions

	3 Technical Overview
	4 Impossibility in the NE-NAMS and NE-AMS Models
	5 Positive Results in the E-NAMS/E-AMS Models
	5.1 Polylogarithmic Locality RMT in the E-NAMS Model
	5.2 Impossibility of Dishonest Majority in the E-NAMS Model

	6 Polylogarithmic Locality RMT in the NE-NAMS Model
	6.1 Single-Pair RMT Using Fully Homomorphic Encryption
	6.2 Multi-sender RMT

	7 Communication-Local MPC
	7.1 CL MPC in the NE-AMS, E-NAMS, and E-AMS Models
	7.2 CL Sublinear-Output-Set (SOS) MPC in the NE-NAMS Model

	References

	Information-Theoretic Cryptography
	Perfectly-Secure MPC with Constant Online Communication Complexity
	1 Introduction
	1.1 Our Contribution

	2 Technical Overview
	2.1 Efficient Online Protocol via Preprocessing
	2.2 Boosting Verification
	2.3 Identifying Dispute Pair
	2.4 Security Issue of the Current Approach
	2.5 Towards General Circuits
	2.6 Summary of Our Construction

	3 Preliminary
	3.1 The Model
	3.2 Byzantine Agreement
	3.3 Packed Shamir Secret Sharing
	3.4 The Generalization of Party Elimination: Dispute Control
	3.5 Enabling Preprocessing

	4 Circuit Evaluation
	4.1 Useful Building Block for Verification
	4.2 Evaluating Multiplication Gates
	4.3 Handling Sharing Transformations
	4.4 Summary of the Evaluation Phase

	5 Efficient Verification
	5.1 Verifying Multiplication Gates
	5.2 Verifying Sharing Transformations

	6 Main Protocol with Perfect Security
	6.1 Input Layer
	6.2 Output Layer
	6.3 Main Protocol
	6.4 Summary

	References

	Statistical Layered MPC
	1 Introduction
	2 Technical Overview
	3 Preliminaries and Model
	4 Future Messaging
	5 Future Broadcast
	6 Information Theoretic Signature
	7 Distributed Commitment
	8 Parallel Linear VSS
	9 Circuit Evaluation
	References

	An Improvement Upon the Bounds for the Local Leakage Resilience of Shamir's Secret Sharing Scheme
	1 Introduction
	2 Establishing a Bound on 69645069 86422285 Lq
	3 A New Bound on 69640972 S(0) 86418188
	4 A Bound via Subset Averaging
	5 Convergence When t 0.67
	6 Discussion
	A Appendix A
	B Appendix B
	C Appendix C
	References

	Information-Theoretic Multi-server Private Information Retrieval with Client Preprocessing
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Algorithmic Notation
	2.2 Multi-server PIR with Client Preprocessing (with Threshold 1)

	3 Privately Multi-puncturable Random Set (PMPRS)
	3.1 Proposed PMPRS Construction

	4 Proposed Scheme for PIR with Client Preprocessing
	4.1 Improving PIR Communication Complexity

	References

	Asynchronous Agreement on a Core Set in Constant Expected Time and More Efficient Asynchronous VSS and MPC
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	2.1 Packed Asynchronous Verifiable Secret Sharing
	2.2 ACS and AVABA
	2.3 Extensions

	3 Definitions and Assumptions
	3.1 Network and Threat Model
	3.2 Asynchronous Secure Computation and SUC
	3.3 Cooperative Adversaries
	3.4 Reliable Broadcast

	4 Verifiable Party Gather
	4.1 Property-Based Definition
	4.2 Gather Functionality

	5 Packed AVSS
	5.1 The Functionality
	5.2 Reconstruction
	5.3 Putting It All Together

	6 Verifiable Leader Election
	6.1 The Functionality

	7 Asynchronously Validated Asynchronous Byzantine Agreement
	7.1 The Functionality
	7.2 The Protocol

	8 Agreement on a Core Set (ACS)
	References

	Secret Sharing
	Distributing Keys and Random Secrets with Constant Complexity
	1 Introduction
	2 Our Results
	2.1 Technical Overview

	3 Preliminaries
	4 Secret Sharing
	4.1 Definitions and Basic Facts
	4.2 AFS from Expanders
	4.3 Robust AFS

	5 Distributed Secret-Sharing Generation
	5.1 DSG and DKG: Abstract Version
	5.2 Canonical Schemes
	5.3 From DSG to DKG

	6 Realizing Robust Canonical DSG
	6.1 Notation and Tools
	6.2 The Basic Protocol
	6.3 Improving Security by Limiting Aborts

	References

	Reducing the Share Size of Weighted Threshold Secret Sharing Schemes via Chow Parameters Approximation
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Analysis of Boolean Functions
	2.2 Secret Sharing Schemes

	3 Approximation of Monotone Linear Threshold Functions
	3.1 Proof of Theorem 3.2
	3.2 Remarks on the Error and the Weight Bound of Theorem 3.1

	4 Secret Sharing Schemes for Approximate Weighted Threshold Access Structures
	4.1 Scheme Construction
	4.2 Remarks on the Secret Sharing Techniques
	4.3 Comparison with State-of-the-Art Proposals

	5 Computational Secret Sharing Schemes for Approximate Weighted Threshold Access Structures
	5.1 Succinct Computational Secret Sharing Schemes
	5.2 Scheme Construction
	5.3 Comparison with State-of-the-Art Proposals

	References

	New Upper Bounds for Evolving Secret Sharing via Infinite Branching Programs
	1 Introduction
	1.1 Our Results
	1.2 Previous Results
	1.3 Our Techniques

	2 Preliminaries
	2.1 Secret-Sharing Schemes
	2.2 Evolving Secret-Sharing Schemes

	3 Evolving Secret-Sharing Schemes for Infinite Branching Programs
	3.1 Constructing an Evolving Secret-Sharing Schemes for Infinite Branching Programs
	3.2 Evolving Secret-Sharing Schemes for Dynamic-Threshold via LIBPs
	3.3 Evolving Secret-Sharing Schemes for LIBPs with Bounded Width

	References

	Secret-Sharing Schemes for High Slices
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Our Techniques
	1.4 Open Questions

	2 Preliminaries
	3 Perfect Secret-Sharing Schemes for (n-k)-Slices
	3.1 Construction from Schemes for k-Slices
	3.2 Construction from k-Server CDS Protocols

	4 Computationally-Secure Schemes for (n-k)-Slices
	5 Applications to Multislices
	5.1 The Framework
	5.2 Schemes for (a:b)-Multislices
	5.3 Schemes for (n-k:n)-Multislices
	5.4 CSSS for (n-k:n)-Multislices
	5.5 Linear and Multi-linear Schemes for (n-k:n)-Multislices

	References

	Homomorphic Secret Sharing with Verifiable Evaluation
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Related Work

	2 Technical Overview
	2.1 Single Client HSS with Verifiable Evaluation
	2.2 Groth16 ZkSNARKs ch20EC:Groth16 Are Splittable
	2.3 Splittable Zero-Knowledge BARGs
	2.4 Multi-client HSS with Verifiable Evaluation
	2.5 Applications
	2.6 Full Version

	3 Splittable zkSNARG
	4 HSS with Verifiable Evaluation
	References

	Author Index

